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ABSTRACT

Uncertainty analysis and sensitivity analysis are important elements in the
development and implementation of computer models for complex processes.
Typically, there are many uncertainties associated with both the development and
the application of such models. Understanding of these uncertainties and their
causes is required to effectively interpret model behavior. Many different
techniques have been proposed for performing uncertainty and sensitivity analyses.
The objective of the present study is to compare several widely used techniques on
three models having large uncertainties and varying degrees of complexity in order
to highlight some of the problem areas thot must be addressed in actual
applications. The following approaches to uncertainty and sensitivity analysis are
considered: (1) response surface methodology based on input determined from a
fractional factorial design, (2) Latin hypercube sampling with and without regression
analysis, and (3) differential analysis. These techniques are compared on the basis
of (1) ease of implementation, (2) flexibility, (3) estimation of the cumulative
distribution function of the output, and (4) adaptability to different methods of
sensitivity analysis. With respect to these criteria, the technique using Latin
hypercube sampling and regression analysis gives the best results overall. The

; models used in the comparisons are well documented, thus making it possible for
researchers to make comparisons of other techniques with the results in this study.

til/iv



o

T ABLE OF CONTENTS
Pace

1. Introduction 1-1

2. Methods to be Compared 2-1

2.1 Response Surface Replacement for the Computer Model 2-1
2.2 Modified Monte Carlo (Latin Hypercube Sampling) 2-4
2.3 Differential Analysis 2-7

3. Results Based on the Pathways Model 3-1

3.1 The Pathways Model 3-1
Description of the Pathways Model 3-1.

Variables Considered in the Analysis of the 3-1.

Pathways Model
3.2 Selection of the Values of the Input Variables 3-2.

,

Useciin the Analysis
The Fractional Factorial Design 3-2
The Latin Hypercube Sample 3-2.

*The Differential Analysis 3-5.

A Note on the Probabilistic Nature of the Input 3-5.

Scatterplots of the Input-Output Relationships as a 3-5.

Guide to Better Understanding of the Model Behavior
3.3 Uncertainty Analysis for the Pathways Model 3-6

Estimation of the Distribution Function of the Output 3-6.

Estimation for the Output Variable 3-9.

3.4 Sensitivity Analysis for the Pathways Model 3-12
Ranking Input Variables on the Basis of Normalized Coefficients 3-13.

Ranking Input Variables on the Basis of Their Contribution 3-17.

to the Variance of the Output
Ranking Input Variables on the Basis of Partial Rank 3-21.

Correlation Coefficients
Effects of the Choice of the Basecase for Differential 3-24.

Sensitivity Analysis
3.5 Section Eummary 3-30

Uncertainty Analysis 3-30.

Sensitivity Analysis 3-31.

4. Results Based on the MAEROS Model 4-1

4.1 The MAEROS Model 4-1
Description of the MAEROS Model 4-1.

Variables Considered in the Analysis of the MAEROS Mcdel 4-1.

4.2 Selection of the Values of the Input Variables Used in the Analysis 4-2
The Response Surface Replacement 4-2.

'

| The Latin Hypercube Sample 4-5.

| The Differential Analysis 4-5.

4.3 Uncertainty Analysis for the MAEROS Model 4-7
Estimation of the Distribution Function of the Output 4-7.

Estimation for the Output Variable 4-7.

v



T ABl.E OF CONTENTS (continued)
Page

4.4 Sensitivity Analysis for the MAEROS Model 4-10
Ranking the Input Variables 4-11.

Use of the PRCC with Time Dependent Output 4-11.

4.5 Section Summary 4-14
Uncertainty Analysis 4-14.

Sensitivity Analysis 4-17.

5. Results Based on the DNET Model 5-1

5.1 The DNET Model 5-1
Description of the DNET Model 5-1.

-Variables Considered in the Analysis of the DNET Model 5-1.

5.2 Selection of the Values of the input Variables Used in the Analysis 5-1
Responso Surface Replacement 5-1.

T he Latin Hypercube Sample 5-2.

5.3 Scatterplots of the Input-Output Relationships as a Guide to Better 5-4
Understanding of the Model Behavior

5.4 Uncertainty Analysis for the DNET Model 5-9
Estimation of the Distribution Function of the Output 5-9.

Estimation for the Output Variable 5-9.

5.5 Sensitivity Analysis for the DNET Model 5-11
5.6 Section Summary 5-11

Uncertainty Analysis 5-12.

Sensitivity Analysis 5-12.

6. Additional T echniques 6-1

6.1 Adjoint lechniques 6-1
6.2 Green's Function Techniques 6-3
6.3 Fourier Amplitude Sensitivity Test 6-4

7. Summary and Conclusions 7-1

7.1 Techniques and Models Used in Comparisons 7-1
7.2 General Summary of the Techniques- 7-2

1

The Response Surface Replacement Using 7-2.

Fractional Factorial Designs
The Differential Analysis and Local Behavior 7-2.

Latin Hypercube Sampling 7-3.

7.3 Summary of Techniques According to Specific Criteria 7-5
Ease of implementation 7-4.

Flexibility 7-4.

Estimation of the Output CDF 7-4.

Adaptability to Different Methods of Sensitivity Analysis 7-5.

7.4 Extension of Techniques to a System Analysis 7-5

References R-1

vi

|



f

;

2

LIST OF FIGURES
Floure Pace

! Estimates of the CDF for Yi Based on a Random Sample 3-7
of Size 500 and a Latin Hypercube Sample of Size 500
Utilizing Restricted Palring

2 Response Surface Estimates of CDFs for Yg (amount of Ra 226 3-8
in the soil) and Y3 (concentration of Ra 226 in the surface water)

3 "Basecase" Taylor Series Expansion Used to 3-10
Estimate the CDF for Yg

4 Estimates of the CDF of Y 1 or Various Potential"Basecases" 3-10f,

5 CDF Estimates for Yt Showing the Impact of Holding X18 Fixed 3-22
at Different Quantiles Versus the Estimate from a Simple Random
Sample of Size 100

6 CDF Estimates for Yg Showing the impact of Holding X10 Fixed 3-22
i at Different Quantiles Versus the Estimate from a Simple Random

Sample of Size 100

Behavior of (aYg/aX )(X /Yg) as a function of X . The horizontal 3-267 5 5 5
line represents the partial derivative calculated at the expected
values of Xi

Behavior of (aY /aX )(X /Y ) at 50 points in a LHS 3-268 2 9 9 2
t

9 A Comparison of Three Estimates of the CDF for Yi for the 4-8
MAEROS Model

10 A Comparison of Three Estimates of the CDF for Y2 4-8
for the MAEROS Model

3 or the 4-9f11 A Comparison of Three Estimates of the CDF for Y
MAEROS Model

1

12 A Plot of the PRCC Showing the Influence of X7 on 4-15

Y3 Over Time

13 A Plot of the PRCC Showing the Influence of X on Y4 Over Time 4-157
i
'

14 Scatterplots of log X , in X , and in X8 versus log Y at 5 years 5-62 3

15 Scatterplots of log X , in X , and in X8 versus log Y at 500 years 5-72 3

16 Scatterplots of log X , in X , and in X8 versus log Y at 5000 years 5-82 3

17 Response Surface and LHS Estimates of the CDF for log Y 5-10

vil



LIST OF TABLES

Table Paoe

! Input Variables Used with the Pathways Model 3-3
t

2 Distribution and Range Used with Each Input Variable to the 3-4
Pathways Model

3 Rankings of the input Variables to the Pathways Model Based On 3-15
1

Standardized Coefficients

i 4 Rankings of the Input Variables to the Pathways Model Based on 3-16
Normalized Sensitivity Coefficients

5 Correlations Computed on the Reciprocal of the Ranks in 3-17
Tables 3 and 4

6 Percentage Contribution to the Estimate of the Variance of the 3-20
Output for Three Different Methods of Estimating the Variance
Using the Model in (3.8).

7 Percentage Change in the Variance Estimates When X18 and X o 3-21t
are Held Constant at Each of Three Different Quantiles

8 Rankings of the Five Most InfluentialInput Variables Affecting Y , 3-251
Y , and Y3 Based on the PRCC Computed on a LHS with n = 50, a2
Random Sample of Size n = 100 and 128 Fractional Factorial Points

9 Percent Contribution to the Variance of Yt Listed by Run Number 3-27
and Input Variable Number.

,.

10 Percent Contribution to the Variance of Y3 Listed by Run Number 3-29
and Input Variable Number.

f

11 Input Variables Used with the MAEROS Model 4-3

12 Distribution, Range, and Restrictions Used with Each Input Variable 4-4
to the MAEROS Model

13 Estimate of Location and Scale for the Output Variables Y Y . 4-91 2
and Y3

14 Rankings of the Input Variables to the MAEROS Model for the 4-12
Output Variable Yt

15 Rankings of the Input Variables to the MAEROS Model for the 4-13
; Output Variable Y2
1

16 Ranking of the influence of the input Variables on Y3 4-16
and Y4 at 11 Selected Time Steps

i

.f

E

vill

._-- . - .-_.-_ _ _ _ _ _ _ . _ - - - - - . - _ . - - _ _ . - . . - _-- - - -_



LIST OF TABl.ES
lable . Eage_

17 Distribution and Range Used with Each Input Variable to the 5-3
DNET Model

18 Rank Correlations Among the input Variables Used
in the Latin Hypercube Sample with n = 32 5-4

i
,

ix/x

_ __



4

ACKNOWLEDGEMENT

The authors would like to express their sincere appreciation to the following
individuals whose careful review of a draft of this report contributed greatly to its
present form.

David C. Aldrich Science Applications, Inc.

Daniel J. Alpert Sandia Na~tional Laboratories

Thomas A. Bishop Battelle Columbus Laboratories

James E. Campbeli Intera Environmental Consultants

W. J. Conover Texas Tech University

Darryl J. Downing Oak Ridge National Laboratory

Robert G. Easterling Sandia National Laboratories

Robert H. Gardner Oak Ridge National Laboratory

William V. Harper Battelle Columbus Laboratories

F. Eric Haskin Sandia National Laboratories

Stephen C. Hora Texas Tech University

Dale M. Rasmusson Nuclear Regulatory Commission

Eric R. Ziegel Standard Oil Company

.

l

|
;

XI
,



1. INTRODUCTION

Computer models are used in many settings to implement mathematical models
for complex processes. Typically, these models represent a variety of phenomena.
For example, the Nuclear Regulatory Commission-sponsored MELCOR program at
Sandia National Laboratories is developing a complex system of models that address
accident progression, thermal-hydraulic phenomena, radionuclide behavior and
transport, and environmental consequence analysis for severe reactor accidents
(Sprung et al., 1983). There are many uncertainties associated with both the
development and application of these models. Understanding of these uncertainties
and their causes is required to ef fectively interpret the model predictions.

The analysis of uncertainties and sensitivities associated with such models plays
an important part in their development and application. Typically, large systems
such as MELCOR are too complex to permit a simple examination of uncertainty in
its entirety. Hence, much effort is directed at examining the components of a
system. At the first stage of an analysis, it is necessary to use some carefully
designed procedure to determine the impact of uncertainty on individual models in
the system, and then at the second stage to study the impact of uncertainty on the
entire system. There are many techniques for uncertainty analysis and sensitivity
analysis. The purpose of this study is to compare several widely used approaches for
uncertainty and sensitivity analysis of individual models.

For this comparison, it is convenient to think of a model as a function Y =
f(X ,~,X ,t) of the independent variables X ,...,Xk and possibly also of time t. TheI k 1

variables X ,...,Xk can be used to represent a variety of phenomena within the1
model. For example, they might represent common properties such as temperature
and pressure or other entities such as parameters in statistical distributions, branch
points in the evolution of a process, or different submodels within a larger model.
Uncertainty analysis is defined here to be the determination of the variation or
imprecision in Y that results from the collective variation in the model variables
X ,...,X . Summarizing and displaying the uncertainty associated with Y is a1 k
problem of immediate concern since there are many questions of potential interest,
such as (1) what is the range of Y, (2) what are the mean and median of Y, (3) what
is the variance of Y, (4) what are the lower and upper 5% quantiles for Y, and (5) are
there any discontinuities associated with the distribution of Y. A convenient tool
for providing such information is the estimated cumulative distribution function
(cdf) for Y since it summarizes the variability in computer model output which
results from the input assumptions. However, the estimated distribution function of
Y can only be interpreted in a probabilistic sense if the model variables Xg, ..., Xk
have meaningful probability distributions associated with them. Frequently, this is
not possible as the model input variables may lack an adequate data base. We will
proceed with the first stage of the uncertainty analysis using the estimated
cumulative distribution function as a summary tool without being overly concerned
about interpretations for the probability estimate it provides.

An area closely related to uncertainty analysis is sensitivity analysis. The
importance of sensitivity analysis lies in the guidance it provides with respect to the
identification of the important contributors to uncertainty in Y. Sensitivity analysis
is defined here to be the determination of the change in the response of a model to
changes in model parameters and specifications. Thus, sensitivity analysis is used to
identify the main contributors to the variation or imprecision in Y.
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The models to which uncertainty and sensitivity analyses are applied are often
- large and complex and frequently display many of the following properties:

i

e There are many input variables.

* The model is time consuming (i.e. expensive) to run on a computer.

* Alterations to the model are difficult and time consuming.

* It is difficult to reduce the model to a single system of equations.

* Discontinuities exist in the behavior of the model.

. Correlations exist among the input variables and the associated marginal !

probability distributions are often nonnormal. '

* Model predictions (outputs) are nonlinear, multivariate, time-dependent
functions of the input variables.

,

* The relative importance of individual input variables is a function of time.

For an approach to uncertainty and sensitivity analysis to be viable, it must be
applicable to models possessing many of the preceding characteristics.

This study examines the following three often-used approaches to uncertainty
and sensitivity analysis:

* Response surface replacement for the computer model

e Modified Monte Carlo as exemplified by Latin hypercube sampling

* Differential analysis.

This examination is implemented by applying these techniques to three existing
models with large uncertainties. The following models are used:

* Pathways (a model for environmental radionuclide movement)

* MAEROS (a model for multicomponent aerosol dynamics)

+ DNET (a model for salt dissolution in bedded salt formations)._

,

| These models were selected because each is well documented, has been extensively
used in risk assessment applications associated with geologic isolation of radioactive i<

waste or in risk studies for nuclear reactors, and displays many of the eight model
characteristics indicated above. :

Section 2 presents a brief description of the three techniques for uncertainty
and sensitivity analysis that are compared in this study. Section 3 presents results4

from all three techniques utilizing the Pathways model. Section 4 presents a'

comparison of Latin hypercube sampling and differential analysis using the MAEROS
model. The response surface replacement is not used with the MAEROS model due

,

1

i
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to the difficulty of utilizing an experimental design with the complex multivariate
input structure associated with this model. Response surface replacements and
Latin hypercube sampling are compared in Section 5 with the DNET model. The
differential analysis is not used with the DNET model due to feedback mechanisms
within the model which make such an analysis difficult to implement. Additional
techniques for sensitivity analysis and uncertainty analysis are discussed in Section
6. Section 7 contains a summary and conclusions.
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2. METHODS TO BE COMPARED

Three methods for sensitivity analysis and uncertainty analysis are considered
in this study. These methods are based on (1) a response surface replacement for the
computer model, (2) modified Monte Carlo as examplified by Latin hypercube
sampling both with and without regression analysis, and (3) differential analysis. A
brief discussion of each of these methods is given in this section.

2.1 RESPONSE SURFACE REPLACEMENT FOR THE COMUTER MODEL

A response surface replacement for a computer model is based on using an
experimental design to select a set of specific values and pairings of the input
variables X g, ..., Xk that are used in making n runs of the computer model. The
method of least squares is used with the model output Y and input Xgj, ..., Xki .I
= 1, ..., n, to estimate the parameters of a general linear model of the form:

Y:0
0 * f 0] (2.1)j.

The estimated model is known as a fitted response surface, and it is this response
surface that is used as a replacement for the computer model. Thus, all inferences
with respect to uncertainty analysis and sensitivity analysis for the computer model
are derived from this fitted model. Two points are worth noting with respect to the
model in (2.1). First, a linear model is usually written with an error term added on
to represent stochastic variation. However, the computer models considered in the
present analysis produce deterministic output, and therefore, differences between
the model in (2.1) and the computer model are due to lack of fit rather than

stochastic variation. The second point involves the individual Xj used in the model
in (2.1). The actual fitting of such a model usually involves additional variables
derived from the original variables, such as squares and crossproducts as well as
transformations of the original variables.

The fitting of a response surface usually requires that some prescription be used
to select the specific values of the inputs Xg, ..., Xg, and more importantly, to
determine the manner in which the input are paired in each of the n computer runs.
Experimental designs are commonly used to make this determination. The choice of
available designs is quite large, and since this study is not intended to be a treatise
on response surface techniques, only an often used approach based on factorial
designs wil be used for purposes of illustration. References to more sophisticated
attempts at fitting response surfaces are given at the end of this subsection.

Factorial experimental designs are well developed in the statistical literature
and extensive discussions with respect to them may be found in textbooks on
experimental design, for example see Box, Hunter and Hunter (1978). A factorial
design utilizes two or more fixed values (i.e., levels) to represent each variable
under consideration. Thus, if there are k input variables and if two levels are used
for each variable, then there exist 2k possible combinations of the k variables

2-1



while 3k combinations are possible with 3 levels, or in general ok combinations are
possible with n levels. It is also possible to mix the number of levels used with each
variable such as six variables at two levels paired with two variables at three levels
and two variables at four levels. One of the features of a factorial design is that all
pairwise correlations between the inputs are equal to zero (i.e., the input values are
orthogonal to one another).

It is clear that the number of treatment combinations becomes quite large even
for a small number of variables. Thus, in order for a factorial design to be useful
with computer models having large numbers of input variables, an approach is
needed that allows for a reduction in the number of treatment combinations. This is
possible to some extent through the use of fractional factorial desians where some
fraction of the total number of treatment combinations is used. That is, for each of
k factors at n = 2 levels some fraction (1/2)m, m < k, of the total number of
treatment combinations is used. Thus, for k = 10 and n=2, fractional factorial
designs could have 512, 256,128, 64, 32,16, 8, 4, or 2 treatment combinations
corresponding to m = 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively. The number of
required runs of the model would equal the number of treatment combinations. Of
course, as m increases, the effects of some individual variables cannot be estimated
because of confounding with interactions among variables. Thus, the selection of
the fraction size and treatment combinations must be done with great care, keeping
in mind which variable effects and interactions are of greatest interest. Selection
of the actual design to be used in an analysis can be made only after a careful
consideration of the model and the variables associated with it. The expense of
evaluating the model (and subsequent limitation of the number of computer runs)
may exert a strong influence on the selection of the design to be used.

A discussion of techniques for the development of fractional factorial designs is'

beyond the scope of this study. However, readable discussions on fractional
factorial designs can be found in Box, Hunter, and Hunter (1978) and Finney (1960),
with a more mathematical treatment of recent developments given by Raktoe,
Hedayat and Federer (1981). Many textbooks on experimental design contain plans
for fractional factorial designs for various numbers of levels and different values of
m and k. The U. S. National Bureau of Standards (Applied Mathematics Series,48
and 54, April 1957 and May 1959) has published one of the largest sets of plans and

J

includes values of k 116 for various values of m and n.

In the previous section, uncertainty analysis for an individual model output
variable Y was focused on estimating the distribution function of Y. The
distribution function for an output variable cannot be estimated directly from the
set of output values resulting from input based on a fractional factorial design since
the selection procedure used with the input values is not random. Therefore, to use
a response surface replacement for the model in an uncertainty analysis, it is
necessary to use Monte Carlo simulation with the response surface to estimatn a
distribution function for the dependent variable Y. The response surface can be
used directly (i.e., without Monte Carlo) to estimate the expected value of Y by

k(Y) = b + (*
0 ) })

i
2-2
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where E is used to denote expected value and the hat represents the estimate of the
quantity under the hat. Additionally, the variance associated with Y can be
estimated by

0(v) = y 6y v(x)) + 2 g 6 s Covcx ,x)), (2.3)i 3 i

where V and Cov are used to denote the variance and covariance, respectively.

As defined in Section 1, sensitivity analysis for an Individual model output
variable Y involves determination of the response of that variable to changes in
system parameters and specifications. There are several ways explained in Section
3 in which the influence of individual variables or parameters can be measured.
These measures include standardized regression coefficients, partial correlation
coefficients, normalized partial derivatives, and contribution to variance. Many of
these ways are closely related to response surfaces. The end result of these
techniques is a ranking by importance of the input variables. These and other
techniques are discussed and illustrated in the sections that follow.

Additionally, a useful preliminary nonquantitative screening technique is a
sequence of scatterplots in which the values for the dependent variable appear on
one axis and the values for each independent variable appear in turn on the other
axis. Such plots provide an indication of which independent variables are important
and may also provide guidance with respect to useful data transformations for the
variables in (2.1) as well as other aspects of the analysis. Examples of scatterplots
are given in Section 5.

If the output behaves in a linear fashion between the low and high values of
each input variable, input based on a fractional factorial design with two levels
works well for indicating major trends and the corresponding response surface
replacement works well in both uncertainty analysis and sensitivity analysis. A
simple application of this approach is given in Baybutt, Cox, and Kurth (1982). If the
output does not behave in a linear fashion, then an improvement in the response
surface fit can usually be obtained by using interior points in conjunction with the
high-low values such as found in a central composite design as explained in Box,
Hunter and Hunter (1978). In addition, a discussion of the application of a central
composite design to a computer model that describes a scrubbing process which
removes radioactive material from steam generated during a nuclear reactor melt
down accident is given in Bishop (1983). Steck, Dahlgren and Easterling (1975) give
an example of a sophisticated sequential attempt at fitting a response surface to
product peak cladding temperature in a loss of coolant accident at a nuclear
reactor. Myers (1971) provides an introduction to the use of fractional factorial
designs in conjunction with response surface techniques. Additional information on
response surface methodology can be found in references such as Box and Behnken
(1960), Box and Draper (1959), Box, Hunter and Hunter (1978), Davles (1956), and
DeBaun (1959). Draper (1982) and Box, Hunter and Hunter (1978) discuss designs with
center points for fitting second order response surfaces and give several related
references. Examples of the use of fractional factorial designs in uncertainty
analysis and sensitivity analysis include Cox (1977), Steinhorst et al (1978) Kleijnen
(1979), Nguyen (1980), Baybutt, Cox, and Kurth (1982) and Bishop (1983).

