NUREG/CR-6428 ANL-95/47

Effects of Thermal Aging on Fracture Toughness and Charpy-Impact Strength of Stainless Steel Pipe Welds

Prepared by D. J. Gavenda, W F. Michaud, T. M. Galvin, W. F. Burke, O. K. Chopra

Argonne National Laboratory

Prepared for U.S. Nuclear Regulatory Commission

RD-7 XIEP-11 Guideo & Manual

9605310163 960531 PDR NUREG CR-6428 R PDR

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources.

- 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001
- 2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20402-9328
- 3. The National Technical Information Service. Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Rooninclude NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports. NRC-sponsored conference proceedings, international agreement reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides. NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. *Federal Register* notices. Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library. Two White Flint North. 11545 Rockville Pike. Rockville. MD 20852-2738, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute. 1430 Broadway. New York, NY 10018-3308.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NUREG/CR-6428 ANL-95/47

Effects of Thermal Aging on Fracture Toughness and Charpy-Impact Strength of Stainless Steel Pipe Welds

Manuscript Completed: November 1995 Date Published: May 1996

Prepared by D. J. Gavenda, W F. Michaud, T. M. Galvin, W. F. Burke, O. K. Chopra

Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439

M. E. Mayfield, NRC Project Manager

Prepared for Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 NRC Job Code A2212

Effects of Thermal Aging on Fracture Toughness and Charpy–Impact Strength of Stainless Steel Pipe Welds

by

D. J. Gavenda, W. F. Michaud, T. M. Galvin, W. F. Burke, and O. K. Chopra

Abstract

The degradation of fracture toughness, tensile, and Charpy-impact properties of Type 308 stainless steel (SS) pipe welds due to thermal aging has been characterized at room temperature and 290°C. Thermal aging of SS welds results in moderate decreases in Charpy-impact strength and fracture toughness. For the various welds in this study, upper-shelf energy decreased by 50–80 J/cm². The decrease in fracture toughness J–R curve or J_{IC} is relatively small. Thermal aging had little or no effect on the tensile strength of the welds. Fracture properties of SS welds are controlled by the distribution and morphology of second-phase particles. Failure occurs by the formation and growth of microvoids near hard inclusions; such processes are relatively insensitive to thermal aging. The ferrite phase has little or no effect on the fracture properties of the welds. Differences in fracture resistance of the welds arise from differences in the density and size of inclusions. Mechanical-property data from the present study are consistent with results from other investigations. The existing data have been used to establish minimum expected fracture properties for SS welds.

Contents

Exe	ecutive Summary	xi
Acl	nowledgments	xiii
1	Introduction	1
2	Material Characterization	2
3	Mechanical Properties	3
	3.1 Charpy-Impact Energy	7
	3.2 Tensile Properties	14
	3.3 Fracture Toughness	16
4	Conclusions	23
Ref	erences	25
App	pendix: J–R Curve Characterization	29

Figures

1.	Typical ferrite morphology of the various welds of this study	4
2.	Configuration of Charpy-impact test specimen	5
3.	Configuration of compact-tension test specimen	5
4.	Orientation and location on weldments where mechanical test specimens were taken	6
5.	Variations in ferrite content of PWWO weld	7
6.	Effect of thermal aging on Charpy-transition curve for PWWO weld	9
7.	Charpy-impact energy of unaged and aged stainless steel welds	9
8.	Photomicrographs of fracture surface of unaged and aged Charpy specimens of various welds tested at room temperature	13

9.	Higher-magnification photomicrographs of fracture surface of unaged and aged Charpy specimens of PWWO and PWDR welds tested at room	
	temperature	14
10.	Photomicrograph of fracture surface of unaged Charpy specimen of PWWO weld tested at -180° C	15
11.	Tensile yield and ultimate stress of stainless steel welds	16
12.	Fracture toughness J-R curve for PWCE weld at room temperature and 290°C	18
13.	Fracture toughness J-R curve for PWWO weld at room temperature and 290°C	19
14.	Fracture toughness J-R curve for PWER weld at 290°C	20
15.	Fracture toughness J-R curves for stainless steel welds at room temperature and 288–427°C	21
16.	Fracture toughness J-R curves for aged stainless steel welds at room temperature and 288°C	22
17.	Fracture toughness $J_{\rm IC}$ for unaged and aged stainless steel welds	23
18.	Fracture toughness J–R curves represented by Eqs. 3 and 4 and the data for aged CF–3 and 316L welds and that in the technical basis document for ASME Code IWB–3640 analysis	24
A-1.	Fracture surface of unaged weld metal PWCE tested at 25°C	36
A-2.	Deformation J-R curve for unaged weld metal specimen PWCE-02 tested at 25°C	37
A-3.	Modified J-R curve for unaged weld metal specimen PWCE-02 tested at 25°C	37
A-4.	Fracture surface of aged weld metal PWCE tested at 25°C	40
A-5.	Deformation J-R curve for weld metal specimen PWCE-04 aged at 400°C for 10,000 h and tested at 25°C	41
A-6.	Modified J-R curve for weld metal specimen PWCE-04 aged at 400°C for 10,000 h and tested at 25°C	41
A-7.	Fracture surface of unaged weld metal PWCE tested at 290°C	44
A8.	Deformation J-R curve for unaged weld metal specimen PWCE-01 tested at 290°C	45

A-9.	Modified J-R curve for unaged weld metal specimen PWCE-01 tested at 290°C	45
A-10.	Fracture surface of aged weld metal PWCE tested at 290°C	48
A-11.	Deformation J-R curve for weld metal specimen PWCE-03 aged at 400°C for 10,000 h and tested at 290°C	49
A-12.	Modified J-R curve for weld metal specimen PWCE-03 aged at 400°C for 10,000 h and tested at 290°C	49
A-13.	Fracture surface of aged weld metal i'WWO tested at 25°C	52
A-14.	Deformation J-R curve for weld metal specimen PWWO-03 aged at 400°C for 7,700 h and tested at 25°C	53
A-15.	Modified J-R curve for weld metal specimen PWWO-03 aged at 400°C for 7,700 h and tested at 25°C	53
A-16.	Fracture surface of unaged weld metal PWWO tested at 290°C	56
A-17.	Deformation J-R curve for unaged weld metal specimen PWWO-01 tested at 290°C	57
A-18.	Modified J-R curve for unaged weld metal specimen PWWO-01 tested at 290°C	57
A-19.	Fracture surface of aged weld metal PWWO tested at 290°C	60
A-20.	Deformation J-R curve for weld metal specimen PWWO-04 aged at 400°C for 7,700 h and tested at 290°C	61
A-21.	Modified J-R curve for weld metal specimen PWWO-04 aged at 400°C for 7,700 h and tested at 290°C	61
A-22.	Fracture surface of aged weld metal PWWO tested at 290°C	64
A-23.	Deformation J-R curve for weld metal specimen PWWO-02 aged at 400°C for 7,700 h and tested at 290°C	65
A-24.	Modified J-R curve for weld metal specimen PWWO-02 aged at 400°C for 7,700 h and tested at 290°C	65
A-25.	Fracture surface of aged weld metal PWER tested at 290°C	68
A-26.	Deformation J-R curve for weld metal specimen PWER-01 aged at 400°C for 10,000 h and tested at 290°C	69

A-27.	Modified	J-R	curve	for	weld	metal	specimen	PWER-01	aged a	t 400°C	for	
	10,000 h	and	tested	at 2	290°C			*****				69

Tables

1.	Composition and ferrite content of austenitic stainless steel welds	2
2.	Char; v-impact test results for stainless steel welds	8
3.	Summary of mechanical-property data for austenitic stainless steel welds	10
4.	Tensile yield and ultimate stress of various stainless steel welds, estimated from Charpy-impact data	15
5.	Fracture toughness test results for unaged and aged austenitic stainless steel weldments	17
A-1.	Test data for specimen PWCE-02	34
A-2.	Deformation J_{IC} and J–R curve results for specimen PWCE–02	35
A-3.	Modified $J_{\rm IC}$ and J–R curve results for specimen PWCE–02	36
A-4.	Test data for specimen PWCE-04	38
A-5.	Deformation J_{IC} and J-R curve results for specimen PWCE04	39
A-6.	Modified J _{IC} and J-R curve results for specimen PWCE-04	40
A-7.	Test data for specimen PWCE-01	42
A-8.	Deformation J_{1C} and J–R curve results for specimen PWCE–01	43
A-9.	Modified J _{IC} and J-R curve results for specimen PWCE-01	44
A-10.	Test data for specimen PWCE-03	46
A-11.	Deformation J_{IC} and J-R curve results for specimen PWCE-03	47
A-12.	Modified J_{1C} and J–R curve results for specimen PWCE–03	48
A-13.	Test data for specimen PWWO-03	50
A-14.	Deformation J_{IC} and J-R curve results for specimen PWWO-03	51
A-15.	Modified JIC and J-R curve results for specimen PWWO-03	52

A-16.	Test data for specimen PWWO-01	54
A-17.	Deformation $J_{\rm IC}$ and J–R curve results for specimen PWWO–01	55
A-18.	Modified J_{IC} and J–R curve results for specimen PWWO–01	56
A-19.	Test data for specimen PWWO-04	58
A-20.	Deformation J_{IC} and J–R curve results for specimen PWWO–04	59
A-21.	Modified J_{IC} and J–R curve results for specimen PWWO–04	60
A-22.	Test data for specimen PWWO-02	62
A-23.	Deformation J_{IC} and J–R curve results for specimen PWWO–02	63
A-24.	Modified J_{IC} and J-R curve results for specimen PWWO-02	64
A-25.	Test data for specimen PWER-01	66
A-26.	Deformation J_{IC} and J–R curve results for specimen PWER–01	67
A-27.	Modified JIC and J-R curve results for specimen PWER-01	68

Executive Summary

Stainless steels (SSs) are used extensively in light water reactor (LWR) systems because of their excellent ductility, high notch toughness, corrosion resistance, and good formability. Although these steels are completely austenitic in the wrought condition, welded and cast SSs have a duplex structure consisting of austenite and ferrite phases. The ferrite phase provides additional benefits, e.g., it increases tensile strength and improves the resistance to stress corrosion cracking. However, the duplex steels are susceptible to thermal embrittlement after extended service at reactor operating temperatures, i.e., typically 282°C (540°F) for boiling water reactors, 288–327°C (550–621°F) for pressurized water reactor (PWR) primary coolant piping, and 343°C (650°F) for PWR pressurizers.

It is well established that thermal embrittlement of cast duplex SSs at reactor temperatures increases hardness and tensile strength; decreases ductility, impact strength, and fracture toughness; and shifts the Charpy transition curve to higher temperatures. Thermal embrittlement is caused primarily by formation of the Cr-rich α' phase in the ferrite and, to some extent, by precipitation and growth of carbides at phase boundaries. It results in brittle fracture associated with either cleavage of the ferrite or separation of the ferrite/austenite phase boundary. Predominantly brittle failure occurs when either the ferrite phase is continuous (e.g., in material with a large ferrite content) or the ferrite/austenite phase boundary provides an easy path for crack propagation (e.g., in materials with high C content). The amount, size, and distribution of the ferrite phase in the duplex structure, and the presence of phase-boundary carbides are important parameters in controlling the degree or extent of thermal embrittlement.

A procedure and correlations have been developed for estimating fracture toughness, tensile, and Charpy-impact properties of cast SS components during service from known material information. Although SS welds have a duplex structure and their chemical compositions are similar to those of cast SSs, the estimation scheme is not applicable to SS welds. The degradation of fracture toughness, tensile, and Charpy-impact properties of Type 308 pipe welds due to thermal aging has been characterized in this report. The welds were aged for 7,000-10,000 h at 400°C to simulate saturation conditions, i.e., lowest impact energy that would be achieved by the material after long-term aging. The results have been compared with fractureproperty data from other studies.

Thermal aging of the SS welds resulted in moderate decreases in Charpy-impact strength and fracture toughness at both room temperature and 290°C. For the various welds, USE decreased by 50–80 J/cm² (30–47 ft·lb.). The decrease in the fracture toughness J–R curve or J_{IC} is relatively small. Metallographic examination of the specimens indicates that failure occurs by the formation and growth of microvoids near hard inclusions. Differences in the fracture resistance of the welds arises from differences in the density and size of inclusions. In this study, the effect of thermal aging on fracture properties is minimal because of the relatively low ferrite content (4–6% ferrite) and thin vermicular ferrite morphology in the welds.

The Charpy-impact, tensile, and fracture toughness results from this study have been compared with available data on SMAWs, SAWs, and GTAWs prepared with Types 308 or 316 SS filler metal. The data are consistent with results from other investigations. The fracture properties of SS welds are insensitive to filler metal. The welding process has a significant ef-

fect. In general, GTAWs exhibit higher fracture resistance than SMAWs or SAWs, and there is no difference between SAW and SMAW J–R curves. The Charpy–impact energy of some welds may be as low as 40 J.

The results indicate that the decrease in impact strength due to aging depends on the ferrite content and initial impact strength of the weld. Welds with relatively high strength show a large decrease whereas those with poor strength show minimal change. In SS welds with poor strength, failure occurs by the formation and growth of microvoids. Such processes are relatively insensitive to thermal aging. The existing data indicate that at reactor temperatures, the fracture toughness J_{IC} of thermally aged welds can be as low as 40 kJ/m². A conservative estimate of J–R curve for aged SS welds may be given by $J = 40 + 83.5 \Delta a^{0.643}$.

Acknowledgments

This work was supported by the Office of the Nuclear Regulatory Research in the U.S. Nuclear Regulatory Commission (NRC), under FIN A2212, Program Manager: Michael McNeil.

1 Introduction

Stainless steels (SSs) are used extensively in light water reactor (LWR) systems because of their excellent ductility, high notch toughness, corrosion resistance, and good formability. Although these steels are completely austenitic in the wrought condition, welded and cast SSs have a duplex structure consisting of austenite and ferrite phases. The ferrite phase provides additional benefits, e.g., it increases tensile strength and improves resistance to stress corrosion cracking. However, duplex steels are susceptible to thermal embrittlement after extended service at reactor operating temperatures, i.e., typically 282°C (540°F) for boiling water reactors, 288–327°C (550–621°F) for pressurized water reactor (PWR) primary coolant piping, and 343°C (650°F) for PWR pressurizers.

It is well established¹⁻⁷ that thermal aging of cast SSs at 250-350°C (482-662°F) increases hardness and tensile strength; decreases ductility, impact strength, and fracture toughness; and shifts the Charpy transition curve to higher temperatures. Aging of cast SSs at temperatures <500°C (<932°F) leads to precipitation of additional phases in the ferrite, e.g., formation of a Cr-rich α' phase by spinodal decomposition; nucleation and growth of α' ; precipitation of a Ni- and Si-rich G phase, M₂₃C₆, and γ_2 (austenite); and additional provipitation and/or growth of existing carbides at ferrite/austenite phase boundaries.⁸⁻¹² Thermal embrittlement is caused primarily by formation of the Cr-rich α phase in the ferrite and, to some extent, by precipitation and growth of carbides at phase boundaries. Thermal embrittlement of cast SSs results in brittle fracture associated with either cleavage of the ferrite or separation of the ferrite/austenite phase boundary. Predominantly brittle failure occurs when either the ferrite phase is continuous (e.g., in cast material with a large ferrite content) or the ferrite/austenite phase boundary provides an easy path for crack propagation (e.g., in high-C grades of cast steel with large phase-boundary carbides). The amount, size, and distribution of the ferrite phase in the duplex structure, and the presence of phase-boundary carbides are important parameters in controlling the degree or extent of thermal embrittlement. In general, the low-C CF-3 steels are the most resistant to thermal embrittlement, and the Mo-bearing, high-C CF-8M steels are the least resistant. The extent of thermal embrittlement increases with increased ferrite content.

A procedure and correlations have been developed at Argonne National Laboratory (ANL) for estimating fracture toughness, tensile, and Charpy-impact properties of cast SS components during service from known material information.^{13,14} The ANL estimation scheme is applicable to compositions within the ASTM Specifications A 351 for Grades CF-3, CF-3A, CF-8, CF-8A, and CF-8M. A correlation for Charpy-impact energy at saturation, i.e., the minimum impact energy that would be achieved for the material after long-term aging, is given in terms of chemical composition. Change in impact energy as a function of time and temperature of service is estimated from saturation impact energy and from the correlations that describe the kinetics of embrittlement, which are also given in terms of chemical composition. The fracture toughness J-R curve for the material is then obtained from the correlation between the fracture toughness parameters and the Charpy-impact energy. Tensile yield and flow stresses, and Ramberg/Osgood parameters are estimated from the flow stress of the unaged material and the kinetics of embrittlement.³

Although SS welds have a duplex structure and their chemical compositions are similar to those of cast SSs, the ANL correlations are not applicable to these welds. The ANL correlations

account for mechanical-property degradation of typical heats of cast SS. They do not consider the effects of compositional or structural differences that may arise from differences in processing or heat treatment of the steels. Type 308 SS welds generally contain 5–15% ferrite but their mechanical properties typically differ from those of cast SSs. For a given ferrite content, the tensile strength of SS welds is higher and fracture toughness is lower than that of cast SSs. Experimental data¹⁵ indicate that cast SSs with poor fracture toughness are relatively insensitive to thermal aging, i.e., fracture toughness of the material would not change significantly during service. In these steels, failure is controlled by void formation near inclusions or other flaws in the material, i.e., by processes that are not sensitive to thermal aging. These results suggest that SS welds with poor fracture toughness, e.g., shielded metal arc welds (SMAWs) cc submerged arc welds (SAWs), should be relatively insensitive to thermal aging.

Degradation of fracture toughness and Charpy-impact energy of several SS pipe welds has been characterized in this report. The welds were aged for 7,000–10,000 h at 400°C to simulate saturation conditions, i.e., the lowest impact energy that would be achieved by the material after long-term aging. The results are compared with data from other studies.

