ENCLOSURE 1

EXAMINATION REPORT - 50-302/0L-85-02

Facility Licensee: Florida Power Corporation P. O. Box 14042, M.A.C.H-2 St. Petersburg, FL 33733

Facility Name: Crystal River Unit 3

Facility Docket No. 50-302

Requalification examinations were administered at Crystal River Nuclear Plant near Crystal River, FL.

Chief Examiner:

Lawyer Bruce A. Wilson, Section Chief

Approved by:

Summary:

Requalification examinations on May 14-16, 1985

Written requalification examinations were administered to six SROs and eight ROs; oral requalification examinations were administered to three SRO's and four RO's; five of the SROs and seven of the ROs passed these examinations.

This was the first of two scheduled re-examinations following the March 1985 Requalification Program evaluation conducted by the NRC. Oral examinations were waived for those seven individuals who passed this phase of the requalification examinations in March.

The performance on this portion of the requalification examinations (85.7% pass rate) is an indication that corrective actions applied to the Crystal River requalification training program are having the intended result of correcting past deficiencies.

8506240342 850524 PDR ADOCK 050003 G

Date Signed

Signed

REPORT DETAILS

1. Facility Employees Contacted:

R. C. Zareck, Nuclear Operations Instructor, (R)
L. C. Kelley, Manager Nuclear Operations Training, (E)
E. M. Howard, Director, Site Nuclear Operations, (E)

- P. F. McKee, Plant Manager, (E)
- G. L. Boldt, Plant Operations Manager, (R/E)
- R. T. Wittman, Jr., Operations Superintendent (E)
- M. F. Penovich, Training Superintendent (E)
- J. L. Bufe, Nuclear Compliance Specialist (E)
- E. R. Carlson, Training Consultant (E)
- J. G. Smith, Nuclear Shift Supervisor (R)
- M. P. Holmes, Nuclear Operations Instructor (R)

NOTE: "R" indicates present at examination review "E" indicates present at exit meeting

2. Examiners:

- B. A. Wilson, NRC
- S. Lawyer, NRC*
- J. C. Huenefeld, PNL

*Chief Examiner

3. Examination Review Meeting

At the conclusion of the written examination, the examiners met with facility representatives (identified in 1. above) to review the written examinations and answer keys. Specific facility comments and associated NRC resolution of those comments follow:

NOTE: Comments on questions duplicated between exams are only detailed once.

- a. RO Exam
 - (1) Question 1.18

Facility Comment - This question does not seem to be at a Reactor Operator (RO) level of knowledge.

NRC Resolution - This question requires only a very general knowledge of the basis of the shutdown margin requirement. This level of knowledge is consistent with that necessary to understand the functions of the related safety systems. (See 10 CFR 55.21g). No change required.

(2) Question 1.22a

Facility Comment - Use of the words "full flow" in reference to HPI makes the question ambiguous.

NRC Resolution - We concur with this comment. The question was obtained from the Crystal River draft manual on "Reactor Heat Transfer and Thermal Hydraulics." The statements are made:

"The size of the leak in a LOCA situation determines the need of OTSG cooling. Simply supplying water (HPI) to the core may not be sufficient."

It is later stated in this manual that:

If the leak is small ... the OTSG must be used to augment the energy removal from the (RCS). During final efforts to cool the core during a small leak without OTSG availability, the operator may have to "create a larger leak" by opening the PORV.

This is supported by AP-450, "Emergency Feedwater Actuation" which requires the operator to establish HPI-PORV core cooling if no feedwater is available (therefore, no OTSG's). Also, step 24 of AP-580, "Engineered Safeguards System Actuation" gives the same instruction. The term "full flow" is not defined explicitly, but is generally interpreted as two HPI pumps running and the four injection valves open. AP-530, "Natural Circulation" lists the condition of HPI-PORV cooling as:

BWST Suction Valves Open 2 HPI pumps running 4 injection valves open PORV and block valve open

We therefore agree that HPI-PORV cooling can be equated with full HPI flow which renders question 1.22a ambiguous. The question was deleted.

(3) Question 1.23

Facility Comment - We suggest that alternate wording also be accepted for A and C. The proposed wording for A is "RCS pressure axis" and for C "minimum DNBR limit (1.30)".

NRC Resolution - The proposed wording is equivalent and was added to the answer key.

(4) Question 2.4

Facility Comment - Choice (b) is also an incorrect statement. The STM provided to the NRC was in error. A copy of NAO-91 will be provided to support out recommendation that both answer (b) and (d) be accepted.

NRC Resolution - NAO-91 was provided and supports the recommendation. The answer key was changed.

(5) Question 2.11

Facility Comment - Choice (d) is also a correct answer. This is not reflected in STM-405 which was provided to the NRC, but is in ANO-91 on pg. 15.

NRC Resolution - Based upon the additional reference material, we concur. The answer key was changed.

(6) Question 2.13

Facility Comment - The SF cooling pump air handling fans are not required for emergency operation even though they are powered from ES buses. The STM incorrectly states that the fans will continue operating during post accident conditions. It should more properly state that they may be operated. We recommend this question be deleted.

NRC Resolution - Review of training material and discussion with senior operating personnel confirms the facility comment. The question was deleted.

(7) Question 2.19

Facility Comment - On the answer key drawing, the device shown as a switch below the leftmost transformer is a voltage regulator.

NRC Resolution - The answer key drawing was incorrectly labeled by us. The facility comment is accepted. The answer key was changed.

(8) Question 2.23

Facility Comment - The answer key is incorrect. It should read "No circulating water pump operating; condenser vacuum of <5" Hg. This is reflected in the newly revised STM, Chapter 504, Rev. 1 dated 1/15/85, Pg. 110.

NRC Resolution - We concur. The answer key was changed.

(9) Question 3.03

Facility Comment - The quality of this question could be improved by changing choice (c) to read "... will stop further out travel...". We suggest this be rephrased before entry into the question bank.

NRC Resolution - We concur. The wording was consistent with the STM provided; however, the suggested wording should be used in future usage of this question. No change to the current question or answer sheet is appropriate.

(10) Question 3.11

Facility Comment - This task is not performed by plant operators at Crystal River.

NRC Resolution - This is an instrument within the scope of 10 CFR 55.21(f). Power gain adjustments, if not made by a licensed person, must only be made under his cognizance. Also, the STM provided clearly indicates how the power gain adjustment is made. No change required.

(11) Question 3.19

Facility Comment - The question is somewhat ambiguous in that (b) could be seen as a correct statement, i.e., all heater banks will be de-energized if pressurizer level <30".

NRC Resolution - We concur. The question was intended to measure knowledge of the heater cutoff setpoint of 40 inches. The wording of the question however, did not properly elicit this knowledge. The question was deleted.

(12) Question 3.21

Facility Comment - In choice (d), when the pressure comes back up, the air fail reset will auto reset. This is a recent revision to the lesson plan. Since the candidates should not be confused, no change to the current questions or answer key should be made but the question should be reworded prior to future use.

NRC Comment - We concur. No change to current questions or answer key is warranted.

(13) Question 4.03

Facility Comment - During administration of the examination, a candidate notified the examiners that there were two correct answers due to a recent revision to AP-330. This was verified by

the examiners. Facility reviewers were notified of the change to the answer key.

NRC Resolution - Revision 1 to AP-330, dated 3/6/85 had deleted step (d). The answer key was changed.

(14) Question 4.09

Facility Comment - While the question is acceptable, it could be improved by recognizing that there is a two second time delay on the 110 psig auto start. This should be reworded, if possible, before future use.

NRC Resolution - The procedural reference from which the question was obtained did not mention the two second time delay. No change required.

- b. SRO Exam
- (1) Question 5.14a

Facility Comment - Same as RO Question 1.22a.

NRC Resolution - The question was deleted.

(2) Question 5.15

Facility Comment - Same as RO Question 1.23.

NRC Resolution - The proposed wording was added to the answer key.

(3) Question 6.3

Facility Comment - Same as RO Question 2.11.

NRC Resolution - The answer key was changed to accept choice (a) or (d).

(4) (nestion 6.9

Facility comment - Same as RO Question 2.19

NRC Resolution - The answer key drawing was relabeled appropriately.

(5) Question 6.19

Facility Comment - Same as RO Question 3.21

NRC Resolution - No change required.

(6) Question 7.3

Facility Comment - Same as RO Question 4.3

NRC Resolution - The answer key was changed to accept either (b) or (d).

(7) Question 7.9

Facility Comment - Same as RO question 4.9

NRC Resolution - No change required.

(8) Question 7.13

Facility Comment - None

NRC Resolution - Post grading review showed all candidates to answer "grapple tube up" light as one of the two required answers. This was not on the answer key which was obtained from FP-203, Rev. 12, page 22 which states:

After a fuel assembly has been lifted, the Operator shall not move the bridge/trolley until the "Z-Z" tape has been read to verify grapple position and the "Z-Z" tape "full up" reading has been reported to the CCRO.

However, on page 12, the procedure states that:

After a fuel assembly has been lifted, as indicated by the "grapple tube up" light, check the "Z-Z" tape to verify the grapple position before moving the bridge or trolley.

Therefore, any two of these three answers are accepted.

(9) Question 8.7

Facility Comment - This question should be revised in the future to reflect the conditional requirement on Mode 2 applicability in STS, i.e., Keff > 1.

NRC Resolution - This change will be considered prior to future use of this question. No change to current question or answer key required.

(10) Question 8.17

Facility Comment - This question should be revised prior to future use to say "when an STS required deluge and sprinkler system...".

NRC Resolution - The proposed wording will be considered. No change to current question or answer key required.

.

4.

At the conclusion of the site visit, the examiners met with representatives of the plant staff to discuss the results of the examinations. Those individuals who clearly passed the oral examination were identified.

8

No generic weaknesses were noted by the examiners at this time. A comprehensive summary of generic weaknesses will be presented at the conclusion of the regualification reexaminations.

N. 8 8 1

ENCLOSURE 3

U. S. NUCLEAR REGULATORY COMMISSION

SENIOR REACTOR OPERATOR REQUALIFICATION EXAMINATION

Facility: Crystal River Unit 3 Reactor Type: PWR B&W Date Administered: May 14, 1985 Examiners: S. Lawyer Candidate:

INSTRUCTIONS TC CANDIDATE:

1.

Use separate paper for the answers. Write answers on one side <u>only</u>. Staple question sheets on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up four (4) hours after the examination starts.

Category Value	% of Total	Candidate's Score	% of Category Value		Category
25	25		—	5.	Theory of Nuclear Power Plant Operation, Fluids and Thermodynamics
25	25	,		6.	Plant Systems: Design, Control & Instrumentation
_25	25			7.	Procedures-Normal, Abnormal, Emergency and Radiological Control
25	25			8.	Administrative Procedures, Conditions and Limitations
100	100				TOTALS
		Final Gr	ade	%	

All work done on this exam is my own, I have neither given or received aid.

Candidate's Signature

5.0 THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS AND THERMODYNAMICS (25.0)

(1.0)

(1.0)

- 5.1 The ratio of both Pu-239 and Pu-240 atoms to U-235 atoms changes over core life. Which one of the pairs of parameters below are most affected by this change?
 - a. Moderator temperature coefficient and doppler coefficient
 - b. Doppler coefficient and beta

.

-

- c. Beta and thermal neutron diffusion length
- Thermal neutron diffusion length and moderator temperature coefficient
- 5.2 A moderator is necessary to slow neutrons down to thermal energies. Which of the following is the <u>CORRECT</u> reason for operating with thermal instead of fast neutrons?
 - a. Increased neutron efficiency since thermal neutrons are less likely to leak out of the core than fast neutrons.
 - Reactors operating primarily on fast neutrons are inherently unstable and have a higher risk of going prompt critical.
 - c. The fission cross section of the fuel is much higher for thermal energy neutrons than fast neutrons.
 - Doppler and moderator temperature coefficients become positive as neutron energy increases.
- 5.3 Which one of the following factors will help, rather than hinder, natural circulation? (1.0)
 - a. Lowering OTSG level
 - b. Lowering RCS pressure
 - c. Increasing RCS temperature
 - d. Lowering turbine bypass valve setpoint

- 5.4 Following a trip from full power with the reactor shutdown and 4 RCPs operating, the 125 psi bias is suddenly removed from the turbine bypass valves. Which one of the following statements best describes plant response? (1.0)
 - a. OTSG pressure drops and levels rise. The increased OTSG levels cause an overcooling of the RCS.
 - b. The OTSG saturation temperature drops causing a decrease in RCS T_ and a rapid drop in pressurizer level.
 - c. Since OTSG pressures drop 125 psi, BTU limit alarms will be received on both generators and feedwater will cut back.
 - d. The resulting cooldown of the RCS will decrease the shutdown margin to less than Tech Spec limits.
- 5.5 During a xenon-free reactor startup, critical data was inadvertently taken two decades below the required Intermediate Range (IR) level (10-1° amps). The critical data was then taken at the proper IR level (10-° amps). Assuming RCS temperature and boron concentrations did <u>not</u> change, which one of the following statements is <u>CORRECT</u>?

a. The critical rod position taken at the proper IR level is LESS THAN the critical rod position taken two decades below the proper IR level.

- b. The critical rod position taken at the proper IR level is THE SAME AS the critical rod position taken two decades below the proper IR level.
- c. The critical rod position taken at the proper IR level is GREATER THAN the critical rod position taken two decades below the proper IR level.
- d. There is not enough information given to determine the relationship between the critical rod position taken at the proper IR level and the critical rod position taken two decades below the proper IR level.

- 5.6 The reactor trips from full power, equilibrium xenon conditions. Twenty-four hours later the reactor is brought critical at 10-"amps on the intermediate range. If power level is maintained at 10-" amps for several hours, which of the following statements is <u>CORRECT</u> concerning control rod motion?
 - a. Rods will have to be withdrawn due to xenon build-in.
 - b. Rods will have to be rapidly inserted since the critical reactor will cause a high rate of xenon burnout.
 - c. Rods will have to be inserted since xenon will closely follow its normal decay rate.
 - d. Rods will approximately remain as is as the xenon establishes its equilibrium value for this power level.
- 5.7 Which one of the following is <u>CORRECT</u> concerning starting of positive displacement (PD) and centrifugal pumps?
 - Neither type of pump should be started with its discharge valve shut.
 - Both types of pumps should be started with their discharge valves shut.
 - c. A PD pump should be started with its discharge valve shut and a centrifugal pump started with its discharge valve open.
 - d. A PD pump should be started with its discharge valve open and a centrifugal pump started with its discharge valve shut.

2

- 5.8 Runout of a centrifugal pump is best characterized by which one of the following?
- (1.0)
- high motor current, high flow rate and high discharge pressure.
- b. low motor current, high flow rate and low discharge pressure.
- c. low motor current, low flow rate and high discharge pressure.
- d. high motor current, high flow rate and low discharge pressure.

(1.0)

bulk boiling, sub-cooled nucleate boiling, film boiling, DNB a . sub-cooled nucleate boiling, bulk boiling, film boiling, DNB b. bulk boiling, sub-cooled nucleate boiling, DNB, film boiling с. sub-cooled nucleate boiling, bulk boiling, DNB, film boiling d. 5.10 In performing an estimated critical boron concentration pursuant to OP-210, the attached worksheet is being utilized. Assuming the information shown on that sheet, which one of the following pairs of items will be positive (+)? (1.0)A&D a. B&D b. C. B&C A&C d. 5.11 Which one of the following is NOT part of the accident postulated for the basis of the shutdown margin requirement? (1.0)Main steamline break a b. Beginning-of-Life (BOL) condition Tavg at no load operating temperature C . Most reactive rod struck out d. 5.12 Which one of the following is NOT one of the DNB related parameters that must be maintained within Tech Spec limits? (1.0)Hot leg temperature a . b. Reactor Coolant pressure Reactor Coolant flow rate с. Axial power imbalance d. 5.13 Which of the following will NOT change over core life? (1.0)The minimum acceptable shutdown margin а. b. The acceptable flux imbalance band The control rod reactivity worth c. d. The power defect reactivity worth. -5.14 TRUE or FALSE a. Following a LOCA, if HPI actuates and develops full flow, sufficient core cooling is ensured without the need for OTSG cooling, regardless of the size of the LOCA. (0.5)Since the RCP Trip criteria is based on the SBLOCA analyses.

b. Since the RCP Trip criteria is based on the SBLOCA analyses, you are not required to trip the RCPs following ES actuation due to a Main Steam Line Break Accident.

(0.5)

(1.0)

5.9 Which one of the following is the CORRECT order of the heat

transfer processes as heat flux increases?

5.15 Refer to Figure 1, "Reactor Core Safety Limit." Identify by name or title the parts of the Figure marked A, B, C, and D. (2.0)5.16 Following an accident that results in excessive core damage. what are two significant sources of Hydrogen generation. (1.0)5.17 When synchronzing the generator to the grid, OP-203, "Plant Startup" directs the operator to regulate turbine speed to slowly rotate the synchroscope in the fast (clockwise) direction. Which choice below CORRECTLY gives the two parameters that the (1.0)synchroscope is indicating? Current and voltage differences a . Current and frequency differences b. Voltage and phase differences C. d. Frequency and phase differences 5.18 Which one of the following statements is CORRECT concerning (1.0)the paralleling of electrical systems? Although it is desireable to have speed and phase position a . matched, it is much more important to have voltages matched. b. If voltages are not matched at the time the synchronizing switch is closed, there will be VAR flow from the lower voltage source to the higher one. If the incoming machine is at synchronous speed but out of с. phase with the running when the breaker is closed, heavy currents will flow to either accelerate or retard the incoming machine. If the incoming machine is in phase but slightly faster d. than synchronous speed when paralleled, the system will tend to speed up the incoming machine to synchronous speed. 5.19 Which one of the following is NOT one of the ECCS Acceptance (1.0)Criteria as specified in 10 CFR 50.46? Peak cladding temperature shall not exceed 2200°F a.

- b. DNB and Kw/ft limits shall be maintained ≤ 1.30 and ≥ 18.0 kw/ft. respectively.
- c. Total oxidation of cladding shall nowhere exceed 17% of the total cladding thickness before oxidation.
- d. Total amount of hydrogen generated shall not exceed 1% of the maximum hypothetical amount.

5.20 Figure 5.20 is a temperature profile from the fuel centerline to the coolant. Which of the following is <u>CORRECT</u> concerning anticipated temperatures as shown in this Figure?

(1.0)

(1)

- A thumb rule approximation is 1000°F from centerline to fuel surface, 500°F across the gap and 100° across the cladding (for nominal heat rate)
- A thumb rule approximation is 1000°F from centerline to fuel surface, 100°F across the gap and 50°F across the cladding (for nominal heat rate)
- c. For the nominal heat rate, the ∆T across the fuel, across the clad, and across the gap are approximately the same
- d. AT from fuel centerline to fuel surface must be kept less than 1000°F to maintain peak clad temperature less than 2200°F.
- 5.21 A negative MTC is great to have for safe reactor control, but creates a problem when it comes to cold water accidents or a steam/feedline break. What inherent feature of the CR3 low enriched core acts intially to limit the severity of these transients?
 - a. Moderator Temperature Coefficient
 - b. Doppler Coefficient
 - c. Voids Coefficient
 - d. Redistribution

- 5.22 Which of the following is <u>CORRECT</u> concerning temperatures at which fuel and/or cladding damage will occur? (1.0)
 - a. The cladding will melt at approximately 2200°F.
 - Uranium dioxide fuel will melt at approximately the same melting temperature as the cladding.
 - c. UO₂ melt limit is approximately 5000°F while Zirconium will melt at about 3300°F.
 - d. The melting temperature for both fuel and cladding drop sharply over core life.

dist	tribution and thermal design limits IRUE or FALSE.	
a .	Axial Power Imbalance limitations only apply in Mode 1 above 40% of Rated Thermal Power.	(0.5)
b.	Hot Channel Factors (F_Q and $F^N \Delta H$) are only monitored once for each new core prior to exceeding 75% Full Power.	(0.5)
c.	The Quadrant Power Tilt Limits are <u>less</u> restrictive when measured by Power Range Channels than by the Symmetrical Incore Detector System.	(0.5)
d.	Power distribution limits are based on maintaining minimum DNBR, peak linear power density and LOCA analyses criteria.	(0.5)

END OF SECTION 5

5.23 Answer the following statements concerning core power

.

0.0	PLAN	T SYSTEM DESIGN, CONTROL AND INSTRUMENTATION	(25.0)		
6.1	Which of the following statements concerning the Reactor Building Isolation and Cooling System is CORRECT?				
	a .	Diverse Containment Isolation occurs when HPI is automatically or manually initiated.			
	b.	Diverse Containment Isolation will isolate NSCCCW to the Reactor Coolant Pumps.			
	c.	Diverse Containment Isolation will close the CI flow to the RB fans and open the SW valves.			
	d.	When HPI automatically initiates, Diverse Containment Isolation occurs and the RB fans are started or shifted to slow speed.			
6.2	is o Pump	important pumps have annunciators which indicate when the pump ut-of-service, for example: ES Annunciator D-3-3 is labeled "DH 'B' OUT OF SERV". Which one of the following is an indicated ition for this type of annunciator?	(1.0)		
	a.	No breaker DC control power.			
	b.	Breaker control switch in normal after start, breaker open, breaker racked in.			
	с.	Overload relay actuated.			
	d.	Excessive motor amps.			
6.3	With foll	regard to the Reactor Building Spray System, which of the owing statements is <u>CORRECT</u> ?	(1.0)		
	۰.	Upon receipt of an ES actutation signal of 4 psig in the RB, the NaOH tank outlet valves (BSV-11 and 12) will automatically stroke to the full open position.			
	b.	A high RB pressure signal (30 psig increasing) starts the 2 RB spray pumps and automatically strokes open the suction valves (BSV-16 and 17).			
	c.	The spray pumps start on the 4 psig signal while the spray header supply valves (BSV-3 and 4) stroke open on the 30 psig RB signal.			
	d.	The 4 psig signal opens all three sets of valves (BSV-3 and 4, BSV-11 and 12, and BSV-16 and 17).			

- 6.4 Select the <u>CORRECT</u> statement concerning the Nuclear Services Booster Pumps and CRD Cooling System.
 - One pump is normally operated with the other serving as backup.
 A drop in line pressure (25 psi) will start the idle pump.
 - b. On an ES signal, the supply and return valves to the CRDM coolers will close and the booster pumps will have to be manually secured.
 - c. SWP-2A is powered from ES MCC 3A2 and SWP-2B is powered from ES MCC 3B2.
 - Low level in the SW surge tanks will trip the NS booster pumps.
- 6.5 Select the <u>CORRECT</u> statement concerning the Makeup Pump Lube (Oil System.
 - a. If the main gear oil pump control switch is in Auto, the pump will start and run for three minutes after the makeup pump starts.
 - b. The backup gear oil pump will start (if in Auto) when oil pressure reaches 7 psig and will automatically stop when oil pressure reaches 20 psig.
 - c. If the main lube oil pump control switch is in Auto, the pump will start and run for three minutes after the makeup pump starts.
 - d. The backup lube oil pump has no auto start provisions and can be used as a back up for the gear oil system.
- 6.6 Select the <u>CORRECT</u> statement about the Makeup and Purification (1.0) System.
 - a. The block orifice has two bypasses, (MUV-51 and MUV-48) both of which are remotely operated from the control room.
 - b. The letdown line connections to the Decay Heat Removal System are prior to the prefilters and after the makeup filters.
 - c. A temperature element (TE-5) on the letdown line alarms at 130 °F and closes the letdown cooler outlet valves (MUV-40 and MUV-41) at 135 °F to protect the letdown coolers.
 - d. The deborating demineralizer may be operated in parallel or series with the makeup demineralizers.