2-3
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2.2 MODIFIED MONTE CARLO (LATIN HYPERCUBE SAMPLING)

A possible alternative to the response surface replacement approach is a type
of stratified Monte Carlo sampling known as Latin hypercube sampling (LHS). As
originally described in McKay, Conover, and Beckman (1979), LHS operates in the
following manner to generate a sample of size n from the k variables Xg, ..., X -k
The range of each variable is divided into n nonoverlapping intervals on the basis of
equal probability. One value from each interval is selected at random with respect
to the probability density in the interval. The n values thus obtained for Xg are
paired in a random manner (equally likely combinations) with the n values of X .2
These n pairs are combined in a random manner with the n values of X 3 o form n't
triplets, and so on, until a set of n k-tuples is formed. Thus, for given values of n
and k, there exist (n!)k-1 possible interval combinations for a Latin hypercobe
sample. For example, with n = 3 and k = 2, there are (31)2-1 = 6 possible interval
combinations. The six interval combinations are indicated with asterisks in the
following diagrams.

(a) (b) (c)

3 " 3 " 3 "

X2 2 * 2 " 2 "

t * 1
"

1
"

1 2 3 1 2 3 1 2 3

Xg Xg Xg

(d) (e) (f)

" 3 * 3 *
4 3

" 2 *
X2 2 a 2

"
1" l *

1

1 2 3 1 2 3 1 2 3

Xg Xg Xg

Thus, in diagram (a) a value of X g is randomly selected in interval 1 and paired with
,

a value of X2 selected at random from the first interval of X . Likewise, for2
intervals 2 and 3. In diagram (b) the value of Xg from interval 1 is paired with the

lfrom interval 3. In each of these six diagrams, the full range of both Xvalue of X2
and X2 Fs sampled; whereas, in a simple Monte Carlo scheme all three
pairs of values could easily come from the same subintervals for both Xg and X -2

2-4
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It is convenient to think of the LHS as forming an n x k matrix of input where
the it_h row contains specific values of each of the k input variables to be used on
the ith_ run of the computer model. Likewise, the jth column of the n x k input
matrix from using Latin hypercube sampling contains the complete stratified sample
for the jth input variable.

Due to the random pairing of intervals in the mixing process, there exists the
possibility of inducing undesired pairwise correlations among some of the variables
in a Latin hypercube sample. This is more likely to occur if n is small. Such corre-
lations can be avoided by modifying the Latin hypercube sample by restricting the
(n!)k-1 possible interval pairings through the use of a technique introduced by Iman
and Conover (1982a) and implemented by a computer program developed at Sandia
National Laboratories (Iman and Shortencarier,1984). Restricting the pairing in this
manner preserves the fundamental nature of Latin hypercube sampling but replaces
the random matching of intervals with a method that keeps all of the pairwise rank
correlations among the k input variables very close to zero and thus ensures that no
unwanted large pairwise correlations will exist between input variables. In the
previous diagram, the interval pairings under (a) and (b) have rank correlations of I
and -1, respectively. Both of these pairings are eliminated when the restricted
pairing technique is used. In turn, this should result in more stable estimates of
regression coefficients than simple random matching when the input-cutput values
are used to fit a response surface. In addition, by selecting the proper combination
of intervals, any desired rank correlation structure between variables can be induced
(regardless of the distribution assigned to the variables) when it is known that there
is correlation among the variables. When a sample generated by LHS is used, it is
good practice to examine the associated correlation matrix for the presence of
unwanted correlations among the variables under consideration. However, such

; correlations should not be a problem when the pairing is restricted.

The generation of a Latin hypercube sample requires that some thought must be
given to the sample size n used. The choice of n depends on a number of considera-
tions but will be dominated by the cost of making a single computer run and the
numbar of input variables k. Our experience has shown that good results can be
obtained with n 1 (4/3)k. However, this is not an absolute rule. If the model is
inexpensive to run, then n could t;o larger such as between 2k and Sk. If k is quite
large and the model is expensivo to run, then it may be necessary to choose n
considerably smtller than k. It should be kept in mind that, when k is large, only a
small subset of the variables will turn out to be important (unless it is a very unusual
model).

Another important aspect of selecting the sample size concerns the restricted
pairing technique of Iman and Conover (1982a). This technique can be applied
directly only if n > k, otherwise, it is necessary to use the technique in a piecewise
fashion on subsets of the k variables where the number of variables used in each
subset is less than n. A LHS of size n with the corresponding desired rank
correlation structure is generated on each of the mutually exclusive and exhaustive
subsets of the k variables. The resulting subsets are then combined to form the n x
k input matrix. This piecewise approach assures that there are no unwanted
correlations among variables within subsets but there could exist spurious
correlatlons among variables belonging to different subsets. Hence, if such a
piccowlse approach is used, the resulting correlation matrix should be examined for
unwanted correlations between variables in different subsats.
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In uncertainty analysis associated with Latin hypercube sampling, it is desired
'to estimate the distribution function and the variance for the particular output

variable (s) Y under consideration. Due to the probabilistic nature of Latin
hypercube sampling, it is possible to estimate these entitles directly from the model
output associated with the sample Just as in simple Monte Carlo sampling. - Let (X ,il
...,-Xik, Yg) 1 = 1,....n, denote the n individual sample elements, including the
corresponding model output Y . Because each sample element has probability 1/n, ani
estimate of the cumulative distribution function for Y can be obtained directly from
the values for the individual Y . Further, the expected value and variance for Y can1
be estimated by

A

E(Y) = EY /n (2.4)g
i

and

V(Y) =I [Y k(Y)]2/n, (2.5)i
i

respectively. These estimates are illustrated in the next section. As discussed by
McKay, Conover, and Beckman (1979), the estimates for the distribution function
and expected value associated with Y are unbiased. However, the estimator in (2.5)
for the variance is biased; the exact amount of bias is small but unknown. Iman and
Conover (1980) have shown that ,

((n-1)/n] V(Y)1 E[V(Y)] 1V(Y) (2.6)

when Y is a monotonic function of each of the individual Xg. Use of the restricted
pairing technique of Iman and Conover (1982a), while allowing correlations to be
preserved and likely reducing the expected mean square E(8 - 0)2 removes the
unbiasedness from the distribution function estimate. The amount of the bias is
examined empirically in Figure 1 of Section 3.

'

The distribution function and variance for Y could also be estimated by fitting a
response surface to the model input-output based on LHS and then proceeding as .

with factorial designs. However, there is little incentive to do this when the desired
estimates can be obtained directly without the intermediate step of response ;

'surface construction. Techniques for sensitivity analysis for input generated with
Latin hypercube samples are the same as those previously indicated for the response
surface replacement approach.

Discussions of the use of LHS in uncertainty and sensitivity analysis are given
by Iman and Conover (1980,1982b), Iman, Helton, and Campbell (198ta,1981b), and
Harper and Gupta (1983). Applications of Latin hypercube sampling appear in,

| Downing, Gardner, and Hoffman (1985), Helton and Iman (1982), Cranwell et al.
| (1982), and Helton, Iman, and Brown (1983). Beckman and Whiteman (1983) give
i examples showing good and bad features of LHS in uncertainty analysis,

i

! i

!
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2.3 DIFFERENTIAL ANALYSIS

The last method to be considered in the comparison in this study is based on a
Taylor series expansion and the associated partial derivatives. With this approach,
the dependent variable of interest is treated as a function f of the independent
variables X , ..., X . Then, a first order Taylor series expansion for the model about1 k
some vector XO = (X10, . . . , XkO) of basecase values for the variables X = (X ,...,X )1 k
approximates f as follows:

f(X) = f(MO) + Z 0) (X) - Xj0). (2.7)
j 8XJ

The expression in (2.7) could be expanded to include terms with second order or |
higher derivatives, but is typically truncated after the first or second order
derivatives. The expansion in (2.7) generates a model of the form in (2.1).

The Taylor series approximation shown in (2.7) is the starting point for
uncettainty and sensitivity analysis techniques based on differentiation. The first
step in such an analysis is the generation of the partial derivatives required in the
series. If the function f appearing in (2.7) is relatively simple, then it may be '

possible to generate these derivatives analytically or by simple differencing |

schemes. Frequently, f is too complex to permit such simple approaches and more
involved approaches tailored to the particular model under consideration must be
used.

A typical analysis problem employing differential techniques involves a system
of differential equations of the form

dYj(X,,t)/dt = fj(Y(X,t),X,t] (2.8)

with the initial value condition Y (0) = Y j(X), where Z = (Ygno,Y ) is a vector ofO p
unknown functions and X = (X "". k) is a vector of variables that influence inillalI
values or derivatives for Y. It is desired to determine 8Y/8X[ for each element Xg
of X. In general, the equation in (2.8) is too complex to permit Y to be determined
and then differentiated. Rather, it is necessary to formulate a new problem which
enables a simultaneous numerical solution for both Y and 8Y/8X}. This now problem
is obtained by differentiating the expressions in (2.8) with respect to X}, which yields

8[dY)(X,t)/dt]/8Xg = 8( fj(Y(X,,t),X,t])/8Xg

8[Yj(0)]/8Xg = 8[Y j(d)]/8Xg j=1,....p. (2.9)O

i
,
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In turn, the preceding system can be reformulated as

d[8Yj(f,t)/8X ]/dt = 8 { fj[%(X,t),X,t]}/8X1i

p
+ E 8 { fj[%(X,t),X,t]} /8 Yq * 8[Y (X,t)]/8Xi Iq

q=1>

8[Yj(0)]/8X = 8[Y j(X{)]/8Xi j = 1,... ,p. (2.10)i O

The systems in (2.8) and (2.10) can now be solved simultaneously to obtain Y and
8%/8X . As it is necessary to solve the systems in (2.8) and (2.10) for each X , it isi i
common for this procedure to require a large amount of computation to obtain the
desired partial derivatives. It is sometimes possible to reduce the amount of
required computation by the use of specialized numerical procedures; some of these
procedures are discussed in Section 6.

Once the desired partial derivatives have been obtained, they can be used in a
Taylor series of the form appearing in (2.7). For uncertainty analysis, the Taylor
series approximation in (2.7) can be used in conjunction with Monte Carlo simulation
to estimate distribution functions. Further, this approximation can be used with the
relations in (2.2) and (2.3) to obtain expected value and variance estimates. For
sensitivity analysis, the coefficients in a Taylor series can be normalized as will be
discussed in section 3.4. Then, the values of these normalized coefficients can be
used to develop rankings of variable importance. Further, the relation in (2.3) can
be used to estimate the contribution of individual variables to the variance. The
relations indicated in (2.2) and (2.3) are really properties of linear models and thus
can be used with both linear regression models and Taylor series approximations.
The application of the Taylor series in this manner will be demonstrated in later
sections.

Differential techniques have been widely used in uncertainty and sensitivity
analysis and several introductory treatments are available (e.g. Tomovic,1963;
Tomovic and Vukobratovic,1982; Frank,1978). Examples of the use of differential
techniques include Morisawa and Inoue (1974), Atherton, Schainker, and Ducot (1975),
Dickinson and Gelinas (1976), Lee, Gieseke, and Reed (1979), Cunningham, Hann, and
Olsen (1980), Dunker (1981), Koda (1982), and Barben et al. (1982). Harper and Gupta
(1983) have made a comparison of LHS and differential analysis.
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3. RESULTS BASED ON THE PATHWAYS MODEL

3.1 THE PATHWAYS MODEL

DESCRIPTION OF THE PATHWAYS MODEL

The Pathways model represents the environmental movement and human uptake
of radionuclides. This model was developed at Sandia National Laboratories as part
of a project funded by the Nuclear Regulatory Commission for the development of a
methodology to assess the risk associated with the geologic isolation of high level
radioactive waste. The Pathways model is divided into two submodels. One of
these, the Environmental Transport Model, represents the long-term distribution and
accumulation of radionuclides in the environment. This model is based on a
mixed-cell approach and describes radionuclide movement with a system of linear
differential equations. The other, the Transport-to-Man Model, represents the
movement of radionuclides from the environment to man. This model is based on
concentration ratios. In this study, only the environmental transport submodel is
considered. Mathematically, this model is a system of linear, constant coefficient
differential equations of the following form:

dq/dt = h + Cq (3.1),

where q is a vector of unknown functions corresponding to the amount of each
radio- nuclide in different environmental components, h is a vector of radionuclide
source rates, and C is a coefficient matrix. The elements of C are functions of
various variables which are considered as part of the sensitivity analysis in this
section. When the system is suitably restricted and the input rate vector h is
constant, the system in (3.1) has a unique asymptotic solution to which all other

This solution is given by -C-l ; it is this asymptotic solutionhsolutions converge.
that is considered in this paper.

The Pathways model has been well documented. A four volume set of NRC
reports provides information about the Pathways model. A model description is
given in Helton and Kaestner (1981), sensitivity results appear in Helton and Iman
(1980), asymptotic properties appear in Helton, Brown, and Iman (1981) and effects of
variable hydrologic patterns are examined in Brown and Helton (1981). Additionally,
a two-part tutorial article on sensitivity analysis using the Pathways model for
illustration is given in Iman, Helton, and Campbell (1981a,1981b) with specific
sensitivity results appearing in Helton and Iman (1982). A self-teacliing curriculum
for the Pathways model is given by Helton and Finley (1982). The specific form of
the model considered in this analysis is described in Hetton, Iman and Brown (1985).

,

VARIABLES CONSIDERED IN THE ANALYSIS OF THE PATHWAYS MODEL

The formulation of the Pathways model used in this example provides
multivariate output for the movement of radionucildes in four environmental
components: (1) groundwater, (2) soll, (3) surface water, and (4) sediment. For
Illustration in this study, these components are associated with a hypothetical
hydrologic system consisting of a lake, the stationary sediments beneath the lake, an
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area of irrigated land surrounding the lake, and the portions of a shallow aquifer
which lie beneath the preceding areas of irrigated land and discharge into the lake. |
In the analysis, one radionuclide is considered in two of the preceding components.
In particular, the following output variables are considered: Y[ = amount (ci) of
Ra226 in soil, Y2 = concentration (cl/kg) of Ra226 in soil, and Y3 = concentration
(cl/L) of Ra226 in surface water. For this study the input to the Pathways model
has been reduced to the 20 variables in Table I that describe various physical
phenomena associated with the hypothetical hydrologic system as well as chemical
properties of Ra226. The variables in Table 1 are discussed in Chapter 5 of Helton
and Iman (1980), where the letter B is used in the designation of individual variables.
The following correspondences exist:

X -B , X -8 , X ~B X ~B
g g 3 5 9 g3, g3 20' - 17' 49

X ~ 6, X -B X ~BX ~B , ~

6 10 g4, g4 23' 18 502 2
X -8 , X ~B , X -B X -B ~

3 3 7 9 gg IS, 15 26' 19 51
X ~B , X -B X -B X -B X -8

4 4 8 12, 12 g 7, 16 28, 20 52

The variables in Table 1 are assumed to behave independently of one another and to
have the distributions and ranges given in Table 2.

3.2 SELECTION OF THE VALUES OF THE INPUT VARIABLES USED IN THE
ANALYSIS

THE FRACTIONAL FACTORIAL DESIGN

Prior to the actual analysis associated with a computer model, it is necessary to
define specific values for each of the input variables to be used on each run of the
model. For the portion of the analysis utilizing a fractional factorial design, two
levels (low and high) are used to represent each variable with k = 20 and m = 13
(following the notation given in Section 2). The endpoints of each of the ranges
given in Table 2 were used to represent the low and high values of each variable.
Thus, a 1/213 fraction of a 220 factorial design was used to produce a fractional
factorial design utilizing 27 = 128 computer runs, where each level of each variable
is used exacity 64 times. The actual design used was the smallest design that would
allow for the estimation of all main effects and 91 potentially important

interactions indicated in Table 6-3 of Helton and Iman (1980).

THE LATIN HYPERCUBE SAMPLE

For the portion of the analysis utilizing a Latin hypercube sample (LHS), an n x
20 input matrix is created where n is tne number of computer runs to be made. The
value of n = 50 was used with the LHS, corresponding to n = 2.5k (since b = 20). Due
to the random pairing of variables within the LHS, the correlation matrix associated

'

with the LHS is not the identity matrix as is the case with the FFD input. However,
the restricted pairing procedure of Iman and Conover (1982a) was utilized, which j
kept all off-diagonal rank correlations close to zero. In Section 5 of this paper, a
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Table 1. Input Variables Used with the Pathways Model

Xg Thickness of ground-water component (m)

X2 Porosity of ground-water component (unitiess)

X3 Discharge from ground-water component to surface-water component
(L/yr/m)

X4 Thickness of soll component (m) |

X5 Porosity of soll component (unitiess)

X6 Annual rate at which water flows through soil component to ground-water
component (m/yr) '

X7 Fraction of overland runoff that sufficiently mixes with soil component
materials to permit radionuclide exchange (unitiess)

X8 Regional erosion rate (cm/1000 yr)

X9 Fraction of solid material removed by erosion outside the soil component
that sufficiently mixes with soll materials to permit radionuclide
exchange (unitiess)

X10 Discharge of river 40 km above head of lake (L/yr)

Xg Discharge of a lower aquifer into the surface-water component (L/yr/m)t

X12 Volume of water in surface-water component (L)

X13 Thickness of sediment component (m)

Xg4 Porosity of sediment component (unitiess)

X15 Scale factor such that product of X15 and the mass of solids contained in
the sediment component is equal to the rate of sediment exchan
between the sediment component and the surface-water component (yr ge

,

when solid mass is expressed in kilograms)

X16 Fraction of suspended sediments entering the surface-water component
each year that are trapped in the lake and remain tnere permanently
(unitless)

Xt7 Distribution coefficient for Ra226 in the ground-water component (L/kg)

X18 Distribution coefficient for Ra226 in the soll component (L/kg)

X19 Distribution coefficient for Ra226 in the surface-water component (L/kg)
1

X20 Distribution coefficient for Ra226 in the sediment component (L/kg)

1
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Table 2. ~ Distribution and Range Used with Each
Input Variable to the Pathways Model-

Variable Distribution Ranoe

X Uniform 15 to 45g

X Uniform .1 to .4
2

I
X Uniform 2.7 x LO to 8.1 x 10'

3

X Uniform .25 to .75
, 4

X Uniform .25 to .75; 5
:

I X " I #* * *6

X Uniform 0 to .1
7

i X n rm 3 to B
8

X Uniform 0 to .1
9

12 I3
i X Uniform 7.5 x 10 to 2.3 x 10

10
7

|
X Uniform 2.6 x 10 to 7.7 x 10

gg

12 I3
X Uniform 9.5 x 10 to 2.9 x 10

12
'

-

X) Uniform .1 to .9
g

X Uniform .25 to .75g
*

X L gunif rm .01 to 1.0
15

'

|
X Uniform .7 to .8

16

X Logunifcrm 20 to 2000
g7

4

; X Logund rm 20 to 2000
18

X Loguniform 20 to 2000
g9,

<

X L gunif rm 20 to 2000
; 20

1

.

Y

i I

i

| i

'
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measure for spurious correlations called the variance inflation factor is explained
for use in conjunction with the DNET model. At this point, it is sufficient to
stat e that an identity matrix has a variance inflation factor of 1.00 and that the
associated rank correlation matrix for the LHS had a variance inflation facto. of
1.07, which indicates negligible correlation within the sample.

IMF DIFFERENTIAL ANALYSIS

The differential analysis approach does not have an associated scheme for
selecting specific values of the input variables, rather it provides local
information about each input variable at particular points that are deemed,
a priori, to be of interest. A "basecase" vector consisting of the expected values
of the variables listed in Table 2 was defined, and the first order partial
derivatives of the dependent variables with respect to the independent variables
were calculated at this "basecase" value. The Pathways model was sufficiently
well-behaved so that it was possible to use a numerical differentiation scheme to
obtain these partial derivatives. In addition, partial derivatives of the dependent
variables were calculated at each of the 50 LHS input vectors in order to see how
much variability would be encountered in local behavior from vector to vector.
Thus, some indication of the reliability of extending local information to a global
interpretation is provided.

A NOTE ON THE PROBABILISTIC NATURE OF THE INPUT

An important area worth noting at this point involves the probabilistic nature
of the input and output as indicated by the probability distributions assigned to
the variables in Table 2. If the objective of an analysis of a computer modelis to
gain an understanding of how it works and to identify important input variab'cs,
then some reasonably gross assumptions can be made with respect to the input
distributions (such as treating them as uniform distributions). However, if the
objective is to provide a meaningful estimate of a cdf of the output variables,
then meaningful distributions must be assigned to the input variables and care
must be taken to estimate the correlation structure among the input variables if
it is other than the identity matrix (i.e., all input variables are independent of one
another). The intent of this study is to demonstrate various techniques when a
multivariate structure has been provided, and thus, we do not address the difficult
question of whether or not the multivariate structure has been properly
formulated for the problems under consideration.

