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ABSTRACT

Uncertainty analysis and sensitivity analysis are important elements in the
development and implementation of computer models for complex processes.
Typically, there are marny uncertainties associated with both the development and
the application of such models. Understanding of these uncertainties and their
causes is required to effectively interpret model behavior. Many different
techniques have been proposed for performing uncertainty and sensitivity analyses.
The objective of the present study is to compare several widely used techniques on
three models having large uncertainties and varying degrees of complexity in order
to highlight some of the problem areas tr .t must be addressed in actual
applications. The follewing approaches to uncertainty and sensitivity analysis are
considered: (1) response surface methodology based on input determined from a
fractional factorial design, (2) Latin hypercube sampling with and without regression
analysis, and (3) differential analysis. These techniques are compared on the basis
of (1) ease of implementation, (2) flexibility, (3) estimation of the cumulative
distribution function of the output, and (4) adaptability to different methods of
sensitivity analysis. With respect to these criteria, the technique using L atin
hypercube sampling and regression analysis gives the best results overall. The
models used in the comparisons are well documented, thus making it possible for
researchers to make comparisons of other techniques with the results in this study.
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l. INTRODUCTION

Computer models are used in many settings to implement mathematical models
for complex processes. Typically, these models represent a variety of phenomena.
For example, the Nuclear Regulatory Commission-sponsored MELCOR program at
Sandia National Laboratories is developing a complex system of models that address
accident progression, thermal-hydraulic phenomena, radionuclide behavior and
transport, and environmental consequence analysis for severe reactor accidents
(Sprung et al., 1983). There are many uncertainties associated with both the
development and application of these models. Understanding of these uncertainties
and their causes is required to effectively interpret the model predictions.

The analysis of uncertainties and sensitivities associated with such models plays
an important part in their development and appl'cation. Typically, large systems
such as MELCOR are too complex to permit a simple examination of uncertainty in
its entirety. Hence, much effort is directed at examining the components of a
system. At the first stage of an analysis, it is necessary to use some carefully
designed procedure to determine the impact of uncertainty on individual models in
the system, and then at the second stage to study the impact of uncertainty on the
entire system. There are many techniques for uncertainty analysis and sensitivity
analysis. The purpose of this study is to compare several widely used approaches for
uncertainty and sensitivity analysis of individual models.

For this comparison, it is convenient to think of a model as a function Y =
f(X],....Xk,t) of the independent variables X|,...,X) and possibly also of time t. The
variables Xj,...,X| can be used to represent a variety of phenomena within the
model. For example, they might represent common properties such as temperature
and pressure or other entities such as parameters in statistical distributions, branch
points in the evolution of a process, or different submodels within 2 larger model.
Uncertainty analysis is defined here to be the determination of the variation or
imprecision in Y that results from the collective variation in the model variables
X|seen XK. Summarizing and displaying the uncertainty associated with vV is a
problem of immediate concern since there are many questions of potential interest,
such as (1) what is the range of Y, (2) what are the mean and median of Y, (3) what
is the variance of Y, (4) what are the lower and upper 5% quantiles for Y, and (5) are
there any discontinuities associated with the distribution of Y. A convenient tool
for providing such information is the estimated cumulative distribution function
(cdf) for Y since it summarizes the variability in computer model output which
results from the input assumptions. However, the estimated distribution function of
Y can only be interpreted in a probabilistic sense if the model variables X, ..., X
have meaningful probability distributions associated with them. Frequently, this is
not possible as the model input variables may lack an adequate data base. We will
proceed with the first stage of the uncertainty analysis using the estimated
cumulative distribution function as a summary tool without being overly concerned
about interpretations for the probability estimate it provides.

An area clusely related to uncertainty analysis is sensitivity analysis. The
importance of sensitivity analysis lies in the guidance it provides with respect to the
identification of the important contributors to uncertainty in Y. Sensitivity analysis
is defined here to be Lhe determination of the change in the response of a model to
changes in model parameters and specifications. Thus, sensitivity analysis is used to
identify the main contributors to the variation or imprecision in Y.




The models to wnich uncertainty and sensitivity analyses are applied are often
large and complex and frequently display many of the following properties:

e There are many input variables.

» The model is time consuming (i.e. expensive) to run on a computer.
* Alterations to the model are difficult and time consuming.

e It is difficult to reduce the model to a single system of equations.
¢ Discontinuities exist in the behavior of the model.

* Correlations exist among the input variables and the associated marginal
probability distributions are often nonnormal.

¢ Model predictions (outputs) are nonlinear, multivariate, time-dependent
functions of the input variables.

e The relative importance of individual input variables is a function of time.

For an approach to uncertainty and sensitivity analysis to be viable, it must be
applicable to models possessing many of the preceding charecteristics.

This study examines the following three often-used approaches to uncertainty
and sensitivity analysis:

* Response surface replacement for the computer modei
* Modified Monte Carlo as exemplified by Latin hypercube sempling
¢ Differential analysis.

This examination is implemented by applying these .Lechniques to three existing
models with large uncertainties. The following models are used:

e Pathways (a model for environmental radionuclide movement)
e MAEROS (a model for multicomponent aerosol dynamics)
e DNET (a model for salt dissolution in bedded salt formations).

These models were selected because each is well documented, has been extensively
used in risk assessment applications associated with geologic isolation of radioactive
waste or in risk studies for nuclear reactors, and displays many of the eight model
characteristics indicated above.

Section Z presents a brief description of the three techniques for uncertainty
and sensitivity analysis that are compared in this study. Section 3 presents results
from all three techniques utilizing the Pathways model. Section 4 presents a
comparison of LLatin hypercube sampling and differential analysis using the MAEROS
model. The response surface replacement is not used with the MAEROS model due
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to the difficulty of utilizing an experimental design with the complex multivariate
input structure associated with this model. Response surface replacements and
Latin hypercube sampling are compared in Section 5 with the DNET model. The
differential analysis is not used with the DNET model due to feedback mechanisms
within the model which make such an analysis difficult to implement. Additional
techniques for sensitivity analysis and uncertainty analysis are discussed in Section
6. Section 7 contains a surnmary and conclusions.



2. METHODS TO BE COMPARED

Three methods for sensitivity analysis and uncertainty analysis are considered
in this study. These methods are based on (l) a response surface replacement for the
computer model, (2) modified Monte Carlo as examplified by Latin hypercube
sampling both with and without regression analysis, and (3) differential analysis. A
brief discussion of each of these methods is given in this section.

2.1 RESPONSE SURFACE REPILACEMENT FOR THE COMUTER MODEL

A response surface replacement for a computer model is based on using an
experimental design to select a set of specific values and pairings of the input
variables X|, ..., Xj that are used in making n runs of the computer model. The
method of least squares is used with the model output Y and input X, ..., Xij i
= I, ..., n, to estimate the parameters of a general linear model of the }orm:

8.Xx.. (2.1)

Y = )
6047 i %)

The estimated model is known as a fitted response surface, and it is this response
surface that is used as a replacement for the computer model. Thus, all inferences
with respect to uncertainty analysis and sensitivity analysis for the computer model
are derived from this fitted model. Two points are worth noting with respect to the
model in (2.1). First, a linear model is usually written with an error term added on
to represent stochastic variation. HHowever, the computer models considered in the
present analysis produce deterministic output, and therefore, differences between
the model in (2.1) and the computer model are due to lack of fit rather than
stochastic variation. The second point involves the individual X; used in the model
in (2.1). The actual fitting of such a model usually involves additional variables
derived from the original variables, such as squares and crossproducts as well as
transformations of the original variables.

The fitting of a response surface usually requires that some prescription be used
to select the specific values of the inputs X|, ..., XK, and more importantly, to
determine the manner in which the input are paired in each of the n computer runs.
Experimental designs are commonly used to make this determination. The choice of
available designs is quite large, and since this study is not intended to be a treatise
on response surface techniques, only an often used approach based on factorial
designs wil be used for purposes of illustration. References to more sophisticated
attempts at fitting response surfaces are given at the end of this subsection,

Factorial experimental designs are well developed in the statistical literature
and extensive discussions with respect to them may be found in textbooks on
experimental design, for example see Box, Hunter and Hunter (1978). A factorial
design utilizes two or more fixed values (i.e., levels) to represent each variable
under consideration. Thus, if there are k input variables and if two levels are used
for each variable, then there exist 2K possible combinations of the k variables
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while 3K combinations are possible with 3 levels, or in general nK combinations are
possible with n levels. It is also possible to mix the number of leveis used with each
variable such as six variables at two levels paired with two variables at three levels
and two variables at four levels. One of the features of a factorial design is that all
pairwise correlations between the inputs are equal to zero (i.e., the input values are
orthogonal to one another).

It is clear that the number of treatment combinations becomes quite large even
for a small number of variables. Thus, in order for a factorial design to be useful
with computer models having large numbers of input variables, an approach is
needed that allows for a reduction in the number of treatment combinations. This is
possible to some extent through the use of fractional factorial designs where some
fraction of the total number of treatment combinations is used. That is, for each of
k factors at n = 2 levels some fraction (1/2)™, m ¢ k, of the total number of
treatment combinations is used. Thus, for k = 10 and n=2, fractional factorial
designs could have 512, 256, 128, 64, 32, 16, 8, 4, or 2 treatment combinations
corresponding to m = 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively. The number of
required runs of the model would equal the number of treatment combinations. of
course, as m increases, the effects of some individual variables cannot be estimated
because of confounding with interactions among variables. Thus, the selection of
the fraction size and treatment combinations must be done with great care, keeping
in mind which variable effects and interactions are of greatest interest. Selection
of the actual design to be used in an analysis can be made only after a careful
consideration of the model and the variables associated with it. The expense of
evaluating the model (and subsequent limitation of the number of computer runs)
may exert a strong influence on the selection of the design to be used.

A discussion of techniques for the development of fractional factorial designs is
beyond the scope of this study. However, readable discussions on fractional
factorial designs can be found in Box, Hunter, and Hunter (1978) and F inney (1960),
with a more mathematical treatment of recent developments given by Raktoe,
Hedayat and Federer (1981). Many textbooks on experimental design contain plans
for fractional factorial designs for various numbers of levels and different values of
m and k. The U. S. National Bureau of Standards (Applied Mathematics Series, 48
and 54; April 1957 and May 1959) has published one of the largest sets of plans and
includes values of k ¢ 16 for various values of m and n.

In the previous section, uncertainty analysis for an individual model output
variable Y was focused on estimating the distribution function of Y. The
distribution function for an output variable cannot be estimated directly from the
set of output values resulting from input based on a fractional factorial design since
the selection procedure used with the input values is not random. Therefore, to use
a response surface replacement for the model in an uncertainty analysis, it is
necessary to use Monte Carlo simulation with the response surface to estimate a
distribution function for the dependent variable Y. The response surface can be
used directly (i.e., without Monte Carlo) to estimate the expected value of Y by

E(Y) = 80 + :; 8 j(‘.()(j) (2.2)
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where E is used to denote expected value and the hat represents the estimate of the
quantity under the hat. Additionally, the variance associated with Y can be
estimated by

V()= $82v(x)+25% 8.8 Cov(X,X),

where V and Cov are used to denote the variance and covariance, respectively.

As defined in Section |, sensitivity analysis for an individual model output
variable Y involves determination of the response of that variable to changes in
system parameters and specifications. There are several ways explained in Section
3 in which the influence of individual variabies or parameters can be measured.
These measures include standardized regression coefficients, partial correlation
coefficients, normalized partial derivatives, and contribution to variance. Many of
these ways are closely related to response surfaces. The end result of these
techniques is a ranking by importance of the input variables. These and other
techniques are discussec and illustrated in the sections that follow.

Additionally, a useful preliminary nonquantitative screening technique is a
sequence of scatterplots in which the values for the dependent variable appear on
one axis and the values for each independent variable appear in turn on the other
axis. Such plots provide an indication of which independent variables are important
and may also provide guidance with respect to useful data transformations for the

variables in (2.1) as well as other aspects of the analysis. Examples of scatterplots
are given in Section 5.

If the output behaves in a linear fashion between the low and high values of
each input variable, input based on a fractional factorial design with two levels
works well for indicating major trends and the corresponding response surface
replacement works well in both uncertainty analysis and sensitivity analysis. A
simple application of this approach is given in Baybutt, Cox, and Kurth (1982). If the
output does not behave in a linear fashion, then an improvement in the response
surface fit can usually be obtained by using interior points in conjunction with the
high-low values such as found in a central composite design as explained in Box,
Hunter and Hunter (1978). In addition, a discussion of the application of a central
composite design to a computer model that describes a scrubbing process which
removes radicactive material from steam generated during a nuclear reactor melt
down accident is given in Bishop (1983). Steck, Dahlgren and Easterling (1975) give
an example of a sophisticated sequential attempt at fitting a response surface to
product peak cladding temperature in a loss of coolant accident at a nuclear
reactor. Myers (1971) provides an introduction to the use of fractional factorial
designs in conjunction with response surface techniques. /dditional information on
response surface methodology can be found in references such as Box and Behnken
(1960), Box and Draper (1959), Box, Hunter and Hunter (1978), Davies (195%), and
DeBaun (1959). Draper (1982) and Box, Hunter and Hunter (1978) discuss designs with
center points for fitting second order response surfaces and give several related
references. Examples of the use of fractional factorial designs in uncertainty
analysis and sensitivity analysis include Cox (1977), Steinhorst et al (1978) Kleijnen
(1979), Nguyen (1980), Baybutt, Cox, and Kurth (1982) and Bishop (1983).




2.2 MODIFIED MONTE CARLO (LATIN HYPERCUBE SAMPLING)

A possible alternative to the response surface replacement approach is a type
of stratified Monte Carlo sampling known as Latin hypercube sampling (LHS). As
originally described in McKay, Conover, and Beckman (1979), LIS operates in the
following manner to generate a sample of size n from the k variables X|, ..., Xj.
The range of each variable is divided into n nonoverlapping intervals on the basis of
equal probability. One value from each interval is selected at random with respect
to the probability density in the interval. The n values thus obtained for X, are
paired in a random manner (equally likely combinations) with the n values of *j.
These n pairs are combined in a random manner with the n values of X3 to form n
triplets, and so on, until a set of n k-tuples is formed. Thus, for given values of :
and k, there exist (n)k-! possible interval combinations for a Latin hypercibe
sample. For example, with n = 3 and k = 2, there are (3!)2-! = & possible interval
combinations. The six interval combinations are indicated with asterisks in the
following diagrams.

(a) (b) (c)
3 . 3 » 3 -
X3 2 | " 2 . 2 »
l C e 1 " 1 "
1 Z 3 | 2 3 | 2 3
X) X| X)
(d) (e) (f)
3 1 - 3 - 3 -
Xy 2 » 2 " 2 ”
l f - l e l -
| 2 5 | 2 5 | 2 3
X\ x| X

Thus, in diagram (a) a value of X, is randomly selected in interval | and paired with
3 value of X, selected at random from the first interval of X;. Likewise, for
intervals 2 5. In diagram (b) the value of X, from interval | ls paired with the
value of X, from interval 3. In each of these six diagrams, the full range of both X
and X, is sampled; whereas, in a simple Monte Carlo scheme all three
pairs of values could easily come from the same sutintervals for both X and Xj.
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It is convenient to think of the LHS as forming an n x k matrix of input where
the ith row contains specific values of each of the k input variables to be used on
the ith run of the computer model. Likewise, the jth column of the n x k input
matrix from using Latin hypercube sampling contains the complete stratified sample
for the jth input variable.

Due to the random pairing of intervals in the mixing process, there exists the
possibility of inducing undesired pairwise correlations among some of the variables
in a Latin hypercube sample. This is more likely to occur if n is small. Such corre-
lations can be avoided by modifying the Latin hypercube sample by restricting the
(n!)“'l possible interval pairings through the use of a technique introduced by Iman
and Conover (1982a) and implemented by a computer program developed at Sandia
National l.aboratories (Iman and Shortencarier, 1984). Restricting the pairing in this
manner preserves the fundamental nature of Latin hypercube sampling but replaces
the random matching of intervals with a method that keeps all of the pairwise rank
correlations among the k input variables very close to zero and thus ensures that no
unwanted large pairwise correlations will exist between input variables. In the
previous diagram, the interval pairings under {(a) and (b) have rank correlations of |
and -1, respectively. Both of these pairings are eliminated when the restricted
pairing technique is used. In turn, this should result in more stable estimates of
regression coefficients than simple random matching when the input-output values
are used to fit a response surface. In addition, by selecting the proper combination
of intervals, any desired rank correlation structure between variables can be induced
(regardless of the distribution assigned to the variables) when it is known that there
is correlation among the variables. When a sample generated by LHS is used, it is
good practice to examine the associated correlation matrix for the presence of
unwanted correlations among the variables under consideration. However, such
correlations should not be a problem when the pairing is restricted.

The generation of a Latin hypercube sample requires that some thought must be
given to the sample size n used. The choice of n depends on a number of considera-
tions but will be dominated by the cost of making a single computer run and the
numbur of input variables k. Our experience has shown that good results can be
obtained with n ) (4/3)k. However, this is not an absolute rule. If the maodel is
inexpensive Lo run, then n coula be larger such as between 2k and 5k. If k is quite
large and the model is expensive to run, then it may Le necessary to choose n
considerably smeller than k. It should be kept in mind that, when k is large, only a
small subset of the variables will turn cut to be important (unless it is a very unusual

model).

Another important aspect of selecting the sample size concerns the restricted
pairing technique of Iman and Conover (1982a). This technique can be applied
directly only if n ) k; otherwise, it is necessary to use the technique in a piecewise
fashion on subsets of the k variables where the number of variables used in each
subset is less than n. A LHS of size n with the corresponding desired rank
correlation structure is generated on each of the mutually exclusive and exhaustive
subsets of the k variables. The resulting subsets are then combined to form the n x
k input matrix. This plecewise approach assures that there are no unwanted
correlations among variables within subsets but there could exist spurious
correlations among variables belonging to different subsets. Hence, if such a
piecewise approach is used, the resulting correlation matrix should be examined for
unwanted correlations between variables in different subsats,
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In uncertainty analysis associated with Latin hypercube sampling, it is desired
to estimate the distribution function and the variance for the particular output
variable(s) Y under consideration. Due to the probabilistic nature of Latin
hypercube sampling, it is possible to estimate these entities directly from the model
output associated with the sample just as in simple Monte Carlo sampling. Let (Xj],
wor Xiks Yj) 1 = L..,n, denote the n individual sample elements, including the
corresponding model output Y;. Because each sample element has probability I/n, an
estimate of the cumulative distribution function for Y can be obtained directly from
the values for the individual Y;. Further, the expected value and variance for Y can
be estimated by

E(V) = 3Y/n (2.4)
i

and

V(Y) =5 [v; - Ecvn?m, (2.5)
1

respectively. These estimates are illustrated in the next section. As discussed by
McKay, Conover, and Beckman (1979), the estimates for the distribution function
and expected value associated with Y are unbiased. However, the estimator in (2.5)
for the variance is biased; the exact amount of bias is small but unknown. Iman and
Conover (1980) have shown that

((n-1/n] V(Y) ¢ ELV(Y)] € V(Y) (2.6)

when Y is a monotonic function of each of the individual X;. Use of the restricted
pairing technique of Iman and Conover (1982a), while allowing correlations to be
preserved and likely reducing the expected mean square E(6 - 6)4, removes the
unbiasedness from the distribution function estimate. The amount of the bias is
examined empirically in Figure | of Section 3.