- 6.7 Which one of the following statements is CORRECT regarding the design of the internals vent valves?
 - The vent valves are designed to open in the event of a hot 4. leg break when the pressure differential reaches at least 43 psi.
 - The vent valves are designed to open in the event of b. a cold leg break when the pressure differential reaches at least 43 psi.
 - In the event of a hot leg break, the vent valves should C . begin to open with a AP of about 0.3 psid and be fully open at 1.5 psid.
 - In the event of a cold leg break, the vent valves should begin d. . to open with a AP of about 0.3 psid and be fully open at 1.5 psid.
- 6.8 Which one of the following is NOT monitored for in the RANGE subsystem of the Post Accident Sampling System?
 - High range noble gas a .
 - b. Hydrogen
 - Particulate с.
 - d. Iodine
- 6.9 On Figure 2.19, show the connections and components between 480V MCC Safeguards Bus and a typical 120V A.C. Vital Bus. Include the following: Battery chargers, inverters, automatic and manual switches and transformers. It is not necessary to show breakers or to label components (the labels shown - 3A and 3A-1 are for illustration only).
- 6.10 Select the CORRECT statement concerning the site fire protection systems.
 - All areas protected by a fixed water spray system use a . heat detectors to actuate the alarms.
 - To prevent accidental actuation, it requires two detectors b. actuating to cause operation of the fixed water spray system on the charcoal filter banks.
 - A wet pipe sprinkler system is used to protect the с. Emergency Diesel Generators.
 - Lube oil systems on the reactor coolant pumps, feedwater d. pumps and main turbine are protected by a fixed water spray system.

(2.0)

6.11 TRUE or FALSE

- Maximum flow for one HPI pump is approximately 540 gpm
 600 psig.
 (.5)
- b. LPI pump high flow alarm occurs at about 3400 GPM and runout flow is about 4100 GPM.
- 6.12 Which of the following Decay Heat System Interlocks is CORRECT? (1.0)
 - Separate RC pressure transmitters will shut DHV-3 and DHV-4 at approximately 284 psig.
 - Separate RC pressure transmitters will shut DHV-3, DHV-4 and DHV-41 at approximately 284 psig.
 - c. A single RC pressure transmitter will shut DHV-3 and DHV-4 at approximately 284 psig.
 - A single RC pressure transmitter will shut DHV-3, DHV-4, and DHV-41 at approximately 284 psig.
- 6.13 Which of the following statements is <u>INCORRECT</u> regarding bypassing the Steam Line Rupture Matrix?

a. During a normal cooldown, when OTSG pressure drops below 725 psig, the matrix can be bypassed by depressing two bypass pushbuttons on the main control board.

- b. During a normal cooldown, the four maintenance bypass key switches must be utilized before the operator can depress the two bypass pushbuttons.
- c. Following an actuation, if either the < 725 or < 600 pressure switch has actuated, a bypass permit will be present.</p>
- d. Following an actuation, in addition to a bypass permit, the operator must depress the two main control board push buttons in order to bypass the matrix.

(1.0)

(.5)

- a. The detectors are surrounded by four inches of lead for shielding fast neutron radiation.
- b. The boron lined chamber is sensitive to neutron and gamma radiation while the unlined chamber is sensitive only to gamma rays.
- c. The compensated ion chamber is designed to remove the gamma signal only at high reactor power levels.
- Undercompensation will cause loss of some neutron current as well as blocking gamma current.
- 6.15 Which of the following statements is <u>CORRECT</u> concerning the operation of a typical Atmospheric Radiation Monitor (for example, RM-A1 or A2)?
 - a. The sampled air will pass through a fixed particulate filter. The particulate buildup on the filter is then measured by a GM detector which outputs the measurement in CPM.
 - b. After passage through the particulate filter the air is drawn into a gas sampler which detects gaseous activity with a scintillation detector.
 - c. A gamma scintillation detector is used to measure the iodine activity on a fixed iodine filter (activated charcoal).
 - d. The flow path of the sampled air through RM-A2 is the particulate filter, the gas sampler, followed by the iodine filter.
- 6.16 Select the <u>CORRECT</u> statement with regard to speed control (Governor) of the Emergency Diesel Generators.
 - a. As a general rule, D-G units running alone should have the SPEED DROOP control set on O (zero).
 - b. The synchronizer motor, mounted on top of the governor, allows the operator to match the voltage of the D-G with running voltage before synchronizing to the system.
 - c. The LOAD LIMIT control may be used for shutting down the diesel by turning the LOAD LIMIT control to zero.
 - d. The SYNC INDICATOR, located directly below the SYNCHRONIZER control indicates if the D-G is in phase with the system.

(1.0)

- 6.17 When the RPS is in Shutdown Bypass, which one of the following is (1.0)CORRECT?
 - A high pressure trip of 1720 psig is administratively imposed a. . and an overpower trip of 5% automatically imposed.
 - The high pressure trip at 2355 psig is bypassed. b.
 - The four trips bypassed are high temperature, low pressure, с. variable low pressure and flux/delta flux/flow.
 - The RCP Power Monitor trip is bypassed. d.
- 6.18 Cross-Tie Blocking Interlocks are provided to prevent paralleling of both D-G. Refer to Figure 3.18 and select the CORRECT statement. (1.0)
 - If breakers 3209, 3210 and 3205 are all closed, the amber a . lamp (Block Closing Actuated 3206) will be lit, thus permitting breaker 3206 to be closed.
 - If breakers 3209 and (i) 3205 and 3206, or (ii) 3207 and b. 3208, or (iii) 3211 and 3212 are closed, the amber lamp (DG Parallel Block Act) will be lit and breaker 3210 can not be closed.
 - If the amber lamp (Block Closing Actuated 3208) is lit, it C. means breaker 3208 cannot be closed because the 3B bus is already being fed from the 3A bus (through 3207) and no Dissels are running.
 - If both Diesels are feeding their respective buses (3209 d. closed and 3210 closed) all Block Closing Actuated Lamps will be lit.
- 6.19 Which one of the following is CORRECT concerning the "Air Fail Reset" pushbuttons for MUV-16, 31 and 51?
 - The pushbutton only indicates loss of air to the associated а. valve E/P controller.
 - The pushbutton indicates loss of air to E/P controllers for b. MUV-16 and 51 and also loss of air to the valve positioner for MUV-31.
 - On loss of air supply, the solenoid valve supplying air to the air lock valve will de-energize, causing the affected с. valve (16, 31 or 51) to close.
 - When air pressure has increased, depressing the air fail reset d. pushbutton will unlock MUV-16, 31 or 51.

- 6.20 a. What two control room indications of abnormal RCP operation, (1.0) require the pump to be shutdown immediately?
 - b. What control room indication of abnormal RCP operation, (1.0) requires power level to be reduced to 72%, at 30%/min, then tripping the affected RCP?
- 6.21 Which one of the following is NOT a Tech Spec required monitoring channel for the Waste Gas System? (1.0)
 - a. Hydrogen
 - b. Noble gas
 - c. Tritium
 - d. Oxygen
- 6.22 Answer the following TRUE or FALSE concerning the Meteorological Measurement System.
 - a. A strongly positive AT indicates a temperature inversion. (0.5)
 - b. A strong thermal inversion may cause wind direction values between the upper and lower levels to be significantly different.
 - c. The wind direction is the way towards which the wind is blowing (e.g., 180° means the wind is blowing toward the South) (0.5)

(0.5)

 Tech Specs require Waste gas releases to be terminated if the meteorological monitoring instrumentation channels are inoperable. (0.5)

END OF SECTION 6

7.0	PROC	EDURES - NORMAL, ABNORMAL,	EMERGENC	Y AND RADIOLOGICAL CONTROL	(25.0)
7.01	Match the Condition with the appropriate Radiation . Monitor Alarm.				
	Radi	ation Monitor	Condition	<u>on</u>	
	a.	RM-A1	1.	Control complex ventilation return air has exceeded setp on gas or iodine/particulate channels.	
	b.	RM-A2	2.	Possible spent fuel radio- activity leak.	
	с.	RM-A3	3.	Reactor Building purge duct exhaust to the atmosphere ha exceeded setpoint on gas cha	
	d.	RM-A4	4.	Auxiliary Building ventilati exhaust to the atmosphere ha exceeded setpoint on gas cha	IS
	e.	RM-A5	5.	Possible waste gas tank or p leak.	iping
7.02	List	your Immediate Actions in	response	to an alarm from RM-L2.	(0.5)
7.03	Whic in A	h of the following is <u>NOT</u> P-330, "Loss of Nuclear Se	an Immedi rvices Wa	ate Action required ter".	(1.0)
	a. Trip all NSCCCW pumps: SWP-A, SWP-B, SWP-C, SWP-2A, SWP-2B.				
	b. Establish OTSG levels with emergency feedwater pumps.				
	c. Trip reactor AND refer to AP-580				
	d.	Close: MUV-50 and MUV-51			

7.04 Immediate Action step 3 of AP-380, "Engineered Safeguards System Actuation," states the following:

> Ensure HPI trains start ° 2 HPI pumps ° SWPs

· RWPs

Step 6 of the same procedure states:

Ensure LPI trains start ° DHPs ° DCPs ° RWPs

Which statement is <u>CORRECT</u> concerning the "RWPs" referred to in AP-380?

- a. The RWPs in step 3 and step 6 are the same. The verification is repeated to ensure it is accomplished.
- b. The RWPs in Step 3 refer to RWP-3A and 3B; the RWPs in Step 6 refer to RWP-2A and 2B.
- c. Step 3 refers to RWP-1, 2A and 2B while step 6 refers only to RWP-2A and 2B.
- d. In Step 3, the RWPs are the Nuclear Services (Emergency) Seawater Pumps while in Step 6, RWPs refer to the Decay Heat (Emergency) Seawater Pumps.
- 7.05 An Immediate Action of AP-380, "Engineered Safeguards System Actuation," is to:

"Place RB sump pump in PULL-TO-LOCK":

· WDP-2A WDP-2B

What is the Remedial Action associated with this step?

(1.0)

7.06 The statements below are contained in AP-380, "Engineered Safeguards System Actuation." Fill in the blanks with the appropriate numbers where indicated.

When the following conditions exist:

· High Pressure

- Adequate subcooling margin; (a) °F when > 1500 psig (b) °F when \$ 1500 psig

- PZR level ≥ (c)"
- OTSG heat removal

OR

· Low pressure

- LPI flow ≥ (d) GPM in each train and stable for ≥ (e) minutes, Then STOP HPI.
- If TC < (f) °F, then refer to EP-220, "Pressurized Thermal Shock."

Required Cooldown Rates

Normal	s (g) °F/hr
Natural Circulation	(h) °F/hr

MUV-53 and MUV-257 (recirc values) must be open when total HPI flow \leq (1) GPM

Establish required OTSG level

0 0	Any RCP operating No RCP's, adequate	(j) "
	subcooling margin Less than adequate	<u>(k)</u> %
	subcooling margin < 2 HPI pumps available	(1) % (m) %

If subcooling margin < (n), then go to EP-290, "Inadequate Core Cooling."

^o When RC Press ≥ (o) psig, then open PORV.

(3.0)

7.07 Select the INCORRECT statement for the following Limit and Precaution as contained in OP-404, Decay Heat Removal System.

"In order to assure that redundant or diverse DHR methods are available during all modes of operation, the following requirements must be met prior to removing a DH train from service."

- a. The LPI pump suction valves from BWST (DHV-34 and DHV-35) will be closed and the breakers racked out during periods when the BWST is empty and a BAST is being utilized for emergency boration control.
- b. No more than one DH train shall be removed from service at any one time.
- c. The requirements for voluntarily entering a degraded mode of operation listed in CP-115 have been met.
- d. The refueling transfer canal is flooded, or at least one OTSG is available for cooling either by forced flow or natural circulation, or there is a readily accessible source of borated water during periods of low DH load and the plant is in Mode 5 or 6.
- 7.08 Which of the following statements is <u>CORRECT</u> concerning DH pump operation in the recirculation mode?

(1.0)

- a. As long as the minimum flow rate of 80 gpm is not violated, DH pump operation in the recirculation mode is unrestricted.
- b. In no event shall the DH pump operate in the recirculation mode continuously for 24 hours or greater than 72 hours per month.
- c. DH pump operation in the recirculation mode shall be timed and an entry made in the Control Center notebook.
- d. The maximum flow from the DH system to the MUP is restricted to 140 gpm when the DH pumps are in the recirculation mode.
- 7.09 Select the <u>CORRECT</u> statement concerning the Nuclear Services Cooling System (as per OP-408).
- (1.0)

- When SW system pressure drops to 110 psig, SWP-18 automatically starts.
- b. When RW system pressure drops to 110 psig, RWP-2B automatically starts.
- c. When either emergency SW pump starts, the normal pump will trip in 30 seconds.
- d. When either emergency RW pump starts, the normal pump will trip in 30 seconds.

- a. OP-402, Makeup and Purification System
- b. OP-705, Emergency Power-DC System
- c. OP-408, Nuclear Services Cooling System
- All three of the above procedures contain these instructions.
- 7.11 Select the <u>CORRECT</u> statement concerning transfer of Non-Nuclear Instrumentation signals to the ICS (as per OP-501). (1.0)
 - a. Disconnecting the RC flow signal source from the RPS cabinets has no affect on the ICS.
 - b. If operating signal source malfunctions make signal source transfer necessary, transfer to another source should be done immediately regardless of ICS operating mode.
 - c. When changing narrow range RC pressure signals, the PORV (RCV-11) should be open, with the heaters and spray valves in manual.
 - d. Buffer cards or buffer card modules may be replaced while leaving the affected controllers in auto.

- 7.12 During fuel handling operations, the polar crane will be "Blue-Tagged" to:
 - a. the Shift Supervisor on duty
 - b. the person operating the crane
 - c. the Refueling Consultant
 - d. the Refueling Supervisor on duty
- 7.13 The Fuel Handling Bridge Operator in the RB has picked up a fuel assembly and is ready to move it to a position above the designated reactor core location. <u>LIST</u> TWO steps that must be verified or accomplished before he is allowed to move the Bridge/Trolley. (NOTE: Two steps to ensure that the element has been completely raised).
- 7.14 What is the proper orientation of fuel assemblies during refueling operations?
 - a. Identification plates on fuel assemblies should be oriented in the West direction. Serial numbers on control rod assemblies should be in the opposite direction.
 - b. Identification plates on fuel assemblies should be oriented in the West direction. Serial numbers on control rod assemblies should be in the same direction as the fuel assembly Identification number.
 - c. Identification plates on fuel assemblies should be oriented in the North direction. Serial numbers on control rod assemblies should be in the opposite direction.
 - d. Identification plates on fuel assemblies should be oriented in the North direction. Serial numbers on control rod assemblies should be in the same direction as the fuel assembly Identification number.

(1.0)

- 7.15 Which of the following statements is CORRECT concerning operation of the turbine bypass valves?
 - a. If automatic operation of turbine bypass valves is desired when CRD breakers are open, set turbine header pressure controller to 27% to compensate for +125 psig reactor trip bias.

- b. If automatic operation of turbine bypass valves is desired when CRD breakers are open, the ±50 psig throttle pressure error logic must be bypassed.
- c. If automatic operation of turbine bypass valves is desired when CRD breakers are open, the ULD must be less than 15% to reset the +50 psig bias.
- Automatic operation of turbine bypass valves is not possible without first resetting the CRD trip breakers.
- 7.16 In order to startup a main feedwater pump, (Section 11.3 of OP-605) you must depress and hold the "Speed Signal Bypass" push button. <u>After which of the following steps can you release the "Speed Signal</u> Bypass" without causing the FW Pump Turbine to Trip? (1.0)
 - Verify all white "Permit" lights and speed control at "minimum" with green light on governor speed control switch.
 - b. Place "Trip/Reset" switch in "Reset" position.
 - c. Verify the following occurs:

LP Stop Open HP Stop Open

- Verify turbine speed greater than 100 RPM.
- 7.17 During all evolutions involving the makeup pumps, verify operable flow paths for each pump to be operated. Loss of flow through a makeup pump will destroy the pump within approximately: (1.0)
 - a. 3 seconds
 - b. 15 seconds
 - c. 1 minute
 - d. 3 minutes

7.18 Which of the following choices will correctly complete the statement below?

"The maximum weekly exposure is (1) . A/The (2) may authorize exposures to (3) by use of Form 912801, Authorization to Exceed Radiation Exposure Limits."

- a. (1) 600 mrem
 - (2) Nuclear Plant Manager
 - (3) 1250 mrem
- b.
- 300 mrem
 Nuclear Plant Manager
 - (3) 1250 mrem
- (1) 300 mrem с.
 - (2) ChemRad Supervisor
 - (3) 600 mrem
- (1) 600 mrem d.
 - (2) ChemRad Supervisor
 - (3) 2 Rem
- 7.19 Which of the following statements is CORRECT concerning RWP's and SRWP's?

- SRWP's are generally required for non-routine work. a .
- For emergency, short-term or special situations, the b. . continuous presence of a qualified ChemRad representative may meet the RWP requirement.
- SRWPs may be issued when periodic radiation surveys show that с. individuals will not encounter a dose rate in excess of 100 mrem/hr.
- The RWP will list all equipment allowed to be taken into and d. removed from a designated area.

7	7.20	Select the <u>CORRECT</u> statement concerning entrance into a Contaminated Area.				
		a.	Only rubber gloves are allowed in contaminated areas.			
		b.	Rubber or plastic gloves used in wet contaminated areas should be taped to the inside of a plastic suit, if one is being worn.			
		c.	Personnel dosimetry and identification badges should be worn inside protective clothing such that they will not fall off and/or become contaminated.			
		d.	In cases of routine or special maintenance that involves high contamination levels, a plastic suit will be required.			
	7.21	List Outs	your Immediate Actions for AP-990, "Shutdown From ide Control Room"	(1.5)		
	7.22	TRUE	or FALSE	(0.5)		
		grou	first Immediate Action of AP-580, RPS Actuation, is to ensure p 1-7 rods are inserted. The Remedial Action for this step cts you to EP-140, Emergency Reactivity Control.			

END OF SECTION 7

8.0 ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS

- 8.1 According to Administrative Procedure AI-100, an individual should (1.0) not be permitted to work more than hours in any 48-hour period (excluding shift turnover time) unless authorized at the Nuclear Plant Manager level or above. (Choose the correct number below).
 - a. 12
 - b. 16
 - c. 24
 - d. 32
- 8.2 According to the Crystal River Emergency Plan Implementing Procedure (1.0) EM-202, during a Site Area Emergency personnel accountability SHALL be verified within ________ minutes of Site Evacuation.
 - a. 15 minutes
 - b. 30 minutes
 - c. 45 minutes
 - d. 60 minutes
- 8.3 While in Mode 2, which one of the RCS Chemistry analysis values given (1.0) below is between the steady state chemistry limit and the transient limit?
 - a. Fluoride 1.4 ppm
 - b. Boron 2000 ppm
 - c. Dissolved oxygen 1.4 ppm
 - d. Chloride .14 ppm
- 8.4 According to AI-500, "Conduct of Operations", which one of the following (1.0) positions has the authority to both 1) shutdown the reactor or cause it to be shutdown and 2) start it up and return it to power operation?
 - a. Chief Nuclear Operator
 - b. Assistant Nuclear Shift Supervisor
 - c. Nuclear Shift Supervisor
 - d. Nuclear Operations Superintendent

(25.0)

- a. Control Center Refueling Operator
- b. Refueling Consultant
- c. Refueling Supervisor
- d. Shift Supervisor
- 8.6 Which one of the following choices <u>CORRECTLY</u> states the source (1.0) range NI monitor requirements during core alterations as specified in FP-203?

At least two source range NI monitors shall be operable:

- a. each with audible indication in the Control Center and one with visual indication in the Control Center and one with audible indication in containment.
- b. each with visual indication in the Control Center and one with audible indication in both the Control Center and containment.
- c. one with visual indication in the Control Center and one with audible indication in containment.
- d. each with audible and visual indication both in containment and in the Control Center.
- 8.7 Which one of the following conditions requires action according to (1.0) Tech Specs in less than 1 hour if in MODE 2?
 - a. The shutdown margin is 1.4%.
 - b. One train of heat tracing on the BAST is inoperable.
 - c. The Reactor Coolant System lowest loop temperature (Tavg) is 520°F.
 - d. Two of the three makeup pumps are inoperable.

8.0 ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS

- 8.1 According to Administrative Procedure AI-100, an individual should (1.0)not be permitted to work more than hours in any 48-hour period (excluding shift turnover time) unless authorized at the Nuclear Plant Manager level or above. (Choose the correct number below).
 - 12 а.
 - 16 b.
 - 24 C .
 - 32 d.
- 8.2 According to the Crystal River Emergency Plan Implementing Procedure (1.0) EM-202, during a Site Area Emergency personnel accountability SHALL be verified within minutes of Site Evacuation.
 - a. 15 minutes
 - b. 30 minutes
 - с. 45 minutes
 - d. 60 minutes
- 8.3 While in Mode 2, which one of the RCS Chemistry analysis values given (1.0) below is between the steady state chemistry limit and the transient limit?
 - a. Fluoride 1.4 ppm
 - b. Boron 2000 ppm
 - c. Dissolved oxygen 1.4 ppm
 - d. Chloride .14 ppm
- 8.4 According to AI-500, "Conduct of Operations", which one of the following (1.0)positions has the authority to both 1) shutdown the reactor or cause it to be shutdown and 2) start it up and return it to power operation?
 - Chief Nuclear Operator a. .
 - b. Assistant Nuclear Shift Supervisor
 - c. Nuclear Shift Supervisor
 - d. Nuclear Operations Superintendent

(25.0)

- One safety rod not fully withdrawn.
- b. The overlap between regulating rod groups 6 and 7 is determined to be 28%.
- c. Two pulse stepping position indicator channels inoperable with all reed switch position indicator channels operable.
- d. One APSR is misaligned from its group average height by 5%.
- 8.9 Which one of the following statements is <u>CORRECT</u> regarding the axial power imbalance?
 - a. Axial power imbalance is not a directly observable quantity and therefore, limits have been established on the nuclear heat flux hot channel factor produced by the imbalance.

- b. Axial power imbalance, in addition to maintaining control rod overlap, sequence, and insertion limits, will ensure that hot channel factors are maintained within acceptable limits.
- c. The axial power imbalance is defined as the maximum local fuel rod linear power density divided by the average fuel rod linear power density.
- Negative axial power imbalances are more restrictive due to the coolant temperature rise across the core.
- 8.10 Which one of the following statements is <u>CORRECT</u> according to the (1.0) OSIM for; "Documenting Reactor Trip, Recovery, and Plant Shutdown"?
 - a. A reactor trip is any reactor protection system (RPS) action, manual or automatic, which causes the opening of generator breakers 1661 and 1662.
 - b. When a reactor trip or plant shutdown occurs, the nuclear shift supervisor notifies the SOTA, Nuclear Operations Superintendent, person on call, the NRC (red phone), and the NRC Resident Inspector.
 - c. The SOTA is the team leader in assessing and justifying restart.
 - A log of reactor trip and shutdown report dates and types will be maintained in the Nuclear Operations Superintendent's office.

