GEORGIA POWER COMPANY VOGTLE NUCLEAR PLANT UNIT 2, CYCLE 3 STARTUP TEST REPORT

PREPARED BY: Jerry L. Wendt 1 6/1/92 PREACTOR ENGINEER REVIEWED BY: REACTOR ENGINEER APPROVED BY NEERING SUPERVISOR REACTOR ENG

TABLE OF CONTENTS

bu

- -

		PAGE
1.0	Introduction	1
2.0	Unit 2 Cycle 3 Core Refueling	2
3.0	Control Rod Drop Time Measurement	8
4.0	Initial Criticality	10
5.0	All-Rods-Out Isothermal Temperature Coefficient and Boron Endpoint Measurement	11
6.0	Control and Shutdown Bank Worth Measurements	13
7.0	Startup and Power Ascension	15
8.0	Reactor Coolant System Flow Measurement	17

1.0 INTRODUCTION

The Vogtle Nuclear Plant Unit 2 Cycle 3 Startup Test Report summarizes results for tests performed as required by plant procedures following a core refueling. The report provides a brief synopsis of each test and gives a comparison of measured values with design parameters, Technical Specifications, or values assumed in the FSAR safety analysis.

Unit 2 of the Vogtle Nuclear Plant is a four loop Westinghouse pressurized water reactor rated at 3411 MWth. The Cycle 3 core loading consists of 193 17 x 17 fuel assemblies.

Unit 2 began commercial operations on May 19, 1989 and has completed the first two cycles with the following average burnups:

Cycle 1	Complete 09/	14/90	17,161	MWD/MTU
Cycle 2	Complete 03/	09/92	17,008	MWD/MTU

Seventy-six of the 193 assemblies comprising Cycle 3 are based upon the VANTAGE 5 design.

2.0 UNIT 2 CYCLE 3 CORE REFUELING

REFERENCES

Westinghouse WCAP 13119 (The Nuclear Design Report for the Vogtle Electric Generating Plant, Unit 2, Cycle 3)

SUMMARY

Unloading of the Cycle 2 core into the spent fuel pool commenced on 03/20/92 and was completed on 03/23/92.

Core reload commenced on 04/04/92 and was completed on 04/07/92. The as-loaded Cycle 3 core is shown in Figures 2.1 through 2.5, which give the location of each fuel assembly and insert. The Cycle 3 core has a nominal design lifetime of 18,500 MWD/MTU and consists of 17 Region 2 assemblies from Unit 1, 16 Region 3 assemblies, 68 Region 4A assemblies, 16 Region 4B assemblies, 48 Region 5A assemblies and 28 Region 5B assemblies. Fuel assembly inserts consist of 53 full length control rod clusters, two secondary sources and 138 thimble plug inserts. The assemblies in Regions 5A and 5B contain 4672 fuel rods with Integral Fuel Burnable Absorbers (IFBA).