2 Material Characterization

Five pipe weldments were procured for the study. The composition and ferrite content of the welds are given in Table 1. The ferrite content was measured with a ferrite scope and calculated from the chemical composition in terms of Hull's equivalent factors.¹⁶ a brication and procurement history of the weldments is as follows:

PWWO: 12–in. Type 304 Schedule 100 pipe mockup weldment with overlays was supplied by Georgia Power and NUTECH.¹⁷ The weld was fabricated with Type 308L filler metal and conventional butt welding procedures. On one side of the weld the prep geometry of the weld was long and smooth, i.e., typical of that used in the Hatch-1 reactor. On the other side, the prep geometry was short, typical of that used in the Hatch-2 reactor. The overlay was similar to that applied to the recirculation piping in the Hatch-2 reactor.

PWCE: 28-in., Type 304/308 pipe weldment was obtained from the Boston Edison Power Co.

Material		Ferrite ^b (%)										
IDa	С	N	Si	Mn	Р	S	Ni	Cr	Mo	Cu	Calc.	Meas.
PWWO	0.030	0.072	0.44	2.12	0.018	0.018	10.72	20.35	0.27	0.20	4.1	6.8
PWCE	0.050	0.060	0.44	1.79	0.003	0.002	9.54	20.22	0.05	0.04	5.4	6.1
PWER	0.020	0.074	0.36	1.78	0.018	0.009	10.29	20.12	0.19	0.12	4.8	5.2
PWDR	0.080		0.75	1.00	0.022	0.010	9.74	20.72	0.08	0.08	5.9	
PWMS	0.021		0.40	1.61	0.025	0.006	9.56	19.80	0.19	0.11	8.3	-

Table 1. Composition and fen ite content of austenitic stainless steel welds

^a PWWO: 12-in. schedule 100 pipe mockup weldment with overlays supplied by Georgia Power and NUTECH. PWCE: 28-in.-diameter Type 304 stainless steel pipe weldment obtained from Boston Edison.

PWER: 20-in.-diameter Type 304 stainless steel pipe weldment prepared for EPRI at Southwest Fabricating.

PWDR: 10-in.-diameter Type 304 stainless steel weldment after service in Dresden reactor.

PW/MS: 28-in.-diameter pipe weldment treated by Mechanical Stress Improvement Process (MSIP).

^b Calculated from the composition with Hull's equivalent factor. Measured by Ferrite Scope, Auto Test FE, Probe Type FSP-1. PWER: 20–in., Type 304/308 pipe weldment was supplied by the Electric Power Research Institute (EPRI). It was prepared at Southwest Fabricating by the heat sink welding (HSW) technique.¹⁸

PWDR: 10–in., Type 304 SS pipe weldment was obtained from the emergency core-spray system of the Dresden-2 reactor. It was prepared by shielded metal arc welding with coated electrodes; the root pass was made by gas tungsten arc welding. The insert and filler metals were Type ER308. The pipe had been in service for \approx 4.5 y. Water temperature in the core spray line is 204–260°C during normal operation.¹⁹

PWMS: 28-in., seamless Type 304 SS pipe weldment was treated by the Mechanical Stress Improvement Process (MSIP).²⁰ The filler metal was Type ER308L. The MSIP treatment is intended to produce a more favorable state of residual stress on the inner surface of the pipe welds, particularly near heat-affected zones. The weld undergoes monotonic compressive loading that is produced by a split-ring-like tool mounted on the pipe. The favorable residual stresses are induced by plastic compression of the weld.

Although the welding process is not specified for all of the weldments, the welds of largediameter pipes are typically prepared by shielded metal arc welding. All of the welds consisted of a duplex austenite and ferrite structure; the ferrite phase was at the core of the dendritic branches in the weld. Typical microstructures of the welds are shown in Fig. 1. All of the welds exhibit a vermicular ferrite morphology. The ferrite content of the welds is relatively low (in the range of 4-6%).

3 Mechanical Properties

Charpy-impact tests were conducted on standard V-notch specimens (Fig. 2) according to American Society for Testing and Materials (ASTM) Specification E 23. A Dynatup Model 8000A drop-weight impact machine with an instrumented tup and data readout system was used for the Charpy-impact tests. Load- and energy-time data were obtained from an instrumented tup and recorded on a dual-beam storage oscilloscope. The load-time traces from each test were digitized and stored on a floppy disk for analysis. Total energy was computed from the loadtime trace; the value was corrected for the effects of tup velocity.

The instrumented tup and data readout instrumentation were calibrated by fracturing standard V-notch specimens fabricated from 6061–T6 Al and 4340 steel with a hardness of Rockwell R_C 54. Accuracy of the impact-test machine was also checked with Standard Reference Materials 2092 and 2096 obtained from the National Institute of Standards and Technology. Tests on the reference materials were performed in accordance with the testing procedures of Section 11 of ASTM E 23. The specimens for high-temperature tests were heated by resistance heating. Pneumatic clamps were used to make electrical connections and hold the specimens in position on the anvils. The temperature was monitored and controlled by a thermocouple attached to the specimen. Specimens for the low-temperature tests were cooled in either a refrigerated bath or liquid N.

The fracture toughness J–R curve tests were conducted according to ASTM Specification E 1152–87. Compact–tension specimens (Fig. 3), 25.4 mm thick, were used for the tests. The experimental procedure and data for the fracture toughness tests are given in the Appendix.

Figure 1. Typical ferrite morphology of the various welds of this study

NUREG/CR-6428

Figure 2. Configuration of Charpy–impact test specimen: units of measure are inches

Figure 3. Configuration of compact-tension test specimen: units of measure are inches

The orientation and location on the weldment where the Charpy-impact and fracture toughness test specimens were taken are shown in Fig. 4. In all cases, the fracture plane is in the center of the weld. The variation in ferrite content in the center of all of the welds was minimal; the variation in the PWWO weld is shown in Fig. 5. Some of the materials were aged in the laboratory for 8,000-10,000 h at 400° C (752° F) to simulate the saturation condition, i.e., the condition when the lowest impact strength is achieved by the material after long-term service at reactor temperatures.

Figure 4. Orientation and location on weldments where mechanical test specimens were taken: (a) and (c) ≥ 1 in.-thick pipe sections and (b) <1 in.-thick pipe sections

Figure 5. Variations in ferrite content of PWWO weld

3.1 Charpy–Impact Energy

Charpy impact data for the PWCE, PWWO, PWDR, and PWMS welds are given in Table 2. A complete Charpy transition curve was obtained only for the PWWO weld; other welds were tested at room temperature and 290°C. Transition curves for the unaged and aged PWWO weld are shown in Fig. 6. The Charpy data were fitted with a hyperbolic tangent function of the form

$$C_{V} = K_{o} + B \left[1 + \tanh\left(\frac{T - C}{D}\right) \right], \tag{1}$$

where K_o is the lower-shelf energy, T is the test temperature in °C. B is half the distance between the upper- and lower-shelf energy, C is the mid-shelf Charpy transition temperature (CTT) in °C, and D is the half width of the transition region. The results indicate that thermal aging increased the mid-shelf CTT by 47°C, i.e., from -105°C to -58°C, and decreased uppershelf energy (USE) by 50 J/cm² (30 ft·lb.).

The Charpy-impact data for aged materials represent the saturation condition, i.e., the condition when the lowest impact strength is achieved by the material after long-term service at reactor temperatures. The results indicate that thermal aging results in moderate decreases in impact energy at both room temperature and 290°C. For the various welds, USE decreased by 50–80 J/cm² (30–47 ft·lb); from 187 to 137 J/cm² (110 to 81 ft·lb) for PWWO, from 353 to 271 J/cm² (208 to 160 ft·lb) for PWCE, and from 169 to 98 J/cm² (100 to 58 ft·lb) for PWDR. Similar decreases were observed at room temperature. Even in the fully embrittled condition, all of the welds exhibit adequate impact strength, e.g., >90 J/cm² (53 ft·lb) at 290°C and >75 J/cm² (44 ft·lb) at room temperature.

The results are consistent with the data from other investigations. Mechanical-property data on Charpy-impact, tensile, and fracture toughness properties of SMAWs, SAWs, and gas tungsten arc welds (GTAWs) prepared from Types 308 or 316 filler metal are compiled in Table 3.^{21–38} The Charpy-impact data for unaged and aged welds are shown in Fig. 7. The results for unaged welds show large variation; impact energy of some welds may be as low as

Test Number	Specimen ID	Aging Temp. (°C)	Aging Time (h)	Test Temp. (°C)	Impact Energy (J/cm ²)	Yield Load (kN)	Maximum Load (kN)
			Arrive Device and - Alexand				
CS-2878	PWWO-05			-180	59.2	17.615	23.493
CS-2880	PWWO-06		1.0	-100	100.8	14.598	19.607
CS-2879	PWWO-07			-50	125.4	16.121	21.335
CS-2863	PWWO-08			25	175.1	12.928	17.244
CS-2864	PWWO-09		1 P 1	25	162.8	14.539	19.588
CS-2875	PWWO-10		1.1	75	212.2	11.512	16.092
CS-2876	PWWO-11			150	186.4	12.284	16.053
CS-2871	PWWO-12	18.0	1.1	290	189.7	8.622	12.108
CS-2872	PWWO-13		1.1	290	183.4	10.145	13.866
WIN-2882	PWWO-14	400	7,700	-197	9.8	13.836	13.836
WIN-2883	PWWO-15	400	7,700	-180	9.5	14.285	14.285
WIN-2884	PWWO-16	400	7,700	-100	44.1	15.594	18.474
WIN-2885	PWWO-17	400	7,700	-50	82.9	16.248	20.437
WIN-2886	PWWO-18	400	7,700	0	111.3	13.973	18.347
WIN-2887	PWWO-19	400	7,700	25	126.3	14.412	18.221
WIN-2888	PWWO-20	400	7,700	25	130.9	13.397	17.879
WIN-2893	PWWO-21	400	7,700	75	157.4	13,163	17.430
WIN-2894	PWWO-22	400	7,700	150	143.4	11.512	15.428
WIN-2895	PWWO-23	400	7,700	200	152.4	11.542	15.340
WIN-2896	PWWO-24	400	7,700	290	121.8	9.540	13 153
WIN-2897	PWWO-25	400	7,700	290	151.9	10.575	14.305
00 0001	DIVICE OF						
CS-2001	PWCE-05			25	255.6	12.948	18.855
UTN 2002	PWCE-00	100	10 000	25	281.9	11.776	18.533
WIN-2009	PWCE-09	400	10,000	25	187.2	13.524	19.011
WIN-2090	PWCE-10	400	10,000	25	149.3	12.167	17.937
CS-2809	PWCE-07			290	340.5	9.149	12.577
UNN 2000	PWCE-08	100	10.000	290	366.0	7.890	12.430
WIN-2090	PWCE-11	400	10,000	290	291.7	10.155	14.178
win-2899	PWCE-12	400	10,000	290	250.8	8.544	14.334
CS-2865	PWDR-06			25	138.7	12.616	17.537
CS-2866	PWDR-07	1.1	1.20	25	140.2	12.791	17 859
WIN-2891	PWDR-01	400	10.000	25	78.8	12.938	15.184
WIN-2892	PWDR 02	400	10,000	25	84.4	12.821	15 028
CS-2873	PWDR-98			290	148.4	8.310	11 893
CS-2874	PWDR-09	1.1	1.264	290	189.5	8.515	12 596
WIN-2900	PWDR-03	400	10,000	290	93.4	8.583	11 493
WIN-2901	PWDR-04	400	10,000	290	102.4	8.866	12.303
00 0050	DALAR OL					1.1.1	
05-2859	PWMS-01			25	191.4	13.885	18.953
08-2860	PWMS-02			25	185.6	13.504	18.861
CS-2867	PWMS-03			290	202.7	9.872	13.524
CS-2868	PWMS-04			290	186.9	9.159	12.977

Table 2. Charpy-impact test results for stainless steel welds

Figure 6. Effect of thermal aging on Charpy-transition curve for PWWO weld

Figure 7. Charpy-impact energy of unaged and aged stainless steel welds

Authors	Ref.	Mater. & Process ^a	Heat Treat- ment ^b	Ferrite Content (FN/%)	Test Temp (°C) ^c	Impact Energy (J)d	Yield Strength (MPa)	Ultimate Strength (MPa)	J _{IC}	Tearing
Horn et al	20	200 61411			Cont.		(111 - 44)	(1111 (1)	(1507111-)	modulus
nom, et al.	44	308, SMAW	-		RT	122, 111	1.1			-
			-		288	107	315	449	194, 215	-
			SA		RI			-		
		216 CAW			288	224	192	425	169	-
		316, SAW	1.51		RL	73	- 104	· · · · · · ·		-
					288	95, 103	309	434	170	
			SA		RT	-	1. A.	-		1.1
					288	108	192	401	221	
Chipperfield	24	316. SMAW	-	7.0-9.0	370	71	401	486	56	
			a	3.5-6.5	370	69	286	431	42, 50	
			b	1.0-3.0	370	87	261	423	40	1.200
			с	0-0.5	370	125	184	449	67	-
Ould, et al.	25	316L, MMAW/	1	8.5	20	63 54	468	605	1440	
		SAW			343		356	471		- 12 H
			F	7.5	20	51 62	465	613		-1. G. M
					343		375	474	- D.	
			H1	7.5	20	56.58	425	592	147 168	
					343		379	464		
		308L, MMAW/	С	6.0	20	62.51	439, 452	541 544		이 남은 것이
		SAW			343		344, 363	391, 390		
			В	6.0	20	49.51	420.436	535. 545	153	
					343		325, 341	385, 390		1.201
			D	5.0	20	58.51	398	563	130	
					343		324, 345	394, 431	-	1.4
Landes &	26	308. SAW	1.2.1		24	111 68	348	600	Q1	100
McCabe					288	148 62	248	426	47	150
		308. GTAW	1.1		24	190	354 475	595 624	195	610
					288	324	239 372	429 437	558	500
		308. SMAW	1.4		24	96	432 414	605 597	250	170
					288	114	323 341	423 446	168	140
		316, SAW			24	88	414	633	116	120
					288	46	281	485	105	90
Mills	27.	308. SMAW	1.20	6.8	24	1.1	455	634		
	28.				427		323	472	154+41	210
	29				538		303	412	154+41	310
		308. GTAW		9.9	427		278	477	266+20	373
					538		268	401	266+20	373
		308, SAW		10.7	24		365	627	198+17	107
					427	-	344	474	76±17	167
					538	-	290	384	76±17	167
		16-8-2, GTAW	- e	5.7	24		360	668	392±107	249
					427	-	265	388	266±20	373
					482	-	281	385	266±20	373
					538		263	359	266±20	373
		16-8-2. SAW	-	9.0	24	-	391	627	198±17	107
					427	-	297	476	76±17	167
					538	-	321	439	76±17	167

Table 3. Summary of mechanical-property data for austenitic stainless steel welds

Authors	Ref.	Mater. & Process ^a	Heat Treat- ment ^b	Ferrite Content (FN/%)	Test Temp. (°C) ^C	Impact Energy (J) ^d	Yield Strength (MPa)	Ultimate Strength (MPa)	J _{IC} (kJ/m ²)	Tearing Modulus
Vitek, et al.	30	308L, GTAW	-	10.0	25	208, 136, 143, 192	399±56	606±24	480. 773	
					150	192, 166, 204		44		
Alexander.	31	308, SMAW		4.0	RT	106				-
et al.					140	109				1.4
				8.0	RT	90				
					140	98	1.00	1.0	1.1	1.1
				12.0	RT	87			~	-
					140	99			10	86 T
Hale &	32	308L, SMAW	10.4	5-9	24	63	497±24	606±11		1.1
Garwood					300	82	~		92±25	75
Garwood	33	316. SAW	1.23		370	10.4	325	473	120	-
		316, MMAW	1.9		370		386	471	70	-
Vassilaros	24	3081 CTAW			RT		465	612	521	289
vassuaros.	34	JUOL, GIAW			149	- 11 H	356	476	400	277
et al.					288		338	452	163.	152.
									227, 375	363, 437
Gudas &	35	308L SMAW	-		RT	121	1	1.1	243, 168	109, 105
Anderson					149	1. 1. 1.	1.1		159, 96	89, 71
					288	1.00	6.450	요즘 눈소리.	214, 174	134, 121
Hawthorne	36	308. SMAW		5.2	24	87	478	628	21	1754 (J.)
& Menke					260	110	382	474		10.000
					482	108	325	430	1.1	a di se dha
				10.4	24	77	534	693		
					260	100	420	521	1.1	825.3
					482		358	478		
				15.7	24	66	518	683		-
					260	96	415	521	-	11.7.1
				10.0	482	92	362	482		
				19.0	24	107	447	563	108-1	
					482	102	376	517	- <u>5</u> -	
		316 SAW	10.20	7-10.5	24	102	010			
		010, 010		1 10.0	260				-	10.00
Faure, et al.	37	316L, GTAW			24	111, 124, 128	507, 518	603, 626	-	12.5
					100	129, 133. 155	458, 482	536, 552	281	
					300	133, 135. 144	409, 415	470, 480	215	
Wilkowski	38	308. SAW	-		288		325	466		1.14
et al.			SA		288		195	465	-	1. 3.6
Nagasaki, et al.	39	308. GTAW	~		288		298	447		1

Table 3. (Contd.)

Table 3. (Contd.)

Authors	Ref.	Mater. & Process ^a	Heat Treat- ment ^b	Ferrite Content (FN/%)	'Test Temp. (°C) ^c	Impact Energy (J) ^d	Yield Strength (MPa)	Ultimate Strength (MPa)	JIC (kJ/m ²)	Tearing Modulus
European Community	40	316, GMAW	-		20	159, 165, 148, 165, 151, 151	518, 361	644, 607		-
					550	193, 264, 269, 209, 219, 159	217, 151	428, 402	-	-
		316, MMAW	-		20	77, 73	469, 469, 428, 437	585, 586, 608, 608	-	-
					550	77.82	292, 307, 178, 178	403, 413, 421, 422		-
		316, SAW			20	87, 92, 77	397, 407, 405, 347, 359, 358	566, 568, 567, 584, 596, 590		-
					550	64, 87, 87	-	-		-

^a SMAW: Shielded metal arc weld; SAW: Submerged arc weld; MMAW: Manual metal arc weld; and GTAW: Gas tungsten arc weld.

^b SA: solution annealed; other designations are heat treatment code that are defined in the reference.

C RT: room temperature.

^d All values represent impact energy for a standard Charpy V-notch specimen, i.e., 10 x 10 mm size.