8.11 Which statement is CORRECT concerning the "Operator of the Controls"? (1.0)

- He shall not, under any circumstances, leave the red-carpeted general area.
- b. For emergency reasons, he may leave the red-carpeted area only after obtaining a qualified relief Operator at the Controls.
- c. In the event of an emergency affecting the safety of operations, he may be momentarily absent from the general area in front of the board. This includes responding to back panel (e.g., ventilation system) indications.
- d. At all times (unless properly relieved) he must remain within the confines of the Control Center with an unobstructed view of the operational control panels.

8.12 TRUE OR FALSE

a.	Open annunciator links are to be logged in the Equipment Out-of- Service Log.	(0.5)
b.	Out-of-Service classification can be removed with surveillance outstanding provided functional tests have been completed.	(0.5)
c.	Short term instructions shall expire in 90 days unless properly amended.	(0.5)

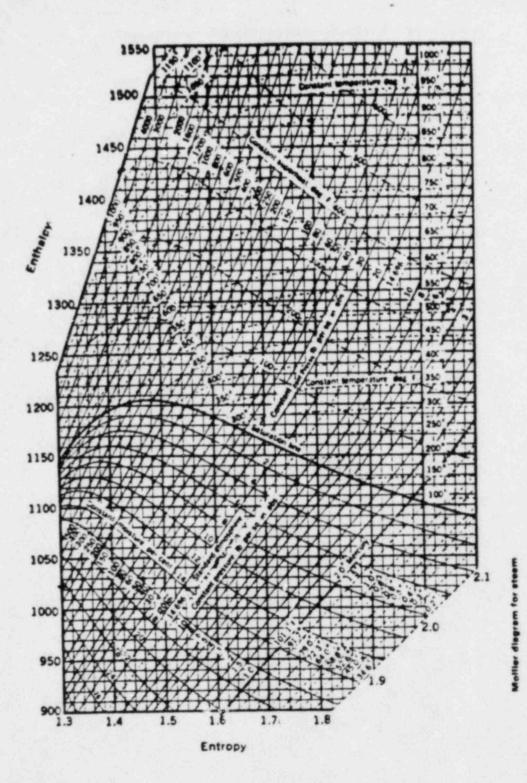
- d. For non-safety related procedures, a short term instruction may be issued instead of a temporary procedure change. (0.5)
- 8.13 Which one of the following is properly classified as "Controlled Leakage"? (1.0)
 - a. Valve packing leaks that are captured and conducted to a sump.
 - b. Seal water flow from reactor coolant pump seals.
 - c. Identified and monitored steam generator tube leakage.
 - d. Leakage into containment atmosphere from known sources.

- 8.14 During plant startup with the reactor about 2% power, you find that the PORV Block Valve is stuck open and incapable of closing. Which of the following is a CORRECT ACTION (see the attached LCO)? (1.0)
 - a. Continued operation is allowed provided the PORV is operable and power is removed from the block valve.
 - b. If Action b. is satisfied you are allowed to increase power into Mode 1. (Block valve cannot be restored to OPERABLE).
 - c. The PORV must be closed, power removed from the solenoid valve and the block valve must be repaired prior to going to Mode 1.
 - d. Since the block valve is incapable of closing, you must proceed to Hot Standby within the next 6 hours and Cold Shutdown within the following 3Q hours.

(1.0)

- 8.15 The specific activity of the secondary coolant system shall be <u>Cose Equivalent I-131</u>. The accident this is based on is a ______. Which choice <u>CORRECTLY</u> provides the missing information?
 - a. 1.0 µCi/gm, Steam Generator Tube Rupture
 - b. 0.1 µCi/gm, Steam Generator Tube Rupture
 - c. 1.0 µCi/gm, Steam Line Rupture
 - d. 0.1 µCi/gm, Steam Line Rupture
- 8.16 The _____, or his designated alternate, assumes (1.0) the position of Emergency Coordinator when relieving the NSS.
 - a. Site Director
 - b. Operations Superintendent
 - c. Director of Emergency Planning
 - d. Nuclear Plant Manager
- 8.17 When a deluge and sprinkler fire system is inoperable, which statement below is the <u>CORRECT</u> required action? (1.0)
 - a. Commence a unit shutdown within one hour.
 - b. Establish an hourly fire watch patrol for the affected area.
 - c. Establish a continuous fire watch with backup fire suppression equipment in the affected area within one hour.
 - d. Log ambient temperature readings for the affected area hourly.

8.18 A quarterly surveillance requirement of Tech Specs may be extended (1.0)days without declaring the component inoperable due up to to the surveillance testing not being performed. 9 4. 23 b. 32 C. 41 . d. 8.19 The attached drawing shows the primary and secondary evacuation (1.0)areas. Which of the numbered points is the "Crystal River Generation Complex secondary evacuation area (SEA)"? 1 8. 2 b. C . 3 4 d. 8.20 When is the Incore Monitoring System required to be operable? (1.0) a. Only in Mode 1 Only in Mode 1 above 40% power b.


- c. In modes 1 and 2
- d. When surveillance is required for Axial Power Imbalance and Quadrant Power Tilt.
- 8.21 List the two methods that will be used to track and document valve lineups if they are different from that required by a procedure. (1.0)
- 8.22 CP-115, "In-Plant Equipment Clearance and Switching Orders" states four conditions that require PRC approval of a clearance prior to issuance. List these four conditions. (2.0)
- 8.23 Is a pump operable if its control switch is in "Pull-to-Lock"? (1.0) Explain.

END OF CATEGORY 8

END OF EXAM

E . mc' KE + 1/2 mv² · · (V. · /)/1 PE . mgn ¥. . ¥. . et .../1 A DC H . v 1P 45 . 931 Am m . VavAs Q . mat. Q . mCpat Q . UALT Pur = Heat P = P 10sur(t) P = Poet/T SUR . 26.06/T SUR = 260/1" + (8 - 0)T T = (1=/0) + [(8 - 0) Io] T = 4/(0 - 5) T = (8 - p)/(1p) p = (Keff-1)/Keff = &Keff/Keff > = [(1*/(T Keff)] + [#eff/(1 + IT)] P = (I+V)/(3 x 10¹⁰) I . ch Water Parameters 1 gal. = 8.345 lbm. 1 ga]. = 3.78 liters 1 ft3 = 7.48 gal. Density = 62.4 lbm/ft³ Density = 1 gm/cm³ Heat of vaporization = 970 Bto/lom Heat of fusion = 144 Btu/lom 1 Atm = 14.7 psi = 29.9 in. Hg. 1 ft. H₂0 = 0.4335 ltf/in.

A . Ape ... A . A:4 1 = en2/t1/2 = 0.693/t1/2 \$1/2eff = [(11/2)(12)] [(11/2) + (12)] I . I e -Ix 1 = 1₀e^{-ux} I . 10 10-X/TVL TVL = 1.3/u HVL - -0.693/# SCR = 5/(1 - Keff) CR = 5/(1 - Keffx) CR1(1 - Keff1) = CR2(1 - Keff2) M = 1/(1 - Keff) = CR1/CR $M = (1 - K_{effo})/(1 - K_{eff1})$ SDM = (1 - Keff)/Keff t" = 10 seconos I = 0.1 seconds⁻¹ I1d1 = I2d2 I1d1 2 = I2d2 2 R/hr = (0.5 CE)/d²(meters) R/hr = 6 CE/d² (feet) Miscellaneous Conversions 1 curie = 3.7 x 1010aps 1 kg = 2.21 10m 1 hp = 2.54×10^3 8tu/hr 1 mm = 3.41 x 10⁶ 8tu/hr 1in = 2.54 cm *F = 9/5*C + 32 *C = 5/9 (*F-32) 1 BTU = 778 ft-1bf e = 2.718

Ab. press	Temp	Specific	volumi		Enthalp			Entropy	
Pair	•1	Su: liquid	Sat Vapor	Sa: Irguid	tvar	Sa: Vapor	Sa: liquid	Ever	Sal. Vapor
,	1	1.	1.		A,,	*,		1,	1,
1.0	101 74	0.01614	333 6	64 70	1036 3	1106 0	0.1326	1.8456	1.978
20	126 08	0.01623	173.73	91 90	1022.2	1116 2	0.1749	1.7451	1.920
30	141.45	001630	118 71	104 17	1013.2	11226	0.2005	1.6855	
40	152 97	0.01636	90 63	120 M	100x 4	1127.3	0.2194	1.6427	1.886
5.0	162.24	0.01640	73.52	130.13	1001.0	1131.1	0.2347	2.6094	1.8625
6.0	170.06	001645	61.98	117.96	996.2	1134 2	10000	10.000	
7.0	176.85	001649	53.64	144 76	9921	1136.9	0.2472	1.5820	1.829:
8.0	182.86	0.01653	47.34	150 79	988 5		0.2581	1.5586	1.8167
90	188.28	001656	4: 40	150 22	985.2	1139.3	0.2674	1.5383	1.8057
10	193.21	001659	38 42	161.17	9821	1141.4	0.2759	1.5203	1.796.
4 696	1					1143.3	0.2835	1.5041	1.7876
	212.00	0.01672	26.80	180 07	970.3	1150.4	0.3120	1.4446	1.7566
15	213.03	001672	26.29	181 11	969 7	1150.8	0.3135	1.4415	1.7549
20	227.96	0.01683	20.089	196.16	960 1	1156.3	0.3356	1.3962	1.7319
25	240.07	0.01692	16.303	208 42	952 1	1160.6	0.3533	1.3606	1.7139
30	250 33	0.01701	13.746	218.82	945.3	1164.1	0.3680	1.3313	1.6993
35	259.28	0.01708	11.895	227.91	939.2	1167.1	0.3807	1.3063	
40	267.25	0.01715	10.498	236 03	933.7	1169 7	0.3919		1.6870
45	274.44	0.01721	9.401	243.36	928.6	1172.0	0 4019	1.2844	1.6763
50	281.01	0.01727	8.515	250 09	924.0	1174.1	0 4110	1.2650	1.6669
55	287.07	0.01732	7.787	256.30	919.6	1175.9	0.4193	1.2474	1.658
60	292 71	0.01738	7.175	262.09	915.5				1.6504
65	297.97	0.01743	6.655	267.50		1177.6	0.4270	1.2168	1.6438
70	302 92	0.01748	6 206	272 61	9116	1179 1	0.4342	1.2032	1.6374
75	307.60	0.01753	5.816	277.43	907.9	1180.6	0.4409	1.1906	1.6315
80	312.03	0.01757	5.472	282 02	904.5	1181.9	0 4472	1.1787	1.6259
85	316.25					11831	0.4531	1.1676	1.6207
90		0.01761	5.168	286.39	897.8	1184 2	0 4587	1.1571	1.6158
95	320.27	0.01766	4.890	290.56	894 7	1185.3	0 4641	1.1471	1.6112
100	324 12	0.01770	4.652	294.56	891.7	1186.2	0.469:	1.1376 1	1.6061
	327.81	0.01774	4.432	298 40	888.8	1187.2	0 4740	1.1286	1.6026
110	334.77	0.01782	4.049	305.66	883.2	1188.9	0 4832	1.1117	1.5945

TABLE D-1a* Properties of Dry Saturated Steam * Pressure

. .

	ABLE D.1.
Properties of Dry	Saturated Steam (continued) Pressure

Abs press psiu		Specific volume			Enthalp:	1000		Laurop	
	Temp.	Sa: Inquid	5.01 vapo:	Sal liquid	tion	Sa: Vapor	Sa: Inquid	tvar	Sut vapor
,	,	•,	•,	٠,	*	*,		**	1,
120	341.25	0 01 789	3 721	312 44	877.9	1190 4	0 4916	1.0912	1.5871
130	347 32	001796	3455	318.81	8729	11917	0 4994	1.0117	1.5812
140	353 02	0 01802	3.220	324 82	868.2	11930	0.5069	1.0682	1.5751
150	358 4:	0 01809	3015	330 51	863.6	1194 1	0 5136	1.0556	1.5694
160	363.53	0.01815	2.834	335 93	859 2	1195.1	0 5204	1.0436	1.5640
	363 41	0.01822	2.675	341.09	849	11960	0.5264	1 0324	1.5590
170	173.06	001827	2'532	346 01	850 M	1196.9	0 5325	1.0217	1.5542
180		0.01833	2 404	350 79	846 B	1197.6	0.5361	10116	1.5497
190	377.51	0.01839	2 288	355.36	843.0	1198 4	0.5435	1.0018	1.5453
200	381.79	0 01865	1.8438	376 00	825 1	1201.1	0.5675	0.9588	1.5263
		0.01890	1.5433	393.84	809.0	1202 8	0 5879	0 9225	1.5104
300	417.33		1.3260	409.69	794 2	1203.9	0.6056	0 8910	1.4966
350	431.72	0.01913	1.1613	424 0	780 5	1204.5	0.6214	0.8630	1.4844
400	444.59	0.0193	1.0320	437.2	767.4	1204 6	0 6356	0 8378	1.473
450	456.28	0.0195	0.9278	449 4	755.0	1204.4	0.6487	0.8147	1.4634
500				460.8	743 1	1203.9	0.6605	0 7934	1.4543
550		0 0199	0.8424	471.6	731.6	1203.2	0.6720	0.7734	1.4454
600		0 0201	0.7695	481.8	720.5	1202.3	0.6826	0.7548	1 4374
650		0.0203	0.7083	491.5	709.7	1201.2	0.6924	0.7371	1.4296
700		0.0205	0.6554	500.8	699.2	1200.0	0 7019	0.7204	1.4223
750	510.86	0.0207	0.6092				0.7108	0 7045	1.415
800			0.5687	509.7	688.9	1198.6		0.6891	1.408
850			0.5327	518.3	678.8	1197.1	0.7194	0.6744	1.402
900			0.5006	526.6	668.8	1195.4	0.7275	0.6602	1.395
95	535 43		0.4717	534.6	659.1	1193.7	0 7355	0.6467	1.389
1000	544.61	0.0216	0.4456	542.4	649 4	1191.8			
1100	556.31	0.0220	0.4001	557 4	630 4	1187.7		0.6205	1.378
1200			0.3619	571 7	611.7			0.5956	1.366
130			0.3293	529.4	593.2			0.5719	
140			0.3012	and the second se	574 7	1173 4		0.5491	1.345
150			0.2765		556.3	1167.9	0 8082	0.5269	1.335
200			0 1878	671.7	463.4	1135 1	0.8619		
250			0.1307		360.5	1091.1	0.9126		
300			0.0858		217.8		0.9731	0.1885	
320			0.0503			902	1.0580	0	1.058

- 1		Specific	olume	1	nihalpy		1	Entropy	
*F	Alm press psiz	Sa: hquid	Sa: vapor	Sa: Inquid	Evar	Sal vapor	So: liquid	Even	Su: vapor
1	,	•,	٠,		*.	۰,	47	**	4
	0.08854	0.01602	330r	0.00	1075 8	1075.8	0.0000	2 1877	2 1877
32	0.09995	0.01602	2947	3 02	1074 1	1077.1	0.0061	2 1709	2 1770
35	0 12170	0 01602	2444	8 04	1071.3	1079 3	0.0162	2 1435	2 1597
45	0.14752	0.0160:	2036 4	13.06	1068 4	1061.5	0.0262	2 1167	2.1429
50	0.17811	0.01603	1703.2	18.07	1065.6	10837	0.0361	2.0903	2 1264
- 70.1			1206 7	28.06	1059 9	1088.0	0.0555	2 0 3 9 3	2.0948
60	0.2563	0.01604	867.9	38.04	1054.3	1092.3	0 0745	1 990:	2.064"
70	0.3631	0.0160		48.02	1048.6	1096.6	0.0932	1.9428	2.0360
80	0.5069	0.01608	633.1	57.99	1042.9	1100.9	0.1115	1.8972	2 0087
90	0.6982	0.01610	468.0	67.97	1037.2	1105.2	0 1295	1.8531	1.9826
100	0.9492	0.01613	350.4					1.8106	1.9577
110	1.2743	0.01617	265.4	77.94	1031.6	1109.5	0.1417	1.7694	1.9339
120	1.6924	0.01620	203.27	87.92	1025.8	1113.7	0.1645	1.7296	1.933
130	2.2225	0.01625	157.34	97.90	1020.0	1117.9	0.1816		1.8894
140	2.8886	0.01629	123.01	107.89	1014.1	1122.0	0.1984	1.6910	
150	3.718	0.01634	97.07	117.89	1008.2	1126.1	0.2149	1.6537	1.8685
160	4 741	0.01639	77.29	127.89	1002.3	1130.2	0.2311	1.6174	1.848
170	5.992	0.01645	62.06	137.90	996.3	1134.2	0.2472	1.5822	1.829
180	7.510	0.01651	50.23	147.92	990.2	1138 1	0.2630	1.5480	1.8104
190	9.339	0.01657	40.96	157.95	984.1	1142.0	0.2785	1.5147	1.793
200	11.526	0.01663	33.64	167.99	977.9	1145.9	0.2938	1.4824	1.776
			27.82	178.05	971.6	1149.7	0.3090	1.4506	1.759
210	14.123	0.01670		180.07	970.3			1.4446	1.756
212	14.696	0.01672	26.80	188.13					1.744
220	17.186	0.01677	23.15		958.8			1.3901	1.728
230	20.780	0.01684						1.3609	
240	24.969	0.01692	16.323	200.54					
250	29.825	0.01700							
260	35.429	0.01709							
270	41.858	0.01717	10.061						
280	49.203	0.01726							
290	57.556	0.01735	7.461	259.31	917.5	1176.8	0.4234		
300	67.013	0.01745	6 464	269.59	910 1	1179 7			
310	77.68	001755	and the second sec	and the second second		1182.5			
320	89.66	0.0176							
330		0.01776		a series and a series of		1187.1	0 4769		
340		0.0178				1190	0 4900	1.099	1.589

TABLE D-16 Properties of Dry Saturated Steam (continued) Temperature

-

	A	Ab. Specific volume			Enthalp	1.1.1		Entropy			
Temp •F	Press	Sa: biquid	Sa: vapor	Sa: liquid	Evar	Sa: Vapor	Sa: liquid	Ever	Sa: vapor		
,	,	×,	`,	۸,	A.,	۸,		1.	1,		
350	134.63	0.01795	3.342	321 63	870 7	1192.3	0.50.29	1.0754	1.5783		
360	153 04	001111	295-	332 18	852.2	11944	0.5156	1.0419	1.5677		
370	173.37	001823	2 624	34: 79	853.5	1196 3	0.3264	1 0287	1.3573		
380	195 77	1001834	2 335	353.45	844 6	11981	0.5413	1.00.59	1.5471		
390	220.37	0.01850	2 0836	364 17	835.4	1199.6	0.5539	0.9832	1.5371		
400	247.31	0.01864	1.8633	374 97	\$26.0	1201.0	0.5664	0.9604	1.5272		
410	276 75	001878	1.6700	385 83	816.3	1202.1	0.5785	0.9386	1.5174		
420	308.83	0.01894	1.5000	396 77	806.3	1203.1	0.5912	0.9166	1.5078		
430	343 72	0.01910	1.3499	407.79	796 0	1203 8	0.6034	0.8947	1.498.		
440	381.59	0.01926	1.2171	418 90	785.4	1204.3	0.6158	0.8730	1.4887		
450	422.6	0.0194	1.0993	430.1	774.5	1204 6	0.6280	0.8513	1.4793		
460	466.9	0.0196	0.9944	4414	763 2	1204 6	0.6402	0.8298	1.4700		
470	5147	0 0198	0.9009	452.8	751.5	1204.3	0.6523	0.8083	1.4606		
480	566 1	0.0200	0.8172	464.4	739 4	1203 7	0.664.5	0 7868	1.4513		
490	621.4	0.0202	0 7423	476.0	726.8	1202 8	0.6766	0 7653	1.4419		
500	680.8	0 0 204	0.6749	487.8	7139	12017	0.685	0 7438	1.4325		
520	812.4	0.0209	0.5594	511.9	686 4	1198.2	0 7130	0.7006	1.4136		
540	962.5	0.0215	0.4649	536 6	656.6	1193.2	0 7374	0.6568	1.3943		
560	1133.1	0.0221	0.3858	562.2	624.2	1186 4	0.7621	0.6121	1.3742		
580	1325.8	0.0228	0.3217	588.9	588 4	1177.3	0 7872	0.5659	1.3532		
600	1542.9	0.0236	0 2668	610.0	548 5	1165.5	0.8131	0.5176	1.330		
620	1780 6	0 0 247	0.2201	646 7	503.6	1150.3	0.8398	0 4664	1.306.		
640	2059 7	0.0260	0 1798	678.6	452.0	1130.5	0.8679	0.4110	1.2785		
660	2365 4	0.0278	0.1442	714.2	390.2	1104 4	0.8987	0.3485	1.247		
680	2706.1	0.0305	0.1115	757.3	309.9	1067.2	0.9351	0.2719	1.207		
700	3093 7	0 0 369	0.0761	823.3	172.1	9954	0.9905	0 1484	1.1389		
705 4	3206.2	0 0 503	0 0 503	90:7	0	9027	1.0580	0	1.058		

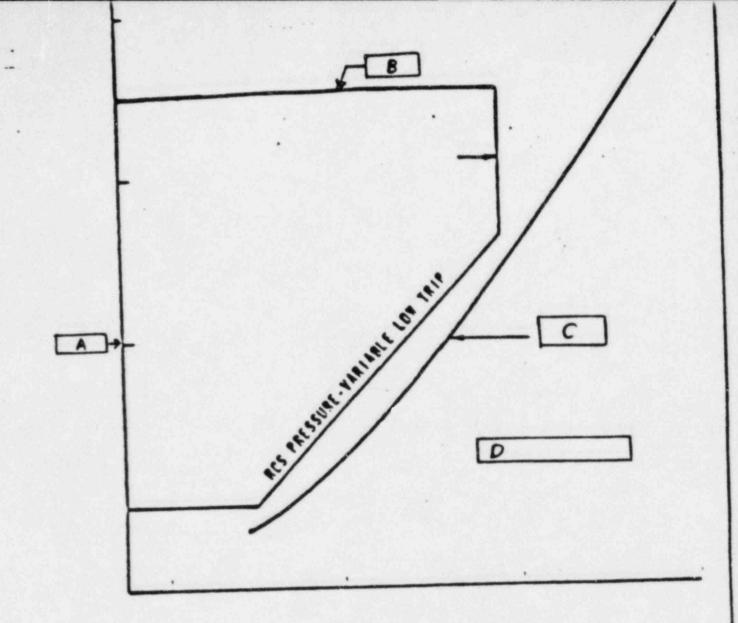
TABLE D-16 Properties of Dry Saturated Steam Loontinued Temperature

