MONTICELLO VIBRATION TEST SUMMARY REPORT June 12, 1972

Vibration measurements were made on the reactor internals at Monticello starting 12/22/70 with cold flow tests and being completed 7/6/71 with the turbine trip test from 100% power, 100% coolant flow. This is a summary report of the measurements, listing the measured amplitudes, criteria and with a discussion and evaluation of the significance of the results.

The results of these measurements and tests indicate that vibration amplitudes are all within acceptable limits for normal operation up to 100% power and 100% flow. The highest levels of vibration occurred on the jet pump riser pipes during transient and unbalanced flow conditions. Jet pumps were cavitating during the cold recirculation pump trip tests. Automatic interlocks normally prevent operation above 20% pump speed in the cold condition; the pump trip tests were done from 65% pump speed and therefore resulted in vibration levels significantly higher than expected during normal operation. Even though vibration levels were less than the acceptance criteria for unbalanced flow conditions, procedural controls have been established to further reduce these levels.

The "Results - Summary and Discussion", Section I, covers in detail the maximum vibrations measured in each section of the reactor listing the maximum amplitudes both in terms of inches peak to peak motion and the percent this amplitude is of the criterion. The detailed tabulation of the criteria and the measurements is given in Section II, "Criteria and Measurements". Sections III and IV are a tabulation of raw data included in the complete test record; these sections are not included as part of the summary report. Section V, "Vibration Instrumentation", discusses the type and location of sensors and associated instrumentation.

9211170369 730228 PDR ADOCK 05000263 R FDR

I. Results - Summar and Discussion

. 1.

Shroud-Separator Assembly Vibration Measurements

The maximum vibration motions of the shroud-separator assembly for all steady operating conditions, with both balanced and unbalanced flow, were 0.001" peak to peak at 6. to 7. Hz and .0006" peak to peak at 14.8 Hz. These represent 1.8% and 3.2% of the respective criterion.

I-1

The highest vibration amplitudes are related to the opening of a pressure relief value and to scram when operating at and above 50% power. This vibration was very transient in nature, never lasting more than 1. to 1.5 seconds. The maximum transient amplitudes measured were as follows:

	Amplitude Peak to Peak	Vibration Frequency	% Criteria
2 Pump Trip	.0012"	5.5 Hz 15.	2.2% 13.1
Turbine Trip	.005	5.6 15	9.1 34

2. Jet Pump Riser Pipe Vibration Motion (Tangential)

		Vibration Amplitude	Vibration Frequency	% of Steady State Criteria
Constant Flow, C	old			
Balanced Flow		.004" p.p.	25 Hz	50%
Unbalanced Flew		.0066	25	83 (1) (4)
Constant Flow, H	ot			
Balanced Flow Unbalanced Flow		.002	25 Hz 23.5	25 91 (1)
Transient Flow				
"A" Pump Trip, (Cold Hot	.009	26 24.8	112 (2) (4) 100 (2) (3)
"B" Pump Trip, 1	Cold Hot	.012 .0035	25 31.5	150 (2)(4) 25
Turbine Trip		.004	26.8	53 (2)

(1) Procedural limitation will forbid operation with the unbalanced flow established for these test points.

(2) The amplitudes measured occurred for less than 1.5 seconds.

(3) This reading occurred during "A" pump coastdown when unbalanced flow passed through critical region (see Note 1).

(4) The jet pumps cavitated under these conditions and this mode is not permitted during plant operation.

3. Jet Pump Vibration Motion (Radial, at the Top)

	Vibration Amplitude	Vibration Frequency	% Criteria
Constant Flow, Cold			
Balanced Flow	.004" p.p.	36 Hz	30%
Unbalanced Flow	.003	24	17
Constant Flow, Hot			
Balanced Flow	.0015	24.8	6
Unbalanced Flow	.005	24.8	20
Transient Flow			
"A" Pump Trip, Cold	.012	32	47
Turbine Trip	.005	36	37

For each main heading in the above table, the readings listed represent the maximum amplitudes observed. The cold readings also represent operation during initial cavitation which is normally avoided.

The amplitudes listed for transient conditions last only 1. to 2. seconds.

4. In-Core Guide Tube Housing Vibration Motion

The maximum vibtation amplitudes of the in-core guide tube housing occurred during the cold unbalanced flow test. This amplitude was 0.0098" peak to peak at 45 Hz which is 19% of the criterion. During the hot flow tests, the amplitude never exceeded 6.6% of the criterion.

5. Control Rod Guide Tubes

The maximum vibration strain amplitude occurred during unbalanced cold flow operation. The amplitude was 69. micro strain peak to peak at 19 Hz which is 9% of the criterion. All readings during the hot flow tests were below 1% of the criterion.

II. Criteria and Measurements

The vibration criteria and the measurements for each of the five sections or components in the reactor are both tabulated in tables with the following five headings:

Table 1 - Shroud and Separator Assembly Vibration Amplitudes
Table 2 - Jet Pump Riser Pipe Tangential Vibration Motion
Table 3 - Jet Pump (Top) Vibration Motion (Radial)
Table 4 - Incore Guide Tube Housing Vibration Motion
Table 5 - Control Rod Guide Tube Vibration Motion

Each table is composed of two parts, with the first part titled "A-CRITERIA", and the second part, "B-MEASURED VIBRATION AMPLITUDES". The source and the significance of the information given in each part is discussed in the following paragraphs:

A-CRITERIA

The criteria listed in the following tables represents the vibration amplitude at the sensor location for a limiting stress at the point of maximum stress in the reactor internals structure.