The distribution function and variance for Y could also be estimated by fitting a
response surface to the model input-output based on LHS and then proceeding as
with factorial designs. However, there is little incentive to do this when the desired
estimates can be obtained directly without the intermediate step of response
surface construction. Techniques for sensitivity analysis for input generated with
Latin hypercube samples are the same as those previously indicated for the response
surface replacement approach.

Discussions of the use of LHS in uncertainty and sensitivity analysis are given
by Iman and Conover (1980, 1982b), Iman, Helton, and Campbell (198la, 198Ib), and
Harper and Gupta (1983). Applications of Latin hypercube sampling appear in
Downing, Gardner, and Hoffman (1985), Helton and Iman (1982), Cranwell et al.
(1982), and Helton, Iman, and Brown (1983). Beckman and Whiteman (1983) give
examples showing good and bad features of LHS in uncertainty analysis.



2.3 DIFFERENTIAL ANALYSIS

The last method to be considered in the comparison in this study is based on a
Taylor series expansion and the associated partial derivatives. With this approach,
the dependent variable of interest is treated as a function f of the independent
variables X|, ..., Xi. Then, a first order Taylor series expansion for the model about
some vector 50 (X]0s--++Xkp) Of basecase values for the variables X = (X|,..., X))
approximates f as follows:

f(X) = f(xp) + = 310

¥ e (X} - Xj0) (2.7)
J X,

The expression in (2.7) could be cxpanded to include terms with second order or
higher derivatives, but is typically truncated after the first or second order
derivatives. The expansion in (2.7) generates a model of the form in (2.1).

The Taylor series approximation shown in (2.7) is the starting point for
uncertainty and sensitivity analysis techniques based on differentiation. The first
step in such an analysis is the generation of the partial derivatives required in the
series. If the function f appearing in (2.7) is relatively simple, then it may be
possible to generate these derivatives analytically or by simple differencing
schemes. Frequently, f is too complex to permit such simple approaches and more
involved approaches tailored to the particular model under consideration must be
used.

A typical analysis problem employing differential techniques involves a system
of differential equations of the form

with the initial value condition Y;(0) = Ygj(X), where ¥ = (¥].....Yp) is a vector of
unknown functions and X = (X|,.. &k) is a vector of variables that influence initial
values or derivatives for Y. It is desired to determine dY/dX; for each element X;
of X. In general, the equauon in (2.8) is too complex to permlt Y to be determined
and then differentiated. Rather, it is necessary to formulate a new problem which
enables a simultaneous numerical solution for both Y and 3Y/3X;. This new problem
is obtained by differentiating the expressions in (2. B) with respect to X;, which yields

AAY (X V/dtVaX; = BLFLY(X,0).X.t]1/dX;
AY[O)VaX; = AYgi(X)VaxX; J = Lyesese (2.9)
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In turn, the preceding system can be reformulated as
d{aYj(X.t)/aX ldt = 3{ il Y(X,t).X.t]}/aX;

P
a=1

a[vj(O)]/ax-, = a{Yoj(ﬁ)]/GXi = LD (2.10)

The systems in (2.8) and (2.10) can now be solved simultaneously to obtain Y and
dY/dXi. As it is necessary to solve the systems in (2.8) and (2.10) for each X;, it is
common for this procedure to require a large amount of computation to obtain the
desired partial derivatives. It is sometimes possible to reduce the amount of
required computation by the use of specialized numerical procedures; some of these
procedures are discussed in Section 6.

Once the desired partial derivatives have been obtained, they can be used in a
Taylor series of the form appearing in (2.7). For uncertainty analysis, the Taylor
series approximation in (2.7) can be used in conjunction with Monte Carlo simulation
to estimate distribution functions. Further, this approximation can be used with the
relations in (2.2) and (2.3) to obtain expected value and variance estimates. For
sensitivity analysis, the coefficients in a Taylor series can be normalized as will be
discussed in section 3.4. Then, the values of these normalized coefficients can be
used to develop rankings of variable importance. Further, the relation in (2.3) can
be used to estimate the contribution of individual variables to the variance. The
relations indicated in (2.2) and (2.3) are really properties of linear models and thus
can be used with both linear regression models and Taylor series approximations.
The application of the Taylor series in this manner will be demonstrated in later
sections.

Differential techniques have been widely used in uncertainty and sensitivity
analysis and several introductory treatments are available (e.g. Tomovic, 1963;
Tomovic and Vukobratovic, 1982; Frank, 1978). Examples of the use of differential
techniques include Morisawa and Inoue (1974), Atherton, Schainker, and Ducot (1975),
Dickinson and Gelinas (1976), Lee, Gieseke, and Reed (1979), Cunningham, Hann, and
Olsen (1980), Dunker (198l), Koda (1982), and Barhen et al. (1982). Harper and Gupta
(1983) have made a comparison of LIS and differential analysis.
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5. RESULTS BASED ON THE PATHWAYS MODEL
3.1 THE PATHWAYS MODEL
DESCRIPTION OF THE PATHWAYS MODEL

The Pathways model represents the environmental movement and human uptake
of radionuclides. This model was developed at Sandia National Laboratories as part
of a project funded by the Nuclear Regulatory Commission for the development of a
methodology to assess the risk associated with the geologic isolation of high level
radioactive waste. The Pathways model is divided into two submodels. One of
these, the Environmental Transport Model, represents the long-term distribution and
accumulation of radionuclides in the environment. This model is based on a
mixed-cell approach and describes radionuclide movement with a system of linear
differential equations. The other, the Transport-to-Man Model, represents the
movement of radionuclides from the environment to man. This model is based on
concentration ratios. In this study, only the environmental transport submodel is
considered. Mathematically, this model is a system of linear, constant coefficient
differential equations of the following form:

dg/dt =h +Cq , (3.1)

where g is a vector of unknown functions corresponding to the amount of each
radio- nuclide in different environmental cornponents, h is a vector of radionuclide
source rates, and C is a coefficient matrix. The elements of C are functions of
various variables which are considered as part of the sensitivity analysis in this
saction. When the system is suitably restricted and the input rate vector h is
constant, the system in (3.1) has a unique asymptotic solution to which all other
solutions converge. This solution is given by -C-lh; it is this asymptotic solution
that is considered in this paper.

The Pathways model has been well documented. A four volume set of NRC
reports provides information about the Pathways model. A model description is
given in Helton and Kaestner (198l), sensitivity results appear in Helton and Iman
(1980), asymptotic properties appear in Helton, Brown, and Iman (1981) and effects of
variable hydrologic patterns are examined in Brown and Helton (198l). Additionally,
a two-part tutorial article on sensitivity analysis using the Pathways model for
illustration is given in Iman, Helton, and Campbell (198la, 198lb) with specific
sensitivity results appearing in Helton and Iman (1982). A self-teacliing curriculum
for the Pathways model is given by Helton and Finley (1982). The specific form of
the model considered in this analysis is described in Heiton, Iman and Brown (1985).

VARIABLES CONSIDERED IN THE ANALYSIS OF THE PATHWAYS MODEL

The formulation of the Pathways model used in this example provides
multivariate output for the movement of radionuclides in four environmental
components: (1) groundwater, (2) soil. (3) surface water, and (4) sediment. For
illustration in this study, these components are associated with a hypothetical
hydrologic system consisting of a lake, the stationary sediments beneath the lake, an




area of irrigated land surrounding the lake, and the portions of a shallow aquifer
which lie beneath the preceding areas of irrigated land and discharge into the lake.
In the analysis, one radionuclide is considered in two of the preceding components.
In particular, the following output variables are considered: Y| = amount (ci) of
Ra226 in soil, Y3 = concentration (ci/kg) of Ra226 in soil, and Y3 = concentration
(ci/L) of Ra226 in surface water. For this study the input to the Pathways model
has been reduced to the 20 variables in Table | that describe various physical
phenomena associated with the hypothetical hydrologic system as well as chemical
properties of Ra226. The variables in Table | are discussed in Chapter 5 of Helton
and Iman (1980), where the letter B is used in the designation of individual variables.
The following correspondences exist:

X,~B X.*8 X8

"8 5By 9Bz X137Ba X177Bus
X578y Xe~Ber X10"B1ar X148z X187Bso
Ky~By X,~8g X185 X 15 B X1978Bs)
X4~By Xg~ B2 X128y X16™Bogr X20"8s2

The variables in Table | are assumed to behave independently of one another and to
have the distributions and ranges given in Table 2.

3.2 SELECTION OF THE VALUES OF THE INPUT VARIABLES USED IN THE
ANALYSIS

THE FRACTIONAL FACTORIAL DESIGN

Prior to the actual analysis associated with a computer model, it is necessary to
define specific values for each of the input variables to be used on each run of the
model. For the portion of the analysis utilizing a fractional factorial design, two
levels (low and high) are used to represent each variable with k = 20 and m = I3
(following the notation given in Section 2). The endpoints of each of the ranges
given in Table 2 were used to represent the low and high values of each variable.
Thus, a 17213 fraction of a 220 factorial design was used to produce a fractional
factorial design utilizing 27 = 128 computer runs, where each level of each variable
is used exac.ly 64 times. The actual design used was the smallest design that would
allow for the estimation of all main effects and 91 potentially important
interactions indicated in Table 6-3 of Helton and Iman (1980).

THE LATIN HYPERCUBE SAMPLE

For the portion of the analysis utilizing a Latin hypercube sample (LHS), an n x
20 input matrix is created where n is Lne number of computer runs to be made. The
value of n = 50 was used with .he LHS, corresponding to n = 2.5k (since » = 20). Due
to the random pairing of variables within the LHS, the correlation matrix associated
with the LHS is not the identity matrix as is the case with the FFD input. However,
the restricted pairing procedure of Iman and Conover (1982a) was utilized, which
kept all off-diagonal rank correlations close to zero. In Section 5 of this paper, a
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X17
X8
X9

Table |. Input Variables Used with the Pathways Model
Thickness of ground-water component (m)
Porosity of ground-water component (unitless)

Discharge from ground-water component to surface-water component
(L/yr/m)

Thickness of soil component (m)
Porosity of soil component (unitless)

Annual rate at which water flows through soil component to ground-water
component (m/yr)

Fraction of overland runoff that sufficiently mixes with soil component
materials to permit radionuclide exchange (unitless)

Regional erosion rate (cm/1000 yr)

Fraction of solid material removed by erosion outside the soil component
that sufficiently mixes with soil materials to permit radionuclide
exchange (unitless)

Discharge of river 40 km above head of lake (L/yr)

Discharge of a lower aquifer into the surface-water component (L/yr/m)
Volume of water in surface-water component (L)

Thickness of sediment component (m)

Porosity of sediment component (unitless)

Scale factor such that product of X5 and the mass of solids contained in
the sediment component is equal to the rate of sediment excha
between the sediment component and the surface-water component (yr~!,
when solid mass is expressed in kilograms)

Fraction of suspended sediments entering the surface-water component
each year that are trapped in the lake and remain tnere permanently
(unitless)

Distribution coefficient for Ra226 in the ground-water component (L/kg)
Distribution coefficient for Ra226 in the soil component (L./kg)
Distribution coefficient for Ra226 in the surface-water component (L./kq)

Distribution coefficient for Ra226 in the sediment component (L./kg)
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Table 2. Distribution and Range Used with Each
Input Variable to the Pathways Mode!

Variable Distribution Range
X, Uniform 15 to 45
X 2 Uniform Jto .4
Xy Uniform 2.7 x 107 to 8.1 x 107
X“ Uniform .25 to .75
XS Uniform .25 to .75
X 6 Uniform J3to .9
X Uniform Oto.l
)(e Uniform Stols
X9 Uniform Oto.l
N Uniform 7.5 x 10 to 2.3 x 10"
o Uniform 2.6 x 10 to 7.7 x 10’
%o Uniform 9.5 x 10'% to 2.9 x 10"
xll Uniform Jto.9
XM Uniform 25t0 .75
XIS L.oguniform .0l to 1.0
Xl6 Uniform 2to.B
\(n Logunifcr 20 to 2000
xlB Loguniform 20 to 2000
)(P9 Loguniform 20 to 2000
XZD Loguniform 20 to 2000
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meas.ure for spurious correlations called the variance infla'ion factor is explained
for use in conjunction with the DNET model. At this point, it is sufficient to
staie that an identity matrix has a variance inflation factor of 1.00 and that the
asscciated rank correlation matrix for the LHS had a variance inflation facto. of
1.0", which indicates negligible correlation within the sample.

THF _DIFFERENTIAL ANAL YSIS

The differential analysis approach does not have an associated scheme for
selecting specific values of the input variables, rather it provides local
information about each input variable at particular points that are deemed,
a priori, to be of interest. A "basecase" vector consisting of the expected values
of the variables listed in Table 2 was defined, and the first order partial
derivatives of the dependent variables with respect to the independent variables
were calculated at this "basecase” value. The Pathways model was sufficiently
well-behaved so that it was possible to use a numerical differentiation scheme to
obtain these partial derivatives. In addition, partial derivatives of the dependent
variables were calculated at each of the 50 LIS input vectors in order to see how
much variability would be encountered in local behavior from vector to vector.
Thus, some indication of the reliability of extending local information to a global
interpretation is provided.

A NOTE ON THE PROBABILISTIC NATURE OF THE INPUT

An important area worth noting at this point involves the probabilistic nature
of the input and output as indicated by the probability distributions assigned to
the variables in Table 2. If the objective of an analysis of a computer model is to
gain an understanding of how it works and to identify important input variab'« s,
then some reasonably gross assumptions can be made with respect to the input
distributions (such as treating them as uniform distributions). However, if the
objective is to provide a meaningful estimate of a cdf of the output variables,
then meaningful distributions must be assigned to the input variables and care
must be taken to estimate the correlation structure among the input variables if
it is other than the ifentity matrix (i.e., all input variables are independent of one
another). The intent of this study is to demonstrate various techniques when a
multivariate structure has been provided, and thus, we do not address the difficult
question of whether or not the multivariate structure has been properly
formulated for the problems under consideration.

SCATTERPLOTS OF THE INPUT -OUTPUT RELATIONSHIPS AS A GUIDE TO
BETTER UNDERSTANDING OF THE MODEL BEHAVIOR

Once the specific input values have been defined, the computer runs are
made. It is tempting after completing these runs to proceed immediately with
response surface fits or whatever type of analysis is to be utilized. However, we
strongly recommend that, prior to any such analysis, scatterplots of each input
variable versus each output variable be made and carefully examined. Sich
scatterplots can aid in determining if the mode' is working as intended (i.e., dues
the input-output agree with engineering judgment?). Additionally, scatterplots




may aid in identifying the need for transformations (such as logarithmic) or may
show how several variables jointly influence the output. Examples of scatterplots
appear in Section 5 but are omitted for the Pathways model to conserve space.

5.3 UNCERTAINTY ANALYSIS FOR THE PATHWAYS MODEL
ESTIMATION OF THE DISTRIBUTION FUNCTION OF THE QUTPUT

LHS is based on a probabilistic input selection technique (as is a simple Monte
Carlo procedure). When the actual output variable is graphed as an empirical
cumulative frequency distribution, an estimate of the cdf is obtained directly. As
was indicated in the previous section, the use of the restricted pairing with LLHS
removes the property of unbiasedness from the cdf estimate. The magnitude of
the bias was investigated by generating cdfs for Y |1+ Y2 and Y 3 based on a random
sample of size 500 and on a LHS of size 500 utilizing random pairing. As might be
expected, graphs of the cdfs arising from these two methods showed excellent
agreement. This process was repeated using a LLHS with n=500 after incorporating
the restricted pairing technique. The results from using LIS with random pairing
and with restricted pairing were indistinguishable. Based on these results, it is
felt that the amount of bias introduced by the restricted pairing in the LHS is
probably negligible in problems of this type. A graph of the comparison of the
random sample and the LHS with restricted pairing is shown in F igure | for Y.

Model output based on input selected through the use of fractional factorial
designs cannot be used to provide a direct estimate of the output cumulative
distribution function since the input values are not selected in a probabilistic
manner. Rather, the output cdf is estimated by using a Monte Carlo simulation
with a fitted response surface of the form indicated by the linear model in (2.1).
Results of the response surface approach with n = (00 in the Monte Carlo
simulation are shown in Figure 2 for Y| and Y3 ; Y; was very similar to Y|.
Figure 2 also contains estimates based on a |.HS utilizing restricted pairing with n
= 50. For ease in comparing these estimates, an estimate of "truth” based on a
random sample with n = 100 has also been included in Figure 2.

The results in Figure 2 show that the LIHS estimate is quite close to the
random sample estimate for both Y| and Y3. The estimate for Y3 in Figure 2
based on the response surface approach is in good agreement with the random
sample estimate, but the estimate for Y| is not in good agreement. It is worth
noting that the response surface estimate for Y| would undoubtedly be improved
in a sequential manner through use of a more sophisticated experimental design.
The only attempt to do so here was to add a center point to the design. However,
we found that this had no affect on the results. No further attempts were made
in this direction since we are not attempting to find the ultimate response surface
fit, but rather to demonstrate what can happen with a we!l known and frequently
used experimental design. It is also worth noting that a response surface can be
fit based on the LHS input and corresponding output. Ordinarily, this would not be
done to estimate a cdf since the output based on LMHS yields such an estimate
directly. However, we did fit such a response surface and used a Monte Carlo
simulation with it to estimate the cdfs for Y| and Ys5. The results (not shown)
were better than the FF D response surface estimate and in good agreement with
the direct LHS estimate.

5-6



For the differential analysis (DA), the output cdf is estimated by
approximating the underlying model with a first order Taylor series as given in
equation (2.7) and then using a Monte Carlo simulation as was done with the
response surface fits to yield the estimate of the output cdf. A potential problem
with this method lies in the local nature of the Taylor series expansion. To
examine this point, the Taylor series expansion at the so-called "basecase" vector
was used with a Monte Carlo simulation and the results were compared with the
direct estimate from LHS. These two results appear in Figure 3 and are in
reasonably good agreement except for the lower 10% of the curves and some
noticeable separation in the middle. One might be tempted to say at this point
that "basecase" expansions give reasonable results. However, we caution the
reader concerning the difficulty of determining a "basecase” in many rea! world
situations and at the same time remind the reader of the very important point
that this approach does not have a probabilistic basis. To further illustrate local
behavior, we selected four of the 50 LHS input vectors to represent other possible
"basecase” values and used Monte Carlo simulation with the Taylor series
expansion about each of these points. The results are the curves labeled as |, 2, 3,
and 4 in Figure 4 along with the direct LHS estimate. Of these estimates the one
labeled as "2" actually agrees better with the LHS estimate than does the
"basecase” estimate in Figure 3. The estimate labeled as "I" is quite good in the
lower tail but is not close in the upper tail. The estimates labeled as "3" and "4"

are both extremely poor.
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ESTIMATION FOR THE QUTPUT VARIABLE

While a good estimate of the output cdf provides much information about the
output variable, varicus characteristics or parameters are frequently used to
describe the output variable. Some of the most frequently used characteristics are
the expected value or mean, the median, and the variance. Clearly, if one can
produce a good estimate of the output cdf, then it follows that these characteristics
can be estimated as well. To shorten the discussion in this subsection, our
comments will be restricted to estimating the variance, as problems encountered
with estimating the variance carry over to estimating the mean.