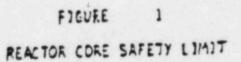
AM P		Temperature. "I											
(bai tem)		20.	10.	400	50.		10	80.	100	HOOL	110	1200	1401
		392.6 1150.4 2.0512	452.3 1195.8 2.1153	\$12.0 1241.7 2.1720	571.6 1288.3 2.2233	631.2 1335 7 2.2702	690 8 1383 8 2.3137	750 4 1432 8 2.3542	809 9 1482 7 2.3923	869.5 1533.5 2.4283	929 1 1585 2 2 4625	988 7 1637.7 2.4952	1107.8 1745 7 2.5566
5 (162.24)		78.16 1148.8 1.8718	90.25 1195.0 1.9370	102.26 1241.2 1.9942	114.22 1288.0 2.0456	126 16 1335 4 2.0927	138.10 1383.6 2.1361	150.03 1432.7 2.1767	161.95 1482.6 2.2148	173.87 1533.4 2.2509	185.79 1585.1 2.2851	197.71 1637.7 2.3178	221.6 1745.7 2.3792
ю		38.85 1146.6 1.7927	45.00 1193.9 1.8595	51.04 1240.6 1.9172	57.05 1287.5 1.9689	63.03 1335.1 2.0160	69.01 1383 4 2.05%	74.98 1432.5 2.1002	80.95 1482.4 2.1383	86.92 1533.2 2 1744	92.88 1585.0 2.2068	96.84 1637.6 2.2413	110.77 1745.6 2.3028
			30.53 1192.8 1.8160	34.68 1239 9 1.8743	38 78 1287.1 1.9261	42.86 1334.8 1.9734	46.94 1383.2 2.0170	51.00 1432.3 2.0576	55.07 1482 3 2.0958	59 13 1533 1 2 1319	63 19 1584 8 2 1662	67.25 1637.5 2.1989	75.37 1745.5 2.2603
	;		22.36 1191.6 1.7808	25.43 1239.2 1.8396	28 46 1286 6 1.8918	31 47 1334 4 1.9392	34 47 1382 9 1.9829	37 46 1432 1 2 0235	40.45 1482.1 2.0618	43 44 1533.0 2.0978	46 42 1564 7 2 1321	49 41 1637.4 2 1648	55.37 1745.4 2.2263
40 (267.25)	\$		11.040 1186.8 1.6994	12 628 1236 5 1.7608	14 168 1284.8 1.8140	15.688 1333 1 1.8619	17.198 1381.9 1.9058	18 702 1431.3 1.9467	20.20 1481.4 1.9850	21 70 1532 4 2.0212	23 20 1584 3 2.0555	24 69 1637.0 2.0883	27.68 1745 1 2.1495
60 (292.71)	.	*********	7.259 1181.6 1.6492	8.357 1233.6 1.7135	9 403 1283.0 1.7678	10.427 1331.8 1.8162	11.441 1380.9 1.8605	12 449 1430 5 1.9015	13.452 1480.8 1.9400	14 454 1531.9 1.9762	15.453 1583.8 2.0106	16.451 1636.6 2.0434	18 446 1744 8 2.1049
(312.03)				6.220 1230.7 1.6791	7.020 1281.1 1.7346	7.797 1330.5 1.7836	8.562 1379.9 1.8281	9.322 1429 7 1.8694	10.077 1480.1 1.9079	10 830 1531.3 1.9442	11.582 1583.4 1.9787	12.332 1636.2 2.0115	13.830 1744.5 2.0731
100 (327.81)	ļ	*******		4.937 1227.6 1.6518	5.589 1279.1 1.7085	6.218 1329.1 1.7581	6.835 1378.9 1.8029	7.446 1428.9 1.8443	8.052 1479.5 1.8829	8.656 1530.8 1.9193	9.259 1582.9 1.9538	9.860 1635.7 1.9867	11.060 1744.2 2.0484
120 (34) 25)	;	. inneriterer		4.081 1224.4 1.6287	4.636 1277.2 1.6869	5.165 1327.7 1.7370	5.683 1377.8 1.7822	5.195 1428 1 1.8237	6.702 1478.8 2.8625	7.207 1530.2 1.8990	7.710 1582.4 1.9335	8.212 1635.3 1.9664	9.214 1743.9 2.0281
(353.02)	;				3.954 1275.2 1.6683	4.413 1326.4 1.7190	4.861 1376.8 1.7645	5.301 1427.3 1.8063	5.738 1478.2 1.8451	6.172 1529 7 1.8817	6.604 1581.9 1.9163	7.035	7.895
0 160 (363.53)	;	manie			3 443 1273 1 1 6519	3.849 1325.0 1.7033	4.244 1375.7 1.7491	4.631 1426.4 1.7911	5.015 1477.5 1.8301	5.396 1529.1 1.8667	5.775 1581.4 1.9014	6.152 1634.5 1.9344	6.906 1743.2 1.9962
180 (373.06)		· ···········		1214.0	3.044 1271.0 1.6373	3.411 1323.5 1.6894	3.764 1374.7 1.7355	4.110 1425.6 1.7776	4.452 1476.8 1.8167	4.792 1528.6 1.8534	5.129 1581.0 1.8882	5.466 1634.1 1.9212	6.136 1742.9 1.9831
30 0 (381.79)	;		human	2.361 1210.3 1.5594	2 726 1268 9 1.6240	3.060 1322.1 1.6767	3.380 1373.6 1.7232	3.693 1424.8 1.7655	4.002 1476.2 1.8048	4.309 1528.0 1.8415	4.613 1580.5 1.8763	4.917 1633.7 1.9094	5.521 1742.6 1.9713
220 (389-86)	•				2.465 1266 7 1.6117	2.772 1320.7 1.6652	3.066 1372.6 1.7120	3.352 1424.0 1 7545	3.634 1475.5 1 7939	3.913 1527.5 1.8308	4.191 1580.0 1.8656	4.467 1633.3 1.8987	5.017 1742.3 1.9607
		1.00° 0.000 × 3.0 1.00° 0.000 × 3.0	a carrier coloration	1.9276 1202.5 1.5319	2.247 1264 5 1.6003	2.533 1319.2 1.6546	2.804 1371.5 1.7017	3.068 1423.2 1.7444	3 327 1474 8 1 7839	3.584 1526 9 1.8209	3.839 1579.6 1.8558	4.093 1632.9 1.8889	4.597 1742.0 1.9510
260 (404.42)				*********	C. La sul and	2.330 1317.7 1.6447	2 582 1370.4 1.6922	2 827 1422 3 1.7352	3 067 1474 2 1.7748	3.305 1526.3 1.8118	3.541 1579.1 1.8467	3.776 1632.5 1.8799	4.242 1741.7 1.9420
280 (411.05)	; ; ;			*********	1.5796	2.156 1316.2 1.6354	2 392 1369 4 1.6834	2.621 1421.5 1.7265	2.845 1473.5 1.7662	3.066 1525.8 1.8033	3.286 1578.6 1.8383	3.504 1632.1 1.8716	3.938 1741.4 1.9337
30 0 (417.33)	• • • • • • • • • • • • • • • • • • • •			********	1.5701	2.005 1316.2 1.6268	2.227 1368 3 1.6751	2.442 1420.6 1.7184	2.652 1472.8 1.7582	2.859 1525.2 1.7954	3.065 1578 1 1.8305	3.269 1631.7 1.8638	3.674 1741.0 1.9260
350 (431.72)	•		****		1.4923 1251.5 1.5481 1.2851	1.7036 1310.9 1.6070	1.8980 1365.5 1.6563	2 084 1418 5 1 7002	2.266 1471.1 1.7403	2 445 1523 8 1 7777	2.622 1577.0 1.8130	2.798 1630.7 1.8463	3.147 1740.3 1.908c
40 0 (444 59)					1245 1	1.4770 1306 9 1.5894	1.6508 1362 7 1.6398	1.8161 1416 4 1.6842	1 9767 1469 4 1 7247	2 134 1522.4 1 7623	2.290 1575.8 1.7977	2.445 1629.6 1.8311	2 751 1739 5 1 893e

-WORKSHEET 11-

ENCLOSURE 2 (Page 1 of 2)

BET DIATED CRITICAL BORON CONCENTRATION

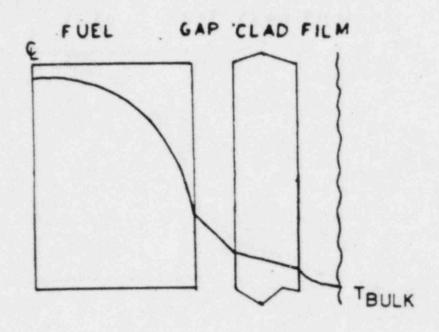

REFERENCE CONDITIONS: 53207, OI FF, No Kenon, No Control Rods, Equilibrium Samarium

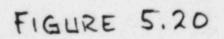

.

.

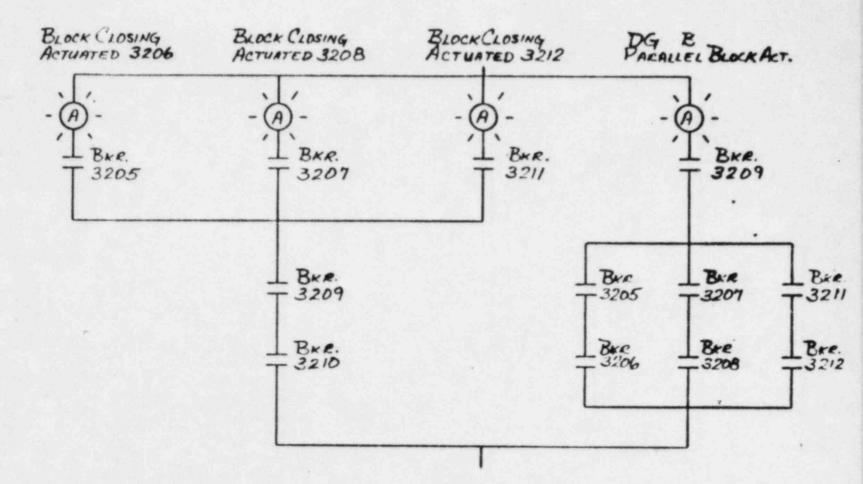
1.	Fuel Reactivity	(Inte
	a. Core Burnup 200 EFPD b. Read Curve 3.1 of OF-103, Plant Curve Book.	
2.	Ienon Reactivity (Dae Step 2.1 or 2.2)	
2.1	Value calculated by SAXON I (submit printout).	Brank
2.2	OR a. Last power level was 100 x FP for 504 hrs. b. Time Shutdown hrs. 16 time at last power level was < 40 hrs. and SAXON is	
	 b. Time Shutdown hrs. c. If time at last power level was < 40 hrs. and SAXON is unavailable, consult with Reactor Specialist. (X Ak/k
3.	Samerium Reactivity Buildup After Shutdown	
3.1	Value calculated by SAXON I (submit printout)	I Ak/k
4.	Reactivity Effect From Temperature	
	a. Average BC Temperature 525 or b. Reference temperature is 5320F.	
	Paratatura coefficient at ppad is obtained	
	from Curve 3.6 of OF-103, Flant Curve sook, to the	0
	d. Reactivity = [T(ave) - 532] [Temp. Goeff.] e. Reactivity = () (= 10^{-2} _ ak/k/07)=	(C) x ak/k
5.	Reactivity of Control Rods at Desired Insertion	
	Groups 1-4 at 100 % WD	
	Group 5 at 100 I WD Group 6 at 100 I WD	D I AKA
	Group 7 at BO X WD Regulating Group Worth Group 8 at 40 X WD Group 8 Worth	I AK/K
Cal	culated By Date	

OP-210 Rev. 16 Date 11/16/82 Page 18




CRYSTAL RIVER UNIT 3

2 . 2


Amendment No. 27, 41

- 14 A.A.

:

.

..

REACTOR COOLANT SYSTEM

POWER OPERATED RELIEF VALVES

LIMITING CONDITION FOR OPERATION

3.4.3.2 The power operated relief valve (PORV) and its associated block valve shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTION:

- With the PORV inoperable, within 1 hour either restore the PORV to OPERABLE status or close the associated block valve and remove power from the block valve; otherwise, be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
- b. With the block valve inoperable, within 1 hour either restore the block valve to OPERABLE status or close the block valve and remove power from the block valve or close the PORV and remove power from the associated solenoid valve; otherwise, be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
- c. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.4.3.2.1 In addition to the requirements of Specifications 4.0.5, the PORV shall be demonstrated OPERABLE at least once per 18 months by performance of a CHANNEL CALIBRATION.

4.4.3.2.2 The block valve shall be demonstrated OPERABLE at least once per 92 days by operating the valve through one complete cycle of full travel.

CRYSTAL RIVER - UNIT 3

3/4 4-42

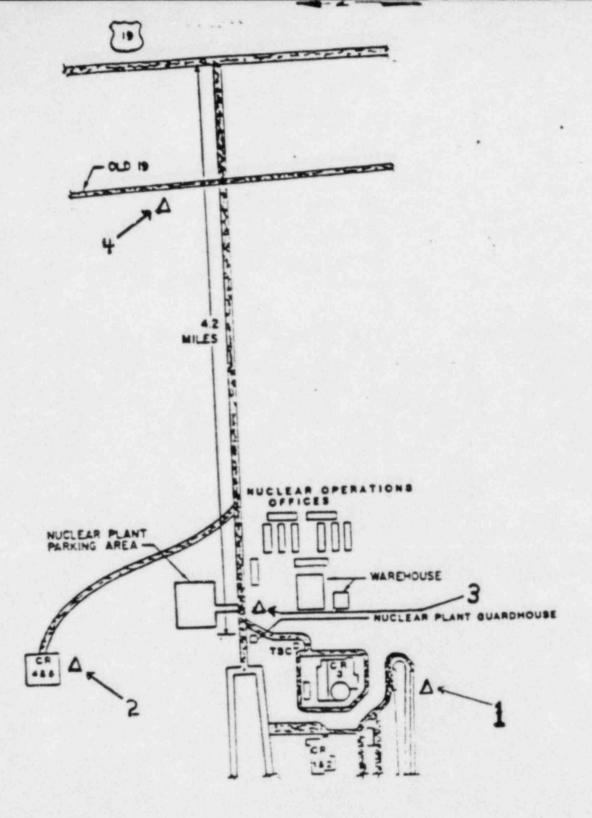


FIGURE 8.19

*

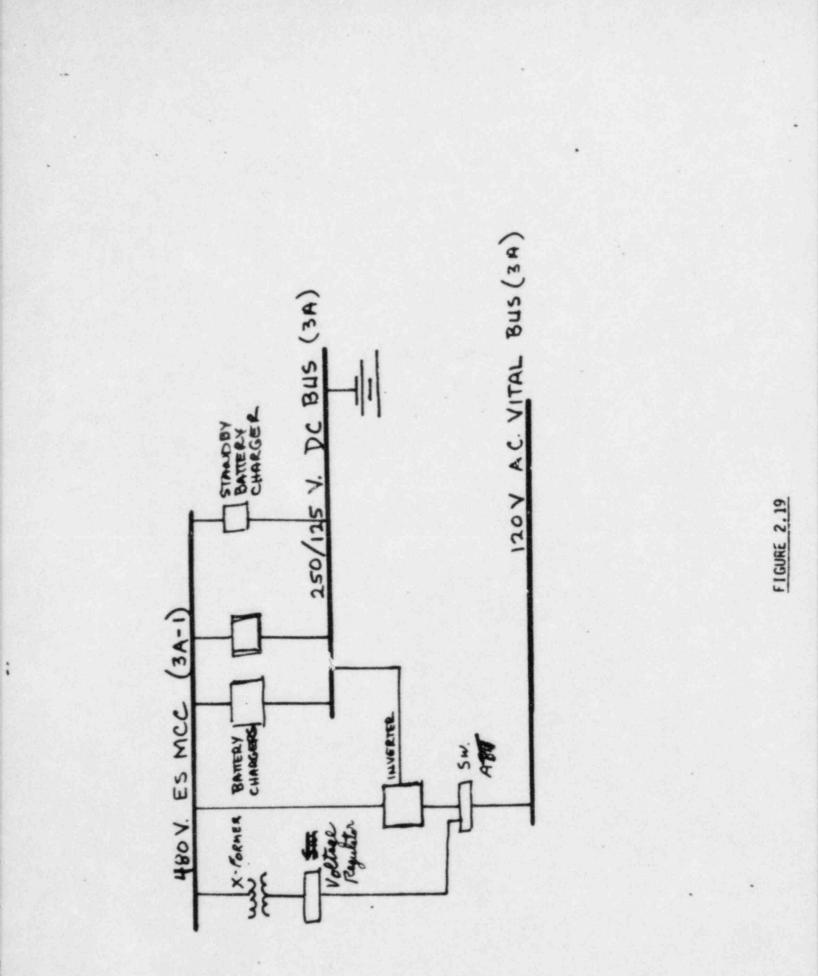
FIGURE 2.19

120 V A.C. VITAL BUS (3A)

250/125 V. DC BUS (3A)

480 V. ES MCC (3A-1)

*


		ANSWERS 5.0	(25.0)
5.1	(b)		(1.0)
Refe	rence:	NUS, NETRO, p. 11.4-3.	
5.2	(c)		(1.0)
Refe	rence:	NUS, NETRO, p 1.4-1	
5.3	(d)		(1.0)
Refe	rence:	GP, HTT and FFF, B3.3 p. 355	
5.4	(b)		(1.0)
Refe	rence:	STM-504	
5.5	(b)		(1.0)
	Reference	 NUS, NETRO Westinghouse Reactor Physics, Sect. 3, Neutron Kinetics and Sect. 5, Core Physics. 	
5.6	(c)		(1.0)
	Reference	: NUS, NETRO, 10.3	
5.7	(d)		(1.0)
	Ref: NUS	- Plant Performance - $pp \ 6.2-5$ and $6.4 - 5$	
5.8	(d)		(1.0)
	Ref: NUS	Plant Performance pp 6.4-5+6	
5.9	(d)		(1.0)
	Ref: NUS	Plant Performance, pp 3.3-2	

	2
5.10 (d)	(1.0)
Reference: OP-210, p. 18	
5.11 (b)	(1.0)
Reference: T.S. pp B3/4 1-1	
5.12 (d)	(1.0)
Reference: T.S. pp 3/4 2-12	
5.13 (a)	(1.0)
Reference: OP-103 curves 4.7A, B, 3.17 and STS 3/4 1-1.	4.8, 3.8A, B, C, D, 3.15A,
5.14 - FALSE delete	-(0.5)-
b. FALSE	(0.5)
Reference: a. CR3 HTFF/Thermo, last b. AP-460 and AP-380	page
5.15 A - Core Outlet Pressure, psig of B - RCS - Pressure High Trip C - Safety Limit ; of minimum D - Unacceptable Operation	RCS pressure (2.0) DNBR limit (1.30)
Reference: T. S. Safety Limit Curve,	pg 2-2
5.16 Answer: Zr - H20 Reaction Dissolved H2 in RCS	(1.0)
Radiolytic decomposition of Aluminum - NaOH reaction	f Water any 2 (.5 ea)
Reference: CR3 Draft HTFF/Thermo, Se	ection 4, Post-LOCA H2 Sources.
5.17 Answer: (d)	(1.0)
Reference: Power System Operation, R. H. Miller, pg. 22-24	
5.18 Answer: (c)	(1.0)
Reference: Power System Operation, R. H. Miller, pg. 22-23	
5.19 Answer: (b)	(1.0)
Reference: CR3 Draft HTFF/Thermo	

		· · · · · · · · · · · · · · · · · · ·	
5.20	Answer: (b))	(1.0)
	Reference:	CR3 Draft HTFF/Thermo	
5.21	Answer: (b)	(1.0)
	Reference:	General Physics Corp. Academic Program for Nuclear Plant Personnel Vol. II Physics pg. 4-76, 77.	
5.22	Answer: (c)	(1.0)
	Reference:	CR3 Draft HTFF/Thermo	
5.23	a. T - TS b. F - TS c. F - TS d. T - TS	3/4 2-5 + 2-7 (and once per month) 3/4 2-11	(2.0)

	ANSWERS 6.0	(25.0)
6.1 Answer: (d)		(1.0)
Reference:	RB Isolation and Cooling System Lesson Plan, AND-91	
6.2		(1.0)
Answer: (a)		
Reference:	AP-304, p. 4	
6.3		(1.0)
Answer (a)		
Reference:	STM-405 P. 15.	
	(BSV-16 & 17 are normally open) (Valves open on 4 psig, pumps start on 30 psig) (BSV-16 & 17 are normally open) But get an open signal	
6.4	par der un oben sitter	(1.0)
Answer: (b)		
Reference: 1. 2. 3.	STM 23-7 OP-502, p. 3 OP-408, Rev. 32	
6.5		(1.0)
Answer: (a)		
(b) (c)	-17-12, 12, 10, 10. - Must be manually stopped - No auto position - Has auto start	
6.6.		(1.0)
Answer: (b)		
Reference:	<pre>STM 17-4, 4, 5, 7. (a) - MUV-48 is remotely operated (c) - Closes MUV-49, not 40 & 41 (d) - makeups demins may be parallel or serie</pre>	P S

6.7			(1.0)
Answer:	(d)		
Refe	erence:	STM-1-17 to 20	
6.8			(1.0)
Answer:	(b)		
Ref	erence:	PASS Lesson Plan, RO-105	
6.9			(2.0)
Answer:	(See atta	ached drawing)	
1.	Normal a	nd bypass inverter supplies	(0.5)
2.	Inverter	feed to vital	(0.3)
3.	DC to in	verter	(0.3)
4.	Two norm	al battery chargers	(0.3)
5.	One back	up battery charger	(0.3)
6.	Bypass t	ransformer and switches	(0.3)
6.10			(1.0)
Answer:	(b)		
Ref	erence:	Site Fire Protection Systems ANAD-39	
6.11			(1.0)
Answer:	a. TRU	E Reference: AP-380, pg. 9	(0.5)
	b. TRU	E Reference: OP-404, pg. 5	(0.5)

6.12			(1.0)
	Ref:	STM-20-2 (Separate Transmitters for DHV 3+4) OP-404, pg. 6, 7 (Alarm on DHV-41, no interlock)	
6.13	ь		(1.0)
	Ref:	Steam Line Rupture Matrix Handout, pg. 5	
6.14	ь		(1.0)
	Ref:	STM-6-15, 17	
6.15	c		(1.0)
	Ref:	STM-43-17	
6.16	a		(1.0)
	Ref:	STM-10-36, 37	
6.17	d		(1.0)
	Ref:	STM-9-11-21 Also T. S. pg. 2-6	
6.18	ь		(1.0)
	Ref:	STM-10-56, 57	
6.19	đ		(1.0)
	Ref:	STM-17-17, 18	
6.20	a.	Controlled bleed off temp. ≥ 170°F (Verified) High seal stage pressure drop ≥ 2/3 RCS pressure	(0.5) (0.5)
	b.	Total seal outflow exceeds 2.5 gpm and is <u>rapidly</u> increasing	(0.5) (0.5)
		Ref: OP-302, Rev. 21, pg 5	

6.21 (c)

6

-

	Refe	rei	nce	e: TS 3/4 3-51 and 3-53	(1.0)
.22	b. c.	F	-	pg. 25 pg. 26 EM-207, Rev. 16, p. 16 TS 3/4 3-31	(0.5) (0.5) (0.5) (0.5)

Reference: CR 3 Lesson Plan - Meterological Measurement System

7

7.	n	AN	CL	10	DC
1.	0	21	28	5	22

(25.0)

7.01	a - 3 Ref. AP b - 4 Ref. AP c - 5 Ref. AP d - 2 Ref. AP e - 1 Ref. AP	-242 -243 -244		(0.5 each) (2.5)
7.02	Notify Aux. Suild WDV-891, WDV	ing Operator to ensur -892	e closed:	(0.5)
	Ref. AP-272			
7.03	(b) (Establish O (d) Ref. AP-330, Rau	TSG levels w/MFP is a -1, 3/6/85	subseq. action)	(1.0)
7.04	(d) NS Seawater	Pumps - RWP-2A/2B Pumps - RWP-3A/3B		(1.0)
	Ref: AP-380 STM-20-9 (RW STM-4-10 (EC STM-23-2/3 (CS)		
7.05	Notify AB operato	r to open affected BK	G at MCC:	(1.0)
	(° Reactor 3A2) (° Reactor 3B2)	Not req. for full	credit	
	Ref: AP-380, pg 4			
7.06	a. 20 b. 50 c. 50 d. 1000 e. 20 f. 500 g. 100 h. 10	i. 100 j. low level lim k. 50% l. 95% m. 95% n. 0 o. 2300	it (30")	(3.0) (0.2 each)

Ref: AP-380, pg.

nd 5 d 3	(1.0)
d 3	
d 3	(1.0
	(1.0)
	(1.0)
	(1.0)
10.2	
	(1.0)
and 6	
	(1.0)
verify that the grapple tube is	(0.5)
as been reported to the CCRO	(0.5)
	\$ (1.0)
	(1.0)
	(1.0)
	(1.0)
	I the a fuel according the first.