In order to provide assurance that the limiting stress criteria which are established as an acceptance basis for the vibration tests are conservative, the ASME Code design values for endurance limit are used as a guide. The 1968 edition of the ASME Nuclear Vessel Code establishes the endurance limit as "two times the S_a value at 10⁶ cycles in the applicable fatigue curve." For austenitic materials, such as the stainless steel and inconel from which BWR internals are constructed, the design S_a value at 10⁶ cycles is 26,000 psi. Therefore, the code would permit a vibration stress of \pm 26,000 psi which corresponds to a design endurance limit of 52,000 psi.

The procedures and criteria applied in evaluating the acceptability of vibration of BWR reactor internals are based on engineering judgment where more specific information is lacking, and are more conservative than requirements of the ASME Code for Nuclear Vessels. The criteria used in the General Electric BWRs is to limit the alternating peak stress intensity, including all stress concentration factors, to a value of \pm 10,000 psi. This is assumed to be a conservative criterion and represents an additional margin of safety compared to the value permitted by ASME Codes. The relationship between the vibration amplitude at the sensor location and the stress at the point of maximum stress is determined analytically for normal mode response amplitudes and stresses. Where a more detailed analysis is needed, the normal mode responses are combined to take into account non-model force inputs (i. e., input forces at one and two coordinate locations only).

The normal mode calculations, in general, involve the following steps: When computer programs are used, the steps are often combined in the program so that only the problem statement steps 1 and 2 require detailed effort.

- (1) Express the reactor internals structure as a mathematical model in terms of lumped masses and inertias, and lumped springs with coordinate identifications assigned to each.
- (2) Calculate the stiffness and the mass matrices. The mass matrix should include the effect of the water in the vessel which will add hydrodynamic masses to many coordinates and will add off diagonal mass terms to the matrix.
- (3) Calculate the natural frequencies (eigen values) and the corresponding normal modes (eigen vectors).
- (4) For each normal mode determine the location of the limiting stress.
- (5) From the normal mode and limiting stress calculations, determine the limiting vibration amplitude at the sensor locations.

B-MEASUREMENTS

The data for the vibration measurements were recorded on three 6-channel chart recorders and a 14-channel tape recorder. Detailed characteristics of the instrumentation are given in Section V.

The measured values reported in the following five tables were taken from the chart recordings using a purely manual procedure aided by a Gerber Variable Scale. In general, when the vibration amplitudes were fairly low (i. e., less than 10% of the criterion), both the amplitude and the frequency tended to be random. When the amplitudes were higher single frequency, components tended to predominate. The vibration amplitudes listed represent the largest peak to peak value observed during the recording period (usually for twenty seconds or more), and the frequency (H_z) for each amplitude reading. Table 1 - Shroud and Separator Assembly Vibration Amplitudes

A. CRITERIA

Vibration	Limiting Vibra	tion Amplitude	Critical Stress Location	
Frequency	(inches pea	k to peak)		
	Sensors D-1,2,3,4	Sensors V-1,2,3,4		
4.1	0.055	0.103"	Shroud legs	
6.6	0.055	0.110	Shroud legs	
7.9	0.062	0.029	Shroud legs	
13.6	0.019	0.209	Shroud legs	
17.4	0.0024	0.048	Fuel	
19.7	0.0072	0.082	Standpipes	
20.8	0.013	0.074	Standpipes	
23.1	0.024	0.012	Shroud legs	
35.8	0.006	0.0062	Fuel	
40.3	0.024	0.031	Standpipes	
43.2	0.062	0.038	Standpipes	

Table 1 (cont'd)

1

11-4

B. MEASURED VIBRATION AMPLITUDES

Power	% Pump	Speeds B	Maximum Vibration Amplitudes (inches peak to peak)				
	^	~	Elevati	on 387'	Elevatio	n 532''	
			(D-1, 2	, 3, 4)	(V-1, 2,	3, 4)	
			A	f	А	ſ	
Balanced Flo	ow Opera	ation					
Cold	65%	65%	.001"	4,8 Hz	.001"	24 Hz 29.8	
50% Power	81	83	.0007	4.7-6.5	< .0001	1.5	
75% Power	86	87	.0008	6.6	< .0001		
	53.5	53	.0003	6.0	< .0001		
			.0003	16.0			
	24.5	22.5	.0005	5.5	< .0001		
100% Power	92	91	.001	6.2	< .0001		
			.0006	14.8			
Unbalanced	Flow Op	eration					
Cold	20	50	.001	5	.0005	25	
	9	65	,001	5	.001	25	
	60	40	.0005	25	.001	25	
50% Power	0	83	.0005	5.75	< .0001	-	
	81	0	.0005	5.75	<.0001	-	
75% Power	0	93	.001	67.	< .0001		
100% Power	28	94	.0005	6.2	< .0001	-	
			.0002	15.5			
	91	24./27.	.0004/	6	< .0001		
			.0006				
			.0005	15			
Equalizer V	alves O	pen					
Cold	60	0	.0003	5	< .0001		
50% Power	79	0	.0003	6			
00/01 0001	0	87	.0003	6			
100% Power	86	0	.0005	6			
			.0002	15			

Table 1 (cont'd)

100

A - Pump Trip and B - Pump Trip

Cold 50% Power 75 100		Vibration amplitudes changed gradually from those for two pump operation to those for single pump operation.				
Two Pump	Trip					
50% Power	33	36	.0008	5.6	< .0001	
	11	15	,0025	15.2		
75		4	.0012*	5.5		
			.006*	15.5		
100	91	94	,0008	6		
			.0008	15		
	10	16	.0007	6		
	0	0	.001	6		
Turbine Tri	p					
50% Power			.0064**	15		
75			.005	5.6		
			0065	15		