50 J (37 ft·lb). The GTAWs generally exhibited higher impact strength than the SMAWs or SAWs. The results indicate that the welds that were investigated in the present study have relatively high impact strength; the PWCE weld exhibited the highest and PWDR the lowest impact strength.

In Fig. 7 the impact energies of aged welds^{25,30–32} fall within the large scatter band of the unaged welds. The results indicate that the effect of thermal aging on Charpy–impact strength depends on the initial impact strength of the welds. Welds with relatively high impact strength, e.g., the GTAWs, show a large decrease in impact energy whereas those with poor impact strength show minimal change in impact energy. Even in the saturation or fully embrittled condition, austenitic SS welds have \geq 50 J (37 ft·lb) of impact energy.

Photomicrographs of the fracture surface of unaged and aged weld metal Charpy specimens tested at room temperature are shown in Fig. 8. The results indicate that the overall fracture behavior of the welds is controlled by the distribution and morphology of secondphase particles. All welds exhibit a dimple fracture. Failure occurs by nucleation and growth of microvoids and rupture of remaining ligaments. High-magnification photomicrographs of unaged and aged PWWO and PWDR specimens are presented in Fig. 9, which shows that nearly every dimple was initiated by decohesion of an inclusion (most likely manganese silicide). The hard inclusions in the SMAW resist deformation and the buildup of high local stresses leads to decohesion of the particle/matrix interface. Inferior fracture resistance of the PWDR weld may be attributed to the higher density and larger size of inclusions relative to the PWWO or PWCE welds. Metallographic results suggest that the delta ferrite phase has relatively little effect on the fracture properties of the welds.

The results also indicate that thermal aging has no effect on fracture morphology of the specimens tested at room temperature; both unaged and aged welds exhibit a dimple fracture.

Figure 8. Photomicrographs of fracture surface of unaged and aged Charpy specimens of various welds tested at room temperature

PWDR

Figure 9. Higher-magnification photomicrographs of fracture surface of unaged and aged Charpy specimens of PWWO and PWDR welds tested at room temperature

It is well known that thermal aging of duplex SSs results in brittle fracture associated with either cleavage of the ferrite or separation of the ferrite/austenite phase boundary.^{1,2,11} A brittle fracture was not observed in the welds, most probably because of the relatively low ferrite content and thin vermicular ferrite morphology. However, cleavage of the ferrite phase may occur at very low temperatures. Figure 10 shows cleavage of the ferrite phase in the unaged PWWO weld that was tested at -180° C. The amount of cleavage was slightly larger in the aged specimen than in the unaged specimen.

3.2 Tensile Properties

Tensile tests were not conducted on the welds; tensile properties of the welds were estimated from the Charpy-impact data. The values obtained for 0.2% yield and maximum load in each impact test are listed in Table 2, and may be used to estimate tensile properties of the cast materials. For a Charpy specimen, the yield stress σ_v is estimated from the expression

Figure 10. Photomicrograph of fracture surface of unaged Charpy specimen of PWWO weld tested at -180°C

(2a)

(2b)

$$\sigma_{\rm V} = C_1 P_{\rm Y} B/W b^2 ,$$

and the ultimate stress σ_u is estimated from the expression

$$\sigma_{\rm H} = C_2 \, P_{\rm m} \, B/W \, b^2 \, .$$

where P_y and P_m are the yield and maximum load, respectively, W is the specimen width, B is the specimen thickness, b is the uncracked ligament, and C_1 and C_2 are constants.³⁹ The yield and maximum loads were obtained from load-time traces of the Charpy tests. The constants C_1 and C_2 were determined by comparing the Charpy-impact test results with existing tensile properties data for Type 308 and 316 weld metals. The best value of the constants was 2.2 for both C_1 and C_2 . The estimated yield and ultimate stress for the various welds are compared with existing data for Type 308 or 316 welds in Fig. 11. Average values of yield and ultimate stress for PWWO, PWCE, PWDR, and PWMS welds are listed in Table 4. Thermal aging has little or no effect on the tensile properties of Type 308 welds. These results are consistent with the data from other studies.^{25,30-32}

Material ID			Room	Temp.	290°C			
	Aging Temp. (°C)	Aging Time (h)	Yield Stress (MPa)	Ultimate Stress (MPa)	Yield Stress (MPa)	Ultimate Stress (MPa		
PWCE		-	425	643	315	430		
	400	10,000	442	635	321	490		
PWWO	-	-	472	633	349	446		
	400	7,700	478	620	346	472		
PWDR	-	-	437	608	289	421		
	400	10,000	443	519	300	409		
PWMS	-	-	471	650	327	456		

 Table 4.
 Tensile yield and ultimate stress of various stainless steel welds, estimated from Charpy-impact data

Figure 11. Tensile yield and ultimate stress of stainless steel welds. Solid lines are the best fit to the data.

3.3 Fracture Toughness

Fracture toughness J–R curve tests were conducted at room temperature and 290°C on the PWWO, PWCE, and PWER welds. The fracture toughness results are given in Table 5. The effect of thermal aging on the fracture toughness J–R curves of the various materials is shown in Figs. 12–14. The J–R curves are expressed by the power–law relation $J_d = C(\Delta a)^n$ per ASTM Specifications E 813–85 and E 1152–87. The results indicate that, for all of the welds, the decrease in fracture toughness due to thermal aging is relatively small at room temperature and 290°C. The fracture toughness data are consistent with the Charpy–impact test results. The fracture properties of SMAWs are controlled by the distribution and morphology of second– phase particles. In these welds, failure occurs by the formation and growth of microvoids near hard inclusions. Such processes are relatively insensitive to thermal aging. Fracture resistance of the PWWO weld is inferior to that of the PWCE weld because of a higher density and a

NUREG/CR-6428

Specimen Wel Number ID			Test Temp (°C)	a/W	∆a Final ^a		Deformation J ^b			Modified Jb			Flow	Impact	Condition			
	Weld ID	Test No			Comp. (mm)	Opt. (mm)	JIC (kJ/m ²)	Tav	C (kJ/m ²)	n	JIC (kJ/m ²)	Tav	C (kJ/m ²)	n	Stress (MPa)	Energy ^c (J/cm ²)	Time (h)	Temp. (°C)
PWCE-02	PWCE	125	25	0.555	6.06	6.80	482.4	414	893.3	0.722	481.9	455	924.6	0.763	534	268.8	Unaged	_
PWCE-04	PWCE	129	25	0.550	8.70	8.87	566.0	384	920.2	0.631	562.6	425	948.7	0.676	538	168.3	10,000	400
PWCE-01	PWCE	123	290	0.548	7.49	8.47	363.6	544	648.8	0.713	363.6	599	672.0	0.756	373	353.3	Unaged	-
PWCE-03	PWCE	127	290	0.548	11.10	12.26	363.4	371	614.2	0.611	377.7	385	633.5	0.617	406	271.3	10,000	400
PWWO-03	PWWO	131	25	0.548	11.24	11.43	257.3	193	505.0	0.587	258.0	210	523.7	0.617	549	169.0	7,700	400
PWWO-01	PWWO	130	290	0.571	10.00	10.89	242.7	203	400.9	0.481	242.2	226	416.6	0.520	398	128.6	Chaged	
PWWO-04	PWWO	128	290	0.550	13.40	13.86	189.3	179	338.8	0.505	190.6	195	351.7	0.533	409	185.6	7,700	400
PWWO-02	PWWO	126	290	0.562	13.73	14.05	154.6	219	330.2	0.621	155.6	225	341.9	0.645	409	130.9	7,700	400
PWER-01	PWER	124	290	0.553	10.18	10.34	276.5	244	459.4	0.509	281.3	269	480.5	0.541	409	-	10,000	400

Fracture toughness test results for unaged and aged austenitic stainless steel weldments Table 5.

1

^aFinal crack extension: Comp. = determined from compliance and Opt. = measured optically. ^bJ_{IC} determined with a slope of four times the flow stress for the blunting line. ^cCharpy-impact energy at the test temperature.

Figure 12. Fracture toughness J–R curve for PWCE weld at (a) room temperature and (b) 290°C

Figure 13. Fracture toughness J-R curve for PWWO weld at (a) room temperature and (b) 290°C

Figure 14. Fracture toughness J-R curve for PWER weld at 290°C

larger size of inclusions. The ferrite phase has little or no effect on the fracture properties of the welds; ferrite is resistant to local failure because of its vermicular morphology and because it constitutes only 4–6% of the weld.

The existing fracture toughness J–R curve data from the work conducted for the U.S. Nuclear Regulatory Commission and compiled in the Pipe Fracture (PIFRAC) Database^{*} and from other sources, ^{29,30,32–34,37} are shown in Fig. 15. The PIFRAC database, consisting of the data from Refs. 22, 26, 35, 38, and 59, was originally developed at Materials Engineering Associates (MEA), ⁴² and updated later by Battelle Memorial Institute.⁴³ The results indicate that fracture properties of SS welds are relatively insensitive to filler metal.²⁹ However, the welding process significantly affects fracture toughness. In general, GTAWs exhibit higher fracture resistance than SMAWs or SAWs. The statistical differences in SAW and SMAW fracture toughness J–R curves has also been evaluated⁴⁴ and results indicate no difference between SAW and SMAW J–R curves. At 288°C, the lower–bound J–R curve for both SAWs and SMAWs, defined as the mean minus one standard deviation J–R curve, ⁴⁴ is represented by

$$J(kJ/m^2) = 73.4 + 83.5 \Delta a(mm)^{0.643}$$

where 73.4 kJ/m² is the fracture toughness J_{IC} . The lower-bound curve for SAWs and SMAWs shows very good agreement with the data in Fig. 15. The fracture toughness data in the technical basis document for ASME Section XI Article IWB-3640 analysis.²⁶ are somewhat higher than the curve given by Eq. 3. The available fracture toughness J-R curves for aged SMAWs, SAWs, and GTAWs are shown in Fig. 16.^{25,28,32} In these studies, the time and temperature of aging was sufficient to achieve saturation toughness, i.e., the minimum value

(3)

^{*} G. Wilkowski and N. Ghadiali, "Short Crack in Piping and Piping Welds," in Technical Data CD-ROM. Battelle Columbus Division, Columbus, OH (May 1995).

Figure 15. Fracture toughness J–R curves for stainless steel welds at (a) room temperature and (b) 288–427°C. Solid line represents lower-bound curve.

Figure 16. Fracture toughness J–R curves for aged stainless steel welds at (a) room temperature and (b) 288°C. Solid line represents lower-bound curve.

Figure 17. Fracture toughness J_{IC} for unaged and aged stainless steel welds

that could be achieved after long-term aging. The J_{IC} values for unaged and aged welds are plotted in Fig. 17. At reactor temperatures, the fracture toughness J_{IC} of SS welds can be as low as 40 kJ/m². Hence, the fracture toughness J-R curves for fully embrittled SMAWs and SAWs can be slightly lower than that predicted by Eq. 3; a conservative estimate for aged welds may be expressed as

$$J(kJ/m^2) = 40 + 83.5 \,\Delta a(mm)^{0.643}.$$
(4)

This curve is plotted in Fig. 16. The fracture toughness J–R curves for unaged and aged SS welds, i.e., Eqs. 3 and 4, respectively, are compared in Fig. 18 with the data for aged 316L and CF–3 welds^{24,32} and the data in the technical basis document for ASME Section XI Article IWB–3640.²⁶ Note that the data from Ref. 26 are J_{modified} rather than deformation J. The J–R curve suggested in Ref. 26 is somewhat higher than those predicted by Eqs. 3 and 4.

4 Conclusions

Thermal-aging-induced degradation of fracture toughness and Charpy-impact properties of several Type 304 SS pipe welds has been characterized at room temperature and 290°C. Thermal aging of the welds resulted in moderate decreases in Charpy-impact strength and fracture toughness at both room temperature and 290°C. For the various welds, USE decreased by 50–80 J/cm² (30–47 ft·lb.). The decrease in the fracture toughness J–R curve or J_{IC} is relatively small. Although tensile tests were not conducted on the welds, tensile proper-

Figure 18. Fracture toughness J–R curves represented by Eqs. 3 and 4 and the data for aged CF–3 and 316L welds and that in the technical basis document for ASME Code IWB–3640 analysis

ties were estimated from the Charpy-impact data. The results indicate little or no effect of thermal aging on tensile strength of the welds. Metallographic examination of the specimens indicates that the fracture properties of SS welds are controlled by the distribution and morphology of second-phase particles. Differences in the fracture resistance of the welds arises from differences in the density and size of inclusions. Failure occurs by the formation and growth of microvoids near hard inclusions. In this study, the effect of thermal aging on fracture properties is minimal because of the relatively low ferrite content (4–6% ferrite) and thin vermicular ferrite morphology in the welds.

The Charpy-impact, tensile, and fracture toughness results from this study have been compared with available data on SMAWs, SAWs, and GTAWs prepared with Types 308 or 316 SS filler metal. The data are consistent with results from other investigations. The fracture properties of SS welds are insensitive to filler metal. The welding process has a significant effect. The large variability in the data makes it difficult to establish the effect of the welding process on fracture properties of SS welds. In general, GTAWs exhibit higher fracture resistance than SMAWs or SAWs, and there is no difference between SAW and SMAW J–R curves. The Charpy-impact energy of some welds may be as low as 40 J.

The results indicate that the decrease in impact strength due to aging depends on the ferrite content and initial impact strength of the weld. Welds with relatively high strength show a large decrease whereas those with poor strength show minimal change. In SS welds with poor strength, failure occurs by the formation and growth of microvoids. Such processes are relatively insensitive to thermal aging. The existing data indicate that at reactor temperatures, the fracture toughness J_{IC} of thermally aged welds can be as iow as 40 kJ/m². A conservative estimate of J-R curve for aged SS welds may be given by $J = 40 + 83.5 \Delta a^{0.643}$.
References

- O. K. Chopra and H. M. Chung, "Effect of Low-Temperature Aging on the Mechanical Properties of Cast Stainless Steels," in *Properties of Stainless Steels in Elevated-Temperature Service*, M. Prager, ed., MPC Vol. 26, PVP Vol. 132, ASME, New York, pp. 79– 105 (1988).
- O. K. Chopra, "Thermal Aging of Cast Stainless Steels: Mechanisms and Predictions," in Fatigue, Degradation, and Fracture – 1990, W. H. Bamford, C. Becht, S. Bhandari, J. D. Gilman, L. A. James, and M. Prager, eds., MPC Vol. 30, PVP Vol. 195, ASME, New York, pp. 193-214 (1990).
- W. F. Michaud, P. T. Toben, W. K. Soppet, and O. K. Chopra, Tensile-Property Characterization of Thermally Aged Cast Stainless Steels, NUREG/CR-6142, ANL-93/35 (Feb. 1994).
- 4. A. Trautwein and W. Gysel, "Influence of Long-Time Aging of CF-8 and CF-8M Cast Steel at Temperatures Between 300 and 500°C on the Impact Toughness and the Structure Properties," in Spectrum, Technische Mitteilungen aus dem+GF+Konzern, No. 5 (May 1981); also in Stainless Steel Castings, V. G. Behal and A. S. Melilli, eds., STP 756, ASTM, Philadelphia, PA, pp. 165–189 (1982).
- S. Bonnet; J. Bourgoin, J. Champredonde, D. Guttmann, and M. Guttmann, "Relationship between Evolution of Mechanical Properties of Various Cast Duplex Stainless Steels and Metallurgical and Aging Parameters: An Outline of Current EDF Programmes," *Mater. Sci. Technol.*, 6, 221–229 (1990).
- 6. P. H. Pumphrey and K. N. Akhurst, "Aging Kinetics of CF3 Cast Stainless Steel in Temperature Range 300-400°C," *Mater. Sci. Technol.*, **6**, 211-219 (1990).
- Y. Meyzaud, P. Ould, P. Balladon, M. Bethmont, and P. Soulat, "Tearing Resistance of Aged Cast Austenitic Stainless Steel," presented at Int. Conf. on Thermal Reactor Safety (NUCSAFE 88), Oct. 1988, Avignon, France.
- H. M. Chung and O. K. Chopra, "Kinetics and Mechanism of Thermal Aging Embrittlement of Duplex Stainless Steels." in *Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors*, G. J. Theus and J. R. Weeks, eds., The Metallurgical Society, Warrendale, PA, pp. 359–370 (1988).
- P. Auger, F. Danoix, A. Menand, S. Bonnet, J. Bourgoin, and M. Guttmann, "Atom Probe and Transmission Electron Microscopy Study of Aging of Cast Duplex Stainless Steels," *Mater. Sci. Technol.*, 6, 301–313 (1990).
- M. Vrinat, P. Cozar, and Y. Meyzaud, "Precipitated Phases in the Ferrite of Aged Cast Duplex Stainless Steels," Scripta Metall., 20, 1101–1106 (1986).

- P. Joly, R. Cozar, and A. Pineau, "Effect of Crystallographic Orientation of Austenite on the Formation of Cleavage Cracks in Ferrite in an Aged Duplex Stainless Steel," *Scripta Metall.*, 24, 2235–2240 (1990).
- J. E. Brown, A. Cerezo, T. J. Godfrey, M. G. Hetherington, and G. D. W. Smith, "Quantitative Atom Probe Analysis of Spinodal Reaction in Ferrite Phase of Duplex Stainless Steel," *Mater. Sci. Technol.*, 6, 293–300 (1990).
- O. K. Chopra and W. J. Shack, Assessment of Thermal Embrittlement of Cast Stainless Steels, NUREG/CR-6177, ANL-94/2 (May 1994).
- O. K. Chopra, Estimation of Fracture Toughness of Cast Stainless Steels during Thermal Aging in LWR Systems – Revision 1, NUREG/CR-4513 Rev. 1, ANL-93/22 (Aug. 1994).
- O. K. Chopra, Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems: Semiannual Report October 1991-March 1992, NUREG/CR-4744, Vol. 7, No. 1, ANL-92/42 (April 1993).
- L. S. Aubrey, P. F. Wieser, W. J. Pollard, and E. A. Schoefer, "Ferrite Measurement and Control in Cast Duplex Stainless Steel," in *Stainless Steel Castings*, V. G. Behal and A. S. Melilli, eds., ASTM STP 756, pp. 126–164 (1982).
- P. S. Maiya and W. J. Shack, in Environmentally Assisted Cracking in Light Water Reactors: Annual Report, October 1983–September 1984, NUREG/CR-4287, ANL-85–33, pp. 67–70 (Aug. 1985).
- J. Y. Park, in Environmentally Assisted Cracking in Light Water Reactors: Annual Report, October 1981–September 1982, NUREG/CR-3292, ANL-83-27, pp. 23–29 (Feb. 1983).
- D. R. Diercks, Analysis of Cracked Core Spray Injection Line Piping from the Quad Cities Units 1 and 2 Boiling Water Reactors, Argonne National Laboratory Report ANL-83-99 (Dec. 1983).
- P. S. Maiya and W. J. Shack, in Environmentally Assisted Cracking in Light Water Reactors: Annual Report, October 1983–September 1984, NUREG/CR–4287, ANL–85–33, pp. 67–70 (Aug. 1985).
- S. Yukawa, Review and Evaluation of the Toughness of Austenitic Steels and Nickel Alloys After Long-Term Elevated Temperature Exposures, Welding Research Council Bulletin 378, New York (Jan. 1993).
- R. M. Horn, H. S. Mehta, W. R. Andrews, and S. Ranganath, Evaluation of the Toughness of Austenitic Stainless Steel Pipe Weldments, EPRI NP-4668, Electric Power Research Institute, Palo Alto, CA (June 1986).
- M. Strangwood and S. G. Druce, "Aging Effects in Welded Cast CF-3 Stainless Steel," Mater. Sci. Technol., 6, 237–248 (1990).

