Attachment 4

Prairie Island Nuclear Generating Plant Earthquake Analysis: Reactor-Auxiliary-Turbine Building Response Acceleration Spectra

John A. Blume & Associates Report JAB-PS-04

Tebruary 16, 1971

9209250267 920921 PDR ADOCK 05000282 PDR ADOCK PDR Pioneer Service & Engineering Co.

4 .

PRAIRIE ISLAND NUCLEAR GENERATING PLANT

Earthquake Analysis: Reactor-Auxiliary-Turbine Building Response Acceleration Spectra

CONTENTS

Page

INTRODUCTION	1
DESIGN CRITERIA	2
MATHEMATICAL MODEL	2
ANALYTICAL PROCEDURE	2
DISCUSSION OF RESULTS	3
SUMMARY	5
RECOMMENDATIONS	5

APPENDICES

Δ	Rest	AFAT	SPACE
PS -	NEL	CICI	1663

- B. Example of the Application of the Horizontal Response Acceleration Spectra
- C. Example of the Application of the Vertical Response Acceleration Spectra

February 16, 1971

-11-

(Follow Page 6)

- Le	Factors for Torsional Accelerations
2.	Locations of Centers of Mass and Rigidity
3.	Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 4,4A Damping Ratio - 0.005, 0.010
4.	Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 5. 6A Damping Ratio = 0.005, 0.010
5.	Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 9, 9A Damping Ratio = 0.005, 0.010
6.	Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 10, 10A Damping Ratio = 0.005, 0.010
7.	Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N~S or E~W Direction Mass Point 14, 14A Damping Ratio = 0.005, 0.010
8.	Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 15, 15A Damping Ratio = 0.005, 0.010
9.	Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 16, 16A Damping Ratio = 0.005, 0.010
10.	Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 17, 17A Damping Ratio = 0.005, 0.010
Februa	ary 16, 1971 -111-

 \triangle

(Continued)

/3

113

- 10A. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S Direction Mass Point 17, 174 Damping Ratio = 0.05
- 11. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 18, 184 Damping Ratio = 0.005, 0.010
- 12. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 19, 19A Damping Ratio = 0.005, 0.010
- 13. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S Direction Mass Point 21 Damping Ratio = 0.005, 0.010
- 14. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in E-W Direction Mass Point 21 Damping Ratio = 0.005, 0.010
- 15. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N*S or E-W Direction Mass Point 24 Damping Ratio = 0.005, 0.010
- 16. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 25 Damping Ratio = 0.005, 0.010
- 17. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 28 Damping Ratio = 0.005, 0.010

February 16, 1971

- iv -

(Continued)

- 18. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E+W Direction Mass Point 29 Damping Ratio = 0.005, 0.010
- 19. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 30 Damping Ratio = 0.005, 0.010
- 20. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 31 Damping Ratio = 0.005, 0.010
- 21. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S Direction Mass Point 33, 33A Damping Ratio = 0.005, 0.010
- 22. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in E-W Direction Mass Point 33, 33A Damping Ratio = 0.005, 0.010
- 23. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 41 Damping Ratio = 0.005, 0.010
- 24. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 20, 20A, 32, 42 Damping Ratio = 0.005, 0.010
- 25. Response Acceleration Spectra Tabulation (Vertical Acceleration) Earthquake in N-S or E-W Direction Mass Point 4, 4A, 6, 6A, 9, 9A, 10, 10A, 14 - 20, 14A - 20A, 21, 24, 25, 28 - 32, 33, 33A, 41, 42 Damping Ratio = 0.005, 0.010, 0.020, 0.050

26. Response Acceleration Spectra Tabulation (Horizontal Acceleration) Earthquake in N-S or E-W Direction Screenhouse Damping Ratio = 0.005 and 0.010

February 16, 1971

2

(Continued)

2

27. Response Acceleration Spectra Tabulation (Vertical Acceleration) Earthquake in N-S or E-W Direction Screenhouse Damping Ratio = 0.005 and 0.010

Spectra for Mass Points 17-19, 17A-19A modified September 16, 1969.

Spectra for Screenhouse added December 2, 1969.

A

Spectrum for Mass Points 17, 17A (Damping Ratio = 0.05) added January 2, 1970.

(Follow Tables)

1,	Mathematical Model - Southwest View
2.	Mathematical Model - Southeast View
3.	Mathematical Model - West Elevation
4.	Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 4, 4A Damping Ratio = 0.005, 0.010
5.	Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 6, 6A Damping Ratio = 0.005, 0.010
6.	Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 9, 9A Damping Ratio = 0.005, 0.010
7.	Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 10, 10A Damping Ratio = 0.005, 0.010
8,	Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-5 or E-W Direction Mass Point 14, 14A Damping Ratio = 0.005, 0.010
9.	Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 15, 15A Damping Ratio = 0.005, 0.010
10.	Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 16, 16A Damping Ratio = 0.005, 0.010
11.	Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 17, 17A Damping Ratio = 0.005, 0.010
Febru	ary 16, 1971 vii -

 \triangle

(Continued)

3

A

115

- 11A. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 17, 17A Damping Ratio = 0.05
- 12. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 18, 18A Damping Ratio = 0.005, 0.010
- 13. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 19, 19A Damping Ratio = 0.005, 0.010
- 14. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S Direction Mass Point 21 Damping Ratio = 0.005, 0.010
- 15. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in E~W Direction Mass Point 21 Damping Ratio = 0.005, 0.010
- 16. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 24 Damping Ratio = 0.005, 0.010
- 17. Response Acceleration Spectra (Horizont Acceleration) Earthquake in N-S or E-W Direction Mass Point 25 Damping Ratio = 0.005, 0.010
- 18. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 28 Damping Ratio = 0.005, 0.010
- 19. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N=S or E=W Direction Mass Point 29 Damping Ratio = 0.005, 0.010
- 20. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 30 Damping Ratio = 0.005, 0.010

February 16, 1971

(Continued)

- 21. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 31 Damping Ratio = 0.005, 0.010
- 22. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N*S Direction Mass Point 33, 33A Damping Ratio = 0.005, 0.010
- 23. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in E-W Direction Mass Point 33, 33A Damping Ratio = 0.005, 0.010
- 24. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 41 Damping Ratio = 0.005, 0.010
- 25. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E-W Direction Mass Point 20, 20A, 32, 42 Damping Ratio = 0.005, 0.010
- 26. Response Acceleration Spectra (Vertical Acceleration) Earthquake in N-S or E-W Direction Mass Point 4, 4A, 6, 6A, 9, 9A, 10, 10A, 14 - 20, 14A - 20A, 21, 24, 25, 28 - 32, 33, 33A, 41, 42 Damping Ratio = 0.005, 0.010, 0.020, 0.050

- ix -

27. Response Acceleration Spectra (Horizontal Acceleration) Earthquake in N-S or E+W Direction Screenhouse Damping Ratio = 0.005, 0.010

28. Response Acceleration Spectra (Vertical Acceleration) Earthquake in N-S or E-W Direction Screenhouse Damping Ratio = 0.005, 0.010

February 16, 1971

/2

12

(Continued)

1 Spectra for Mass Points 17-19, 17A-19A modified September 16, 1969.

Spectra for Mass Points 17, 17A (Damping Ratio = 0.05) added January 2, 1970.

PRAIRIE ISLAND NUCLEAR GENERATING PLANT EARTHQUAKE ANALYSIS: REACTOR-AUXILIARY-TURBINE BUILDING RESPONSE ACCELERATION SPECTRA

INTRODUCTION

This report presents the response acceleration spectra for selected floors of the Auxiliary and Turbine Buildings and selected mass point elevations of the Shield Building, Containment Vessel, and Reactor Support Structure. Also included are spectra for the Screenhouse. The response acceleration spectra are based on the design criteria stated below and on an earlier report on the Frairie Island Plant.¹*

Horizontal response acceleration spectra for earthquakes acting in north-south and in east-west directions are presented. Vertical response acceleration spectra due to vertical earthquake accelerations are also presented. The spectra for accelerations in the horizontal direction have been developed for damping values of 0.5 percent and 1.0 percent of critical damping, and the spectra for accelerations in the vertical direction have been developed for damping values of 0.5, 1.0, 2.0 and 5.0 percent of critical damping. These response spectra are for use in the seismic analysis and design of critical equipment and piping located at the specified floors and mass point elevations.

The presented spectra can to used directly in the analysis of equipment that can be idealized as single-degree-of-freedom systems; the use of the spectra can be extended to multi-degreeof-freedom systems, such as piping systems, by dynamic analysis techniques.

* References are listed in Appendix A.

February 16, 1971

DESIGN CRITERIA

The earinquake ground acceleration time-history developed for this analysis was based on the ground response acceleration spectra presimted in Reference 2. The results of the analyses presented in this report are for the Design Earthquake (0.06g). Values for the Maximum Credible Earthquake (0.12g) can be obtained by doubling the presented results.

MATHEMATICAL MODEL

The mathematical model used for determination of response in the horizontal directions has been described in detail earlier¹ and is reproduced in this report in Figures 1, 2, and 3. Mass points and their elevations are shown in Figure 3.

The structure was also modeled for response in the vertical direction. The structures of the Prairie Island Plant have very short periods in the vertical direction. Therefore, the structure was modeled as a single-degree-of-freedom system. The spring in this system represented the vertical deformation of the soil under the structure and the mass was that of the entire structure.

ANALYTICAL PROCEDURE

The mathematical model (Figures 1, 2, and 3) was subjected to the developed ground acceleration time-history acting in the northsouth and in the east-west directions, and the time-history of horizontal acceleration at each mass point of the mathematical model was generated. Using the generated acceleration timetistories at selected mass points, the response acceleration spectra for the desired damping values were calculated. The response in the vertical direction was similarly determined using the developed horizontal ground acceleration time-history normalized to 0.04g. The method used to calculate the response

March 14, 1969

- 2 -

acceleration spectra was based on established methods of response analysis³ which were modified to permit a computer solution of the calculations.

DISCUSSION OF RESULTS

Horizontal Translational Accelerations

Response acceleration spectra for accelerations in the horizontal direction and for an earthquake in either the north-south or the east-west direction are presented in Figures 4 through 25 and Tables 3 through 24 for the specified mass points and damping ratios. These spectra are for translational accelerations at the centers of mass of the individual structures and must be adjusted for the effects of torsional accelerations as discussed below.