.005*

.0035** 5.8

4.6

*When reactor control rods scrammed. **Main pressure relief valve was operated. Table 2 - Jec Pump Riser Pipe Tangential Vibration Motion

A. CRITERIA

ロメ・

Vibration	Limitating Vibration Amplitude (inches peak to peak)
Frequency	Sensors D-5, D-6
24	0.0088''
26	0.008
28	0.0075
29	0.0084
30	0.0116
31	0.0142
32	0.0132
34	0.0116
36	0.0113
40	0.0108

Table 2 (cont'd)

B. MEASURED VIBRATION AMPLITUDES

			Maximum Vibration Amplitudes			
Power	% Pump Speeds		(inches peak to peak)			
	A	В	Riser at 30 "		Riser at	330°
			(Sensor	D-5)	(Sensor	D-6)
			А	f	A	f
Balanced Fi	w Operati	on				
Cold	40	40	.0004	27	.0001	62.5
	65	05	.0001	25	.004*	21
			.004	25	.004**	30
50% Power	52	52	.0015	29.5	.0006	29
	62	62	.001	31	.0008	27
	70	70	.001	30	. 001	26
	75	75	.0008	+	.0012	
	81	83	.001	31	.0012	25
	90	90	.0008	31	.002	24.5
75% Power	88	89	.0005	31	.002	25.2
	53	54	.0008	31	.0005	28.5
	20	20			. 0003	30.5
100% Power	92	91	.0012	31.5	.002	2.5
	74	76.5	.001	31	.0005	27
Cold	65	50	.002	25-29	.005*	25
0.010	65	40	.002	25-29	.0074*	25
	60	40	.002	26	.0066*	25
	0	40	.0005	25	.0005	25
50% Power	82	22	.002	30	.0015	28
5070 1 Ower	2.5	87	.0018	31	.006	25
75% Power	0	89	.001	31	.002	24
1270 2 0 102	0	93	.002	31	.0022	24
100% Cower	50	94	.0006	26	.0005	20
	40	94	.001	26	.002	26
			.0007	31		
	32	94	.0007	31	.005	25.7
	28	94	.001	32.5	.007	24.5
	2.5	94	.0008	31	.008	23.5
	23	94	.0006	30.2	.003	25.5
	91	42	.001	32	. 002	25
	91	37	.002	32	.002	25
	91	30	0035	31.5	.002	25.5
	91	27	.004	30	.0025	25
	91	24	. 2022	31	.0016	25.7
	87	0	.001	30.5	.0015	28

Table 2 (cont'd)

. . . .

11-8

1955 - La 194	é di Li					
Equalizer Va	lves Ope	<u>20</u>				
Cold	70	0	.0008	25	.001	25
50% Power	80	0	.0004	31	.0004	29
	0	82	.0004	31	.0004	29
100% Power	84	0	.0006	30.6	.0005	28
A - Pump Ti	rip Maxin	mum Readin	gs			
Cold*	9	65	.009	26	.004	30
50% Power	87	87	.0015	31	.0065	25
75% Power	26	89	.0008	30	.005	24
1010 201102	14.6	88.5	.0015	31	.0005	24
100% Power	92.5	96	.001	30.5	.0015	24.7
	30	95	.001	31.6	.008**	24.8
	0	94	.0013	29	.002	27.5
B - Pump T	rip Maxi	mum Readin	gs			
Cold*	65	0	.003	30	.012	25
50% Power	87	87	.0025	31	.001	26
75% Power	称李容	家华家	.003	奉宗奉	.0025	非非非
100% Power	92	94	.0014	31	.0021	26.5
	91	28	.0035	31.5	.0013	26
	91	23	.001	31	.002	25.5
	91	16	.0005	•	,0024	25.5
Two Pump 7	Crip Max	imum Readi	ngs			
50% Power	87	87.	.0018	32.5	.002	26
75% Power	华华泰尔	非非非常	.001	33	.0008	33
100% Power			Gradu	al Reductio	on in Amplitud	es
Turbine Tri	p Maxim	um Vibratio	n Readings			
50% Power	87	87	.0018	32.5	. 002	26
75% Power	87.4	87.4	.0035	33	.004	26.8
	44.5	44.0	.001	33	.0015	26.8
	12.4	13.1	.001	33	.001	26.8
100% Power	92	96	.001	28.3	.0015	25.1
	91.5	94.5	.004**	**30.5	.003***	25.2
	57.0	59.5	.0006	29.5	.001	29.5
	25.0	28.0	.0001	-	.0002	-

Table 2 (cont'd)

6

1

Generator Trip Maximum Vibration Readings

50% Power 81 83 .001 30.5 .0015 25

Cavitation Search at 100% Flow

As power was reduced to 20%, no increase in riser pipe vibration amplitude was noted.

*Jet pumps were cavitating during these measurements.

.

** Maximum during "A" pump coastdown due to unbalanced flow. Occurred for approximately one second.

The recorder chart speed was too slow to define the frequencies. *These readings were obtained when the control rods scrammed.