SCATTERPLOTS OF THE INPUT-OUTPUT RELATIONSHIPS AS A CUIDE TO
BETTER UNDERSTANDING OF THE MODEL BEHAVIOR

Once the specific input values have been defined, the computer runs are
made. It is tempting after completing these runs to proceed immediately with
response surface fits or whatever type of analysis is to be utilized. However, we
strongly recommend that, prior to any such analysis, scatterplots of each input
variable versus each output variable be made and carefully examined. Such
scatterplots can aid in determining if the model is working as intended (l.e., does
the input-output agree with engineering judgment?). Additionally, scatterplots
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may aid in identifying the need for transformations (such as logarithmic) or may '

show how several variables jointly influence the output. Examples of scatterplots
appear in Section 5 but are omitted for the Pathways model to conserve space. '

3.3 UNCERTAINTY ANALYSIS FOR THE PATHWAYS MODEL

ESTIMATION OF THE DISTRIBUTION FUNCTION OF THE OUTPUT

LHS is based on a probabilistic input selection technique (as is a simple Monte
Carlo procedure). When the actual output variable is graphed as an empirical
cumulative frequency distribution, an estimate of the cdf is obtained directly. As
was indicated in the previous section, the use of the restricted pairing with LHS
removes the property of unblasedness from the cdf estimate. The magnitude of
the bias was investigated by generating cdfs for Y , Y2 and Y3 based on a randomt
sample of size 500 and on a LHS of size 500 utilizing random pairing. As might be
expected, graphs of the cdfs arising from these two methods showed excellent
agreement. This process was repeated using a LHS with n=500 after incorporating
the restricted pairing technique. The results from using LHS with random pairing
and with restricted pairing were indistinguishable. Based on these results, it is
felt that the amount of bias introduced by the restricted pairing in the LHS is
probably negligible in problems of this type. A graph of the comparison of the
random sample and the LHS with restricted pairing is shown in Figure I for Y .

1

Model output based on input selected through the use of fractional factorial
designs cannot be used to provide a direct estimate of the output cumulative
distribution function since the input values are not selected in a probabilistic
manner. Rather, the output cdf is estimated by using a Monte Carlo simulation
with a fitted response surface of the form indicated by the linear model in (2.1).
Results of the response surface approach with n = 100 in the Monte Carlo
simulation are shown in Figure 2 for Yt and Y3* Y2 was very similar to Yg.
Figure 2 also contains estimates based on a LHS utilizing restricted pairing with n
= 50. For ease in comparing these estimates, an estimate of " truth" based on a
random sample with n = 100 has also been included in Figure 2.

The results in Figure 2 show that the LHS estimate is quite close to the
random sample estimate for both Yt and Y . The estimate for Y i3 n Figure 23
based on the response surface approach is in good agreement with the random
sample estimate, but the estimate for Yt is not in good agreement. It is worth
noting that the response surface estimate for YI would undoubtedly be improved
in a sequential manner through use of a more sophisticated experimental design.
The only attempt to do so here was to add a center point to the design. However,
we found that this had no affect on the results. No further attempts were made
in this direction since wo are not attempting to find the ultimate response surface
fit, but rather to demonstrate what can happen with a well known and frequently
used experimental design. It is also worth noting that a response surface can be
fit based on the LHS input and corresponding output. Ordinarily, this would not be
done to estimate a cdf since the output based on LHS yields such an estimate
directly, However, we did fit such a response surface and used a Monte Carlo
simulation with it to estimate the cdfs for Yg and Y . The results (not shown)3
were better than the FFD response surface estimate and in good agreement with
the direct LHS estimate.

3-6
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For the differential analysis (DA), the output cdf is estimated by
approximating the underlying model with a first order Taylor series as given in
equation (2.7) and then using a Monte Carlo simulation as was done with the
response surface fits to yield the estimate of the output cdf. A potential problem
with this method lies in the local nature of the Taylor series expansion. To
examine this point, the Taylor series expansion at the so-called "basecase" vector
was used with a Monte Carlo simulation and the results were compared with the
direct estimate from LHS. These two results appear in Figure 3 and are in
reasonably good agreement except for the lower 10% of the curves and some
noticeable separation in the middle. One might be tempted to say at this point
that "basecase" expansions give reasonable results. However, we caution the
reader concerning the difficulty of determining a "basecase" in many real world
situations and at the same time remind the reader of the very important point
that this approach does not have a probabilistic basis. To further illustrate local
behavior, we selected four of the 50 LHS input vectors to represent other possible
"basecase" values and used Monte Carlo simulation with the Taylor series
expansion about each of these points. The results are the curves labeled as 1,2,3,
and 4 in Figure 4 along with the direct LHS estimate. Of these estimates the one
labeled as "2" actually agrees better with the LHS estimate than does the
"basecase" estimate in Figure 3. The estimate labeled as "1" is quite good in the
lower tail but is not close in the upper tall. The estimates labeled as "3" and "4"
are both extremely poor.

1.
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ESTIMATION FOR THE OUTPUT VARIABLE
,

|

While a good estimate of the output cdf provides much information about the
output variable, various characteristics or parameters are frequently used to
describe the output variable. Some of the most frequently used characteristics are
the expected value or mean, the median, and the variance. Clearly, if one can
produce a good estimate of the output cdf, then it follows that these characteristics
can be estimated as well. .To shorten the discussion in this subsection, our
comments will be restricted to estimating the variance, as problems encountered
with. estimating the variance carry over to estimating the mean.

There are two principal reasons for wanting to estimate the variance of the
output variable. The first reason is to quantify the variability in the output.
Estimation can be done directly from the output values if the input values areq,
samp, led according to their joint probability distribution or it can be done in
conjunction with (2.3) utilizing a fitted model of some type. The second reason for
estimating the variance of the output is to obtain a ranking of the input variables

' based on their percentage contribution to the variance in Y. The idea behind the
ranking procedure is that, if a variable contributes only a negligible amount to the
variance, then its effect can be safely ignored; whereas, an input variable making a
significant contribution must be carefully considered. In this subsection, several
methods of estimating the variance are compared while the ranking of the input
variables on the basis of their individual contributions to the variance estimate is
considered in the next subsection. It is important to recognize that the variables
cannot be ranked if the variance is estimated directly as indicated above, i.e., the
calculation of the direct estimate shown in (2.5) does not identify the contribution
of the individual input variables as a byproduct.

To have a point of comparison for the various methods of estimating variance
considered in this subsection, the variances of each of the output variables Y , Y '1 2
and Y3 were estimated on the basis of a random sample. Since the Pathways
computer model is relatively inexpensive to run, a random sample of size 100 was

~

obtained from the variables in Table 2 and used to generate 100 runs of the model.
From these runs, the following direct estimates were obtained for the variance of
the three output variables:

V(Yg) = .300, V(Y ) = .195E-22, and V(Y ) = .888E-282 3

with corresponding 95% confidence intervals

(.231 to .401), (.150E-22 to .263E-22), and (.685E-28 to 1.198E-28).

If the output variables are normally distributed, then these confidence intervals are
meaningful. Unfortunately, the normality assumption is difficult to satisfy for
computer model output. For example, it is not satisfied for any of the output
variables considered in this study. Thus, the above confidence intervals may be
more than 95% or less than 95%. They will be referred to only as approximate 95%
confidence intervals in the comparisons that follow.

3-9



!

..,00 . . . . . . . . . . g
b.s000 - ' ~

I

>=
0
2 .scoo -

3
'

|

lb

g '7888
'

DIRECT ESTIMATE g .>
FROM LMS

O
" 5000 -

'g.
3
h.5000 -

~

E
eASECASE'

g .4000 -
_

b
.3000 -

"

W
.2000 -

~

s
p.ioco -

-

O
W ,,,,, . . . . . . . . .

.60. .200 .200 .600 1.00 1.40 1.00

AMOUNT OF RA 226 IN THE SOIL

Figure 3. "Basecase" Taylor Series Expansion Used to Estimate the CDF for Y,.
L

.000 , , , , , , ,, , , , ,

O 1
p . soot -

g -

O a
.8000 -

1
DIRECT ESilMATE
FROM LHS

g .7000 - 3 -

O
E . sono - 4

3
-

m
.5000 -

-E
P-
M .4ee0 - 2 -o 4 -

f
Q .3000 -

-

E

.2000 - ? -

2 ! a

b .3000 4g -

CO
, g3 ,

1. . . . . . . . . . . .,,,,,
; ..sco o. o s .soe 3.2e t.se 2.48 3.es 3.se'

| AMOUNT OF RA 228 IN THE SOIL

| Figure 4. Estimates of the CDF of Y for Various Potential"Basecases"
g

|

t

|

l

3-10

.__ _- - _ _ _ _ _ _ _ _ _



The reader may be concerned with the small size of the estimates for V(Y )2
and V(Y ). The small values associated with Y2 and Y3 result from the fact that the3
system was modeled with a unit radionuclide release and therefore these estimates
reflect the units being utilized.

In order to compare various methods of estimating the variance, the random
sample estimates were used as a standard. The following methods for estimating
the variance include one direct and two indirect estimates:

1. Direct estimate using (2.5) for output based on input generated by Latin
hypercube sampling from the variables in Table 2.

2. Indirect estimate using (2.3) for a response surface (RS) of the form in (2.1)
constructed using input-output generated through a fractional factorial design
psing the endpoints of the ranges in Table 2.

3. Indirect estimate using (2.3) for a Taylor series of the form in (2.7) constructed
using partial derivatives evaluated at the expected values of the variables in
Table 2.

Rather than listing the actual estimates obtained by each of these methods, the
percentage errors in relationship to the random sample estimates are reported. The
percentage error is calculated as follows:

A A

V(Y) - VRS(Y)Percentage Error = x 100 , (3.2)3

V RS(Y)

A A
where V(Y) is the particular variance estimate under consideration and VRS(Y) is the
estimate from the random sample. Since 0 i V(Y) < m, the percentage error is
bounded by -100 on the low side and infinity on the high side. The percentage errors
for the three methods are as follows:

Method V(Y ) V(Y ) V(Y )t 2 3

LHS -18 16 -12
RS -22 -80* 10

DA 2 23 -24"

The endpoints of the approximate 95% confidence interval given previously for the
random sample estimate correspond to percentage errors of -22.9% to 30.0%.
Therefore, any percentage error not falling inside this interval would correspond to
an estimate outside of the approximate 95% confidence interval. Such percentages
have been marked with an asterisk in the summary. These values show that only the
direct estimate (LHS) gives all three estimates within the approximate 95%
confidence bounds. The LHS method results from a calculation with equation (2.5)

| in relationship to an LHS. This calculation produces a biased estimate. The exact
i amount of the bias is small but unknown. However, if the assumption is made for

the Pathways model that the output is a monotone function of the nput (which is
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probably true), the bounds on the expected value of the variance S , found from2
2(2.6), are .98 V(Y) < E(S ) < V(Y) when n = 50 and the restricted pairing technique of i'

iman and Conover (1982a) is not used.
2

, The RS method results from using equation (2.3) with fitted response surfaces.
I Two of the three estimates for this method are contained in the approximate
! confidence interval. In interpreting these results, it should be kept in mind that the
t output response is basically nonlinear and that the RS method was based on choosing

the endpoints of the ranges in Table 2. If the response was linear, this strategy
would be near optimal. In summary, for the LHS and RS methods, it would appear

'

that more reliable estimates result from the direct LHS method than from the
indirect estimates through the evaluation of (2.3).

.

The DA method is based on a Taylor series expansion as in (2.7)in con} unction
with equation (2.3). The "basecase" evaluation in the DA method appears to give

j answers that are reasonable and competitive with those of the LHS method.
However, in evaluating the estimates from the DA method, it should be kept in mind!

that this method does not have a probabilistic basis and that it may be difficult to
define an appropriate "basecase" in most risk assessment settings. More
importantly, however, these estimates are a measure of local behavior resulting4

! from a Taylor series expansion about a single point and, as such, most likely cannot
j be safely extrapolated to a global interpretation. The nature of the local behavior
1 was further explored by using a Taylor series expansion with each of the 50 points in
'

the LHS and estimating the variance with each of these series. For V(Y ),39 of thet
50 estimates fell outside of the approximate 95% confidence interval (results not
shown). For V(Y ) and V(Y ), the corresponding tabulations were 39 of 50 and 41 of2 3,

| 50, respectively, outside of the approximate 95% confidence interval.
.

In summary, the indirect estimates seem to be less reliable than the direct
' estimate. Thus, since input variable rankings based on contribution to variance are
j derived from indirect estimates, the resulting rankings may or may not be

meaningful. This question is investigated in detail in the next subsection. As a final
comment, the reader is again cautioned that comparisons involving the confidence,

, intervals in this subsection have to be interpreted carefully since the normality |
1 assumption was not satisfied for the output variables. ;

i
; 3.4 SENSITIVITY ANALYSIS FOR THE PATHWAYS MODEL
i

| There are several methods for quantifying the relative importance of the input
j variables to a computer model. However, these methods do not necessarily yield the
i same conclusions. In this subsection several different methods of quantifying input
! variable importance are presented and compared. It is natural to rank each of the
; input variables on the basis of its influence on the output variable. Some methods
| provide for such an overall ranking while others are designed to select subsets
j consisting of only the most influential variables, it should be realized at the onset
2 that only a small subset of the input variables will tend to dominate individual

outputs for most computer models. Therefore, techniques providing rankings of all
! Input variables are best compared on the basis of the half dozen or so variables
i determined to be most important. Overall rankings and rankings within subsets are
j both considered in this subsection.
;

}
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RANKING INPUT VARIABLES ON THE BASIS OF NORMALIZED COEFFICIENTS

A linear regression model and a finite Taylor series can each be thought of as a
linear model of the form appearing in (2.1). The coefficients 8 in (2.1) depend on the

3units used for the input variables; as a result, the B will change as the units for the
J

variables are changed. Therefore, it is difficult to obtain a meaningful ranking of
the input variables based directly on the 8. Rather,it is necessary to normalize the

1coefficients to remove the effect of the units.

One such normalization procedure explained in Draper and Smith (1981) involves
normalizing the coefficients with respect to standard deviation. For_ linear
regression, the normalized coefficients are produced by substituting XJ = X) into
(2.1), subtracting the resulting equation from (2.1), and finally dividing both sides of
the equation by s to producey

(Y-9)/s 0)(s /s } ((X) - 2))/s }, (3.3)=y x) y

where Y X), s = [V(Y)]I/2 and s = [V(X )] 1 2are the usual sample calculations.y j

As o is known for each X in this problem, o could be used rather than sj .

However, it is convenient to use the values obtained from a regression program
utilizing the individual observations rather than to make this substitution.
Clearly,(3.3) could be expressed in a simpler notation as

"=Z8]X}. (3.4)

The value of Bj"he individual Xis a unit free measurement and can be used to rank the relative

while values of $ solute value of Oj"icate little
importance of t The larger the ab , the more
influence the variable X} has,).
importance for Xj. In a regression setting, Oj" is[ referred to as a standardized

close to zero ind

regression coefficient. One way of thinking of Sj" is as a measure of the fractional
change in Y relative to its standard deviation when Xj is changed by some fixed
fraction of its standard deviation. Therefore, an ordering of the absolute values of

S[lative to standard deviation.
provides a ranking of the variables on the basis of equal fractional changes

re

For the differential analysis, the corresponding normalization is obtained by
using the Taylor series expansion in (2.7). Each partial derivative in the expansion is
standardized as follows:

!

(8Y/8X) )(o # y) I3*S)'

x)
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where o is the population standard deviation of Xj arising from the probability dis-x
I s

tribution in Table 2 and the estimate 'cv is obtained from (2.3). The rankings arising
,

from (3.3) and (3.5) are given in Table 3 for each of the three Pathways output )
variables under the column headings DA (differential analysis), LHS (response j
surface from Latin hypercube samplina) and RS (response surface from the !

fractional factorial design). The actual standardized coefficients contain more

information about relative variable importance than the simple ranks given in Table
3; for example, the signs and absolute values for the coefficients are important.
However, use of the ranks makes comparisons within and across procedures easier.

Within Table 3, the DA and LHS techniques agree on the order of the top four
variables for Yg and Y , but show considerable disagreement after rank 1 for Y -3 2
The RS technique agrees with DA and LHS on rank 1 for Yg, Y2 and Y3 but shows
moderate to severe disagreement on the other ranks. Noteable is the rank of 4

assigned to X16 under Yi by RS while the LHS )echnique assigns rank 20. Also,
under Y , the RS technique assigns rank 17 to Xt t while LHS assigns rank 3. In both2
of these latter cases the DA technique gives an intermediate rank. In general, the
most disagreement within Table 3 for all variables occurs between the LHS and RS
techniques. Additionally, the most disagreement between techniques occurs for the
variable Y2 while the best agreement is associated with variable Y .3

In considering the entries in Table 3, it is important to keep in mind that
disagreements among rankings by the three techniques for variables of lesser
importance are of no practical concern since these variables have little or no impact
on model output. For example, it is important when DA and LHS agree on the top
three ranks for Y3 while it is unimportant that these techniques assign ranks 8 and
20 to X17. One way to measure agreement on the selection of the most important
variables is to compute the ordinary correlation coefficient on scores based on the
sum of the reciprocals of the assigned ranks in Table 3. For example, if there were
only four ranks involved rather than 20, the scores used in computing the correlation
coefficient would be St = 1 + 1/2 + 1/3 + 1/4, S2 = 1/2 + 1/3 + 1/4, S3 = 1/3 + 1/4,
and S4 = 1/4. Thus, under Y3 the correlation coefficient for DA and LHS would be
calculated using the pairs of scores: (1 + 1/2 + ... + 1/20, I + 1/2 + ... + 1/20), (1/2 +
1/3 + ... + 1/20, 1/2 + 1/3 + ... + 1/20), ..., (1/20, 1/6 + 1/7 + 1/8 + ... + 1/20)
corresponding respectively to the pairs of ranks (1,1), (2,2), ..., (20,6). If these pairs
of scores are plotted in a scatterplot, it is apparent that a premium is placed on
agreement of the most important ranks while pairs of ranks such as (10,6) have very
little impact on the calculations. The correlation resulting foc this case is .88,
which compares with a much smaller value of .63 for the correlation computed
simply on the ranks in Table 3. On the other hand, if the top ranks disagree
considerably then the correlation on sums of reciprocals will likely be much smaller
than the simple correlation on ranks. The scores based on the sum of the reciprocals
of the ranks are commonly referred to in the statistical literature as Savage scores
(see Savage,1956); however, their use in that literature has not been in association
with correlation as was done here. More information on measures of top-down
correlation can be found in Iman and Conover (1985). The comments given on
comparisons within and between techniques in Tables 3 and 4 are based on top-down
correlations using Savage scores. The actual top-down correlations appear in
Table 5. In evaluating the entries in Table 5, it is useful to know that a top-down
correlation is statistically significant at approximately the .01 level for n=20 if it is
greater than .53 and at approximately the .001 level if it is greater than .71.
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Table 3. Rankings ' f the Input Variables to the Pathways Model Based Ono
Standardized Coefficients

Y1 Y2 Y3
Input

Variable DA LHS RS DA LHS RS DA LHS RS

1 18 17 17 18 19 18 13 16 10
2 19 14 13 19 9 12 19 19 20
3 10 11 10 8 6 10 3 3 2
4 2 2 3 11 20 8 17 11 17
5 3 3 2 10 17 9 18 18 8

6 6 8 12 4 10 6 14 10 13
7 5 7 11 3 4 5 10 14 19
8 8 9 6 6 8 4 6 5 6
9 9 5 7 7 2 3- 16 17 18

10 4 4 5 2 5 2 1 1 1

11 11 10 18 9 3 17 4 4 3
12 17 16 20 17 18 16 12 12 15
13 13 6 8 13 7 14 7 8 7
14 15 19 14 15 15 13 9 15 9
15 16 12 19 16 11 20 11 7 12

16 12 20 4 12 12 7 5 9 5
17 14 13 15 14 13 15 8 20 11
18 I 1 1 1 1 1 15 13 14
19 7 15 9 5 16 11 2 2 4
20 20 18 16 20 14 19 20 6 16

A second normalization procedure involves multiplication by X)/Y, where XI
and Y correspond to a basecase run of the computer model. In the case of
regression, the coefficients are normalized as

hj(Xj/Y), (3.6)

and in the differential analysis, the partial derivatives are normalized as

(8Y/8X))(X /Y) . (3.7)J

The resultant coefficients indicate the effect on the dependent variable of
equivalent fractional changes of basecase values for the individual input variables.
Such coefficients are frequently referred to as normalized sensitivity coefficients.
The rankings from this normalization appear in Table 4 in a format similar to that
found in Table 3.
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Table 4. Rankings of the Input Variables to the Pathways Model Based on
Normalized Sensitivity Coefficients

Yg Y2 Y3
Input

Variable DA LHS RS DA LHS RS DA LHS RS

1 16 14 15 16 16 17 10 13 10
2 18 13 13 18 7 11 17 18 20
3 8 9 7 6 4 10 2 2 2
4 1 1 2 11 19 6 14 7 13
5 2 2 1 10 13 7 15 15 6

6 5 7 10 3 9 4 12 6 11

7 6 11 11 4 6 9 13 16 19
8 7 10 5 5 8 3 6 4 5

9 10 6 8 8 5 5 16 17 16
10 4 4 3 2 3 1 1 1 1

11 9 8 16 7 2 16 3 3 3

12 15 12 19 15 15 15 9 9 12
13 13 5 9 13 10 14 7 10 8
14 14 16 14 14 12 12 8 12 9
15 19 15 20 19 14 20 18 14 15

16 12 19 4 12 11 8 4 8 4

17 17 17 17 17 17 18 11 20 14

18 3 3 6 1 1 2 19 19 17

19 11 18 12 9 20 13 5 5 7
20 20 20 18 20 18 19 20 11 18

The best agreement within Table 4 occurs for Y3 where all three techniques
pick the top three variables in order. Strong agreement also exists between DA and
LHS for Yg but these techniques disagree after rank I for Y . The RS technique2
shows some degree of disagreement with both of these techniques under both Yg and
Y . In the six cases in Table 3 and 4, LHS and DA always agree on the top rank and2
agree on the order of the top four ranks in three of the six cases. For these same
cases, DA and RS agree on rank 1 in four of six cases. The same results also hold
true for LHS and RS.