The response acceleration spectra obtained at various points in the structure showed that the response is primarily due to deformation of the foundations and that the responses due to earthquakes acting in the north-south and east-west directions were not significantly different. Therefore, the spectr were combined {. the two earthquake directions to facilitate their application in the seismic design and analysis of critical equipment and piping. For example, the spectra shown in Figure 4 can be used for Mass Points 4 and 4A for the earthquake acting in the north-south or east-west direction for damping ratios of 0.005 and 0.010 (0.5% and 1.0% of critical damping, respectively).

Horizontal Torsional Accelerations

Response acceleration spectra for torsional accelerations were also developed. As was the case of the translational accelerations, the spectra for the torsional accelerations showed peaks in the vicinity of the torsional period of vibration of the foundations soils and the spectra were not significantly different for the earthquake in the north-south and east-west directions.

March 14, 1969

- 3 -

The total acceleration at any point within a structure is the sum of the translational acceleration and the acceleration due to rotation (torsion). The acceleration due to rotation at any point within the structure is obtained by multiplying the rotational (torsional) acceleration at the center of mass by the distance from the center of mass to the given point.

To account for torsional accelerations and, at the same time, to simplify the seismic design and analysis procedures, the factors in Table 1 were developed. The translational accelerations must be multiplied by the factors in Table 1 to determine the total spectral acceleration at the point of support of the equipment or piping. This total acceleration then includes the contribution from both the translational and rotational (torsional) accelerations.

The factors in Table I are a function of the natural period of vibration of the item under consideration, the damping ratio appicable to the item, and the distance parameter, R. R is the radial distance in feet (in plan) from the center of mass of the building floor to the point of support of the equipment or piping. The values of these factors can be interpolated linearly for values of R not shown. The locations of centers of mass and rigidity are presented in Table 2.

Vertical Accelerations

Response acceleration spectra for vertical accelerations are presented in Figure 26 and Table 25 for damping ratios of 0.005, 0.010, 0.020, and 0.05° Verticul accelerations are to be assumed to act simultaneously the the horizontal accelerations.

The vertical response acceleration spectra apply only to those items of piping or equipment that are supported on structures of the Reactor-Auxiliary-Turbine Building that have very low periods in the vertical direction. Structures that have these low periods

March 14, 1969

- 4 -

in the vertical direction are the Shield Building, Containment Vessel, Reactor Support Structure, Turbine Support Structure, and the walls and columns of the Auxiliary and Turbine Buildings. Slabs and beams of the Auxiliary and Turbine Buildings should be analyzed to determine if their periods of vibration in the vertical direction are low. If the periods are not low, the vertical response acceleration spectra may have to be increased to account for the vertical response of the slabs or beams before the vertical spectra are used in the seismic thalysis and design of piping or equipment mounted on the slabs and beams.

SUMMARY

The response acceleration spectra are to be used as follows: (1) Determine the floor or mass point elevation at which the equipment or piping in question is located; (2) Compute the period(s) of vibration of the equipment or piping; (3) Select the translational response acceleration from the appropriate spectrum for the desired damping ratio (0.005 for piping and 0.010 for equipment); (4) Increase this translational acceleration to account for torsional eccelerations by multiplying the translational accelerations by the factors in Table 1; and (5) Determine the vertical response acceleration from the appropriate spectrum. These final values are the response accelerations which are to be used in the seismic design of the piping or equipment in question. Examples of the application of this procedure is presented in Appendices B and C.

RECOMMENDATIONS

The presented response acceleration spectra show that equipment or piping having periods of vibration in the vicinity of translational, torsional, and vertical periods of vibration of the foundations will have to be designed for high accelerations. If possible, the mass and stiffness characteristics of items having

- 5 -

February 16, 1971

JOHN A. BLUME & ASSOCIATES, ENGINEERS

such periods should be altered to reduce these accelerations. In the use of the presented spectra in the seismic design and analysis of piping and equipment, it should be recognized that it is not always possible to precisely compute the periods of vibration of such items. Therefore, those items having periods that are on the steep slopes of the response spectra should be treated in either of the two following ways. First, modify the stiffness or mass characteristics such that the periods are not in the ranges of the slopes, or, second, use the peak spectral acceleration in the design of the item.

Equipment or piping located at a particular mass point should be designed using the spectra presented for that mass point and for the appropriate damping value. The translational spectral acceleration value should be multiplied by the appropriate factors presented in Table 1 to account for torsional accelerations. Vertical acceleration acting simultaneously with the horizontal acceleration should be used in the design. No increase in the allowable stresses for short term loading is recommended for Class 1 items.

The results presented in this report are for the Design Earthquake (0.06g). Values for the Maximum Credible Earthquake (0.12g) can be obtained by doubling the presented results.

Spectra for the Screenhouse are presented in Figures 27 and 28 and Tables 26 and 27.

- 6 -

February 16, 1971

JOHN A BLUME & ASSOCIATES, ENGINEERS

FACTORS FOR TORSIONAL ACCELERATIONS

Mass Points	Period Range (seconds)	R = 100' (See Note 1)	R * 50'	R = 25'
4, 4A	0.10 - 0.08	1.08	1.04	1.02
9. 9A	0.01 - 0.12	1.24	1.12	1.06
10, 10A	0.13 - 0.21	1,10	1.05	1.03
	0.22 - 0.27	1.40	1.20	1,10
	0.28 + 0.32	1.10	1.05	1.03
	0.33 - 2.00	1.08	1.04	1.02
6, 6A	0.00 - 0.08	1,10	1.05	1.03
	0.09 - 0.12	1.40	1.20	1.10
	0.13 - 0.22	1,14	1.07	1.04
	0.23 - 0.27	1.36	1,18	1.09
	0.28 - 0.30	1.14	1.07	1.04
	0.31 - 0.36	1.18	1.09	1.05
	0.37 - 2.00	1.08	1.04	1.02
14, 14A	0.00 - 0.08	1.10	1.05	1.03
15, 15A	0.09 - 0.12	1.40	1.20	1.10
	0.13 - 0.22	1.10	1.05	1.03
	0.23 - 0.27	1.36	1.18	1.09
	0.28 - 0.36	1.16	1.08	1.04
	0.37 - 2.00	1.08	1.04	1.02
16-20	0.00 - 0.09	1.08	1.04	1.02
16A-20A	0.10 - 0.13	1.16	1.08	1.04
32, 42	0.14 - 0.20	1.12	1.06	1.03
33, 33A	0.21 - 0.26	1.20	1.10	1.05
	0.27 - 0.46	1.08	1.04	1.02
1111111111	0.47 - 0.50	1.16	1.08	1.04
	0.51 - 2.00	1.08	1.04	1.02

Damping Ratio = 0.010 and 0.005

Note: Table continued on next page.

Marcin 14, 1969

TABLE 1 (Cont'd)

Mass Points	Period Range (seconds)	R ≈ 100' (See Note 1)	R = 50'	R = 25'
28, 29	0.00 -0.07	1.20	1.10	1.05
	0.08 -0.14	1.85	1.43	1,21
	0.15 -0.21	1 21	1.11	1.05
	0.22 -0.40	12	1.06	1.03
	0.41 -0.52	1,12	1,06	1.03
0.1	0.53 -2.00	1,08	1.04	1.01
30, 24	0.00 -0.04	1.09	1.05	1.02
	0.05 +0.13	1.73	1.37	1.18
	0.14 -0.28	1.42	1.21	1.11
	0.29 -0.40	1.10	1.05	1.03
	0.41 -0.52	1.10	1.05	1.03
	0.53 -2.00	1.08	1.04	1.02
31. 25	0.00 -0.17	1.08	1.04	1.02
	0.18 -0.28	1.37	1.19	1.09
	0.29 -0.42	1.08	1.04	1.02
	0.43 -0.52	1.14	1.07	1.04
	0.53 -2.00	1.08	1.04	1.02
41	0.00 -0.13	1.30	1.15	1.08
	0.14 -0.20	1.10	1.05	1.03
	0.21 -0.30	1.31	1.16	1.08
	0.31 -0.45	1.08	1.64	1.02
	0.46 -0.65	1.12	1.06	1.03
	0.66 -2.00	1.08	1.04	1.02

Note 1. R is the radial distance in feet (in plan) from the center of mass of the building floor to the point of support of equipment or piping (see Sketch).

Location of Support Center of Mass R Plan

	Mass	Center o	f Mass 1)	Center of	Rigidity	
Structure	Point	X	Y	X	Y	
bield Building, Unit 1	1-8	335.5	250.0	335.5	250.0	
shield Building, Unit 2	1A-8A	104.5	250.0	104.5	250.0	
Containment Vessel, Unit 1	9-16	335.5	250.0	335.5	250.0	
Containment Vessel, Unit 2	9A-16A	104.5	250.0	10.5	250.0	
Reactor Support Structure, Unit 1	17-19	335.5	250.0	335.5	250.0	
Reactor Support Structure, Unit 2	17A-19A	104.5	250.0	104.5	250.0	
Reactor Building Foundation, Unit 1	20	335.5	250.0			
Reactor Building Foundation, Unit 2	20A	104.5	250.0			
Auxiliary Building Roof, South Part	21	220.0	303.2	220.0	345.0	
Fuel Tank Area	22	220.0	288.0	220.0	288.0	
	23	220.0	288.0	220.0	288.0	
	24	220.0	285.0	220.0	285.0	
	25	220.0	285.0	220.0	285.0	
Auxiliary Building Roof, North Part	26	220.0	219.8	220.0	178.0	

SUMMARY OF LOCATIONS OF CENTERS OF MASS AND RIGIDITY

Note: Table continued on next page.