- C. G. Chipperfield, "A Toughness and Defect Size Assessment of Welded Stainless Steel Components," *Tolerance of Flaws in Pressurized Components*, Inst. Mech. Eng. pp. 125– 137 (1978).
- P. Ould, P. Balladon, and Y. Mehzaud, "Fracture Toughness of Austenitic Stainless Steel Welds," presented at Int. Colloquim on Stainless Steels, Ecole Polytechnique, Mons, Belgium, April 27–28, 1988.
- 26. J. D. Landes and D. E. McCabe, *Toughness of Austenitic Stainless Steel Pipe Welds*, EPRI NP-4768, Electric Power Research Institute, Palo Alto, CA (Oct. 1986).
- W. J. Mills, Fracture Toughness Variations for Stainless Steel Base Metcl and Welds, HEDL-TME 84–11, Hanford Engineering Development Laboratory, Richland, WA (May 1984).
- W. J. Mills, "Fractore Toughness of Aged Stainless Steel Primary Piping and Reactor Vessel Materials," J. Press. Vessel Technol., 109, 440–448 (1987).
- W. J. Mills, "Fracture Toughness of Stainless Steel Welds," in *Fracture Mechanics: Nineteenth Symposium*, T. A. Cruise, ed., ASTM STP 969, American Society for Testing and Materials, Philadelphia, PA, pp. 330–355 (1988).
- J. M. Vitek, S. A. David, D. J. Alexander, J. R. Keiser, and R. K. Nanstad, "Low Temperature Aging Behavior of Type 308 Stainless Steel Weld Metal," Acta Metall., 39, 503-516 (1991).
- 31. D. J. Alexander, K. B. Alexander, M. K. Miller, and R. K. Nanstad, "The Effect of Aging at 343°C on Type 308 Stainless Steel Weldments," in *Fatigue, Degradation, and Fracture –* 1990, W. H. Bamford, C. Becht, S. Bhandari, J. D. Gilman, L. A. James, and M. Prager, eds., MPC Vol. 30, PVP Vol. 195, ASME, New York, pp. 187–192 (1990).
- 32. G. E. Pale and S. J. Garwood, "Effect of Aging on Fracture Behaviour of Cast Stainless Steel and Weldments," *Mater. Sci. Technol.*, **6**, 230–236 (1990).
- 33. S. J. Garwood, "Fracture Toughness of Stainless Steel Weldments at Elevated Temperatures," in *Fracture Mechanics: 15th Symposium*, R. J. Sanford, ed., ASTM STP 833, American Society for Testing and Materials, Philadelphia, PA, pp. 333–359 (1984).
- M. G. Vassilaros, R. A. Hays, and J. P. Gudas, "Investigation of the Ductile Fracture Properties of Type 304 Stainless Steel Plate, Welds, and 4-inch Pipe," in *Proc. 12th Water Reactor Safety Research Information Meeting*, NUREG/CP-0058, Vol. 4, U.S. Nuclear Regulatory Commission, pp. 176–189 (1985).
- 35. J. P. Gudas and D. R. Anderson, "J₁–R Curve Characteristics of Piping Material and Welds," in Proc. 9th Water Reactor Safety Research Information Meeting, Oct. 1981, U.S. Nuclear Regulatory Commission.
- 36. J. R. Hawthorne and B. H. Menke, "Influence of Delta Ferrite Content and Welding Variables on Notch Toughness of Austenitic Stainless Steel Weldments," in *Structural*

Materials for Service at Elevated Temperatures in Nuclear Power Generation, G. V. Smith, ed., MPC-1, ASME, New York, pp. 351-364 (1975).

- F. Faure, B. Houssin, and P. Balladon, "Mechanical Properties of Automatic TIG/GTA Welds of Stainless Steel Piping in Nuclear Reactors," in *Trends in Welding Research*, ASM Conf., Gatlinburg, May 14–18, 1989.
- G. Wilkowski, et al., Analysis of Experiments on Stainless Steel Flux Welds, NUREG/CR-4878, BMI-2151 (April 1987).
- M. Nakagaki, C. Marshall, and F. Brust, Analysis of Cracks in Stainless Steel TIG Welds, NUREG/CR-4806, BMI-2144 (Dec. 1986).
- 40. Mechanical Testing of Austenitic Steel Welded Joints, Joint Final Report-Vol. 2, Commission of the European Communities, Ispra, Italy (1990).
- W. L. Server, "Impact Three–Point Bend Testing for Notched and Precracked Specimens," J. Test. Eval., 6, 29 (1978).
- 42. A. L. Hiser and G. M. Callahan, A User's Guide to the NRC's Piping Fracture Mechanics Database (PIFRAC), NUREG/CR-4894 (May 1987).
- 43. G. M. Wilkowski, et al., Short Creaks in Piping and Piping Welds, NUREG/CR-4599, Vols. 1 to 3, Nos. 1 and 2 (May 1991 to March 1994).
- 44. G. M. 'Vilkowski, et al., Probabilistic Pipe Fracture Evaluations for Leak-Rate-Dectection Applications, NUREG/CR-6004 (April 1995).

Appendix

J–R Curve Characterization

The J–R curve tests were performed according to ASTM Specifications E 813–85 (Standard Test Method for J_{IC} , a Measure of Fracture Toughness) and E 1152–87 (Standard Test Method for Determining J–R Curve). Compact–tension (CT) specimens, 25.4 mm (1 in.) thick with 10% side grooves, were used for the tests. The design of the CT specimen is similar to that of the specimen in ASTM Specification E 399, the notch region is modified in accordance with E 813 and E 5112, to permit measurement of load–line displacement by axial extensometer. The extensometer was mounted on razor blades that were screwed onto the specimen along the load line.

Prior to testing, the specimens were fatigue-precracked at room temperature and at load levels within the linear elastic range. The final ratio of crack length to width (a/W) after precracking was ≈ 0.55 . The final 1-mm (≈ 0.04 -in.) crack extension was carried out at a load range of 13–1.3 kN (2.92–0.292 kip), i.e., during precracking, K_{max} was <25 MPa·m^{1/2} (22.6 ksi·in.^{1/2}). After precracking, all specimens were side-grooved to 20% of the total specimen thickness, i.e., 10% per side, to ensure uniform crack growth during testing.

The J–R curve tests were performed on an Instron testing machine with 90 kN (20 kip) maximum load capacity. The load and load–line displacement data were digitized with digital voltmeters and stored on a disk for posttest analysis and correction of test data. The single-specimen compliance procedure was used to estimate crack extension. Rotation and modulus corrections were applied to the compliance data. Both deformation theory and modified forms of the J integral were evaluated for each test.

After each test, the specimen was heated to 350°C to heat-tint the exposed fracture surface. The specimen was then fractured at liquid N temperature. The initial (i.e., fatigue precrack) and final (test) crack lengths were measured optically for both halves of the fractured specimen. The crack lengths were determined by the 9/8 averaging technique, i.e., the two near-surface measurements were averaged and the resultant value was averaged with the remaining seven measurements.

The fracture toughness J_{IC} values were determined in accordance with ASTM Specification E 813–81 and E 813–85. For the former, J_{IC} is defined as the intersection of the blunting line given by $J = 2\sigma_f \Delta a$, and the linear fit of the J–vs.- Δa test data between the 0.15– and 1.5–mm exclusion lines. The flow stress σ_f , is the average of the 0.2% yield stress and the ultimate stress. The ASTM Specification E 813–85 procedure defines J_{IC} as the intersection of the 0.2–mm offset line with the power–law fit (of the form $J = C\Delta a^n$) of the test data between the exclusion lines. However, a slope of four times the flow stress ($4\sigma_f$) was used to define the blunting line. The tearing modulus was also evaluated for each test. The tearing modulus is given by T = E(dJ/da)/\sigma_f^2, where E is the Young's modulus and σ_f is the flow stress. The ASTM E 813–81 value of tearing modulus is determined from the slope dJ/da of the linear fit to the J–vs.- Δa data. For the power–law curve fits, an average value of dJ/da was calculated^{A–1} to obtain the average tearing modulus.

The test data, as well as an analysis and qualification of the data, are presented in Tables A-1 to A-27. Photographs of the fracture surface of the test specimens and deformation and modified J-R curves for the various welds are shown in Figs. A-1 to A-27.

Data Analysis Procedures

The compliance method was used to determine crack length during the tests. The Hudak–Saxena calibration equation^{A-2} was used to relate specimen load–line elastic compliance C_i on an unloading/loading sequence with crack length a_i. The compliance, i.e., slope ($\Delta\delta/\Delta P$) of the load–line displacement–vs.–load record obtained during the unloading/loading sequence, is given by

$$U_{LL} = \frac{1}{\left(B_e E_e C_1\right)^{1/2} + 1}$$
(A-1)

and

$$a_1/W = 1.000196 - 4.06319(U_{LL}) + 11.242(U_{LL})^2 - 106.043(U_{LL})^3$$

$$+464.335(U_{LL})^{*} - 650.677(U_{LL})^{\circ}, \qquad (A-2)$$

where E_e is the effective elastic modulus, B_e is the effective specimen thickness expressed as B – $(B - B_N)^2/B$, and W is specimen width.

Both rotation and modulus corrections are applied to the compliance data. The modulus correction $^{A-2}$ is used to account for the uncertainties in testing, i.e., in the values of initial crack length determined by compliance and measured optically. The effective modulus E_M is determined from

$$\mathbf{E}_{e} = \frac{1}{\mathbf{C}_{o}\mathbf{B}_{e}} \left(\frac{\mathbf{W} + \mathbf{a}_{o}}{\mathbf{W} - \mathbf{a}_{o}}\right)^{1/2} \mathbf{f}\left(\frac{\mathbf{a}_{o}}{\mathbf{W}}\right)$$
(A-3)

and

$$f\left(\frac{a_{o}}{W}\right) = 2.163 + 12.219 \left(\frac{a_{o}}{W}\right) - 20.065 \left(\frac{a_{o}}{W}\right)^{2} - 0.9925 \left(\frac{a_{o}}{W}\right)^{3} + 20.609 \left(\frac{a_{o}}{W}\right)^{4} - 9.9314 \left(\frac{a_{o}}{W}\right)^{5},$$
 (A-4)

where C_0 is initial compliance, B_e is effective specimen thickness, and a_0 is initial physical crack size that has been measured optically.

To account for crack-opening displacement in CT specimens, the crack size should be corrected for rotation.^{A-3} The corrected compliance is calculated from

$$\theta = \operatorname{Sin}^{-1} \left[\left(\frac{\mathrm{d}_{\mathrm{m}}}{2} + \mathrm{D} \right) / \left(\mathrm{D}^{2} + \mathrm{R}^{2} \right)^{1/2} \right] - \tan^{-1} \left(\frac{\mathrm{D}}{\mathrm{R}} \right)$$
(A-5)

and

$$C_{c} = C_{m} / \left[\left(\frac{H^{*}}{R} \sin\theta - \cos\theta \right) \left(\frac{D}{R} \sin\theta - \cos\theta \right) \right],$$
 (A-6)

where C_c and C_m are the corrected and measured elastic compliance at the load line, H^{*} is the initial half span of load points, R is the radius of rotation of the crack centerline (= (W+a)/2), a is the updated crack length, D is one-half of the initial distance between the displacement points (i.e., one-half of the gage length), d_m is the total measured load-line displacement, and θ is the angle of rotation of a rigid-body element about the unbroken midsection line.

The J value is calculated at any point on the load-vs.-load-line displacement record by means of the relationship

$$J = J_{el} + J_{pl}, \tag{A-7}$$

where J_{el} is the elastic component of J and J_{pl} is the plastic component of J. For a CT specimen, at a point corresponding to the coordinates P_i and δ_i on the specimen load-vs.-load-line displacement record, a_i is $(a_0 + \Delta a_i)$, and the deformation J is given by

$$J_{d(i)} = \frac{(K_i)^2 (1 - v^2)}{E_e} + J_{pl(i)}.$$
 (A-8)

where, from ASTM method E 399,

$$\mathbf{K}_{(i)} = \left[\frac{\mathbf{P}_{i}}{\left(\mathbf{B}\mathbf{B}_{N}\mathbf{W}_{e}\right)^{1/2}}\right] \mathbf{f}\left(\frac{\mathbf{a}_{i}}{\mathbf{W}}\right),\tag{A-9}$$

with

$$f\left(\frac{a_{i}}{W}\right) = \left[2 + \left(\frac{a_{i}}{W}\right)\right] \left[0.886 + 4.64\left(\frac{a_{i}}{W}\right) - 13.32\left(\frac{a_{i}}{W}\right)^{2} + 14.72\left(\frac{a_{i}}{W}\right)^{3} - 5.6\left(\frac{a_{i}}{W}\right)^{4}\right] \left/ \left[1 - \left(\frac{a_{i}}{W}\right)\right]^{3/2}$$
(A-10)

and

$$J_{pl(i)} = \left[J_{pl(i-1)} + \left(\frac{\eta_i}{b_i}\right) \frac{A_{pl(i)} - A_{pl(i-1)}}{B_N} \right] \left[1 - \left(\frac{\gamma_i}{b_i}\right) (a_i - a_{i-1}) \right],$$
(A-11)

where v is Poisson's ratio, b is the uncracked ligament, A_{pl} is the plastic component of the area under the load–vs.–load–line displacement record, η is a factor that accounts for the tensile component of the load as given by

$$\eta_i = 2 + 0.522 \, b_i / W \,. \tag{A-12}$$

and γ , is a factor that accounts for limited crack growth as given by

$$\gamma_1 = 1 + 0.76 \,\mathrm{b_1/W}$$
. (A-13)

Modified J values (J_M) are calculated from the relationship (from Ref. A-4)

$$J_{M(i)} = J_{d(i)} + \Delta J_i, \qquad (A-14)$$

where

$$\Delta J_{i} = \Delta J_{i-1} + \left(\frac{\gamma_{i}}{b_{i}}\right) J_{\text{pl}(i)}(a_{i} - a_{i-1}). \tag{A-15}$$

According to ASTM Specification E 1152–87, the J_D –R curves are valid only for crack growth up to 10% of the initial uncracked ligament. Also, they show a dependence on specimen size. The J_M –R curves have been demonstrated to be independent of specimen size and yield valid results for larger crack growth.

Data Qualification

The various validity criteria specified in ASTM Specification E 813–85 for J_{IC} and in ASTM Specification E 1152–87 for J–R curves were used to qualify the results from each test. The various criteria include maximum values of crack extension and J–integrals; limits for initial uncracked ligaments, effective elastic modulus, and optically measured physical crack lengths; and spacing of J– Δ a data points. The ω criterion (from Ref. A–5) was also used to ensure that a region of J dominance exists. For the present investigation, all of the welds yielded invalid test results; in most cases because of the shape of the final crack front. In some cases, specimen thickness was inadequate because of the relatively high toughness of the material. The J_{max} limit for the J–vs,– Δ a data was ignored in most tests to obtain a good power–law fit of the test data.

Appendix References

- A-1. A. L. Hiser, F. J. Loss, and B. H. Menke, J-R Curve Characterization of Irradiated Low Upper Shelf Welds, NUREG/CR-3506, MEA-2028, Materials Engineering Associates, Inc., Lanham, MD (April 1984).
- A–2. A. Saxena and S. J. Hudak, Jr., "Review and Extention of Compliance Information for Common Crack Growth Specimen," Int. J. Fracture, 5, 453–468 (1978).
- A-3. F. J. Loss, B. H. Menke, and R. A. Gray, Jr., "Development of J--R Curve Procedures," in NRL-EPRI Research Program (RP 886-2), Evaluation and Prediction of Neutron

NUREG/CR-6428

Embrittlement in Reactor Pressure Vessel Materials Annual Progress Report for FY 1978, J. R. Hawthorn, ed., NRL Report 8327, Naval Research Laboratory, Annapolis, MD (Aug. 1979).

- A-4. H. A. Ernst, "Material Resistance and Instability Beyond J-Controlled Crack Growth," Elastic-Plastic Fracture: Second Symp., Vol. I: Inelastic Crack Analysis, ASTM STP 803, American Society for Testing and Materials, Philadelphia (1983).
- A-5. J. W. Hutchinson and P. C. Paris, "The Theory of Stability Analysis of J–Controlled Crack Growth," *Elastic Plastic Fracture*, ASTM STP 668, American Society for Testing and Materials, Philadelphia, pp. 37–64 (1983).