FIGURE 2.1 UNIT 2 CYCLE 3 REFERENCE LOADING PATTERN

4

1

. . . 6 . 4

	100	

٠

8

*

15					5836 9903	5#43 17306	5N02 7705	5863 16209	5809 13405	5#41 16605	5831 5005				
54			5/15 13995	5#48 8585	5807 51905	5441 8566	58.64 08640	58.76 85.78	58.72 31605	5465 8605	5806 32654	5P04 R576	5420 15608		
13	19	5860 16605	5#09 30108	5867 29605	5846 8956	5P33 11304	5970 8591	5113 12905	5PE3 8586	54405 81409	5816 8582	54.70 3840%	58.08 32004	9.873 1458/2	
ż		5#17 8559	5853 30798	5458 8598	5#21 18305	5847 3008/5	5#76 14/8/5	5706 8587	5474 17005	5843 27805	5#51 1000-8	5F2.5 8608	5854 2960 s	5.P.50 8596	
1	5800 9805	5803 29205	5841 8562	5#52 11205	58,27 2800 s	54-65 175015	5838 29405	5837 14005	58.24 29805	5925 1104	5#17 3*195	5#50 5905	5844 8589	5#12 52205	5816
0	5P01 15255	5866 8570	5#31 2205	5819 385.26	5P16 57D5	5#35 8568	5#30 0208	54(39) 8597	5050 16.W18	5#67 8603	5P11 12603	54(30 21405	5455 1903	5849 8595	5#57 1590
*	5#25 10405	5857 28705	5#73 8594	5P79 17405	54.53 29506	5/%0 16905	5848 29305	5#29 17805	5834 30°04	5937 1500s	5840 29905	5/180 17205	5P81 8602	5855 39403	5#56 9005
•	5845 16605	58.75 8565	5P24 15308	5456 8561	5259 15508	5842 8558	5P04 14905	5862 8569	5#28 6308	\$8,20 8574	5623 7608	5P08 8544	5#63 7805	5#74 #577	5825 8405
r	5#53 12005	5860 3080 5	5F71 R568	5P64 18003	5821 31305	5P68 15805	5835 32305	5P18 5808	5#13 30501	5#66 1001	5825 29105	5P72 17905	5P62 8592	5#59 3100.5	5845 8903
*	5#10 16605	5863 8606	5#27 10705	5822 31205	5#53 16708	5P07 8560	5#34 15109	58,29 8583	5P22 16105	5P12 8593	5P14 16508	58.28 28305	54/20 1405	5842 8590	5#61 16001
5	5824 2105	SR01 28605	58.32 8572	5P40 4105	5851 282015	5#38 1560F	5418 30605	5844 13805	5845 31805	5P45 9605	5814 32408	5844 4505	\$837 8599	5811 281ps	5801 4005
	hannan	5P62 8963	5852 28905	5P19 6601	5#54 3805	5436 2850s	5P69 14205	5P05 8357	5F75 2805	34.26 32108	5#36 9765	5P66 8579	5871 31105	5#57 8581	
3		5#50 14403	5810 30405	5850 30204	5823 8567	5#23 5705	5978 8586	5P64 17808	5#77 8575	5#32 11105	5815 8600	5468 27705	5805 27905	5805 14305	
2			5850 14705	59°35 8575	58.04 29705	5867 8604	5458 05830	5#73 #571	5856 31505	\$851 8607	5202 28805	5P49 8580	5464 14105		
1					5842 8705	5P02 17105	5ND1 6105	5833 6705	5812 3105	5P62 3405	5851 15208		arote tard		

5B

5N

Region 2 (2.601 w/o)

Region 4B (4.190 w/o)

Region 3 (3.118 w/o)

15R

5R

5P

Region 5A (3.805 w/o)

5P Region 4A (3.807 w/o)

Region 58 (4.198 w/o)

					FIGU	RE 2.1	2 CON	TROL	RODL	OCAT	TIONS				
	R	P	N	Li I	+	Ķ	4	H	Ģ	Ę	Ę	P	C	В	A
			1	_				-							the second design of the second design of
		4		SA		В		c		В		SÅ		+	
					SD		SB		SB		sc				
Paratas		SA		D				SE				D		SA	
			SC										SD		
		B				С		٨		с				в	
			SB										\$8		-
		С		SE		A		D		A		SE		с	-
			SB										SB		
		В				С		A		С				в	-
			SD										SC		-
		SA		D				SE				D		SA	
					sc		SB		SB		SD				N. 49999 (1999)
				SA		B		С		B		SA			
ORR	ER HA	TERIAL		4-00											
								00	all de la constant d'antise de		A warming and	·			
			IDEN	ANK TIFIE B C	R LO	MBER CATIO	OF		I DE	BANK ENTIF SA SB SC	IER	NUMBE LOCAT	R OF		

ER	LOCATIONS	I DE
	8	
	5	

B	and the second
BANK	NUMBER O
INTIFIER	LOCATION
SA	8
SB	8
SC	Ä
SD	4
SE	4

FIGURE 2.3

-

ø

Burnable Absorber Configurations

5

FIGURE 2.4

i.

Secondary Source Rod Configuration

E

all sus fi

Secondary Sources

S S

Secondary Source Rod

FIGURE 2.5

	P	N	M	Ļ	ĸ	4	ų	Ģ	Ę	Ę	P	C	B	1
		1	1											
1				321	481	481	641	481 455A	481	321				
		321	48I	801			1.0%			801	481	321		
		481			801				801			481		
	321	801		801		801		BOI		801		801	321	-
	481		801				801				801		481	-
	481			801		801		80I		80I			481	-
	64I				801				801				64I	-
	481			801		801		801		801			481	-
	48I		801				801				801		481	
	321	801		801		801		801		801		801	321	-
		48I			801				801			48I		
		321	481	801						801	481	321		
				321	481	481	641	481 455A	48I	321				an bant telling a sint sej se
							1.							

900

00

TYPE TOTAL

3.0 CONTROL ROD DROP TIME MEASUREMENT

PURPOSE

The purpose of this test was to measure the drop time of all control rods under hot, full flow conditions in the reactor coolant system to ensure compliance with Technical Specification requirements.