18	(c)		(1.0
	Ref:	RP-101, Rev. 19, pg. 9	
19	(b)		(1.0
	Ref:	RP-101, Rev. 19, pg. 13	
20	(d)		(1.0
	Ref:	RP-101, Rev. 19, pgs. 21 and 22	
21	1.	Announce over the PA System that the Control Center is being evacuated.	(1.5
	2.	Transfer the 6900V and 4160 unit buses from the unit auxiliary transformer to unit startup transformer.	
	3.	Trip the reactor from the MCB or remotely by opening 480V CRD breakers "A" and "B".	
	4.	Depress "Reactor Trip" pushbotton <u>AND</u> perform Immediate Actions of AP-580.	

- 5. Close FWV-161 and 162, EFW bypass valves.
- Trip the main turbine and FWP's and assure EFWP's start and are controlling OTSG level.

Ref: AP-990

7.22 False

*

7.

7.

7.

7.

(0.5)

)

Ref: AP-580 and EP-140

	Answers 8.0	(25.0)
8.1	Answer: (c)	(1.0)
	Reference: AI-100, pg. 6, Rev. 7	
8.2	Answer: (b)	(1.0)
	Reference: EM-202, page 29	
8.3	Answer: (a)	(1.0)
	Reference: CR STS, page 3/4 4-18	
	 b. not in TS Table 3.4-1 c. above transient limit d. below SS limit 	
8.4	Answer: (d)	(1.0)
	Reference: AI-500, pages 2 & 3	
8.5	Answer: (b)	(1.0)
	Reference: FP-203, page 2	
8.6	Answer: (b)	(1.0)
	Reference: FP-203, page 7, Rev. 12	
8.7	Answer: (c)	(1.0)
	Reference: CR STS pg. 3/4 1-5	
8.8	Answer: (a)	(1.0)
	Reference: CR STS pg. 3/4 1-24, 25, 21 and 20	
	 b. w/in to 5% (besides 2 hour action statement) c. 24 hours d. ± 6.5% in 2 hours 	
8.9	Answer: (b)	(1.0)
	Reference: CR STS pg. B 3/4 2-2, 3, 1 and 1.	
8.10	Answer: (b)	(1.0)
	Reference: OSIM pg. IV-I	

-

	12	
8.11	Answer: (d)	(1.0)
	Reference: OSIM, page III-2, Rev. 36	
8.12	 a. T - Ref: OSIM, III-9 b. T - Ref: OSIM, III-9 c. F - (shall not be amended) Ref: OSIM III-10 d. F - (shall not be issued for procedure changes) Ref: OSIM III-10 	(0.5) (0.5) (0.5) (0.5)
8.13	Answer: (b)	(1.0)
	Reference: TS page 1-3 and 1-4	
8.14	Answer: (b)	(1.0)
	Reference: TS 3/4 4-4a	
8.15	Answer: (d)	(1.0)
	Reference: TS page 3/4 7-7 and page B 3/4 7-2	
8.16	Answer: (d)	(1.0)
	Reference: EM-202 pg. 1	
8.17	Answer: (c)	(1.0)
	Reference: TS page 3/4 7-41	
8.18	Answer: (b) (25% of 92 days)	(1.0)
	Reference: TS 3/4 0-2	
8.19	Answer: (d)	(1.0)
	Reference: EM-205, pg. 10	
8.20	Answer: (d)	(1.0)
	Reference: TS 3/4 3-26	
8.21	Answer: 1. Issue a clearance per CP-115 2. Make a temporary change to an existing procedure.	(1.0)

8.22 Answer: The PRC shall approve any Clearance prior to issuance which meets any condition specified below:

- a. The Clearance is to be issued for an <u>unusual</u>, <u>non-routine</u>, or <u>abnormal evolution</u> (i.e., repair of RCV-11 in other than Mode 5 or 6, and other emergency repairs).
- b. The Clearance to be issued cannot meet the double valve protection guidelines of 500 psig and/or $200^{\circ}F$ and $\leq 1/2^{\circ}$ inch in diameter opening.
- c. The Clearance to be issued cannot meet the <u>ES train</u> separation criteria.
- d. The Clearance to be issued cannot meet the limiting conditions for voluntarily entering a degraded mode of operation.

In addition to those items listed above, any questionable Clearance shall be forwarded to the PRC for approval prior to issuance.

Reference: CP-115

8.23 Answer: No, not capable of performing its intended function.

(1.0)

....

(2.0)

Reference: TS page 1-1

U. S. NUCLEAR REGULATORY COMMISSION REACTOR OPERATOR REQUALIFICATION EXAMINATION

Facility:	Cryst	al R	iver	Unit	3
Reactor Type	e: F	WR B	&W		
Date Admini	stered:	May	14,	1985	
Examiner:					
Candidate:					

INSTRUCTIONS TO CANDIDATE:

Use separate paper for answers. Write answers on one side <u>only</u>. Staple question sheet on top of the answers sheets. Points for each question are indicated in parenthesis after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up four (4) hours after the examination starts.

Category Value	% of Total	Candidate's Score	% of Category _Value_		Category
25	25			1.	Principles of Nuclear Power Plant Operation, Thermodynamics, Heat Transfer and Fluid Flow
25	25			2.	Plant Design Including Safety and Emergency Systems
25	25		-	3.	Instruments and Controls
	25			4.	Procedures - Normal, Abnormal, Emergency, and Radiological Control
100		. <u></u>			TOTALS
		Final Grade	%		
	0.511.941.01.01.04				

All work done on this examination is my own. I have neither given nor received aid.

Candidate's Signature

1.

- 1.0 PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT (25.0) TRANSFER AND FLUID FLOW
- 1.1 Which one of the following <u>CORRECTLY</u> states the four contributors or factors that establish equilibrium xenon?
 - Decay of xenon to Sm Direct production from fission Decay of iodine Decay of xenon to Cs
 - Direct production from fission Decay of iodine Decay of xenon to Cs Burnout by neutron absorption
 - Decay of iodine
 Decay of xenon to Cs
 Burnout by neutron absorption
 Decay of xenon to Sm
 - Decay of xenon to Cs Burnout by neutron absorption Decay of xenon to Sm Direct production from fission
- 1.2 The ratio of both Pu-239 and Pu-240 atoms to U-235 atoms changes over core life. Which one of the pairs of parameters below are most affected by this change?

(1.0)

- a. Moderator temperature coefficient and doppler coefficient
- b. Doppler coefficient and beta
- c. Beta and thermal neutron diffusion length
- d. Thermal neutron diffusion length and moderator temperature coefficient

- 1.3 A moderator is necessary to slow neutrons down to thermal energies. Which of the following is the <u>CORRECT</u> reason for operating with thermal instead of fast neutrons?
 - a. Increased neutron efficiency since thermal neutrons are less likely to leak out of the core than fast neutrons.
 - Reactors operating primarily on fast neutrons are inherently unstable and have a higher risk of going prompt critical.
 - c. The fission cross section of the fuel is much higher for thermal energy neutrons than fast neutrons.
 - Doppler and moderator temperature coefficients become positive as neutron energy increases.
- 1.4 which one of the following factors will help, rather than hinder, natural circulation?
 - a. Lowering OTSG level
 - b. Lowering RCS pressure
 - c. Increasing RCS temperature
 - d. Lowering turbine bypass valve setpoint
- 1.5 Following a trip from full power with the reactor shutdown and 4 RCPs operating, the 125 psi bias is suddenly removed from the turbine bypass valves. Which one of the following statements best describes plant response? (1.0)
 - a. OTSG pressure drops and levels rise. The increased OTSG levels cause an overcooling of the RCS.
 - b. The OTSG saturation temperature drops causing a decrease in RCS T_ and a rapid drop in pressurizer level.
 - c. Since OTSG pressures drop 125 psi, BTU limit alarms will be received on both generators and feedwater will cut back.
 - d. The resulting cooldown of the RCS will decrease the shutdown margin to less than Tech Spec limits.

(1.0)

- 1.6 Sufficient reactivity is added to a shutdown reactor to cause the count rate to double. If the same amount of reactivity is added again which of the following is CORRECT?
 - The count rate will double again. a .
 - The count rate will more than double but the reactor will b. still be subcritical.
 - The reactor will be critical or supercritical. с.
 - The source strength must be known to determine the new count d. rate.
- 1.7 During a xenon-free reactor startup, critical data was inadvertently taken two decades below the required Intermediate Range (IR) level (10-10 amps). The critical data was then taken at the proper IR level (10-* amps). Assuming RCS temperature and boron concentrations did not change, which one of the following statements is CORRECT?
 - а. The critical rod position taken at the proper IR level is LESS THAN the critical rod position taken two decades below the proper IR level.
 - b. The critical rod position taken at the proper IR level is THE SAME AS the critical rod position taken two decades below the proper IR level.
 - The critical rod position taken at the proper IR level is с. GREATER THAN the critical rod position taken two decades below the proper IR level.
 - d. There is not enough information given to determine the relationship between the critical rod position taken at the proper IR level and the critical rod position taken two decades below the proper IR level.

(1.0) **

- 1.8 The reactor trips from full power, equilibrium xenon conditions. Twenty-four hours later the reactor is brought critical at 10-* amps on the intermediate range. If power level is maintained at 10-* amps for several hours, which of the following statements is <u>CORRECT</u> concerning control rod motion?
 - a. Rods will have to be withdrawn due to xenon build-in.
 - b. Rods will have to be rapidly inserted since the critical reactor will cause a high rate of xenon burnout.
 - c. Rods will have to be inserted since xenon will closely follow its normal decay rate.
 - d. Rods will approximately remain as is as the xenon establishes its equilibrium value for this power level.
- 1.9 Which one of the following is <u>CORRECT</u> concerning starting of positive displacement (PD) and centrifugal pumps?
 - Neither type of pump should be started with its discharge valve shut.
 - Both types of pumps should be started with their discharge valves shut.
 - c. A PD pump should be started with its discharge valve shut and a centrifugal pump started with its discharge valve open.
 - d. A PD pump should be started with its discharge valve open and a centrifugal pump started with its discharge valve shut.
- 1.10 Runout of a centrifugal pump is best characterized by which one of the following?
- (1.0)
- high motor current, high flow rate and high discharge pressure.
- b. low motor current, high flow rate and low discharge pressure.
- c low motor current, low flow rate and high discharge pressure.
- d. high motor current, high flow rate and low discharge pressure.

(1.0)

- transfer processes as heat flux increases? (1.0)bulk boiling, sub-cooled nucleate boiling, film boiling, DNB 8. sub-cooled nucleate boiling, bulk boiling, film boiling, DNB b. bulk boiling, sub-cooled nucleate boiling, DNB, film boiling C. sub-cooled nucleate boiling, bulk boiling, DNB, film boiling d. 1.12 With the main steam temperature and pressure at 600° F and 900 psia respectively, a main steam relief valve seat begins to leak to atmospheric pressure. The temperature of the steam three feet out of the relief valve is approximately: (1.0)600° F а. 535° F b. с. 444° F 212° F d. 1.13 Concerning the behavior of Samarium-149, which of the following statements is CORRECT? Once equilibrium Sm is established, Sm reactivity does not a . change regardless of power level changes.
 - Equilibrium Sm reactivity at 50% power is equal to equilibrium b. Sm reactivity at 100% power.
 - Sm is only removed by radioactive decay. с.
 - d. Sm is produced by the decay of iodine.
- 1.14 Given the power history shown on Figure 2 attached, select the most accurate curve displaying the expected xenon history.

Figure 2 thewn on chilk board + numbers clarified.

1.11 Which one of the following is the CORRECT order of the heat

(1.0)

- a . 1
- b. 2 с. 3
- d. 4

- 1.15 The reactor is being shutdown. A stable neutron population decay with a -78 second period (-1/3 DPM SUR) has been established. The intermediate range is reading 5E-8 amps. How long will it take before the source range high voltage cutoff bistable will reset? (1.0)
 - a. 4.5 minutes
 - b. 5.1 minutes
 - c. 6.0 minutes
 - d. 8.1 minutes
- 1.16 In performing an estimated critical boron concentration pursuant to OP-210, the attached worksheet is being utilized. Assuming the information shown on that sheet, which one of the following pairs of items will be positive (+)? (1.0)
 - a. A&D
 - b. B&D
 - c. 8&C
 - d. A&C
- 1.17 Which one of the following statements about condenser vacuum is CORRECT?

(1.0)

- a. The pressure difference between the actual vacuum and absolute zero is termed condensate depression.
- b. The vacuum prevents the steam entering the condenser from giving up its latent heat of vaporization, thereby increasing cycle efficiency.
- c. The vacuum serves to allow more energy to be withdrawn from the steam in the turbine.
- d. The vacuum prevents the condensed steam from becoming subcooled, thereby increasing cycle efficiency.
- 1.18 Which one of the following is NOT part of the accident postulated for the basis of the shutdown margin requirement?

- a. Main steamline break
- b. Beginning-of-Life (BOL) condition
- c. Tavg at no load operating temperature
- d. Most reactive rod struck out

	1.19		n one of the following is <u>NOT</u> one of the DNB related parameters must be maintained within Tech Spec limits?	(1.0)
		с.	Hot leg temperature Reactor Coolant pressure Reactor Coolant flow rate Axial power imbalance	
	1.20		h of the following will NOT change over core life?	(1.0)
		a.	The minimum acceptable shutdown margin	
		ь.	The acceptable flux imbalance band	
		c.	The control rod reactivity worth	
		d.	The power defect reactivity worth.	
	1.21		n of the following statements about Net Positive Suction (NPSH) is <u>INCORRECT</u> ?	(1.0)
		ā.	NPSH is the amount by which the suction pressure is greater than the saturation pressure for the water being pumped.	
		b.	NPSH is essential for operation of centrifugal pumps but not for positive displacement pumps.	
		c.	NPSH can be calculated by subtracting the saturation pressure from the actual suction pressure.	
		d.	When a pump is started, the NPSH will decrease by the amount of the pressure drop in the suction piping.	
	1.22	TRUE	or FALSE	
lete	1	'e.	Following a LOCA, if HPI actuates and develops full flow, sufficient core cooling is ensured without the need for OTSG cooling, regardless of the size of the LOCA.	(0.5)
		b.	Since the RCP Trip criteria is based on the SBLOCA analyses, you are not required to trip the RCPs following ES actuation due to a Main Steam Line Break Accident.	(0.5)
	1.23	Refer or th	r to Figure 1, "Reactor Core Safety Limit." Identify by name itle the parts of the Figure marked A, B, C, and D.	(2.0)
	1.24	Follo what	owing an accident that results in excessive core damage, are <u>two</u> significant sources of Hydrogen generation.	(1.0)

END OF SECTION 1

de

2.1		ch of the following statements concerning the Reactor Iding Isolation and Cooling System is <u>CORRECT</u> ?	(1.0)
	a.	Diverse Containment Isolation occurs when HPI is automatically or manually initiated.	
	b.	Diverse Containment Isolation will isolate NSCCCW to the Reactor Coolant Pumps.	
	c.	Diverse Containment Isolation will close the CI flow to the RB fans and open the SW valves.	
	d.	When HPI automatically initiates, Diverse Containment Isolation occurs and the RB fans are started or shifted to slow speed.	
2.2	con fol	secondary cycle system is sampled for pH, Hydrazine, ductivity, oxygen, sodium and silica. Which one of the lowing will generate a computer alarm and lead you to tiate an Abnormal procedure for Secondary Chemistry Control?	(1.0)

- a. pH
- b. Conductivity
- c. Oxygen
- d. Sodium
- 2.3 Many important pumps have annunciators which indicate when the pump (1.0) is out-of-service, for example: ES Annunciator D-3-3 is labeled "DH Pump 'B' OUT OF SERV". Which one of the following is an indicated condition for this type of annunciator?
 - a. No breaker DC control power.
 - Breaker control switch in normal after start, breaker open, breaker racked in.
 - c. Overload relay actuated.
 - d. Excessive motor amps.

- 2.4 Select the <u>INCORRECT</u> statement regarding the Condensate Injection (1.0) System.
 - a. Condensate injection is used for main turbine hood sprays, pump seals in the feedwater system, and valve steam-sealing to prevent in-leakage of air to the condenser. STern
 - When condensate pressure is above 220 psig the condensate pumps are supplying seal and spray water.
 - c. If the discharge pressure decreases to ~200 psig, the G.W.P. that has been selected will start automatically.
 - d. The selector switch on the main control board, lines up the alternate G.W.P. for automatic start.
- 2.5 Which one of the following statements concerning the Reactor Coolant (1.0) Pump design is CORRECT?
 - An RCP motor may be started three times successively from ambient temperature, or four times from rated motor temperature.
 - An RCP motor may be started as many as three successive times regardless of temperature.
 - c. The pump is designed for continued operation on either loss of cooling water or loss of injection fluid, but not both.
 - d. The RCP must be secured immediately upon loss of seal injection OR loss of NSCCCW flow.
- 2.6 Which one of the following statements is accurate concerning (1.0) the OTSG?
 - Primary and secondary side blowdown (during plant heatup) is accomplished by means of drain connections near the lower tubesheet.
 - b. The startup range instruments will provide indication of flooding of the aspirating ports.
 - c. The auxiliary feedwater header penetrates near the top of the OTSG shell and sprays the feedwater on the upper cylindrical baffle.
 - d. Orifice plates, located in the lower downcomer section may be adjusted to balance out the internal circulation system.

- 2.7 During Long-term Post-Accident cooling, which one of the following (1.0) flow paths is most desirable?
 - a. Condition "A"; open drop line to RB Sump.
 - b. Condition "B"; Open auxiliary spray line to pressurizer.
 - c. Condition "C"; Combination of Conditions "A" and "B".
 - Condition "D"; Backflush with LPI Pump via open internal vent valves.
- 2.8 Which statement is CORRECT concerning the Core Flood (CF) System?

(1.0)

- a. Isolation valves CFV-5 and 6 receive an open signal following ES actuation even though they are required to be open with their breakers in the "Locked Reset" position.
- b. During plant operation, the CF tank levels may be increased by adding from the makeup and purification (MUP) system and decreased by draining to the Auxiliary Building Sump.
- c. When the breakers for CFV-5 and 6 are in "Locked Reset" position, they lose position indication in the control room.
- d. During plant operation, high CF Tank pressure may be relieved by venting to the Reactor Building.
- 2.9 Which of the following statements concerning the Control Rod Drive (1.0) System is INCORRECT?
 - a. When the rotor assembly rotates, the leadscrew is kept from rotating by keying it to the torque tube through the torque taker.
 - b. Four ball check valves are installed at the base of the thermal barrier to permit in-flow to the CRD mechanism during a reactor trip.
 - c. The APSRs are prevented from tripping by physical restraints on the segment arms; this prevents the arms from pivoting outward.
 - d. The stator coils are sequentially energized in a repetitive 2-3-2-3 manner. When rod motion ceases, three coils remain energized.

- (1.0)2.10 Which one of the following correctly describes the trip system of the main turbine?
 - When the auto-stop (turbine control) oil pressure decreases, 2. the interface trip valve will open allowing the EHC Control oil to dump to drain.
 - When the EHC Oil pressure decreases, the interface trip valve b. will open, allowing the auto-stop (turbine control) oil to dump to drain.
 - The interface trip valve is solenoid actuated and when open, C. will dump both auto-stop (turbine control) oil and EHC control oil to drain.
 - A full turbine trip requires the servo valves for all four sets d. of turbine valves (throttle, governor, reheat and interceptor) to open.
- 2.11 With regard to the Reactor Building Spray System, which of the (1.0) following statements is CORRECT?

(1.0)

- Upon receipt of an ES actuation signal of 4 psic in the а. RB, the NaOH tank outlet valves (BSV-11 and 12) will automatically stroke to the full open position.
- A high RB pressure signal (30 psig increasing) starts the b. 2 RB spray pumps and automatically strokes open the suction valves (BSV-16 and 17).
- The spray pumps start on the 4 psig signal while the spray с. header supply valves (BSV-3 and 4) stroke open on the 30 psig RB signal.
- The 4 psig signal opens all three sets of valves (BSV-3 and 4, d. BSV-11 and 12, and BSV-16 and 17).
- 2.12 Select the CORRECT statement concerning the Nuclear Services Booster Pumps and CRD Cooling System.
 - One pump is normally operated with the other serving as backup. а. A drop in line pressure (25 psi) will start the idle pump.
 - On an ES signal, the supply and return valves will close to b. the CRDM coolers and the booster pumps will have to be manually secured.
 - SWP-2A is powered from ES MCC 3A2 and SWP-2B is powered from с. ES MCC 3B2.
 - d. Low level in the SW surge tanks will trip the NS booster pumps.

2.13 With regard to the Plant Ventilation System, which one of the (1.0) following Ventilation systems is required for emergency operation (an accident that causes ES actuation)?

e. Reactor Cavity Cooling Fans

delete

b. Reactor Building Purge Supply System

c. Spent Fuel Cooling Pumps Air Handling Units-

Ed. Reactor Building Operating Floor Fans

- 2.14 Select the <u>CORRECT</u> statement concerning the Makeup Pump Lube Oil System.
 - a. If the main gear oil pump control switch is in Auto, the pump will start and run for three minutes after the makeup pump starts.
 - b. The backup gear oil pump will start (if in Auto) when oil pressure reaches 7 psig and will automatically stop when oil pressure reaches 20 psig.
 - c. If the main lube oil pump control switch is in Auto, the pump will start and run for three minutes after the makeup pump starts.
 - d. The backup lube oil pump has no auto start provisions and can be used as a back up for the gear oil system.

(1.0)

- 2.15 Select the <u>CORRECT</u> statement about the Makeup and Purification (1.0) System.
 - a. The block orifice has two bypasses, (MUV-51 and MUV-48) both of which are remotely operated from the control room.
 - b. The letdown line connections to the Decay Heat Removal System are prior to the prefilters and after the makeup filters.
 - c. A temperature element (TE-5) on the letdown line alarms at 130 °F and closes the letdown cooler outlet valves (MUV-40 and MUV-41) at 135 °F to protect the letdown coolers.
 - d. The deborating demineralizer may be operated in parallel or series with the makeup demineralizers.