There are two principal reasons for wanting to estimate the variance of the
output variable. The first reason is to quantify the variability in the output.
Estimation can be done directly from the output values if the input values are
sampled according to their joint probability distribution or it can be done in
conjunction with (2.3) utilizing a fitted model of some type. The second reason for
estimating the variance of the output is to obtain a ranking of the input variables
based on their percentage contribution to the variance in Y. The idea behind the
ranking procedure is that, if a variable contributes only a negligible amount to the
variance, then its effect can be safely ignored; whereas, an input variable making a
significant contribution must be carefully considered. In this subsection, several
methods of estimating the variance are compared while the ranking of the input
variables on the basis of their individual contributions to the variance estimate is
considered in the next subsection. It is important to recognize that the variables
cannot be ranked if the variance is estimated directly as indicated above, i.e., the
calculation of the direct estimate shown in (2.5) does not identify the contribution
of the individual input variables as a byproduct.

To have a point of comparison for the various methods of estimating variance
considered in this subsection, the variances of each of the output variables Y|, Yo,
and Y3 were estimated on the basis of a random sampie. Since the Pathways
computer model is relatively inexpensive to run, a random sample of size 100 was
obtained from the variables in Table 2 and used to generate 100 runs of the model.
From these runs, the following direct estimates were obtained for the variance of
the three output variables:

V(Y =.300, V(Y2) = .195E-22, and V(Y3) = .BBBE -28
with corresponding 95% confidence intervals

(.231 to .401), (.150E-22 to .263E-22), and (.685E-28 to 1.198E -28).

If the output variables are normally distributed, then these confidence intervals are
meaningful. Unfortunately, the normality assumption is difficult to satisfy for
computer model output. For example, it is not satisfied for any of the output
variables considered in this study. Thus, the above confidence intervals may be
more than 95% or less than 95%. They will be referred to only as approximate 95%
confidence intervals in the comparisons that follow.
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The reader may be concerned with the small size of the estimates for V(Y3)
and V(Y3). The small values associated with Y3 and Y3 result from the fact that the
system was modeled with a unit radionuclide release and therefore these estimates

reflect the units being utilized.

In order to compare various methods of estimating the variance, the random
sample estimates were used as a standard. The following methods for estimating
the variance include one direct and two indirect estimates:

l. Direct estimate using (2.5) for output based on input generated by Latin
hypercube sampling from the variables in Table 2.

2. Indirect estimate using (2.3) for a response surface (RS) of the form in (2.1)
constructed using input -output generated through a fractional factorial design
using the endpoints of the ranges in Table 2.

3. Indirect estimate using (2.3) for a Taylor series of the form in (2.7) constructed
using partial derivatives evaluated at the expected values of the variables in

Table 2.

Rather than listing the actual estimates obtained by each of these methods, the
percentage errors in relationship to the random sample estimates are reported. The
percentage error is calculated as follows:
V(Y) - VRS(Y)

VrstY)

x 100, (3.2)

Percentage Error =

where V(Y) is the particular variance estimate under consideration and VRg(Y) is the
estimate from the random sample. Since 0 ¢ V(Y) < =, the percentage error is
bounded by -100 on the low side and infinity on the high side. The percentage errors
for the three methods are as follows:

Method V(Y1) V(Y2) V(Y3)
LHS -18 16 -12
RS -22 -80* 10
DA 2 23 -24*

The endpoints of the approximate 95% confidence interval given previously for the
random sample estimate correspond to percentage errors of -22.9% to 30.0%.
Therefore, any percentage error not falling inside this interval would correspond to
an estimate outside of the approximate 95% confidence interval. Such percentages
have been marked with an asterisk in the summary. These values show that only the
direct estimate (LHS) gives all three estimates within the approximate 95%
confidence bounds. The LHS method results from a calculation with equation (2.5)
in relationship to an LHS. This calculation produces a biased estimate. The exact
amount of the bias is small but unknown. However, if the assumption is made for
the Pathways model that the output is a monotone function of the .riput (which is
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probably true), the bounds on the expected value of the variance 52, found from
(2.6), are .98 V(Y) < E(Sz) < V(Y) when n = 50 and the restricted pairing technique of
Iman and Conover (1982a) is not used.

The RS method results from using equation (2.3) with fitted response surfaces.
Two of the three estimates for this method are contained in the approximate
confidence interval. In interpreting these results, it should be kept in mind that the
output response is basically nonlinear and that the RS method was based on choosing
the endpoints of the ranges in Table 2. If the response was linear, this strategy
would be near optimal. In summary, for the LHS and RS methods, it would appear
that more reliable estimates result from the direct LHS method than from the
indirect estimates through the evaluation of (2.3).

The DA method is based on a Taylor series expansion as in (2.7) in conjunction
with equation (2.3). The "basecase" evaluation in the DA method appears to give
answers that are reasonable and competitive with those of the LIHS method.
However, in evaluating the estimates from the DA method, it should be kept in mind
that this method does not have a probabilistic basis and that it may be difficult to
define an appropriate "basecase" in most risk assessment settings. More
importantly, however, these estimates are a measure of local behavior resulting
from a Taylor series expansion about a single point and, as such, most likely cannot
be safely extrapolated to a global interpretation. The nature of the local behavior
was further explored by using a Taylor series expansion with each of the 50 points in
the LHS and estimating the variance with each of these series. For V(Y ), 39 of the
50 estimates fell outside of the approximate 95% confidence interval (results not
shown). For V(Y3) and V(Y3), the corresponding tabulations were 39 of 50 and 41 of
50, respectively, outside of the approximate 95% confidence interval.

In summary, the indirect estimates seem to be less reliable than the direct
estimate. Thus, since input variable rankings based on contribution to variance are
derived from indirect estimates, the resulting rankings may or may not be
meaningful. This question is investigated in detail in the next subsection. As a final
comment, the reader is again cautioned that comparisons involving the confidence
intervals in this subsection have to be interpreted carefully since the normality
assumption was not satisfied for the output variables.

3.4 SENSITIVITY ANALYSIS FOR THE PATHWAYS MODEL

There are several methods for quantifying the relative importance of the input
variables to a computer model. However, these methods do not necessarily yield the
same conclusions. In this subsection several different methods of quantifying input
variable importance are presented and compared. It is natural to rank each of the
input variables on the basis of its influence on the output variable. Some methods
provide for such an overall ranking while others are designed to select subsets
consisting of only the most influential variables. It should be realized at the onset
that only a small subset of the input variables will tend to dominate individual
outputs for most computer models. Therefore, techniques providing rankings of all
input variables are best compared on the basis of the half dozen or so variables
determined to be most important. Overall rankings and rankings within subsets are
both considered in this subsection.



RANKING INPUT VARIAB!LES ON THE BASIS OF NORMALIZED COEFFICIENTS

A linear regression model and a finite Taylor series can each be thought of as a
linear model of the form appearing in (2.1). The coefficients 8; in (2.1) depend on the
units us=ed for the input variables; as a result, the 8; will change as the units for the
variables are changed. Therefore, it is difficult to obtain a meaningful ranking of
the input variables based directly on the 8;. Rather, it is necessary to normalize the
coefficients to remove the effect of the units.

One such normalization procedure explained in Draper and Smith (1981) involves
normalizing the coefficients with respect to standard deviation. For _linear
regression, the normalized coefficients are produced by substituting Xj = into
(2.1), subtracting iLhe resulting equation from (2.1), and finally dividing both snées
the equation by Sy to produce

P o i
(V'V)’Sy -.j_ Bj{sx./sy) {(xj Yj)/sx )}, (3.3)

J j

172

where V, ij' s, = (V(Y)]""“ands = [V(X j )] 1/2 4re the usual sample calculations.

As 9 is known for each xjin this problem, 9, could be used rather than Sy

j J J
However, it is convenient to use the values obtained from a regression program
utilizing the individual observations rather than to make this substitution.
Clearly,(3.3) could be expressed in a simpler notation as

y*= ¥ é'; X . (3.4)

The value of B] is a unit free measurement and can be used to rank the relative
importance of the individual Xj. The larger the gbsolute value of Bj the more
influence the variable X; has, while values of B close to zero indicate little
importance for X;. In a regression setting, B; is referred to as a standardized
regression coefficient. One way of thinking of d * is as a measure of the fractional
change in Y relative to its standard deviation when X; is changed by some fixed
fractnon of its standard deviation. Therefore, an ordering of the absolute values of
B) provides a ranking of the variables on the basis of equal fractional changes
relative to standard deviation.

For the differential analysis, the corresponding normalization is obtained by

using the Taylor series expansion in (2.7). Each partial derivative in the expansion is
standardized as follows:

(awaxi Xaxj/dy) . (3.5)
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where g, is the population standard deviation of X j arising from the probability dis-

tribution in Table 2 and the estimate C-, is obtained from (2.3). The rankings arising
from (3.5) and (3.5) are given in Table 3 for each of the three Pathways output
variables under the column headings DA (differential analysis), LHS (response
surface from Latin hypercube samplina) and RS (response surface from the
fractional factorial design). The actual standardized coefficients contain more
information about relative variable importaice than the simple ranks given in Table
3; for example, the signs and absolute valuzs for the coefficients are important.
However, use of the ranks makes comparisons within and across procedures easier.

Within Table 3, the DA and LHS techniques agree on the order of the top four
variables for Y| and Y3, but show considerable disagreement after rank | for Yj.
The RS technique agrees with DA and LHS on rank 1 for Y|, Y7 and Y3 but shows
moderate to severe disagreement on the other ranks. Noteable is the rank of 4
assigned to X g under Y| by RS while the LHS echnique assigns rank 20. Also,
under Y3, the RS technique assigns rank 17 to X || while LLHS assigns rank 3. In both
of these latter cases the DA technique gives an intzrmediate rank. In general, the
most disagreement within Table 3 for all variables occurs between the LHS and RS
techniques. Additionally, the most disagreement between techniques occurs for the
variable Y3 while the best agreement is associated w.th variable Y.

In considering the entries in Table 3, it is important to keep in mind that
disagreements among rankings by the three techniques for variables of lesser
importance are of no practical concern since these variables have little or no impact
on model output. For example, it is important when DA and LHS agree on the top
three ranks for Y3 while it is unimportant that these techniques assign ranks 8 and
20 to X|7. One way to measure agreement on the selection of the most important
variables is to compute the ordinary correlation coefficient on scores based on the
sum of the reciprocals of the assigned ranks in Table 3. For example, if there were
only four ranks involved rather than 20, the scores used in computing the correlation
coefficient would be S| = | + 1/2 + I/3 + 1/4, Sp = 1/2 + 1/3 + 1/4, 5S¢ = 1/3 + 1/4,
and Sg4 = 1/4. Thus, under Y3 the correlation coefficient for DA and LHS would be
calculated using the pairs of scores: (1 + 1/72 + ... + 1720, | + 1/2 + ... + 1/720), (1/2 +
173 & ... ¢+ 1720, 172 + /3 + ... + 1/720), ..., (1720, 176 + /7 + 1/8 + ... + 1/20)
corresponding respectively to the pairs of ranks (1,1), (2,2), ..., (20,6). If these pairs
of scores are plotted in a scatterplot, it is apparent that & premium is placed on
agreement of the most important ranks while pairs of ranks such as (10, 6) have very
little impact on the calculetions. The correlation resulting fo. this case is .88,
which compares with a much smaller value of .63 for the correlation computed
simply on the ranks in Table 3. On the other hand, if the top ranks disagree
considerably then the correlation on sums of reciprocals will likely be much smaller
than the simple correlation on ranks. The scores based on the sum of the reciprocals
of the ranks are commonly referred to in the statistical literature as Savage scores
(see Savage, 1956); however, their use in that literature has not been in association
with correlation as was done here. More information on measures of top-down
correlation can be found in Iman and Conover (1985). The comments given on
comparisons within and between techniques in Tables 3 and 4 are based on top-down
correlations using Savage scores. The actual top-down correlations appear in
Table 5. In evaluating the entries in Table 5, it is useful to know that a top-down
correlation is statistically significant at approximately the .0l level for n=20 if it is
greater than .53 and at approximately the .001 level if it is greater than .71.



Table 3. Rankings of the Input Variables to the Pathways Model Based On
Standardized Coefficients

Y1 Y2 Y3
Input

Variable DA LHS RS DA LHS RS DA LHS RS
1 18 17 17 18 19 18 13 16 10
2 19 14 13 19 9 12 19 19 20
3 10 11 10 8 6 10 3 3 2
4 2 3 11 20 8 17 11 17
5 3 3 2 10 17 9 18 18 8
6 6 3 12 10 6 14 10 13
7 5 7 11 3 4 5 10 14 19
8 8 9 6 6 8 4 6 5 6
9 9 5 7 7 2 3 16 17 18
10 4 4 5 2 5 2 l 1 1
1 11 10 18 9 3 17 4 4 3
12 17 16 20 17 18 16 12 12 15
13 13 6 8 13 7 14 7 8 7
14 15 19 14 15 15 13 9 15 9
15 16 12 19 16 11 20 11 7 12
16 12 20 4 12 12 7 5 9 5
17 14 13 15 14 13 15 8 20 1l
18 1 1 1 1 1 1 15 13 14
19 7 15 9 5 16 11 2 2 4
20 20 18 16 20 14 19 20 6 16

A second normalization procedure involves multiplication by Xj/Y, where X;
and Y correspond to a basecase run of the computer model. In the case oJ
regression, the coefficients are normalized as

Bi(Xj/Y), (3.6)
and in the differential analysis, the partial derivatives are normalized as
(awax,xx,/V) . (3.7

The resultant coefficients indicate the effect on the dependent variable of
equivalent fractional changes of basecase values for the individual input variables.
Such coefficients are frequently referred to as normalized sensitivity coefficients.
The rankings from this normalization appear in Table 4 in a format similar to that
found in Table 3.



Table 4. Rankings of the Input Variables to the Pathways Model Based on
Normalized Sensitivity Coefficients

Y] Y2 Y3
Input

Variable DA LHS RS DA LHS RS DA LHS RS
1 16 14 15 16 16 17 10 13 10
2 18 13 13 18 7 1 17 18 20
3 8 K 7 . 4 10 2 2 2
4 | 1 2 11 19 . 14 7 13
5 2 2 | 10 13 7 15 15 6
6 5 7 10 3 E 4 12 s 11
7 t 11 11 4 6 e 13 16 19
8 7 10 5 5 8 3 t 4 5
9 10 6 8 8 5 5 16 17 16
10 4 4 3 2 3 | 1 1 1
11 9 H 16 7 2 16 3 3 3
12 15 12 19 15 15 15 9 9 12
13 13 5 9 13 10 14 7 10 8
14 14 16 14 14 12 12 8 12 9
15 19 15 20 19 14 20 18 14 15
16 12 19 4 12 11 H 4 8 4
17 17 17 17 17 17 18 11 20 14
18 3 3 6 | I 2 19 19 17
19 11 18 12 9 20 13 5 5 7
20 20 20 18 20 18 19 20 11 18

The best agreement within Table 4 occurs for Y3 where all three techniques
pick the top three variables in order. Strong agreement also exists between DA and
LHS for Y| but these techniques disagree after rank | for Y3. The RS technique
shows some degree of disagreement with both of these techniques under both Y, and
Y. In the six cases in Table 3 and 4, LHS and DA always agree on the top rank and
agree on the order of the top four ranks in three of the six cases. For these same
cases, DA and RS agree on rank | in four of six cases. The same results also hold
true for LHS and RS.

Although based on different criteria, it is also of interest to crmpare
corresponding techniques and variables between Tables 3 and 4. For Y|, all three
techniques show considerable disagieement with their analogs between Tables 3 and
4. For Yy, the DA has the best agreement with its analog from Table 3 to Table 4
while RS has the most disagreement. Under Y3, all three techniques agree with
their analogs on rank |, but only RS shows agreement on the top three ranks.




Table 5. Correlations Computed on the Reciprocals of the Ranks
in Tables 3 and 4.

Output Within Within Between
Variable Techniques Table 3 Table 4 Technique Tables 4 and 5
Y\ | DA and LHS 92 91 | DA .87
: DA and RS 87 .82 : LHS .87
: LHS and RS .83 76 : RS .18
| i
Y2 | DA and LHS 1 19 | DA .97
: DA and RS .89 .83 : LHS 91
: LHS and RS 12 .56 ! RS .90
i |
Y3 : DA and LHS .87 .90 : DA 93
: DA and RS .92 .95 : LHS .89
: LHS and RS .85 .90 : RS 97

RANKING INPUT VARIABLES ON THE BASIS OF THEIR CONTRIBUTION TO THE
VARIANCE OF THE QUTPUT

Another way of quantifying the relative importance of the individual input
variables is by the percentage contribution each makes to the estimated variance of
the output variable(s). For both the Latin hypercube sampling and response surface
methods, the percentage contribution is obtained through the indirect variance
estimate from equation (2.3) in conjunction with the response surface fit obtained
from (2.1). For the Taylor series expansion, equation (2.3) is utilized in conjunction
with (2.7).

If the input variables are independent of one another so that the covariance
term in (2.3) is zero, then it is easy to show that the rankings based on contribution
to variance from (2.3) and standardized regression coefficients from (3.3) are
aquivalent. The same is true for similar rankings based on the differential analysis.
Thus, rather than simply showing the same results over again, the ranking based on
contribution to variance will be illustrated after some improvements are made to

the regression model.

The regression-based rankings presented in Tables 3 and 4 were based on the
model in (2.1) and included all 20 input variables, thus providing rankings for all 20
input variables. This approach has some drawbacks. First, as previously mentioned,
rankings beyond the first few variables usually have little meaning in an absolute
ordering since only a few of the 20 variables actually turn out to be significant.




Thus, it seems reasonable to consider ranking only within a subset containing the
most important input variables. Second, since regression techniques are easily
influenced by extreme observations and nonlinearities, more reliable rankings can
sometimes be obtained by first transforming the data.

Thus, some modifications are made in the regression for this analysis. First,
the model in (2.1) is modified to be of the form

logV =8g+ X BjX] +X ¥ B;Xix] (3.8)

where X}' =(Xj - )_<)/s,( j has a mean of zero and a variance of cne. In the case of X j

having a loguniform distribution, X;' was computed on log X Next, the model in
(3.8) is fit using stepwise regression (see Draper and Smith, 198l). Stepwise
regression is a procedure for selecting only the most influential variables at a
predetermined level of significance in the construction of the fitted model. Thus,
not all input variables appear in the final fitted model. One way of measurmg the
adequacy of the fitted model is through the calculation of a value called 2 (see
Draper and Smith, 1981, for details), which indicates the fraction of variation in the
output variat « explained by the independent variables appearing in the fitted model.

As an example of stepwise regression, consider the following results for Y,
based on the LHS input:

Step Number Variable Entering Model R?
| X|8 912
2 X7 943
3 X0 1969
4 X1 1 977
5 X6 .982

Thus, after five variables have entered into the regression model, 98.2% of the
variation in Y has been accounted for. The order in which variables enter a
stepwise regression and corresponding changes in RZ values that take place with the
entry of successive variables also provide insight into relative variable importance.