Although based on different criteria, it is also of interest to compare
For Y , all threecorresponding techniques and variables between Tables 3 and 4. -

1

techniques show considerable disagreement with their analogs between Tables 3 and
4. For Y , the DA has the best agreement with its analog from lable 3 to Table 42 Under Y , all three techniques agree withwhile RS has the most disagreement. 3

,

'their analogs on rank 1, but only RS shows agreement on the top three ranks.
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A

$ Table 5. Correlations Computed on the Reciprocals of the Ranks
*

in Tables 3 and 4.

Output Within Within Between
Variable . Techniques Table 3 Table 4 Technlaue Tables 4 and 5

Yg | DA and LHS .92 .91 | DA .87
,

I I

I DA and RS .87 .82 | LHS .87
I I1

| LHS and RS .83 .76 | RS .78
L I I

I I
'
4

Y2 i DA and LHS .71 .79 | DA .97
I I.

'

| DA and RS .89 .83 i LHS .91
| |

| LHS and RS .72 .56 | RS .90
| |

| |

! Y3 | DA and LHS .87 .90 | DA .93
I I

| DA and RS .92 .95 | LHS .89
I |

| LHS and RS .85 .90 | RS .97

i

j-
VARIANCE OF THE OUTPUT
RANKING INPUT VARIABLES ON THE BASIS OF THEIR CONTRIBUTION TO THE

i
Another way of quantifying the relative importance of the individual input

' variables is by the percentage contribution each makes to the estimated variance of
,

the output variable (s). For both the Latin hypercube sampling and response surface
methods, the percentage contribution is obtained through the indirect variance

j estimate from equation (2.3) in conjunction with the response surface fit obtained
: from (2.1). For the Taylor series expansion, equation (2.3) is utilized in conjunction
; with (2.7).

If the input variables are independent of one another so that the covariance
term in (2.3) is zero, then it is easy to show that the rankings based on contribution

.' to variance from (2.3) and standardized regression coefficients from (3.3) are
oquivalent. The same is true for similar rankings based on the differential analysis.
Thus, rather than simply showing the same results over again, the ranking based on
contribution to variance will be illustrated after some improvements are made to

,

the regression model.'

The regression-based rankings presented in Tables 3 and 4 were based on the
model in (2.1) and included all 20 input variables, thus providing rankings for all 20

' input variables. This approach has some drawbacks. First, as previously mentioned,
rankings beyond the first few variables usually have little meaning in an absolute
ordering since only a few of the 20 variables actually turn out to be significant.
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Thus, it seems reasonable to consider ranking only within a subset containing the
most important input variables. Second, since regression techniques are easily
influenced by extreme observations and nonlinearities, more reliable rankings can
sometimes be obtained by first transforming the data.

! Thus, some modifications are made in the regression for this analysis. First,
'

the model in (2.1) is modified to be of the form

log Y = So + X SjX[ + ! Z B jX{X"j, (3.8)i

where X[ = (X j - X)/sxj has a mean of zero and a variance of cne. In the case of Xj

having a loguniform distribution, X[ ion (see Draper and Smith,
was computed on log X- Next, the model in

(3.8) is fit using stepwise regress 19 81). Stepwise
regression is a procedure for selecting only the most influential variables at a
predetermined level of significance in the construction of the fitted model. Thus,

,

not all input variables appear in the final fitted model. One way of measuring the
adequacy of the fitted model is through the calculation of a value called R2 (see
Draper and Smith,1981, for details), which indicates the fraction of variation in the
output variate explained by the independent variables appearing in the fitted model.

As an example of stepwise regression, consider the following results for Y2
based on the LHS input:

2
Sten Number Variable Enterina Model R

1 X18 .912
; 2 X7 .943

3 X10 ,969
4 Xgg .977
5 X6 .982

Thus, af ter five variables have entered into the regression model,98.2% of the
variation in Y2 has been accounted for. The order in which variables enter a

2 values that take place with thestepwise regression and corresponding changes in R
entry of successive variables also provide insight into relative variable importance.

The percentage contribution to the estimate of the variance of Y through (2.3)
appears in Table 6 along with the model R2 where appropriate. However, since the
model in (3.8) involved log Y, it is necessary to convert the estimate of V(log Y)
obtained from the regression model to V(Y). The first step in this conversion is;

' straightforward:

0(In Y) = (in to)2 Octog Y). (3,9)

|The second step involves an approximation arising from a Taylor series expansion of
,

In Y and is given as follows:'

|
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a a
V(Y) 5 [E(Y)]2 Ocin v),

(3.iO)

where log k(Y) = k(leg Y) and E(log Y) is determined as indicated in equation (2.2)
for E(Y).

The percentagea given in Tabla 6 do not total to 100 for each value of Y. In the
case of the fitted models (LHS and RS), the remainder is due to lack of fit. Fur the
DA method, only those variables are shown that contributed at least 1% to the total
variation. If the variables are ranked according ta the percentcges for the DA
method, the resultt are the same as Ihose shown earlier in this section. The ''

percentages in Tabla 6 for Yg lead to the selection of the fcu' most important
variables as determined by LHS in Table 3 and to the selection of the three most!

important variables as determined by the RS in Table 3. For Y , the varisle X i2 18 sidentified as dominant in Table 6 which is in agreement with the roeult.s in Table 3;
however, the ordering or, the less influential variables is diffarent for both the LilS
and RS approaches in Table 3. The disagreements among the rankings in Tables 3
and 6 can be attributed to the model used in (3.0). Generai y speaking, more rellable'

rankings can be obtained through an improved modd such as appears in (3.8) unless
the input-output relationships are very well behaved in a linear sense.

An examination of the values within Table 6 shous an c /erall good agreement
on variable ranking for all three methods, particularly ter Yg and Y; For Y , the3best agreement is t,etween the LH3 and DA methods but with no great areas of
disagreement. One might expect the LHS and RS methods to show reasonably good
agreement depending on the degree of nonlinearity (n the output; however,
agreement of the LHS and RS methods with the DA method may or may not be a
desirabic objective. The reason for this lies in the local ne.ture of the Taylor series
expansion and the selected "basecase." This will be examined in detall later in th'.s
section but first comments will be made on the interpretation of the values in
Table 6.

The percentage contributions of the variab!cs in Tcble 6 have to be interpreted
very carefully due to the complexity of the model and tha inherent dangers of linear
extrapolation. To illustrate this point, it would appear that X[g contributes
approximately 80% to the variance in Y[ and thus it would seem reasonable to ask if
the variance will decrease if X18 is held constant. To answer this question, the
random sample of size 100 used in the previous subsection was modified by setting
the value of X18 equal to 25 on all 100 computer runs of the model. The value of 25
corresponds to the .05 quantile for X18 on the basis of the probability distribution
given in Table 2. Two additional sets of 100 runs were made by first setting X18
equal to 200 and then to 1589, corresponding to its .50 and .95 quantiles,
respectively, The percentage change in the variance of Yg, Y , and Y3 was recorded2
in relationship to the random sample estimates given in the previous subsection.
This procedure was repeated using the same quantiles for X o. The results aret
summarized in Table 7.

The values in Table 7 clearly indicate that X[a plays an important role in
influencing V(Yg) and V(Y ) but has no significant effect on V(Y ). However, the2 3
percentage change in the V(Yg) varies from a reduction of 99.8% to an increase of
70.1% as Xgg increases. The percentage change in V(Y ) varies from a reductio 1 of299.9% to an increase of 39,7%.

3-19



. - _ - _ _ _ _ - _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _

Table 6. Percentage Contribution to the Estimate of the Variance of the
Output for Three Different Methods of Estimating the Variance Using
the Model in (3.8)

Output Input
Variable Variable LHS RS DA

Y X 6 6 6g 4

X 6 5 63

X 3 2 27
,

X 210

X 80 80 7718
2Model R : 97.4 % 94.5 % --

,

Y X I I Ij 2 6

X 3 2 2; 7

| *8 0 1 0

X 0 1 09

| *10 3 2 3
(

X 1 0 n
gg

X 1 89 r,ril
18

2Model R : 98.2% 96.3 % --

Y X 5 8 6
3 3

X 75 66 77i 10

X 8 5 5gg

X 7 6 8g9

'

X16*19 3 0 0
|

XX 0 6 03 10
2Model R : 97.0% 91.2 % --
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Table 7. Percentage Change in the Variance Estimates When Xl8 and X10 Are
lield Constant at Each of Three Different Quantiles

.V_A_RI,A_Bl_f RUANTILE V(Yg) V(Y ) V(Y )2 3

X18 .05 -99.8 -99.9 0.1
.50 -91.5 -95.0 0.0
.95 /0.1 39.7 -0.1

X10 .05 51.9 55.4 -43.0
.50 -16.0 -11.4 -80.9
.95 -48.9 -45.1 -92.5

In the case of X 10, the percentage reduction in V(Y ) ranged from 43.0% to3
92.5%. It is interesting to note that X10 played a minor role in Table 6 with respect
to Y g and Yp. liowever, Table 7 indicates that when X go is held fixed at either of
its .05 or .95 quantiles it has a major influence on V(Y g) and V(Y ). Hence,2
estimates such as given in Table 6 must be interpreted carefully, keeping in mind
the complexity of the underlying model, as they could be misicading.

One should not concentrate only on the change in variance of the output
variable, but should also consider the change in location as measured by the mean or
median, or the effect on the distribution function. This is important because
changes in variab!cs are frequently accompanied by changes in means. To
demonstrate this point, estimated COF's for Yg have been plotted in Figure 5 for a
random sample of size 100 and for the random sample modified by fixing X 18 at
each of its .05, .50, and .95 quantiles. Figure 5 makes it clear that there has been a
large (99.8%) reduction in the V(Yg) with X 18 held at its .05 quantile: however, the
location has changed dramatically. I.lkewise, with X g held at its .95 quantile, thet
variance increases by 70% but the location changes considerably, as indicated by the
median increasing by a factor of 5. Figure 6 is similar in construction to Figure 5
except that Xgo has been held fixed at each of the three quantiles rather than X18-
Since X IO has a minor influence on Yg, as indicated in Table 6, the change in th-
estimated CDF's is much less than in Figure 5; that is, neither the variance u:-
location are influenced much by X 10 Results for Y2 and Y3 are not shown.
Ilowever Y2 was affected in a manner similar to Yg, while Y3 was influenced
heavily by X 10 and not at all by X gg.

BANKING TJ IEAIPUT_VARIA_Bl.ES ON T, LIE _ B_A_SijlO,F_P_A_f3TJ A_L R ANK
CORRFl.ATlON COEFFICIENTS

Methods presented thus far in this subsection have ranked either all of the
variables or a subset utilizing stepwlso regression with an improved model in an
effort to obtain more reliable results. The last method to be considered is hybrid in
the sense that it is regression based but avoids the transformations appearing in (3.8)
and can be used to rank either all variabics or only thoso within a subset.

,

if runs of a computer model are made with many input variables changing
simultaneously, it can be difficult to sco the sensitivity of the output variable Y to
tho individual variables Xj. One way of quantifying such sensitivity is by

3-21 ,



_ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

i-

;m
,

I.9 3

O 3

;- .8

M
f .7

.6

5 '$ .5

E
.4

0 .3

%
b .2

$ l. easson taspLt
w 2. sie e4LO Flat 0 at .e5 eussetitt

*I 3. sie e4LO Flat 0 at .30 cuant ttt '
4. sie esto atut0 at ss tantttt

D.
0.0 .40 .80 1.2 1.6 2.0

AMOUNT (Cll 0F RA226 IN THE soll

Figure 5. CDF Estimates for Y g Showing the Impact of Holding X gg Fixed at
different Quantiles Versus the Estimate from a Simple Random Sample
of Size 100.

1. j. s
.9

h .8 e

$ 1 J

e .7 .

.6
5 0
$ .5

E

y .4

0 .3

a
L .2
$ 1. W Sas*LE
w 7. sie 440 Flut0 at .99 GLani'itt

*I 3. BIG e4LO flut0 at .Se cuantitt '
4. sie seLO flat 0 at .sl massettLE

0.
0.0 .40- .80 1.2 8.6 2.0

AMOUNT ICl3 Or RA226 IN THE solL

Figure 6. CDF Estimates for Y g Showing the impact of Holding X go Fixed at
different Quantiles Versus the Estimate from a Simple Random Sample
of Size 100.

3-22



calculatinij the partial cor relation coefficiemt. ihe p.u tial coirelatino coefficient
stif fers from a simple cor relation coefficient in that it measures the de<jrne of linear
relationship helween the Xj and Y af ter makinij an ailjustment to remove the linear
of fecl. of all of the remainin() variables. t he acloat i.alculation involves lindiotj the
inverse of the cor relation mat rix t.' between the inclividual Xj's and Y hased on n
compoter runs. Ihe inverse anal rix can be weilien as f ollows:

1/(I -it - ) c c b /(l 142)2
x 12 Ik l y..

g

b /(l i{ 2 )l/I 'l<2 I "A 2 ye *
,, 21 $

... ...
.. ...

2
/I <2 ) -b /(L it;)c "k2 p'''

kI x

2 2 2
b /(! 14 ' ) I /( t it ' ) b /(l -It2) 1/(! Ity)

! y y k y...

Ihe vaine bj in (: is the st andardi/ed s eijression roof ficient in cijuation (5.4); the'I
value f(y is the coef ficient of determination (i.e.,l(2 value) from retpe.sint) Y on

., X , and the valoc f(2 ) s the coef ficient of determination from retjtessint) XjX g, k

on Y , X g , ..., X ) . g , X j ,1, ..., X -k

Ihe partial cor relation coef ficient for Xj and Y is obtained directly from C 'I as

Il yy)1/2p c. /(c c
x)

ly

I herefore, the partlat correlation coeIficient can be wtitten as

2
2 1 14

b /( t -itY) I- (3.1 !)
x

I b
p*)Y

2 )][1/(! 14y)]

:
I 1 142

[1/(t -14 y

x);

I.ituation (3.1|} shows the close relationship between p and b ; however, it is
g
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Important to recognize that they yield different types of information. Standardized
regression coefficients are derived from a conditional univariate distribution, while

|partial correlation coefficients come from a conditional bivariate diatribution.
Partial correlation coefficients allow one to judge the unique contribution that an
explanatory variable can make. Standardized regression coefficients are equivalent

t

to partial derivatives in the standardized model. |

It is important to recognize that the quantity in (3.11) will not provide a
reliable measure of sensitivity when the relationship between Xj and Y is basically
monotonic but nonlinear or if there are outtlers (extreme observations) present. To
avoid this problem, each of the individual variables XJ and Y can be replaced by

;their corresponding ranks from 1 to n and (3.11) can be computed on these ranks.
|This transformation converts the sensitivity measure from one of linearity between >

Xj and Y to one of morv:, conicity between Xj and Y. The result of this calculation is !

called the partial rr. * correlation coefficient (PRCC). A computer program for r

making such calculations has been developed at Sandia National Laboratories (Iman,
Shortencarler and Johnson,1985). This program will also calculate the standardized l

regression coefficients on either the original observations or their ranks.

The PRCC provides a number between -1 and I such that PRCCs near -1
Indicate the Y decreases as X increases while values near 1 indicate that X and Y
increase together. Values near zero indicate no monotonic relationship exists.
Thus, the PRCC can be used to provide a ranking of the input variables. The PRCCs
have been calculated on the basis of input from LHS (n = 50), random sampling (n = ;
100) and a fractional design (n = 128). The resulting rankings of the more important

7

variables appear in Table 8. The rankings under Yg are in absolute agreement for all '

three methods. For Y , the three methods agree on the top three rankings with2 -

some disagreement for lower ranks. For Y , agreement exists on the most ;3
important variable, but some permutation occurs among ranks 2, 3, and 4. However,
the rankings overall are in good general agreement with those of the methods
presented earlier in this subsection. Before summarizing the results of this section,
the local behavior of results based on partial derivatives will be examined in more !

detall.
>

EFFECTS OF THE CHOICE OF THE BASECASE FOR A DIFFERENTIAL ;
SENSITIVITY ANALYSIS l

!
l

The selection of a "basecase" value in differential analysis was brough up i
earlier in this section. The following discussion is intended to illustrate the effects (
that "basecase" selection can have on the outcome of a sensitivity analysis. Figure 7 ,

! lllustrates the effect of changing one variable while all the remaining variables are !

i held fixed. The horizontal dashed line in Figure 7 shows aYg/8X$ calculated at the |
: expected values for all 20 variables and normalized as in (3.7). The curve in Figure |
; 5 is generated by fixing all independent variables except X$ at their expected values |
| while X5 s assigned the values selected for it in the previously used LHS. |i
j
i

i

| '

i :

I
t

-

I
i
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Table 8. Rankings of the five most influential input variables affecting Yg, Y .2
and Y3 based on the PRCC computed on a LHS with n = 50, a random
sample (Random) of size n = 100 and 128 fractional factorial points (FFD).

Yg Y2 Y3
Input

yariable LHS Random FFD LHS Random FFD LHS Random FFD

3 2 3 2
4 2 2 2
5 3 3 3

6 (14) 4 4

7 5 5 5 3 3 3

8 5 (6) (6) (7) 5 5

9 8 9 5

10 4 4 4 2 2 2 1 1 1

11 4 (9) (11) 3 4 4
16 5 (6) (8)
18 1 1 1 1 1 1

19 (9) 5 (7) 4 2 2

Then, aYg/aX5 is calculated and normalized as t,efore. As indicated by the two
curves in Figure 7, a large amount of variation can be induced by changing the value
of a single independent variable in the calculation of a normalized partial derivative.

Figure 8 provides another illustration of the effect of the "basecase" point on
the calculation of partial derivatives. This figure shows aY /aX9 calculated at2
each of the 50 points in the previously used LHS and normalized as in (3.7). Thus, in
contrast to the situation shown in Figure 7, all 20 independent variables are
changing for each partial derivative. That is, the "basecase" point is moved about in
a 20-dimensional space to 50 different locations. As readily seen, the value for the
normalized partial derivative varies from approximately 0 to .5 Each of these
normalized derivatives is correct at the particular location selected; however, it
clearly would not be safe to extrapolate away from any local puint.

The effect of the choice of a "basecase" value on the estimation of the variance
is illustrated by using a Taylor series expansion at each of the 50 LHS points and
using these expansions to estimate the variance of Yg, Y , and Y . Results for Yg2 3
are given in Table 9, where the vectors have been ordered from the smallest input
value used for X a to the largest input value used for X18. Results are given fori
each variable that contributed at least 1% to the variation in Y for some run. The
last columq of this table contains the percentage orror of the variance estimates as
calculated from equation (3.2) using the previously indicted random sample of size
100.
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_ _ _ . _ _ _ _ . _ _ _ _ _



_ _ _ _ _ _ _ - _ - - - - _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ - - - _

t. .

, * +:5' >,

E .50C 'N,,
'

't .
: - 'N,',-.,

. .. .h.... . . . .0 '.00 .

N
.. ...

'.:.:'
I 's\

..e.- %..

. 2
; -

_-:.0:
:

5-:.:*
-2.!:

5-:.~5
-3.00

2.5 3. 5 4.S S.S 6.5 ?.?
SAN;E Cr t N; r rt et s t gas:49,g 5 age -8

I ityire '/. lichavior of (BY ;/0X Q(X i/Y ) as a function of X y the bori/ontal line
represents the par tial derivative calculated at the expect ed values of
the Xj.

.6

.S,,

E .4

.3
4

b .2

g .i
' -

r a /, J a y t'J u .,q ,,

ps y y I*q, pIs
-

.., .

i '
|\f |, j\ f

s2
!w

.3

v
.4

,

a

7 .S

E

C. .2 .4 .6 .6 1.

at.NGt of 1%[P[NC(N1 VADIAB.I 9 'lI'

Iigurefl. Ilch,1vior of (dV /DX,j)(X,j/Y ) at '20 points in a I iIS.7 7

5 76



. . . - . .. . . . _ _ - _ _ _ - - . .- .. .- - - . - _ . - . _ . . . - . ,_-. - _

.

Table 9. Percent contribution to the variance of. Y g listed by run number and
input variable number. The order of the table entries has been
determined by the input values used for X18 (from smallest to largest).
The last column contains the percentage error on the variance estimate.

.

Run
No. .X4 X5 X6 X7 X8 X9 X[o X18 X19 P.E.