- a. 3
- b. 6
- c. 9
- d. 12
- 2.17 Which one of the following statements is <u>CORRECT</u> regarding the design of the internals vent valves?
 - a. The vent valves are designed to open in the event of a hot leg break when the pressure differential reaches at least 43 psi.
 - b. The vent values are designed to open in the event of a cold leg break when the pressure differential reaches at least 43 psi.
 - c. In the event of a hot leg break, the valves should begin to open with a ΔP of about 0.3 psid and be fully open at 1.5 psid.
 - d. In the event of a cold leg break, the valves should begin to open with a ΔP of about 0.3 psid and be fully open at 1.5 psid.
- 2.18 Which one of the following is NOT monitored for in the RANGE subsystem of the Post Accident Sampling System?
- (1.0)

(2.0)

- a. High range noble gas
- b. Hydrogen
- c. Particulate
- d. Iodine
- 2.19 On Figure 2.19, show the connections and components between the 480V MCC Safeguards Bus and a typical 120V A.C. Vital Bus. Include the following: Battery chargers, inverters, automatic and manual switches and transformers. It is not necessary to show breakers or to label components (the labels shown - 3A and 3A-1 are for illustration only).

2.20 Select the CORRECT statement concerning the 250/125 VDC System.

- All battery chargers have a 125V DC output even though some DC buses are rated for a 250V DC output.
- Only one battery charger is required to maintain a full charge on its respective bus.
- c. The equalizing charge (137VDC) is below the high alarm setpoint (140 VDC), i.e. when on equalizing charge, a high voltage alarm should not be indicated.
- d. Low battery electrolyte level is indicated by an annunciator alarm in the control room.
- 2.21 Which one of the following FW booster pump parameters is in both the FW booster pump trip logic and the permit light logic? (1.0)
 - a. Lube oil pressure
 - b. Ground overcurrent
 - c. Phase overcurrent
 - d. Bus undervoltage
- 2.22 Select the <u>CORRECT</u> statement concerning the site fire protection systems.
 - a. All areas protected by a fixed water spray system use heat detectors to actuate the alarms.
 - b. To prevent accidental actuation, it requires two detectors actuating to cause operation of the fixed water spray system on the charcoal filter banks.
 - A wet pipe sprinkler system is used to protect the Emergency Diesel Generators.
 - d. Lube oil systems on the reactor coolant pumps, feedwater pumps, and main turbine are protected by a fixed water sray system.

14

2.23 List TwO conditions that will prevent the turbine bypass valves from dumping main steam to the condenser.

(1.0)

2.24 TRUE or FALSE

a.	Maximum flow for one HPI pump is approximately 540 gpm @ 600 psig.	(.5)
b.	LPI pump high flow alarm is about 3400 GPM and runout flow about 4100 GPM.	(.5)

END OF SECTION 2

- 3.0 INSTRUMENTS AND CONTROLS
- 3.01 Which one of the following load limiting conditions and (1.0)corresponding load limit is CORRECT for an Asymmetric Rod?
 - 30%/min to maximum limit of 75%. 8.
 - 30%/min to maximum limit of 60%. b.
 - 20%/min to maximum limit of 75%. с.
 - 20%/min to maximum limit of 60%. d.
- 3.02 If the Diamond or Reactor Demand Stations are in HAND, the feedwater system will accept responsibility for control of Tave only if certain conditions are met. Of the following conditions that will prevent feedwater from controlling Tave, which one is stated CORRECTLY?
 - Either steam generator high level limited. а.
 - Either steam generator low level limited. b.
 - Either steam generator BTU limited. C.
 - Either loop A or B hand/auto station in manual. d. .
- 3.03 Which one of the following statements concerning the Control Rod Drive Position Indication System is CORRECT?
 - The 0% switch is located 1.5 inches below the in-limit switch. a.,
 - The 100% switch is located 1.5 inches above the out-limit switch. b.
 - The first rod in any group to reach the out-limit switch will C. stop further travel of all rods in that group.
 - d. A key switch in the control room can bypass the group 7 out-limit of 91.4% withdrawn.

3.04 Which of the following Decay Heat System Interlocks is CORRECT?

- Separate RC pressure transmitters will shut DHV-3 and DHV-4 а. at approximately 284 psig.
- Separate RC pressure transmitters will shut DHV-3, DHV-4 and b. C'V-41 at approximately 284 psig.
- A single RC pressure transmitter will shut DHV-3 and DHV-4 at с. approximately 284 psig.
- A single RC pressure transmitter will shut DHV-3, DHV-4. d. and DHV-41 at approximately 284 psig.

16

(25.0)

(1.0)

(1.0)

- 3.05 Select the CORRECT statement concerning the interlocks on the low load feedwater valves.
 - Low load feedwater control valves begin to ramp open when the respective low load block valves reach their 80% open position.
 - Low load feedwater block valves open when the main feedwater b. block valves shut.
 - Low load feedwater block valves shut when the low load C. control valves reach the 80% closed position.
 - Low load feedwater control valves begin to ramp open when the d. . respective startup control valves open to their approximate 90% open position.
- 3.06 Which of the following statements is INCORRECT regarding bypassing the Steam Line Rupture Matrix?
 - During a normal cooldown, when OTSG pressure drops below a. 725 psig, the matrix can be bypassed by depressing two bypass pushbuttons on the main control board.
 - b. During a normal cooldown, the four maintenance bypass key switches must be utilized before the operator can depress the two bypass pushbuttons.
 - Following an actuation, if either the < 725 or < 600 C. pressure switch has actuated, a bypass permit will be present.
 - Following an actuation, in addition to a bypass permit, d. the operator must depress the two main control board push buttons in order to bypass the matrix.
- 3.07 Which one of the following statements is CORRECT concerning the reset pushbuttons for the Steam Line Rupture Matrix System.?
 - The reset pushbutton will reset the actuation, not the а. bypass.
 - If the reset pushbuttons are pressed when the Matrix is 2. bypassed below 600 psig, the Matrix will actuate.
 - 3. During heatup, the reset pushbuttons must be depressed in order to reset the Matrix once OTSG pressure increases to > 725 psig.
 - 4. If the Maintenance Bypass Keys are in "Maint." position, the Reset Pushbuttons have no affect.

17

(1.0)

(1.0)

- 3.08 Which of the following statements is <u>CORRECT</u> concerning the Intermediate Range Compensated Ionization Chambers?
 - a. The detectors are surrounded by four inches of lead for shielding fast neutron radiation.
 - b. The boron lined chamber is sensitive to neutron and gamma radiation while the unlined chamber is sensitive only to gamma rays.
 - c. The compensated ion chamber is designed to remove the gamma signal only at high reactor power levels.
 - Undercompensation will cause loss of some neutron current as well as blocking gamma current.
- 3.09 Which of the following statements is <u>CORRECT</u> concerning the operation of a typical Atmospheric Radiation Monitor (for example, RM-A1 or A2)?
 - a. The air sampled will pass through a fixed particulate filter. The particulate buildup on the filter is then measured by a GM detector which outputs the measurement in CPM.
 - b. After passage through the particulate filter the air is drawn into a gas sampler which detects gaseous activity with a scintillation detector.
 - c. A gamma scintillation detector is used to measure the iodine activity on a fixed iodine filter (activated charcoal).
 - d. The flow path of the sampled air through RM-A2 is the particulate filter, the gas sampler, followed by the iodine filter.
- 3.10 Select the <u>CORRECT</u> statement concerning the Area Radiation Monitoring Subsystem.
 - a. All of the channels, RM-G1 through RM-G19, use G-M detectors.
 - All of the channels, RM-G1 through RM-G19 use a Sr-90 check source.
 - c. To check the WARNING and HIGH setpoints you must first turn the Alarm Reset/Operate/Check Source Switch to the Alarm Reset position.
 - d. To set the WARNING or HIGH alarms you must first turn the Warning/Operate/High switch to either the WARNING or HIGH position then adjust the appropriate internally mounted Alarm setting control shaft.

(1.0)

(1.0)

- 3.11 Adjustments are made to the Power Range Nuclear Instruments as determined by Heat Balances. Power gain adjustments are made to which one of the following modules?
 - a. Linear amplifer
 - b. Bistable
 - c. Summing amplifier
 - d. Difference amplifier
- 3.12 Which of the following is <u>CORRECT</u> concerning the Rod Withdrawal (1.0) interlocks from the Source and Intermediate Channels?
 - a. A SUR signal from the source range halts rod withdrawl when the SUR exceeds 2 DPM. This is reset at 1 DPM.
 - b. A SUR signal from the intermediate range halts rod withdrawl when the SUR exceeds 2 DPM. This is reset at 1 DPM.
 - c. At > 10-* amps, NI-3 or NI-4 will bypass the source range rod withdrawl prohibit.
 - d. At > 10-* amps, NI-3 and NI-4 will bypass the source range rod withdrawl prohibit.
- 3.13 When synchronzing the generator to the grid, OP-203, "Plant Startup" directs the operator to regulate turbine speed to slowly rotate the synchroscope in the fast (clockwise) direction. Which choice below <u>CORRECTLY</u> gives the <u>two</u> parameters that the synchroscope is indicating?

(1.0)

- a. Current and voltage differences
- b. Current and frequency differences
- c. Voltage and phase differences
- d. Frequency and phase differences

- 3.14 Which one of the following statements is <u>CORRECT</u> concerning the paralleling of electrical systems?
 - Although it is desireable to have speed and phase position matched, it is much more important to have voltages matched.
 - b. If voltages are not matched at the time the synchronizing switch is closed, there will be VAR flow from the lower voltage source to the higher one.
 - c. If the incoming machine is at synchronous speed but out of phase with the running when the breaker is closed, heavy currents will flow to either accelerate or retard the incoming machine.
 - d. If the incoming machine is in phase but slightly faster than synchronous speed when paralleled, the system will tend to speed up the incoming machine to synchronous speed.
- 3.15 Select the <u>CORRECT</u> statement with regard to speed control (Governor) of the Emergency Diesel Generators.
 - a. As a general rule, D-G units running alone should have the SPEED DROOP control set on D (zero).
 - b. The synchronizer motor, mounted on top of the governor, allows the operator to match the voltage of the D-G with running voltage before synchronizing to the system.
 - c. The LOAD LIMIT control may be used for shutting down the diesel by turning the LOAD LIMIT control to zero.
 - d. The SYNC INDICATOR, located directly below the SYNCHRONIZER control indicates if the D-G is in phase with the system.
- 3.16 When the RPS is in Shutdown Bypass, which one of the following is (1.0) CORRECT?
 - a. A high pressure trip of 1720 psig is administratively imposed and an overpower trip of 5% automatically imposed.
 - b. The high pressure trip at 2355 psig is bypassed.
 - c. The four trips bypassed are high temperature, low pressure, variable low pressure and flux/delta flux/flow.
 - d. The RCP Power Monitor trip is bypassed.

20

(1.0)

- 3.17 Which one of the following statements is <u>CORRECT</u> concerning the (1.0) Overspeed Protection Control (OPC) the main Turbine? Assume the OPC is in the "In Service" position.
 - a. At 103%, only the governor and interceptor valves will close.
 - At 103%, all valves Throttle, governor, reheat and interceptor, will close.
 - c. At 111%, the OPC will close only the governor and interceptor valves will close.
 - d. At 111%, the OPC will close all valves throttle, governor, reheat and interceptor, will close.
- 3.18 Cross-Tie Blocking Interlocks are provided to prevent paralleling of both D-G. Refer to Figure 3.18 and select the <u>CORRECT</u> statement. (1.0)
 - a. If breakers 3209, 3210 and 3205 are all closed, the amber lamp (Block Closing Actuated 3206) will be lit, thus permitting breaker 3206 to be closed.
 - b. If breakers 3209 and (i) 3205 and 3206, or (ii) 3207 and 3208, or (iii) 3211 and 3212 are closed, the amber lamp (DG Parallel Block Act) will be lit and breaker 3210 can not be closed.
 - c. If the amber lamp (Block Closing Actuated 3208) is lit, it means breaker 3208 cannot be closed because the 3B bus is already being fed from the 3A bus (through 3207) and no Diesels are running.
 - d. If both Diesels are feeding their respective buses (3209 closed and 3210 closed) all Block Closing Actuated Lamps will be lit.
- 3.19 Select the <u>INCORRECT</u> statement concerning the Pressurizer Heater (1.0) controls.
 - a. Heater bank A, B and C use modulating control (SCRs), while banks D and E are strictly on/off control.
 - b. If pressurizer level decreases to less than 30 inches, all heater banks will be de-energized.
 - c. Bank C has four groups of heaters which are sequenced on to prevent two groups in the same bank from coming on simultaneously.
 - d. Banks A and B contain only one group of heaters, have no staggered turn on, and are both fully on at 2135 psig.

3.20 Which of the following is CORRECT concerning OTSG level instruments? (1.0)

- a. The startup range (0-250") and the Operate Range (0-100%) share the same upper and lower level instrument taps.
- b. If a startup level transmitter fails low while at power, there will be no noticeable effect on the ICS (all subsystems in auto).
- c. The operate range is temperature compensated by the lower downcomer temperature.
- d. The startup range has a low level input to the ICS and is temperature compensated.
- 3.21 Which one of the following is <u>CORRECT</u> concerning the "Air Fail (1.0) Reset" pushbuttons for MUV-16, 31 and 51?
 - a. The pushbutton only indicates loss of air to the associated valve E/P controller.
 - b. The pushbutton indicates loss of air to E/P controllers for MUV-16 and 51 and also loss of air to the valve positioner for MUV-31.
 - c. On loss of air supply, the solenoid valve supplying air to the air lock valve will de-energize, causing the affected valve (16, 31 or 51) to close.
 - d. When air pressure has increased, depressing the air fail reset pushbutton will unlock MUV-16, 31 or 51.
- 3.22 List five of the seven interlocks required to start a Reactor (2.0) Coolant pump. Include setpoints where applicable.
- 3.23 a. What two control room indications of abnormal RCP operation, (1.0) require the pump to be shutdown immediately?
 - b. What control room indication of abnormal RCP operation, (1.0) requires power level to be reduced to 72%, at 30%/min, then tripping the affected RCP?

END OF SECTION 3

4.01 Match the Condition with the appropriate Radiation (2.5)

Radiation Monitor Condition RM-A1 Control complex ventilation 1. а. return air has exceeded setpoint on gas or iodine/particulate channels. RM-A2 Possible spent fuel radiob. 2. activity leak. с. RM-A3 3. Reactor Building purge duct exhaust to the atmosphere has exceeded setpoint on gas channel. d. RM-A4 4. Auxiliary Building ventilation exhaust to the atmosphere has exceeded setpoint on gas channel. RM-A5 Possible waste gas tank or piping е. 5. leak. 4.02 List your Immediate Actions in response to an alarm from RM-L2. (0.5)

- 4.03 Which of the following is NOT an Immediate Action required in AP-330, "Loss of Nuclear Services Water". (1.0)
 - a. Trip all NSCCCW pumps: SWP-A, SWP-B, SWP-C, SWP-2A, SWP-2B.
 - b. Establish OTSG levels with emergency feedwater pumps.
 - c. Trip reactor AND refer to AP-580
 - d. Close: MUV-50 and MUV-51

4.04 Immediate Action step 3 of AP-380, "Engineered Safeguards System Actuation," states the following:

> Ensure HPI trains start ° 2 HPI pumps ° SWPs

· RWPs

Step 6 of the same procedure states:

Ensure LPI trains start ° DHPs ° DCPs ° RWPs

Which statement is CORRECT concerning the "RWPs" referred to in AP-380?

(1.0)

a. The RWPs in step 3 and step 6 are the same. The verification is repeated to ensure it is accomplished.

- b. The RWPs in Step 3 refer to RWP-3A and 3B; the RWPs in Step 6 refer to RWP-2A and 2B.
- c. Step 3 refers to RWP-1, 2A and 2B while step 6 refers only to RWP-2A and 2B.
- d. In Step 3, the RWPs are the Nuclear Services (Emergency) Seawater Pumps while in Step 6, RWPs refer to the Decay Heat (Emergency) Seawater Pumps.
- 4.05 An Immediate Action of AP-380, "Engineered Safeguards System Actuation," is to:

"Place RB sump pump in PULL-TO-LOCK":

• WDP-2A • WDP-2B

What is the Remedial Action associated with this step?

When the following conditions exist:

· High Pressure

- Adequate subcooling margin; (a) $^{\circ}F$ when > 1500 psig (b) $^{\circ}F$ when \leq 1500 psig

- PZR level ≥ (c)"
- OTSG heat removal

OR

· Low pressure

 LPI flow ≥ (d) GPM in each train and stable for ≥ (e) minutes, Then STOP HPI.

- If TC < (f) °F, then refer to EP-220

Required Cooldown Rates

Normal $\leq (g)$ °F/hr Natural Circulation (h) °F/hr

MUV-53 and MUV-257 (recirc values) must be open when total HPI flow \leq (i) GPM

Establish required OTSG level

 Any RCP operating 	<u>(j)</u> "
 No RCP's, adequate subcooling margin 	(k) %
Less than adequate subcooling margin	
<pre></pre>	(1) % (m) %

If subcooling margin < (n), then go to EP-290.

^o When RC Press ≥ (o) psig, then open PORV.

4.07 Select the <u>INCORRECT</u> statement for the following Limit and Precaution as contained in OP-404, Decay Heat Removal System.

"In order to assure that redundant or diverse DHR methods are available during all modes of operation, the following requirements must be met prior to removing a DH train from service."

- a. The LPI pump suction valves from BWST (DHV-34 and DHV-35) will be closed and the breakers racked out during periods when the BWST is empty and a BAST is being utilized for emergency boration control.
- b. No more than one DH train shall be removed from service at any one time.
- c. The requirements for voluntarily entering a degraded mode of operation listed in CP-115 have been met.
- d. The refueling transfer canal is flooded, or at least one DTSG is available for cooling either by forced flow or natural circulation, or there is a readily accessible source of borated water during periods of low DH load and the plant is in Mode 5 or 6.
- 4.08 Which of the following statements are <u>CORRECT</u> concerning DH pump operation in the recirculation mode?

(1.0)

(1.0)

- a. As long as the minimum flow rate of 80 gpm is not violated, DH pump operation in the recirculation mode is unrestricted.
- b. In no event shall the DH pump operate in the recirculation mode continuously for 24 hours or greater than 72 hours per month.
- c. DH pump operation in the recirculation mode shall be timed and an entry made in the Control Center notebook.
- d. The maximum flow from the DH system to the MUP is restricted to 140 gpm when the DH pumps are in the recirculation mode.
- 4.09 Select the <u>CORRECT</u> statement concerning the Nuclear Services Cooling System (as per OP-408).
 - a. When SW system pressure drops to 110 psig, SWP-1B automatically starts.
 - b. When RW system pressure drops to 110 psig, RWP-2B automatically starts.
 - c. When either emergency SW pump starts, the normal pump will trip in 30 seconds.
 - d. When either emergency RW pump starts, the normal pump will trip in 30 seconds.

- 4.10 Where would you expect to find the correct procedure to transfer cooling water for the 3A and 3C makeup pumps from the DC System to the SW System?
 - a. OP-402, Makeup and Purification System
 - b. OP-705, Emergency Power-DC System
 - c. OP-408, Nuclear Services Cooling System
 - d. All three of the above procedures contain these instructions.
- 4.11 Select the <u>CORRECT</u> statement concerning transfer of Non-Nuclear Instrumentation signals to the ICS (as per OP-501).
 - a. Disconnecting the RC flow signal source from the RPS cabinets has no affect on the ICS.
 - b. If operating signal source malfunctions make signal source transfer necessary, the transfer to another source should be done immediately regardless of ICS operating mode.
 - c. When changing narrow range RC pressure signals, the PORV (RCV-11) should be open, with the heaters and spray valves in manual.
 - d. Buffer cards or buffer card modules may be replaced while leaving the affected controllers in auto.
- 4.12 Select the <u>CORRECT</u> Limit and Precaution concerning the Control (1.0) Rod Drive System (as per OP-502).
 - a. Maximum stator temperature is 200°F with CRD energized.
 - Minimum reactor power for placing the ICS reactor demand station in auto is 5%.
 - c. If a Safety Group is backed away from its "Out-limit" the Diamond must be in auto to enable Dilute Signal #1.
 - d. The "Auto" mode cannot be selected with "Sequence Inhibit" indicated.

(1.0)

- 4.13 Which of the following statements is <u>CORRECT</u> concerning the temperature of the cooling water supplied to the CRD's?
 - Maximum allowable temperature is 180°F, there is no minimum temperature.
 - b. Maximum allowable temperature is 180°F, the minimum is 10°F above the dew point at the 32 head.
 - Maximum allowable temperature is 120°F, there is no minimum temperature.
 - d. Maximum allowable temperature is 120°F, the minimum is 10°F above the dew point at the RV head.
- 4.14 Which of the following statements is <u>CORRECT</u> concerning the ICS Limits and Precautions?
 - a. If a feedwater cross-limit occurs while controlling the reactor from either the reactor demand or Diamond station, <u>increase</u> reactor power to be compatible with total feedwater flow.
 - b. If a feedwater cross-limit occurs while controlling the reactor from either the reactor demand or Diamond stations, <u>decrease</u> reactor power to be compatible with total feedwater flow.
 - c. If a reactor cross-limit occurs while controlling both feedwater demand control stations in hand, <u>reduce</u> the reactor power to be compatible with total feedwater flow.
 - d. If a reactor cross-limit occurs while controlling both feedwater demand control stations in hand, increase the reactor power to be compatible with total feedwater flow.
- 4.15 Which of the following statements is <u>CORRECT</u> concerning operation of the turbine bypass valves?
 - a. If automatic operation of turbine bypass valves is desired when CRD breakers are open, set turbine header pressure controller to 27% to compensate for +125 psig reactor trip bias.
 - b. If automatic operation of turbine bypass valves is desired when CRD breakers are open, the ±50 psig throttle pressure error logic must be bypassed.
 - c. If automatic operation of turbine bypass valves is desired when CRD breakers are open, the ULD must be less than 15% to reset the +50 psig bias.
 - Automatic operation of turbine bypass valves is not possible without first resetting the CRD trip breakers.

28

(1.0)

(1.0)

- 4.16 In order to startup a main feedwater pump, (Section 11.3 of OP-605) you must depress and hold the "Speed Signal Bypass" push button. <u>After</u> which of the following steps can you release the "Speed Signal Bypass" without causing the FW Pump Turbine to Trip? (1.0)
 - Verify all white "Permit" lights and speed control at "minimum" with green light on governor speed control switch.
 - b. Place "Trip/Reset" switch in "Reset" position
 - c. Verify the following occurs:

LP Stop Open HP Stop Open

- d. Verify turbine speed greater than 100 RPM
- 4.17 During all evolutions involving the makeup pumps, verify operable flow paths for each pump to be operated. Loss of flow through a makeup pump will destroy the pump within approximately: (1.0)
 - a. 3 seconds
 - b. 15 seconds
 - c. 1 minute
 - d. 3 minutes
- 4.18 Which of the following choices are the correct fillins for these statements?