Test Number: 0125Material Type: Weld MetalAging Temp: UnagedThickness: 25.36 mmWidth: 50.78 mm		Test Temp: 25°CHeat Number: PWCEAging Time: -Net Thickness: 20.18 mmFlow Stress: 534.00 MPa			
Unload Number	Jd (kJ/m ²)	Jm (kJ/m ²)	Δa (mm)	Load (kN)	Deflection (mm)
	15.00				
1	15.20	15.20	0.0000	23.443	0.250
2	02.28	52.31	0.0280	30.940	0.502
3	102.22	102.54	0.1172	43.820	0.755
4	107.48	158.72	0.2672	47.057	1.004
5	227.48	228.42	0.2367	48.949	1.305
6	301.95	304.11	0.3225	50.353	1.606
7	377.68	380.14	0.3385	51.045	1.911
8	454.79	456.23	0.2947	51.581	2.210
9	529.58	536.70	0.4997	52.029	2.509
10	603.85	613.98	0.5935	52.481	2.811
11	680.85	695.23	0.7086	52.830	3.116
12	755.23	772.60	0.7808	52.807	3.408
13	833.02	853.72	0.8529	52.943	3.710
14	907.13	935.76	1.0088	52.928	4.010
15	981.59	1016.74	1.1262	52.940	4.310
16	1056.79	1098.06	1.2275	52.844	4.610
17	1128.50	1180.43	1.3912	52.693	4.908
18	1201.74	1262.91	1.5234	52.370	5.212
19	1273.41	1346.72	1.6857	52.211	5.517
20	1352.00	1423.84	1.6673	52.127	5.809
21	1431.84	1540.61	2.0977	51.770	6.208
22	1536.75	1642.96	2.0701	51.538	6.609
23	1628.47	1758.04	2.3059	51.313	7.008
24	1720.16	1867.79	2.4772	50.992	7.411
25	1805.54	1978.68	2.7049	50.287	7.809
26	1912.16	2116.36	2.9638	49.847	8.307
27	2013.56	2254.97	3.2545	49.355	8.808
28	2134.33	2389.33	3.3538	48.396	9.309
29	2239.91	2528.49	3.5853	47.767	9.807
30	2341.12	2664.76	3.8140	47.301	10.307
31	2422.73	2804.41	4.1745	46.812	10.812
32	2553.13	2963.93	4.3445	45.997	11.411
33	2664.57	3129.43	4.6428	45.451	12.008
34	2792.24	3289.24	4.8103	44.687	12.607
35	2897.83	3454.39	5.1055	43.776	13.209
36	2992.22	3614.99	5.4187	43.160	13.808
37	3106.00	3803.53	5.7538	42.271	14.511
38	3218.54	3988.74	6.0633	41.357	15.208

Table A-1. Test data for specimen PWCE-02

Table A-2. Deformation J_{IC} and J-R curve results for specimen PWCE-02

Test Number Material Type Aging Temp Thickness Width Modulus E Modulus E Init. Crack Final Crack Final Crack

Linear Fit

Intercept B Fit Coeff. R JIC $\Delta a (J_{IC})$ T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{1C}(0.20)$ $\Delta a (J_{1C})$ T average JIC(0.15) $\Delta a (J_{1C})$ T average Kic

:0125: Weld Metal : Unaged : 25.36 mm : 50.78 mm : 195.06 GPa : 193.10 GPa : 28.2063 mm : 35.0094 mm : 34.2695 mm

$J = B + M(\Delta a)$

: 283.992 kJ/m² : 0.9900 : 394.3 kJ/m² : 0.185 mm : 408.7

$J = C(\Delta a)^n$

 $: 893.25 \text{ kJ/m}^2$: 0.9962 : 482.4 kJ/m² : 0.426 mm : 414.3 : 413.0 kJ/m² : 0.343 mm : 419.5 : 559.4 MPa-m^{0.5} Heat Number Aging Time Net Thickness Flow Stress (Effective) (Nominal) Init. a/w Final a/w Final a/w

Test Temp

Slope M (14 Data Points) (2251.4 in.-ib/in.2) (0.0073 in.) (J_{IC} at 0.15)

: PWCE 2 ---: 20.18 mm : 534.00 MPa

: 25°C

: 0.5554 (Measured) : 0.6894 (Measured) : 0.6748 (Compliance)

: 597.47 kJ/m³

Exponent n (14 Data Points) (2754.9 in.-lb/in.²) (0.0168 in.) (JIC at 0.20) (2358.4 in.-lb/in.²) (0.0135 in.) (JIC at 0.15)

: 0.7216

JIC Validity & Data Qualification (E 813-85)

Jmax allowed : 803.70 kJ/m² Data Limit : Jmax Ignored Δa (max) allowed : 2.251 mm Data Limit : 1.5 Exclusion line Data Points : Zone A = 5Data Point Spacing : OK Bnet or bo size : OK : OK dJ/da at J_{IC} : 9 Outside Limit ao Measurement : 1 Outside Limit a_o Measurement af Measurement : Near-surface Crack size estimate : Inadequate E Effective : OK JIC Estimate : Invalid

 $(J_{\text{max}} = b_0 \sigma_f / 15)$ (at 1.5 exclusion line)

Zone B = 4

Outside Limit (by Compliance)

J-R curve Validity & Data Qualification (E 1152-86)

Jmax allowed Δa (max) allowed Δa (max) allowed Data Points Data Point Spacing J-R Curve Data

: 538.89 kJ/m² : 2.258 mm : 6.405 mm : Zone A = 20 : Inadequate : Invalid

 $(J_{max} = B_{net} \sigma_f/20)$ $(\Delta a = 0.1b_0)$ $(\omega = 5)$ Zone B = 2

Table A-3. Modified J_{IC} and J-R curve results for specimen PWCE-02

Linear Fit Intercept B Fit Coeff. R J_{IC} Δa (J_{IC}) T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{IC}(0.20)$ $\Delta a (J_{IC})$ T average $J_{IC}(0.15)$ $\Delta a (J_{IC})$ T average K_{jc} **J = B + M(**() : 255.520 kJ/m² : 0.9944 : 369.1 kJ/m² : 0.173 mm : 449.7

J = C(Δa)ⁿ : 924.64 kJ/m² : 0.9977 : 481.9 kJ/m² : 0.426 mm : 454.7 : 406.1 kJ/m² : 0.340 mm : 459.6 : 585.5 MPa-m^{0.5} Exponent n : 0.7629(15 Data Points) (2751.5 in.-lb/in.²) (0.0168 in.) (J_{IC} at 0.20) (2319.0 in.-lb/in.²) (0.0134 in.) (J_{IC} at 0.15)

Figure A-1. Fracture surface of unaged weld metal PWCE tested at 25°C

Figure A-2. Deformation J–R curve for unaged weld metal specimen PWCE–02 tested at 25°C. Blunting, 0.2–mm offset, and 1.5–mm offset lines are shown as dashed lines.

Figure A-3. Modified J–R curve for unaged weld metal specimen PWCE–02 tested at 25°C. Blunting, 0.2–mm offset, and 1.5–mm offset lines are shown as dashed lines.

Test Number: 0129Material Type: Weld MetalAging Temp: 400°CThickness: 25.37 mmWidth: 50.80 mm		Test Temp: 25°CHeat Number: PWCEAging Time: 10,000 hNet Thickness: 20.29 mmFlow Stress: 538.00 MPa			
Unload	Jd (h 1 (m2)	$J_{\rm m}$	Δa (mm)	Load	Deflection
Number	(80/11-)	(KJ/II~)	(mm)	(KIN)	(mm)
1	16.29	16.28	.0.1303	26 132	0.251
2	58.75	59.01	0.1101	42.335	0.201
3	100.62	100.80	0.0805	48 905	0.703
4	150.27	150.79	0.1433	51,989	0.905
5	201.40	202.58	0.2264	53.926	1.106
6	253.46	256.21	0.3695	55.297	1.306
7	306.00	308.03	0.3180	56.009	1.507
8	362.41	364.26	0.3077	56.437	1 708
9	418.59	422.46	0.4064	57 337	1 911
10	471.26	477.36	0.5011	57.678	2.107
11	524.22	535.12	0.6809	57.882	2.307
12	582.23	588.55	0.5289	58.212	2.510
13	642.26	649.10	0.5442	58.329	2.710
14	700.26	705.55	0.5023	58.455	2.908
15	754.28	768.16	0.7150	58.539	3.112
16	806.09	823.63	0.7990	58.773	3.311
17	860.16	880.65	0.8620	58.739	3.508
18	913.74	940.68	0.9902	58.583	3.710
19	963.16	999.13	1.1594	58.668	3.908
20	1014.99	1058.42	1.2910	58.897	4.111
21	1069.51	1115.39	1.3317	58.766	4.308
22	1128.93	1175.39	1.3408	58.956	4.510
23	1190.65	1254.22	1.5925	58.914	4.759
24	1267.00	1322.92	1.4871	58.483	5.009
25	1328.22	1405.16	1.7607	58.379	5.260
26	1385.09	1478.41	1.9630	57.978	5.510
27	1459.29	1549.27	1.9239	57.701	5.761
28	1510.18	1630.78	2.2657	57.500	6.010
29	1563.64	1701.56	2.4509	57.153	6.258
30	1640.00	1779.10	2.4630	56.718	6.525
31	1701.40	1852.14	2.5761	56.527	6.759
32	1751.71	1929.25	2.8267	55.871	7.008
33	1011.93	2001.10	2.9317	54.707	7.259
04	1010.87	2076.21	3.1307	54.797	7.011
36	1984 76	2201.04	3 3516	53 796	8.010
37	2029 35	2318 46	3 7392	53 166	8 309
38	2091.51	2402.24	3 9002	52 563	8.611
39	2143.87	2492 01	4 1688	51 562	8 908
40	2200.24	2578.59	4.3782	50.911	9.209
41	2254.35	2666.79	4.6063	50.170	9.510
42	2305.78	2753.14	4.8323	49.266	9.809
43	2354.50	2839.71	5.0698	48.875	10.108
44	2440.92	2954.13	5.2376	48.005	10.508
45	2505.67	3073.20	5.5504	47.293	10.909
46	2570.63	3185.61	5.8132	46.219	11.308
47	2629.74	3299.21	6.1042	45.356	11.707
48	2685.53	3411.48	6.3951	44.138	12.107
49	2745.00	3522.81	6.6529	43.109	12.510
50	2810.56	3631.55	6.8601	41.988	12.909
51	2851.33	3743.30	7.1901	40.930	13.307
52	2896.23	3878.73	7.5957	39.323	13.806
53	2942.63	4008.44	7.9557	37.910	14.306
54	2967.49	4139.43	8.3994	36.226	14.808
55	3015.03	4261.21	8.6994	35.079	15.307

Table A-4. Test data for specimen PWCE-04

Table A-5. Deformation JIC and J-R curve results for specimen PWCE-04

Test Number :0129 Test Temp : 25°C Material Type : Weld Metal Heat Number : PWCE Aging Temp : 400°C Aging Time : 10.000 h Thickness : 25.37 mm Net Thickness : 20.29 mm Width : 50.80 mm Flow Stress : 538.00 MPa Modulus E : 207.57 GPa (Effective) Modulus E : 193.10 GPa (Nominal) Init. Crack : 27.9156 mm Init. a/w : 0.5495 (Measured) Final Crack : 36.7875 mm Final a/w : 0.7242 (Measured) Final Crack : 36.6151 mm Final a/w : 0.7208 (Compliance) Linear Fit $J = B + M(\Delta a)$ Intercept B : 371.765 kJ/m² Slope M : 540.66 kJ/m³ Fit Coeff. R : 0.9830 (13 Data Points) JIC : 496.5 kJ/m² (2835.1 in.-lb/in.2) $\Delta a (J_{IC})$: 0.231 mm (0.0091 in.) T average : 387.7 (J_{IC} at 0.15) **Power-Law Fit** $J = C(\Delta a)^n$ Coeff. C : 920.22 kJ/m² Exponent n : 0.6311 Fit Coeff. R : 0.9839 (13 Data Points) J_{IC}(0.20) : 566.0 kJ/m² (3232.2 in.-lb/in.2) $\Delta a (J_{1C})$: 0.463 mm (0.0182 in.) T average : 383.8 (J_{IC} at 0.20) JIC(0.15) : 502.6 kJ/m² (2870.0 in.-lb/in.2) Aa (Jic) : 0.384 mm (0.0151 in.) T average : 389.9 (J_{IC} at 0.15) : 560.8 MPa-m^{0.5} Kic JIC Validity & Data Qualification (E 813-85) Jmax allowed : 820.79 kJ/m² $(J_{\text{max}} = b_0 \sigma_f / 15)$ Data Limit : Jmax Ignored Δa (max) allowed : 2.204 mm (at 1.5 exclusion line) : 1.5 Exclusion line Data Limit Data Points : Zone A = 3Zone B = 4: OK Data Point Spacing Bnet or bo size : Inadequate dJ/da at J_{1C} : OK : 2, 3, 7, & 8 Outside Limit ao Measurement Final crack shape : OK Crack size estimate : OK (by Compliance) E Effective : OK

J-R curve Validity & Data Qualification (E 1152-86)

: Invalid

J_{IC} Estimate

Jmax allowed	$: 545.72 \text{ kJ/m}^2$	$(J_{max} = B_{net} \sigma_f/20)$
∆a (max) allowed	: 2.288 mm	$(\Delta a = 0.1b_0)$
Δa (max) allowed	: 5.694 mm	$(\omega = 5)$
Data Points	: Zone A = 23	Zone $B = 4$
Data Point Spacing	: Inadequate	
J-R Curve Data	: Invalid	

Table A-6. Modified JIC and J-R curve results for specimen PWCE-04

Linear Fit Intercept B Fit Coeff. R J_{IC} Δa (J_{IC}) T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{IC}(0.20)$ $\Delta a (J_{IC})$ T average $J_{IC}(0.15)$ $\Delta a (J_{IC})$ T average K_{jc} **J = B + M(∆a)** : 336.028 kJ/m² : 0.9862 : 467.2 kJ/m² : 0.217 mm : 433.3

J = C(Δa)ⁿ : 948.65 kJ/m² : 0.9865 : 562.6 kJ/m² : 0.461 mm : 424.6 : 492.4 kJ/m² : 0.379 mm : 430.6 : 585.0 MPa-m^{0.5} Slope M : 604.26 kJ/m³ (13 Data Points) (2667.9 in.-lb/in.²) (0.0085 in.) (J_{IC} at 0.15)

Figure A-4. Fracture surface of aged weld metal PWCE tested at 25°C

Figure A-5. Deformation J-R curve for weld metal specimen PWCE-04 aged at 400°C for 10,000 h and tested at 25°C. Blunting, 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

Figure A-6. Modified J-R curve for weld metal specimen PWCE-04 aged at 400°C for 10,000 h and tested at 25°C. Blunting, 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

Test Num Material 7 Aging Ten Thickness Width	ber : 011 Type : We np : Un s : 25. : 50.	23 ld Metal aged 35 mm 81 mm	Test Tem Heat Num Aging Tin Net Thick Flow Stre	p : 290 nber : PW ne : - tness : 20. ess : 373	0°C CE 23 mm 3.00 MPa
Unload Number	J _d (kJ/m ²)	Jm (kJ/m ²)	Δa (mm)	Load (kN)	Deflection (mm)
1	12.83	12.81	-0.1801	20 644	0.251
2	37 25	37.52	0.1993	30 462	0.439
3	61.29	61.62	0.2326	35 392	0.603
4	87.70	87.93	0.2021	38 210	0.754
5	126.10	125.84	0.1014	40.378	0.955
6	177.86	179.53	0.3499	41.933	1.209
7	238.23	236.54	0.0504	43.008	1.508
8	322.42	328.92	0.5599	43 798	1.907
9	407.13	406.81	0.2347	44 160	2 307
10	490.72	502.15	0.6859	44 638	2 707
11	568.31	588 66	0.9751	44 736	3.106
12	635 35	651.68	0.8596	44.684	3 408
13	762 11	790.63	1.1449	44 379	4.007
14	816.01	857.48	1 4240	44.091	4.309
15	874 14	922.90	1 5692	43 745	4.608
16	933.05	992.24	1.7619	43 685	4.000
17	996 51	1057 48	1 7025	43 150	5 213
18	1057 56	1124.85	1.7520	49.100	5511
10	1111 88	1124.00	2 0800	42.000	5.810
20	1157 57	1260.04	2.0099	41.654	6 114
20	1202.04	1200.04	2 6550	41.054	6 407
20	1203.04	1323.00	2.0000	41.200	6.710
22	1200.40	1456.06	2.0007	40.786	7.002
20	1251.00	1450.50	3.2100	40.190	7.002
24	1307.30	1515.39	3.1271	39.700	7.509
20	1390.30	1000.20	3,4079	39.192	7.009
20	1440.02	1711 50	3.6303	30.730 20.16A	2.909
21	1504.17	1711.00	3.0700	30.104	0.210
20	1007.90	1000.27	3.9220	37.393	0.009
29	1021.00	1000.00	4.2220	30.700	9.012
30	1712.17	1988.23	4.3270	30.152	9.509
31	1795.79	2110.11	4.0941	04.090	10.108
32	1040.00	2230.71	4.9499	34.100	10.707
33	1949.08	2501.09	5.0000	21 415	12.109
34	2021.18	2010.87	6.5400	31.415	12.108
35	2071.40	2004.72	0.0429	29.993	12.008
30	2149.20	2704.49	0.8670	29.005	13.511
37	2220.28	2917.01	7.1945	20.203	14.207
38	2306.57	3049.09	7.4851	27.281	14.911

Table A-7. Test data for specimen PWCE-01

Table A-8. Deformation J_{IC} and J-R curve results for specimen PWCE-01

Test Number Material Type Aging Temp Thickness Width Modulus E Modulus E Init. Crack Final Crack Final Crack

Linear Fit

Intercept B Fit Coeff. R JIC Aa (JIC) T average

Power Fit Law

Coeff. C Fit Coeff. R $J_{1C}(0.20)$ $\Delta a (J_{IC})$ T average JIC(0.15) $\Delta a (J_{1C})$ T average Kic

:0123 : Weld Metal : Unaged : 25.35 mm : 50.81 mm : 175.41 GPa : 180.00 GPa : 27.8406 mm : 36.3125 mm : 35.3257 mm

$J = B + M(\Delta a)$

: 213.964 kJ/m² : 0.9833 : 300.6 kJ/m² : 0.201 mm : 542.3

$J = C(\Delta a)^n$

 $: 648.82 \text{ kJ/m}^2$: 0.9783 $: 363.6 \text{ kJ/m}^2$: 0.444 mm : 543.7 : 313.2 kJ/m² : 0.360 mm : 550.7 : 452.8 MPa-m^{0.5}