1 0 0 0 0 0 0 0 99' O 43'

2 0 0 0 0 0 0 0 99 0 -62
3 0 0 0 0 0 0 0 99 0 -78

| 4 0 0 0 0 0 0 0 99 0 75
5 0 0 0 0 0 0 0 99 0 2041
6 0 0 0 0 0 0 0 99 0 34

i 7 0 0 0 0 0 0 0 99 0 -45

i 8 0 0 0 0 0 0 0 99 0 906
9 0 0 0 0 0 0 0 99 0 728
10 0 0 0 0 0 0 0 99 0 1400

11 0 0 0 0 0 0 0 99 0 133
) 12 0 0 0 0 0 0 0 99 0 240
! 13 0 0 0 0 0 0 0 99 0 31

j 14 0 0 0 0 0 0 0 99 0 14

i 15 0 0 0 0 0 0 0 98 0 -82

] 16 0 0 0 0 0 0 0 98 0 -47
17 0 0 0 0 0 0 0 98 0 0

| 18 1 0 0 0 0 0 0 97 0 -35
i 19 0 0 0 0 0 0 0 99 0 35

! 20 1 0 0 0 0 0 0 97 0 -21

| 21 0 0 0 0 0 0 0 98 0 64
; 22 0 2 0 0 0 0 0 94 0 124

! 23 1 2 0 0 0 0 0 95 0 -29
4 24 0 2 0 0 0 0 0 95 0 20
| 25 1 1 0 0 0 0 0 96 0 69

26 5 2 0 0 0 0 1 89 0 -59
27 1 2 0 1 0 0 0 93 0 61

| 28 2 4 0 0 0 0 1 90 0 -54
| 29 1 1 0 0 0 0 2 92 0 356

30 5 2 0 0 0 0 1 86 1 -23

! 31 9 2 0 1 0 0 2 82 1 17

1 32 13 9 1 3 0 1 1 69 0 -50
t 33 16 4 1 3 1 2 4 61 2 -2

34 3 18 1 2 1 0 2 69 0 -4
35 5 7 1 3 0 0 7 72 0 524
36 5 6 1 2 0 2 6 71 3 184

i 37 5 8 0 1 I O 12 67 0 128 |

38 19 6 1 2 2 0 5 59 1 -5
39 8 6 2 5 2 10 8 49 2 195

40 14 8 1 3 6 0 8 54 0 79
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Table 9 (Continued)

Run
No. X4 X5 X6 X7 Xg X9 X10 X18 X19 P.E.

41 35 24 0 2 4 4 3 22 1 -87
42 9 17 2 6 8 1 6 46 0 17
43 11 26 2 5 1 13 6 28 2 50
44 7 56 1 2 6 3 4 16 0 -46
45 31 15 2 5 8 1 11 20 0 150
46 36 10 2 6 12 4 6 19 0 43
47 18 21 2 5 0 19 9 18 1 113
48 27 12 1 3 1 22 12 12 4 234
49 19 32 0 1 10 7 14 4 7 -9
50 44 17 0 1 9 13 6 2 2 -57

The results in 1able 9 are quite revealing with respect to local behavior and its
extendibility to global interpretation. In lables 3,4,6, and 8, X18 was identified as
the dominant variable influencing Yg. In 1able 9, the influence of X g on V(Yg)t
decreases from 99% to 2% as X18 increases. In eight of 50 cases, Xgg was not
designated as the dominant variabic. Furthermore, in those cases wherc X18 was
identified as contributing 99% to the variation in Yg, the percentage error on the
variance estimate ranged from -78% (run 3) to 2041% (run 5). There does not seem
to be any discernible pattern in the behavior of the percentage error as X

18
increases. Other wide variations on percentage contributions are noted for X4 (0%
to 44%) and X3 (0% to 56%). Similar results occurred with the analysis on Y -2

An interesting result appeared in the analysis for Y. The variables3
contributing to V(Y ) for the 50 LliS runs are listed in Table 10, where the entrics3
have been listed in increasing order of the input values used for the dominant
variable X10 First, the percentage contribution from Xgg varies betwoon 50% and
86% with no discernible pattern as X i10 ncreases. This is much more stable than the
results shown in Table 9 for X18. Second, a very definite pattern does appear in the
column containing the percentage error of the estimates. The first 22 entries show
21 positivo entries and the last 28 show 27 negative entries. Hence, small values of
X10 lead to an overestimate of the variance calculated from the random sample,
while largo values lead to an underestimate of this varianco. In this example, the
observed behavior of estimates for V(Y ) is due to the fact that estimates for E(Y )3 3
derived from 1aylor series expansions are decreasing as Xl0 increases. In this
regard, it is important to recognize that variance estimates for Y3 are being made
with respect to different estimates for E(Y ). This is also true for Yg. Overall, it3
can be quite precarious to extend estimates of variance based on local behavior to a
global interpretation.

1ho preceding results indicate a difficulty with differential analysis based on
behavior at a single point in the input variable space. Such an analysis might be
appropriate in a setting where all of the input parameters were essentially fixed and I

one was interested in the effects of small perturbations in the input parameters or
t

when the model is essentially linear, However, this is generally not the case in risk

3-20
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Table 10. Percent contribution to the variance of Y3 listed by run number and input
. variable number. The order of the tabic entries has been determined by
the input values used with X o (from smallest to largest). The last columnt
contains the percentage error on the variance estimate.

.

Run
No. X3 X8 X10 Xg X16 X19 P.E.t

I 6 0 77 5 0 9 112
2 6 0 82 5 0 4 406
3 5 0 67 4 0 22 79
4 6 0 84 5 0 2 416
5 5 1 70 4 14 2 119
6 6 0 81 5 0 6 157
7 6 0 79 5 0 8 76
8 5 4 69 4 4 11 35
9 6 0 82 5 0 3 36
10 5 0 64 4 0 25 155

11 6 0 85 5 0 1 128
12 5 0 69 4 0 20 49
13 5 0 74 5 0 14 128
14 5 1 75 5 6 5 0
15 4 0 63 4 0 26 50
16 6 0 78 5 0 10 54
17 6 5 80 5 1 1 25
18 6 0 79 5 0 8 52
19 4 12 56 3 13 7 -55
20 6 0 86 5 0 0 94

21 5 1 72 5 2 13 34
22 6 0 86 5 0 1 30
23 6 0 77 5 0 10 -18
24 6 2 78 5 1 6 -4
25 3 8 50 3 !! 21 -59
26 6 0 85 5 0 1 -36
27 6 0 86 5 0 1 -25
28 6 0 83 5 0 3 5

29 6 0 81 5 5 0 -56
30 6 0 77 5 0 10 -20

31 5 3 73 5 2 9 -41
32 6 0 85 5 0 0 -45
33 5 0 71 4 1 17 -18
34 6 0 82 5 2 2 -59
35 5 8 73 5 4 3 -75
36 5 0 74 5 0 13 -33
37 4 1 63 4 0 25 -41
38 4 0 63 4 0 26 -19
39 5 9 74 5 3 1 -61
40 6 0 78 5 0 9 -58
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Run
No. X3 X8 X10 Xgg X16 Xgg P.E.
41 4 0 55 3 1 34 -42
42 6 0 82 5 3 1 -56
43 6 0 82 5 0 5 -71
44 5 0 66 4 0 23 -58 j

,
45 5 0 72 5 0 16 -47
46 5 0 76 5 0 12 -69
47 6 0 86 5 0 1 -69
48 5 0 76 5 0 12 -73
49 5 0 72 5 0 16 -76
50 6 2 79 5 0 5 -78

assessment problems where a great deal of uncertainty is associated with the input
values. The analysis shows the value of using multiple points with a differential
analysis, such as the points generated by the LHS in the present example.

!
3.5 SECTION SUMMARY

In this section, three frequently used techniques for performing uncertainty
analysis and sensitivity analysis were compared on the basis of estimating the cdf(s)
of an output variable (s) from a computer model given input cdfs and on the ability to
rank the input variables to the model by each of several different criteria. The
computer model used in these comparisons, called the Pathways model, represents

! the environmental movement and human uptake of radionuclides. The version of the
'

Pathways model used in these comparisons is relatively simple, consisting of a
sy stem of four linear, constant coefficient differential equations. The Pathways

,

n odel requires 20 input variables that behave independently of one another and
Froduces nonlinear output which is a monotone function of each of the input
variables.

UNCERTAINTY ANALYSIS

The response surface replacement for the Pathways model used 128 computer runs
based on input selected by a fractional factorial design which, when used with a
Monte Carlo simulation according to the input distributions in Table 2, produces an
Indirect estimate of the output cdf. A Monte Carlo simulation of the Taylor series

; expansion about a point also yields an indirect estimate of the output cdf. On the
other hand, a direct estimate of the output cdf is obtained from the LHS generated
from input values which have the multivariate input structure described in Table 2.
Whqn this input is supplied to the computer model, an estimate of the output cdf,
conditional on the assumptions in Table 2, can be produced directly.

Figures 2 contains three estimates (two direct and one indirect) of the output cdfs I

for Yg and Y The estimates from LHS (n = 50) and random sampling (n = 100) are3
in good agreement for both Yg and Y . The estimate for Y 3 ased on a Monte Carlob3

| simulation with the fitted response is quite good while the corresponding estimate
for Yg is quite poor.

1
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Iigure 3 shows the indirect estiinate of the output cdf obtained by using a
Monte (;arlo sirnulation with the laylor series expansion about the "basecase" to be
in good agreement with the 1.115 direct estimate. Ilowever, f igure 4 shows that
other choices of basecase points can produce widely varying results, and as such, it
wonhl be dif ficult to place much faith in estimales such as these. More detail on
estimates arising from laylor series expansions about basecase values is provided in
iho ncxt section,

lhe estimation of the variance of the output by several different indirect and

direct methods was considered in this section. In general, as one might suspect, the
direct variante estimates tend to produce a more reliable rneasure of spread than do
the indirect variance estimates. Ilowever, since variance is not a robust measure of

spread for output of the type considered in this paper, its use is precarious at best.

,SFN lilVII Y ANAL _YSISt

I our rnethods of incasuring variable influence were considered in this section.
'I hose methods are as follows:

1. lhe relative si/c of the absolute value of standardi/cd coefficients (see
I able 3).

7. lhe relative si/c of the absolute value of normalized sensitivity

cocificients (see 1 able 4).

5. f;ontribution to variante af ter improving the fitted regression model (see
~l able (,).

4. lhe relative si/c of the absolute value of the partial rank correlation

coefficient (see lable 8).

14anking of the input variables is important because it allows research efforts to be
guided in the proper direction to reduce uncertainties. Although each of these
methods can be used to rank the relative importance of all input variables, it is
usually sufficient to compare different techniques for ranking on the basis of their
ability to identify the roost influential variables. 1 hat is, if a variable is not
important, then there is no need to concern oneself with the fact that it received
ranks of 13, t /, and 20 by three different methods of ranking.'

Methods I and 3 above are based on the same calculation and are therefore
equivalent. Ihus, the apparent difference in rankings between lables 3 and 6 is not
dltributablO to a differetice in methods but rather to the fact that Method I was
used to rank all variables utill/ing the original variables, while Method 3 was used to

i rank a subset of the variables after an attempt had been niade to ignprove the fit of
the model, as indicated in (5.8).

' Method 7 utill/cs a different critorion for ranking than the other methods
considered, and hence will not necessarily produce rankings in agreement with the
other methods. Specifically, Method I is based on ranking variable importance due

|
lo the effects of changing variables by equal fractions of their standard deviations

' while Method 7 is based on rar. Ling variable importance due to the ef fects of

i
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changing variables by equal fractions of their basecase values. This point is quite
evident when rankings in Table 4 are compared with rankings in Tables 3,6, and 8.
Method 2 provides good information with respect to variable influence about a point
and is therefore most likely to be used with a differential-based analysis. However,
there is great potential for providing erroneous results when this local information is
extrapolated to a global interpretation. This point is clearly demonstrated in
Figures 7 and 8.

Method 4 relles on the use of ranks to overcome difficulties with relationships
that may not be well behaved in the sense of either extreme observations or
monotonic nonlinear relationships being present. Standardized regression
coefficients can also be computed on ranks to overcome these same difficulties.
These methods cannot be used with a differential analysis, but are quite effective
when used with either a LHS or a random sample. The calculation in (3.1:) is quite
easy to do and can be performed on either the original variables or on their ranks.
This method is demonstrated with time-dependent output in the next section with
the MAEROS model.

The variability of the cdf estimates in Figures 2, 4 and 5 might lead one to
suspect that the rankings of input variables would vary greatly from LHS to RS to
DA for a given method of ranking. This did not occur as each method of ranking
proved to be fairly robust with respect to different approaches to sensitivity
analysis. This result is mainly attributable to the simplicity of the Pathways model
and to the fact that a single input variable tended to dominate each output
variable. In the next section it will be shown that this robustness may not hold up
with a more complex model.

:

|

|
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4. RESULTS BASED ON THE MAEROS MODEL

4.1 THE MAEROS MODEL

DESCRIPTION OF THE MAEROS MODEL

The MAEROS model represents multicomponent aerosol dynamics.
Mathematically, the model is a system of differential equations of the form

dY)(X,t)/dt = f)[Y(X,t), X,t]

= s) (X) + Sajk (X) Y (X,t) + S S b)pg (X) Yp (X,t) Yg (X,t) (4.1)kk kR

with the initial value condition Yj(0) : Y j(X), where some zero coefficients areO
included for notational convenience and, X is used to represent model input. This
model was developed at Sandia National Laboratories under NRC sponsorship to
represent aerosol behavior in reactor accident assessments. The model calculates
acrosol composition and mass conccnetration as a function of particle size and
time. The processes that may be incorporated are (1) coagulation due to Brownian
motion, gravity and turbulence; (2) particle deposition due to gravitational settling,
diffusion, and thermophoresis; (3) particle growth due to condensation of a gas,
typically water vapor; and (4) time varying sources of particles of different sizes
and chemical compositions. Operation of the model involves two numerical steps.
The first step is numerical evaluation of a number of single and double integrals to
generate the coefficients for the system of differential equations. These
integrations involve functions of the input variables which will be considered as part
of the comparison contained in this section. The second step is the generation and
numerical solution of the system of equations. Documentation for the MAEROS
model includes a user's guide by Gelbard (1982) with the numerical procedure given
in Gelbard and Seinfeld (1980). Additional background with respect to the analysis
problem considered in this section is given in Helton et al. (1985).

Whereas the Pathways model of the previous section consisted of a set of linear
differential equations, MAEROS consists of a set of nonlinear differential
equations. Additionally, MAEROS produces time-dependent output rather than the
single values of the dependent variables obtained with Pathways. Another important
difference between the two models lies in the additional complexity of the
multivariate input structure for MAEROS.

VARIABLES CONSIDERED IN THE ANALYSIS OF THE MAEROS MODEL

The problem considered in the analysis with the MAEROS model involves the
behavior of a two-component aerosol in a reactor containment building. The first
component is assumed to have been released early in a reactor accident; the second
component is assumed to be continuously released as the accident progresses. For
this analysis, no water vapor condensation is assumed. Ten particle size classes are
used in representing particle behavior; this results in the use of a system of 20
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dif ferential equations to represent the behavior of susperuled par ticles. In addition,
unknown functions defining integrated concent ration and int egr at ed deposit ions on
ceiling, wall, and floor for each cornponent were also added to the system of
equalions, t his resulted in a system containing a total of 78 equalions.

lhe output from Mall ((JS is rnottivariate as was the case with the Pathways
model. Ilowever, unlike the Pathways model, the output froin mal.l(l)S is also time
dependent. I or this comparison, the following four output variables were selected
for consideration:

5
Y[ lotal integrated concentration of the second component (ky sec/in )

Y2 lotal integrated deposition on the wall for the first component (kg)'

lotal suspended mass for the first i.omponent (kg)Y 3

Geometric expected value of partitle diameter (m).Y4

t he variables Y i and Y2 are integrated over time ( /7,OIJO seconds), while V3 is
examined primarily at 20 minutes. I lowever, Y3 and Y4 are examined al multiple
time steps later in this section when illustrating results for the partial rank
tort clat ion coef ficient. Various systern variables are i equit ed as input in
f or mulating the preceding system of equations. Certain of these variables were
Iaken Io be uncer tain and were assigned ranges and dist ibutions. Ihe variables used
in the analysis ate listed in 1 able 1i wilh the cot responding :anges, dist ribut ions,
and est riciions given in 1able 17.

I xamination of the r est r ict ions in l able 17 shows that the moltivariate
ut rutture of the input is muro coinplex than is the case when all variables are
independent of one another. Ihe input ut tuttore in Iable 17 requires a cuirelation
13etween Xy at d X $ and also between X3 and X ,. I utlher, the rest rictions specif yf
that t ank cor relations of .5 he used in both cot telations (as opposed t o Lot teldliOOS
on original va'ues). t he ent relation is specified on ranks since this correlation
measuie is meaningful for both normal and nondormal dist :ibut ions; in coolt ast, the
ordinary cortclation coefficient is sensitive to the nato e of the underlying
dist ributions. A second problem associated with the for mulation of the input
siructure lo mal.l((JS occurs with the input pairs (Xg, X,j) and (Xg7, Xg(,). Ihe
manner in which this problem is handled is explained in the next subsect,too under
the heading of I atin hypetcube sample.

4.2 fitI l.C ll(JN (Ji 1111. V Al |Ji S (Ji I l 11 INPt J i VAltl Alit .1 S | JSI- 1) IN || 11.
AN Al .YSIS

1811. l(l.Sl yNSI. fil jiti ACI . l<t.Pl . A(:1.MI .N I.

A response sur face analysis on the MAI.t<f)S model was not perfor med using
input values associated with a fractional factorial design, lhu reason for this
decision lies in the complexity of the anultivariate structure of the input including
tortelated variables and ronditional disIributions as desot tbed in the previous
sutsseclion, t hat is, a basic reason for using fractional factorial doslyns is that they
provide orIhogonal (untofielated) input and hente ore not eally intended for use to
situat ions such as exist with MAI lif JS.
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Table 11

Input Variables Used with the MAEROS Model

X Geometric standard deviation for diameter of first component (unitiess)g

X Mass median diameter for first component (m)2

X Total released mass for first component (kg)3

X Geometric standard deviation for diameter of second component (unitiess)4

X Mass median diameter for second component (m)5

X Total mass source rate for second component (kg/sec)6

X Release duration for second component (sec)7

X Containment temperature (K)g

X Containment pressure (Pa)9

X Ratio of ceiling area to volume (m-I)10

(also the ratio of floor area to volume)

Ratio of wall area to volume (m"I)X gg

X Dynamic shape factor (unitiess)12

X Diffusion boundary layer thickness (m)g3

3X Particle density (kg/m )g4

X Constant associated with thermal accommodation coefficient (unitiess)15

X Agglomeration shape factor (unitiess)16

X Probability sticking factor (unitless)g7

X Temperature gradient (K/m)gg

X Ratio of thermal conductivity of gas to that of particle (unitiess)g9

2X Turbulence dissipation rate (m /sec )20

X M lecular weight of gas (kg/kg-mole)21
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Table 12

Distribution, Range, and Restrictions Used
with Each Input Variable to the MAEROS Model

Variable Distribution Range Restrictions

X Uniform 1.3 to 4
g

-6
X Loguniform 2x10~ to 5x10 0.5 rank correlation with X

2 3

X L gunif rm 100 to 1000 0.5 rank correlation with X
3 2

X Uniform 1.3 to 4
4

-8 -6
X L qunif rm 5x10 to 5x10 0.5 rank correlation with X

5 6

X L gunif rm 0.1 to 1 0.5 rank correlation with X
6 5

~3 0
X Uniform 7.2x 10 to 1.8x10

7

*8 Uniform 375 to 600

t 5
X9 Triangular 1000XS o 8x10 1000 X81X9

withypox at
4x10 & 500 X8

X Uniform 0.025 to 0.075
10

X Uniform 0.08 to 0.24gg

X Uniform 1 to 3
12

-5
X Loguniform 5x10~ to 8x10g3

X Normal 2000 to 8000
g4

X Uniform 1 to 3
g3

X Uniform X to 3 X 1X16 12 12 16

X Uniform 0.5 to 1g
4

X Uniform 0 to 5x10
18

X[9 T riangular 0.05 to 1 I

with apex at 0.5
l

X Uniform 0.001 to 0.03
20

X Uniform 20 to 40
21
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It is conceivable that a fractional factorial design could be altered in some manner
for use with a multivariate input structure such as specified with MAEROS, but it is
doubtful that it could be done and still retain the spirit or intent of the design. A
possibility that might be suggested is to ignore the multivariate input structure and
generate a response surface utilizing a fractional factorial design in the usual
manner. The next step would be to use a Monte Carlo simulation with the response
surface with input incorporating the required multivariate input structure. The
problem with such an approach is that pairs of variables may be created by the
design that the modeler knows to be physically impossible or meaningless and for
which the model will likely not run or if it does run, the results may be useless.
These points would have influence equal with all other points in determining the
fitted response surface and could therefore lead to meaningless response surface
predictions even when the input is meaningful . The response surface approach
based on fractional factorial designs is utilized again in the next section with the
DNET model.

THE L ATIN HYPERCUBE SAMPLE

With the Pathways model, the input variables were independent of one another
and the LHS approach attempted to generate an input structure having a correlation
matrix close to the identity matrix. However, specific nonzero rank correlations
are required for two pairs of variables in the input to MAEROS. The required
correlations are induced by generating a LHS in the usual sense and then controlling
the individual pairing of variables tu produce specific rank correlations as explained
in Iman and Conover (1982a). A LHS of size n = $0 was used with the 21 MAEROS
input variables and produced rank correlations of .48 and .43 for the pairs (X , X )2 3
and (X , X ), respectively, where the target values were cach .50. At the same

5 6
time, among the 187 remaining pairs of variables in the rank correlation matrix with
a target of zero correlations, only three correlations were larger than .10 with the
largest being a nonsignificant value of .23.

The condition X12 1 X16 .was handled by generating the required uniform
marginal distribution for X12 in the usual manner. A uniform distribution was
generated for X16 on the interval (1,3) followed by a transformation of X16 to Xi6

+ X12 After X 16 is transformed in this manner, the new= .5(X16-l (3-X12)
variable X[16 satisfiesthe restriction that X 12 1 X16 That is to say, the

distribution of X 16 becomes conditional upon the value of X12 After this
transformation, the marginal distribution of X12 remains uniform on the interval
(1,5) but the distribution of X{6 s uniform, conditional on the value of X12, that is,i
X,16 is uniform on the interval (X 12, 3). Moreover, it is easily shown that the'

generation of this conditional distribution creates a population correlation of .65
between X 12 and X{6 The actual correlation observed between this pair of
variables in the LHS of size 50 was .58. The pair (X , X ) was treated in a similar8 9
manner.

| THE DIFFERENTIAL ANALYSIS

Some modifications had to be made to the MAEROS computer model in order to
include input variables Xg through X7 and to generate integrated concentrations as
output. It was possible to calculate the inputs to the computer

4-5



_ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1

model associatec with Xt through X7 externally and to supply them when needed.
Further, it was easy to add the capability to calculate integrated concentrations.
Modifications such as these cause no serious problems in setting up the input for an
analysis such as associated with LHS, nor are any problems created in processing the
output. However, these modifications did cause the differential analysis to be much
more difficult to implement.