*Reprint of Table 4 from Reference 1

TABLE 2*

SUMMARY OF LOCATIONS OF CENTERS OF MASS AND RIGIDITY

	Mass	Center of	f Mass ¹⁾	Center of	Rigidity
Structure	Point	X	Y	X	Y
Auvillary Building	27	220.0	93.8	221.9	126.0
MUXITIONY CONTRACTO	2.8	220.0	167.8	220.0	144.9
	29	227.9	174.4	221.9	157.9
	30	228.7	163.0	251.7	168.4
	31	238.8	169.5	239.8	139.5
Auxiliary Building - Fuel Tank Area Foundation	32	231.3	148.8		
Turbine Support, Unit 1	33-35	330.5	61.5	330.5	61.5
Turbine Support, Unit 2	33A-35A	109.5	61.5	109.5	61.5
Turbine Support Foundation, Unit 1	36	330.5	61.5		
Turbine Support Foundation, Unit 2	36A	109.5	61.5	1.127	
Turbine Building	37	220.0	28.0	220.0	0.0
	38	220.0	0.0	220.0	0.0
	39	220.0	0.0	220.0	0.0
	40	220.0	15.9	220.0	0.0
	41	220.0	15.7	220.0	0.0
Turbine Building Foundation	42	220.0	10.0		
Entire Structure, base rota- tion about a vertical axis		223.8	190.4		

(Continued)

 Measured in feet from the intersection of Jolumn lines A and 17. The plus-x direction is east of column line 17 and the plus-y direction is south of column line A.

*Reprint of Table 4 from Reference 1

RESPONSE ACCELERATION SPECTRA TABULATION

	other lines of the local division of the loc	Concession of the local division of the loca		and a constraint	
EARTHQUAKE IN N-	S OR	E-W	DI	RECTI	ON

MASS POINT 4, 4A

DAMPING RATIO = 0.005, 0.010

Perlod Sec.	Damping 0.005	Ratio 0.010	Period Sec.	Da in 0.005	g Ratio 0.010
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.275 0.250 0.275 0.250 0.275 0.300 0.325 0.350 0.375 0.350 0.375 0.400 0.425 0.450 0.475 0.500 0.525	0.145 0.155 0.165 0.172 0.160 0.190 0.200 0.213 0.230 0.255 0.300 0.360 0.480 0.920 1.480 1.350 2.000 2.150 2.150 2.000 1.960 1.400	0.145 0.155 0.165 0.172 0.180 0.190 0.195 0.205 0.220 0.240 0.275 0.320 0.400 0.600 1.080 1.510 1.585 1.585 1.580 1.565 1.480 0.960	0.575 0.600 0.625 0.650 0.675 0.700 0.725 0.750 0.750 0.775 0.800 0.825 0.850 0.850 0.875 0.900 0.925 0.950 0.950 0.975 1.000 1.250 1.500 1.750 4.000	1.040 0.920 0.600 0.460 0.330 0.290 0.255 0.235 0.215 0.200 0.185 0.173 0.165 0.160 0.156 0.156 0.153 0.150 0.150 0.120 0.100 0.070 0.040	0.840 0.760 0.520 0.420 0.360 0.280 0.255 0.235 0.215 0.200 0.185 0.173 0.165 0.160 0.156 0.153 0.150 0.150 0.120 0.100 0.070 0.040
0.550	1.100	0.890			

(HOR	ZONTA	AL AC	CEL	ERAT	ION)
AT THQUAN	E IN	N-S	OR	E-W	DIRECTI
	MASS	POIN	0 6	6. 6A	

Damping 0.005	Ratio 0.010
0.700 0.640 0.560 0.400 0.340 0.250 0.220 0.185 0.160 0.145 0.160 0.145 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.119 0.118 0.117 0.095 0.080 0.060 0.040	0.615 0.560 0.440 0.360 0.260 0.230 0.200 0.180 0.160 0.145 0.145 0.121 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.117 0.095 0.080 0.060 0.040
	0.145 0.135 0.121 0.120 0.120 0.120 0.120 0.120 0.119 0.118 0.117 0.095 0.080 0.060 0.040

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZONTAL ACCELERATION)

EARTHQUAKE IN N-S OR E-W DIRECTION

MASS POINT 9, 9A

DAMPING RATIO = 0.005, 0.010

Period Sec.	Damping 0.005	Ratio 0.010	Period Sec.	Dampin 0.005	g Ratio 0.010
0.000 0.025 0.050 0.075 0.100 0.125 0.138 0.150 0.168 0.175 0.188 0.175 0.188 0.200 0.225 0.250 0.225 0.250 0.275 0.250 0.275 0.300 0.325 0.350 0.363 0.375 0.400 0.425 0.450 0.475	0.180 0.200 0.215 0.240 0.275 0.300 0.340 0.335 0.295 0.280 0.290 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.400 0.530 0.720 1.160 2.200 0.440 2.485 2.490 2.488 2.480	0.180 0.190 0.200 0.215 0.235 0.260 0.280 0.310 0.305 0.270 0.265 0.270 0.300 0.360 0.360 0.480 0.630 0.880 1.600 1.960 2.000 2.040 2.050 2.050 2.040	0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700 0.725 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.850 0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.250 1.500	1.760 1.170 1.120 1.000 0.640 0.520 0.440 0.390 0.340 0.300 0.270 0.245 0.225 0.210 0.190 0.180 0.175 0.172 0.169 0.165 0.140 0.110 0.080 0.055	1.320 0.980 0.920 0.840 0.560 0.480 0.410 0.320 0.220 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.190 0.180 0.175 0.169 0.165 0.140 0.110 0.080 0.055
0.450 0.475 0.500	2.488 2.480 2.420	2.040 2.000	2.000	0.055	0.

March 14, 1969

1!

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZONTAL ACCELERATION)

EARTHQUAKE IN N-S OR E-W DIRECTION

MASS POINT 10, 10A

$ 0.000 0.150 0.150 0.500 2.080 1. \\ 0.025 0.160 0.160 0.525 1.080 0. \\ 0.050 0.170 0.170 0.550 1.015 0. \\ 0.075 0.190 0.180 0.575 0.970 0. \\ 0.100 0.215 0.200 0.600 0.800 0. \\ 0.125 0.240 0.230 0.625 0.520 0. \\ 0.138 0.280 0.255 0.650 0.440 0. \\ 0.150 0.315 0.270 0.675 0.380 0. \\ 0.163 0.300 0.260 0.700 0.320 0. \\ 0.175 0.260 0.240 0.725 0.263 0. \\ 0.175 0.260 0.240 0.725 0.263 0. \\ 0.188 0.240 0.235 0.750 0.245 0. \\ 0.200 0.245 0.240 0.775 0.225 0. \\ 0.225 0.320 0.300 0.825 0.205 0. \\ 0.225 0.320 0.300 0.825 0.205 0. \\ 0.250 0.320 0.365 0.850 0.190 0. \\ 0.300 0.520 0.460 0.875 0.180 0. \\ 0.325 0.800 0.640 0.900 0.172 0. \\ 0.350 1.720 1.400 0.925 0.168 0. \\ 0.363 2.040 1.640 0.950 0.163 0. \\ 0.950 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 0.050 0.163 0. \\ 0.163 $	Period	Damp1n	g Ratio	Period	Dampin	g Ratio
	Sec.	0.005	0.010	Sec.	0.005	0.010
0.375 2.090 1.740 0.975 0.161 0 0.400 2.140 1.785 1.000 0.160 0 0.425 2.150 1.800 1.250 0.130 0 0.455 2.140 1.790 1.500 0.100 0 0.475 2.125 1.770 1.750 0.670 0	Sec. 0.000 0.025 0.050 0.075 0.100 0.125 0.138 0.150 0.163 0.175 0.188 0.200 0.225 0.200 0.225 0.200 0.225 0.300 0.325 0.350 0.350 0.350 0.425 0.425 0.425	0.150 0.160 0.170 0.190 0.215 0.240 0.280 0.315 0.260 0.240 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.275 0.320 0.400 0.520 0.400 0.520 0.800 1.720 2.040 2.090 2.140 2.150 2.140 2.125	0.150 0.160 0.170 0.180 0.200 0.230 0.255 0.270 0.260 0.240 0.235 0.240 0.235 0.240 0.235 0.240 0.255 0.300 0.365 0.460 0.640 1.640 1.740 1.785 1.800 1.790 1.770	0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.250 1.500 1.750	2.080 1.080 1.015 0.970 0.800 0.520 0.440 0.380 0.320 0.225 0.245 0.225 0.212 0.205 0.190 0.180 0.172 0.168 0.163 0.161 0.160 0.130 0.130 0.500	1.720 0.960 0.880 0.830 0.640 0.400 0.350 0.245 0.225 0.212 0.205 0.245 0.225 0.212 0.205 0.190 0.180 0.163 0.163 0.160 0.100 0.100 0.070

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZONTAL ACCELERATION) EARTHQUAKE IN N-S OR E-W DIRECTION MASS POINT 14, 14A

Period Sec.	Dampin 0.005	g Ratio 0.010	Period Sec.	Damping Ratio 0.005 0.010		
			0 575	0 540	0.440	
0.000	0.070	0.070	0.5/5	0.440	0.380	
0.025	0.070	0.070	0.000	0.380	0.320	
0.050	0.075	0.075	0.025	0.220	0.280	
0.075	0.080	0.080	0.050	0.520	0.240	
0.100	0.085	0.085	0.0/5	0.200	0.200	
0.125	0.100	0.095	0,700	0.240	0.200	
0.150	0.120	0.105	0.725	0.205	0.175	
0.175	0.150	0.125	0.750	0.100	0.100	
0.200	0.200	0.165	0.775	0.165	0.150	
0.225	0.260	0.215	0.800	0.146	0.140	
0.250	0.345	0.300	0.825	0.143	0.143	
0.275	0.440	0.375	0.850	0.140	0.140	
0.300	0.540	0.440	0.875	0.136	0.136	
0.325	0.575	0.485	0.900	0.133	0.133	
0.350	0.560	0.480	0.925	0.130	0.130	
0.375	0.450	0.400	0.950	0.127	0.127	
0.400	0.335	0.300	0.975	0.124	0.124	
0.425	0.350	0.320	1,000	0.121	0.121	
0 450	0.480	0.420	1.250	0.100	0.100	
0 475	0.840	0.640	1.500	0.080	0.080	
0.500	0 880	0.660	0.750	0.060	0.060	
0.525	0.840	0.590	2.000	0.040	0.040	
0.550	0.660	0.520				

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZONTAL ACCELERATION)