The percentage contribution to the estimate of the variance of Y through (2.3)
appears in Table 6 along with the model RZ where appropriate. However, since the
model in (3.8) involved log Vv, it is necessary to convert the estimate of V(log Y)
obtained from the regression model to V(Y). The first step in this conversion is
straightforward:

V(in ) = (in 10)2 V(log ). (3.9)

The second step involves an approximation arising from a Taylor series expansion of
In Y and is given as follows:



V(Y) = [E(YV12 V(In V), (3.10)

where log E(Y) = E(leg Y) and E(log V) is determined as indicated in equation (2.2)
for (V).

The percentages given in Table & © not total to 100 for each value of Y. in the
case of the fitted modeis (LHS and RS), the remainder is due to lack of fit. For the
DA method, only those variables are shown that contributed at least 1% to the total
variation. If the var.ables are ranked according to the percentages for the DA
method, the rcsults are the same as 'hose shown earlier in this section. The
percentages in Table 6 for Y; lead to the selection of the fuir most important
variables as determined by LHS in Table 3 and to the selection of the three most
important variables as determined by the RS in Table 3. For Y2, the variyv.le X|g is
identified as dominant in Table 6 which is in agreement with the results in able 3,
however, the ordering or, the less influential variables is diffarent for both the LHS
and RS approaches in Table 3. [he disagreement. among the rankings in Tables 3
and 6 can be attributed *o the model usec in (3.8). Genera.'y speaking, nure reliable
rankings can be obtaned through an imp.oved inode! such =3 appears in (2.8) unless
the input -output relationstips are very weil betaved in a linear sense.

An examination of the values within Table & snows an ¢ serall good agreement
on variable ranking for ail three me*hods, particularly fei. Y| and Y- For Y3, the
best agreement is between the LH3 and DA methods but with no great areas of
disagreement. One might expect the LHS and RS methods to show reasonably good
agreement depending on the degree of nonlinearity in the output; however,
agreement of the LLHS and RS methods with the DA method rnay or may not be a
desirable objective. The reason for this lies in the lozal nature of the Taylor series
expansion and the selected "basecase.” This will be examined in detail later in th's
section but first comments will be macde on the interpretation of the values in
Table 6.

The percentage contributions of the variables in Table 6 have to be interpreted
very carefully due to the complexity of the model and the inherent dangers of linear
extrapolation. To illustrate this point, it would appear that X\|g contributes
approximately 80% to the variance in Y| and thus it would seein reasonable to ask if
the variance will decrease if ¥ g is held constant. To answer this question, the
random sample of size 100 used in the previous subsection wa: modifiec by setting
the value of X|g equal to 25 on all |00 computer runs of the model. The value of -5
corresponds to the .05 quantile for X|g on the basic of the probability distribution
given in Table 2. Two additional sets of 100 runs were made by first setting Xg
equal to 200 and then to 1589, corresponding to its .50 and .95 quantiles,
respectively. The percentage change in the variance of Y|, Y3, and Y1 was recorded
in relationship to the random sample estimates given in the previous subsection.
This procedure was repeated using the same quantiles for Xjo- The results are
summarized in Table 7,

The values in Table 7 clearly indicate that X > plays an important role in
influencing V(Y|) and V(Y3) but has no significant effect on V(Y3). However, the
percentage change in the V(Y|) varies from a reduction of 99.8% to an increase of
10.1% as Xy increases. The percentage change in V(Y;) varies from a reduction of
99.9% to an increase of 39.7%.




Table 6. Percentage Contribution to the Estimate of the Variance of the
Output for Three Different Methods of Estimating the Variance Using
the Model in (3.8)

Output Input

Variable  Variable _LHS RS __ _DA
Y, X, 6 6 6
X 6 5 6
% 3 2 2
e 3 2 2
_ 80 80 77
Model R%: 97.4% 94.5% -
Y, X 1 | 1
X, 3 2 )
Xg 0 I )
Xq 0 | 0
Ria 3 2 3
% | 0
W 91 89 )
Model R?: 98.2% 9.3%
v Xy 5 8 6




Table 7. Percentage Change in the Variance Estimates When X)g and X Are
Held Constant at Each of Three Different Quantiles

VARIABLE QUANTILE V(Y V(Y2) V(Ys)
X8 .05 99.8 99.9 0.1
.50 915 -95.0 0.0

95 10.1 39.7 0.1
X10 .05 51.9 55.4 -43.0
.50 -16.0 1.4 -80.9
95 -48.9 45.1 -92.5

In the case of X g, the percentage reduction in V(Y3) ranged from 43.0% to
92.5%. It is interesting to note that X played a minor role in Table & with respect
to Y| and Yy. HHowever, Table 7 indicates that when X | is held fixed at either of
its .05 or .95 quantiles it has a major influence on V(Y|) and V(Y3). IHHence,
estimates such as given in Table 6 must be interpreted carefully, keeping in mind
the complexity of the underlying model, as they could be misleading.

One should not concentrate only on the change in variance of the output
variable, but should also consider the change in location as measured by the mean or
median, or the effect on the distribution function. This is important because
changes in variables are frequently accompanied by changes in rweans. To
demonstrate this point, estimated COF's for Y| have been plotted in Figure 5 for a
random sample of size 100 and for the random sample modified by fixing X g at
each of its .05, .50, and .95 quantiles. Figure 5 makes it clear that there has been a
large (99.8%) reduction in the V(Y ) with X g held at its .05 quantile; however, the
location has changed dramatically. | ikewise, with X g held at its .95 quantile, the
variance increases by 70% but the location changes considerably, as indicated by the
median increasing by a factor of 5. Figure 6 is similar in construction to Figure 5
except that X g has been held fixed at each of the three quantiles rather than X g.
Since Xjg has a minor influence on Y|, as indicated in Table 6, the change in tr
estimated COF's is much less than in Figure 5; that is, neither the variance o
location are influenced much by X;g. Results for Y, and Yy are not shown
lHowever, Yy was affected in a manner similar to V), while Yy was influenced
heavily by X g and not at all by X g.

CORRFLATION COEFFICIENTS

Methods presented thus far in this subsection have ranked either all of the
variables or a subset utilizing stepwise regression with an improved model in an
effort to obtain more reliable results. The last method to be considered is hybrid in
the sense that it is regression based but avoids the transformations appearing in (3.8)
and can be used to rank sither all variables or only those within a subset.

If runs of a computer model are made with many input variables changing
simultaneously, it can be difficult to see the sensitivity of the output variable Y to
the individual variables xj. One way of quantifying such sensitivity is by
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caloulating the partial coreelotion coelficient,  The pactial correlation coefficient
dilfors from a sunple correlation coelficienl i thal it measures the degree of lineor
colat wonship between the X5 and Y after imaking an adjustiment Lo remove the linear
uifect of all of the remaining variables,  (he actual calcalation involves Tinding the
inverse of the corralation matrix 0 bebween the individual X' and Y based on o n
computer runs,  The inverse maltix can be weitten as follows:

|
2 , , 2
11 u”) Cra R by A1 RY)
. ? _ 2
) ® 1A ”x,)’ R b, AL RY)
_ _ ? 2
- o LA “"u) b AL RT)
2 2 2 2
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P wabin: by i Uis the standardi2od regrassion coefBicient e equation (5.4); Lhe
value l(’}, s the coefficient of detecmination (e, ¢/ value) Trom regressing Y on

s oor Xigo anud the value N',z,.’ is the coel ficient of determination from regeessiog X
on Y, X, ..., Xl I "hl- sase Mg
I he partial coreelation coefficient for X5 and Y is obtained directly from (C 1 as

| /2

b, e A )

0.6
L 1y I yy

I herefore, the partial coreslation coefficient can be writlen as

7
bh./Al R
)’( y)

X.y
' \ﬁlm ui N LA Rs)]
)

0 (s.11)

Faquation (3.11) shows the close relationship hetweon P, v and b.l: however, it is
)




important to recognize that they yield different types of information. Standardized
regression coefficients are derived from a conditional univariate distribution, while
partial correlation coefficients come from a conditional bivariate distribution.
Partial correlation coefficients allow one to judge the unique contribution that an
explanatory variable can make. Standardized regression coefficients are equivalent
to partial derivatives in the standardized model.

It is important to recognize that the quantity in (3.11) will not provide a
reliable measure of sensitivity when the relationship between X jand Y is basically
monotonic but nonlinear or if there are outliers (extreme observations) present. To
avoid this problem, each of the individual variables X; and Y can be replaced by
their corresponding ranks from | to n and (3.11) can be computed on these ranks.
This transformation converts the sensitivity measure from one of linearity between
)(j and Y to one of mor-.conicity between X; and Y. The result of this calculation is
called the partial rz i coefficient (PRCC). A computer program for
making such calculations has been developed at Sandia National Laboratories (Iman,
Shortencarier and Johnson, 1985). This program will also calculate the standardized
regression coefficients on either the original observations or their ranks.

The PRCC provides a number between -1 and | such that PRCCs near -1
indicate the Y decreases as X increases while values near | indicate that X and Y
increase together. Values near zero indicate no monotonic relationship exists.
Thus, the PRCC can be used to provide a ranking of the input variables. The PRCCs
have been calculated on the basis of input from LHS (n = 50), random sampling (n =
100) and a fractional design (n = 128). The resulting rankings of the more important
variables appear in Table 8. The rankings under Y| are in absolute agreement for all
three methods. For Y, the three methods agree on the top three rankings with
some disagreement for lower ranks. For Y3, agreement exists on the most
important variable, but some permutation occurs among ranks 2, 3, and 4. However,
the rankings overall are in good general agreement wilh those of the methods
presented earlier in this subsection. Before summarizing the results of this section,
the local behavior of results based on partial derivatives will be examined in more
detail.

EFFECTS OF THE CHOICE OF THE BASECASE FOR A DIFFERENTIAL
SENSITIVITY ANAL YSIS

The selection of a "basecase" value in differential analysis was brough up
earlier in this section. The following discussion is intended to illustrate the effects
that "basecase” selection can have on the outcome of a sensitivity analysis. F igure 7
illustrates the effect of changing one variable while all the remaining variables are
held fixed. The horizontal dashed line in Figure 7 shows 3V |/dX ¢ calculated at the
expected values for all 20 variables and normalized as in (3.7). The curve in F igure
5 is generated by fixing all independent variables except Xg at their expected values
while Xg is assigned the values selected for it in the previously used LHS.
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Table 8. Rankings of the five most influential input variables affecting Y), Yj,
and Y3 based on the PRCC computed on a LHS with n = 50, a random
sample (Random) of size n = |00 and 128 fractional factorial points (FFD).

Yi Y2 Y3
Input _

Variable LHS Random FFD LHS Random FFD LHS Random FFD
3 2 3 2
4 2 2 2
5 3 3 b
é (14) 4 4
7 b 5 5 3 3 3
8 5 (6) (6) (7) 5 5
9 8 9 5
10 4 4 4 2 2 2 1 1 |
11 4 (9) (1) 3 4 4
16 5 (6) (8)
18 | 1 1 | | |
19 (9) 5 (7 4 2 2

Then, aY /38Xy is calculated and normalized as tefore. As indicated by the two
curves in Figure 7, a large amount of variation can be induced by changing the value
of a single independent variable in the calculation of a normalized partial derivative.

Figure 8 provides another illustration of the effect of the “basecase" point on
the calculation of partial derivatives. This figure shows dY,/dXg calculated at
each of the 50 points in the previously used LLHS and normalized as in (3.7). Thus, in
contrast to the situation shown in Figure 7, all 20 independent variables are
changing for each partial derivative. That is, the "basecase” point is moved about in
a 20-dimensional space to 50 different locations. As readiiy seen, the value for the
normalized partial derivative varies from approximately 0 to - .5 Each of these
normalized derivatives is correct at the particular location selected; however, it
clearly would not be safe to extrapolate away from any local puint.

The effect of the choice of a "basecase” value on the estimation of the variance
is illustrated by using a Taylor series expansion at each of the 50 LHS points and
using these expansions to estimate the variance of Y|, Y3, and Yy. Results for Y
arc given in Table 9, where the vectors have been ordered from the smallest input
value used for X|g to the largest input value used for X|g. Results are given for
each variable that contributed at least |% to the variation in Y for some run. The
last column of this table contains the percentage error of the variance estimates as
calculated from equation (3.2) using the previously indicted random sample of size

100.
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Table 9. Percent contribution to the variance of Y | listed by run number and
input variable number. The order of the table entries has been
determined by the input values used for X|g (from smallest to largest).
The last column contains the percentage error on the variance estimate.

Run
No. X4 Xsg Xg X7 Xg Xg X10 X8 X9 P.E.
1 0 0 0 0 0 0 0 99 0 43
2 0 0 0 0 0 0 0 99 0 -62
3 0 0 0 0 0 0 0 99 0 -718
4 0 0 0 0 0 0 0 99 0 75
5 0 0 0 0 0 0 0 99 0 2041
6 0 0 0 0 0 0 0 99 0 34
7 0 0 0 0 0 0 0 99 0 -45
8 0 0 0 0 0 0 0 99 0 906
9 0 0 0 0 0 0 0 99 0 128
10 0 0 0 0 0 0 0 99 0 1400
1 0 0 0 0 0 0 0 99 0 133
12 0 0 0 0 0 0 0 99 0 240
13 0 2 0 0 0 0 0 99 0 31
Lo 0 0 0 0 0 0 0 99 0 14
15 0 0 0 0 0 0 0 98 0 -82
16 0 0 0 0 0 0 0 98 0 -47
17 0 0 0 0 0 0 0 98 0 0
18 | 0 0 0 0 0 0 97 0 -35
19 0 0 0 0 0 0 0 99 0 35
20 1 0 0 0 0 0 0 97 0 -21
21 0 0 0 0 0 0 0 98 0 64
22 0 2 0 0 0 0 0 94 0 124
23 | 2 0 0 0 0 0 95 0 -29
24 0 2 0 0 0 0 0 95 0 20
25 | 1 0 0 0 0 0 9% 0 69
26 5 2 0 0 0 0 1 89 0 -59
27 l 2 0 | 0 0 0 93 0 61
28 2 6 0 0 0 0 | 90 0 -54
29 1 1 0 0 0 0 2 92 0 356
30 5 2 0 0 0 0 | 86 | -23
sl 9 2 0 | 0 0 2 82 | 17
32 13 9 | 3 0 | : 69 0 =50
33 16 4 | 3 | 2 “ 61 2 -2
54 3 18 | 2 | 0 2 69 0 -4
35 5 7 | 3 0 0 7 12 0 524
36 5 6 | 2 0 2 6 71 3 184
37 5 8 0 | | 0 12 67 0 '28
38 19 6 | 2 2 0 5 59 | -5
39 8 6 2 5 2 10 8 49 2 195 |
40 14 8 | 3 6 0 8 S 0 9 |
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Table 9 (Continued)

Run

No. X4 Xg X¢ X7 Xg Xg X10 X8 X19 PE.
4l 35 24 0 2 4 4 3 22 1 -87
42 9 17 2 6 8 | 6 46 0 17
43 L 26 2 5 | 13 6 28 2 50
44 7 56 1 2 6 3 4 6 0 -46
45 31 15 2 5 8 1 11 20 0 150
46 36 10 2 6 12 4 6 19 0 43
47 18 21 2 5 0 19 9 18 1 113
48 27 12 l 3 I 22 12 12 4 234
49 19 32 0 | 10 7 14 4 7 -9
50 44 17 0 1 9 13 6 2 2 =57

The results in Table 9 are quite revealing with respect to local behavior and its
extendibility to global interpretation. In 1ables 3, 4, 6, and 8, X|g was identified as
the dominant variable influencing Y- In Table 9, the influence of X1 on V(Y))
decreases from 99% to 2% as Xg increases. In eight of 50 cases, X|g was not
designated as the dominant variable. Furthermore, in those cases where X|g was
identified as con.ributing 99% to the variation in Y|, the percentage error on the
variance estimate ranged from -78% (run 3) to 2041% (run 5). There does not seem
to be any discernible pattern in the behavior of the percentage error as X)g
increases. Other wide variations on percentage contributions are noted for X4 (0%
to 44%) and X (0% to 56%). Similar results occurred with the analysis on Y2.

An interesting result appeared in the analysis for Y3. The variables
contributing to V(Y3) for the 50 LIS runs are listed in Table 10, where the entries
have been listed in increasing order of the input values used for the dominant
variable X|g. First, the percentage contribution from X varies between 50% and
86% with no discernible pattern as X increases. This is much more stable than the
results shown in Table 9 for X|g. Second, a very definite pattern does appear in the
column containing the percentage error of the estimates. The first 22 entries show
21 positive entries and the last 28 show 27 negative entries. MHence, small values of
:’R lead to an overestimate of the variance calculated from the random sample,

le large values lead to an underestimate of this variance. In this example, the
observed behavior of estimates for V(Y 3) Is due to the fact that estimates for E(Y3)
derived from Taylor series expansions are decreasing as X)g increases. In this
regard, it is important to recognize that variance estimates for Y3 are being made
with respect Lo different estimates for E(Y3). This is also true for Y. Overall, it
can be quite precarious to extend estimates of variance based on local behavior to a
global interpretation.

The preceding results indicate a difficulty with differential analysis based on
behavior at a single point in the input variable space. Such an analysis might be
appropriate in a setting where all of the input parameters were essentially fixed and
one was interested in the effects of small perturbations in the input parameters or
when the model is essentially linear. However, this is generally not the case in risk
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Table 10. Percent contribution to the variance of Y3 listed by run number and input
variable number. The order of the table entries has been determined by
the input values used with X|g (from smallest to largest). The last column
contains the percentage error on the variance estimate.

Run
No. X3 Xg X0 X1 X\16 X19 P.E.
| 6 0 11 5 0 9 112
2 6 0 82 5 0 4 406
5 5 0 67 4 0 22 79
4 6 0 84 5 0 2 416
5 5 | 10 4 14 2 119
6 6 0 81 5 0 6 157
7 6 0 19 5 0 8 16
8 5 4 69 4 4 I 35
9 6 0 82 5 0 3 36
10 5 0 64 4 0 25 155
L 6 0 85 5 0 l 128
12 5 0 69 4 0 20 49
13 5 0 14 5 0 14 128
14 5 | 75 5 6 5 0
15 4 0 63 4 U 26 50
16 6 0 8 5 0 10 54
17 6 5 80 5 l 1 25
18 6 0 79 5 0 8 52
19 4 12 56 3 13 7 =55
20 6 0 86 5 0 0 94
21 5 | 12 5 2 13 34
22 6 0 86 5 0 1 30
23 6 0 17 5 0 10 -18
24 6 2 8 5 | 6 -4
25 3 8 50 3 L 21 -59
26 6 0 85 5 0 1 -36
27 6 0 86 5 0 1 -25
28 6 0 83 5 0 3 5
29 6 0 Bl 5 5 0 -5
50 6 0 17 5 0 10 -20
31 5 3 13 5 2 9 -4l
32 6 0 85 5 0 0 -45
33 5 0 71 4 | 17 -18
54 6 0 82 5 2 2 =59
35 5 8 73 5 4 5 =15
36 5 0 14 5 0 15 -33
37 4 | 63 “ 0 25 -4l
38 4 0 63 a 0 26 -19
39 5 9 14 5 3 1 -61
40 6 0 ) 5 0 9 -58
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No. X3 Xg X0 X11 X16 X19 P.E.
41 4 0 55 3 1 34 -42
42 6 0 82 5 3 | -56
43 6 0 82 5 0 5 -71
44 5 0 66 4 0 23 -58
45 5 0 72 5 0 16 -47
46 5 0 16 5 0 12 -69
47 6 0 86 5 0 | -69
48 5 0 16 5 0 12 -73
49 5 0 72 5 0 16 -76
50 6 2 19 5 0 5 -78

assessment problems where a great deal of uncertainty is associated with the input
values. The analysis shows the value of using multiple points with a differential
analysis, such as the points generated by the LHS in the present example.