11-9

Table 3 - Jet Pump (Top) Vibration Motion (Radial)

A - CRITERIA

· · · · ·

Vibration Frequency	Limiting Vibration Amplitude (inches peak to peak) (Sensors D-7, D-8)
28	.0248"
30	.0262
32	. 0256
34	. 0232
36	.0134
38	.0076
40	. 0062
42	.0092
43	.0156

Table 4 (cont'd)

B - MEASURED VIBRATION AMPLITUDES

Power	% Pum	Speed	d Maximum Vibration Amplitudes					
	Α	В		(inches pe		ak to peak)		
			JP=1 (2	JP=1 (21°)		9°)		
			(Sensor	D-7)	(Sensor	D-8)		
			A	ſ	Α	f		
Balanced Flo	ow Opera	ation						
G 11	1.0.00	1 5 11	0.04	34	0.04	26		
Cold	05%	0 5 %	. 004	30	.004	20		
50% Power	90	90	.001	- A. (1997)	.0015	28		
	81	83	.0003	31	.0005	31		
	70	70	.0006	2.8	.0008	28		
	62	62	.0006	34	.0008	34		
	52	52	.0004	29.5	.0004	31.5		
	30	30	.0001	27.5	.0001	27.5		
75% Power	89	89	.0005		.0005			
	53	54	.0005	28.5	.0007	28.5		
	20	20	.0001	29	.0001	29		
100% Power	92	91	.001	30	.001	30		
	74	76.5	.0004	29	.0005	29		
Unbalanced	Flow Op	eration						
Cold	65	50	.0008	31.4	.001	31.5		
	65	40	.003	29.4	.004	25-31.2		
	60	40	.0026	30	.003	30		
	0	40	.0005	25	.0005	25		
50% Power	82	22	.005	28	.004	28		
	25.4	87	.001	2.8	.0015	28		
75% Power	0	89	.002	28.8	,0025	28.8		
	0	93	.0015	29.4	.005	29.4		
100% Power	40	94	. 001	29	.001	29		
	34.1	94	. 001	29	.001	29		
	29.4	94	.0015	29	. 002	29		
	25	94	.0015	29	.0015	29		
	23	94	002	29	0025	2.2		
	01	51	0005	20	0006	20		
	91	10	.0005	20	.0000	20		
	91.	40	.001	20 5	.0015	20 5		
	91	35	.003	48.5	.004	40.2		
	01	20	.001	20 7	.001	20 7		
	91	30	.004	28.1	.0055	20.1		
			.0025	38.5	.0035	38.5		
	91	26	.005	28	.005	28		
	91	24.5	,003	29	.004	29		
	91	22	.001	2.9	.0008	29		

Table 3 (cont'd)

홍성한 강화 가는

×.

11-12

Equaliz	er	St. 16	121	ક ગ	Spe:	6
and the second second second second			the second se	A		100 TO 1

Cold	10	6	.00025	25 22	.0005	25
50%	8.0	<u>je</u>	.0004	29	.0005	29
a president a construction of the second	0		.0004	29	.0005	29
100% 第二次法。	ž 4 .	0	. 0003	29	.0005	29
A - Pump Tr	ip Maxir	num Reading	5			
Cold	9	65	.010	32	.0126	32
50% Power	82	86	.0025	28	.003	28
75% Power	0	89	.002	28.8	.0025	28.8
100% Power	92.5	96	.0015	28.8	.0015	28.8
	30	95	.0015	29	.0015	29
	0	94	.0015	27.7	.002	27.7
B - Pump Tr	rip Maxin	murn Reading	5			
Cold	65	65	.0022	31	.001	28
	65	0	.0025	34	.003	32
50% Power	82	86	.0025	28.5	.003	28.5
75% Power	shi	*	.0045	*	.006	*
100% Power	92	94.5	.0015	29	.0015	29
	91	28	,0045	29	.0055	29
	91	23	.0005	29	.0007	29
	91	16	.0005	29	.0007	29
Two Pump 7	Trip Max	imum Vibrat	ion Reading	8		
50% Power	82	86	.0015	28	.0015	28
75% Power	**	卒	.0025*	35	.0025*	35
100% Power	Gradua	1 Reduction i	n Vibration	Amplitudes		
Turbine Tri	p Maxim	um Vibration	n Readings			
50% Power			.0035**	* 40	.0035**	× 40
75% Power	88	91	.0045	46	.003	46
	56.0	61	.0015	46	.002	46
	12	14	.001	46	.001	46
100% Power	91.5	94.5	.005	36	.004	36
	57	59.5	.001	30	.002	30
	25	28	.0002	14 24 2 11	.0002	

1

Table 3 (cont'd)

II-13

Generator Trip Maximum Vibration Readings

50% Power 81 83 .0005 29 .0006 29

Cavitation Search at 100% Flow

As power was reduced to 20%, no increase in jet pump vibration amplitude was noted.

*Chart speed too slow to define the frequency. **When control rods scrammed. Table 4 - In-Core Guide Tube Housing Vibration

A - CRITERIA

1

Vibration	Limiting Vibration Amplitude (inches peak to peak) Sensors A-1,2,3,4	Support at Center or Grid Location
<u>a requency</u>	and the second	
6.5	0.164	No
19.5	0.081	Yes
21.1	0.101	No
38,5	0.054	No
43.8	0,053	Yes
59	0.010	No
72.4	0.022	Yes

Table 4 (cont'd)