EARTHQUAKE IN N-S OR E-W DIRECTION

MASS POINT 15, 15A

Period Sec.	Damping R 0.005	atio 0.010	Period Sec.	Damping 0.005	Ratio 0.010
Sec. Sec. 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.338 0.350 0.363 0.375 0.400	0.005 0.060 0.065 0.070 0.080 0.085 0.095 0.105 0.140 0.185 0.270 0.400 0.560 0.720 0.840 0.880 0.885 0.885 0.880 0.880 0.800 0.440	0.010 0.060 0.065 0.070 0.080 0.085 0.095 0.105 0.105 0.130 0.170 0.240 0.340 0.440 0.600 0.660 0.700 0.705 0.700 0.705 0.700 0.630 0.380	Sec. 0.550 0.575 0.600 0.625 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.850 0.875 0.900 0.925 0.950 0.975 1.000	0.005 0.520 0.450 0.400 0.340 0.290 0.250 0.220 0.220 0.200 0.180 0.165 0.165 0.155 0.145 0.145 0.140 0.131 0.128 0.126 0.124 0.122 0.120	0.010 0.420 0.360 0.270 0.240 0.210 0.180 0.160 0.155 0.148 0.140 0.137 0.134 0.131 0.128 0.126 0.124 0.122 0.120
0.425 0.450 0.475 0.500 0.525	0.420 0.480 0.580 0.615 0.570	0.360 0.390 0.500 0.520 0.480	1.250 1.500 1.750 2.000	0.100 0.080 0.060 0.040	0.100 0.080 0.060 0.040

RESPONSE ACCELERATION SPECTRA TABULATION

(HCRIZONIAL ACCELERATION)

EARTHQUAKE IN N-S OR E-W DIRECTION

MASS POINT 16, 16A

Period	Dampin	g Ratio	Period	Damping Ratio		
Sec.	0.005	0.010	Sec.	0.005	0.010	
0.000	0.060	0.060	0.550	0.420	0.325	
0.050 0.075	0.085	0.067	0.625	0.300	0.250	
0.100	0.105	0.105	0.675	0.230	0.210	
0.150	0.160	0.155	0.725	0.190	0.180	
0.225	0.340	0.300	0.775	0.165 0.148	0.150	
0.275	0.650	0.560	0.825	0.142 0.136	0.131	
0.325	1.170	0.950	0.875	0.131 0.126	0.116	
0.350	1.440	1.045	0.925 0.950	0.121	0.109	
0.375 0.400	1.350 0.970	1.000 0.720	0.975	0.113	0.105	
0.425 0.450	0.800	0.580	1.250	0.080	0.080	
0.475	0.600 0.530 0.470	0.440 0.395 0.350	2.000	0.040	0.040	

RESPONSE ACCELERATION SPECTRA TABULATION	CCELERATION SPECTRA TABULATION
--	--------------------------------

()	IOR	12	ON	T	AL		A	CI	E	L	E	RA	11	0	N)		
ARTHO	UA	KE	1	N	N		ŝ	1	R		E	-W	D	1	RECT	10	N
		MA	55		PO	1	N	T	1	7		1	7 A	Ì			
1.63	AP I	NG		i n	TI	Ö			0		0	05		0	.010	5	

Period Damping Ratio Damping Ratio Period 0.005 0,010 Sec. 0.010 0.005 Sec. 0.650 0.550 0,500 0.000 0.150 0.120 0.450 0.525 0.510 0.180 0.150 0.025 0.380 0.550 0.420 0.180 0.225 0.038 0.575 0.380 0.320 0.300 0.050 U.450 0.280 0.340 0.600 0.630 0.540 0.063 0.255 0.625 0.300 0.550 0.640 0.230 0.650 0.270 0.540 0.630 0.086 0.675 0.230 0.210 0.400 0.450 0.100 0,195 0.210 0.700 0.220 0.113 0.270 0.725 0.190 0,180 0.210 0.125 0.250 0.175 0.165 0.250 0.750 0.150 0.270 0.775 0.165 0.150 0.350 0.175 0.400 0.150 L 145 0.800 0.450 0.200 0.600 0.147 0.147 0.825 0.850 0.225 0.650 0.850 0.143 0.143 . 0.900 1.150 0.250 0.132 0.875 0.132 1.280 0.275 1.600 5.721 0.900 0.127 1.700 0.300 2.050 0.125 0.925 0.125 2.220 0.325 2.600 0.118 0.107 2,250 0.950 2.775 0.338 0.113 0.113 2.265 0.975 0.350 2.790 0.363 1.000 1.110 0.110 2.790 2.255 0.100 0.100 1.250 2.240 0.375 2.770 0.080 0.080 1.500 1.850 0.400 2.301 0.060 0.060 1.750 0.425 1.750 1.400 0.040 0.040 1.290 0.900 2.000 0.450 0.670 0.850 0.475

September 15, 1969

TABLE 10A

RES	PONSE ACCELERATION	CCELERATION	BULATION
	EARTHQUAKE IN N-S MASS POIN DAMPING RAT	OR E-W DIRE 17: 17A 10 = 0.05	ECTION
PERIOD SEC.	SPECTRAL ACCEL	PERIOD SEC.	SPECTRAL ACCEL
* 000 025 04 050 04 063 0 075 0 088 0 0125 0 0 0125 0 0 0125 0 0 0125 0 0 0125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.150 0.160 0.235 0.340 0.375 0.340 0.215 0.220 0.2240 0.2240 0.2240 0.2280 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.2240 0.225 0.2240 0.225 0.2240 0.225 0.2240 0.225 0.2240 0.225 0.2240 0.225 0.2240 0.225 0.2240 0.225 0.2260 0.225 0.2260 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2880 0.255 0.2630 0.2630 0.2630 0.2630 0.2630 0.2630 0.2630 0.2630 0.2630 0.2630 0.2650 0.25500 0.25500 0.25500 0.25500 0.25500 0.25500 0.25500 0.25500 0.25500 0.255000 0.2550000000000	0.550 0.625 0.625 0.625 0.725 0.725 0.775 0.775 0.775 0.850 0.850 0.9250 0.925 0.92500 0.92500 0.92500 0.92500 0.92500 0.92500 0.925000 0.92500000000000000000000000000000000000	0.250 0.230 0.205 0.190 0.170 0.160 0.160 0.135 0.130 0.120 0.135 0.130 0.120 0.105 0.100 0.105 0.100 0.105 0.100 0.295 0.090 0.085 0.082 0.085 0.082 0.085 0.085 0.085 0.085 0.085 0.065 0.065 0.058 0.055 0.058 0.055 0.055 0.055 0.055 0.055 0.055 0.055

January 2, 1970

RESPONSE ACCELERATION SPECIRA TABULATION

(HORIZONTAL ACCELERATION) EARTHQUAKE IN N-S OR E-W DIRECTION MASS POINT 18, 18A DAMPING RATIO = 0.005, 0.010

Damping 005	0.010		Sec.	0.005	0.010
100 150 250 460 480 460 250 190 180 220 280 450 650 200 600 100 370 390 385 350 850 850 640 540	0.100 0.130 0.020 0.400 0.400 0.400 0.200 0.180 0.179 0.200 0.2600		0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.825 0.850 0.875 0.900 0.925 0.950 0.955 1.000 1.250 1.500 1.750 2.000	0.470 0.420 0.380 0.340 0.500 0.230 0.210 0.190 0.175 0.165 0.150 0.147 0.143 0.150 0.147 0.143 0.127 0.125 0.118 0.127 0.125 0.118 0.113 0.110 0.100 0.080 0.060 0.040	0.390 0.295 0.270 0.250 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.127 0.125 0.127 0.125 0.127 0.125 0.127 0.125 0.127 0.125 0.127 0.125 0.127
	005 100 150 250 460 480 460 250 190 180 220 280 450 650 900 200 600 100 370 390 385 350 850 640 540	005 0.010 100 0.100 150 0.130 250 0.020 460 0.400 480 0.410 480 0.400 250 0.200 190 0.180 180 0.179 220 0.260 450 0.360 650 0.500 900 0.700 200 0.950 600 1.300 370 1.820 $.390$ 1.840 $.350$ 1.400 $.300$ 0.960 $.850$ 1.400 $.850$ 0.700 $.640$ 0.550 $.540$ 0.450	005 0.010 150 0.120 150 0.020 460 0.400 480 0.410 460 0.400 250 0.200 190 0.180 190 0.180 180 0.179 220 0.200 280 0.260 450 0.360 650 0.500 900 0.700 200 0.950 600 1.300 370 1.820 $.390$ 1.840 $.350$ 1.820 $.390$ 1.840 $.350$ 1.920 $.350$ 1.920 $.350$ 1.920 $.350$ 1.920 $.350$ 1.920 $.850$ 1.400 $.300$ 0.960 $.850$ 0.700 $.640$ 0.550	005 0.010 Sec. 100 0.100 0.525 150 0.130 0.550 250 0.020 0.575 460 0.400 0.625 460 0.400 0.650 250 0.200 0.675 190 0.180 0.700 180 0.179 0.725 220 0.200 0.675 190 0.180 0.700 180 0.179 0.725 220 0.200 0.800 650 0.500 0.825 900 0.700 0.850 200 0.950 0.875 600 1.300 0.900 100 1.200 3.925 370 1.820 0.950 .385 1.840 1.000 .350 1.400 1.500 .300 0.960 1.750 .850 0.700 2.000 .640 0.550	005 0.010 Sec. 0.005 100 0.140 0.525 0.470 150 0.130 0.550 0.420 250 0.020 0.575 0.380 460 0.400 0.600 0.340 480 0.410 0.625 0.500 460 0.400 0.625 0.500 460 0.400 0.625 0.500 460 0.400 0.625 0.260 460 0.400 0.675 0.230 190 0.180 0.700 0.210 180 0.779 0.725 0.190 220 0.260 0.775 0.165 450 0.360 0.800 0.150 650 0.500 0.825 0.147 900 0.700 0.850 0.143 200 0.950 0.875 0.132 600 1.300 0.9900 0.127 100 1.820 0.950 0.118 390 1.840 0.975 0.113 385 1.840 1.000 0.110 350 1.820 1.250 0.100 850 1.400 1.500 0.080 300 0.960 1.750 0.060 850 0.700 2.000 0.040

September 15, 1969

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZONTAL ACCELERATION) EARTHQUAKE IN N-S OR E-W DIRECTION MASS POINT 19, 19A DAMPING RATIO = 0.005, 0.010