5.5 SECTION SUMMARY

In this section, three frequently used techniques for performing uncertainty
analysis and sensitivity analysis were compared on the basis of estimating the cdf(s)
of an output variable(s) from a computer model given input cdfs and on the ability to
rank the input variables to the model by each of several different criteria. The
computer model used in these comparisons, called the Pathways model, represents
the environmental movement and human uptake of radionuclides. The version of the
Pathways model used in these comparisons is relatively simple, consisting of a
s' stem of four linear, constant coefficient differential equations. The Pathways
nodel requires 20 input variables that behave independently of one another and
froduces nonlinear output which is a monotone function of each of the input
\ariables.

UNCERTAINTY ANALYSIS

The response surface replacement for the Pathways model used 128 computer runs
“ased on input selected by a fractional factorial design which, when used with a
Monte Carlo simulation according to the input distributions in Table 2, produces an
indirect estimate of the output cdf. A Monte Carlo simulation of the Taylor series
expansion about a point also yields an indirect estimate of the output cdf. On the
other hand, a direct estimate of the output cdf is obtained from the LHS generated
from input values which have the multivariate input structure described in Table 2.
Whan this input is supplied to the computer model, an estimate of the output cdf,
conditional on the assumptions in Table 2, can be produced directly.

Figures 2 contains three estimates (two direct and one indirect) of the output cdfs
for Y| and Yy. The estimates from LHS (n = 50) and random sampling (n = 100) are
in good agreement for both Y| and Yy. The estimate for Y 5 based on a Monte Carlo
simulation with the fitted response is quite good while the corresponding estimate
for ¥ is quite poor.




Figure 35 shows the indirect estimale of the output cdf obtained by using a
Monlte Carlo simulation with the Taylor series expansion about the “"basncase” Lo be
in good agrecment with the | HS direct estimate, However, Figure 4 shows that
other cholces of basecase poinls can produce widely varying resulls, and as such, it
wionild be difficull to place much failh in estimates such as these., More detail on
eslimates arising from laylor series expansions about basecase values is provided in
Lhe next section,

The estimation of the variance of the output by several different indirect and
direct methods was considered in this section. In general, as one might suspect, the
direct variance estimates tend Lo produce a more reliable measure of spread than do
Lhe indirect variance eslimates, However, since variance is nol a robust measure of
spread for oulput of the Lype considered in this paper, its use is precarious at best,

SEN LHIVIEY ANAIL YSIS

F our methods of measuring variable influence were considered in this section,
I hese methods are as follows:

I, Lhe relative size of Lhe absolute value of standardized coefficients (see
1 able 3).

7. 1he relative size of the absolute value of normalized sensitivity
coetlicients (see 1able 4).

5. Contribution Lo variance afler improving the fitted regression model (see
lable 6).

4,  The relabive size of the absolute value of the partial rank correlation
coefficient (see 1able 8).

Ranking of the input variables is important because it allows research efforts to be
guided in the proper direction Lo redoce uncertaintios,  Although each of these
methods can be used Lo rank the relative importance of all input variables, it is
usually sufficient to compare different technigues for ranking on the basis of their
ability to identify the maost influential variables, That is, if a variable s not
important, then there s no necd Lo concern oneself with the fact that it received
ranks of 15, 1/, and 20 by three different methods of ranking.

Methods | and § above are based on the same calculation and are therefore
equivalent, Thus, the apparent difference in rankings between Tables 5 and 6 1s not
attributable to a difference in methods but rather to the fact that Method | was
used Lo rank all variables utilizing the original variables, while Method 5 was used to
rank a subset of the variables after an attempt had been made to improve the fit of
the model, as indicated in (5.8).

Method 2 utilizes a different criterion for ranking than the other methods
considered, and hence will not necessarily produce rankings in agreement with the
uther methods, Specifically, Method | s based on ranking variable importance due
to the effocts of changing variables by equal fractions of their standard deviations
while Mothod 7 is based on rareing variable importance due Lo the effects of



changing variables by equal fractions of their basecase values. This point is quite
evident when rankings in Table 4 are compared with rankings in Tables 3, 6, and B.
Method 2 provides good information with respect to variable influence about a point
and is therefore most likely to be used with a differential-based analysis. However,
there is great potential for providing erroneous results when this local information is
extrapolated to a global interpretation. This point is clearly demonstrated in
Figures 7 and 8.

Method 4 relies on the use of ranks to overcome difficulties with relationships
that may not be well behaved in the sense of either extreme observations or
monotonic  nonlinear relationships being present. Standardized regression
coefficients can also be computed on ranks to overcome these same difficulties.
These methods cannot be used with a differential analysis, but are quite effective
when used with either a LHS or a random sample. The calculation in (3.1') is quite
easy to do and can be performed on either the original variables or on their ranks.
This method is demonstrated with time-dependent output in the next section with
the MAEROS maodel.

The variability of the cdf estimates in Figures 2, 4 and 5 might lead one to
suspect that the rankings of input variables would vary greatly from LHS to RS to
DA for a given method of ranking. This did not occur as each method of ranking
proved to be fairly robust with respect to different approaches to sensitivity
analysis. This result is mainly attributable to the simplicity of the Pathways model
and to the fact thal a single input variable tended to dominate each output
variable. In the next section it will be shown that this robustness may not hold up
with a more complex model.
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4. RESULTS BASED ON THE MAEROS MODEL

4.1 THE MAEROS MODEL
DESCRIPTION OF THE MAEROS MODEL

The MAEROS model represents multicomponent aerosol dynamics.
Mathematically, the model is a system of differential equations of the form

dY (X.t)/dt = FLY(X), Xut)

500+ X au OV T X by IV XYy (KH (@)

with the initial value condition Y;(0) = Ygj(X), where some zero coefficients are
included for notational convemence and X ls used to represent model input. This
model was developed at Sandia National Laboratories under NRC sponsorship to
represent aerosol behavior in reactor accident assessments. The model calculates
aerosol composition and mass conccnetration as a function of particle size and
time. The processes that may be incorporated are (1) coagulation due to Brownian
motion, gravity and turbulence; (2) particle deposition due to gravitational settling,
diffusion, and thermophoresis; (3) particle growth due to condensation of a gas,
typically water vapor; and (4) time varying sources of particles of different sizes
and chemical compositions. Operation of the model involves two numerical steps.
The first step is numerical evaluation of a number of single and double integrals to
generate the coefficients for the system of differential equations. These
integrations involve functions of the input variables which will be considered as part
of the comparison contained in this section. The second step is the generation and
numerical solution of the system of equations. Documentation for the MAEROS
model includes a user's guide by Gelbard (1982) with the numerical procedure given
in Gelbard and Seinfeld (1980). Additional background with respect to the analysis
problem considered in this section is given in Helton et al. (1985).

Whereas the Pathways model of the previous section consisted of a set of linear
differential equations, MAEROS consists of a set of nonlinear differential
equations. Additionally, MAEROS produces time-dependent output rather than the
single values of the dependent variables obtained with Pathways. Another important
difference between the two models lies in the additional complexity of the
multivariate input structure for MAEROS.

VARIABLES CONSIDERED IN THE ANALYSIS OF THE MAEROQS MODEL

The problem considered in the analysis with the MAEROS model involves the
behavior of a two-component aerosol in a reactor containment building. The first
companent is assumed to have been released early in a reactor accident; the second
component is assumed to be continuously released as the accident progresses. For
this analysis, no water vapor condensation is assumed. Ten particle size classes are
used in representing particle behavior; this results in the use of a system of 20




dif ferential equations to represent the behavior of suspended particles, In addition,
unknown functions defining integrated concentration and integeated depositions on
ceiling, wall, and floor for each component were also added to the systemm of
equations. 1his resulted in a system containing a total of 28 equations,

Ihe output from MAEROS is multivariate as was the case with the Pathways
model. owever, unlike the Pathways model, the outpul from MALRO)S is also Lime
dependent. | or this comparison, the following four output variables were selected
for consideration:

Y - Total integrated concentration of the second component (kq--.o:r:/m5)
Yo - Total integrated deposition on the wall for the fiest component (kq)
Y5 + lotal suspended mass for the first component (kq)

Y4 - Geometric expected value of particle diameter (m).

Ihe variables Y and Yy are integrated over time (/2,000 sceonds), while Yy is
examined primarily at 20 minutes. However, Yy and Y, are examined at inultiple
time steps later in this section when illustrating tesults for the pattial rank
correlation  coefficient.  Various system  vatiables are tequited  as  input  in
tormulating the preceding system of equations.  Cettain of these variables were
Laken 1o be uncertain and were assigned ranges and distributions,  The variables used
in the analysis are listed in Table 11 with the corresponding ranges, distribul ions,
and restriclions given in Table 12,

f xamination of the restrictions in lable 12 shows thal the multivariate
slructure of the input is more complex than is the case when all variables are
independent of one another,  The input structure in table 17 requires a cotrrelation
between Xo ard X ¢ and also between Xy and Xg. T urther, the resteictions specify
thal rank correlations of .5 be used in both correlations (as opposed Lo cotrelations
on original va'ues). The correlation is specified on ranks since this correlation
measure is meaningful for both normal and mm*mmal distributions; i contrast, the
ordinary  correlation  coefficient is sensitive to the nature of Lthe  underlying
disteibutions. A second problem associated with the formulation of the input
structure Lo MALIROS occurs with the input pairs (Xg, Xg) and (X192, Xg) I he
manner in which this problem is handled is explained in the next subsection under
the hwading of | atin hypercube sample.

4.2 SELECTION OF 1 VALUES OF 1 INPU T VARIABE ES USED TN THE
ANALYSIS

P IRE SPONSE SUIRE ACT 1EPE ACTEMENT

A response surface analysis on the MAEROS model was oot porformed using
iput  values associated with a fractional factorial design.  The reason for this
docision les in the complexity of the multivatiate steucture of the input including
cortelated variables and conditional distributions as described o the provious
subsoction,  That is, a basic reason for using fractional factorial designs is thal they
pravide arthogonal (uncorrelated) input and honce are not eally intonded for ose in
situal fons such as exist with MAL IR0)S,
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Table 11

Input Variables Used with the MAERQOS Model

Geometric standard deviation for diameter of first component (unitless)
Mass median diameter for first component (m)

Total released mass for first component (kg)

Geometric standard deviation for diameter of second component (unitless)
Mass median diameter for second component (m)

Total mass source rate for second component (kg/sec)

Release duration for second component (sec)

Containment temperature (K)

Containment pressure (Pa)

hy

(also the ratio of floor area to volume)

Ratio of ceiling area to volume (m~

Ratio of wall area to volume (m'l)

Dynamic shape factor (unitless)

Diffusion boundary layer thickness (m)

Particle density (kg/m’)

Constant associated with thermal accommodation coefficient (unitless)
Agglomeration shape factor (unitless)

Probability sticking factor (unitless)

Temperature gradient (K/m)

Ratio of thermal conductivity of gas to that of particle (unitless)
Turbulence dissipation rate (mzlnc ’ )

Molecular weight of gas (kg/kg-mole)
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Table 12

Distribution, Range, and Restrictions Used
with Each Input Variable to the MAEROS Model

Variable Distribution Range Restrictions
)(l Uniform 1.3to 4
X, [oguniform 2x1077 to 5x107® 0.5 rank correlation with X
)(3 L.oguniform 100 to 1000 0.5 rank correlation with Xz
xa Uniform 1.3t04
X I.oquniform 5x10°8 to 5x107® 0.5 rank correlation with X 6
X 6 Loguniform 0.1 to | 0.5 rank correlation with Xs
X, Uniform 7.2x10”° to 1.8x10°
)l(8 Uniform 375 to 600
X9 Triangular 1000Xg to 8x10% 1000 Xg ¢ Xq
with apex at
4x10” + 500 )(8
X 10 Uniform 0.025 to 0.07/5
xl | Uniform 0.08 to 0.24
Xlz Uniform lto3
(I Loguniform 5x10™> to 8107
x 14 Normal 2000 to BUOO
XIS Uniform lto3
xlb Uniform Xlztoi xlz—(-xlb
x” Uniform 0.5to |l
o Uniform 0 to 5x10®
X19 Triangular 0.05 to 1
with apex at 0.5
X20 Uniform 0.001 to 0.03
le Uniform 20 to 40




It is conceivable that a fractional factorial design could be altered in some manner
for use with a multivariate input structure such as specified with MAEROS, but it is
doubtful that it could be done and still retain the spirit or intent of the design. A
possibility that might be suggested is to ignore the multivariate input structure and
generate a response surface utilizing a fractional factorial design in the usual
manner. The next step would be to use a Monte Carlo simulation with the response
surface with input incorporating the required multivariate input structure. The
problem with such an approach is that pairs of variables may be created by the
design that the modeler knows to be physically impossible or meaningless and for
which the model will likely not run or if it does run, the results may be useless.
These points would have influence equal with all other points in determining the
fitted response surface and could therefore lead to meaningless response surface
predictions even when the input is meaningful . The response surface approach
based on fractional factorial designs is utilized again in the next section with the

DNE T model.

THE LATIN HYPERCUBE SAMPLE

With the Pathways model, the input variables were independent of one another
and the LHS approach attempted to generate an input structure having a correlation
matrix close to the identity matrix. However, specific nonzero rank correlations
are required for two pairs of variables in the input to MAEROS. The required
correlations are induced by generating a LHS in the usual sense and then controlling
the individual pairing of variables tu produce specific rank correlations as explained
in Iman and Conover (1982a). A LHS of size n = 50 was used with the 21 MAEROS
input variables and produced rank correlations of .48 and .43 for the pairs (X2, X3)
and (Xg, Xg), respectively, where the target values were each .50. At the same
time, among the 187 remaining pairs of variables in the rank correlation matrix with
a target of zero correlations, only three correlations were larger than .10 with the
largest being a nonsignificant value of .23.

The condition X2 ¢ X|e was handled by generating the required uniform
marginal distribution for X2 in the usual manner. A uniform distribution was
generated for X|g on the interval (1,3) followed by a transformation of X|¢ to X|g
= 5(X6-1) (3-X12) + Xj2. After X|¢ is transformed in this manner, the new
variable X|e satisfies the restriction that X3 ¢ Xje. That is to say, the
distribution of X, becomes conditional upon the value of X|p. After this
transformation, the marginal distribution of X5 remains uniform on the interval
(1,3) but the distribution of X is uniform, conditional on the value of X, that is,
Xle is uniform on the interval (X, 3). Moreover, it is easily shown that the
generation of this cond}tlonal distribution creates a population correlation of .65
between X, and X)g. The actual correlation observed between this pair of
variables in the LLHS o} size 50 was .58. The pair (Xg, Xg) was treated in a similar

manner.

THE DIFFERENTIAL ANALYSIS

Some modifications had to be made to the MAEROS computer model in order to
include input variables X through X7 and to generate integrated concentrations as
output. It was possible to calculate the inputs to the computer

4-5




model associatec with X| through X; externally and to supply them when needed.
Further, it was easy to add the capability to calculate integrated concentrations.
Modifications such as these cause no serious problems in setting up the input for an
analysis such as associated with LLIHS, nor are any problems created in processing the
output. However, these modifications did cause the differential analysis to be much
more difficult to implement.

The differential analysis was performed at a "basecase" set of input values con-
sisting of the expected values of the variables in Table 12. The differential analysis
requires the implementation of the system of equations shown in (2.10). This
required exact knowledge of the system of equations in (4.1). The documentation
for the MAEROS computer program did not give a statement of the equations and it
was necessary to go to the computer program itself to determine exactly how the
equations were implemented. Ultimately, parts of this implementation had to be
changed in order to perform the differential analysis. For example, desired
dependent variables included integrated depositions on ceiling, walls, and floor. The
MAEROS program used an interpolation procedure to determine these quantities
that did not lend itself to inclusion in a differential analysis. To implement the
system of equations in (2.10) for determining the derived partial derivatives,
additional differential equations were added that had these quantities as solutions.
Once a system of equations was determined that included all the dependent
variables of interest, it was necessary to formulate the system of equations in
(2.10). This required writing a subroutine to define the Jacobian matrix for the
system in (4.1). Further, it was necessary to calculate various partial derivatives
with respect to the X;. These partial differentiations were often coupled with
numerical integrations. For example, the coefficients aj, and bj.g appearing in
(4.1) are actually single and double integrals of functions of the X;. To
calculate the partial derivatives for the ajy and bjg, a routine for numerical
differentiation was used in conjunction wnt‘\ a routme for numerical integration,
OUnce the machinery was in place to calculate all the needed pieces appearing in
(2.10), a program was written to combine the equations in (2.10) and (4.1). This
combined system had to be solved 21 times, once for each independent variable. As
the details of the system were not the same for each independent variable, assorted
logic had to be built in to account for differences associated with individual
variables. For example, X; had a discontinuity associated with it which required
special treatment. Once the preceding systems had been developed, they had to be
solved. As might be expected, they turned out to be stiff and as such required use
of a solver for stiff systems (Shampine and Watts, 1980). The original MAEROS
model used a Runge -Kutta solution method.

Our original, perhaps naive, intent for the MAEROS differential analysis had
been to add the system in (2.10) to the original MAEROS computer model. By the
time the differential analysis was actually completed, we had developed a separate
computer program that was considerably more complicated than the original pro-
gram for MAEROS. As the preceding discussion might lead one to suspect, the
differential analysis required significantly more human and computer time than the
Latin hypercube analysis. Further, due to the complexity of the implementation, it
is also more likely to contain errors. In retrospect, it might have been better to
have approximated the desired derivatives with difference quotients. |However, the
given approach to differential analysis does have the advantage that it provides a
useful leadin to the discussion of adjoint sensitivity analysis techniques given in
Section 6.
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4.5 UNCERTAINTY ANALYSIS FOR THE MAEROS MODEL

ESTIMATION OF THE DISTRIBUTION FUNCTION OF THE OUTPUT

Figure 1 contained two estimates of the output cd for Y| from the Pathways
model. These estimates were obtained directly from the L1{S analysis and indirectly
by using a Monte Carlo simulation with the Taylor series expansion at the basecase.
Analogous results appear in Figures 9, '0, and 11 for Y|, Y2, and Y3, respectively,
from the MAEROS model. As a check on the adequacy of these methods, a third
estimate has been added to each of these figures. The third estimate was based on a
simple random sample of size 100.

Results in Figure 9 show reasonably good agreement for all three procedures
except for the lower tail. In Figure 10, the LHS and random sample estimates
coincide throughout, while the Taylor series expansion is not close for cumulative
probabilities ¢ .4. In fact, over 35 percent of the predictions from this latter
approach were negative (these values have been set equal to zero in Figure 10).
Results in Figure |1 show good agreement between the LIS estimate (n = 50) and
the random sample estimate (n = 100) except for some noticeable separation above
the .90 quantile. The Taylor series expansion procedure agrees with the other two
estimates below the .10 guantile but disagrees significantly for all quantiles above

0.