Test Temp Heat Number Aging Time Net Thickness Flow Stress (Effective) (Nominal) Init. a/w Final a/w Final a/w

Slope M (10 Data Points) (1716.6 in.-lb/in.2) (0.0079 in.) (J_{IC} at 0.15)

: 430.09 kJ/m³

: 0.5479 (Measured)

: 0.7147 (Measured)

: 0.6953 (Compliance)

: 290°C

: PWCE

: 20.23 mm

: 373.00 MPa

1-

Exponent n (10 Data Points) (2076.1 in.-lb/in.2) (0.0175 in.) (J_{IC} at 0.20) (1788.5 in.-lb/in.²) (0.0142 in.) (JIC at 0.15)

: 0.7127

line)

JIC Validity & Data Qualification (E813-85)

: 571.17 kJ/m ²	$(J_{\text{max}} = b_0 \sigma_f / 15)$
: Jmax Ignored	
: 2.283 mm	(at 1.5 exclusion
: 1.5 Exclusion line	
: Zone A = 2	Zone $B = 4$
: OK	
: Inadequa e	
: OK	
: Near-surface	Outside Limit
: OK	
: Inadequate	(by Compliance)
: OK	
: Invalid	
	: 571.17 kJ/m ² : J _{max} Ignored : 2.283 mm : 1.5 Exclusion line : Zone A = 2 : OK : Inadequate : OK : Inadequate : OK : Inadequate : OK : Inadequate

J-R curve Validity & Data Qualification (E 1152-86)

Jmax allowed	$: 377.21 \text{ kJ/m}^2$	$(J_{\text{max}} = b_{\text{net}} \sigma_f/20)$
∆a (max) allowed	: 2.297 mm	$(\Delta a = 0.1b_0)$
∆a (max) allowed	: 6.339 mm	$(\omega = 5)$
Data Points	: Zone A = 15	Zone $B = 3$
Data Point Spacing	: Inadequate	
J-R Curve Data	: Invalid	

Table A-9. Modified J_{IC} and J-R curve results for specimen PWCE-01

Linear Fit Intercept B Fit Coeff. R J_{IC} Δa (J_{IC}) T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{IC}(0.20)$ $\Delta a (J_{IC})$ T average $J_{IC}(0.15)$ $\Delta a (J_{IC})$ T average K_{jc} **J = B + M(∆a)** : 187.921 kJ/m² : 0.9864 : 276.8 kJ/m² : 0.186 mm : 604.0

J = C(Δ**a**)^{**n**} : 671.99 kJ/m² : 0.9816 : 363.6 kJ/m²

: 363.6 kJ/m² : 0.444 mm : 599.2 : 308.2 kJ/m² : 0.357 mm : 605.8 : 475.1 MPa-m^{0.5} Slope M (10 Data Points) (1580.5 in.-lb/in.²) (0.0073 in.) (J_{IC} at 0.15)

: 479.05 kJ/m³

Exponent n : 0.7558(10 Data Points) (2076.2 in.-lb/in.²) (0.0175 in.) (J_{IC} at 0.20) (1760.0 in.-lb/in.²) (0.0140 in.) (J_{IC} at 0.15)

Figure A–7. Fracture surface of unaged weld metal PWCE tested at 290°C

Figure A-9. Modified J-R curve for unaged weld metal specimen PWCE-01 tested at 290°C. Blunting 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

Test Number: 0127Material Type: Weld MetalAging Temp: 400°CThickness: 25.35 mmWidth: 50.82 mm		Test Temp: 290°CHeat Number: PWCEAging Time: 10,000 hNet Thickness: 20.26 mmFlow Stress: 406.00 MPa			
Unload	J_{d} (k.1/m ²)	J_{m}	Δa (mm)	Load (kN)	Deflection (mm)
Humber	(10)/111)	(hD/m/)	(initia)	(R(4)	(iiiii)
1	13.29	13.26	-0.2959	21.718	0.252
2	48.82	49.04	-0.0594	34.743	0.503
3	92.42	92.59	-0.0738	40.085	0.755
4	142.70	143.64	0.0613	42.514	1.006
5	203.93	204.99	0.0748	44.024	1.305
6	268.19	270.91	0.2063	44.840	1.606
7	340.56	346.12	0.3738	45.440	1.946
8	384.47	392.79	0.5157	45.613	2.157
9	418.08	427.09	0.5480	45.984	2.315
10	461.11	470.04	0.5447	45.862	2.505
11	526.21	541.32	0.7650	45.508	2.809
12	586.62	609.83	1.0197	45.358	3.112
13	649.24	675.58	1.1072	45.006	3.410
14	715.39	743.40	1.1491	44.861	3.711
15	769.56	814.16	1.5298	44.556	4.008
16	831.39	878,96	1.5925	43.992	4.312
17	878.66	951.43	2.0852	43.519	4.612
18	938.35	1013.63	2.1308	42.737	4.916
19	987.24	1082.53	2.4709	42.248	5.208
20	1035.47	1148.47	2.7541	41.333	5.510
21	1094.81	1211.85	2.8147	40.599	5.810
22	1131.50	1282.96	3.3051	39.741	6.114
23	1187.67	1340.28	3.3208	38.887	6.410
24	1215.85	1410.90	3.8681	37.802	6.712
25	1254.21	1469.43	4.1176	37.194	7.011
26	1305.12	1555.82	4.5313	36.101	7.412
27	1356.82	1635.95	4.8448	34.645	7.807
28	1398.49	1719.30	5.2817	33.541	8.212
29	1448.15	1795.89	5.5504	32.323	8.609
30	1488.61	1875.12	5.9200	31.525	9.006
31	1528.97	1952.44	6.2572	30.453	9.408
32	1554.22	2028.49	6.7030	29.254	9.806
33	1584.47	2101.34	7.0628	28.037	10.208
34	1614.20	2174.19	7.4134	26.958	10.609
35	1641.89	2245.24	7.7533	25.676	11.010
36	1668.64	2331.92	8.2042	24.637	11.503
37	1684.56	2422.65	8.7445	23.133	12.038
38	1692.95	2497.17	9.2065	21.699	12.506
39	1696.54	2576.25	9.7165	20.460	13.010
40	1722.21	2650.89	10.0356	19.644	13.510
41	1736.13	2727.87	10.4324	18.589	14.007
42	1752.21	2801.71	10.7837	17.719	14.510
43	1771.22	2873.68	11.0952	16.820	15.008

Table A–10. Test data for specimen PWCE–03

Table A-11. Deformation J_{IC} and J-R curve results for specimen PWCE-03

Test Number Material Type Aging Temp Thickness Width Modulus E Modulus E Init. Crack Final Crack Final Crack

Linear Fit

Intercept B Fit Coeff. R J_{IC} Δa (J_{IC}) T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{IC}(0.20)$ $\Delta a (J_{IC})$ T average $J_{IC}(0.15)$ $\Delta a (J_{IC})$ T average K_{ic} : 0127 : Weld Metal : 400°C : 25.35 mm : 50.82 mm : 173.53 GPa : 180.00 GPa : 27.8656 mm : 40.1281 mm : 38.9608 mm

$J = B + M(\Delta a)$

: 224.977 kJ/m² : 0.9815 : 293.3 kJ/m² : 0.181 mm : 398.1

$J = C(\Delta a)^n$

: 614.21 kJ/m² : 0.9824 : 363.4 kJ/m² : 0.424 mm : 371.4 : 322.5 kJ/m² : 0.349 mm : 377.7 : 409.2 MPa-m^{0.5} Test Temp Heat Number Aging Time Net Thickness Flow Stress (Effective) (Nominal) Init. a/w Final a/w Final a/w

Slope M (9 Data Points) (1674.6 in.-lb/in.²) (0.0071 in.) (J_{IC} at 0.15) : 290°C : PWCE : 10,000 h : 20.26 mm : 406.00 MPa

: 0.5483 (Measured) : 0.7896 (Measured) : 0.7667 (Compliance)

: 378.19 kJ/m³

Exponent n (9 Data Points) (2075.1 in.-lb/in.²) (0.0167 + 1.) (J_{IC} at 0.20) (1841.6 in.-lb/in.²) (0.0137 in.) (J_{IC} at 0.15)

: 0.6113

J_{IC} Validity & Data Qualification (E 813-85) J_{max} allowed : 621.24 kJ/m²

 J_{max} allowed Data Limit Δa (max) allowed Data Limit $\Im a ta$ Points Data Point Spacing B_{net} or b_0 size dJ/da at J_{IC}) a_f Measurement Initial crack shape Crack size estimate E Effective J_{IC} Estimate

: J_{max} Ignored : 2.094 mm : 1.5 Exclusion line : Zone A = 4 : OK : OK : OK : Near-surface : OK : Inadequate : OK : Invalid

 $(J_{\text{max}} = b_0 \sigma_f / 15)$

(at 1.5 exclusion line)

Zone B = 2

Outside Limit

(by Compliance)

J-R curve Validity & Data Qualification (E 1152-86)

Jmax allowed \Delta (max) allowed \Delta (max) allowed Data Points Data Point Spacing J-R Curve Data : 411.26 kJ/m² : 2.295 mm : 5.536 mm : Zone A = 11 : Inadequate : Invalid $\begin{array}{l} (J_{max} = B_{net} \ \sigma_f/20) \\ (\Delta a = 0.1 b_o) \\ (\omega = 5) \\ Zone \ B = 4 \end{array}$

Table A-12. Modified J_{IC} and J-R curve results for specimen PWCE-03

Linear Fit Intercept B Fit Coeff. R J_{IC} Δa (J_{IC}) T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{IC}(0.20)$ $\Delta a (J_{IC})$ T average $J_{IC}(0.15)$ $\Delta a (J_{IC})$ T average K_{jc} **J = B + M(∆a)** : 255.972 kJ/m² : 0.9778 : 329.8 kJ/m² : 0.203 mm : 382.5

J = C(Δa)ⁿ : 633.49 kJ/m² : 0.9864 : 377.7 kJ/m² : 0.433 mm : 384.9 : 335.1 kJ/m² : 0.356 mm : 391.4 : 418.1 MPa-m^{0.5}

Slope M : 363.36 kJ/m³ (10 Data Points) (1882.9 in.-lb/in.²) (0.0080 in.) (J_{IC} at 0.15)

Figure A-10. Fracture surface of aged weld metal PWCE tested at 290°C

Figure A-11. Deformation J-R curve for weld metal specimen PWCE-03 aged at 400°C for 10,000 h and tested at 290°C. Blunting, 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

Figure A-12. Modified J-R curve for weld metal specimen PWCE-03 aged at 400°C for 10,000 h and tested at 290°C. Blunting, 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

Test Number: 0131Material Type: Weld MetalAging Temp: 400°CThickness: 22.84 mmWidth: 50.76 mm		Test Temp: 25°CHeat Number: PWWOAging Time: 7,700 hNet Thickness: 18.24 mmFlow Stress: 549.00 MPa			
Unload Number	Jd (kJ/m ²)	Jm (kJ/m ²)	Δa (mm)	Load (kN)	Deflection (mm)
	14.30				
1	14.72	14.71	-0.1327	22.208	0.251
2	54.82	54.89	-0.0506	37.282	0.501
3	121.93	122.42	0.0628	45.593	0.804
4	197.25	199.04	0.2348	48.740	1.105
5	248.49	251.71	0.3722	49.830	1.307
6	301.06	304.73	0.4053	50.334	1.508
7	355.13	361.66	0.5785	50.803	1.708
8	408.54	414.43	0.5465	50.841	1.909
9	462.44	474.26	0.8048	50.723	2.109
10	511.68	528.21	0.9859	50.696	2.308
11	562.26	583.59	1.1511	50.674	2.508
12	611.13	641.88	1.4423	49.896	2.710
13	656.37	697.14	1.7259	49.328	2.911
14	704.03	749.75	1.8546	48.782	3.109
15	750.58	807.86	2.1310	48.012	3.310
16	794.30	860.69	2.3343	47.476	3.508
17	837.91	916.55	2.5895	46.807	3.709
18	881.75	970.78	2.7923	45.981	3.912
19	922.61	1024.84	3.0348	44.773	4.111
20	960.36	1076.86	3.2832	44.133	4.307
21	996.69	1130.87	3.5756	43.191	4.510
22	1038.55	1196.72	3.9496	42.042	4.759
23	1078.32	1259.91	4.2944	40.692	5.009
24	1118.11	1322.82	4.6170	39.197	5.260
25	1155.41	1383.87	4.9324	38.266	5.507
26	1188.08	1446.55	5.3128	36.947	5.759
27	1217.23	1504.98	5.6683	35.671	6.007
28	1250.15	1577.64	6.1262	33.694	6.308
29	1276.82	1644.22	6.5668	32.460	6.606
30	1308.24	17.0.28	6.9322	31.030	6.909
31	1336.65	1775.83	7.3079	29.969	7.207
32	1361.38	1339.87	7.6895	28.553	7.506
33	1381.79	1902.79	8.0875	27.549	7.806
34	1415.11	1962.18	8.3221	26.465	8.107
35	1441.41	2049.61	8.8452	24.941	8.508
36	1461.70	2123.18	9.2825	23.576	8.898
37	1485.33	2200.96	9.7080	22.275	9.307
38	1512.30	2272.98	10.0476	21.246	9.704
39	1536.51	2347.13	10.4091	20.376	10.108
40	1565.06	2437.82	10.8374	19.166	10.606

Table A-13. Test data for specimen PWWO-03

.

Table A-14. Deformation J_{IC} and J-R curve results for specimen PWWO-03

Test Number Material Type Aging Temp Thickness Width Modulus E Modulus E Init. Crack Final Crack Final Crack

Linear Fit

Intercept B Fit Coeff. R JIC ∆a (Jic) T average

Power-Law Fit

Coeff. C Fit Coeff. R JIC(0.20) Aa (Jic) T average JIC(0.15) Aa (Jic) T average Kic

:0131 : Weld Metal : 400°C : 22.84 mm : 50.76 mm : 195.44 GPa : 193.10 GPa : 97.8219 mm : 39.2563 mm : 39.0582 mm

 $J = B + M(\Delta \epsilon)$: 203.177 kJ/m² : 0.9654 : 233.6 kJ/m² : 0.106 mm : 185.2

 $J = C(\Delta a)^n$

Test Temp Heat Number Aging Time Net Thickness Flow Stress (Effective) (Nominal) Init. a/w Final a/w Final a/w

Slope M (9 Data Points) (1333.6 in-lb/in²) (0.0042 in.) (J_{IC} at 0.15)

: 25°C : PWWO : 7,700 h : 18.24 mm : 549.00 MPa

: 0.5481 (Measured) : 0.7734 (Measured) : 0.7695 (Compliance)

: 285.61 kJ/m³

: 0.5871

ne)

: 504.96 kJ/m² Exponent n : 0.9741 (9 Data Points) : 257.3 kJ/m² (1469.4 in-lb/in²) : 0.317 mm (0.0125 in.) : 193.2 (JIC at 0.20) : 225.1 kJ/m² (1285.2 in-lb/in²) : 0.252 mm (0.0099 in.) : 196.9 (J_{IC} at 0.15) : 375.0 MPa-m^{0.5}

JIC Validity & Data Qualification (E 813-85)

: 839.50 kJ/m ²	$(J_{\text{max}} = b_0 \sigma_f / 15)$
: J _{max}	Ignored
: 1.828 mm	(at 1.5 exclusion li
: 1.5 Exclusion line	
: Zone A = 4	Zone $B = 2$
: OK	
: OK	
: OK	
: Near-surface	outside limit
: OK	
: OK	(by Compliance)
: OK	
: Invalid	
	: 839.50 kJ/m ² : Jmax : 1.828 mm : 1.5 Exclusion line : Zone A = 4 : OK : OK : OK : Near-surface : OK : OK : OK : OK : OK : OK : OK : Invalid

J-R curve Validity & Data Qualification (E 1152-86)

J _{max} allowed	$: 500.61 \text{ kJ/m}^2$	$(J_{max} = B_{net} \sigma_f/20)$
Aa (max) allowed	: 2.294 mm	$(\Delta a = 0.1b_0)$
Aa (max) allowed	: 5.334 mm	(w = 5)
Data Points	: Zone A = 4	Zone $B = 9$
Data point spacing	: OK	
J-R Curve Data	: Invalid	

Table A-15. Modified JIC and J-R curve results for specimen PWWO-03

Linear Fit Intercept B Fit Coeff. R J_{IC} Δa (J_{IC}) T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{IC}(0.20)$ $\Delta a (J_{IC})$ T average $J_{IC}(0.15)$ $\Delta a (J_{IC})$ T average K_{jc} **J = B + M(∆a)** : 194.312 kJ/m² : 0.9728 : 226.6 kJ/m² : 0.103 mm : 203.0

J = C(Δa)ⁿ : 523.69 kJ/m² : 0.9785

: 258.0 kJ/m² : 0.317 mm : 209.7 : 223.6 kJ/m² : 0.252 mm : 213.4 : 386.7 MPa-m^{0.5} Slope M : 313.11 kJ/m³ (9 Data Points) (1294.1 in-lb/in²) (0.0041 in.) (J_{IC} at 0.15)

: 0.6171

Exponent n (9 Data Points) (1473.0 in-lb/in²) (0.0125 in.) (J_{IC} at 0.20) (1276.8 in-lb/in²) (0.0099 in.) (J_{IC} at 0.15)

Figure A-13. Fracture surface of aged weld metal PWWO tested at 25°C

Figure A-14. Deformation J-R curve for weld metal specimen PWWO-03 aged at 400°C for 7,700 h and tested at 25°C. Blunting, 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

Figure A-15. Modified J-R curve for weld metal specimen PWWO-03 aged at 400°C for 7,700 h and tested at 25°C. Blunting, 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