Perlod Sec.	Dampin 0.005	g Ratio 0.010	Perlod Sec.	Dampln 0.005	g Ratio 0.010
0.000	0.070	0.070	0.525	0.470	0.350
0.025	0.110	0.100	0.550	0.420	0.265
0.050	0.180	0.150	0.575	0.300	0.230
0.615	0.260	0.240	0.600	0.340	0.250
0.075	0,290	0.260	0.025	0.300	0.230
0.088	0.260	0.240	0.650	0.220	0.210
0.100	0.180	0.150	0.072	0.210	0.195
0.125	0.155	0.150	0.700	0.190	0,180
0.150	0.180	0.150	0.750	0.175	0.165
0.175	0.220	0 200	0.775	0.165	0.150
0.200	0.300	0.220	0.800	0.150	0.145
0.225	0.470	0.300	0.825	0.147	0 145
0.220	0.070	0.230	0.850	0.143	0.143
0.275	1 200	1,000	0.875	0.132	0.320
0,300	1 650	1.300	0,900	0.127	0.127
0.328	1 870	1 450	0,925	0,125	0.125
0.350	1 900	1.470	0,950	0.113	0.113
0.363	1,905	1.475	0.975	0.111	0.111
0.375	1,890	1,460	1.000	0.110	0.110
0.400	1,300	1.050	1.250	0.100	0.100
0.425	0.870	0.700	1.500	0.080	0.080
0.450	0.680	0.550	1.750	0.060	0.060
0.475	0.600	0.440	2.000	0.040	0.040
0.500	0.530	0.395			

September 15, 1969

RESPONS	E_	A	<u>C </u>	CE	LI	R	A1	[]	ON	SF) E (1	RA	1	ABUL	AT.	ION
	(H	0	R	12	01	T	AI		AC	CEL	E	RA	TI	ON)		
E	AR	T	Н	QL	A	KE.		N	N	~S	0	F	EC	TI	ON		
					M	AS	S	P	01	NT	2	1					
D	AH	P	1	NC		RA	T	10		0	,0	05	ŝ.,	0.	010		

Sec.	Damping Rati 0.005 0.0	010	Sec.	0.005	0.010
Period Sec. 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.125 0.200 0.225 0.238 0.250 0.275 0.300 0.225 0.325 0.325 0.325 0.363 0.363 0.363 0.363 0.363 0.363 0.363 0.363 0.400 0.413 0.425 0.450 0.455 0.550	Damping Ration 0.005 0.0 0.200 0.2 0.202 0.2 0.215 0.2 0.230 0.2 0.230 0.2 0.230 0.2 0.230 0.2 0.230 0.2 0.2460 0.2 0.300 0.2 0.300 0.2 0.300 0.2 0.300 0.2 0.300 0.2 0.300 0.2 0.300 0.2 0.300 0.2 0.300 0.2 0.400 0.2 0.400 0.2 0.500 2.2 0.500 2.3 0.500 2.3 0.505 0.2 0.505 0.2 0.300 0.3 0.300 0.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.750 0.775 C.800 0.850 0.900 1.000 1.250 1.500 1.750 2.000	0.005 0.190 0.180 0.170 0.155 0.140 0.125 0.110 0.105 0.100 0.095	0.010 0.190 0.180 0.170 0.155 0.140 0.125 0.110 0.105 0.100 0.095
0.550 0.575 0.600 0.625	0.395 0. 0.330 0. 0.305 0. 0.280 0.	395 330 305 280			
0.650 0.675 0.700 0.725	0.245 0. 0.220 0. 0.205 0. 0.200 0.	245 220 205 200			

March 14, 1969

* *

-

ų

ľ

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZONTAL ACCELERATION) EARTHQUAKE IN E-W DIRECTION MASS POINT 21

Perlod Sec.	Damping 0.005	Ratio 0.010	Perlod Sec.	Damping 0.005	Ratio 0.010
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.275 0.200 0.275 0.200 0.275 0.200 0.275 0.200 0.275 0.300 0.313 0.325 0.338 0.363 0.363 0.363 0.363 0.363 0.363 0.363 0.363 0.363 0.363 0.363 0.363 0.363 0.363 0.365 0.400 0.413 0.425 0.450 0.525 0.550 0.555 0.	0.280 0.295 0.315 0.350 0.370 0.370 0.410 0.440 0.500 0.800 0.900 1.000 1.000 1.200 2.000 3.300 4.400 4.450 4.460 4.460 4.460 4.460 4.460 4.460 1.500 1.500 1.500 1.500 1.500 0.755 0.690 0.600 0.520 0.395 0.690 0.450 0.395 0.690 0.450 0.950 0.950 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.90000	0.280 0.295 0.315 0.350 0.370 0.390 0.410 0.440 0.500 0.800 0.900 1.000 1.200 2.000 3.300 3.600 3.600 3.670 3.600 3.670 3.640 3.500 2.500 1.500 1.120 0.910 0.795 0.690 0.795 0.690 0.520 0.450 0.395 0.340	0.700 0.725 0.750 0.800 0.850 0.900 0.950 1.000 1.250 1.500 1.750 2.000	0.300 0.220 0.200 0.190 0.187 0.180 0.170 0.160 0.130 0.105 0.075 0.050	0.300 0.260 0.200 0.190 0.187 0.180 0.170 0.160 0.130 0.105 0.075 0.050
0.0/5	0.340	0.240			

RESPONSE ACCELERATION SPECTRA TABULATION

(H	ORIZ	ONTA	L	ACCEL	ERAT	I ON)	
EARTHQ	UAKE	1.N	N-	SOR	E-W	DIRE	CTION
		MASS	P	OINT	24		
0AM	PING	RAT	10	= 0.	005	0.0	010

Perica	Dampin	g Ratio	Period	Damping 0.005	g Ratio
Sec.	0.005	0.010	3601	0.000	
0.000	0.070	0.070	0.550	0.440	0.355
0.025	0.080	0.080	0.575	0.400	0.320
0.050	0.100	0.095	0.600	0.350	0.285
0.075	0.130	0.110	0.625	0.295	0.255
0.100	0 150	0.135	0.650	0.260	0.220
0.125	0.165	0.140	0.675	0.230	0.200
0.150	0 170	0.145	0.700	0.200	0.120
0 175	0.180	0.150	0.725	0.175	0.160
0 200	0.205	0.165	0.750	0.160	0.155
0.225	0 320	0.240	0.775	0.150	0.150
0.250	0.560	0.440	0,800	0.147	0.147
0.275	0.680	0.560	0.825	0.144	0.144
0.200	0 800	0.650	0.850	0.141	0.141
0.313	0.840	0.700	0.875	0.139	0.139
0 325	1,200	0.900	0,900	0.136	0.136
0.328	1 600	1,220	0,925	0.133	0.133
0.350	1.625	1,250	0,950	0.130	0.130
0 375	1.635	1,250	0.975	0.128	0.128
0.400	1 590	1.235	1.000	0.125	0.125
0.413	0.900	0.900	1,250	0.107	0.107
0 425	0.642	0.600	1.500	0.085	0.085
0.450	0.580	0.510	1.750	0.062	0.062
0.475	0.540	0,450	2.000	0.040	0.040
0.500	0.500	0,400			
0.525	0.420	0.375			

March 14, 1969

800

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZONTAL ACCELERATION)

EARTHQUAKE IN N-S OR E-W DIRECTION

MASS POINT 25

DAMPING RATIO = 0.005, 0.010

Period	Damplng	Ratio	Period	Dampin	g Ratio
Sec.	0.005	0.010	Sec.	0,005	0.010
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.125 0.200 0.225 0.200 0.225 0.250 0.275 0.200 0.225 0.250 0.275 0.300 0.325 0.338 0.350 0.375 0.400 0.425 0.450	0.060 0.070 0.080 0.090 0.100 0.120 0.135 0.150 0.150 0.180 0.240 0.400 0.400 0.600 0.820 0.920 1.480 1.520 1.520 1.520 1.520 0.600 0.600 0.500	0.060 0.070 0.080 0.090 0.100 0.110 0.125 0.140 0.160 0.210 0.340 0.500 0.660 0.790 1.080 1.170 1.180 1.160 0.560 0.460	0,550 0,575 0,600 0,625 0,650 0,675 0,700 0,725 0,750 0,775 0,750 0,775 0,750 0,775 0,800 0,825 0,850 0,850 0,875 0,900 0,925 0,950 0,975 1,000 1,250	0.410 0.385 0.345 0.310 0.240 0.200 0.175 0.165 0.165 0.156 0.152 0.149 0.146 0.152 0.149 0.146 0.142 0.139 0.134 0.132 0.130 0.107	0.370 0.345 0.285 0.250 0.220 0.200 0.175 0.165 0.165 0.165 0.166 0.152 0.149 0.146 0.142 0.139 0.136 0.134 0.132 0.130 0.107
0.475	0.460	0.415	1.500	0.085	0.085
0.500	0.435	0.385	1.750	0.062	0.062
0.525	0.410	0.370	2.000	0.040	0.040
RESPONSE ACCELERATION SPECIRA TABULATION

(HORIZONTAL ACCELERATION) EARTHQUAKE IN N-S OR E-W DIRECTION MASS POINT 28

DAMPING RATIO = 0.005, 0.010

Period Sec.	Dampin 0,005	g Ratlo 0.010	Period Sec.	Dampin 0.005	g Ratio 0.010
0.000 0.025 0.050	0.080 0.090 0.115 0.180	0.080 0.090 0.110 0.160	0.500 0.525 0.550 0.575	0.600 0.540 0.480 0.430	0.520 0.470 0.415 0.370
0.088	0.265 0.255 C.185	0.230 0.220 0.175	0.600 0.625 0.650	0.370 0.320 0.270	0.325 0.280 0.250
0.150 0.175 0.200	0.180 0.195 0.230	0.170 0.180 0.200	0.675 0.700 0.725	0.235 0.205 0.185	0.220
0.225 0.238 0.250	0.300 0.710 0.900	0.300 0.710 0.740	0.750	0.160 0.155 0.150	0.160
0.300	1.000	0.830 0.900 1.200	0.850 0.875 0.900	0.146 0.142 0.139	0.146 0.142 0.139
0.338 0.350 0.375	1.980 2.030 2.050	1.560 1.595 1.605	0.925 0.950 0.975	0.136 0.134 0.132	0.136 0.134 0.132
0.400 0.413 0.425	2.035 2.000 1.360	1.580 1.200 0.760	1.000 1.250 1.500	0.130	0.130
0.438 0.450 0.475	0.820 0.760 0.670	0.640 0.575	2.000	0.040	0.040