"The maximum weekly exposure is (1). A/The (2) may authorize exposures to (3) by use of Form 912801, Authorization to Exceed Radiation Exposure Limits."

(1.0)

- a. (1) 600 mrem
 (2) Nuclear Plant Manager
 (3) 1250 mrem
- b. (1) 300 mrem
 (2) Nuclear Plant Manager
 (3) 1250 mrem
- c. (1) 300 mrem
 - (2) ChemRad Supervisor
 - (3) 600 mrem
- d. (1) 600 mrem
 - (2) ChemRad Supervisor
 - (3) 2 Rem

4.19 Which of the following statements is <u>CORRECT</u> concerning RWP's and SRWP's?

a. SRWP's are generally required for non-routine work.

- b. For emergency, short-term or special situations, the continuous presence of a qualified ChemRad representative may meet the RWP requirement.
- c. SRWPs may be issued when periodic radiation surveys show that individuals will not encounter a dose rate in excess of 100 mrem/hr.
- d. The RWP will list all equipment allowed to be taken into and removed from a designated area.
- 4.20 Select the <u>CORRECT</u> statement concerning entrance into a Contaminated Area.

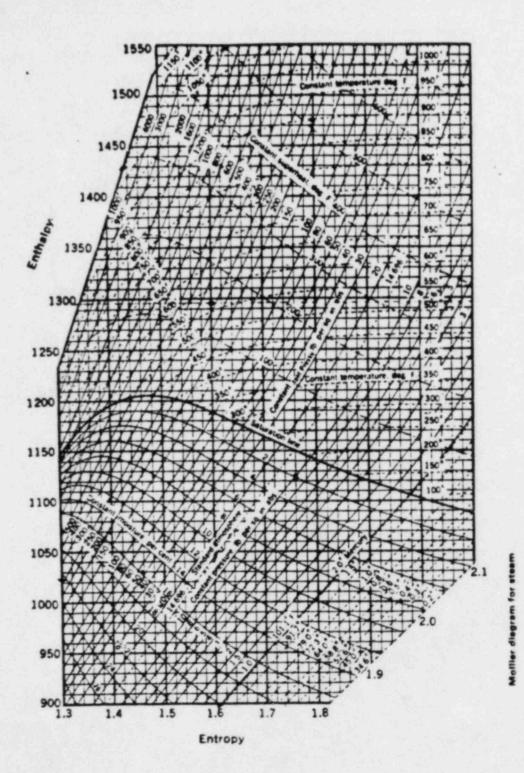
(1.0)

(1.0)

- a. Only rubber gloves are allowed in contaminated areas.
- b. Rubber or plastic gloves used in wet contaminated areas should be taped to the inside of a plastic suit, if one is being worn.
- c. Personnel dosimetry and identification badges should be worn inside protective clothing such that they will not fall off and/or become contaminated.
- d. In cases of routine or special maintenance that involves high contamination levels, a plastic suit will be required.
- 4.21 List your Immediate Actions for AP-990, "Shutdown From Outside Control Room"

4.22 TRUE or FALSE

(1.5)


(0.5)

The first Immediate Action of AP-580, RPS Actuation, is to ensure group 1-7 rods are inserted. The Remedial Action for this step directs you to EP-140, Emergency Reactivity Control.

END OF SECTION 4

END OF EXAM

0 1/2 11 E · mc² KE . 1/2 mv² · · (V+ - 1)/1 A = Ape -+ t A . A:4 PE . mgn ¥. . ¥. . et # * */t 1 . En2/11/2 . 0.693/11/2 1/2eff . [(t1/2)(t)] W = v 1P A . . . D2 [(t1/2) + (t,)] 4 . 931 Am m = VavAc I . I .e -Lx Q = mah Q = mCpat I = I e - ux T SAU . C I . 10 10-X/T/L Pur = W, ah TVL = 1.3/u $P = P_0 losur(t)$ HVL = -0.693/w P = Poet/T SUR = 26.06/T SCR = S/(1 - Keff) CR = S/(1 - Keffx) SUR = 260/1" + (8 - 0)T CR1(1 - Keff1) = CR2(1 - Keff2) T = (1*/0) + [(8 - 0) Io] M = 1/(1 - Keff) = CR1/CR5 T = 4/(p - 8) M = (1 - Keffo)/(1 - Keff1) T = (8 - 0)/(10) SDM = (1 - Keff)/Keff 1 = 10 seconds p = (Keff-1)/Keff = &Keff/Keff I = 0.1 seconds -1 p = [(1=/(T Keff)] + [Beff/(1 + IT)] 1101 = 1202 $P = (I \circ V) / (3 \times 10^{10})$ 11d1 2 = 12d2 2 I . ch R/hr = (0.5 CE)/d²(meters) R/hr = 6 CE/d² (feet) Water Parameters Miscellaneous Conversions 1 gal. = 8.345 lbm. 1 curie = 3.7 x 10¹⁰aps 1 ga]. = 3.78 liters 1 kg = 2.21 10m 1 ft³ = 7.48 gal. Density = 62.4 lbm/ft³ 1 mp = 2.54 x 10³ Btu/nr 1 mw = 3.41 x 10⁶ Btu/nr Density = 1 gm/cm³ 1in = 2.54 cm Heat of vaporization = 970 Bts/1bm •F = 9/5°C + 32 Heat of fusion = 144 Btu/lom *C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg. 1 ft. H₂O = 0.4335 lbf/in. 1 BTU = 778 ft-1bf e = 2.718

Ab.	Tamp	Temp Specific			Enthalp	y	Entropy		
Para	•F	Set liquid	Sa: vapor	Sa: liquid	Evap	Sa: vapor	Sa: hquid	Ever	Sat vapor
,	1	*7 .	•,	h ,	*,	×,	\$,	1.	1,
1.0	101.74	0.01614	333.6	69 70	1036.3	1106 0	0 1326	1.8456	1.9782
2.0	126.08	0.01623	173.73	93 99	1022.2	1116 2	0.1749	1.7451	1.9200
3.0	141.48	0.016.30	118 71	109.37	1013.2	1122.6	0.2008	1.6855	1.8863
4.0	152.97	0.01636	90.63	120.86	1006.4	1127.3	0.2198	1.6427	1.8625
5.0	162.24	0.01640	73.52	130 13	1001.0	1131.1	0.2347	2.6094	1.8441
6.0	170.06	0.01645	61.98	137.96	996.2	1134 2	0.2472		1
7.0	176.85	0.01649	53.64	144.76	992.1	1136.9	0.2581	1.5820	1.8292
8.0	182.86	0.01653	47.34	150.79	988.5	11139.3	0.2581	1.5586	1.8167
9.0	188.28	0.01656	42.40	156 22	985.2	1141.4	0.2759	1.5383	1.8057
10	193.21	0.01659	38 42	161.17	982.1	1143.3	0.2835	1.5203	1.7962
14.696	212.00	0.01672	26 80	180.07	970.3	1150.4			
15	213.03	0.01672	26.29	181.11	969.7	1150.8	0.3120	1.4446	1.7566
20	227.96	0.01683	20.089	196.16	960.1	1156.3	0.3135	1.4415	1.7549
25	240.07	0.01692	16.303	208.42	952.1	1160.6	0.3356	1.3962	1.7319
30	250.33	0.01701	13.746	218.82	945.3	1164.1	0.3533	1.3606	1.7139
35	259.28	0.01708	11.898	227.91				1.3313	1.6993
40	267.25	0.01715	10.498		939.2	1167.1	0.3807	1.3063	1.6870
45	274.44	0.01721	9.401	236.03 243.36	933.7	1169.7	0.3919	1.2844	1.6763
50	281.01	0.01727	8.515		928.6	1172.0	0.4019	1.2650	1.6669
55	287.07	0.01732	7.787	250.09 256.30	924.0 919.6	1174.1	0.4110	1.2474	1.6585
60	292 71	0.01738				1175.9	0.4193	1.2316	1.6504
65	297.97	0.01743	7.175	262.09	915.5	1177.6	0.4270	1.2168	1.6438
70	302.92	0.01748	6.655	267.50	911.6	1179.1	0 4342	1.2032	1.6374
75	307.60	0.01753	6.206	272.61	907.9	1180.6	0.4409	1.1906	1.6315
80	312.03		5.816	277.43	904.5	1181.9	0.4472	1.1787	1.6259
		0.01757	5.472	282.02	901.1	1183.1	0.4531	1.1676	1.6207
85	316.25	0.01761	5.168	286.39	897.8	1184.2	0 4587	1.1571	1.6:58
90	320.27	0.01766	4 896	290.56	894 7	1185.3	0 4641	1.1471	1.6112
95	324.12	0.01770	4.652	294.56	891.7	1186.2	0 4692	1.1376	1.6068
100	327.81	0.01774	4.432	298 40	388 8	1187.2	0.4740	1.1286	1.6026
110	334.77	0.01782	4.049	305.66	883.2	1188.9	0.4832	1.1117	1.5948

TABLE D-1a* Properties of Dry Saturated Steam * Pressure

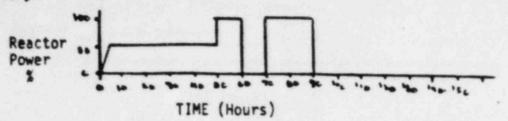
Ab		Specific	volume	1.1.1	Enthalp		Entropy			
press .	Temp.	Sat Inquid	Sal vapor	Sat liquid	Ever	Sai vapor	Sa: Inquid	tvap	Sut vapor	
,	1	•,		۸,	A.,	۸,	*1	3.81	1, .	
120	341.25	0 01 789	3 721	312 44	877.9	1190 4	0 4916	1 096:	1.5878	
130	347 32	001796	3 455	318.81	872 9	11917	0 4995	1.0617	1.5812	
140	353.02	0.01802	3.220	324.82	868.2	11930	0.5049	1.068.	1.5751	
150	358 42	0.01809	3.015	330.51	863.6	1194 1	0 5138	1.0556	1.5694	
160	363.53	0.01815	2.834	335.93	859.2	1195.1	0 5204	1.0436	1.5640	
170	368 41	0.01822	2.675	341.09	849	11960	0.5266	1.0324	1.5590	
180	373.06	0.01827	2'532	346.03	850.8	1196.9	0.5325	1.0217	1.5542	
190	377.51	0.01933	2 404	350.79	846.8	1197.6	0.5381	1.0116	1.5497	
200	381.79	0.01839	2 288	355.36	843.0	1198 4	0.5435	1.0018	1.5453	
250	400.95	0.01865	1.8438	376.00	825.1	1201.1	0.5675	0.9588	1.5263	
300	417.33	0.01890	1.5433	393.84	809.0	1202.8	0.5879	0.9225	1.5104	
350	431.72	0.01913	1.3260	409.69	794 2	1203.9	0.6056	0.8910	1.4966	
400	444 59	0.0193	1.1613	424.0	780.5	1204.5	0.6214	0.8630	1.4844	
450	456.28	0.0195	1.0320	437.2	767.4	1204.6	0.6356	0.8378	1.4734	
500	467.01	0.0197	0.9278	449.4	755.0	1204.4	0.6487	0.8147	1.4634	
550	476.94	0.0199	0.8424	460.8	743.1	1203.9	0.6605	0.7934	1.4542	
600	486.21	0.0201	0.7698	471.6	731.6	1203.2	0.6720	0 7734	1.4454	
650	494.90	0.0203	0.7083	481.8	720.5	1202.3	0.6826	0.7548	1.4374	
700	503.10	0.0205	0.6554	491.5	709 7	1201.2	0.6925	0.7371	1.4296	
750	510.86	0.0207	0.6092	500.8	699.2	1200.0	0 7019	0.7204	1.4223	
800	518.23	0 0209	0.5687	509.7	688.9	1198.6	0.7108	0.7045	1.4153	
850	525.26	0.0210	0.5327	518.3	678.8	1197.1	0.7194	0.6891	1.4085	
900	531.98	0.0212	0.5006	526.6	668.8	1195.4	0.7275	0.6744	1.4020	
950	538 43	0.0214	0.4717	534 6	659 1	11937	0.7355	0.6602	1.3957	
1000	544.61	0.0216	0.4456	542.4	649.4	1191.8	0.7430	0.6467	1.3897	
1100	556.31	0.0220	0 4001	557.4	630 4	1187.7	0.7575	0.6205	1.3780	
1200	567.22	0.0223	0.3619	571.7	611.7	1183.4	0.7711	0.5956	1.3007	
1300	577 46	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.3293	585.4	593.2	1178.6	0.7840	0.5719	1.3559	
1400	587.10		0.3012	598.7	574 7	11734	0.7963	0.5491	1.3454	
1500	596.23		0.2765	611.6	556.3	1167.9	0.8082	0.5269	1.3351	
2000	635.82	0.0257	0 1878	671.7	463.4	1135.1	0.8619	0.4230	1.2849	
2500	668 13		0.1307		360.5	1091.1	0.9126	0.3197	1.232	
3000	695 36		0.0858		217.8	1020.3	0.9731	0.1885	1.161	
3206			0.0503		0	902.7	1.0580	0	1.0580	

TABLE D-1a Properties of Dry Saturated Steam (continued) Pressure

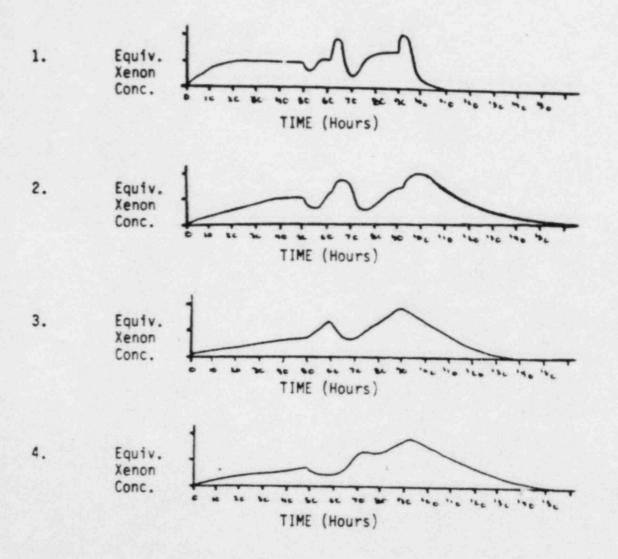
T		Specific	volume	E	nihalpy		Entropy			
•F	Ats press. psia	Sa: hquid	Sa: vapor	Sat	Evap	Sal vapor	Sa: liquid	Evap	Sa: vapor	
	,	•	1,		**	*,	3,	1.	4	
		0.01602	330	0.00	1075.8	1075.8	0.0000	2 1877	2 1877	
32	0.08854	0.01602	2947	3.02	1074.1	1077.1	0.0061	2.1709	2 1770	
35	0.09995	0.01602	2444	8.05	1071.3	1079.3	0 0162	2.1435	2 1597	
40	0 12170	0.01602	2036 4	13.06	1068 4	1081.5	0.0262	2.1167	2.1429	
45	0.14752	0.01603	1703.2	18.07	1065.6	1083.7	0.0361	2.0903	2.1264	
50	0.17811	0.01003					0.0555	2.0393	2 0948	
60	0.2563	0.01604	1206 7	28.06	1059.9	1088.0	0.0745	1.9902	2.0647	
70	0.3631	0.01606	867.9	38.04	1054.3	1092.3		1.9428	2.0360	
80	0.5069	0.01608	633 1	48.02	1048.6	1096.6	0.0932	1.8972	2.0087	
90	0.6982	0.01610	468.0	57.99	1042.9	1100.9	0.1115	1.8531	1.9826	
100	0.9492	0.01613	3150.4	67.97	1037.2	1105.2	0.1295	1.8231		
	1.2748	0.01617	265.4	77.94	1031.6	1109.5	0.1417	1.8106	1.9577	
110		0.01620	203.27	87.92	1025.8	1113.7	0.1645	1.7694	1.9339	
120	1.6924	0.01625	157.34	97.90	1020.0	1117.9	0.1816	1.7296	1.9112	
130	2.2225	0.01629	123.01	107.89	1014.1	1122.0	0.1984	1.6910	1.8894	
140	2.8886	0.01634	97.07	117.89	1008.2	1126.1	0.2149	1.6537	1.8685	
150	3.718					1130.2	0.2311	1.6174	1.8485	
160	4.741	0.01639	77.29	127.89	1002.3		0.2472	1.5822	1.8293	
170	5.992	0.01645	62.06	137.90	996.3	1134.2	0.2630	1.5480	1.8105	
180	7.510	0.01651	50.23	147.92	990.2	1138.1		1.5147	1.793	
190	9.339	0.01657	40.96	157.95	984.1	1142.0		1.4824	1.776	
200	11.526	0.01663	33.64	167.99	977.9	1145.9	0.2938	1.1.1		
210	14.123	0.01670	27.82	178.05	971.6	1149.7		1.4508	1.759	
212	14.696	0.01672		180.07	970.3	1150 4		1.4446	1.756	
220	17.186	0.01677		188.13	965.2	1153.4			1.744	
230	20.780	0.01684		198.23	958.8	1157.0	0.3387	1.3901	1.728	
240	24 969	0.01692	Distance in the second s	208.34	952.2	1160.5	0.3531	1.3609	1.714	
				1000	1 and	1164.0	0.3675	1.3323	1.699	
250	29.825	0.01700	The second se							
260	35.429	0.01709				1				
270	41.858	0.01717			and the second second					
280	49.203	0.01726		and the second second second						
290	57.556	0.0173	7.461	259.31						
300	67.013	0.0174	6.466							
310		0.0175		279.9:			the second se			
320		0.0176		1 290.28			The second se			
330		0.0177		300.68		Contraction of the second second	the same to be and the			
340		0.0178			3 879.	0 1190.	1 0.4900	0 1.099	1.589	

TABLE D-1b Properties of Dry Saturated Steam (continued) Temperature

Temp	A.	Specific	volume		Enthalpy		Entropy			
*F	Press	Sa: hquid	Sal vapor	Sai hquid	Ever	Sa: vapor	Sa: hquid	Ever	Sa: vapor	
1	r	•	.,	۸,	A	*,			1.	
350	134.63	001799	3.342	321 63	870.7	1192.3	0.5029	1.0754	1.578	
360	153.04	0.01811	2 957	332 18	852.2	1194 4	0 5158	1.0419	1.567	
370	173.37	001823	2 625	34: 79	853.4	1196 3	0 5266	1 0267	1.5573	
380	195.77	0.01836	2.335	353 45	844 6	11981	0.5413	1.0059	1.5471	
390	220.37	0.01850	2.0836	364.17	835.4	1199.6	0.5539	0.9832	1.5371	
400	247.31	0.01864	1.8633	374.97	826.0	1201.0	0.5664	0.9608	1.5272	
410	276.75	0.01878	1.6700	385.83	816.3	1202.1	0.5788	0.9386	1.5174	
420	308.83	0.01894	1.5000	396 77	806.3	1203.1	0.5912	0.9166	1.507	
430	343.72	0.01910	1.3499	407.79	796.0	1203.8	0.6035	0.8947	1 498:	
440	381.59	0.01926	1.2171	418.90	785 4	1204.3	0.6158	0.8730	1.488	
450	422.6	0.0194	1.0993	430.1	774.5	1204.6	0.6280	0.8513	1.4793	
460	466.9	0.0196	0.9944	441.4	763.2	1204.6	0.640:	0.8298	1.4700	
470	514.7	0.0198	0.9009	452.8	751.5	1204.3	0.6523	0.8083	1.4600	
480	566.1	0.0200	0.8172	464.4	739.4	1203 7	0.6645	0.7868	1.451	
490	621.4	0.0202	0.7423	476.0	726.8	1202.8	0.6766	0.7653	1.4419	
500	680.8	0.0204	0 6749	487.8	713.9	1201.7	0.6887	0.7438	1.432	
520	812.4	0.0209	0.5594	511.9	686.4	1198.2	0.7130	0.7006	1.4130	
540	962.5	0.0215	0.4649	536.6	656 6	1193.2	0.7374	0.6568	1.394	
560	1133.1	0.0221	0.3868	562.2	624.2	1186 4	0.7621	0.6121	1.3742	
580	1325.8	0.0228	0.3217	588.9	588 4	1177.3	0 7872	0.5659	1.3533	
600	1542.9	0.0236	0.2668	610.0	548.5	1165.5	0.8131	0.5176	1.330	
620	1786.6	0.0247	0.2201	646 7	503.6	1150.3	0.8398	0.4664	1.306	
640	2059.7	0 0 2 6 0	0.1798	678.6	452.0	1130.5	0.8679	0.4110	1.2789	
660	2365.4	0.0278	0.1442	714.2	390 2	1104 4	0.8987	0.3485	1.247;	
680	2708.1	0.0305	0.1115	757.3	309.9	1067.2	0.9351	0.2719	1.207	
700	3093 7	0.0369	0.0761	823.3	172.1	995 4	0.9905	0.1484	1.1389	
705 4	3206 2	0 0 503	0.0503	902.7	0	9027	1.0580	0	1.0580	