Test Number: 0130Material Type: Weld MetalAging Temp: UnagedThickness: 22.80 mmWidth: 50.77 mm		Test Temp: 290°CHeat Number: PWWOAging Time: -Net Thickness: 18.25 mmFlow Stress: 398.00 MPa			
Unload	Jd	Jm	Δa	Load	Deflection
Number	(kJ/m ²)	(kJ/m ²)	(mm)	(kN)	(mm)
1	11.31	11.31	-0.1395	16.399	0.252
2	42.48	42.71	0.1499	27.040	0.503
3	72.94	72.92	0.0260	31.755	0.704
4	111.34	111.56	0.0861	34.229	0.905
5	150.67	151.20	0.1372	35.577	1.107
6	190.78	192.75	0.3069	36.325	1.307
7	230.55	232.69	0.3223	36.468	1.508
8	271.78	273.85	0.3170	36.555	1.707
9	311.93	318.20	0.5812	36.638	1.906
10	350.21	359.05	0.7222	36.527	2.109
11	387.03	402.51	1.0406	35.650	2.309
12	422.93	441.00	1.1521	35.176	2.507
13	459.81	481.65	1.2985	34.566	2.704
14	495.21	524.90	1.5760	34.166	2.910
15	530.23	562.72	1.6671	33.686	3.108
16	563.11	605.09	1.9535	33.057	3.308
17	592.19	641.79	2.1692	32.554	3.498
18	634.02	693.63	2.4292	31.791	3.758
19	671.71	741.77	2.6807	30.656	4.008
20	706.29	789.59	2.9788	29.938	4.257
21	732.25	836.18	3.4159	28.299	4.502
22	762.66	880.74	3.6990	27.370	4.760
23	779.00	925.36	4.2401	26.399	5.002
24	801.04	966.62	4.5902	25.058	5.258
25	822.81	1009.16	4.9525	24.656	5.509
26	855.50	1048.02	5.0550	23.789	5.757
27	872.31	1091.38	5.4786	23.123	5.998
28	909.74	1138.25	5.6214	22.331	6.305
29	933.26	1189.65	6.0237	21.622	6.606
30	961.38	1235.25	6.2647	20.803	6.909
31	970.18	1282.16	6.7711	19.680	7.203
32	983.84	1324.77	7.1424	18.816	7.506
33	1000.88	1367.54	7.4605	18.161	7.804
34	1018.10	1410.95	7.7727	17.396	8.108
35	1025.69	1468.22	8.3404	16.255	8.504
36	1043.64	1519.40	8.7048	15.529	8.905
37	1069.02	1571.89	8.9892	14.939	9.304
38	1080.77	1625.23	9.4086	14.152	9.701
39	1104.44	1673.77	9.6496	13.552	10.100
40	1117.58	1724.96	10.0044	12.873	10.501

#

Table A-16. Test data for specimen PWWO-01

1

Table A-17. Deformation J_{IC} and J-R curve results for specimen PWWO-01

Test Number Material Type Aging Temp Thickness Width Modulus E Modulus E Init. Crack Final Crack Final Crack

Linear Fit Intercept B Fit Coeff. R JIC ∆a (JIC) T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{1C}(0.20)$ $\Delta a (J_{IC})$ T average JIC(0.15) Aa (JIC) T average Kjc

:0130 : Weld Metal : Unaged : 22.80 mm : 50.77 mm : 167.43 GPa : 180.00 GPa : 29.0063 mm : 39.8969 mm : 39.0107 mm

$J = B + M(\Delta a)$ $: 202.069 \text{ kJ/m}^2$

: 0.9927 : 229.8 kJ/m² : 0.144 mm : 202.9

 $J = C(\Delta a)^n$: 400.91 kJ/m² : 0.9883 : 242.7 kJ/m² : 0.352 mm : 202.9 $: 220.4 \text{ kJ/m}^2$: 0.288 mm : 207.7 : 299.9 MPa-m^{0.5}

Heat Number Aging Time Net Thickness Flow Stress (Effective) (Nominal) Init. a/w Final a/w Final a/w

Test Temp

Slope M (7 Data Points) (1312.1 in.-lb/in.2) (0.0057 in.)

: PWWO : ---: 18.25 mm : 398.00 MPa

: 290°C

: 0.5714 (Measured) : 0.7859 (Measured) : 0.7684 (Compliance)

: 191.96 kJ/m³ (J_{IC} at 0.15)

Exponent n : 0.4812 (7 Data Points) (1386.1 in.-lb/in.2) (0.0139 in.) (J_{IC} at 0.20) (1258.6 in.-lb/in.2) (0.0114 in.) (J_{IC} at 0.15)

JIC Validity & Data Gualification (E 813-85)

Jmax allowed : 577.39 kJ/m² $(J_{\text{max}} = b_0 \sigma_f / 15)$ Data Limit : Jmax Ignored $\Delta a (max)$ allowed : 1.837 mm (at 1.5 exclusion line) Data Limit : 1.5 Exclusion line Data Points : Zone A = 1Zone B = 3Data Point Spacing : OK Bnet and bo size : OK dJ/da at JIC : OK af Measurement : Near-surface **Outside** Limit Initial crack shape : OK Crack size estimate : Inadequate (by Compliance) E Effective : OK J_{IC} Estimate : Invalid

J-R curve Validity & Data Qualification (E 1152-86)

Jmax allowed	$: 363.08 \text{ kJ/m}^2$	$(J_{max} = B_{net} \sigma_f/20)$
∆a (max) allowed	: 2.176 mm	$(\Delta a = 0.1b_0)$
∆a (max) allowed	: 4.457 mm	$(\omega = 5)$
Data Points	: Zone A = 7	Zone $B = 9$
Data Point Spacing	: OK	
J-R Curve Data	: Invalid	

Table A-18. Modified JIC and J-R curve results for specimen PWWO-01

Linear Fit Intercept B Fit Coeff. R J_{IC} Δa (J_{IC}) T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{IC}(0.20)$ $\Delta a (J_{IC})$ T average $J_{IC}(0.15)$ $\Delta a (J_{IC})$ T average K_{jc} **J = B + M(∆a)** : 193.262 kJ/m² : 0.9939 : 223.6 kJ/m² : 0.140 mm : 228.5

$J = C(\Delta a)^n$

: 416.63 kJ/m² : 0.9896 : 242.2 kJ/m² : 0.352 mm : 226.4 : 217.7 kJ/m² : 0.287 mm : 231.4 : 310.4 MPa-m^{0.5}

Figure A-16. Fracture surface of unaged weld metal PWWO tested at 290°C

NUREG/CR-6428

Figure A-17. Deformation J–R curve for unaged weld metal specimen PWWO– 01 tested at 290°C. Blunting, 0.2–mm offset, and 1.5–mm offset lines are shown as dashed lines.

Figure A-18. Modified J-R curve for unaged weld metal specimen PWWO-01 tested at 290°C. Blunting, 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

Test Number: 0128Material Type: Weld MetalAging Temp: 400°CThickness: 22.85 mmWidth: 50.81 mm			Test Temp: 290°CHeat Number: PWWOAging Time: 7,700 hNet Thickness: 18.20 mmFlow Stress: 409.00 MPa		
Unload	Jd	Jm	Δa	Load	Deflection
Number	(kJ/m^2)	(kJ/m ²)	(mm)	(kN)	(mm)
1	13.40	13.40	-0.0456	19.223	0.251
2	47.73	47.82	0.0516	31 277	0.502
3	92.07	91.74	-0.0899	36 179	0.754
4	144.59	146.09	0.2313	38 228	1.006
5	193.78	196.10	0.3302	39.176	1.256
6	236.04	240.70	0.5459	39 512	1 459
7	287.38	294.25	0.7041	39 44 1	1 709
8	328.01	336.63	0.8106	39 193	1 907
9	366.71	382.05	1.1671	38.973	2.106
10	402.81	425.26	1.5010	38.061	2 309
11	435.56	468.56	1.9490	37 500	2 508
12	467.46	509.09	2.2816	36.304	2 707
13	497.52	551.59	2.7202	34.899	2.908
14	524.13	592.40	3.1849	33.871	3 1 1 0
15	549.66	630.37	3.5639	32,410	3.307
16	581.33	666.88	3.7014	31.862	3.506
17	607.64	710.43	4.1601	30.839	3 710
18	630.54	748.81	4.5476	29.376	3.918
19	644.64	784 94	5.0753	28,491	4.108
20	663.72	825.03	5.4390	26.850	4.314
21	682.90	853.66	5.7522	25.984	4.508
22	696.65	900.16	6.4259	24.490	4.757
23	716.78	938.28	6.7777	23.311	5.011
24	745.18	1007.55	7.5163	21.719	5.408
25	772.28	1068.00	8.0774	20 143	5.809
26	790.29	1128.74	8.7521	18.615	6.207
27	797.59	1184.41	9.4739	16.729	6.605
28	795.67	1236.86	10.2483	15.274	7.006
29	808.74	1299.16	10.9049	13.672	7.506
30	823.99	1358.76	11.4612	12.533	8.006
31	821.26	1417.30	12.1900	11.294	8.506
32	837.00	1468.40	12.5876	10.347	9.006
33	856.34	1522.71	12.9590	9.622	9.506
34	867.50	1577.34	13.3962	8.848	10.022

Table A-19. Test data for specimen PWWO-04

.

0

Table A-20. Deformation J_{IC} and J-R curve results for specimen PWWO-04

Test Number Material Type Aging Temp Thickness Width Modulus E Modulus E Init. Crack Final Crack Final Crack

Linear Fit

Intercept B Fit Coeff. R JIC Δa (JIC) T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{IC}(0.20)$ $\Delta a (J_{IC})$ T average $J_{IC}(0.15)$ $\Delta a (J_{IC})$ T average K_{ic} : 0128 : Weld Metal : 400°C : 22.85 mm : 50.81 mm : 171.79 GPa : 180.00 GPa : 27.9188 mm : 41.7750 mm : 41.3150 mm

J = B + M(∆a) : 150.815 kJ/m² : 0.9695 : 169.4 kJ/m² : 0.104 mm : 184.7

 $J = C(\Delta a)^n$

: 0.9872

: 179.3

: 183.5

: 338.84 kJ/m²

: 189.3 kJ/m²

: 169.4 kJ/m²

: 279.0 MPa-m^{0.5}

: 0.316 mm

: 0.254 mm

Heat Number Aging Time Net Thickness Flow Stress (Effective) (Nominal) Init. a/w Final a/w Final a/w

Test Temp

Slope M (6 Data Points) (967.5 in.-Ib/in.²) (0.0041 in.) (J_{IC} at 0.15) : 290°C : PWWO : 7,700 h : 18.20 mm : 409.00 MPa

: 0.5495 (Measured) : 0.8223 (Measured) : 0.8132 (Compliance)

: 179.85 kJ/m³

Exponent n : 0.5051 (6 Data Points) (1080.7 in.-lb/in.²) (0.0124 in.) (J_{IC} at 0.20) (967.4 in.-lb/in.²) (0.0100 in.) (J_{IC} at 0.15)

JIC Validity & Data Qualification (E 813-85)

: 624.03 kJ/m² Jmax allowed $(J_{\text{max}} = b_0 \sigma_f / 15)$ Data Limit : J_{max} Ignored : 1.777 mm Δa (max) allowed (at 1.5 exclusion line) Data Limit : 1.5 Exclusion line Data Points : Zone A = 2 Zone B = 1Data Point Spacing : OK Bnet and bo size : OK dJ/da at J_{IC}) : OK Initial crack shape : OK Final crack shape : OK Crack size estimate : Inadequate (by Compliance) E Effective : OK J_{IC} Estimate : Invalid

J-R curve Validity & Data Gualification (E 1152-86)

Jmax allowed	$: 372.11 \text{ kJ/m}^2$	$(J_{max} = B_{net} \sigma_f/20)$
Δa (max) allowed	: 2.289 mm	$(\Delta a = 0.1 b_0)$
∆a (max) allowed	: 4.662 mm	$(\omega = 5)$
Data Points	: Zone A = 3	Zone $B = 7$
Data Point Spacing	: Inadequate	
J-R Curve Data	: valid	

Table A-21. Modified JIC and J-R curve results for specimen PWWO-04

Linear Fit Intercept B Fit Coeff. R JIC Aa (JIC) T average

Power-Law Fit

Coeff. C Fit Coeff. R JIC(0.20) $\Delta a (J_{IC})$ T average JIC(0.15) ∆a (JIC) T average K_{jc}

 $J = B + M(\Delta a)$: 146.094 kJ/m² : 0.9763 : 166.1 kJ/m² : 0.102 mm : 202.7

$\mathbf{J} = \mathbf{C}(\Delta \mathbf{a})^{\mathbf{n}}$

: 351.67 kJ/m² : 0.9897 $: 190.6 \text{ kJ/m}^2$: 0.316 mm : 195.1 : 169.4 kJ/m² : 0.254 mm : 199.4 : 287.1 MPa-m^{0.5} Slope M (6 Data Points) (948.7 in.-lb/in.²) (0.0040 in.) (J_{IC} at 0.15)

Exponent n : 0.5325 (6 Data Points) (1088.3 in.-lb/in.2)

(0.0125 in.) (JIC at 0.20) (967.0 in.-lb/in.²) (0.0100 in.) (JIC at 0.15)

: 197.36 kJ/m³

Figure A-19. Fracture surface of aged weld metal PWWO tested at 290°C

NUREG/CR-6428

Figure A-20. Deformation J–R curve for weld metal specimen PWWO–04 aged at 400°C for 7,700 h and tested at 290°C. Blunting, 0.2–mm offset, and 1.5–mm offset lines are shown as dashed lines.

Figure A-21. Modified J-R curve for weld metal specimen PWWO-04 aged at 400°C for 7,700 h and tested at 290°C. Blunting, 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

Test Number: 0126Material Type: Weld MetalAging Temp: 400°CThickness: 22.84 mmWidth: 50.75 mm			Test Temp: 290°CHeat Number: PWWOAging Time: 7,700 hNet Thickness: 18.25 mmFlow Stress: 409.00 MPa		
Unload	Jd	Jm	Δa	Load	Deflection
Number	(kJ/m ²)	(kJ/m ²)	(mm)	(kN)	(mm)
1	13.54	13.54	0.0195	18.816	0.251
2	46.86	46.92	0.0824	29.863	0.502
3	104.46	104.16	-0.0157	35.332	0.826
4	141.63	143.09	0.2938	36.521	1.006
5	190.13	192.42	0.3915	37 441	1 257
6	245.43	251.61	0.7218	37 577	1 528
7	280.46	284.68	0.5809	37 735	1 707
8	321.85	331.83	0.9298	37 440	1.904
9	358.97	373.42	1 1657	37 215	2 108
10	396.27	415.94	1.4102	36 676	2 308
11	428 64	460.78	1 9358	36.078	2.510
12	464 21	495.68	1.9102	35 242	2 708
13	502.69	541.39	2 1608	34 758	2.705
14	536 61	582 55	2 3914	33,899	9 1 1 9
15	563.10	624 27	2.0014	32 901	3 310
16	574 73	665 58	3.6785	31 035	3 500
17	599.56	694 23	3 7855	30.069	3.706
18	627.89	735.82	4.1106	20.032	3.010
19	647 42	773 49	4.5391	28.000	J.100
20	666 73	808.84	4.0003	27.124	4.109
21	676 77	845.08	5 4653	27.134	4.510
22	696 31	887 41	5 9308	20.073	4.500
23	700.25	930.89	6 7034	29.71Q	5.000
24	723.90	003 40	7.4071	20.402	5.009
25	733 33	1052.86	8 2530	18 355	5.907
26	744 51	1107.26	8 9417	16.557	6.012
27	750.04	1158.83	0.6365	15.021	6.606
28	763.07	1207.24	10 1280	13.031	7.005
29	775.01	1270 72	10.8203	12 507	7.005
30	775.06	1326 60	11 5211	10.070	7.500 8.005
31	779.86	1378 73	12 0067	0.975	0.000
32	786.84	1429.87	12.0307	0.114	0.014
22	702.04	1429.07	12.0909	9.114	9.014
34	776.02	1597.03	13.0049	7 794	9.510
54	110.02	1327.03	15.7284	1.734	10.007

Table A-22. Test data for specimen PWWO-02

l

Table A-23. Deformation J_{IC} and J-R curve results for specimen PWWO-02

Test Number Material Type Aging Temp Thickness Width Modulus E Modulus E Init. Crack Final Crack **Final Crack**

Linear Fit Intercept B Fit Coeff. R JIC $\Delta a (J_{1C})$ T average

Power-Law Fit

Coeff. C Fit Coeff. R Jtc(0.20) $\Delta a (J_{IC})$ T average JIC(0.15) $\Delta a (J_{1C})$ T average Kjc

: 0126 : Weld Metal : 400°C : 22.84 mm : 50.75 mm : 176.10 GPa : 180.00 GPa : 28.5000 mm : 42.5438 mm : 42.2284 mm

$J = B + M(\Delta a)$

: 108.016 kJ/m² : 0.9604 : 124.3 kJ/m² : 0.076 mm : 225.9

 $J = C(\Delta a)^n$: 330.22 kJ/m² : 0.9690 $: 154.6 \text{ kJ/m}^2$: 0.295 mm : 219.3 : 133.1 kJ/m² : 0.231 mm

: 288.9 MPa-m^{0.5}

Test Temp Heat Number Aging Time Net Thickness Flow Stress (Effective) (Nominal) Init. a/w Final a/w Final a/w

Slope M (7 Data Points) (709.9 in.-lb/in.2) (0.0030 in.) (J_{IC} at 0.15)

Exponent n

(7 Data Points)

: 290°C : PWWO : 7,700 h : 18.25 mm : 409.00 MPa

: 0.5615 (Measured) : 0.8382 (Measured) : 0.8320 (Compliance)

: 214.54 kJ/m³

: 0.6207

(882.9 in.-lb/in.2) (0.0116 in.) (J_{IC} at 0.20) (760.1 in.-lb/in.2) (0.0091 in.) (J_{IC} at 0.15)

: 606.79 kJ/m² $(J_{\text{max}} = b_0 \sigma_f / 15)$: Jmax Ignored

(at 1.5 exclusion line)

Zone B = 1

Outside Limit (by Compliance)

JIC Validity & Data Qualification (E 813-85)

: 223.2

: 1.790 mm

J-R curve Validity & Data Qualification (E 1152-86)

: 2.225 mm

: 5.605 mm

: Zone A = 2

: OK

: Invalid

: 373.11 kJ/m²

Jmax allowed Data Limit Δa (max) allowed Data Limit Data Points Data Point Spacing Bnet and bo size dJ/da at JIC) af Measurement Initial crack shape Crack size estimate E Effective J_{IC} Estimate