(HORIZONTAL ACCELERATION)	
NUMBER IN N. C. OD. P. U. DIDPOTI	
EARTHQUAKE IN N=5 OK E-W DIRECTI	ON
MASS POINT 29	

DAMPING RATIO = 0.005, 0.010

Period Sec.	Damping 0.005	Ratio 0.010	Period Sec.	Damping 0.005	Ratio 0.010
0.000	0.070	0.070	0.525	0.520	0.445
0.025	0.080	0.080	0.550	0.475	0.400
0.050	0.095	0.095	0.575	0.415	0.360
0.075	0.135	0.120	0.600	0.365	0.320
0.088	0.200	0.175	0.625	0.310	0.280
0.100	0.220	0.180	0.650	0.260	0.250
0.125	0.180	0.160	0.675	0.230	0.220
0.150	0.170	0.160	0.700	0.200	0.190
0.175	0.175	0.165	0.725	0.175	0.170
0,200	0.200	0.185	0.750	0.160	0.160
0.275	0.250	0.250	0.775	0.157	0.157
0.238	0.520	0.520	0.800	0.154	0.154
0.250	0.700	0.580	0.825	0.151	0.151
0.275	0.760	0.640	0.850	0.148	0,1/8
0.300	0.800	0.700	0.875	0.145	0.145
0.313	0.840	0.760	0,900	C.142	0,142
0.325	1.160	1.000	0.925	0.139	0.139
0.338	1.560	1.360	0.950	0.136	0.136
0.350	1.880	1.440	0.975	0.133	0.133
0.375	1.895	1.455	1.000	0.130	0.130
0,400	1.875	1.440	1.250	0.107	0.107
0.425	0.920	0.720	1.500	0.085	0.085
0.450	0.690	0.600	1.750	0.062	0,062
0.475	0.620	0.535	2.000	C.040	0.040
0.500	0.570	0.490			

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZONTAL ACCELERATION)

EARTHQUAKE IN N-S OR E-W DIRECTION

MASS POINT 30

DAMPING RATIO = 0.005, 0.010

Period Sec.	Damping 0.005	4atio 0.010	Period Sec.	Damping 0.005	Ratlo 0.010
0.000	0.061	0.061	0.550	0.440	0.355
0.025	0,080	0.080	0.575	0.400	0.320
0.050	0.100	0.095	0.600	0.350	0,205
0.075	0.130	0.110	0.625	0.295	0.200
0,100	0.150	0.135	0.650	0.200	0.200
0.125	0,165	0.140	0.675	0.230	0.200
0.150	0.170	0.145	0.700	0.200	0.120
0.175	0,180	0.150	0.725	0.175	0.100
0.200	0.205	0.165	0.750	0.160	0.155
0.225	0.320	0.240	0.775	0.150	0.150
0.250	0.560	0.440	0.800	0.147	0.147
0.275	0.680	0.560	0.825	0.144	0.144
0.300	0.800	0.650	0.850	0.141	0.141
0.313	0.840	0.700	0.875	0,139	0.139
0.325	1.200	0,900	0.900	0.136	0.136
0.338	1.600	1,220	1).925	0.133	0.133
0.350	1.625	1,250	0.950	0.130	0.130
0.375	1.635	1.250	0.975	0.128	0.125
0.400	1.590	1.235	1.000	0.125	0.125
0.413	0.900	0.900	1.250	0.107	0.107
0.425	0.640	0.600	1.500	0.085	0.085
0.450	0.580	0.510	1.750	0.062	0.062
0.475	0.540	0.450	2.000	0.040	0.040
0.500	0.500	0.400			
0.525	0.420	0.375			

RESPONSE ACCELERATION SPECTRA TABULATION

	(HORIZ	ONTA	LA	CCEL	ERAT	TION)	
EART	HQUAKE	IN	N-5	OR	E-W	DIRECTI	0
		MASS	PO	INT	31		
C	AMPING	RAT	10	= 0	.005	0.010	

Period Sec.	Damping 0.005	Ratio 0.010	Period Sec.	Damping 0.005	Ratio 0.010
Sec. 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.150 0.175 0.200 0.225	0.005 0.060 0.070 0.080 0.090 0.100 0.120 0.135 0.150 0.180 0.240	0.010 0.060 0.070 0.080 0.090 0.100 0.110 0.125 0.140 0.160 0.210	0.550 0.575 0.600 0.625 0.650 0.675 0.700 0.725 0.750 0.775	0.410 0.365 0.345 0.310 0.240 0.200 0.175 0.165 0.160 0.156	0.370 0.345 0.285 0.250 0.220 0.200 0.175 0.165 0.160 0.156
0.250 0.2/5 0.300 0.325 0.338 0.350 0.375 0.400 0.425 0.450 0.475 0.500 0.525	0.400 0.600 0.820 0.920 1.48C 1.52C 1.52C 1.520 1.500 0.600 0.500 0.460 0.435 0.410	0.340 0.500 0.660 0.790 1.080 1.176 1.180 1.160 0.560 0.460 0.415 0.385 0.370	0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.950 0.975 1.000 1.250 1.500 1.750 2.000	0.152 0.149 0.146 0.142 0.139 0.136 0.134 0.132 0.130 0.107 0.085 0.062 0.040	0,152 0,149 0,146 0,139 0,136 0,134 0,132 0,130 0,107 0,085 0,062 0,040

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZONTAL ACCELERATION) EARTHQUAKE IN N-S DIRECTION MASS POINT 33, 33A DAMPING RATIO = 0.005, 0.010

Period Sec.	Dampin 0.005	g Ratio 0.010	Pariod Sec.	Dampin 0.005	g Ratio 0.010
Sec. 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.163 0.150 0.200 0.225 0.200 0.225 0.200 0.225 0.200 0.225 0.300 0.325 0.350 0.350 0.350 0.350 0.355 0.400 0.425 0.450 0.475 0.500 0.525	0.005 0.110 0.130 0.150 0.220 0.300 0.620 0.680 0.500 0.330 0.350 0.500 0.600 0.800 1.450 2.050 2.075 1.600 1.100 0.850 0.630 0.550 0.460 0.400	0.010 0.110 0.130 0.150 0.210 0.270 0.530 0.550 0.370 0.270 0.300 0.450 0.550 0.700 1.300 1.725 1.700 1.250 0.900 0.650 0.540 0.450 0.900 0.650 0.540 0.380 0.330	Sec. 0.525 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.825 0.850 0.900 0.925 0.900 0.925 0.950 0.975 1.000 1.250 1.500 1.750 2.000	0.005 0.125 0.195 0.170 0.155 0.145 0.142 0.140 0.138 0.135 0.133 0.130 0.128 0.124 0.124 0.124 0.124 0.122 0.120 0.120 0.120 0.120 0.120 0.100 0.074 0.053 0.033	0.010 0.200 0.175 0.160 0.150 0.145 0.142 0.140 0.138 0.135 0.133 0.130 0.128 0.126 24 0.120 0.100 0.074 0.053 0.033
0.575	0.300	0.255			

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZONTAL ACCELERATION)

EARTHQUAKE IN E-W DIRECTION

MASS POINT 33, 33A

DAMPING RATIO = 0.005, 0.010

Period Sec.	Damping 0.005	Ratio 0.010	Perlod Sec.	Damping 0.005	Ratio 0.010
0.000 0.025 0.050 0.075 0.088 0.100 0.113 0.125 0.138 0.150 0.175 0.200 0.225 0.238 0.250 0.225 0.238 0.250 0.275 0.300 0.325 0.350 0.325 0.350 0.375 0.400 0.475 0.400 0.475 0.500 0.525 0.550 0.575	0.120 0.120 0.150 0.210 0.350 0.955 0.600 0.410 0.400 0.440 0.550 1.200 1.550 1.580 0.650 0.500 0.425 0.420 0.500 0.425 0.420 0.500 0.745 0.600 0.745 0.600 0.745 0.600 0.745 0.600 0.745 0.600 0.745 0.600 0.745 0.600 0.225	0.120 0.120 0.150 0.210 0.350 0.600 0.450 0.320 0.315 0.320 0.315 0.350 0.470 1.000 1.300 1.290 0.550 0.400 0.350 0.400 0.350 0.400 0.350 0.420 0.360 0.420 0.380 0.320 0.320 0.280 0.220 0.220 0.200	0.625 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.900 0.925 0.550 0.975 1.000 1.250 1.500 1.750 2.000	0.180 0.170 0.155 0.145 0.135 0.130 0.128 0.126 0.124 0.122 0.120 0.112 0.110 0.114 0.116 0.114 0.116 0.114 0.112 0.110 0.090 0.070 0.050 0.030	0.170 0.150 0.145 0.140 0.135 0.130 0.128 0.124 0.122 0.122 0.122 0.122 0.122 0.122 0.112 0.118 0.114 0.114 0.114 0.112 0.110 0.090 0.070 0.050 0.030
0.500 0.525 0.550 0.575 0.600	0.330 0.290 0.250 0.225 0.200	0.280 0.250 0.220 0.200 0.175			

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZ	ONTA	L AL	CEL	ERAT	ION)	
EARTHQUAKE	IN	N-S	OR	E-W	DIRECT	ION
	MASS	PO	NT	41		