Two summary comments can be made about the results in Figures 9 through 1.
First, the results based on LIS and random sampling are in good agreement as was
the case with the Pathways model. The second point concerns the estimate from
the Taylor series expansion. The estimate in Figure 9 from this approach shows
good agreement with the other methods but the results in Figures 10 and 11 show
areas of disagreement. This points out that the result from the Taylor series
expansion may or may not be good. One never knows a priori. As mentioned in the
previous section, the reason for this lies with the danger of trying to extrapolate
local information to a global interpretation.

ESTIMATION FOR THE OUTPUT VARIABLE

Comments were made in the previous section with respect to the influence of
extreme observations on estimates of the mean and variance. This point is
illustrated in this section using the variables Y, Y3, and Ys. Estimates of both
location and scale were obtained for each of these variables on the basis of
(1) direct estimation from a random sample of size 100, (2) direct estimation from a
LHS of size 50, (3) indirect estimation from Monte Carlo simulation with Taylor
series expansions about the "basecase” point, and (4) indirect estimation from Taylor
series expansions as indicated in (2.3).

The sample mean and median provide direct estimates of location. The sample
standard deviation provides a direct estimate of scale. A robust measure of scale
known as the median absolute deviation (MAD) was also calculated directly. The
MAD estimator is calculated as follows for a sample of size n:

MAD, = median { | Yj-median Y|} . (4.2)
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Figure 11.
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Table 13

Estimate of Location and Scale for the
Output Variables Y, Yy, and Y3y

ESTIMATES OF LOCATION
RANDOM SAMPLE LHS DA (Monte Carlo) DA (Indirect)
Mean  Median Mean Median Mean Median Mean
134 113 130 123 129 112 171
1.6 4.9 7.5 3.7 -6.1 -1.7 10.6
254 220 252 183 341 278 343
ESTIMATES OF SCALE
Var MAD Var MAD Var MAD Var
3868 26 3810 4l 473% 4] 5175
87 2.9 76 2.6 68.6 5.2 109
19,808 99 30,505 67 36,679 11 34,044




The MAD estimator is not influenced by extreme observations and IHuber (1981) has
stated, "...the median absolute deviation has emerged as the single most useful
ancillary estimate of scale." While the MAD estimator can be used to quantify the
variability in the output, it cannot be used to rank input variables. That is, as with
the direct calculation of the sample variance, the calculation of the MAD estimator
does not in and of itself produce a ranking of the variables as a byproduct. Results
of all estimates with respect to Y, Y3, and Y5 are summarized in Table |35.

It is nct possible to estimate the median with the DA approach, but in the other
cases where a median estimate is available, it is always less than the mean estimate
of location. This is due to the skewness of the distributions given in Figures 9, 10,
and Il. The random sample and 145 estimates of location show good agreement
with one another in all cases while the Monte Carlo of the Taylor series expansion is
sometimes in agreement and sometimes in disagreement with the other estimates.
The indirect estimate from the 1aylor series expansion shows behavior similar to the
Monte Carlo estimate.

There are two reasons for wanting to use variance as a measure of scale. The
first is to quantify the variability in the output and the second is to rank the input
variables on the basis of their contribution to the variance estimates. The form of
the output, in particular the presence of extreme observations, has a large impact
on the reliability of these calc.lations. This point will now be discussed in reference
to quantifying variability by usu.) the results shown in Figures 9, 10, and 11. In
Figure 11, the cdf estimated from the random sample shows only one extreme value
compared to the heavier upper tails of the other two cdf estimates. This results in
the random sample providing a variance estimate that is 35 to 42 percent less than
the other es'imates. However, another random sample could change the results
dramatically depending on the number of extreme observations. In Figure 10, the
cdfs of the random sample and LHS show excellent agreement; yet, the variance
estimate from the random sample is 15 percent higher than the LIS estimate
principally because the random sample has the most extreme observation. When the
variance estimates are made after discarding the upper 2 percent of each curve, the
random sample produces an estimate of 45.7 compared to 43.8 for the LS. Hence,
the estimates almost double in size with the addition of one or two extreme values.
In Figure 9, the basecase estimate increases because of the extreme observations;
however, they still show some variability between the random sample and the LI4S.

4.4 SENSITIVITY ANALYSIS FOR THE MAEROS MODEL

In the previous section, the input variables to the Pathways model were ranked
using (a) two types of normalized coefficients, (b) contribution to variance, and
(c) the partial rank correlation coefficient. These same ranking methods are
presented in this s.section for the output variables Y| and Y, from the MAEROS
model. An expanded discussion is also presented on the usefulness of the partial
rank correlation coefficient with time-dependent output utilizing the output
variables Y3 and Y 4.



K T PUT VARIA

The results of using the ranking methods listed above were summarized in the
previous section for the Pathways model in Tables 3, 4, 6, and 8. In the interest of
shortening the discussion, all of the rankings in this subsection appear
simultaneously in Tables 14 and |5 for Y| and Y), respectively. In addition to the
ranks, the value of the PRCC is also given in parentheses in order ‘o provide more
information about the relative rankings.

Table 14 shows good agreement between the DA and LHS rankings within each
ranking criterion. This agreement might have been anticipated since the DA
approach provided a reasonably good estimate of the cdf for Y| in Figure 7.
Likewise, there is good agreement between the random sample and LHS results
under the PRCC criterion, However, as with the Pathways moocel, there is a
noticeable disagreement on the relative importance of the variables between
ranking criteria. In particular, Xg ranks fourth and fifth by the normalized
coefficients and first by all other criteria. The ties occurring within the rankings
for contribution to variance occur because some of the variables are correlated with
one another and their individual contribution cannot be separated from their ioint
contribution. The PRCC handles the correlated variables by adjusting for the
presence of all other variables.

The results in Table 15 for Y show more disagreement both within and between
ranking criteria than the results presented in Table 14. This disagreement might
have been anticipated somewhat on the basis of the poor cdf estimate of Y in
Figure 10 by the DA approach and the corresponding parameter estimates in Table
13, For the standardized coefficients criterion, the top three ranks for both the DA
and LIHS approaches agree, but there is disagreement on X || where ranks of 4 and
Il are assigned. This is probably not a major concern since the dominant three
variables have been identified. More noticeable is the disagreement between the
rankings for normalized coefficients. These rankings disagree considerably after
rank |, and the rankings as a whole disagree with the other ranking criteria,
particularly on X g. The rankings under contribution to variance for |.HS agree very
well with those found under PRCC, but the agreement is not quite as good for the
DA based rankings. Once again, the random sample and LHS rankings under PRCC
agree very well with each other.

USE OF THE PRCC WITH T -DEP T OUTPUT

The PRCC is particularly useful when the output is time dependent and the
relative importance of the input variables changes with respect to time. For
example, the MAEROS output for Yy and Y, was recorded at 65 time points. The
PRCC as computed from (3.11) can be calculated for each input variable versus each
output variable at each of the 65 time points, The influence of a particular input
variable X; on a particular output variable Y is easily summarized by plotting r y
from (3.1 l) on the vertical axis versus time on the horizontal axis. Two such plots
appear in Figures 12 and 13 for X7 and Y3 and X7 and Y4. A value of the PRCC
near | or -1 indicates a strong influence while a value near 0 indicates little
influence. Thus, in Figure 12, X7 has little influence on Y3 during the first 10,000
seconds but quickly shows a strong negative correlation after 10,000 seconds. In
Figure 13, X; shows a negative correlation developing between X7 and Y4 out to
10,000 seconds and then very quickly changes to a strong positive correlation,
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Table 14

Rankings of the Input Variables to the
MAEROS Model for the Output Variable Y|

Standardized Normalized Contribution

Input  Coefficients Coefficients to Variance PRCC
Variable DA LHS RA LHS DA™ LHS* LHS(n=50)  RS(n=100)
| 18 17 18 16
2 17 18.5 17 20
3 14 8 14 11l
4 10 20 12 19
5 4 6 9 12 |.5€ |.58 8(-.57) 5(-.64)
6 | | 4 5 1.5¢ |58 1.91) 1(.89)
7 5 3 2 2 5 3 2(.89) 2(.82)
H 9 11 6 4
9 15 12 1 10
10 19 21 19 1l
11 15 10 15 9
12 6 5 5 6 3,50 4.5 .59) 7(.48)
13 21 13 21 15
14 8 9 7 H H H 5(.66) 8(.43)
15 20 18.5 20 18
16 2 2 | I 3,50 4.5 3(-.82) 3(-.68)
17 7 1 3 5 7 7 6(-.61) 6(-.52)
18 12 15 15 17
19 16 14 16 14
20 5 4 8 7 6 6 4(-.72) 4(-.64)
21 I 16 10 13
RZ = 96.5%
& xg and §jotntly contribute 35.7%.
b x|, and jointly contribute 18.5%.

e x, nnd Xg jolntly contribute 36.8%.
d x|, and x“ jointly contribute 24.4%.

* Estimate obtained directly from coefficients
** Estimate obtained by regression with LHS output
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Table 15
Rankings of the Input Variables to the
MAEROS Model for the Output Variable Y
Standardized Normalized Contribution
Input  Coefficients Coefficients to Variance PRCC
Variable DA LIS DA LIS DA LHS"  LHS(n=50) RS(n=100)

I 16 16 15 16
2 7 6 14 11 2.58 10(~.34)
3 2 2 " 2,58 2 2(.8%) 2(.80)
4 18 10 18 10
5 14 21 16 21
6 5 4 o 4 5(~.52) 5(.57)
1 20 4 20 14
H 13 12 2 5 6
9 9 19 4 15 9(-.37)
10 19 20 19 20
1 4 11l 5 12 a.61) 3(. 70)
12 10 18 9 19 4.5b 10(-.52)  B(-.40)
13 21 9 2113
14 15 7 12 6
15 YT 171
16 s 3 Lo 4,50 8(-.59) (-.40)
17 12 13 8 9 6(-.45) 9(-.35)
18 (O 6 3 | | 1(.95) 1(.89)
19 8 8 0 8 .42) 6(.40)
20 11 15 18
2i 6 5 s 2 s 3(-.65) 4(-.60)
RZ = 75.8%

@ X, and Xy jointly contribute 18.6%.
b x|, and X ¢ jointly contribute 17.2%.

*Estimate obtained directly from coefficients
**f stimate obtained by regression with LHS output
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The graphs in Figures 12 and |3 show quite clearly the influence of a single
input variable and, in particular, point out the fact that the importance of input
variables may be time dependent. One convenient way of summarizing the relative
importance of the input variables is to rank vach of them on the basis of the
absolute value of their PRCC at each of several time steps. Such a summary is
presented in Table 16 for Yy and Y4 for || different time steps. This summary
shows that X3 is the most influential variable through 20 minutes and then decreases
in importance with respect to Ys. In contrast, Xg has no influence (rank 19) on Y3y
at 2 minutes but starting at 40 minutes it becomes the most important variable.
Other measures of sensitivity such as standardized regression coefficients could also
be used here rather than the PRCC.,

4.5 SECTION SUMMARY

The comparisons in the last section were continued in this section with the
MALROS computer model,. MAEROS models multicomponent aerosol dynamics and
is more complex in a mathematical sense than is the Pathways model.
Mathematically, the model is a system of nonlinear differential equations of the
form given in (4.1). The complexity of the analysis was also increased by the fact
that the multivariate nonlinear output from MAEROS is time dependent. This
means that the relative importance of the input variables may change as a function
of time. Another important difference ‘rom the Pathways analysis involves the
complexity of the multivariate input structure. Whereas the input variables for the
Pathways model were all independent of one another, the input to the MAEROS
model involved dependences among some of the input variables. These dependences
manifested themselves in the form of required correlations for two pairs of
variables and in conditional distributions for two other pairs of variables, which
created correlations for these variables also. Thus, eight of the 2| input variables
had required correlations.

The complexity of the multivariate input structure forced us to drop the
response surface approach utilizing a fractional factorial design from consideration
in this analysis since the basic idea underlying the fractional factorial design is to
generate orthogonal input. It may be possible to alter a fractional factorial design
in some manner to satisfy the requirements of the input structure. However, such
alterations would not be straightforward and it is doubtful that such alterations, if
possible, would be able to retain the spirit and intent of a fractional factorial
design. The suggestion may be made to ignore the conditional distributions and
required correlations and constru ' the fractional factorial design in the usual
manner. The basic problem with this approach is that it may generate some Input
combinations that are physically impossible and yet would be used along with all
other combinations runs in fitting a response surface; this assumes that the model
will even run for such combinations or, if it does run, that meaningful results will be
produced,

UNCERTAINTY ANALYSIS

Estimates of the output cdf are given in Figures 9 through |1 for three output
variables. These estimates include one made directly from a simple random sample
of size 100. This estimate was included to provide a standard for comparison with
the other estimates. Of the other two estimates, one it obtained directly from 50
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Table 16

Ranking of the Influence of the Input Variables
on Yy and V4 st 11 Selected Time Steps

TIME (MIN)
4 b 8 10 2 40 6l
4 5 5 5 7 12 20
2 “ 3 b 9 6 6
| | | | | 5 7
13 1 6 1 5 10 8
19 21 21 17 21 19 16
I 6 1 6 b | |
8 8 10 12 13 16 L
L4 4 12 2| 10 8 9
1 16 15 4 18 15 17
6 9 8 9 8 20 21
18 18 19 I 4 4 4
5 4] 4 4 4 9 10
15 13 4 13 19 21 15
9 15 16 19 6 “ 4
10 I 1 10 I 3 19
b 2 2 2 2 3 3
21 1 17 16 16 7 5
20 19 13 15 1 17 18
/ 12 9 8 12 8] 12
12 10 18 20 5 2 2
16 20 20 18 20 18 13
5 5 5 5 12 18 19
| | | 3 5 15 15
“ 3 2 | 2 3 o
12 12 14 16 17 16 17
2 2 3 2 | | |
5 20 1/ 18 6 6 4
10 10 15 10 14 13 5
I 9 6 ! 20 8 6
6 6 7 6 8 L4 20
8 L4 12 12 4 “ 3
21 18 21 20 15 I 10
18 17 19 21 19 12 12
4 5 15 14 18 5 8
3 4 4 “ 5 2 2
7 8 9 9 21 7 6
13 13 1l 1 1 21 I
19 21 18 17 ! 9 21
20 16 16 15 6 1 18
16 19 20 19 10 19 9
17 I 10 8 9 10 /
9 Y 8 13 13 20 15
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LLHS computer runs and the other is an indirect estimate obtained by using a Monte
Carlo simulation with the Taylor series expansion about a boeecase point. The
basecase point consisted of the expected values of each of the input variables from
the distributions listed in Table 12.

The direct LHS (n = 50) and random sample (n = 100) estimates show reasonably
good agreement in Figures 9 through 1. In Figure 9 the laylor series expansion
about the basecase shows good agreement except at the lower tail. This result is
reminiscent of the outcome in Figure 3 for the Pathways model. Although the
basecase inpul remains unchanged, Figure |0 shows the estimate arising from the
Taylor series expansion to be poor, similar to some of the poorer showings in F igure
4 for the Pathways model. The estimate from the Taylor series expansion in F igure
Il is an improvement over the corresponding estimate in Figure 10; however, it
shows a constant bias in being shifted significantly to the right of the random
sample estimate,

The results in Figures 9 thcough || show that although the basecase for
MAEROS was selected i the same manner as with the Pathways model, namely
using the means of the input variables, the resulting estimates range from
reasonably good to poor. One can never realiy be comfortable with such estimales.

SENSITIVITY ANAL YSIS

The four methods of ranking variable importance used with the Pathways model
ware also used with the MAEROS model. [n addition, the partial rank correlation
coefficient was also calculated on the basis of a random sample of size 100, Results
for all ranking techniques are summarized in Table 14 for Y| and in Table |5 for
Y7. The reasonably good agreement between the LIS and differential analysis
n%lmtu of the cdf in Figure 9 might lead one to suspect that these procedures will
show good agreement on input variable importance for a given maethod of ranking,
Table 14 shows this to indeed be the case for each method of ranking. Within the
table, the normalized coefficients again show disagreement with the rankings of the
other methods. The rankings under contribution to variance show ties for X and
X¢ and again for X and X g The ties occur because it was only possible to
determine the joint contribution to variance of these two variables. That s,
because these variables are correlated, their individual contributions to variance
could not be determined. However, the other three ranking techniques all indicate
that Xg is less important than Xg and that X7 is less important than X ¢,

In a similar line of reasoning, the disagreement between the LS and
differential analysis estimates of the cdf in Figure 10 might lead one to suspect
some disagreement on ranking within a given method in Table 15, This suspicion is
somewhat justified by observing the rankings in Table 15 The rankings under
normalized coefficients show more than their usual disagreement with other
methods of ranking (see, for example, X g), but there is also disagreement between
the LHS and differential analysis ranks. For example, Xg recelves ranks of 2 and 5;
Xg receives ranks of 4 and |5, Under contribution to variance, ranks | and 2 agree
for the LHS and differential analys's a,roaches, but the remaining selections
disagree. The | 1S and random sample rankings under PRCC again sgree very well,
but it is worthwhile to note the ranks assigned to X ¢ since the PRILC rankings for
this wvariable disagree with rankings from other techniques.  Such
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disagreements are not unusual with monotonic nonlinear output or when extreme
observations are present as the PRCC is not influenced by these situations.

The PRCC can be plotted with respect to time when the output is time
dependent. Plots of the PRCC appear in Figures |2 and |3 and show the changing
influence of X; on Yy and Y, respectively. Graphs such as these can be
constructed for each input variable versus each output variable. Moreovar, the
PRCC can be used to rank the input variables at any given point in time, Table 16
gives such rankings and clearly demonstrates the changing of the sensitivity of the
output to the input variables. The PRCC has provided reliable rankings in a variety
of applications with computer models and in addition is easy to calculate. There is
no reason why the other methods of ranking such as standardized regression
coefficients could not also be plotted over time. |However, the partial correlation
coefficient does have a natural bounding between -1 and +1. Such graphs make it
easy to interpret the coefficient associated with a single variable and to compare
the coefficients associated with a runber of variables., Downing, Gardner and
Hoffman (1985%) give a comparison of PRCC with three importance measures for
ranking 24 variables in a dose assessment model which demonstrates the usefulness
of ranks in identifying the most influential variables.
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5. RESULTS BASED ON THE DNE | MODE L

5.1 THE DNE T MODEL
RESCRIPTION "_THE DNET MODEL,

The final model considered in the comparison of techniques for uncartainty
analysis and sensitivity analysis is a dynamic network (DNE 1) flow model usod in
simulating dissolution in bedded salt formations. DNE1 evolved as part of an
NRC sponsored program at Sandia Nationa! | aboratories for the development of a
methodology to assess the risk associated with geologic isolation of high-level
radicactive waste, DNE | simulates several physical processes including the
following: (1) fluid flow, (2) salt dissolution, (3) thermal expansion, (4) fracture
formation and closure, (5) subsidence and (6) salt creep. In addition to this
multivariate aspect, the output is nonlinear and time dependent. Submodels within
DNE 1 are applied sequentially to represent various processes, Because of feedback
mechanisms governing the selection of different submodels and the complexity
involved in treating various processes, the governing equations are not solved in an
implicitly coupled fashion (L.e., simultancously). This feature makes it difficult to
implement a differential asalysis. Thus, in this section only the techniques based on
response surface replacement and | atin hypercube sampling are considered.