Jmax allowed

Data Points

 Δa (max) allowed

 Δa (max) allowed

J-R Curve Data

Data Point Spacing

: 1.5 Exclusion line : Zone A = 3: OK : OK : OK : Near-surface : OK : Inadequate : OK : Invalid

> $(J_{\text{max}} = B_{\text{net}} \sigma_f/20)$ $(\Delta a = 0.1b_0)$ $(\omega = 5)$ Zone B = 10

NUREG/CR-6428

Table A-24. Modified J_{IC} and J-R curve results for specimen PWWO-02

Linear Fit Intercept B Fit Coeff. R J_{IC} Δa (J_{IC}) T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{IC}(0.20)$ $\Delta a (J_{IC})$ T average $J_{IC}(0.15)$ $\Delta a (J_{IC})$ T average K_{jc} **J = B + M(∆a)** : 103.460 kJ/m² : 0.9668 : 120.5 kJ/m² : 0.074 mm : 243.1

$\mathbf{J} = \mathbf{C}(\Delta \mathbf{a})^{\mathbf{n}}$

: 341.93 kJ/m² : 0.9730 : 155.6 kJ/m² : 0.295 mm : 234.9 : 133.0 kJ/m² : 0.231 mm : 238.9 : 296.9 MPa-m^{0.5} Slope M (7 Data Points) (687.9 in.-lb/in.²) (0.0029 in.) (J_{IC} at 0.15)

Exponent n (7 Data Points) (888.6 in.-lb/in.²) (0.0116 in.) (J_{IC} at 0.20) (759.3 in.-lb/in.²) (0.0091 in.) (J_{IC} at 0.15)

: 230.95 kJ/m³

: 0.6451

Figure A-22. Fracture surface of aged weld metal PWWO tested at 290°C

Figure A-23. Deformation J-R curve for weld metal specimen PWWO-02 aged at 400°C for 7,700 h and tested at 290°C. Blunting, 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

19

Figure A-24. Modified J-R curve for weld metal specimen PWWO-02 aged at 400°C for 7,700 h and tested at*290°C. Blunting, 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

Test Number : 0124 Material Type : Weld Metal Aging Temp : 400°C		Test Temp : 290°C Heat Number : PWER										
					D'C	Aging Time : 10,000 h						
		Thickness : 25.38 mm Width : 50.82 mm			Net Thickness : 20.23 mm Flow Stress : 409.00 MPa							
Unload	Jd								Jm	Δa	Load	Deflection
Number	(kJ/m ²)								(kJ/m ²)	(mm)	(kN)	(mm)
1	12.77	12.78	0.1408	20.967	0.251							
2	35.40	35.22	-0.1580	31.170	0.442							
3	63.39	63.48	-0.0061	35.990	0.602							
4	91.23	91.75	0.1304	38.466	0.760							
5	127.66	127.64	0.0252	40.155	0.957							
6	198.54	199.40	0.1229	41.692	1.306							
7	279.37	283.71	0.3753	42.390	1.707							
8	360.83	365.44	0.3895	42.499	2.107							
9	437.53	455.32	0.9520	42.220	2.508							
10	512.00	535.78	1.1642	41.331	2.907							
11	583.66	622.77	1.6278	40.579	3.310							
12	647.88	704.84	2.1016	39.436	3.706							
13	718.76	785.96	2.3418	38.515	4.110							
14	771.03	871.84	3.0574	37.640	4.507							
15	841.60	945.24	3.1118	36.280	4.908							
16	896.63	1029.82	3.6325	34.991	5.307							
17	950.21	1106.43	4.0083	33.939	5.708							
18	997.64	1184.50	4.4740	32.668	6.108							
19	1048.57	1259.07	4.8094	31.402	6.512							
20	1096.75	1332.20	5.1418	30.192	6.909							
21	1129.40	1406.41	5.6667	29.198	7.309							
22	1175.69	1479.02	5.9806	28.118	7.730							
23	1198.75	1546.87	6.4910	26.822	8.108							
24	1231.72	1613.37	6.8557	25.792	8.508							
25	1250.47	1681.51	7.3701	24.365	8.908							
26	1291.77	1743.02	7.5710	23.214	9.311							
27	1322.93	1807.13	7.8847	22.092	9.707							
28	1335.63	1869.39	8.3400	21.036	10.107							
29	1344.44	1927.58	8.7790	19.808	10.506							
30	1353.94	1984.58	9.1879	18.855	10.908							
31	1375.00	2039.54	9.4697	18.038	11.308							
32	1380.96	2095.58	9.8737	17.166	11.707							
33	1394.53	2147.78	10.1758	16.205	12.107							
20 21 22 23 24 25 26 27 28 29 30 31 32 33	$\begin{array}{c} 1098.75\\ 1129.40\\ 1175.69\\ 1198.75\\ 1231.72\\ 1250.47\\ 1291.77\\ 1322.93\\ 1335.63\\ 1344.44\\ 1353.94\\ 1375.00\\ 1380.96\\ 1394.53\\ \end{array}$	$\begin{array}{c} 1352.20\\ 1406.41\\ 1479.02\\ 1546.87\\ 1613.37\\ 1681.51\\ 1743.02\\ 1807.13\\ 1869.39\\ 1927.58\\ 1984.58\\ 2039.54\\ 2095.58\\ 2147.78\\ \end{array}$	5.6667 5.9806 6.4910 6.8557 7.3701 7.5710 7.8847 8.3400 8.7790 9.1879 9.4697 9.8737 10.1758	$\begin{array}{c} 30.192\\ 29.198\\ 28.118\\ 26.822\\ 25.792\\ 24.365\\ 23.214\\ 22.092\\ 21.036\\ 19.808\\ 18.855\\ 18.038\\ 17.166\\ 16.205\end{array}$	7.309 7.730 8.100 8.500 9.31 9.70 10.10 10.500 10.900 11.300 11.70 12.10							

Table A-25. Test data for specimen PWER-01

ø

(g

Table A-26. Deformation JIC and J-R curve results for specimen PWER-01

Test Number Material Type Aging Temp Thickness Width Modulus E Modulus E Init. Crack Final Crack **Final Crack**

Linear Fit

Intercept B Fit Coeff. R JIC $\Delta a (J_{1C})$ T average

Power-Law Fit

Coeff. C Fit Coeff. R $J_{1C}(0.20)$ $\Delta a (J_{IC})$ T average $J_{IC}(0.15)$ Aa (Jic) T average Kic

:0124 : Weld Metal : 400°C : 25.38 mm : 50.82 mm : 178.03 GPa : 180.00 GPa : 28.1094 mm : 38.4531 mm : 38.2852 mm

$J = B + M(\Delta a)$

: 197.746 kJ/m² : 0.9890 $: 233.1 \text{ kJ/m}^2$: 0.142 mm : 263.9

$J = C(\Delta a)^n$

: 459.43 kJ/m² : 0.9974 $: 276.5 \text{ kJ/m}^2$: 0.369 mm : 243.8 : 250.1 kJ/m² : 0.303 mm : 249.2 : 336.2 MPa-m^{0.5}

Test Temp Heat Number Aging Time Net Thickness Flow Stress (Effective) (Nominal) Init. a/w Final a/w Final a/w

Slope M (4 Data Points) (1330.9 in.-lb/in.²) (0.0056 in.) (JIC at 0.15)

: PWER : 10,000 h : 20.23 mm : 409.00 MPa

: 290°C

: 0.5532 (Measured) : 0.7567 (Measured) : 0.7534 (Compliance)

: 248.00 kJ/m³

Exponent n (4 Data Points) (1579.1 in.-lb/in.²) (0.0145 in.) (J_{IC} at 0.20) (1427.9 in.-lb/in.2) (0.0119 in.) (JIC at 0.15)

: 0.5092

JIC Validity & Data Qualification (E 813-85)

Jmax allowed : 619.11 kJ/m² Data Limit Δa (max) allowed Data Limit Data Points Data Point Spacing Bnet and bo size dJ/da at J_{IC}) af Measurement Initial crack shape Crack size estimate E Effective J_{IC} Estimate

a

: Jmax Ignored : 1.888 mm : 1.5 Exclusion line : Zone A = 1 : OK : OK : OK : Near-surface : OK : OK : OK : Invalid

(at 1.5 exclusion line) Zone B = 1**Outside** Limit (by Compliance)

 $(J_{max} = b_0 \sigma_f / 15)$

J-R curve Validity & Data Qualification (E 1152-86)

Jmax allowed ∆a (max) allowed Δa (max) allowed Data Points Data Point Spacing J-R Curve Data

: 413.62 kJ/m² : 2.271 mm : 4.697 mm : Zone A = 5: Inadequate : Invalid

 $(J_{\text{max}} = B_{\text{net}} \sigma_f/20)$ $(\Delta a = 0.1b_{0})$ $(\omega = 5)$ Zone B = 5

Table A-27. Modified J_{IC} and J-R curve results for specimen PWER-01

Linear Fit Intercept B Fit Coeff. R J_{IC} Δa (J_{IC}) T average

Power-Law Fit Coeff. C

Fit Coeff. R $J_{IC}(0.20)$ $\Delta a (J_{IC})$ T average $J_{IC}(0.15)$ $\Delta a (J_{IC})$ T average K_{IC} **J = B + M(∆a)** : 190.581 kJ/m² : 0.9922 : 229.2 kJ/m² : 0.140 mm : 293.3

J = C(Δa)ⁿ : 480.32 kJ/m² : 0.9979 : 281.3 kJ/m² : 0.372 mm : 269.2 : 252.4 kJ/m² : 0.304 mm : 274.8 : 348.7 MPa-m^{0.5} Slope M (4 Data Points) (1308.7 in.-lb/in.²) (0.0055 in.) (J_{IC} at 0.15) : 275.59 kJ/m³

Exponent n : 0.5409(4 Data Points) (1606.4 in.-lb/in.²) (0.0146 in.) (J_{IC} at 0.20) (1441.0 in.-lb/in.²) (0.0120 in.) (J_{IC} at 0.15)

Figure A-25. Fracture surface of aged weld metal PWER tested at 290°C

Figure A-27. Modified J-R curve for metal specimen PWER-01 aged at 400°C for 10,000 h and tested at 290°C. Blunting, 0.2-mm offset, and 1.5-mm offset lines are shown as dashed lines.

NUREG/CR-6428

Distribution for NUREG/CR-6428 (ANL-95/47)

Internal:

W. F. Burke O. K. Chopra (20) T. M. Galvin D. J. Gavenda (5)

- T. F. Kassner C. Malefyt W. F. Michaud R. B. Poeppel
- W. J. Shack C. E. Till R. W. Weeks TIS Files

External:

NRC, for distribution per R5 ANL Libraries ANL-E (2) ANL-W Manager, Chicago Field Office, DOE Energy Technology Division Review Committee H. K. Birnbaum, University of Illinois, Urbana R. C. Buchanan, University of Cincinnati, Cincinnati, OH S.-N. Liu, Fremont, CA H. S. Rosenbaum, Fremont, CA R. K. Shah, University of Kentucky, Lexington S Smialowska. Ohio State University, Columbus R. E. Smith, Altran Corp., Huntersville, NC D. Atteridge, Battelle Pacific Northwest Laboratory W. H. Bamford, Westinghouse Electric Corp., Pittsburgh, PA K. K. Bandyopadhyay, Brookhaven National Laboratory J. A. Christensen, Battelle Pacific Northwest Laboratory A. Cowan, Risley Nuclear Power Development Labs., Risley, Warrington, UK W. H. Cullen, Materials Engineering Associates, Inc., Lanham, MD B. J. L. Darlaston, Berkeley Nuclear Laboratories, Berkeley, Gloucestershire, UK G. Gage, AEA Technology, Harwell Laboratory, Oxfordshire, UK J. Gilman, Electric Power Research Inst., Palo Alto, CA W. Gysel, Georg Fischer, Ltd., Schaffhausen, Switzerland G. E. Hale, The Welding Institute, Abington, Cambridge, UK P. Hedgecock, APTECH Engineering Services, Inc., Palo Alto, CA B. Hemsworth, HM Nuclear Installations Inspectorate, London, UK C. Hoffmann, ABB CE Nuclear Power, Windsor, CT J. Jansky, Büro für Technische Beratung, Leonberg, Germany C. E. Jaske, CC Technologies, Cortest, Columbus, OH G. J. Licina, Structural Integrity Associates, San Jose, CA T. R. Mager, Westinghouse Electric Corp., Pittsburgh, PA H. Mehta, General Electric Co., San Jose, CA Y. Meyzaud, Framatome, Paris La Defense, France M. Prager, Materials Properties Council, Inc., New York, NY D. Quiñones, Robert Cloud & Associates, Berkeley, CA C. Y. Rieg, Electricité de France, Villeurbanne Cedex, France V. N. Shah, EG&G Idaho, Inc., Idaho Falls, Idaho

G. Slama, Framatome, Paris La Defense, France

D. M. Stevens, Lynchburg Research Center, Babcock & Wilcox Co., Lynchburg, VA

L. Taylor, Nuclear Electric plc., Chelsford Rd., Knutsford, Cheshire, UK

J. C. Van Duysen, Electricité de France, Moret-Sur-Loing, France

S. Yukawa, Boulder, CO

NRCM 1102, 3201, 3202	U. S. NUCLEAR REGULATORY COMMISSION BIBLIOGRAPHIC DATA SHEET (See instructions on the reverse)	1. REPORT NUMBER (Assigned by NRC. Add Vol., Supp., Rev., and Addendum Numbers, if any.) NUREG/CR-6428	
2. TITLE AND SUBTITLE		ANL-95/47	
Effects of Therma	I Aging on Fracture Toughness and Charpy-Impact Strength of		
Stainless Steel P	3. DATE REPORT PUBLISHED		
		MONTH YEAR	
		May 1996	
		4. FIN OR GRANT NUMBER	
5. AUTHOR(S)		6. TYPE OF REPORT	
D. J. Gavenda, W.	Technical		
	7. PERIOD COVERED (Inclusive Dates)		
8. PERFORMING ORGANIZ name and mailing address Argonne Natic 9700 South Ca Argonne, IL 60	ATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Com) nal Laboratory ss Avenue 439	I mission, and mailing address, if contractor, provi	
and mailing address.) Division of En Office of Nucle U.S. Nuclear F Washington, D	gineering ar Regulatory Research egulatory Commission C 20555-0001	r or Hegion, U.S. Nuclear Regulatory Commission	
10. SUPPLEMENTARY NOT	ES		
M.E. Mayfie	ld, NRC Project Manager		
The degradation of f thermal aging has be Charpy-impact stre 80 J/cm^2 . The dec tensile strength of th particles. Failure (insensitive to therm	racture toughness, tensile, and Charpy-impact properties of Type 308 states of the constraint of the tensile of tensile	ainless steel (SS) pipe welds due t ds results in moderate decreases in per-shelf energy decreased by 50 aging had little or no effect on th n and morphology of second-phas is. Such processes are relativel erties of the welds. Differences i	
racture resistance o the present study ar expected fracture pro	If the welds arise from differences in the density and size of inclusions. The consistent with results from other investigations. The existing data hav operues for SS welds.	he mechanical-property data from e been used to establish minimum	
vacture resistance o he present study ar expected fracture pro	If the welds arise from differences in the density and size of inclusions. The consistent with results from other investigations. The existing data hav operues for SS welds.	he mechanical-property data from e been used to establish minimum	
racture resistance o he present study ar expected fracture pro 2. KEY WORDS/DESCRIPT	The welds arise from differences in the density and size of inclusions. The consistent with results from other investigations. The existing data hav operues for SS welds.	The mechanical-property data from e been used to establish minimum 13. AVAILABILITY STATEMENT	
racture resistance of he present study ar xpected fracture pro 2. KEY WORDS/DESCRIPT thermal agin	DRS (List words or phrases that will assist researchers in locating this report.) 10 g, fracture toughness, Charpy-Impact strength.	The mechanical-property data from e been used to establish minimum 13. AVAILABILITY STATEMENT Unlimited	
racture resistance of he present study ar xpected fracture pro 2.KEY WORDS/DESCRIPT thermal agin stainless s	ORS (List words or phrases that will assist researchers in locating this report.) In the density and size of inclusions. The existing data have appendies for SS welds. DRS (List words or phrases that will assist researchers in locating this report.) Ing, fracture toughness, Charpy-Impact strength, i.eel pipe welds	The mechanical-property data from e been used to establish minimum 13. AVAILABILITY STATEMENT Unlimited 14. SECURITY CLASSIFICATION	
racture resistance of he present study ar expected fracture pro 2.KEY WORDS/DESCRIPT thermal agin stainless s	DRS (List words or phrases that will assist researchers in locating this report.) ag, fracture toughness, Charpy-Impact strength, ceel pipe welds	The mechanical-property data from e been used to establish minimur 13. AVAILABILITY STATEMENT Unlimited 14. SECURITY CLASSIFICATION (This Page)	
Aracture resistance of the present study ar expected fracture pro- 2. KEY WORDS/DESCRIPT thermal agin stainless s	DRS (List words or phrases that will assist researchers in locating this report.) ng, fracture toughness, Charpy-Impact strength, ceel pipe welds	The mechanical-property data from e been used to establish minimum 13. AVAILABILITY STATEMENT Unlimited 14. SECURITY CLASSIFICATION (This Page) Unclassified	
Acture resistance of the present study ar expected fracture pro- 2. KEY WORDS/DESCRIPT thermal agin stainless s	DRS (List words or phrases that will assist researchers in locating this report.) ng, fracture toughness, Charpy-Impact strength, teel pipe welds	The mechanical-property data from e been used to establish minimum 13. AVAILABILITY STATEMENT Unlimited 14. SECURITY CLASSIFICATION (This Page) Unclassified (This Report)	

16. PRICE

. 00

NRC FORM 335 (2-89)

· () · · ·

Federal Recycling Program

NUREG/CR-6428

EFFECTS OF THERMAL AGING ON FRACTURE TOUGHNESS AND CHARPY-IMPACT STRENGTH OF STAINLESS STEEL PIPE WELDS

MAY 1996

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

Steelal Fourth-Class Mail Postage and Fees Paid USNRC PERMIT NO. G-67