The differential analysis was performed at a "basecase" set of input values con-
sisting of the expected values of the variables in Table 12. The differential analysis
requires the implementation of the system of equations shown in (2.10). This
required exact knowledge of the system of equations in (4.1). The documentation
for the MAEROS computer program did not give a statement of the equations and it
was necessary to go to the computer program itself to determine exactly how the
equations were implemented. Ultimately, parts of this implementation had to be
changed in order to perform the differential analysis. For example, desired
dependent variables included integrated depositions on ceiling, walls, and floor. The
MAEROS program used an interpolation procedure to determine these quantitles
that did not lend itself to inclusion in a differential analysis. To implement the
system of equations in (2.10) for determining the derived partial derivatives,
additional differential equations were added that had these quantitles as solutions.
Once a system of equations was determined that included all the dependent
variables of interest, it was necessary to formulate the system of equations in
(2.10). This required writing a subroutine to define the Jacobian matrix for the
system in (4.1). Further, it was necessary to calculate various partial derivatives
with respect to the Xg. These partial differentiations were often coupled with
numerical integrations. For example, the coefficients ajk and bjkg appearing in
(4.1) are actually single and double integrals of functions of the X . Tot
calculate the partial derivatives for the ajk and bjkg, a routine for numerical
differentiation was used in conjunction with a routine for numerical integration.
Once the machinery was in place to calculate all the needed pieces appearing in
(2.10), a program was written to combine the equations in (2.10) and (4.1). This
combined system had to be solved 21 times, once for each independent variable. As
the details of the system were not the same for each Independent variable, assorted
logic had to be built in to account for differences associated with individual

variables. For example, X7 had a discontinuity associated with it which required
special treatment. Once the preceding systems had been developed, they had to be
solved. As might be expected, they turned out to be stiff and as such required use
of a solver for stiff systems (Shampine and Watts,1980). The original MAEROS
model used a Runge-Kutta solution method.

Our original, perhaps naive, intent for the MAEROS differential analysis had
been to add the system in (2.10) to the original MAEROS computer model. By the
time the differential analysis was actually completed, we had developed a separate
computer program that was considerably more complicated than the original pro-
gram for MAEROS. As the preceding discussion might lead one to suspect, the
differential analysis required significantly more human and computer time than the
Latin hypercube analysis. Further, due to the complexity of the implementation, it
is also more likely to contain errors. In retrospect, it might have been better to
have approximated the desired derivatives with difference quotients. However, the
given approach to differential analysis does have the advantage that it provides a
useful leadin to the discussion of adjoint sensitivity analysis techniques given in
Section 6.
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4.3 UNCERT AINTY ANALYSIS FOR THE MAEROS MODEL

ESTIMATION OF THE DISTRIBUTION FUNCTION OF THE OUTPUT

Figure 3 contained two estimates of the output cdi for Yg from the Pathways
model. These estimates were obtained directly from the LHS analysis and indirectly
by using a Monte Carlo simulation with the Taylor series expansion at the basecase.
Analogous results appear in Figures 9,10, and 11 for Yg, Y , and Y , respectively,2 3
from the MAEROS model. As a check on the adequacy of these methods, a third
estimate has been added to each of these figures. The third estimate was based on a
simple random sample of size 100.

Results in Figure 9 show reasonably good agreement for all three procedures
except for the lower tall. In Figure 10, the LHS and random sample estimates
coincide throughout, while the Taylor series expansion is not close for cumulative
probabilities ( .4. In fact, over 35 percent of the predictions from this latter
approach were negative (these values have been set equal to zero in Figure 10).
Results in Figure 11 show good agreement between the LHS estimate (n : 50) and
the random sample estimate (n = 100) except for some noticeable separation above
the .90 quantile. The Taylor series expansion procedure agrees with the other two
estimates below the .10 quantile but disagrees significantly for all quantiles above
.10.

Two summary comments can be made about the results in Figures 9 through 11.
First, the results based on LliS and random sampling are in good agreement as was
the case with the Pathways model. The second point concerns the estimate from
the Taylor series expansion. The estimate in Figure 9 from this approach shows
good agreement with the other methods but the results in Figures 10 and 11 show
areas of disagreement. This points out that the result from the Taylor series
expansion may or may not be good. One never knows a priori. As mentioned in the
previous section, the reason for this lies with the danger of trying to extrapolate
local information to a global interpretation.

ESTIMATION FOR THE OUTPUT VARIABLE

Comments were made in the previous section with respect to the influence of
extreme observations on estimates of the mean and variance. This point is
illustrated in this section using the variables Yg, Y , and Y . Estimates of both2 3

location and scale were obtained for each of these variables on the basis of
(1) direct estimation from a random sample of size 100 (2) direct estimation from a
LHS of size 50, (3) indirect estimation from Monte Carlo simulation with Taylor
series expansions about the "basecase" point, and (4) indirect estimation from Taylor
series expansions as indicated in (2.3).

The sample mean and median provide direct estimates of location. The sample
standard deviation provides a direct estimate of scale. A robust measure of scale

,

known as the median absolute deviation (MAD) was also calculated directly. The
| MAD estimator is calculated as follows for a sample of size n:
i

i MADn = median { |Yg-median Y | } (4.2).

i

I
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Table 13

Estimate of Location and Scale for the
Output Variables Yg, Y , and Y32

.

ESTIMATES OF LOCATION

R ANDOM SAMPLE LHS DA (Monte Carlo) DA (Indirect)
Output

Variable Mean Median Mean Median tdgin Median Mean

Yg 134 113 130 123 129 112 171

Y2 7.6 4.9 7.5 3.7 -6.1 -7.7 10.6
Y3 254 220 252 183 341 278 343

ESTIMATES OF SCALE
'

Var MAD Var MAD Var MAD Var

Yg 3868 26 3810 41 4736 41 5175
Y2 87 2.9 76 2.6 68.6 5.2 109
Y3 19,808 95 30,505 67 36,679 111 34,044

4-9



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

The MAD estimator is not influenced by extreme observations and Huber (1981) has
stated, "...the median absolute deviation has emerged as the single most useful
ancillary estimate of scale." While the MAD estimator can be used to quantify the
variability in the output, it cannot be used to rank input variables. That is, as withi

the direct calculation of the sample variance, the calculation of the MAD estimator
does not in and of itself produce a ranking of the variables as a byproduct. Results
of all estimates with respect to Yg, Y , and Y3 arc summarized in Table 13.2

It is not possible to estimate the median with the DA approach, but in the other
cases where a median estimato is available, it is always less than the mean estimate
of location. This is due to the skewness of the distributions given in Figures 9,10,
and !!. The random sample and LHS estimates of location show good agreement
with one another in all cases while the Monte Carlo of the Taylor series expansion is
sometimes in agreement and sometimes in disagreement with the other estimates.
The Indirect estimate from the 1aylor series expansion shows behavior similar to the
Monte Carlo estimate.

There are two reasons for wanting to use variance as a measure of scale. The
first is to quantify the variability in the output and the second is to rank the input
variables on the basis of their contribution to the variance estimates. The form of
the output, in particular the presence of extreme observations, has a large impact
on the reliability of these calwlations. This point will now be discussed in reference
to quantifying variability by usu,3 the results shown in Figures 9,10, and 11. In
Figure 11, the cdf estimated from the random sample shows only one extreme value
compared to the heavler upper talls of the other two cdf estimates. This results in
the random sample providing a variance estimate that is 35 to 42 percent less than,

the other estimates. However, another random sample could change the results
dramatically depending on the number of extreme observations. In Figure 10, the
cdfs of the random sample and LHS show excellent agreement; yet, the variance
estimate from the random sample is 15 percent higher than the LHS estimate
principally because the random sample has the most extreme observation. When the
variance estimates are made after discarding the upper 2 percent of each curve, the
random sample produces an estimate of 45.7 compared to 43.8 for the LHS. Henco,
the estimates almost double in size with the addition of one or two extreme values.
In Figure 9, the basecase estimate increases because of the extreme observations;
however, they still show some variability between the random sample and the LHS.

4.4 SENSITIV11Y ANALYSIS FOR TliE MAEROS MODEL

in the previous section, the input variables to the Pathways model were ranked
using (a) two types of normalized coefficients, (b) contribution to variance, and
(c) the partial rank correlation coefficient. These same ranking methods are
presented in this sOsection for the output variables Yg and Y f2 rom the MAEROS
model. An expanded discussion is also presented on the usefulness of the partiali

rank correlation coefficient with time-dependent output utilizing the output
variables Y and Y .3 4

:
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RANKING THE INPUT VARIABLES

The results of using the ranking methods listed above were summarized in the
previous section for the Pathways model in Tables 3,4,6, and 8. In the interest of
shortening the discussion, all of the rankings in this subsection appear
simultaneously in Tables 14 and 15 for Yg and Y , respectively, in addition to the2
ranks, the value of the PRCC is also given in parentheses in order to provide more
information about the relative rankings.

Table 14 shows good agreement between the DA and LHS rankings within each
ranking criterion. This agreement might have been anticipated since the DA
approach provided a reasonably good estimate of the cdf for Yg in Figure 9.
Likewise, there is good agreement between the random sample and LHS results
under the PRCC criterion. However, as with the Pathways model, there is a
noticeable disagreement on the relative importance of the variables between
ranking criteria. in particular, X6 ranks fourth and fifth by the normalized
coefficients and first by all other criteria. The ties occurring within the rankings
for contribution to variance occur because some of the variables are correlated with
one another and their individual contribution cannot be separated from their joint
contribution. The PRCC handles the correlated variables by adjusting for the
presence of all other variables.

The results in Table 15 for Y2 show more disagreement both within and betwoon
ranking criteria than the results presented in Table 14. This disagreement might
have been anticipated somewhat on the basis of the poor cdf estimate of Y2 in
Figure 10 by the DA approach and the corresponding parameter estimates in Table
13. For the standardized coefficients criterion, the top three ranks for both the DA
and LHS approaches agree, but there is disagreement on Xg g where ranks of 4 and
11 are assigned. This is probably not a major concern since the dominant three
variables have been identified. More noticeable is the disagreement between the
rankings for normalized coefficients. These rankings disagree considerably after
rank 1, and the rankings as a whole disagree with the other ranking criteria,
particularly on X18. The rankings under contribution to variance for LHS agree very
well with those found under PRCC, but the agrooment is not quite as good for the
DA based rankings. Once again, the random sample and LHS rankings under PRCC
agree very well with each other.

USE OF THE PRCC WITH TIME-DEPENDENT OUTPUT _

The PRCC is particularly useful when the output is time dependent and the
relative importance of the input variables changes with respect to time. For
example, the MAEROS output for Y3 and Y4 was recorded at 65 time points. The
PRCC as computed from (3.11) can be calculated for each input variable versus each
output variable at each of the 65 time points. The influence of a particular input
variable X on a particular output variable Y is easily summarized by plotting riyi
from (3.llJ on the vertical axis versus time on the horizontal axis. Two such plo'.s

7 and Y . A value of the PRCCappear in Figures 12 and 13 for X7 and Y3 and X 4
near I or -1 Indicates a strong influence while a value near 0 indicates little
influence. Thus, in Figure 12, X7 has little influence on Y3 during the first 10,000
seconds but quickly shows a strong negative correlation after 10,000 seconds. In
Figure 13, X7 shows a negative correlation developing between X7 and Y4 out to
10,000 seconds and then very quickly changes to a strong positive correlation.
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!

!

i
,!

}
Table 14

Rankings of the input Variables to the
MAEROS Model for the Output Variable Y g

i I

Standardized Normalized Contribution
input Coefficients Coefficients to Verlance PRCC ,

Verlable QA L,.H_1 QA LHS QA" Qg"" LHS(n =50) RS(n=100) !

: ,

1 1 18 17 18 16
'

2 17 18.5 17 20
< 3 14 8 14 !!

! 4 10 20 12 19

| 5 4 6 9 12 1.5c g,$a 8( .57) 5( .64)
J .

| 6 1 1 4 5 1.5c g,$a g(,91) 1(.89) !
j 7 3 3 2 2 5 3 2(.89) 2(.82) !

8 9 11 6 4

] 9 13 12 11 10
j 10 19 21 19 11

i :

! 11 15 10 15 9 '

i 12 6 5 5 6 3.5d 4.5b 7(.59) 7(.48) i
i 13 21 13 21 15

i 14 8 9 7 8 8 8 5(.66) 8(.43) !
j 15 20 18.5 20 18

'

i

1

'
16 2 2 1 1 3.5d 4.5b 3( 82) 3( .68)

) 17 7 7 3 3 7 7 6( .61) 6(.52)
'

18 12 15 13 17
i .19 16 14 16 14 j;
{ 20 5 4 8 7 6 6 4( .72) 4( .64)

'
j 21 11 16 10 13
;

2; R 96.5%
!

j aX$ and X6 jointly contribute 35.7%.
) b X12 and X16 jointly contribute 18.5%.

;

c x5 and X6 jointly contribute 36.8%. ',

d X12 and X16 jointly contribute 24.4%.;

: " Estimate obtained directly from coefficients
: "" Estimate obtained by regression with LHS output :
,

;

! t

'

!

I

!
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Table 15
'

Rankings of the Input Variables to the
MAEROS Model for the Output Variable Y2 i

!
'Standardized Normalized Contribution

Input Coefficients Coefficients to Varianqq_ PRCC
Verlable M LliS M QE M" LHS" LHS(n=50) RS(n=100)

[

:

1 16 16 15 16
2 7 6 14 11 2.5a 10( .34)
3 2 2 7 4 2.5a 2 2(.83) 2(.80)
4 18 10 18 10
5 14 21 16 21

,

6 5 4 11 7 4 5(.52) 5(.57)
7 20 14 20 14 |
8 13 12 2 5 6 ,

9 9 19 4 15 9( .37) -

.

'
10 19 20 19 20

:
'

11 4 11 5 12 4(.61) 3( 70)
12 10 18 9 19 4.5b 10( .32) 8( .40) |
13 21 9 21 13

'

14 15 7 12 6
15 17 17 17 17 r

16 3 3 1 1 4.5b 8( .39) 7( .40)
17 12 13 8 9 6( .45) 9( .35) .

t
18 1 1 6 3 1 1 1(.95) 1(.89)
19 8 8 10 8 7(.42) 6(.40)
20 11 15 13 18

21 6 5 3 2 3 3( .65) 4( .60)

R2 = 75.8%

a X and X3 Jointly contribute 18.6%. r2
b X12 and X16 jointly contribute 17.2%.

,

" Estimate obtained directly from coefficients
"" Estimate obtained by regression with LHS output

!

.

t
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'

The graphs in Figures 12 and 13 show quito clearly the influence of a single
input variable and, in particular, point out the fact that the importance of input
variables may be timo dependent. One convenient way of summarizing the relativo
importance of the input variables is to rank cach of them on the basis of the
absolute value of their PRCC at each of several time steps. Such a summary is

,

presented in lable 16 for Y3 and Y4 for 11 different timo steps. This summary
3 s the most influential variable through 20 minutes and then decreasesI shows that X i

in importance with respect to Y . In contrast, X6 has no influence (rank 19) on Y33
at 2 minutes but starting at 40 minutes it becomes the most important varlable.
Other measures of sensitivity such as standardized regression coefficients could also

,

be used here rather than the PRCC. 1

4.5 SECTION SUMMARY

: The comparisons in the last section were continued in this section with the
MAEROS computer model. MAEROS models multicomponent acrosol dynamics and
is more complex in a mathematical sense than is the Pathways model.
Mathematically, the model is a system of nonlinear differential equations of the '

form given in (4.1). The complexity of the analysis was also increased by the fact
that the multivariato nonlinear output from MAEROS is timo dependent. This
means that the relative importance of the input variables may change as a function
of time. Another important difference from the Pathways analysis involves the
complexity of the multivariato input structure. Whereas the input variables for the
Pathways model were all independent of ono another, the input to the MAEROS
model involved dependences among some of the input variables. Thoso dependences
manifested themselves in the form of required correlatlons 'for two pairs of
varlables and in conditional distributions for two other pairs of variables, which
created correlations for these variables also. Thus, eight of the 21 input varlables
had required correlations.

The complexity of the multivariato input structure forced us to drop the
responso surface approach utilizing a fractional factorial design from consideration
in this analysis sinco the basic Idoa underlying the fractional factorial design is to
generate orthogonal input. It may bo possible to alter a fractional factorial design
in some manner to satisfy the requirements of the input structure. However, such
alterations would not be straightforward and it is doubtful that such alterations, if
possible, would be able to retain the spirit and intent of a fractional factorial
design. The suggestion may be made to ignore the conditional distributtons and ;

required enrrelations and constru t the fractional factorial design in the usual
manner. The basic problem with this approach is that it may generato somo input ,

combinations that are physically impossible and yet would be used along with all
other combinations runs in fitting a responso surface; this assumes that the model
will even run for such combinations or, if it does run, that moaningful results will be ,

'
produced.

i

UNCERTAINTY ANALYSIS

Estimatos of the output cdf are given in Figures 9 through !! for three output
variables. These estimates includo one mado directly from a simplo random sample
of size 100. This estimato was included to provido a standard for comparison with
the other estimates. Of the other two estimatos, one is obtained directly from 50

4-14
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LHS computer runs and the other is an Indirect estimato obtained by using a Monto
Carlo simulation with the Taylor serios expansion about a becocaso point. The
basecaso point consisted of the expected values of each of the input varlables from
the distributions listed in Tablo 12.

The direct LHS (n a 50) and random sample (n : 100) estimatos show reasonably
good agrooment in Figuros 9 through 11. In Figuro 9 the Taylor series expansion
about the basecase shows good agreement except at the lower tall. This result is
reminiscent of the outcomo in Figure 3 for the Pathways model. Although the
basecaso input romains unchanged, Figuro 10 shows the estimato arising from the
Taylor series expansion to bo poor, similar to some of the poorer showings in Flgure |

4 for the Pathways model. The estimato from the Taylor series expansion in Figure
11 is an improvement over the corresponding estimato in Figuro 10 howavor, it
shows a constant bias in being shifted significantly to the right of the random
samplo estimato. |

The results in Flguros 9 through IL show that although the basocaso for
MAEROS was selected in the samo manner as with the Pathways modol, namely
using the means of the input variables, the resulting estimates range from
reasonably good to poor. One can never really be comfortable with such estimatos.

SF.NSITIVl1Y ANALYSIS

The four methods of ranking variablo importanco used with the Pathways model
woro also used with the MAEROS model. In addition, the partial rank correlation
coefficient was also calculated on the basis of a random samplo of sizo 100. Results
for all ranking techniques are summarized in Tablo 14 for Yg and in lablo 15 for
Y. The reasonably good agrooment betwoon the LHS and differential analysis2
estimates of the cdf in Figuro 9 might load one to suspect that those proceduros will
show good agrooment on input variable importanco for a given method of ranking.
Tablo 14 shows this to Indood bo the caso for each method of ranking. Within the
tablo, the normalized coefficients again show disagrooment with the rankings of the
other methods. The rankings under contributton to varianco show tlos for X5 and
X6 and again for X 12 and X16 The ties occur becauso it was only possible to
determine tho joint contribution to variance of those two varlables. That is,
because thoso variables are corrolated, their individual contributions to varianco
could not bo determined. However, the other throo ranking techniques all Indicate

$ s loss important than X6 and that Xg2 s loss important than X 16'i ithat X

In a similar line of reasoning, tho disagroomont betwoon the LHS and
difforontial analysis estimatos of thn cdf in Figuro 10 might load ono to suspect
some disagroomont on ranking within a glvon method in Tablo 15. This suspicion is
somewhat justiflod by observing the rankings in Tablo 15. The rankings under
normalized coofficients show more than their usual disagrooment with other
methods of ranking (soo, for examplo, X) g), but thoro is also disagrooment betwoon

! the Lits and differential analysis ranks. Lor examplo, X0 recolves ranks of 2 and $:
l X9 receives ranks of 4 and 15. Under contribution to varianco, ranks 1 and 2 agroo
' for the LHS and differential analysts approachos, but the romalning selections

disagroo. The IJ(S and random sample rankings under PRCC again agroo very well,
but it is worthwhile to note the ranks assigned to X 16 sinco the PRCC rankings for
this variablo disagroo with rankings from other techniques. Such

4-17
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|
disagrooments are not unusual with monotonic nonlinear output or when extromo
observations are present as the PRCC is not influenced by those situations.

The PRCC can bo plotted with respect to time when the output is timo
dependent. Plots of the PRCC appear in Figures 12 and 13 and show the changing i

influence of X7 on Y3 and Y respectively. Graphs such as these can be4
constructed for each input variablo versus cach output variable. Moreover, the
PRCC can be used to rank the input variables at any glvon point in time. Tablo 16
gives such rankings and clearly demonstratos the changing of the sensitivity of the
output to the input variables. The PRCC has provided rollable rankings in a variety
of applications with computer models a.)d in addition is easy to calculate. Thoro is
no reason why the other methods of ranking such as standardized regrossion
coefficients could not also bo plotted over time liowever, the partial correlation >

coefficient does have a natural bounding betwcon -1 and +1. Such graphs make it
easy to interpret the coefficient associated with a single variable and to compara

.

the coefficients associated with a number of variables. Downing, Gardner and
lioffman (1985) glvo a comparison of PRCC with throo importanco measures for
ranking 24 variables in a doso assessment model which demonstratos the usefulnoss
of ranks in identifying the most influential variablos.