II-15

B - MEASURED VIBRATION AMPLITUDES

Conditions	% inunp A	Speed B	Maximum Vibration Amplitudes (inches peak to peak)					
			Locatio	1 (20, 05)*				
			Sensor	A3	Sensor	A4		
			A	ſ	A	F		
Balanced Flo	w Opera	tion						
Cold	65	65	(.009)	(27.6)#	1.00857	(45.87		
			(.0065)	(48.3)	(.0085)	(48.3)		
			.002	49	.007	44.5		
50% Power	90	90	.003	9 49.5	.003	9 49.5		
	81	83	.0018	9 49	.0015	9 49		
	70	70	.0015	9 49	.001	9 49		
	62	62	.0015	9	.0008	9		
	52	52	.0012	9	.0005	9		
	30	30	.001	9	.009	9		
75% Power	88	89	.0005	48	,0005	48		
	53	54	.001	17	.0005	17		
	20	20	.001	9	-			
100% Power	92	94	.0006	45.9	.0003	45.9		
	74	76.5	.0001	45	.0001	45		
Unbalanced	Flow Op	eration						
Cold	65	50	(.008)	(27.4)				
			(.0054)	(49.)	(.008)	(49.)		
			.001	45	.006	45		
			(.0185)	(2734.)	(.004)	(45.)		
	60	40	.0019	45	.0098	45		
	65	40	(.009)	(28.2)	(.004)	(49)		
			.0006	44	.004	44		
			.0005	49	.003	49		
50% Power	82	25	.002	8.25	.0025	8.25		
			.001	17.3	.001	17.3		
			.0002	41	.0005	41		
	82	30	.0002	8.25	.0005	8.25		
			.0002	41	.0001	41		
75% Power	0	89	.0025	44	.001	44		
	0	93	.0035	44	.0015	44		

Table 4 (cont	'ā)		II-16			
The second second second						
100% Power	52	94	.0007	45	,0002	45
	40	94	.0015	45	,0002	45
	38.5	94	. 0023	45	.0003	45
	42	94	.0017	45	.0003	45
	29.5	94	.0015	45	.0003	45
	28	94	.001	45	.0003	45
	23	94	.0021	45	.0005	45
	91	51	.0005	9	0005	10
	1911 1.44	stantin in the second	.0001	45	.0005	42
	91	34	.0015	9	.0006	45
	2011 11		.0001	45	.0001	**2
	92	28	.00015	9	.0003	4
		요즘 말했다.	.0001	45	.0001	40
	91	24.5	.0003	45	.0003	45
Equalizer Va	lves Open					
Cold	70	0	(.00098)	(37)	(.00073)	(38)
					(.00073)	(45)
					.00049	30
50% Power	77	0 All ar	nplitudes	were less the	an for one	pump
	0	82 opera	tion with	valves closed	1.	
100% Power	86	0	.0002	9		
			.0001	45	.0001	45
A 12-00 T.	in Montan	um Vibration	Dendinge			
A - Pump II	np Maxim	um vibration	Readings	-		
Cold	No data a	vailable				
50% Power	83	87	.002	47	.0015	47
75% Power	86.5	89	.0005	44	.0013	44
1270	18	89	.0023	44	.0012	44
	0	89	.0025	44	.001	44
100% Power	93	96	. 0006	45.9	.0003	45.9
	42	96	.0018	45.9	.0005	45.9
	25	96	.002	45.9	.0008	45.9
B - Pump T	rip Maxim	um Vibration	Reading	5		
Cold	65	65	.007	48	.002	45
0014	65	0			.007	18
FOR Damar	97	87	0.02	8.6	.002	8.6
50% Power	01	01	. 0003	46	.0008	46
750 Dower	No data	available	.0005			
100% Dower	92	94.5	.0006	45	.0003	45
100% Power	91	28	.0007	9	.0001	9
	7.4		.0001	45	.0001	45
		22	0004	0	0001	0
	91	23	.0006	AE	.0001	45
	~1	16 0	.0002	45	.0002	-
	91	10.5	.0015	45	.0002	45
					CALLER.	10.1

Table 4 (cont'd)

II-17

Two Pump T	rip Max	imum Vibr	ation Readings			
50% Power	83	88	.0005	49	.0005	49
	80	83	.0002	49	.0002	49
	51	53.5	.0001	49	. 0001	49
75% Power	88	90	.0004	49	.0003	49
	75	76	.0002	49	.0002	49
	48	52.5	.0001	49	.0001	49
	0	4	.0002**	49	.0004**	49
100% Power	91	94	.0005	9	.0005	9
	1.1.1		.0002	45	.0001	45
	0	0	.0003	9	.0002	9
Turbine Trij	o Maxim	um Vibrati	on Readings			
50% Power	82.5	83	.0015	9	.001	9
		10.5°° Hees	.0007	45	.0005	45
	31	33	.001	9	.0005	9
			< .0001	45	< .0001	45
75% Power	86	86	.0017	9	.0015	9
			.0004	45	. 0002	45
	58	61	.0001	45	.0002	22.5
					.0001	45
	0	0	<.0001	945.	< .0001	945
100% Power	93.5	97	.0003	25	< .0001	25
			.0002	45	< .0001	45
	91	88	.0006	9	.0003	9
			.0002	45	< .0001	45
	40	43	.0005	9	.0003	9
			.0003	45	< .0001	45
Generator T	rip Max	imum Vibr	ation Readings			
5 A M T	0.5	04	0.02		0.02	
50% Power	85	80	.002	4	.002	20
			.0005	45	.0007	29

The vibration amplitudes did not change with the trip since the pump speed stayed constant.

*All data within () were obtained from sensors A-1 and A-2. These sensors failed before any hot data were obtained.

**These readings were obtained during scram.

II-18

Table 5 - Control Rod Guide Tubes

A - CRITERIA

Vibration Frequency	Limiting Vibration Strain (micro-strain peak to peak) Strain Gages S-1,2,3,4	Critical Stress Location
13.6	100	Shroud legs
19.8	110	Standpipes
20.8	190	Standpipes
23.1	468	Shroud legs
20.0*	780	Center of guide tube

*This mode is for case where guide tubes only vibrate in which case sensors D-1, 2, 3, 4 and V-1, 2, 3, 4 would indicate very low readings. Other frequencies listed are for the case where all tubes vibrate together.