SUMMARY OF RESULTS

For the hot, full flow condition (Tavg $\geq 551^{\circ}$ F and all reactor coolant pumps operating), Technical Specification 3.1.3.4 requires that the rod drop time from the fully withdrawn position shall be ≤ 2.7 seconds from the beginning of stationary gripper coil voltage decay until dashpot entry. All rod drop times were measured to be less than 2.7 seconds. The rod drop time results for dashpot entry are presented in Table 3.1. The mean drop time was determined to be 1.562 seconds.

CONTROL ROD	DASHPOT ENTRY TIME (MSEC)	CONTROL ROD	DASHPOT ENTRY TIME (MSEC)
D02	1588	MOB	1588
B12	1556	HOG	1602
M14	1560	H10	1542
PO4	1582	FO8	1592
B04	1600	KOS	1584
D14	1616	FO2	1578
P12	1576	B10	1624
M02	1564	K14	1528
G03	1542	PO6	1570
C09	1540	B06	1544
J13	1544	F14	1600
N07	1532	P10	1554
C07	1558	KO2	1528
G13	1558	HO2	1570
N09	1556	BO8	1554
J03	1592	H14	1518
E03	1524	POB	1570
C11	1538	F06	1580
L13	1606	F10	1538
NOS	1540	K10	1542
C05	1570	КОб	1548
E13	1566	D04	1554
N11	1556	M12	1500
L03	1578	D12	1526
HO4	1540	M04	1572
D08	1594	HOS	1562
H12	1552		

TABLE 3.1 CONTROL ROD DASHPOT ENTRY TIMES

SAMPLE SIZE = 53 MEAN = 1.562 SIGMA = 0.026 2SIGMA = 0.052 MEAN - 2SIGMA = 1.510 MEAN + 2SIGMA = 1.614

Control rods in locations D14, B10 and M12 fell outside of the 2SIGMA limit and wara therefore dropped an additional six times. The drop times for the additional drops were all measured within the 2.7 second Tech. Spec. limit. A summary of the additional rod drop data is provided below.

CONTROL ROD	MAXIMUM DASHPOT ENTRY TIME (MSEC)	MINIMUM DASHPOT ENTRY TIME (MSEC)	AVERAGE DASHPOT ENTRY TIME (MSEC)
D14	1.600	1.552	1.585
B10	1.592	1.564	1.577
M12	1.564	1.494	1.527

4.0 INITIAL CRITICALITY

PURPOSE

The purpose of this test was to achieve initial reactor criticality under carefully controlled conditions, establish the upper flux limit for the performance of zero power physics tests, and operationally verify the calibration of the reactivity computer.

SUMMARY OF RESULTS

Initial reactor criticality for Cycle 3 was achieved by dilution at 0315 on May 7, 1992. The reactor was stabilized at the following critical conditions: RCS temperature 556.6°F, intermediate range power approximately 1 x 10-8 amps, RCS boron concentration 2089 ppm, and Control Bank D position at 187.5 (188/187) steps. Following stabilization, the point of adding nuclear heat was determined and a checkout of the reactivity computer using both positive and negative flux periods was successfully accomplished. In addition, source and intermediate range neutron channel overlap data were taken during the flux increase preceding initial criticality to demonstrate that adequate overlap existed.

5.0 ALL-RODS-OUT ISOTHERMAL TEMPERATURE COEFFICIENT AND BORON ENDPOINT MEASUREMENT

PURPOSE

The objectives of these measurements were to determine the hot, zero power isothermal and moderator temperature coefficients from the all-rods-out (ARO) configuration and to measure the ARO boron endpoint concentration.

SUMMARY OF RESULTS

The measured ARO, hot zero power temperature coefficients and the ARO boron endpoint concentration for HZP are shown in Table 5.1. The isothermal temperature coefficient was measured to be +3.02 pcm/°F which meets the design acceptance criteria. This gives a calculated moderator temperature coefficient of +4.81 pcm/°F which is within the Technical Specification limit of +7.0 pcm/°F at HZP. Thus, no rod withdrawal limits were needed to ensure the +7.0 pcm/°F limit was met.

Because of the high burnup core design of the Unit 2 Cycle 3 core, it was expected that the design acceptance criteria of \pm 50 ppm for the ARO critical boron concentration would not be met. As shown in Table 5.1, the measured ARO critical boron concentration was 85 ppm below the predicted ARO critical boron concentration. The boron concentration corresponding to the 1000 pcm Technical Specification acceptance criterion is approximately 134 ppm. Westinghouse conducted a review of the Reload Safety Evaluation (RSE) and determined that the RSE conclusions would remain valid using 134 ppm for the acceptance criterion as long as the remaining HZP physics test results met the relevant design review criteria. Since all of the remaining HZP physics test results met the relevant design review criteria, we conclude that the RSE remains valid.