Tha DNE | model has been well documented., A user's manual for ONET was
written by Cranwell, Campbell, and Stuckwisch (1982), and sensitivity results are
given in Cranwell, Iman and Stuckwisch (1985). A se'f-teaching curriculum for the
DNE | model is provided by Cranwell, et al, (1985). ¢

VARIABLES CONSIDERED IN THE ANAL YSIS OF THE ONET MODEL

The DNE! model provides multivariate output for the process of salt
dissolution in bedded salt formations, However, only one output variable has been
selectad for the comparison given In this section in order to simplify the
presentation. The selected output variable is the rate of dissolution of a cavity of in
a bedded salt formation at 20 different time periods from 5 t¢ (07 years. These
time pariods correspond ‘o the following times in years: 5, '0010° )0, 150, 200, 500,
1000, ‘000, 10000, 20000, 50000, and 100000, The input .o the DNET model
considered in this application consists of the 10 independent variables listed in Table
|7 that describe various physical phenomena associated with the bedded salt
formation. Also given in Table |/ for each variable is a probability distribution and
an associated range.

52 SELECTION OF THE VALUES OF THE INPUT VARIABLES USED IN THE
ANALYSIS

THE RESPONSE SURFACE REPLACEMENT
For the response surface analysis, a fractional factorial design with two levels

(low and high) is utilized for each variable with k « 10 and m = 5 (following the
notation given in Section 2). Thus, 32 computer runs are required. The fractional
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factorial plan calls for each level of each variable to be used exactly 16 times in the
$2 computer runs. This is the smallest number of runs that could be used and still
allow for an estimate of esach main effect and the following interactions selected a
priori by the model developers as potentially important:

X‘Xz X X I szs X, X

1 %8 2%y 2%6
X Xg X% 10 XyXg XX 10 XX (.1)
XXy XeXy XXy XgXq Xg%10

THE LATIN HYPERCUBE SAMPLE

For the portion of the analysis utilizing a Latin hypercube sample, the value of
n o+ 32 is used. This corresponds to n = 5.2k (since k + 10). This value of n was
selocted to keep the sample size the same as used with the fractional factorial
design. The sample was generated using the restricted pairing technique of Iman
and Conover (1982a) to control the correlations between variables within the sample.

The rank correlations among the 10 input variables for this particular LHS with
n + 32 appear in matrix form in Table 18, To calculate these correlations, the
values In each golumn of the 32 x 10 input matrix are ranked from | (smallest) to 32
(largest) and then the usual correlation coefficient is computed on the ranks rather
than the originel values. The result is a Spearman's rho, & well known
nonparametric measure of correlation as explained in Iman and Conover (1983). This
measure is used since it remains meaningful in the presence of nonnormal
distributions on the input variables. Examination of the rank correlation matrix in
Table |8 shows that 35 of the 45 pairwise entries are < .05 in absolute value, 43 of
45 are < .10 and the largest element is .1379. Howaver, this latter value is a
ificant correlation for n + 32. Additionally, there is nothing to prevent the
user from generating other LHSs and choosing the one that most nearly fits his or
her requirements.,

If the off diagonal elements in the matrix in Table |8 wore all zero, then the
input variables would all be orthogonal and the matrix would be an identity matrix
as I8 the case with the fractional factorial design, However, it is virtually
impossible to obtain an exact identity matrix when using LS, A commonly used
measure for detecting large pairwise correlations comes from inverting the
correlation matrix and then examining the largest element on the diagonal of the
inverted matrix. This element was referred to in Section 3 as the variance inflation
factor (VIF)., When the correlation matrix is an identity matrix, then its invorse s
also an identity matrix, and therefore, the VIF will be equal to its minimum value of
1. As discussed in Marquardt and Snee (1975) when the VIF becomes larger than |, a
measure of unwanted ;,ofrolouon 41 generated. Anoth,r way of obtaining the VIF is
by calculating 1/(1-R?), where R is the maximum R< one gets by regressing each
independent variable on the others. Marquardt and Snee (1975) doal with some very
large VIFs (>2x1 and provide a readable explanation on reasonable sizes for VIFs.
Marquardt (19/0) indicates that there can be serious collinearity for VIF > |0, which
corresponds to a maximum R4 > 90 among the independent variables, There |is
certainly no problem as long as the VIF is close to 1. For the matrix in Table 18 the
VIF is 105,
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Table 1 /. Distribution and Range® Used with Each Input Variable
to the DNE | Model

Variable Qistribyution Range

X| ¢ Crack spacing (ft) Uniform Jto 20

X3 ¢ Conductivity of the Loguniform L1 x 1077 to .57
upper shale (ft/day)

X4 ¢ Conductivity of the | .ognormal 01 to 50
upper aquifer (ft/day)

X4 ¢ Conductivity of the L.ognormal 01 to 40
lower aquifer (ft/day)

Xy ¢ Coefficient of tharmal Normal 10°% to 104
expansion of salt (ft/°F)

Xg ¢ Coefficient of thermal Normal %1076 to 1.3x10°°
expansion of shale (ft/°F)

Xt Tharmal conductivity Normal 40 to 8%
of salt (BTU/yrft-)

Xg : Exponent in salt creep | ognormal 25t/
law (unitless)

Xg t Maximum width of the sum of Uniform 1500 to 4500
the solution channels (ft)

X0t Salt dissolution rate Uniform 100 to 500
constant (yr 1)

* For normal and lognormal distributions, the lower and upper values of the range
are interpreted as reprasenting the 001 and 999 quantiles, respectively.

For the variables in Table |7 having uniform and loguniform distributions, the low

and high values used in the fractional factorial design correspond to the endpoints of
the range, while the .05 and .95 quantiles were used all other variables,
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Table 1A, Rank Correlations Among the Input Varlables Used
in the Latin Mypercube Sample with n = 32,

I 1.0000

2 041l 1.0000

3 0352 -.0620 1.0000

<0257 0271 0007 1.0000

0341 -0018 0176 -.0957 1.0000

D121 0279 1122 0590  -0147 10000

0183 0792 -0121 -.0249 055  .021% 1.0000

0363 0370 0469 -0172 0337 -0405 -.0092 1.0000

9 053 0440 -0198 0011 0099 -0%8% 0279 0576 1.0000

® -~ > v >

10 1397 -0%3 .0279 -.025% 0601 0Bl4 0491 -0216 -.0088 |.GOOO

| 2 3 “ 5 6 ! H 9

5.3 SCATTERPLOTS OF THE INPUT-OUTPUT RELATVIONSHIPS AS A GUIDE TO
BETTER UNDERS TANDING OF THE MODEL BEHAVIOR

As mentioned in Section 3, scatterplots can be a great ald in determining if the
model is working as intended, |.e. does the input -outpul agree with
judgment? Additionallv, scatterplots may ald one in identifying the need for
transformations (such as ithmic), or when placed side-by -side, may show now
several variables jointly the outrut, The ONET model provided a
illustration of the valua of scatterplots as some unexpected modnl behavior
detected through their use. Side -by side scatterplots for DNE 1 output appear in
Figures 14 to 16 for Xy, Xy, and Xg at the time steps of 5, 500
nuoctlvoly. The left M om-thn: of each of these graphs shows a scatterplot of

versus 103 Y; the middle one-third has In Xy versus log Y; the right -hand

om-t shows In Xg versus log Y. The top half of each figure was based on
fractional factorial input while the bottom half was based on input selected by Latin
hypercube sampling. The three variables X, Xy, and Xg were selected from
the 10 input variables because they appeared as the dominant variables when
considered over all time steps. With fractional factorial input, aach variable takes
on only two values; thus, the plot appears as |6 points (half of the 32 runs) above
sach of the two values for each variable. In the top portion of Figure 14, the
numarals appearing with the graphs indicate the multiplicity of the various points.

Examination of the top half of Figure |4 shows that Xj is dominant tn
controlling the value of Y in conjunction with Xy, wmn the low value of X
present, the output was constant at approximately 104 of Xy. When ho
high value of X; was used, the output was either 10° or 10 depending on whether
the high ulul of X; was paired with the low value of Xy or the high

i
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value of Xy, respectively. The side-by-side scatterplots of X; and Xy make this
relationship easy to see. Additionally, Xg has no effect at either its high or low

The plot of X, versus ¥ in the bottom half oi Figure 14 (5 years) shows an
interesting phenomenon. The points appear in two distinct clusters separated by
several orders of magnitude on the Y axis. These clusters are determined by arge
and small values of X3 which represents the conductivity of a shale layer directly
above the bedded salt formation and directly below an aquifer. In a simplified

the higher the conductivity of the shale, the greater the water flow through
the shale and in turn the greater the dissolution of the salt cavity, Thus, the six
points in the cluster at the top of the graph represent “breakthrough® runs, That s,
condi exist on these runs that allow the salt cavity to undergo rapid dissolution
and thereby creating a discontinuity in the output. The LIS plot of X versus Y in
Figure 14 shows that when a "breakthrough" occurs, the rate of on is
controlled by x'. the conductivity of the aquifer directly above the shale layer.
Further, Figure 14 indicates that Xg has little or no effect on dissolution regardless
of whethar or not a breakthrough occurs.

In Figure 15 (500 years) X3 is still the dominant variable in determining if a
breakthrough occurs, but none of the three variables seems to have much influence
on determining the rate of dissolution for those cases in which a breakthrough fails
to occur. However, both X, and Xy are Influencing the dissolution rate in those
cases where a breakthrough occurs. Figure 16 (5000 years) shows some interesting
results. The variable, X; is still dominant in determining if a breakthrough occurs.
When a breakthrough occurs, Xy is the dominant variable while Xg (the creep law
exponent) is dominant when a breakthrough does not occur.

The scatterplots in Figures |4 to |6 make it readily apparent that the
occurrence or nonoccurrence of a breakthrough has a direct bearing on any
regression based analysis whose purpose s to determine the relative importance and
contribution of the input variables. For example, a straight line or even a quadratic
fit to the points in the LIS plot of X5 versus ¥ In Figure 14 will be less than
satisfactory. This is true because msu’tm lower cluster (no breakthrough) of the
graph can be fit nicely by a quadratic in X3 the upper cluster (breakthrough) shows
no relationship to X;. Rather, the behavior of the upper portion seems to be
dominated by Xy.

While the results of the two sets of scatterplots corresponding to the two
approaches give good general agreement, it s impossible for plots based on two
fixed loevels to show the true pattern of the input-output relationship for this
model, That is, one must assume that the output behaves in a linear fashicn
betweon the high and low values of X, with the exact placement of the linear
relationsnip being dependent upon the value of Xy, The discontinuity present in the
LHS portion of Figure |4 cannot be discovered in the fractional factorial portion of
Figure 14 nor can the nonlinear relationship between X3 and Y for about BO% of the
range of X5, This is a price that must be paid for the simplifying assumptions that
go along with the use of two levels for each variable., At this point, one might
consider a modification of the fractional factor'al design to include points other
than those found at the two lavels. For instance, a central composite design would
use 2k + | additional points with ona point being in the center for sach variable and
2k axial points. Detalls of such designs can be found in Myers (1971)., For the
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present analysis, an additional 21 computer runs would be needed. However, there
would still be no guarantee that the information avallable in the lower half of
Figures 14 to |6 would become apparent, whereas the LIS approach would have
revealod the same Information with fewer than 32 runs.

5.4 UNCERTAINTY ANALYSIS FOR THE DNE T MODE L
ESTIMATION OF THE DISTRIBUTION FUNCTION OF THE QUTPUT
Response surfaces for the fractional factorial design were fit as indicated In

(2.1) at each of the time steps and then evaluated 100 times based on random
sampling from the probability distributions given in Table 17. The resulting
estimated cdfs for 5 years and 500 years appear in Figure |7 with the label "RS."
For

in making comparisons, the LIS results also appear (with the label "LHS")

wo estimates based on | HS appearing within
on 32 runs and the other is based on 100
LIS estimates within sach figure provides an
with estimates arising from LS,

{
i
g
:
3
g
%
g
g
-
i
§

computer costs, and even then it is likely that such surfaces would fail to accurately
depict the discontinuity, This example identifies an underlying problem with the
response surface approach, which is that the DNE T camputer model is too complex
mathematically to be adequately represented by a simple response surface.

At this point in the analysis in each of the previous two sections, the estimation
of population parameters for the output variable has been considered. However, the
cdf estimates In the previous subsection point out the potential for problems
associated with estimating and interpreting population parameters. For example,
the response surface fit from the fractional factorial desiyn produced a less than
satisfactory estimate of the output cdf in Figure |7, Hence, the associated
estimates of location and scale may or may not be accurate, but more importantly
these population characteristics may not have any real meaning in this problem. To
explain further, consider the graph in Figure |7 corresponding to 500 years. What
meaning should be attached to an overall measure of either location or scale here?
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Certainly, the overall estimate of the variance of ¥ will be too large to be applied
individually to either of the two groups of Y values based on the occurrence or
nonoccurrence of a "breakthrough.” | ikewise, an overall measure of location will be
too small to represent the large values of ¥ and too large to represent the small
values of ¥, More useful estimates would be made conditional on the occurrence or
nonocourrence of a “breakthrough.® That is, one could estimate the location and
scale for those cases where a "breakthrough" occurs and obtain separate estimates
for those cases where a "breakthrough” fails to occur.

5.5 SENSITIVITY ANALYSIS FOR THE DNE T MODEL

It is important to keep In mind that the discontinuity in the output was not
anticipated a priorl. In fact, the existence of a discontinuity was not clearly
identified until the scatterplots were made. The impact of the discontinuity on the
estimation of the output cdf and In the estimation of population parameters has
already beon observed. The presence of the discontinuily also Impacts the
sonsitivity analysis.

The scatterplots in Figures |4 - 16 Indicate that X; plays an important role in
determining If a breakthrough occurs. Additionally, the scatterplots indicate that
the variables that are important, given a breakthrough, are not necessarily the same
variables that are important when a breakthrough does not occur. Therefors, since
the occurrence or nonoccurrence of a breakthrough has such an influence on the
results, it seems reasonable as a first step in a sensitivity analysis to direct efforts
toward determining which variables influence “t'me to breakthrough® rather than
concentrating efforts on “rate of dissolution™ at each of 20 different time steps. As
a socond step, it would then seem reasonable to direct sensitivity analysis efforts
toward the breakthrough and nonbreak through cases separately. In order to
conserve space, these analyses are not presented,

5.4 SECTION SUMMARY

The DNET model war used for comparisons in this section, DNET models
dissolution in bedded salt formations and has a feedback mechanism that governs the
seloction of different submodels for treating various processes. Because of the
complexity involved in treating these processes, the governing equations are not
solved in an implicitly coupled fashion (1.e., simultaneously), which makes it difficult
to implement a differential analysis. Mence, a differential analysis was not
parformed for the DNET model. For the analyses with LIS and a fractional
factorial design, 10 Infependent variables were considered as input to the model
The model produces nonlinear time -dependent output as a function of each of these
input variables, but not known prior to the analysis was the existence of a
discontinuity in the output. Some flexibility is required in the analysis to detect the
discontinuity after the computer runs are made, as waell as to perform meaningful
uncertainty and sensitivity analyses on the basie of the runs.



UNCERTAINTY ANALYSIS

The importance of scatterplots for display of input -output relationships as a
Quide to better understanding of model behavior was mentioned in Section 3, but
such plots were not presented until the present section. Their appearance in this
section illustrates their usefulness. The side -by -side scatterplots in Figures 14-16
show how three input variables act jointly to affect the output at different points in
time. One set of scatterplots is based on 32 computer runs assoclated with a
fractional factorial design and the second set |s based on 32 runs assoclated with
LHS. Both sets of plots show that Xy affects the output conditional on the value of
X mew.mt.m scatterplot shows a jump of about four orders of
magnitude in the output for large values of Xy, but the fractional factorial

jump, In fact, it O not clear from the fractional
factorial scatterplot what happens to the output for intermediate values of X, If
center points for both X; and Xy are added to the basic fractional factorial
be lm in form, but the jump or discontinuity
still not be apparent. It can only be detected by stratifying the input values across
the entire range of X ;.

The discontinuity in the output impacts the entire analysis and can give rise to
misleading results if its presence s not detected. For example, the (ndirect
estimate of the cdf in Figure |7 arising from Monte Carlo simulation with the
rosponse surface fit gives no indication of problems with discontinuities. MHence,
virtually all quantile sstimates will be off considerably, as can be seen from the two
LHS direct estimates (n « 52 and n « 100) in Figure |7, which both clearly indicate
the presence of the jump In the distribution function, The Jump In the output cdf
also indicates that an overall estimate of the variance of the output will have little
ummmmm.wmwmmmum.

SENSITIVILY ANALYSIS

The sensitivity analysis discussion presented in this section did not go int
detall comparing various methods of ranking variables as was the case in
previous two sections; rather, the more important issue of the impact of the
discontinuity on the analysis was considered. The reason for this s that If the
discontinuity is not detected, or Ignored if detected, then sensitivity analysis to
determine which variables Influence the rate of dissolution will most likely not

produce meaningful results,

For a semsitivity analysis to provide meaningful results in a situation such as
exists with the DNE | madel, it is probably best to proceed in two stages, The first
stage should be concernad with the detarmination of the variables that influence the
ocourrence or nonoccurrence of a breakthrough which causes the discontinuity.
Such rasults will provide guidance to the analysis. The second stage would be to
perform sensitivity analysis on the breakthrough and nonbreakthrough cases
soparately, using mathods such as have been discussed in the previous sections,
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6. ADDITIONAL TECHNIQUES

The purpose of this section is to introduce several additional technigues that
have been proposed for uncertainty and senstivity analysis. The adjoint and Green's
function techniques are actually metnods for use with differential analysis to
increase the numerical efficiency with which the necessary partial derivatives can
be calculated. The Fourier amplitude sensitivity test s a method which uses
technigues from Fourier analysis to simplify direct calculations of expected values
and variances,

6.1 ARJQINT TECHNIQUES

As was indicated in Section 4, the repetitive solution of the system of equations
in (2.8) and (2.10) can become quite burdensome when a differential sensitivity
analysis is performed. An area of active recent investigation is the use of djoint
technigues to reduce the computational requirements associated with dif  antial
aralysis (0.9., Koda, Dogru, and Seinfleld, 1979; Cacucl et al., 1980; Cacucl, 1981a
and 1981b; Plepho, Cady, and Kenton, 1981; Hall, Cacucl, and Shlesinger, 1982;
Cacuci, Maudlin, and Parks, 1983), Further, additional background can be obtained
In vummmhm (0.9., Stacey, 1974; Greenspan, 1976, Weisbin, Lewins, and
Hocker , 1982).