Table 5 (cont'd)

Condition	% Pump A	Speeds B	N	Maximum Vibration Strain Amplitudes (micro-strain peak to peak)						
		Location 10, 43 SG-1 SG-2	43 Loc G-2 SG		cation 02, 23 -3 SG-4					
			με	f Hz	με	f Hz	μc	f Hz	με	f Hz
Cold Flow Operation	ation									
Balanced	65%	65%	9.2 9.2	21 21	7.5 14.0	21 21	3.0 9.2	20 18.5	5.0 34.2	20 18.5
Unbalanced	65 65 9	40 0 65	6.0 14.0 6.0	28 20 22	10 20 16.0	25 21 22	- 6 -	- 19 -	- 68.8 17.2	- 19 -
A - Pump Trip B - Pump Trip			Amp bala	olitud nced	es char to unba	nged g alance	radual d abov	ly fron e.	n the	

B - MEASURED VIBRATION AMPLITUDES

Power Operation

For all operating conditions at 50%, 75% and 100% operation, the recorded strain amplitudes were all less than $3\mu\epsilon$ and the predominant frequencies were above 60 Hz. No signals in the frequency range 20 \longrightarrow 30 Hz were observed.

Section III and Section IV are not included in the summary report.

1

These sections are a tabulation of the raw test data summarized earlier.

SECTION V

INTRODUCTION

All of the vibration measuring systems used were composed of a vibration transducer, a signal conditioning unit, a magnetic tape recorder and a chart recorder for monitoring readout. As usually employed, this system had an overall sensitivity of 0.0005" for 1.0 mm (smallest division) on the chart recorder and .010" for one volt into the tape recorder. The strain gage read-out had a sensitivity of 5 ue per division (1.0 mm). The overall sensitivity of each system could be increased by a factor of from 2 to 10 depending upon the electrical background release.

Table . 1 and drawings 761E260 (sheets 1 and 2) indicate the location and measurement direction of each of the vibration transducers or sensors used. The following sections give a detailed description of the four measurement systems and their components.

A-1 DISPLACEMENT TRANSDUCER

The sensing element in the displacement transducer is a linear variable differential transformer (LVDT). The LVDT consists of a three-coil assembly with the coils wound side by side on a hollow spool. The center coil or primary winding is energized by a 5-volt 3KHz power supply to provide a continuous A.C magnetic field. The two outside or secondary windings are connected in opposing series so that 'e voltage induced in one coil tends to cancel that from the other. A magnetic armature is guided in the hollow spool, and its position relative to the three coils determines the voltages in the two outside coils. When the armature position is such that equal voltage are generated in the outside coils, the net output voltage is zero, and the armature is located at the electro-mechanical null position. See Fig. V-1 for a schematic diagram of the LVDT. The armature of the LVDT is connacted to a spring loaded probe follower. As the probe is moved with respect to the case, the net output is proportional to the probe position (displacement). Fig. V-1 shows a cross-sectional sketch of the displacement transducer.

This transducer is a relative motion sensing unit and usually mounted so the probe is against a relatively non-vibrating structure, and the coil assembly is mounted on the vibrating structure (e.g., vessel wall to shroud). The probe tip is initially set so the LVDT is in its electro-mechanical null position. The LVDT is designed so the probe can move 0.20" in either direction from the null position and remain in the linear range of the transformer.

Although the LVDT is adjusted to its null position when mounted, by the time it is to be used, temperature changes have caused expansions and contractions which change the relative position of the vibrating and non-vibrating surfaces. The inaccessibility of the LVDT makes a mechanical adjustment of the electro-mechanical null position impossible; thus it is necessary to have an external method of "nulling" the LVDT electrical output so that the signal conditioning and readout equipment will remain on scale. This null adjustment of the LVDT electrical output is handled by a specially-built unit called the "balance box", the output of which becomes the input to the demodulator. For a block diagram of the complete signal conditioning system, see Fig. V-2. The balance box can be switched so as to apply a calibration signal to the demodulator.

The demodulator unit is Validyne Engineering Corp. Model CD-19, which is plugged into a module case containing an oscillator that produces the 3KHz carrier excitation signal for the LVDT and the DC power for the CD-19. The demodulator converts the modulated 3KHz signal from the LVDT into a voltage proportional to the armature position, and at the modulation frequency.

The CD-19 output goes through a specially-built switching unit to the tape recorder and the chart recorder. The switching unit makes it possible to play the tape recorder back to the chart recorder.

The overall response characteristics of each component in the displacement measuring system is listed in Table V=2 for each of the components indicated by the block diagram in Fig. V=2.

TACLE V-1

Sensor Locations and Orientation

Sensor	Location	Orientation	Elevation	Azimuth
D1	Shroud to vessel	Tangentia1	386.50	120 "
D2	Shroud to vessel	Tangential	386.50	30 *
D3	Shroud to vessel	Tangential	386.50	300 °
D4	Shroud to Vessel	Radial	386.50	297 * 30'
D5	JP riser top to shroud	Tangentia1	339.25	30° (JP1,2)
106	JP riser top to shroud	Tangential	339.25	330° (J1219,20
D7	JP1 elbow to vessel	Radial	334.00	21°
D8	JP2 clbow to vessel	Radial	334.00	39°
V1	Upper bolt guide ring	Tangential	531.83	224°
V2	Upper bolt guide ring	Tangential	531,83	314 °
V3	Upper bolt guide ring	Tangential	531.83	134°
V4	Upper bolt guide ring	Tangential	531.83	44 °
SG1	CRD guide tube	X10-Y43	122.00	45° within tube
SG2	CRD guide tube	X10-Y43	122.00	315° within tube
SG3	CRD guide tube	X 02 - Y2 3	122.00	225° within tube
SG4	CRD guide tube	X02 - Y23	122.00	135° within tube
Λ1	In-core guide tube	X20-Y05 Tan.	70.00	315° within tube
AZ	In-core' guide tube	X20-Y05 Rad.	70.00	45° within tube
A.3	In-core guide tube	X44-Y13 Rad.	70.00	315° within tube
A4	In-core guide tube	X44 ·Y13 Tan.	70.00	45° within tube

· · · · ·

\$ 4000

 $\mathbf{x}^{(1)}$

FIG. V-1 DISPLACEMENT TRANSDUCER

(DIFFERENTIAL TRANSFORMER TYPE)

Note: Refer to table V-2 for the description of each block.