L

,

|

|

'
|

| |

.
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5. RESULIS BASED ON THE DNEI MODEL

5.l THE ONEI MODEL

CLli.S_GRIPTION '1F THE ONET MODFl.

1he final model considered in the comparison of techniques for uncertainty
analysis and sensitivlty analysis is a dynamic network (DNEI) flow model uscd in
simulating dissolution in bodded salt formations. DNE1 ovolved as part of an
NRC-sponsored program at Sandla National Laboratarlos for tho dovolopment of a
methodology to assess the risk associated with geologic isolation of high-level
radioactive wasto. DNEl simulatos soveral physical processos including the
following: (1) fluid flow (2) salt dissolution, (3) thermal expansion. (4) fracturo
formation and closure, (5) subsidenco and (6) salt croop. In addition to this
multivariato aspect, the output is nonlinear and timo dependent. Submodols within
DNEI are appiled sequentially to represent various processes. Bocause of feedback
mechanisms governing the selection of different submodols and the comploxity
involved in treating various processes, the governing equations are not solved in an
implicitly coupled fashion (1,0., simultaneously). This featuro makes it difficult to
implomont a differential a.)alysts. Thus, in this section only the techniquos based on
responso surfaco replacement and Latin hypercubo sampling are considorod.

TFa DNEI model has boon wall documented. A user's manual for DNET was
written by Cranwell, Campbell, and Stuckwisch (1982), and sensitivity results are
glvon in Cranwall, Iman and Stuckwisch (1985). A so!f-toaching curriculum for the
DNE I model is provided by Cranwall, et al. (1985). *

yARIMLES CONSIDERED IN luE ANAL.YSIS OF THE ONET MODlb

The DNEl model providos multivariate output for the process of salt
dissolution in bodded salt formations. However, only one output variablo has boon
selected for the comparison given in this section in order to simplify the
presentation. Tho solocted output varlablo is the rato of dissolution of a cavity of in
a bodded salt formation at 20 different timo periods from 5 tc 105 years. Those
timo porlods correspond to the following times in years: 5,10(10il]O,150,200, 500,
1000, 5000, 10000, 20000, 50000, and 100000. The Input .u the DNET model
considered in this application consists of the 10 indopondent variables listed in Table
17 that describe various physical phenomena associated with the bodded salt
formation. Also glvon in Tablo 17 for each variablo is a probability distribution and
an associated rango.

5.2 SELECilON OF THE VALUES OF THE INPU1 VARIABLES USED IN TliE
ANALYSIS

J11E RESPONSFdtMAGE Rii,P_I AGEMQD.P

For the responso surface analysis, a fractional factorial design with two lovols
(low and high) is utilized for each variable with k = 10 and m = 5 (following the
notation glvon in Section 2). Thus, 52 computer runs are required. The fractional
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factorial plan calls for ooch level of each variable to be used exactly 16 timos in the
32 computer runs. This is the smallest number of runs that could bo used and still

,

allow for an estimato of each main offect and tho following Interactions selected a
priori by the model developers as potentially important:

i

g2 g8 23 2*5 2*6 |
XX XX

X *l0 *3*8 *3*10 # U*UX *0 2 562

X *9 8 10X * 'I XX
X X.7 06 7g$

,

THE L ATIN HYPERCUlMLSAMPLF

For the portion of the analysis utilizing a Latin hypercubo samplo, the value of
n = 32 is used. 1his corresponds to n = 3.2k (since k i 10). This value of n was
solocted to koop the samplo sizo the samo as used with the fractional factorial
design. Tho samplo was generated using the rostricted pairing technique of Iman
and Conover (1982a) to control the correlations betwoon variables within the sample.

The rank correlations among the 10 input variablos for this particular LHS with
n = 32 appear in matrix form in Tablo 10. To calculate thoso correlations, the
values in cach ggjumn of the 32 x 10 input matrix are ranked from 1 (smallost) to 32
(largest) and then the usual corrolation coefficlont is computed on the ranks rather
than the original values. The result is a Spearman's rho, a well-known
nonparametric measure of correlation as explained in Iman and Conover (1983). This ,

measure is used since it romains moaningful in the prosence of nonnormal
distributions on the input variables. Examination of the rank correlation matrix in
Tablo 18 shows that 35 of the 45 pairwiso entrios aro < .05 in absoluto value,43 of
45 aro < .10 and the largest element is 1379. However, this latter value is a
nonsignificant corrolation for n 32. Additionally, thoro is nothing to provent the
user from generating other LHSs and choosing the ono that most noorly fits his or
her requirements,

if the off diagonal olomonts in tho matrix in Tablo 10 woro all zoro, than the i

input variablos would all bo orthogonal and the matrix would be an identity matrix
as is the case with tho fractional factorial design. However, it is virtually
impossibio to obtain an exact Identity matrix when using LHS. A commonly used
measuro for detecting largo pairwise correlations comes from Inverting the
correlation matrix and then examining the largest olement on the diagonal of the
invorted matrix. This olomont was referred to in Section 3 as the variance inflation
factor (VIF). When the correlatlon matrix is an identity matrix, then its inverso is
also an Idontity matrix, and thorofore, the VIF will bo equal to its minimum value of
1. As discussed in Marquardt and Snoo (1975) when tho V!F becomes larger than 1, a

by calculating 1/(1-R ), whoro R{s gonorated. Another way of obtalning the VIF ismeasure of unwanted correlation
2 is the maximum R2 one gets by regressing oach

Indopondent variablo on tho others. Marquardt and Snoo (1975) deal with some very
largo VIFs (>2x10 ) and provido a readablo explanation on reasonablo sizes for V!Fs.6
Marquardt (1970) Indicatos that thoro can bo sorloas collinearity for V!F > 10, which
corresponds to a maximum R2) .90 among the Indopondent variables. Thoro is
certainly no problem as long as the VIF is close to 1. For the matrix in Tablo la the
VIF is 1.03.

5-2
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Table 17. Distribution and Range" Used with Each input Variable
to the DNET Model

yarlehlt Distribution Renas

Xg: Crack spacing (ft) Uniform 3 to 20

X2: Conductivity of the Loguniform 1.1 x 10-7 to .57
upper shale (ft/ day)

X4: Conductivity of the 1.ognormal .01 to 50
upper aquifer (f t/ day)

X4: Conductivity of the 1.ognormal .01 to 40
lower aquifer (f t/ day)

10-5 o 10-4X Coefficient of thermal Normal t$
expansion of salt (ft/*F)

5x10-6 o 1,3x 30-5X: Coefficient of thermal Normal t6
expansion of shale (ft/*F)

X: Thermal conductivity Normal 40 to 857
of salt (HTU/yr'f t**F)

X: Exponent in salt creep I.ognormal 2.5 to 78
law (unttless)

X9: Maximum width of the sum of Uniform 1500 to 4500
the solution channels (f t)

XIO: Salt dissolution rate Uniform 100 to 500
constant (yr *l)

" For normal and lognormal distributions, the lower and upper values of the range
are Interpreted as representing the .001 and .999 quantiles, respectively.

For the variables in Table 17 having uniform and loguniform distributions, the low
and high values used in the fractional factorial design correspond to the endpoints of
the range, while the .05 and .95 quantiles were used for all other variables.

!
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Tablo 18. Rank Correlations Among the Input Variables Used
in the Latl1 Hypercube Sample with n = 32.

I 1.0000
2 .04Ii 1.0000
3 .0352 .0620 1.0000

4 0257 .027I .0007 1.0000

$ .0341 .0018 .0176 0957 1.0000

6 .0121 .0279 .1I22 .0590 .0147 1.0000

7 .0183 .0792 .0121 .0249 .0550 .0213 1.0000

8 .0363 .0370 .0469 .0172 .0337 .0403 .0092 1.0000

9 .0583 .0440 .0198 .0011 .0099 .0389 .0279 .0576 1.0000 |
'10 .1397 .0363 .0279 .0253 .0601 .0014 .0491 .0216 0000 1.0000

I 2 3 4 5 6 7 8 9 10

5.3 SCA11ERPLOTS OF THE INPUT-OU1PUT RELATIONSHIPS AS A CUIDE TO
BET TER UNDERSTANDING OF THE MODEL DEHAVIOR

As mentioned in Section 3 scatterplots can be a great ald in determining if the
model is working as intended, i.e. does the input-output agroo with engineering
judgment? Additionallv, scatterplots may aid one in identifying the need for
transformations (such as logarithmic), or when placed side-by-side, may show now
several variables jointly influence the output. The ONET model provided a good
illustration of the valus of scatterplots as some unexpected modal behavior was
detected through their use. Side-by-side scatterplots for DNET output appear in
Figures 14 to 16 for X , X , and Xg at the timo steps of 5, 500 and 5000 years,2 3
respectively. The lof t-hand one-third of each of those graphs shows a scatterplot of
log X2 versus log Yi the middio one third has in X3 versus log Yi the right-hand
one-third shows in Xg versus log Y. The top half of each figure was based on
fractional factorial input while the bottom half was based on input selected by Latin
hypercube sampling. The throo variables X , X , and X8 were solocted from among2 3
the 10 Input variablos because they appeared as the dominant variables when
considered over all time stops. With fractional factorial input, oach variable takes
on only two vatuosi thus, the plot appears as 16 points (half of the 32 runs) above
each of the two values for each variablo in the top portion of Figuro 14, the
numerals appearing with the graphs indicate the multiplicity of the various points.

Examination of the top half of Figuro 14 shows that X2 ls dominant in
controlling the value of Y in conjunction with X . When the low value of X283 1

present, the output was constant at approximately 10-4 regaJdloss of X . When the3
high vatuo of X2 was used, tho output was althor 105 or 10 doponding on whether
the high value of X2 was paired with the low value of X3 or tho high

t

!

i
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i

value of X , respectively. The sido-by-sido scattorplots of X7 and Xs make this3'

relationship casy to sec. Additionally, X8 has no offect at alther its high or low
value.

r

The plot of X2 versus Y In the bottom half of Figuro 14 (5 years) shows an
Interesting phenomenon. The points appear in two distinct clusters separated by
several orders of magnitudo on the Y axis. Those clusters are datormined by largo

| end small values of X2 which represents the conductivity of a shale layer directly
! abovo the bodded salt formation and directly below an aquifer. In a simplified

senso, the higher the conductivity of the shalo, the greater the water flow through |

tho shalo and in turn the greater the dissolution of the salt cavity. Thus, the six ;|

points in the cluster at the top of the graph represent " breakthrough" runs. That is,l

| conditions exist on those runs that allow tt.o salt cavity to undergo rapid dissolution
|

and thoroby creating a discontinuity in the output. The I.liS plot of X)lssolution isversus Y In |

Figure 14 shows that when a " breakthrough" occurs, the rate of a (
controlled by X , the conductivity of tho aqulfor directly above the shalo layer. '

5

Further, IIguro I4 Indicatos that Xg has little or no offect on dissolution rogardless
of whether or not a breakthrough occurs,

in Figuro 15 (500 years) X2 s still the dominant varlable in determining if ai '

breakthrough occurs, but nono of the throo variables scoms to havo much influence
on datormining the rato of dissolution for thoso casos in which a breakthrough fallsi

|

casos whero a breakthrough occurs. 3 are influencing the dissolution rato in those
to occur, liowever, both X2 and X

| Figuro 16 (5000 years) shows some Interesting
| results. The variable, X 2 s still dominant in determining if a breakthrough occurs.i
| When a breakthrough occurs, X 5 s the dominant variable wh!!c X8 (the croop lawi

exponent)is dominant when a breakthrough does not occur.

The scattorplots in Figures 14 to 16 make it readily apparent that the |
occurrence or nonoccurrence of a breakthrough has a direct bearing on any

t

l regrossion based analysis whose purpose is to datormino the relativo importance and
|

l contribution of the input variables. For examplo, a straight line or ovan a quadratic
| fit to the points in the Lits plot of X2 versus Y in Figure 14 will be less than

satisfactory. This is true becauso while the lower cluster (no breakthrough) of the
graph can be fit nicely by a quadratic in X2 the upper cluster (breakthrough) shows
no relationship to X . Rathor, the bohavior of the uppor portion scoms to be j2
dominated by X .3

While the results of the two sots of scatterplots corresponding to the two
approachos give good general agroomont, it is impossiblo for plots based on two
fixed lovels to show tho truo pattorn of the input-output relationship for this
model. That is, one must assumo that the output behaves in a linear fashlon
betwoon the high and low valuos of X2 with tho exact placement of the linear
rotationship bolnq dependent upon tho value of X .1ho discontinuity prosent in the3
1.14S portion of Figuro 14 cannot be discovered in the fractional factorial portion of
Flgoro 14 nor can tho nonlinear relationship betwoon X2 and Y for about 80% of the
rango of X . This is a prico that must bo paid for the simplifying assumptions that2
go along with tho uso of two lovols for each varlablo. At this point, one might
considor a modification of the fractional factorial design to includo polnts other
than thoso found at tho two lovels. For instanco, a contral composito design would
uso 2k + 1 additional points with ono point being in the contor for each variablo and
2k axlat points. Dotalls of such designs can be found in Myers (1971). For tho

|
'
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present analysis, an additional 21 computer runs would be nooded. Howevor, there
would still be no guarantee that the information availablo in the lower half of
Figures 14 to 16 would becomo apparent, whereas the LHS approach would havo
revealed the same information with fewer than 32 runs.

5.4 UNCER1 AINIY ANALYSIS FOR 1HE DNET MODEL

ESTIMATION OF THE DISTRIBUTION FUNCTION OF THE OUTPUT-

Responso surfaces for tho fractional factorial design woro fit as indicated in
(2.1) at each of the time steps and then evaluated 100 times based on random
sampling from the probability distributtons given in Tablo 17. The resulting
estimated cdfs for 5 years and 500 years appear in Figuro 17 with the label "RS."
For caso in making comparisons, the LHS results also appear (with the label"LHS")
in Figuro 17. Thoro are actually two cdf estimates based on LHS appearing within
both portions of Figuro 17. One is based on 32 runs and the other is based on 100
runs, iho closo agroomont of the LHS estimates within cach figure providos an
Indication of the precnolon associated with estimates arising from LHS.

Figuro 17 shows that the LHS estimates of the output cdf disagroo sharply with
the response surface ostimato obtained from using the fractional factorial input. In
fact, most quantilo estimates disagroo by one or more orders of magnitude. The
reason for this disagreement is that the phenomenon of a " breakthrough" and the
corresponding discontinuity in the output mentioned earlier in the discussion of the
scatterplots has gono undetected by the analysis of the input-output relationships
based on the fractional factorial approach. That is, from the top half of Figures 14
through 16 It can be soon that the low and high values of the output differ by several
orders of magnitudo over the range of X . But what of the behavior of the output i2 'for intermediate values of X 7 The bottom half of Figures 14 through 17 as well as2
the LHS portion of Figure 10 mako it clear that a discontinuity occurs in the
output. This discontinuity is missed by tbo fractional factorial approach since a
linear relationship must be assumed between the two levels used with each input
variable. More complex response surfaces could be ottimated, but only at increased
computer costs, and even then it is likely that such surfaces would fall to accurately
depict the discontinuity. This example identiflos an underlying problem with the
response surface approach, which le that the DNL1 computer model is too complex
mathematically to be adequately represented by a simplo responso surface.

ESTIMAllON FOR 1HE OUTPUT VARIABLE i

|
At this point in the analysis in each of the previous two sections, the estimation I

of population parameters for the output variablo has been considered. However, the i

cdf estimates in the previous subsection point out the potential for problems i
associated with estimating and Interpreting population parameters. For example,
the response surface fit from the fractional factorial design produced a less thant

satisfactory estimate of the output cdf in Figure 17. Hence, the associated.

estimates of location and scalo may or may not be accurato, but moro importantly'

those population characteristics may not havo any rent meaning in this problem. To
explain further, consider the graph in Figuro 17 corresponding to 500 years. What
meaning should be attached to an overall measure of either location or scalo hore?

l

5-9 |

l

_ _ _ _ _ _ _ _ _ _ _ _ _ . -



|
|

|

|
|

1 , ,
,-

,
O .s

- )
||:

.s LHS' .
;

5 YEARSE .7
'

8c' .

FF.sg
s
> .4
2 -

O .s -

0
w
a' .

I .i -

w .
-

. . . .

.s .a *1 1 e a r
LOG 10 OF SOLUTION M ATE

1 , , , , , ,

9 .s

f>
.a

I-
.,

FFg
.s

500 YEARS
g
3
g .s
a 1

$ .4 J l J

B / LHS
.a r

,
w
g .e ,

I, ,

> |

C.J . . . . .

.s .a 1 1 s a F

LOG 10 0F SOLUTION R ATE

Figure 17. Response Surface and LHS Estimates of the CDF for log Y.

5-10



Cortainly, the overall estimato of the variance of Y will be too largo to be applied
Individually to olther uf the two groups of Y values based on the occurrence or
nonoccurrenco of a " breakthrough." Likewise, an overall measure of location will be
too small to represent the largo values of Y and too largo to represent the small
values of Y. Moro useful estimates would be mado conditional on the occurrence or
nonoccurrenco of a " breakthrough." That is, ono could estimato the location and
scale for those casos where a " breakthrough" occurs and obtain separato estimates
for thoso casos whero a " breakthrough" falls to occur.

5.5 SENSlilVIIY ANALYSIS FOR THE ONET MODEL

lt is important to koop in mind that the discontinulty in the output was not
anticipated a prinrl. In fact, tho existence of a discontinuity was not clearly
identiflod until the scatterplots were mado. The Impact of the discontinuity on the
estimation of the output cdf and in tho estimation of population parameters has
already been observed. The presenco of the discontinuity also impacts the
sensitivity analysis.

The scattorplots in Figures 14 - 16 Indicate that X2 plays an important role in
determining if a breakthrough occurs. Additionally, the scatterplots indicate that
the variablos that are important, given a breakthrough, are not necessarily the same
variables that are important when a breakthrough does not occur. Therefore, since
the occurrence or nonoccurrence of a breakthrough has such an influence on the
results, it seems reasonable as a first step in a sensitivity analysis to direct efforts
toward determining which variables influence "timo to breakthrough" rather than
concentrating efforts on " rate of dissolution" at each of 20 different time steps. As
a second stop, it would then scom reasonable to direct sensitivity analysts efforts
toward the breakthrough and nonbreak through cases separately. In order to
conservo space, these analyses are not prosented.

5.6 SEC110N SUMMARY

The DNEl model was used for comparlsons in this section. DNET models
dissolution in bockled salt formations and has a foodback mechanism that governs the
selection of difforent nubmodels for treating varlous processos. Because of the
complexity involved in treating these processos, the governing equations are not
solved in an implicitly coupled fashion (l.c., simultaneously), which makes it difficult
to Imptoment a differential analysis. Hence, a differential analysis was not
performed for the DNET model. For the analyses with Lits and a fractional
factorial design,10 inJopondent variables woro considered as input to the model.
The model produces nonlinear time dependent output as a function of each of these
input variables, but not known prior to the analysts was the existence of a
discontinuity in the output. Somo flexlbility is required in the analysis to detoct the
discontinulty after the computer runs are mado, as well as to perform meaningful
uncertainty and sensitivity analysos on the baste of the runs,

l

i

;

*
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|
|

| t)NCERTAINTY ANALYSIS

The importance of scattorplots for display of input-output relationships as a )
quido to bottor understanding of model behavior was mentioned in Section 3, but
such plots woro not prosented until the present section. Their appocranco in this ;

section illustratos their usefulness. The sido by-sido scattorplots in Figures 14-16
show how throo input variablos act jointly to affect the output at differont points in
timo. Ono set of scatterplots is based on 32 computer runs associated with a

! fractional factorial design and the second set is based on 32 runs associated with
| LHS. Both sots of plots show that X3 af facts the output conditional on tho value of
'

X. Additionally, the I.HS scattorplot shows a jump of about four orders of2
magnitudo in the output for largo values of X , but the fractional factorial2

; scattorplot does not reveal this jump, in fact, it is not clear from the fractional
| factorial scatterplot what happens to the output for intermodlato values of X If2

| contor points for both X2 and X3 are added to the basic fractional factorial design |
| the output would appear to be nonlinear in form, but the jump or discontinuity would
I still not be apparent. It can only bo detected by stratifying tho input values across

the entiro rango of X '2

! The discontinuity in the output impacts the entiro analysis and can glvo rise to
mistoading results If its presence is not detected. For examplo, the Indirect
estimato of the cdf In Figure 17 arising from Monto Carlo simulation with the

i responso surface fit gives no indication of problems with discontinulties. Honco,
virtually all quantito estimates will bo off considerably, as can bo soon from the two'

LHS direct estimatos (n a 32 and n a 100) in Figuro 17, which both clearly indicato i
the presenco of the jump in tho distribution function. The jump in the output cdf

|
also indicatos that an overall estimato of tho variance of the output will have little L

|
or no meaning: rather, conditional estimatos should bo mado.

;

ECNSITIVITY AN&G2

1ho sensitivity analysis discussion presented in this rection did not go into i

| detall comparing various methods of ranking variables as was the caso in tho |

| previous two sections; rather, the more important issue of the impact of the
discontinuity on tho analysis was considered. The reason for this is that if the
discontinuity is not detected, or Ignored if dotectod, then sensitivity analysis to
determine which variables influence tho rato of dissolution will most likely not
produco meaningful results.

For a sensitivity analysis to provido moaningful results in a situotton such as !
oxists with the DNCI model, it is probably best to procond in two stages. The first
stago should be concerned with the dotermination of the variables that influence the
occurrenco or nonoccurrenco of a breakthrough which cautos the discontinuity. [,

Such results will provide guidance to the analysis. The second stage would be to I

perform sensitivity analysis on the breakthrough and nonbreakthrough casos
separately, using methods such as have boon discussed in the previous sections.