Although a careful discussion of adjoint sensitivity analysis techniques is beyond
the scope of this paper, a brief discussion of how such an analysis might be

implamented for the MAELHOS model will be given. As previously indicated, the
model 1s & system of nonlinear differential equations of the form

Wl ‘Ho‘y‘ ] 'l!(!-l).lotl (‘1',

with the initial value condition ¥ (0) = Ygy(X) for | « ',...p. Suppose the dependent
variable of interest |s defined by

“!'l"")' rLl‘!‘!'t)D!"1¢ ' (6.2)

For example, this equation m define an integrated concentration or deposition.
It s desired to determine 31/3X; for each independent variable X;. This can be
accomplished by Introducing and solving the following system of adjoint equations:

o ALLYGOEE S O YOEXR),

dy 7dt « b K"
,’ tv] kel ‘vi
-
Vit 0 (6.9)



for j=1,....p. Once the system in (6.3) is solved, each of the desired partial
derivatives can be obtained from the relationship
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The appeal of the adjoint method lies in the fact that it is only necessary to
solve the original equations in (6.1) once and the adjoint equations in (6.3) once.
Then, all the desired partial derivatives follow from repetitively performing the less
demanding integrations in (6.4). This has the potential to require significantly less
computation than repetitively solving the combined system appearing in (2.8) and
(2.10). At the outset of this project, our intent was to perform the MAEROS
differential analysis with the indicated adjoint techniques. However, it was
ultimately decided not to use adjoint techniques for reasons outlined in the next
paragraph.

In the performance of an adjoint analysis, the system of equations in (6.1) is
solved forward in time from t =0 to t =tg, while the system in (6.3) is solved
backward in time from t = tg to t = 0. As the backward solution to (6.3) requires the
solution to (6.1), it is necessary to record the solution to (6.1) at selected points in
time and to use some type of interpolation procedure in the incorporation of these
values into the solution to (6.3). The integrals in (6.4) require the solutions to the
systems of equations in (6.1) and (6.3). Thus, it is also necessary to record the
solution to (6.3) at selected points in time and to use some type of interpolation
procedure in the incorporation of the solutions to (6.1) and (6.3) into the integrals
appearing in (6.4). Both the expressions in (6.3) and (6.4) involve partial derivatives,
at least some of which must be determined numerically. Finally, the integrals in
(6.4) must be evaluated numerically.

Two points emerge from the preceding discussion. First, an adjoint analysis of
the MAEROS model is difficult to implement numerically. Due to the successive
combining of numerical approximations, it 1s hard to know and control
computational errors. Second, due to the different procedures which must be
combined, a large effort is required to develop the software required to run the
analysis. The two preceding considerations lead to the decision that it would be
better to solve the systems in (2.8) and (2.10) repetitively than it would be to
perform an adjoint analysis.

Adjoint analyses are easier to perform for algebraic systems than for
differential systems such as the one just discussed. Of course, all differential
systems are ultimately implemented as an algebraic system in a computer program.




However, the complexity of the problem and the associated computer program may
prevent convenient use of these algebraic equations. A new FORTRAN compiler
recently developed at Oak Ridge National Laboratory makes use of the ultimately
algebraic structure of models and develops the required partial derivatives needed in
an adjoint analysis of the underlying algebraic model associated with a computer
program (Oblow, 1983a and 1983b). Although we have not had a chance to work with
this program, it is possible that its use could significantly reduce the effort
associated with implementing adjoint analyses for certain models.

6.2 GREEN'S FUNCTION TECHNIQUES

Another approach to reducing the computation associated with solving the
systems in (2.8) and (2.10) is based on Green's function. As with adjoint techniques,
this method is an area of active recent investigation (e.g., Hwang et al., 1978;
Dougherty, Hwang, and Rabitz, 1979; Demiralp and Rabitz, 1981a and 1981b; Dacol
and Rabitz, 1983). Differential sensitivity analysis revolves around the need to
solve the system appearing in (2.10). In matrix notation, this system can be written
as

d[ay/aX, Vdt = 3f/3X, + I 3Y/3X,

V()X = IV (X)VAX (6.5)

where ¥ = (Y],...,Y ) £ = (f},....fp) and J is the Jacobian matrix for f with respect
to Y. “The system m (6 5) must %e solved for each Xi. However, Tt is only the
initial-value 9Y(0)/aX; and the forcing function 3f/9X; that changes from
system to system. the Jacoblan matrix J remains the same for all systems. The
Green's function technique is based on the separation of the solution of (6.5) into the
part that depends on X; and the part that depends on J Specifically, the solution to
(6.5) can be expressed as

t
Y(t)/ax; =5(t.0)[ax(o)/axij+{ K(t,T)(3f/3X ldT ,

(6.6)
where K(t,1)is the Green's function defined by
K(t,1) =], dK(t,t)/dt = JK(t,1) fort )t . (6.7)

Use of (6.6) results in the desired separation of the calculation of dY/dX; into parts
dependent on X; and parts independent of X;. The Green's function defined in (6.7)
can be approximated once and this approximation can then be used repeatedly in the
calculation of the desired partial derivatives.
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Although use of Green's function techniques may result in a reduction of the
computational effort required to repeatedly solve the systems in (2.8) and (2.10), a
significant programming effort is still required to implement the method. F irst, the
original system of model equations must be solved. Second, this solution must be
used to solve the system in (6.7) that defines the Green's function. Finally, the
approximated Green's function must be used repeatedly in the development of
approximations to the expressions in (6.6). As with the adjoint techniques, attempts
are being made to develop software which will facilitate implementation of Green's
function techniques (Kramer et al., 1982). As a careful examination of their
development would reveal, adjc 't and Green's function techniques are very closely
related.

6.3 FOURIER AMPLITUDE SENSITIVITY TEST

The Fourier amplitude sensitivity test (FAST) is another procedure that has
been developed for uncertainty and sensitivity analysis (Cukier et al., 1973; Shaibly
and Shuler, 1973; Cukier et al., 1975; Cukier et al., 1978). This procedure provides a
way to estimate the expected value and variance of a dependent variable and the
contribution of individual independent variables to this variance.

As before, suppose Y =(Y|....Yp) is a function of X =(X|,....Xy). Further,
suppose X),...,X are random variables described by a probability density function
P(X].....XK) defined on Q. Then,

EY,) = ({ ¥, 0P(X)dX (6.8)

for j = 1,...,p. The central idea of the FAST method is to convert the k-dimensional
integral in (6.8) into a one-dimensional integral in s by using the transformation
Xq = Gq(sin uqs) for q = 1,...,k. For properly chosen ©q and Gq.

o
E(Yj) = %1_’ J‘ Yj [Gl(sin uls).....Gk(sm wks)] ds . (6.9)

Further, by use of properties of Fourier series,

% o2 . . 2
V(Yj) - %r {T vj (G(sin & 8).....G (sin @, 5)] ds - E (vj )



- 5 (nEesd)-(ageed)

l:—O
=2 (A 2 ez.l). (6.10)
i=1
where
w
i =] J’ (s) cos(is) ds (6.11)
2 -m
and
"
J’ Yj (s) sin(is) ds . (6.12)
o

The expressions in (6.9) and (6.10) provide a means to estimate the expected value
and variance associated with Y; j- Further, provided the wq are integers, the
contribution to variance by Xq can be approximated by

72 2
V(=2 ¥ (A .mq+e.mq) (6.13)

i=l

Thus, the ratios V(Y J'/V(Y ) provide a means to rank individual variable importance
on the basis of contribution to variance.

Application of the FAST method involves defining the wq and Gq, evaluating the
original model at a sufficient number of points to allow numerical evaluation of the
integrals in (6.11) and (6.12), and approximation of the sums in (6.10) and (6.13).
Applications involving this technique are given by Falls et al. (1979), Koda et al.
(1979), Pierce and Cukier (1981), McRae et al. (1981), and Tilden and Seinfeld (1982).
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7. SUMMARY AND CONCLUSIONS

7.1 TECHNIQUES AND MODELS USED IN COMPARISONS

Uncertainty analysis and sensitivity analysis are important elements in the
development and implementation of computer models for complex processes. Many
different techniques have been proposed for performing uncertainty and sensitivity
analyses, and published comparisons have been made of some techniques. It is our
observation that such comparisons are often made on unrealistic and artificially
simple models. For example, one might see a small number of independent input
variables used with a simple function. This approach has merit in allowing
comparisons against known answers but fails to show the extendibility of the
techniques to complex problems. The main aim of this study was to compare several
widely used techniques on three models having large uncertainties and varying
degrees of complexity in order to highlight some of the problem areas that must be
addressed in actual applications.

We are aware that results presented in a study such as this will not satisfy
everyone. For example, questions will arise as to the choice of techniques used in
the comparisons. We feel that there is adequate justification for the techniques
featured in the comparisons, but more importantly, given the documentation on the
input and models, it should be possible for other investigators to make comparisons
of additional techniques with the results in this study.

Three techniques for performing uncertainty analysis and sensitivity analysis
are used in the comparisons made in this paper. These techniques are (1) response
surface replacement for the computer model, (2)Modified Monte Cario as
exemplified by Latin hypercube sampling with and without regression analysis, and
(3) differential analysis.

Three computer models were used in the comparison of the techniques.

e Pathways - models the environmental movement of radionuclides;
consists of a system of four linear, constant coefficient
differential equations; requires 20 independent input
variables; produces multivariate nonlinear output.

e MAEROS - models multicomponent aerosol dynamics; consists of a
system of nonlinear differential equations; requires 21
input variables, eight of which are correlated; produces
multivariate time dependent nonlinear output.

e DNET - models dissolution in bedded salt formations; has a
feedback mechanism that governs the selection of
different submodels; requires 10 independent input
variables; produces time-dependent multivariate
nonlinear output which is discontinuous with respect to
one of the input variables.

The preceding descriptions pertain to the models as used in this comparison. Each

of the models is quite general and can be used in configurations that are different
from the ones considered here.
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1.2, GENERAL SUMMARY OF THE TECHNIQUES

A brief summary of each technique is given in this subsection. This summary is
followed in the next subsection by another summary in which the techniques are
gauged by particular criteria.

RESPONSE SURF ACE REPLACEMENT USING FRACTIONAL FACTORIAL DESIGNS

Fractional factorial designs (FFD) have a proven record of performance and are
well documented in the statistical literature. They have provided good results in
many experimental situations. They, along with more complex experimental
designs, have also been widely used in the construction of response surfaces and are
near an optimal choice for input selection if the output behaves in a linear fashion.
Even if the output behaves in a nonlinear fashion, the FFD can sometimes be
modified to give reasonable results by including center points. The problem in using
a FFD to produce a response surface replacement for a computer model of the type
considered in this paper lies not so much in the choice of the design but rather in the
concept of trying to replace the model with a response surface. Generally speaking,
the models are too complex mathematically to be adequately approximated with a
response surface. Since indirect estimates of the output cdf(s), the variance of the
output variable(s), and variable ranking by contribution to variance are derived from
the response surface when using input from a FFD, an inadequate response surface
can generate misleading uncertainty analysis and sensitivity analysis results.

The FFD response surface approach provided both good and poor estimates of
the output cdfs for the simple Pathways model, but did provide a reliable ranking of
the input variables. However, in evaluating rankings for the Pathways model, it
should be kept in mind that one input variable tended to dominate each output
variable. The response surface approach was not used with the MAEROS model due
to the complexity of the multivariate input structure. The response surface
approach provided an unreliable estimate of the output cdf with the DNET model
largely because the discontinuity in the output went undetected.

DIFFERENTIAL. ANALYSIS AND LOCAL BEHAVIOR

A differential analysis is intended to provide information with respect to small
perturbations about a point. Excellent information is provided about variable
behavior and influence about this point and such information is quite useful in a
variety of applications. Problems arise, however, in an uncertainty analysis or in a
sensitivity analysis when large uncertainties are present and attempts are made to
extend the results from the small perturbations in the input variables, for which the
differential analysis is intended, to a broader or global interpretation. For example,
estimates of the cdf and variance can be obtained indirectly by using a Monte Carlo
simulation with the Taylor series expansion about a basecase point. The results may
or may not be sensitive to the choice of this basecase point.

Tne differential analysis was relatively easy to implement with the Pathways
model and a Monte Carlo simulation of the Taylor series expansion about the
basecase point produced a cdf in good agreement with the unbiased estimate as
shown in Figure 3. However, as illustrated in Figure «, other choices of basecase
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values gave widely varying results. The input variable ranking proved to be in good
agrecment with the other techniques, but as was mentioned previously, one input
variable tended to dominate each output variable. The implementation of the
differential analysis with the MAEROS model proved to be another matter entirely.
It was extremely difficult and time consuming to do, requiring about six
man-months of effort. Moreover, even though the cdf estimates shown in Figures
9-11 all utilized a 1aylor series expansion about the same basecase point, the results
ranged from reasonably good to poor for three different output variables. The
variable rankings shown in Table 14 agreed quite well throughout with the other
rankings in the table, but the same was not true in Table 15 where more disparity
occurred among the rankings. Due to the complexity of the feedback mechanism
governing the selection of different submodels, a differential analysis was not
performed with the DNE T Model.

LATIN HYPERCUBE SAMPLING

The implementation of LIS is similar to that of simple random sampling and
both have a probabilistic basis. In fact, for large sample sizes there is little dif-
ference between the two techniques. HHowever, the original intent of LHS was to
make more efficient use of computer runs than random sampling for smaller sample
sizes. If the output is a monotone function of the input, then LI5 has been shown by
Iman and Conover (1980) Lo be more efficient than simple random sampling
(i.e., | 115 provides a smaller variance for the estimator). If monotonicity is not
satisfied, then LS may or may not be more efficient than simple random sampling.
Since LHS has a probabilistic basis, it can provide direct estimates for the cdf and
variance. When random pairing is used with LS, the estimate of the cdf is unbiased
while the variance estimate has a small, bounded, but unknown bias. When LI 1S is
used in conjunction with the pairing technique of Iman and Conover (1982a), corre-
lated multivariate structures for the input variables can be input to the computer
model in the proper form; something that cannot be done with random pairing in the
LHS. lHowever, the property of unbiasedness no longer applies. It is felt that the
amount of bias is negligible for the type of problems considered in this study.

L 115 was used with all three computer models and produced good estimates of
Lthe cdf throughoul as meas:red by comparisons wilh results from large random
samples. For example, for both the Pathways model and the MAEROS model, the
LIS estimates with n=50 showed good agreement with random sample estimates
with n=100. In the case of the DNET model, the LLt1S estimate with n=32 was com-
pared against a LIS with n=100 in order to illustrate the small variability associated
with LHS estimates. The presence of a discontinuity in the output from DNET was
clearly identifiable from the LHS cdf estimate, illustrating the usefulness of LHS in
mapping the input space to the output space. The LIS was used with all four
methods of ranking indicated in Sections 3 and 4.

7.3 SUMMARY OF TECHNIQUES ACCORDING TO SPECIFIC CRITERIA

There arc scveral specific crileria that are of interest when comparing
different techniques for uncertainty and sensitivity analysis. Several such criteria
are listed in this subsection along with comments with respect to each of the
techniques considered in this study.
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EASE OF IMPLEMENTATION

RS - If the number of input variables is small and the variables are
independent of one another, then the selection of input values is
straightforward with a fractioral factorial design. If the variables are
not independent, then the design may create pairs of variables that are
physically impossible or meaningless. When the number of input
variables is large, the development of a suitable design can be difficult.
The fitting of the accompanying response surface frequently requires
some artistry.

DA - Setup can be very simple, or very difficult, or impossible. Results can
vary greatiy depending on the choice of a basecase for Taylor series
expansion. Monte Carlo simulation of the Taylor series expansion to get
cdf estimates and evaluation of the expansion to get variance estimate
are both straightforward.

LHS - Setup with either simple or complex multivariate input structures is
easy. Output can be processed directly for estimates of the cdf and
variance without the need for fitting a response surface. However, the
estimate of the variance has a small, but unknown, bias.

FLEXIBILITY

RS - Scatterplots from FFD input provide somewhat limited information.
Input values from FFD are orthogonal and as such are not designed to
handle correlated input. It is difficult to implement a FFD with a large
number of input variables. The input space with a FFD can be
under -represented and important points can be missed.

DA - There are scatterplots available A single input point is not affected by
correlation in the input variables as long as restrictions among the
variables are satisfied. This approach will handle a large number of
input variables.

LHS - Scatterplots based on I.HS input provide useful information. LHS has the
ability to handle correlated input as well as a large number of input
variables. The input space is well represented.

ESTIMATION OF THE OUTPUT CDF

RS - The estimate is obtained by using a Monte Carlo simulation with the
response surface fit. This indirect estimate can be either good or bad
and is dependent on the quality of the fitted response surface.

DA - The indirect estimate is obtained by using a Monte Carlo simulation with
a Taylor series expansion about a basecase point. This estimate can vary
greatly with the choice of a basecase. Also, the local nature of a Taylor
series expansion makes this estimate questionable.

LHS - The cdf estimate is obtained directly from the model output. Further,
this estimate has a small associated variance and little, if any, bias.
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ADAPTABILITY TO DIFFERENT METHODS OF SENSITIVITY ANALYSIS

RS - All methods of ranking input variables explained in Section 3 can be
used. The usefulness of the PRCC is inhibited somewhat by the limited
number of fixed points used with each input variable for FFD input.

DA - The PRCC cannot be used. The other three methods of ranking variables
as explained in Section 3 are obtained from the Taylor series expansion
about the basecase point. The rankings obtained provide local
information but do not always extrapolate well to a global interpretation.

LHS - All methods of ranking input variables as explained in Section 3 can be
used.

7.4 EXTENSION OF TECHNIQUES TO A SYSTEM ANALYSIS

The input variables have been treated as representing properties associated
with a computer model that may itself be only a component in a system of many
such models. Such systems are likely to be composed of many different models,
some of which will far exceed the complexity of the models considered in this
study. For example, the MELCOR program mentioned in the Introduction is one
such complex system. Furthermore, it is likely that it will be necessary to apply
uncertainty analysis and sensitivity analysis to the entire system. For such
applications, the role of some of the input variables will need to charge as
mentioned in the Introduction, to perhaps represent branch points in the evolution of
a process or perhaps different submodels within a larger model. In such case the
analysis could be used to identify those models or events that have a significant
impact on the system, and in turn may contribute significantly to the uncertainty.
Such methodology development is the subject of current research at Sandia National
Laboratories, but will build on techniques discussed in this study, in particular, the
techniques based on Latin hypercube sampling. One such analysis where LHS has
been used in a system analysis is associated with the geologic isoiation of
radioactive waste as reported in Cranwell et al. (1982). ¢
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N TwE REVERSE

Uncertainty analysis and sensit analysis are important elements in the

development and implementation of c r models for complex processes. Typically,
there are many uncertainties associat ' th the development and the application of
such models. Understanding of t inties and their causes is required to
effectively interpret model behavigy. ' rent techniques have been proposed for
performing uncertainty and sensitifity analyses. Yhe objective of the present study is to
compare several widely used tecjhiques on three odels having large uncertainties and
varying degrees of complexity ipforder to highlight §pme of the problem areas that must
be addressed in actual appligtions. The followi approaches to uncertainty and
sensitivity analysis are consigered: (1) response surgace methodology based on input
determined from a fractionalf factorial design, (2) L.a§n hypercube sampling with and
without regression analysis, #hd (3) differential analysis.\These techniques are compared
on the basis of (1) ease of igfiplementation, (2) flexibility, estimation of the cumulative
distribution function of thefoutput, and (4) adaptability to ferent methods of sensitivity
analysis. With respect to phese criteria, the technique using \atin hypercube sampling and
regression analysis gives yhe best results overall. The modelsWsed in the comparisons are
well documented, thus rdaking it possible for researchers to ake comparisons of other
techniques with the resqu in this study.
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