FIG. V-2 BLOCK DIAGRAM OF THE LVDT VIBRATION INSTRUMENTATION

 $\vee * H$

A-2 VELOCITY SENSOR

The velocity-type vibration sensor used was a seismic self-generating unit whose output voltage was proportional to the linear velocity of the surface upon which it was mounted.

This sensor is basically a coil of wire that vibrates in a magnetic field in a direction that is at right angles to the magnetic flux lines. The coil of wire is mounted on a weighted spring-supported arm, which is free to vibrate around a pivot at the opposite end. When the frequency of vibration is higher than the natural resonance of the suspended system (spring, arm and coil), the suspended system essentially remains in an undistrubed position. Thus, relative motion (velocity) between the stationary coil and the moving magnetic field causes a voltage to be generated in the coil.

The output voltage from the sensor is amplified and integrated by a Validyne linear amplifier and integrator (Model AM-49), which makes the output proportional to displacement as shown in the block diagram in Figure V-3. This integrated signal goes through a specially-designed switching circuit to a magnetic tape recorder and a pen-type chart recorder.

The overall response characteristics of each component in this velocity-to-displacement measuring system is listed in Table V-2 for each of the components indicated by the block diagram in Fig. V-3.

Note: Refer to table V-2 for the description of each block.

FIG. V-3 BLOCK DIAGRAM OF VELOCITY SENSOR INSTRUMENTION

V. 10

A-3 ACCELEROMETER

The acceleration-type sensor used was a seismic self-generating unit whose output voltage was proportional to the linear acceleration of the surface upon which it was mounted. The sensing element in the accelerometer was a special ceramic-type piezoelectric material that generates an electrical charge proportional to its mechanical distortion. This ceramic-type material was used to support a mass such that when the system was accelerated along its sensitive axis, the acceleration forces at the mass would distort the piezoelectric ceramic generating an electric charge. (The resultant voltage sensitivity would depend on the total capacitance of the piezoelectric, leads, etc.)

The accelerometer was used with an Unholtz-Dickie voltage amplifier as shown in the block diagram in Fig. V-4. The output from the amplifier was integrated twice by the linear amplifier and two-stage integrator. This double integration gave an output which was proportional to the displacement.

The displacement signal goes through a switching system to a tape recorder and a 6-pen chart recorder. The switching unit also allows the tape recorder to play back to the chart recorder.

The overall response characteristic of each component in this acceleration to displacement measuring system is listed in Table V-2 for each of the components indicated by the block diagram in Fig. V-4.

Note: Refer to table V-2 for the description of each block.

FIG. V-4 BLOCK DIAGRAM OF ACCELEROMETER INSTRUMENTATION

V-12

V - 1.4

Note: Refer to table V-2 for the description of each block.

FIG. V-6 BLOCK DIAGRAM OF THE STRAIN GAGE INSTRUMENTATION

V-15

1

A-5 RECIRCULATION PUMP SPEED INSTRUMENTATION

The rotational speed of the recirculation pumps was determined by counting the number of once-per-rev. spikes recorded on the chart recorder. The sensing system used was a photocell and lamp assembly that saw changes in light caused by different width black marks painted on the pump-motor coupling. The changes in light caused a change in resistance of the photocell which is in series with a power source and a variable load re istor.

The pulses across the load resist or are sent through a switching circuit to a magnetic tape recorder and a 6-pen chart recorder.

The switching circuit allowed the tape recorder to play back to the chart recorder.

The relative position of the large and small pulse from the different width strips on the coupler determine the direction of the pump rotation.

TABLE V-2

SPECIFICATIONS AND RESPONSE CHARACTERISTICS OF VIBRATION INSTRUMENTATION COMPONENTS

(1) LVDT

٠

Case - Manufacturer - G. E.

Model - Drwg. 761E392

Specifications: Operates underwater at ~ 1200 psi and from 70-550° F in a radiation field of 10^{10} n/cm² sec fast neutrons (above 1.0 Mev) and 10^{13} Mev/cm² sec gamma. Excitation = 5v = 3KHz from Validyne module case Linearity = within $\pm 2\%$ over r age or ± 0.20 'about null position Sensitivity =

Linear Variable Transformer - Manufacturer - Columbia Research Lah, Inc. Model - modified Cat. No. SL-200-S3R Range- <u>+</u>.200 Freq. - optimum: 60 cps Null voltage: 2.00 millivolts Output voltage: 1.08 Sensitivity: 0.86 MV/.001"/Volt input Linearity 0 = .25%

(2) Velocity Sensor

Manufacturer: MB Electronics

Model: 122(S).	(S) denotes modified for high temperature
Specifications:	Natural Frequency - 4.75 Hz
	Damping65
	Open circuit sensitivity - 963 mv(rms/in/sec(rms)
	Suspension - Jewel bearing
	Temp. Range - to 500° F
	Frequency range - 5 to 2000 Hz