TABLE D-1b Properties of Dry Saturated Steam (continued) Temperature

Abs press.		Tempersiure. 4											
(bat temp . +)	200	300	400	500	600	100	800	900	1000	1190	1300	1402	
	392.6 1150.4	452.3 1195.8	512.0 1241.7	571.6 1288.3	631.2 1335.7	690.8 1363.8	750 4	809.9	869.5	929.1 1585.2	988.7 1637.7	1107.1	
(101.74) J	78.16	2.1153	2.1720	2.2233	2.2702	2.3137	2.3542	2.3923	2 4283	2.4625	2.4952	2.556	
5 Å (162.24) s		1195.0	1241.2	1288.0	1335.4 2.0927	1383.6	1432.7 2.1767	1482.6	1533.4 2.2509	1585.1 2.2851	1637.7 2.3178	2.379	
10		45.00	51.04 1240.6 1.9172	57.05 1287.5 1.9689	63.03 1335.1 2.0160	69.01 1383.4 2.0596	74.98 1432.5 2.1002	1482.4 2.1383	86.92 1533.2 2.1744	92 88 1585 0 2 2068	98.84 1637.6 2.2413	110 7	
(193.21) #		1.8595	34.68	38.78	42.86	46 94	51.00	55.07	59 13	63.19 1584.8	67.25	75.3	
14.696 à		1192.8	1.8743	1.9261	1.9734	2.0170	2.0576	2.0958	2 1319	2 1662	2 1989	2.260	
20 Å		22.36 1191.6 1.7808	25.43 1239.2 1.8396	1286.6	1334.4	1382.9	1432 1 2.0235	1482 1 2.0618	1533.0	1584 7	1637.4	1745	
40 Å (267.25) S		11.040 1186.8 1.6994	12.628 1236.5 1.7608	14 168 1284.8 1.8140	15.688 1333 1 1.8619	17.198 1381.9 1.9058	18 702 1431.3 1.9467	20.20 1481.4 1.9850	21.70 1532.4 2.0212	23 20 1584 3 2.0555	24.69 1637.0 2.0883	27.6	
60 Å		7.259	8.357	\$.403 1283.0	10.427	11.441 1380.9	12.449	13.452 1480.8	14.454	15.453 1583.8	16 451 1636.6	18 44	
(292.71) \$		1.6492	1.7135	1.7678	1.8162	1.8605 8.562	1.9015 9.322	1.9400	1.5762	2.0106	2.0434	2.104	
(312.03)			1230.7	1281.1	1330.5	1379.9	1429.7	1480.1 1.9079	1531.3	1583.4 1.9787	1636.2	2.073	
100 à			4.937 1227.6 1.6518	5.589 1279.1 1.7085	6.218 1329.1 1.7581	6.835 1378.9 1.8029	7.446 1428.9 1.8443	8.052 1479.5 1.8829	8.656 1530.8 1.9193	9.259 1582.9 1.9538	9.860 1635.7 1.9867	11.00	
120 Å			1224.4	4.636	5.165 1327.7 1.7370	5.683 1377.8 1.7822	5.195 1428.1 1.8237	6.702 1478.8 2.8625	7.207	7.710	8.212 1635.3 1.9664	9.2 1743 2.02	
•	.	1	3 468	3.954	4.413	4.861	1 5.301	5.738	6.172	6.604			
(353.02)			1.6087	1275.2 1.6683	1326.4	1376.8	1427.3 1.8063	1478.2 1.8451	1529.7	1581.9	7.035 1634.9 1.9493	7.8	
0 160 (363.53)	a mana			3.443 1273.1 1.6519	3.849 1325.0 1.7033	4.244 1375.7 1.7491	4.631 1426.4 1.7911	5.015 1477.5 1.8301	5.396 1529.1 1.8667	5.775	6.152 1634.5	6.9 1743	
180 k (373.06) k	·		1214.0	3.044	3.411 1323.5	3.764	4.110		4.792	1.9014 5.129 1581.0	1.9344 5.466 1634.1	6.1 1742	
200			2.361	1.6373 2.726 1268 9	3.060	1.7355 3.380	1.7776 3.693	4.002	1.8534 4.309	1.8882 4.613	1.9212	1.98	
(381.79) s			1.5594	1.6240	1322.1	1373.6 1.7232 3.066	1424.8	1476.2	1528.0 1.8415	1580.5 1.8763	1633.7 1.9094	1742	
220 A (389-86) J	· ·······		1206.5 1.5453	1266.7	1320.7 1.6652	1372.6	3.352 1424.0 1.7545	3.634 1475.5 1.7939	3.913 1527.5 1.8308	4.191 1580.0 1.8656	4 467 1633.3 1.8987	5.0 1742	
240 h			1.9276 1202.5 1.5319	2.247 1264 5 1.6003	2.533 1319.2 1.6546	2.804 1371.5 1.7017	3.068 1423.2 1.7444	3.327 1474.8 1.7839	3.584	3.839	4.093	4.55	
260 Å			*******	2.063 1262.3	2.330	2 582 1370 4	2.827	3.067	1.8209 3.305 1526.3	1.8558 3.541 1579 1	1.8889 3.776 1632.5	4.24	
(404.42) s 280 A				1.5897 1.9047	1.6447 2.156	1.6922 2.392	1.7352 2.621	1.7748 2.845	1.8118	1.8467	1.8799	1.942	
250 A (411.05) s				1260.0	1316.2	1369 4 1.6834	1421.5 1.7265	1473.5 1.7662	1525.8 1.8033	1578.6 1. \$3 83	1632.1 1.8716	1741	
300 Å		********	*********	1.7675 1260.0 1.5701	2.005 1316.2 1.6268	2.227 1368.3 1.6751	2.442 1420.6 1.7184	2.652 1472.8 1.7582	2.859 1525.2 1.7954	3.065 1578 1 1.8305	3.269 1631.7 1.8638	3.67	
350 Å (431 72) ±				1.4923 1251.5 1.5481	1.7036	1.8980	2.084 1418.5	2.266	2 445 1523 8	2.622	2.798	3 14	
400				1.2851	1.6070 1.4770 1306 9	1.6563 1.6508 1362 7	1.7002 1.8161 1416.4	1.7403 1.9767 1469 4	1.7777 2.134 1522.4	1.8130	1.8463	1.908	
(444.59) 3		CLARKER -		1.5281	1.5894	1.6398	1.6842	1.7247	1 7623	1575.8	1629.6	1739	


Power History:

.

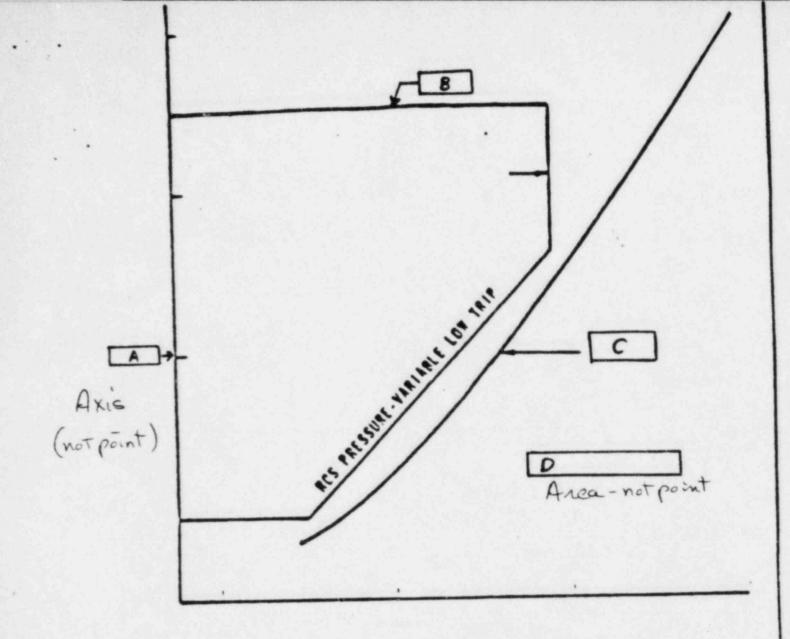
-

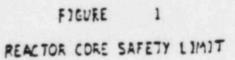
-WORKSHEET II-

ENCLOSURE 2 (Page 1 of 2)

ESTIMATED CRITICAL BORON CONCENTRATION

.


REFERENCE CONDITIONS: 53207, OI FF, No Kenon, No Control Rods, Equilibrius Samarius


.

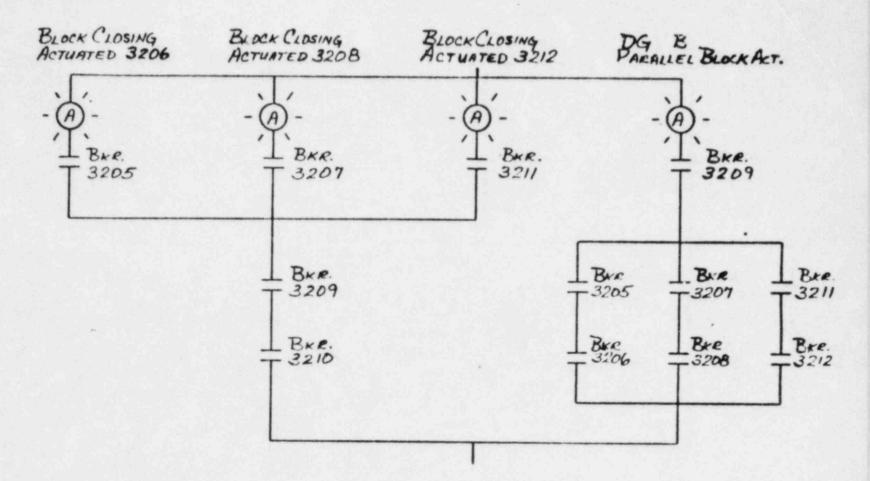
.

Fuel Reactivity a. Core Burnup 200 EFPD	(A) I AK/R
b. Read Curve 3.1 of OP-103, Plant Curve Book.	
Lenon Reactivity (Dae Step 2.1 or 2.2)	
Value calculated by SAION I (submit printout).	B X AK/K
a. Last power level was 100 I PP for 504 hrs.	
 b. Time Shutdown hrs. c. If time at last power level was < 40 hrs. and SAXON is unavailable, consult with Reactor Specialist. (X ak/k) = 	X Ak/k
Samarium Reactivity Buildup After Shutdown	
Value calculated by SAXON I (submit printout)	I ak/k
Reactivity Effect From Temperature	
 Average RC Temperature <u>525</u> or Beference temperature is 532°F. Temperature coefficient at ppmB is obtained from Curve 3.6 of OP-103, Plant Curve Book, to be x 10⁻²Z ak/k/°F. 	~
d. Reactivity = [T(ave) - 532] [Temp. Coeff.] e. Reactivity = () (x 10^{-2} x k/k/OF)=	(C) x ax/x
Reactivity of Control Rods at Desired Insertion	
Groups 1-4 at 100 % WD Group 5 at 100 % WD	0
Group 8 at 40 X WD Regulating Group Worth Group 8 at 40 X WD Group 8 Worth	
ulated By Date	
	 a. Core Burnup 200 EFFD b. Read Curve 3.1 of OF-103, Plant Curve Book. <u>Renon Reactivity</u> (Dae Step 2.1 or 2.2) Value calculated by SAION I (submit printout). (

OP-210 Rev. 16 Date 11/16/82 Page 18

CRYSTAL RIVER UNIT 3

2-2


Amendment No. 25, 41

480 V. ES MCC (3A-1)

250/125 V. DC BUS (3A)

120 V A.C. VITAL BUS (3A)

FIGURE 2.19

	ANSWERS 1.0	(25.0)
1.1 (b)		(1.0)
Reference:	NUS, NETRO, 10.2-2.	
1.2 (b)		(1.0)
Reference:	NUS, NETRO, p. 11.4-3.	
1.3 (c)		(1.0)
Reference:	NUS, NETRO, p 1.4-1	
1.4 (d)		(1.0)
Reference:	GP, HTT of FFF, B3.3 p. 355	
1.5 (b)		(1.0)
Reference:	STM-504	
1.6 (c)		(1.0)
Ref: NU	S, NETRO Unit 12	
1.7 (b)		(1.0)
Referenc	 e: 1. NUS, NETRO, Unit 6 2. Westinghouse Reactor Physics, Sect. 3, Neutron Kinetics and Sect. 5, Core Physics. 	
1.8 (c)		(1.0)
Reference	e: NUS, NETRO, 10.3	
1.9 (d)		(1.0)
Ref: NU	S - Plant Performance - pp 6.2-5 and 6.4 - 5	
1.10 (d)		(1.0)
Ref: NU	S Plant Performance pp 6.4-5+6	
1.11 (d)		(1.0)
Ref: NU	S Plant Performance, pp 3.3-2	

1.12	(c)		(1.0)
	Reference:	Steam Tables or Mollier Diagram.	
1.13	(b)		(1.0)
	Reference:	1. Westinghouse NTO, pg I-5.77 2. NUS, NETRO, 10.5-2	
1.14	(b)		(1.0)
	Reference:	1. Duke Power Co. FNRE 2. NUS, NETRO, 10.4-2	
1.15	(c)		(1.0)
	Reference:	1. STM-6-19 2. NUS, NETRO, Section 6.3	
1.16	(d)		(1.0)
	Reference:	OP-210, p. 18	
1.17	(c)		(1.0)
	Reference:	1. GP, HTT & FFF, II B2, p. 182 2. CR, HTT, Section 1 p. 71, 157	
1.18	(b)		(1.0)
	Reference:	T.S. pp B3/4 1-1	
1.19	(d)		(1.0)
	Reference:	T.S. pp 3/4 2-12	
1.20	(a)		(1.0)
	Reference:	OP-103 curves 4.7A, B, 4.8, 3.8A, B, C, D, 3.15A, 3.17 and STS 3/4 1-1.	
1.21	(b)		(1.0)
	Reference:	NUS Plant Performance, pp 6.5-1 to 6.5-3	
-1.22	a. FALSE	delete	(0:5)
	b. FALSE		(0.5)
	Reference:	a. CR3 HTFF/Thermo, last page b. AP-460 and AP-380	

1.23 A - Core Outlet Pressure, psig or RCS pressure B - RCS - Pressure High Trip C - Safety Limit or minimum DNBR limit (1.30) D - Unacceptable Operation		(2.0)
Reference: T. S. Safety Limit Curve, pg 2-2		
1.24 Answer: Zr - H20 Reaction Dissolved H2 in RCS		(1.0)
Radiolytic decomposition of Water Aluminum - NaOH reaction	any 2 (.5 ea)	

Reference: CR3 Draft HTFF/Thermo, Section 4, Post-LOCA H2 Sources.

.

1

ANSWERS 2.0 (25.0) 2.1 (1.0)Answer: (d) RB Isolation and Cooling System Lesson Plan, Reference: ANO-91 2.2 (1.0)Answer: (b) STM-25-21, 22, 23, 24, and 25. Reference: AP-1071, p. 1. 2.3 (1.0)Answer: (a) Reference: AP-304, p. 4 2.4 (1.0)Answer: (d) - Selector switch is located at GW pumps Also (b) -STM-25-14 Reference: Ref: for (6) - NAO-91 2.5 (1.0)Answer: (c) Reference: STM 2-105, 106, 67, 106. OP-302. REV.22, pg 2. 2.6 (1.0) Answer: (d) Reference: STM 2-34, 27, 54 and 16 2.7 (1.0)Answer: (a) Reference: OP-404, p. 32 2.8 (1.0)Answer: (b) Reference: OP-401, p. 7 and 8

1

	2.9	(1.0)
	Answer: (d)	
	Reference: STM 12-4, 10, 9 and 4.	
	2.10	(1.0)
	Answer: (a)	
	Reference: STM-28-5.	
	2.11	(1.0)
	Answer (a) Also (d)	
	Reference: STM-405 (b) - (BSV-16 & 17 are normally open) (c) - (Valves open on 4 psig, pumps start on 30 psig) (d) - (BSV-16 & 17 are normally open)	
	(d) (BSV-16 & 17 are normally open) 2.12 But These values abso receive an open signal	(1.0)
	Answer: (b)	
	Reference: 1. STM 23-7 2. OP-502, p. 3 3. OP-408, Rev. 32	
ite	-2.13-	(1.0)
dete RAW	Answer: (c)	
'	Reference: STM 22-13, 25, 39, 17 . 2.14	(1.0)
	Answer: (a)	
	Reference: STM-17-12, 12, 10, 10. (b) - Must be manually stopped (c) - No auto position (d) - Has auto start	
	2.15	(1.0)
	Answer: (b)	
	Reference: STM 17-4, 4, 5, 7. (a) - MUV-48 is remotely operated (c) - Closes MUV-49, not 40 & 41 (d) - makeups demins may be parallel or ser	ies

2.16 Answer: (b) Reference: STM 10-2 2.17	(1.0)
Reference: STM 10-2 2.17	(1.0)
2.17	(1.0)
	(1.0)
Answer: (d)	
Reference: STM-1-17 to 20	
2.18	(1.0)
Answer: (b)	
Reference: PASS Lesson Plan, RO-105	
2.19	(2.0)
Answer: (See attached drawing)	
 Normal bypass inverter supplies (0.5)
2. Inverter feed to vital (0.3)
3. DC to inverter (0.3)
4. Two normal battery chargers (0.3)
5. One back up battery charger (0.3)
6. Bypass transformer and switches 300 (0.3)
2.20 Solotnon -voltage regulator	(1.0)
Answer: (a)	
Reference: OP-705, Rev. 3	
2.21	(1.0)
Answer: (a)	
Reference: OP-605, Rev. 28, pp 5 & 15	
2.22	(1.0)
Answer: (b)	
Reference: Site Fire Protection Systems ANAO-39	

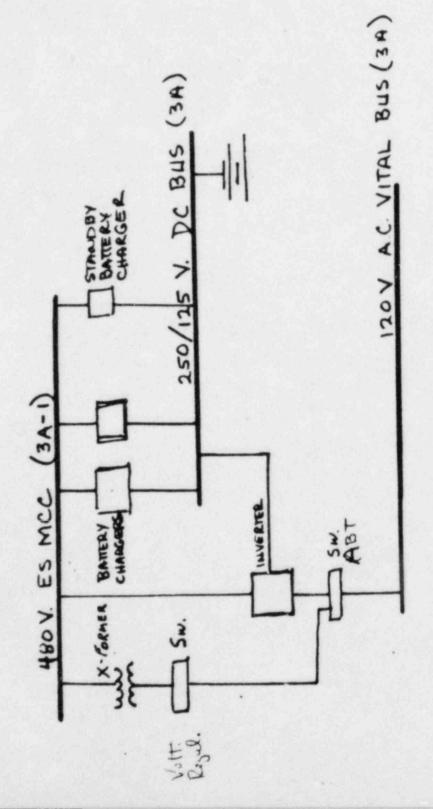


FIGURE 2.19

ł

2.23 No pump operating - Th	(1.0)
Answer: Circulating Water Pump Operating; Condenser vacuum of 2 5" Hg (or < 25") Bw	
Reference: STM 13-18 Ref: STM. CH. 504, Rev. 1/15/85, PS 110 2.24	(1.0)
Answer: a. TRUE Reference: AP-380, pg. 9	(0.5)
b. TRUE Reference: OP-404, pg. 5	(0.5)

\$

		ANSWERS 3.0	(25.0)
3.01	5		(1.0)
	Ref:	OP-504, Rev. 7., pg. 3	
3.02	c		(1.0)
	Ref:	STM-13-34	
3.03	c	2014년 1월 1975년 1월 1978년 1월 19 1979년 1월 1978년 1월 19 1979년 1월 1978년 1월 19	(1.0)
	Ref:	STM-12-11	
3.04	a		(1.0)
	Ref:	STM-20-2 (Separate Transmitters for DHV 3+4) OP-404, pg. 6, 7 (Alarm on DHV-41, no interlock)	
3.05	d	양 이 집 같은 것이 같은 것이 같이 가 있다. 것은	(1.0)
	Ref:	OP-504, Rev. 08, pg. 8	
3.06	b		(1.0)
	Ref:	Steam Line Rupture Matrix Handout, pg. 5	
3.07	b		(1.0)
	Ref:	SLRM Handout, pg. 9.	
	1. 3. 4.	<pre>F (It resets the bypass) F (It resets automatically) F (Pushbuttons work anytime matrix is bypassed)</pre>	
3.08	Þ		(1.0)
	Ref:	STM-6-15, 17	
3.09	c		(1.0)
	Ref:	STM-43-17	
3.10		STM-43-7	(1.0)
3.11	a	64	(1.0)
	Ref:	STM-2-24, 25	
		1	

1				
	3.12			(1.0)
		Ref:	STM-6-10, 11	
	3.13	d		(1.0)
		Ref:	Power System Operation, R. H. Miller, pg. 22-24	
	3.14	c		(1.0)
		Ref:	Power System Operation, R. H. Miller, pg. 22-23	
	3.15	8		(1.0)
		Ref:	STM-10-36, 37	
	3.16	d		(1.0)
		Ref:	STM-9-11-21 Also T. S. pg. 2-6	
	3.17	a		(1.0)
		Ref:	STM: 28-22	
	3.18	b		(1.0)
		Ref:	STM-10-56, 57	
te	3.19	+		(1.0)
D		Ref:	STM-2-121, 122	
	3.20	c		(1.0)
		Ref:	STM-2-27, 28	
	3.21	d		(1.0)
		Ref:	STM-17-17, 18	
	3.22	2.	Reactor power > 30% Oil lift pressure > 200 rig NSCCCW Return Flow > 260 gpm/pump Upper and lower oil Reserv. above low alarm	(2.0)
		3. 4. 5. 6. 7.	Seal Injection flow > 3 gpm/pump Controlled bleed off valves (MUV-258/261) open $T_c > 500$ °F to start 4th RCP	(5 answers req 0.4 each)
		Ref:	STM CH. 420, Rev. 1, pg. 19.	

OP-302, Rev 21. pg 3

Pele

2

3.23	۰.	Controlled bleed off temp. \geq 170°F (Verified) High seal stage pressure drop \geq 2/3 RCS pressure	(0.5) (0.5)
	b.	Total seal outflow exceeds 2.5 gpm and is <u>rapidly</u> increasing	(0.5) (0.5)

Ref: OP-302, Rev. 21, pg 5

		Answers 4.0	(25.0)
4.01	a - 3 Ref. AP- b - 4 Ref. AP- c - 5 Ref. AP- d - 2 Ref. AP- e - 1 Ref. AP-	242 243 244	(2.5) (0.5 each)
4.02	Notify Aux. Buildi WDV-891, WDV- Ref. AP-272	ng Operator to ensure closed: 892	(0.5)
4.03	(b) (Establish OT (d) - Also corre Ref. AP-330 - Re	SG levels w/MFP is a subseq. action) of - This step was removed from Bev. 1 or. 1 varued on 3/6/85	(1.0)
4.04	NS Seawater P	S)	(1.0)
4.05	Notify AB operator (° Reactor 3A2) (° Reactor 3B2) Ref: AP-380, pg 4	to open affected BKG at MCC: Not req. for full credit	(1.0)
4.06	a. 20 b. 50 c. 50 d. 1000 e. 20 f. 500 g. 100 h. 10 Ref: AP-380, pg.	<pre>i. 100 j. low level limit (30") k. 50% l. 95% m. 95% n. 0 o. 2300</pre>	(3.0) (0.2 each)

4.07	(*)	(1.0)
	Ref: OP-404, Rev. 45, pgs. 4 and 5	
4.08	(c)	(1.0)
	Ref: OP-404, Rev. 45, pgs 2 and 3	
4.09	(a)	(1.0)
	Ref: OP-408, Rev. 32, pg 3 (Incorrect statements) b - 12 psig c - 15 sec. d - 15 sec.	
4 10	(c) ·	(1.0)
	Ref: OP-408, Rev. 32, Section 10.2	
4.11	(b)	(1.0)
	Ref: OP-501, Rev. 8, pgs. 2, 3 and 6	
4.12	(d)	(1.0)
	Ref: OP-502, Rev. 13, pgs. 3-6	
4.13	(d)	(1.0)
	Ref: OP-502, Rev 13, pg 3	
4.14	(b)	(1.0)
	Ref: OP-504, Rev. 08, pg. 4	Ve, A
4.15	(a)	(1.0)
	Ref: OP-504, Rev. 08, pg. 7	
4.16	(d)	(1.0)
	Ref: OP-605 pg. 21 STM 27-37	
4.17	(b)	(1.0)
	Ref: OP-402, Rev. 43, pg. 4	

4.18	(c)		(1.0)
	Ref:	RP-101, Rev. 19, pg. 9	
4.19	(b)		(1.0)
	Ref:	RP-101, Rev. 19, pg. 13	
4.20	(d)		(1.0)
	Ref:	RP-101, Rev. 19, pgs. 21 and 22	
4.21	1.	Announce over the PA system that the Control Center 1s being evacuated.	(1.5)
	2.	Transfer the 6900V and 4160 unit buses from the unit auxiliary transformer to unit startup transformer.	
	3.	Trip the reactor from the MCB or remotely by opening $480V$ CRD breakers "A" and "B".	
	4.	Depress "Reactor Trip" pushbutton $\underline{\text{AND}}$ perform Immediate Actions of AP-580.	
	5.	Close FWV-161 and 162, EFW bypass valves.	
	6.	Trip the main turbine and FWP's and assure EFWP's start and are controlling OTSG level.	
	Ref:	AP-990, pg. 2	

4.22 False

\$

Ref: AP-580 and EP-140

(0.5)

13

.....