DAMPING RATIO = 0.005, 0.010

Perlod Sec.	Damping Ratio 0.005 0.010	Period Sec.	Damping 0.005	Ratio 0.010
0,000	0.060 0.060	0.550	0.410	0.370
0.025	0.070 0.070	0,575	0.385	0.345
0.050	0.080 0.080	0.600	0.345	0.285
0.075	0.090 0.090	0.625	0.310	0.250
0.100	0.100 0.100	0.650	0.240	0.220
0.125	0.120 0.110	0.675	0.200	0.200
0,150	0.135 0.125	0.700	0.175	0.175
0.175	0.150 0.140	0.725	0.165	0.165
0.200	0.180 0.160	0.750	0.160	0.160
0.225	0.240 0.210	0.775	0.156	0.156
0.250	0.400 0.340	0.800	0.152	0.152
0.275	0,600 0,500	0.825	0.145	0.149
0.300	0.820 0.660	0.850	0.146	0.146
0.325	0.920 0.790	0.875	0.142	0.142
0.338	1,480 1,080	0.900	0.139	0.139
0.350	1.520 1.170	0.925	0.136	0.136
0.375	1,520 1,180	0.950	0.134	0.134
0.400	1,500 1,160	0.975	0.132	0.132
0.425	0.600 0.560	1.000	0.130	0.130
0.450	0,500 0,460	1.250	0.127	0.107
0.475	0.460 0.415	1.500	0.085	0.085
0.500	0.435 0.385	1.750	0.062	0.062
0.525	0.410 0.370	2.000	0.040	0.040

	(H0	RI	zo	NT	AL	1	100	EL	ERA	TI	0	N)	de la
EART	HQU	JAK	E	11	1 1	1-5	5 0	R	E-1	11	1	RE	CTION
	MAS	S	PO	1.1	T	20),	20	Α,	32	2.	4	2

Period Sec.	Damping 0.005	0.010	Period Sec.	0.005 0.	010
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.125 0.200 0.225 0.200 0.225 0.250 0.275 0.300 0.325 0.300 0.325 0.300 0.325 0.338 0.350 0.363 0.375 0.400 0.425 0.450 0.455 0.550 0.555 0.550	0.060 0.070 0.085 0.095 0.105 0.115 0.130 0.160 0.220 0.340 0.490 0.650 0.880 1.170 1.400 1.440 1.435 1.350 0.970 0.800 0.680 0.680 0.680 0.600 0.530 0.470 0.420 0.380 0.340	0.060 0.070 0.085 0.095 0.105 0.115 0.130 0.155 0.220 0.300 0.410 0.560 0.735 0.950 1.030 1.045 1.040 1.040 1.045 1.040 1.040 1.045 1.040 1.040 0.720 0.580 0.500 0.500 0.440 0.395 0.350 0.325 0.325 0.295 0.270	0.625 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.250 1.500 1.750 2.000	0.300 0. 0.252 0. 0.230 0. 0.210 0. 0.190 0. 0.175 0. 0.165 0. 0.148 0. 0.142 0. 0.142 0. 0.136 0. 0.131 0. 0.126 0. 0.121 0. 0.121 0. 0.121 0. 0.113 0. 0.113 0. 0.110 0. 0.110 0. 0.080 0. 0.060 0. 0.040 0.	250 230 210 195 180 .165 .148 .142 .136 .142 .136 .121 .126 .121 .117 .113 .100 .060 .040

		RESPO	NSE ACCE	LERATION S	PECTRA TAB	ULATION			
			(VERT	TICAL ACCEL	ERATION)				
		ΕA	RTHQUAKE	IN N-5 01	E-W DIREC	TION			
		MASS	POINTS	4, 4A, 6, 6	A, 9, 9A,	10, 10A,			
	14	4-20, 144	-20A, 2	1, 24, 25,	28-32, 33,	33A, 41	, 42		
		DAMPINC	RATIO =	0.005, 0.0	010, 0.020,	AND O.C	50		
Period Sec.	0.005	Damping 0.010	Ratio 0.020	0.050	Period Sec.	0.005	Damping 0.010	Ratio 0.020	0.050
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.225 0.238 0.250 0.225 0.238 0.250 0.275 0.300 0.325 0.325 0.350 0.375 0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.555 0.555 0.555 0.555 0.555 0.660 0.655 0.655 0.755 0.655 0.755 0.755 0.755 0.755 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.755 0.755 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.555 0.655 0.755 0.655 0.755 0.555 0.555 0.555 0.555 0.555 0.655 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.655 0.555 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.555 0.555 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.655 0.755 0.755 0.755 0.755 0.755 0.655 0.7550 0.7550 0.7550 0.7550 0.7550000000000	0.060 0.062 0.072 0.085 0.100 0.120 0.145 0.180 0.230 0.760 0.785 0.788 0.780 0.760 0.785 0.788 0.780 0.760 0.785 0.788 0.780 0.760 0.785 0.780 0.760 0.785 0.780 0.760 0.785 0.780 0.760 0.785 0.780 0.760 0.785 0.780 0.760 0.785 0.780 0.760 0.785 0.780 0.760 0.785 0.780 0.760 0.785 0.780 0.760 0.785 0.780 0.760 0.785 0.780 0.760 0.780 0.760 0.780 0.780 0.780 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.280 0.220 0.220 0.220 0.280 0.220 0.280 0.220 0.280 0.220 0.280 0.220 0.280 0.220 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.280 0.200 0.000 0.200 0.000 0.000 0.000 0.000 0.0000 0.000000	0.060 0.061 0.065 0.080 0.095 0.110 0.138 0.165 0.210 0.460 0.635 0.635 0.635 0.635 0.625 0.605 0.580 0.520 0.420 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.170 0.150 0.120 0.150 0.120 0.150 0.120 0.150 0.120 0.150 0.150 0.150 0.150 0.150 0.240 0.240 0.240 0.210 0.150 0.210 0.260 0.240 0.240 0.210 0.150 0.150 0.210 0.260 0.240 0.240 0.210 0.150 0.150 0.210 0.260 0.240 0.240 0.240 0.210 0.150 0.150 0.250 0.240 0.240 0.250 0.150 0.150 0.250 0.250 0.240 0.250 0.250 0.250 0.250 0.250 0.260 0.270 0.260 0.270 0.170 0.150 0.100 0.100 0.160 0.100 0.100 0.150 0.000 0.260 0.210 0.100 0.150 0.000 0.260 0.200 0.100 0.100 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000	0.060 0.061 0.063 0.072 0.085 0.100 0.120 0.120 0.150 0.270 0.430 0.435 0.440 0.435 0.440 0.435 0.440 0.435 0.440 0.435 0.440 0.220 0.200 0.200 0.200 0.200 0.200 0.170 0.260 0.200 0.170 0.260 0.200 0.175 0.140 0.125 0.140 0.125 0.140 0.125 0.140 0.125 0.140 0.125 0.160 0.200 0.170 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.170 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.170 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.170 0.200 0.155 0.200 0.155 0.100 0.200 0.200 0.155 0.100 0.200 0.200 0.200 0.200 0.155 0.100 0.200 0.200 0.200 0.155 0.100 0.200 0.155 0.100 0.200 0.155 0.140 0.055 0.140 0.055 0.140 0.055 0.140 0.055	0.060 0.061 0.062 0.068 0.075 0.085 0.100 0.130 0.160 0.220 0.260 0.270 0.265 0.265 0.250 0.265 0.250 0.265 0.250 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.260 0.200 0.200 0.200 0.180 0.160 0.140 0.140 0.140 0.140 0.150 0.160 0.140 0.150 0.160 0.140 0.160 0.140 0.160 0.140 0.160 0.079 0.069 0.069 0.063 0.069 0.063 0.069 0.063 0.069 0.063 0.053	0.875 0.900 0.925 0.950 1.000 1.250 1.500 1.750 2.000	0.076 0.073 0.072 0.071 0.070 0.060 0.050 0.040 0.030	0.064 0.062 0.062 0.061 0.060 0.051 0.042 0.033 0.025	0.049 0.048 0.048 0.047 0.040 0.033 0.026 0.021	0.037 0.037 0.036 0.036 0.030 0.025 0.020 0.015

RESPONSE ACCELERATION SPECTRA TABULATION

(HORIZONTAL ACCELERATION)

EARTHQUAKE IN N=S OR E=W DIRECTION

SCREENHOUSE

DAMPING RATIO . 0.005 AND 0.010

PERIOD	DAMPING 0.005	RATIC 0.010	PERIOD SEC.	DAMPING 0.005	RATIO 0+010	
0.000 0.025 0.050 0.125 0.100 0.125 0.150 0.125 0.150 0.225 0.250 0.225 0.250 0.225 0.250 0.225 0.250 0.225 0.325 0.325 0.375 0.300 0.325 0.375 0.425 0.425 0.450 0.450 0.425 0.5550 0.55500 0.55500 0.55500 0.55500000000	0.100 0.100 0.125 0.400 0.800 1.425 1.450 1.450 1.450 1.450 1.450 1.450 1.450 1.450 1.450 1.425 1.450 1.425 1.450 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 0.800 0.8550 0.8550 0.8275 0.325 0.325 0.275 0.245 0.2200 0.2200 0.2200 0.2200 0.180 0.170 0.160	0.100 0.100 0.125 0.400 1.175 1.205 1.200 1.175 1.200 1.250 0.650 0.650 0.650 0.465 0.375 0.315 0.265 0.225 0.265 0.275 0.265 0	0.775 0.800 0.825 0.850 0.925 0.950 0.975 1.000 1.100 1.150 1.250 1.300 1.3500 1.400 1.550 1.500 1.550 1.500 1.550 1.500 1.550 1.500	0.154 0.142 0.136 0.130 0.125 0.125 0.120 0.125 0.120 0.125 0.120 0.125 0.120 0.125 0.120 0.125 0.120 0.125 0.120 0.125 0.125 0.120 0.125 0.125 0.125 0.125 0.125 0.125 0.084 0.089 0.084 0.067 0.066 0.065	0.148 0.148 0.138 0.134 0.139 0.129 0.125 0.120 0.125 0.120 0.125 0.120 0.125 0.120 0.125 0.120 0.089 0.089 0.089 0.079 0.089 0.0771 0.065 0.065 0.065 0.065 0.065 0.065 0.061 0.061 0.061 0.061 0.061	

1.1

RESPONSE ACCELERATION SPECTRA TABULATION

(VERTICAL ACCELERATION)