(3) Accelerometer

Manufacturer - Columbia Research Laboratories, Inc. Model - 902 Specifications - Nominal Sensitivity: 15pk-mv/pk-g (<u>+</u> 25% range) Nominal Charge Sensitivity: 150 coul./g Freq. Response: w/1000 Megohm load = 1 cps to 6Kc w/10 Megohm load w/o cathode follower -5 cps to 6 Kc Resonant Frequency: (1st minor mode) 32 Kc. (nominal) Maximum Acceleration: 2,000 g Minimum acceleration: determine by sig./noise ratio Aplitude Linearity: <u>+</u> 1% m

(4)	Stress Gave
	Manufacturer - Microdot Inc. (Instrument Division)
	Model - SC 125
	Specifications:
	Resistance = 120 ohm + 3.5 ohm
	Gage factor = nominal: 1.80
	Rated strain level = + 6000 microinches per inch
	Fatigue life - Exceeds 10 ⁶ cycles at +1000 microinches per inch
	Transferse Sensitivity - Negligible
	Operable Temp. Range - Static452°F to +650°F Dynamic452°F to +1500°F
	Gage factor change with temperature: G.F. varies inversely
	with temperature approximately 1% per 100° F.
	Nuclear radiation - Negligible
	Material - Stainless steel (type 321)
(5)	Balance Unit - Manufacturer - Validyne
	Model - CD-19-529 (specially built for G. E.)
(6)	Strain Gage Shunt Calibrator
(0)	Manufacturer - special unit built by Comp. Design Laboratory
	Model - Drwg, 117C460 - ref. K. Miller and B. Tallman,
	G. E., Component Design.
	Specifications: To provide electrical equivalent of mechanical
	strain by shunting a 1 megohm resistor across
	the dummy resistor.
	This change in bridge balance resistance
	provides a 101 microstrain equivalent signal
	for calibrating the chart recorder.
(7b)	Module Case - Manufacturer - Validyne
	Model - MC1-20
	Oscillator: Output voltage - 5v RMS, center tapped adjustable
	Frequency: $3000 \text{ Hz} \pm 1\%$
	Power supply: Output = 7.5, 15 volts, 25 watts.
(7a)	Demodulator
	Manufacturer - Validyne
	Model - CD-19 Plug-in carrier demodulator
	Specifications -
	Power Requirements: 5v, RMS, 3KHz, +15 VDC from MC1
	Input sensor sensitivity: 1MV/V, 2.5 Mv/V, 10 Mv/V, 25 Mv/V
	Selector switch with 0-100% vernier potentiometer.
	Output: +10 VDC @ 10 ma
	Non-linearity = + 0.05% full-scale max.
	Frequency Response - 0-10, 0-50, 0-200 and 0-1000 Hz.

flat <u>+</u> 10%

Linear Amplifier and Integrator

Manufacturer: Validyne Engineering Corp. Model: AM 49 Specifications: Power requirements - ± 15 VDC from MC-1 Output: A - ± VDC @ 10 ma Gain - 2.5 to 100 times in 6 steps Attenuation - 0 to 100% adjustable 10 turn calibrated dial Frequency response - 0 to 5KHz DC - 2 to 5KHz AC Filter Switch - selectable low pass; 0 to 50, 0 to 200, 0 to 1000; 0 to 5000 Hz

(9) Amplifier

Manufacturer - Unholtz-Dickie Corp.

Model = 8PXCV (special version of standard CV608RMG DIAL=A=CHARGE. Does not include the indicating meter or galvo circuitry.)

Specifications:

Input mode - Operates with voltage up to 15 volts rms with tranducers in the sensitivity range of 1 to 100 pk mv/pkg. Gain ranges = 1, 3, 10, 30, 100, 300 and 1000 g + 1% calibrated variable dial +10, 10-100 pcmb or mv/g. Output = + 2.5 volts peak on any range 1g to 1000 g, with transducer sensitivity 1 to 100 mv/g into a 2.5K ohm load impedence or greater.

Frequency Response - Output flat within $\pm 1\%$ from 10 hz to 5Khz and within $\pm 2\%$ from 5hz to 10 Khz.

(11) Switching Circuit

Manufacturer - G.E.

Model - special component designed by J. M. Sager, Comp. Design, G. E. Company. Specifications - Passive elements (toggle switches and

multiposition switches and relays)

(8)

P

(12) Chart Recorder

. . . .

Manufacturer - Clevite Corporation, Brush Instruments Division Model - Mark 260 recorder

Specifications -

General - Number of channels: 6 analog, 4 event Channel width: 40 mm, 50 div./channel Writing method: Pressurized fluid Chart speeds: eight; 1, 5, 25, 125 mm/sec 1, 5, 25, 125 mm/min Chart speed accuracy: +.25%

Electrical - Measurement range: 1 millivolt per chart division to 500 volts D. C. full scale Maximum signal input: 500 volts D. C. or peak to peak Frequency response: 50 div. + 1 div. to 40 cps. 10 div. + 1 div. to 100 cps. 3 db down at 125 cps

Sensitivity: 1mv/div. to 10 volts/div.

(13) Tape Recorder

Manufacturer - Consolidated Electrodynamics Corp. (CEC) Model - VR3360

Specifications - Tape speed: 15 in./sec

Center frequency: 27.0 KC

Information frequency: 0-5 KC + 0, 5 db

Full-scale signal to noise ratio (RMS signal/RMS noise) 43 db Harmonic distortion: 1.5%

Input level - 0.5 to 10 volts rms adjustable