,

;
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6. ADDITIONAL TECHNIQUES

The purpose of this section is to introduce soveral additional techniques that
have boon proposed for uncertainty and sonstivity analysis. The adjoint and Groon's
function techniques are actually methods for uso with differential analysis to
increase the numerical officiency with which the nocessary partial dorlvativos can

,

be calculated. The Fourlor amplitudo sonsltivlty test is a method which usos |
techniques from fourlor analysis to simplify direct calculations of expected valuos j
and variancos, j

6.1 A(2) DINT TEClINIQLQ

As was indicated in Section 4, the repetitive solution of the system of equations
in (2.0) and (2.10) can becomo quito burdonsomo when a dif forontial sensitivity I

analysis is perfortnod. An area of activo recent invostigation is the use of 'djoint
techniques to reduce the computational requiroments associated with dif'contlat
ar.alysis (o.g., Koda, Dogru, and Solnflold,1979; Cacuct et al.,1900; Cacuct,19010
and 190lb; Plopho, Cady, and Konton,1901 liall, Cacuct, and Shlosinger,1902;
Cocucl. Maudlin, and Parks,1903). Further, additional background can bo obtained
in various reviews (e.g., Stacey, 1974; Croonspan,1976; Wolsbin, Lewins, and
Hockor ,1902).

Although a careful discussion of adjoint sensitivity analysis techniques is beyond
tho scopo of this paper, a brief discussion of how such an analysis might bo
implomonted for the MALROS model will be glvon. As previously indicated, the
anodal is a system of nonlinear dif ferential equations of the form

dYj (f,t)/dt a fj[Y,(f,t),f,t] (6.1)

with the initial value condition Yj(0) e Y )(X) for j i !.....p. Suppose the dopondent0
variablo of interest is definod by

f(%,f,t ) a L(Y(E,t),E,t) di . (6.2)y

For examplo, this equation might defino an intograted concentration or deposition.
It is destrod to dolormino O!/0X for nach Indopondant variablo Xg. This can be
accomplished by introducing and solving the following system of adjolnt equations:

POL(Y(f,t),E,t] 0][%(X,t),f,tj,, y ,,,

kdY /dt a -

j gy gy

"

Y)(t ) = 0 (6.3)p

>

|
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'

for ) = 1,... p. Once the system in (6.3) is solved, each of the desired partial ,

|derivatives can be obtained from the relationship
|

!

t PaI(y,X,t ) F aL(Y,X,t] 8Yg(f)F ,

dt + 1 Y0k(0)
,

'
*

B X. 8X BX.
1 0 i k=1 1

i

P

[F 1 y"k g) afp (Y,X,t) dt (6.4)+
BX

O k=1 i'

for i = 1, 2,... .

The appeal of the adjoint method lies in the fact that it is only necessary to
solve the original equations in (6.1) once and the adjoint equations in (6.3) once.

| Then, all the desired partial derivatives follow from repetitively performing the less
demanding integrations in (6.4). This has the potential to require significantly less
computation than repetitively solving the combined system appearing in (2.8) and
(2.10).~ At the outset of this project, our intent was to perform the MAEROS
differential analysis with the indicated adjoint techniques. However, it was
ultimately decided not to use adjoint techniques for reasons outlined in the next
paragraph.

In the performance of an adjoint analysis, the system of equations in (6.1) is
solved forward in time from t = 0 to t = t , while the system in (6.3) is solvedF
backward in time from t = tp to t = 0. As the backward solution to (6.3) requires the
solution to (6.1), it is necessary to record the solution to (6.1) at selected points in
time and to use some type of interpolation procedure in the incorporation of these
values into the solution to (6.3). The integrals in (6.4) require the solutions to the
systems of equations in (6.1) and (6.3). Thus, it is also necessary to record the
solution to (6.3) at selected points in time and to use some type of interpolation
procedure in the incorporation of the solutions to (6.1) and (6.3) into the integrals
appearing in (6.4). Both the expressions in (6.3) and (6.4) involve partial derivatives,
at least some of which must be determined numerically. Finally, the integrals in
(6.4) must be evaluated numerically.

Two points emerge from the preceding discussion. First, an adjoint analysis of
the MAEROS model is difficult to implement numerically. Due to the successive
combining of numerical approximations, it is hard to know and control
computational errors. Second, due to the different procedures which must be
cambined, a large effort is required to develop the software required to run the
analysis. The two preceding considerations lead to the decision that it would be

- better to solve the systems in (2.8) and (2.10) repetitively than it would be to
perform an adjoint analysis.

Adjoint analyses are easier to perform for algebraic systems than for
differential systems such as the one just discussed. Of course, all differential
systems are ultimately implemented as an algebraic system in a computer program.

6-2
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However, the complexity of the problem and the associated computer program may
prevent convenient use of these algebraic equations. A new FORTRAN compiler
recently developed at Oak Ridge National Laboratory makes use of the ultimately
algebraic structure of models and develops the required partial derivatives needed in
an adjoint analysis of the underlying algebraic model associated with a computer
program (Oblow,1983a and 1983b). Although we have not had a chance to work with
this program, it is possible that its use could significantly reduce the effort
associated with implementing adjoint analyses for certain models.

6.2 GREEN'S FUNCTION TECHNIQUES

Another approach to reducing the computation associated with solving the
systems in (2.8) and (2.10) is based on Green's function. As with adjoint techniques,
this method is an area of active recent investigation (e.g., Hwang et al.,1978;
Dougherty, Hwang, and Rabitz,1979; Demiralp and Rabitz,1981a and 1981b; Dacol
and Rabitz,1983). Differential sensitivity analysis revolves around the need to
solve the system appearing in (2.10). In matrix notation, this system can be written
as

d[8Y/aX ]/dt = af/aX + J ay/aXf
g g

aY(0)/8X; = 8Y ID.) i* (6.5)O

where y = (Y ...,Y ), f = (f ....f ) and J is the Jacobian matrix for f with respecti p i p ~

to X. The system in (6.5) must be solved for each X . However, it is only thei
initial-value 8%(0)/aXi and the forcing function af/aXi that changes from
system to system; the Jacobian matrix J remains the same for all systems. The
Green's function technique is based on the separation of the solution of (6.5)into the
part that depends on X and the part that depends ory J. Specifically, the solution toi
(6.5) can be expressed as-

8Y(t)/aX = K(t,0)[0Y(0)/aX ] + [ti K(t,T)[af/aX ]dTi ,

0 (6.6)

where K(t,T)is the Green's function defined by

K(T,T) = I, dK(t,T)/dt = ]!f,(t,T) for t 1 T (6.7).

! Use of (6.6) results in the desired separation of the calculation of BY/aX into partsi
dependent on X and parts independent of X . The Green's function defined in (6.7)i i
can be approximated once and this approximation can then be used repeatedly in the
calculation of the desired partial derivatives.
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Although use of Green's function techniques may result in a reduction of the
computational effort required to repeatedly solve the systems in (2.8) and (2.10), a
significant programming effort is still required to implement the method. First, the
original system of model equations must be solved. Second, this solution must be 4

used to solve the system in (6.7) that defines the Green's function. Finally, the i

approximated Green's function must be used repeatedly in the development of {
approximations to the expressions in (6.6). As with the adjoint techniques, attempts q
are being made to develop software which will facilitate implementation of Green's

I
function techniques (Kramer et al., 1982). As a careful examination of their |
development would reveal, adjc 't and Green's function techniques are very closely I

related.

6.3 FOURIER AMPLITUDE SENSITIVITY TEST

The Fourier amplitude sensitivity test (FAST) is another procedure that has
been developed for uncertainty and sensitivity analysis (Cukier et al.,1973; Shalbly
and Shuler,1973; Cukier et al.,1975; Cukler et al.,1978). This procedure provides a
way to estimate the expected value and variance of a dependent variable and the
contribution of individual independent variables to this variance.

As before, suppose Y = (Y g....,Y ) is a function of X = (X g,...,X ). Further,p k
suppose X g....,Xk are random variables described by a probability density function
P(X g,...,X ) defined on O. Then,k

E(Y)) = Y)(X)P(K')dX (6.8)

for j = 1,...,p. The central idea of the FAST method is to convert the k-dimensional
integral in (6.8) into a one-dimensional integral in s by using the transformation
Xq = G (sin e s) for q = 1,...,k. For properly chosen eq and G ,q q q

W

2" f Y) [G (sin o s),...,G (sin o s)] ds .E(Y)) = 1 (6.9)g g k p

_n

Further, by use of properties of Fourier series,

W

[ Y)2[G (sin gs)....,G (sin o s)] ds - E 2(y )V(Y)) = 1 g k k j
2n -n

|

I
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f{A 2+ B -A*0=
O 0

i=-=

2 2=2 A+B (6.10),

i=1

where

W

2n _f Y)(s) cos(is) ds
A=1 (6.11)g

,

and

W

f Y)(s) sin (is) ds . (6.12)B=1
. 2w _,

The expressions in (6.9) and (6.10) provide a means to estimate the expected value
and variance associated with Yj. Further, provided the og are integers, the
contribution to variance by X can be approximated byq

2A +B (6.13)V (Y)) = 2q 9
9i=1

Thus, the ratios V (Y J/V(Y ) provide a means to rank individual variable importanceq J J
on the basis of contribution to variance.

Application of the FAST method involves defining the og and G , evaluating theq
original model at a sufficient number of points to allow numerical evaluation of the
integrals in (6.11) and (6.12), and approximation of the sums in (6.10) and (6.13).
Applications involving this technique are given by Falls et al. (1979), Koda et al.i

' (1979), Pierce and Cukier (1981), McRae et al. (1981), and Tilden and Seinfeld (1982).
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7. SUMMARY AND CONCLUSIONS

7.1 TECHNIQUES AND MODELS USED IN COMPARISONS
Uncertainty analysis and sensitivity analysis are important elements in the

development and implementation of computer models for complex processes. Many
different techniques have been proposed for performing uncertainty and sensitivity
analyses, and published comparisons have been made of some techniques. It is our
observation that such comparisons are often made on unrealistic and artificially
simple models. For example, one might see a small number of independent input
variables used with a simple function. This approach has merit in allowing
comparisons against known answers but fails to show the extendibility of the
techniques to complex problems. The main aim of this study was to compare several
widely used techniques on three models having large uncertainties and varying
degrees of complexity in order to highlight some of the problem areas that must be
addressed in actual applications.

We are aware that results presented in a study such as this will not satisfy
everyone. For example, questions will arise as to the choice of techniques used in
the comparisons. We feel that there is adequate justification for the techniques
featured in the comparisons, but more importantly, given the documentation on the
input and models, it should be possible for other investigators to make comparisons
of additional techniques with the results in this study.

Three techniques for performing uncertainty analysis and sensitivity analysis
are used in the comparisons made in this paper. These techniques are (1) response
surface replacement for the computer model, (2) Modified Monte Carlo as
exemplified by Latin hypercube sampling with and without regression analysis, and
(3) differential analysis.

Three computer models were used in the comparison of the techniques.

Pathways - models the environmental movement of radionuclides;*

consists of a system of four linear, constant coefficient
differential equations; requires 20 independent input
variables; produces multivariate nonlinear output.

:

MAEROS - models multicomponent aerosol dynamics; consists of a.

[ system of nonlinear differential equations; requires 21
input variables, eight of which are correlated; produces

|
multivariate time dependent nonlinear output.

DNET- models dissolution in bedded salt formations; has a
|

.

. feedback mechanism that governs the selection ofi

different submodels; requires 10 independent input
7
' variables; produces time-dependent multivariate

nonlinear output which is discontinuous with respect to
one of the input variables.

| The preceding descriptions pertain to the models as used in this comparison. Each
I of the models is quite general and can be used in configurations that are different

from the ones considered here.
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i

i

7.2. GENERAL SUMMARY OF THE TECHNIQUES i
,

A brief summary of each technique is given in this subsection. This summary is
followed in the next subsection by another summary in which the techniques are

' gauged by particular criteria.

| RESPONSE SURFACE REPLACEMENT USING FRACTIONAL FACTORIAL DESIGNS
~

Fractional factorial designs (FFD) have a proven record of performance and are
well documented in the statistical literature. They have provided good results in
many experimental situations. They, along with more complex experimental
designs, have also been widely used in the construction of response surfaces and aret

| near an optimal choice for input selection if the output behaves in a linear fashion. |
; Even if the output behaves in a nonlinear fashion, the FFD can sometimes be

modified to give reasonable results by including center points. The problem in using
a FFD to produce a response surface replacement for a computer model of the type
considered in this paper lies not so much in the choice of the design but rather in the
concept of trying to replace the model with a response surface. Generally speaking,
the models are too complex mathematically to be adequately approximated with a,

'

response surface. Since indirect estimates of the output cdf(s), the variance of the
output variable (s), and variable ranking by contribution to variance are derived from,

the response surface when using input from a FFD, an inadequate response surface
can generate misleading uncertainty analysis and sensitivity analysis results.

The FFD response surface approach provided both good and poor estimates of4
'

the output cdfs for the simple Pathways model, but did provide a reliable ranking of
i the input variables. However, in evaluating rankings for the Pathways model, it
i should be kept in mind that one input variable tended to dominate each output,

variable. The response surface approach was not used with the MAEROS model due
to the complexity of the multivariate input structure. The response surfacet

approach provided an unreliable estimate of the output cdf with the DNET model4

largely because the discontinuity in the output went undetected.;

i

:

) DIFFERENTIAL ANALYSIS AND LOCAL BEHAVIOR
i
L A differential analysis is intended to provide information with respect to small
i perturbations about a point. Excellent information is provided about variable

behavior and influence about this point and such information is quite useful in a
variety of applications. Problems arise, however, in an uncertainty analysis or in a

'

sensitivity analysis when large uncertainties are present and attempts are made to
: extend the results from the small perturbations in the input variables, for which the
'

differential analysis is intended, to a broader or global interpretation. For example,
estimates of the cdf and variance can be obtained indirectly by using a Monte Carlo,

I simulation with the Taylor series expansion about a basecase point. The results may
or may not be sensitive to the choice of this basecase point.

Tne differential analysis was relatively easy to implement with the Pathways,

model and a Monte Carlo simulation of the Taylor series expansion about the
basecase point produced a cdf in good agreement with the unbiased estimate as
shown in Figure 3. However, as illustrated in Figure 4, other choices of basecase

i
,
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values gave widely varying results. The input variable ranking proved to be in good
agreement with the other techniques, but as was mentioned previously, one input
variable tended to dominate each output variable. The implementation of the
differential analysis with the MAEROS model proved to be another matter entirely.
It was extremely difficult and time consuming to do, requiring about six
man-months of effort. Moreover, even though the cdf estimates shown in Figures
9-11 all utilized a Taylor series expansion about the same basecase point, the results
ranged from reasonably good to poor for three different output variables. The
variable rankings shown in Table 14 agreed quite well throughout with the other
rankings in the table, but the same was not true in Table 15 where more disparity
occurred among the rankings. Due to the complexity of the feedback mechanism
governing the selection of different submodels, a differential analysis was not
performed with the DNEI Model.

MTJN HYPERCUBE SAMPLING

The implementation of LHS is similar to that of simple random sampling and
both have a probabilistic basis. In fact, for large sample sizes there is little dif-
ference between the two techniques. However, the original intent of LHS was to

~

make more efficient use of computer runs than random sampling for smaller sample
sizes. If the output is a monotone function of the input, then Lt IS has been shown by
Iman and Conover (1980) to be more efficient than simple random sampling
(i.e.,1.1IS provides a smaller variance for the estimator). If monotonicity is not
satisfied, then LHS may or may not be more efficient than simple random sampling.
Since LHS has a probabilistic basis, it can provide direct estimates for the cdf and
variance. When random pairing is used with LHS, the estimate of the cdf is unbiased
while the variance estimate has a small, bounded, but unknown bias. When LIiS is
used in conjunction with the pairing technique of Iman and Conover (1982a), corre-
lated multivariate structures for the input variables can be input to the computer
model in the proper form; something that cannot be done with random pairing in the
LHS. However, the proparty of unbiasedness no longer applies. It is felt that the
amount of bias is negligible for the type of problems considered in this study.

L.liS was used with all three computer models and produced good estimates of
the cdf throughout as measured by comparisons with results from large random
samples. For example, for both the Pathways model and the MAEROS model, the
LHS estimates with n=50 showed good agreement with random sample estimates
with n=100. In the case of the DNET model, the LHS estimate with n=32 was com-
pared against a LHS with n=100 in order to illustrate the small variability associated
with LHS estimates. The presence of a discontinuity in the output from DNET was
clearly identifiable from the LHS cdf estimate, illustrating the usefulness of LHS in
mapping the input space to the output space. The LHS was used with all four
methods of ranking indicated in Sections 3 and 4.

7.3 S_UMMARY OF TECHNIQUES ACCORDING TO SPECIFIC CRITERIA

T here are several specific criteria that are of interest when comparing
|

different techniques for uncertainty and sensitivity analysis. Several such criteria
are listed in this subsection along with comments with respect to each of the
techniques considered in this study.
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EASE OF IMPLEMENTATION

lRS - If the number of input variables is small and the variables are
independent of one another, then the selection of input values is I

straightforward with a fractional factorial design. If the variables are
not independent, then the design may create pairs of variables that are
physically impossible or meaningless. When the number of input
variables is large, the development of a suitable design can be difficult.
The fitting of the accompanying response surface frequently requires
some artistry.

DA - Setup can be very simple, or very difficult, or impossible. Results can
vary greatly depending on the choice of a basecase for Taylor series
expansion. Monte Carlo simulation of the Taylor series expansion to get
cdf estimates and evaluation of the expansion to get variance estimate
are both straightforward.

LHS - Setup with either simple or complex multivariate input structures is
easy. Output can be processed directly for estimates of the cdf and
variance without the need for fitting a response surface. However, the
estimate of the variance has a small, but unknown, bias.

FLEXIBILITY

RS - Scatterplots from FFD input provide somewhat limited information.
Input values from FFD are orthogonal and as such are not designed to
handle correlated input. It is difficult to implement a FFD with a large
number of input variables. The input space with a FFD can be
under-represented and important points can be missed.

DA - There are scatterplots available A single input point is not affected by
correlation in the input variables as long as restrictions among the
variables are satisfied. This approach will handle a large number of
input variables.

! LHS - Scatterplots based on LHS input provide useful information. LHS has the
| ability to handle correlated input as well as a large number of input
I variables. The input space is well represented.

I ESTIMATION OF THE OUTPUT CDF

RS - The estimate is obtained by using a Monte Carlo simulation with the
response surface fit. This indirect estimate can be either good or bad

j and is dependent on the quality of the fitted response surface.
i

| DA - The indirect estimate is obtained by using a Monte Carlo simulation with
j a Taylor series expansion about a basecase point. This estimate can vary
I greatly with the choice of a basecase. Also, the local nature of a Taylor j
I series expansion makes this estimate questionable. ;

|

[ LHS - The cdf estimate is obtained directly from the model output. Further,
this estimate has a small associated variance and little, if any, bias.

t

!
|

|
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ADAPT ABILITY TO DIFFERENT METHODS OF SENSITIVITY ANALYSIS

RS - All methods of ranking input variables explained in Section 3 can be
used. The usefulness of the PRCC is inhibited somewhat by the limited
number of fixed points used with each input variable for FFD input.

DA - The PRCC cannot be used. The other three methods of ranking variables
as explained in Section 3 are nbtained from the Taylor series expansion
about the basecase point. The rankings obtained provide local
information but do not always extrapolate well to a global interpretation.

LHS - All methods of ranking input variables as explained in Section 3 can be
used.

7.4 EXTENSION OF TECHNIQUES TO A SYSTEM ANALYSIS

The input variables have been treated as representing properties associated
with a computer model that may itself be only a component in a system of many
such models. Such systems are likely to be composed of many different models,
some of which will far exceed the complexity of the models considered in this
study. For example, the MELCOR program mentioned in the Introduction is one
such complex system. Furthermore, it is likely that it will be necessary to apply
uncertainty analysis and sensitivity analysis to the entire system. For such
applications, the role of some of the input variables will need to change as
mentioned in the Introduction, to perhaps represent branch points in the evolution of
a process or perhaps different submodels within a larger model. In such case the
analysis could be used to identify those models or events that have a significant
impact on the system, and in turn may contribute significantly to the uncertainty.
Such methodology development is the subject of current research at Sandia National
Laboratories, but will build on techniques discussed in this study, in particular, the
techniques based on Latin hypercube sampling. One such analysis where LHS has
been used in a system analysis is associated with the geologic isolation of

'

radioactive waste as reported in Cranwell et al. (1982).

|

|

,
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Uncertainty analysis and sensit ,t analysis are important elements in the
development and implementation of c pu r models for complex processes. Typically,
there are many uncertainties associat with th the development and the application of
such models. Understanding of t se unce inties and their causes is required to
effectively interpret model behavi . Many di rent techniques have been proposed for
performing uncertainty and sensit ty analyses, he objective of the present study is to
compare several widely used tec igues on three odels having large uncertainties and
varying degrees of complexity i order to highlight me of the problem areas that must
be addressed in actual appli tions. The followi approaches to uncertainty and
sensitivity analysis are consi red: (1) response su ce methodology based on input
determined from a fraction factorial design, (2) La 'n hypercube sampling with and
without regression analysis, d (3) differential analysis. These techniques are compared
on the basis of (1) ease of i plementation, (2) flexibility, estimation of the cumulative
distribution function of th utput, and (4) adaptability to ferent methods of sensitivity

analysis. With respect to . ese criteria, the technique using atin hypercube sampling and
regression analysis gives le best results overall. The models sed in the comparisons are
well documented, thus aking it possible for researchers to ake comparisons of other
techniques with the resu s in this study.
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