EARTHQUAKE IN N=S OR E=W DIRECTION

SCREENHOUSE

DAMPING RATIO . 0.005 AND 0.010

PERIOD	DAMPING	RAT10	PERIOD	DAMPING	RAT10
SEC.	0.005	0.010	SEC.	0.005	0.010
0.000 0.025 0.050 0.075 0.100 0.125 0.175 0.175 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.325 0.325 0.325 0.350 0.375 0.350 0.425 0.425 0.450 0.455 0.450 0.455 0.450 0.455 0.450 0.455 0.450 0.455 0.450 0.455 0.50 0.555 0.550 0.5555 0.55550 0.55550 0.55550 0.55550 0.55550 0.55550 0.55550 0.55550 0.55550 0.555500 0.55500 0.555000 0.555000 0.55500000000	0.100 0.100 0.100 0.100 0.100 0.160 0.220 0.320 0.440 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.532 0.210 0.335 0.335 0.335 0.280 0.285 0.285 0.285 0.218 0.2255 0.218 0.2255 0.218 0.2255 0.218 0.2190 0.180 0.155 0.155 0.147 0.140 0.136	0.100 0.100 0.100 0.100 0.100 0.100 0.220 0.300 0.300 0.420 0.430 0.430 0.433 0.4430 0.433 0.4430 0.350 0.350 0.350 0.3200 0.280 0.280 0.280 0.250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2550 0.100 0.160 0.160 0.197 0.168 0.160 0.125	0:775 7:800 0:825 0:850 0:875 0:900 0:925 0:950 0:975 1:000 1:100 1:150 1:200 1:250 1:250 1:300 1:350 1:350 1:350 1:550 1:550 1:650 1:650 1:650 1:850 1:850 1:850 2:950 2:000	0.122 0.116 0.104 0.099 0.095 0.090 0.086 0.082 0.072 0.066 0.060 0.055 0.055 0.055 0.046 0.045 0.045 0.046 0.045 0.045 0.045 0.045 0.045 0.038 0.037 0.036 0.035 0.032 0.031 0.030	0.)20 0.115 0.110 0.104 0.099 0.095 0.090 0.086 0.082 0.072 0.066 0.055 0.055 0.048 0.045 0.045 0.045 0.045 0.045 0.035 0.035 0.035 0.035 0.035 0.031 0.030 0.030

1.1

MATHEMATICAL MODEL WEST ELEVATION

- SEE FIGURE NO. 1 FOR CODE NO SCALE

FIGURE NO. 3

JOHN A. BLUNE AND ASSOCIATES, ENGINEERS

PRAIRIE ISLAND NUCLEAR GENERATING PLANT

PERIOD IN SILINGS

DAN A- BUINE AND ASSOCIATES, ENGINEERS

PRAIRIE ISLAND NUCLEAR GENERATING PLANT

LOHN A. BLUME AND ASSOCIATES, ENGINEERS

FERICO IN SELONOS

FIGLEE NO. 21

DHN A. BLIME AND ASSET LATE'S. ENGINEERS

PERIOD IN SECONDS

MARCH 5, 1969

FILLRE NO. 26

APPENDICES

- A. References
- B. Example of the Application of the Horizontal Response Acceleration Spectra.
- C. Example of the Application of the Vertical Response Acceleration Spectra.

February 16, 1971

APPENDIX A

REFERENCES

- Prairie Island Nuclear Generating Plant Earthquake Analysis: Reactor-Auxiliary-Turbine Building by John A. Blume & Associates, Engineers, January 22, 1971.
- Facility Description and Safety Analyses Report, Prairie Island Nuclear Generating Plant, Red Wing, Minnesota, Units 1 and 2.
- Spectrum Analysis of Strong-Motion Earthquakes by J.L. Alfred, G.W. Housner, and R.R. Martel, California Institute of Technology, 1951.

February 16, 1971

A-1

APPENDIX B

EXAMPLE OF THE APPLICATION OF THE

HORIZONTAL RESPONSE ACCELERATION SPECTRA

The procedure for the use of the horizontal response acceleration spectra presented in this report for the seismic analysis and design of critical equipment is illustrated in this appendix. An item of equipment that can be idealized as a single-degreeof-freedom system has been selected as an example. The example equipment, the corresponding mathematical model, and the location of the equipment in plan are shown in Figures B-1, B-2, and B-3, respectively. Note that the equipment mounted at Elevation 735.0' (mass point number 30). Assume that the weight of the equipment, W, is 28,000 pounds and the stiffness of the equipment support, K, is 126,000 pounds per inch in the horizontal direction.

The natural period of vibration of the equipment is $T = 2\pi \sqrt{W/Kg} = 0.15$ second. The horizontal translational response acceleration for the equipment can be determined to be 0.15g from Figure 20 (for a period of 0.15 second and a damping ratio of 0.01).

This translational acceleration must be increased to account for torsional accelerations. The equipment in question is located a distance R of 50 feet from the center of mass of the floor on which it is supported (Figure B-3). With this value of R, the calculated period, and a damping ratio of 0.010, the factor to account for torsion is 1.21 (Table 1).

The total horizontal acceleration for which the example equipment must be designed is then (1.21) (0.15g) = 0.18g, and the corresponding design lateral force is 0.18W = 5,040 pounds.

February 16, 1971

8-1

This horizontal force for the Design Earthquake (0.06g) is shown in Figure B-4. The lateral force for the Maximum Credible Earthquake (0.12g) is (2) (5,040) = 10,080 pounds.

The acceleration in the vertical direction can be determined in a similar manner and is not illustrated in this appendix. In most cases, many items of equipment have very short periods in the vertical direction and can therefore be designed for the peak vertical floor acceleration.

The procedures described in this appendix for single-degree-offreedom systems can be extended to multi-degree-of-freedom systems such as piping, by the use of dynamic analysis techniques.

Refer to Appendix C for an example of the Application of vertical response acceleration spectra.

February 16, 1971

MARCH 14, 1969

13-3

APPENDIX C

EXAMPLE OF THE APPLICATION OF THE VERTICAL RESPONSE ACCELERATION SPECTRA

The procedure for the use of the vertical response acceleration spectra presented in this report for the seismic analysis and design of critical equipment is illustrated in this appendix. Procedures are presented for equipment supported on a beam or slab and for a simple-span beam.

1. Equipment supported on a beam or slab

a. Rigid beam or slab

An item of equipment that can be idealized as a singledegree-of-freedom system has been selected as an example. It is assumed that the beam or slab supporting the equipment is rigid. The example equipment and corresponding mathematical model are shown in Figure C-1. The vertical acceleration spectra are applicable at the specified locations (mass points). Assume that the weight of the equipment, W, is 30,000 pounds and that the stiffness of the equipment support, K, is 150,000 pounds per inch in the vertical direction.

The natural period of vibration of the equipment in the vertical direction is $T_{e} = 2\pi\sqrt{W/K_Vg} = 0.14$ seconds. The vertical acceleration can be determined from the vertical exceleration spectra for this period and the exception and ratio. (This procedure is exactly the same the horizontal direction as presented in Append (8) Assume that the vertical response acceleration was as armined to be 0.12g. (Figure C-2). Then the vertical second on this piece of equipment is 0.12 (W) = 3,600 pounds. The support of the equipment must then be designed for this vertical selsmic load, combined with the horizontal seismic load and appropriate operating loads.

JOHN & BLUME & ASSOCIAT & ENVINEERS

Note that in many cases (pumps, tanks, etc.), the equipment will be rigid in the vertical direction and car therefore be designed for the peak vertical floor acceleration (at T = 0.0 sec. on the vertical response spectra).

b. Flexible Beam or Slab

For this case, it is assumed that the beam or slab supporting the piece of equipment is not rigid and may amplify the input motion to the equipment. An item of equipment that can be idealized as a single-degree-of-freedom system has been selected as an example (Figure C-3). The vertical response of the piece of equipment can be estimated as follows. (The presented techniques are approximate and have been simplified so that they are more appropriate for design purposes).

Estimate the fundamental period, T_{e} , of the supporting beam or slat. Assume that it was determined that $T_c =$ 0.3 sec., for example. From the vertical response acceleration spectra, select the vertical spectral acceleration, Save, that corresponds to this period for the appropriate damping ratio. Assume that this value was determined to be $S_{av} = 0.60g$ (Figure C-2). Compute the reriod of the equipment, T_{ρ} , by the method described in the previous section. Using the same example equipment, $T_{\rm e}$ = 0.14 seconds. Compute the $T_e/T_s = 0.47$. Obtain the dynamic amplification factor, DAF, from Figure C-4. The peak vertical acceleration of the equipment can be estimated as $(DAF)(S_{av}) = (4.5)(0.6c) = 2.70g$ and the vertical seismic load on the equipment is (2.70)(W). The supports of the equipment must be designed for this vertical load combined with horizontal seismic loads and appropriate operating loads.

2. Simple span beams on Rigid Supports

The following are simplified, approximate techniques for es-

May 14, 1970

JOHN & BLUME & ASSOCIATES, ENGINEERS

timating the vertical response of simple span beams. The procedures apply to beams or girders with fundamental periods less than or equal to 0.5 seconds, in which case only the first mode is considered as contributing to the response of the system. The vertical response of a simple span beam with a uniform load, ω , length L, and uniform moment of inertia, I (Figure C-5) can be estimated as follows. Compute the period of the beam from T = $0.637 \left(\frac{\omega L^4}{gEI}\right)^{\frac{1}{2}}$, select the vertical response acceleration from the response spectra for this period and appropriate damping ratio. Estimate the effective seismic loading $\omega' = 0.79 \ S_{\alpha}\omega$. Compute seismic moments shears, etc., due to this loading by conventional procedures.

The vertical response of a simple span beam with a uniform load, ω and concentrated load, P, (Figure C-6) can be estimated as follows. Compute an equivalent load P = P + $\omega L/2$. Estimate the period from T = 0.906 $\left(\frac{PeL^2}{gEI}\right)^{\frac{1}{2}}$, and determine the vertical acceleration from the vertical acceleration response spectra as before. Compute the effective seismic loadings P' = S P and ω ' = S and determine the seismic shears, moments, etc., due to this loading by conventional procedures.

JOHN & BLUME & ASSOCIATES, ENGINEERS

FIG. C-3 EQUIPMENT SUPPORTED ON FLE. IBLE BEAM OR SLAB

FIG. C-4 DYNAMIC AMPLIFICATION FACTOR

FIG. C-G SIMPLE SPAN BEAM ON RIGID SUPPORTS WITH UNIFORM AND CONCENTRATED LOADS