TABLE 5.1

ARO HZP ISOTHERMAL AND MODERATOR TEMPERATURE COEFFICIENT

Boron Concentration Rod Configuration All Rods Out

2078 ppm

Measured ITC +3.02 pcm/°F ITC Design

Acceptance

+3.47 pcm/°F

Calculated MTC

+4.81 pcm/°F

- Isothermal temperature coefficient, includes -1.7()cm/°F doppler coefficient ITC

- Moderator only temperature coefficient, normalized to the ARO condition MTC

ARO HZP BORON ENDPOINT CONCENTRATION

Rod Configuration	Measured C _B (ppm)	Design - predicted C ₈ (ppm)
All Rods Out	2091	2176

6.0 CONTROL AND SHUTDOWN BANK WORTH MEASUREMENTS

PURPOSE

The objective of the bank worth measurements was to determine the integral reactivity worth of each control and shutdown bank for comparison with the values predicted by design.

SUMMARY OF RESULTS

The rod wc measurements were performed using the bank interchange method in which: (1) tr. worth of the bank having the highest design worth (the "Reference Bank") is carefully measured using the standard boron dilution method; then (2) the worths of the remaining control and shutdown banks are derived from the change in the reference bank reactivity needed to offset full insertion of the bank being measured

The control and shutdown bank worth measurement results are given in Table 6.1. The measured worths satisfied the review criteria both for the banks measured individually and for the combined worth of all banks.

TABLE 6.1

SUMMARY OF CONTROL BANK WORTH MEASUREMENTS

<u>Bank</u>	Predicted Integral Bank Worth & Review Criteria (pcm)	Measured Bank Worth (pcm)	Percent Difference
Control A	268 <u>+</u> 100	209.2	-21.9
Control B	794 <u>+</u> 119	820.4	+ 3.3
Control C	778 <u>+</u> 117	748.1	- 3.8
Control D	502 <u>+</u> 100	466.8	- 7.0
Shutdown A	244 <u>+</u> 100	234.9	- 3.7
Shutdown B (Reference)	957 <u>+</u> 96	996.0	+4.1
Shutdown C	456 <u>+</u> 100	447.1	- 2.0
Shutdowi. D	451 <u>+</u> 100	438.8	- 2.7
Shutdown E	452 <u>+</u> 100	427.3	- 5.5
All Banks Combined	4902 + 490	4788.6	- 2.3

7.0 STARTUP AND POWER ASCENSION

PURPOSE

The purpose of the power ascension program was to provide controlling instructions for:

- NIS intermediate and power range calibration as required prior to startup and during power ascension to account for the effect of a low leakage core.
- 2. Performance of startup and power ascension testing, to include:
 - a. HZP reactor physics tests
 - b. Reactor coolant system flow measurement
 - c. Core hot channel factor surveillance
 - d. Incore-excore AFD channel calibration
 - e. Reactor Coolant System Delta T Calibration

SUMMARY OF RESULTS

Full core flux maps were obtained at plateaus of approximately 31%, 49%, 76% and 80% RTP. Hot Channel factors were evaluated at each power plateau and are shown in Table 7.1. The incore and excore delta-I were also evaluated at each plateau. An incore-excore recalibration test was performed at 76% RTP. Reactor coolant flow was determined from calorimetric measurements at 94.8% RTP. Delta T calibration constants were determined at 94.8% power using the calorimetric measurements and measured values of T-HOT and T-COLD.

TABLE 7.1

SUMMARY OF POWER ASCENSION FLUX MAP DATA

Param	Map 67	<u>Map 68</u>	<u>Map 69</u>	Map 71
Avg. % Power	31.2	48.9	75.9	80.3
LOPAR FDHN Limit	1.902	1.831	1.681	1.659
VANTAGE 5 FDHN Limit	1.991	1.903	1.769	1.748
LOPAR FDHN Measured	1.4716	1.4418	1.4256	1,4122
VANTAGE 5 FDHN Measured	1.6209	1.5829	1.5537	1.5454
Core Avg. AFD	4.0	6.0	4.0	3.3
Avg. Core % A.O.	12.796	12.287	5.309	4.065
Most Limiting FQ(Z) + 2%	2.1594	2.2008	1.7851	1.7830
Transient FQ Limit	4.0702	4.2654	2.3825	2.2032

8.0 REACTOR COOLANT SYSTEM FLOW MEASUREMENT

PURPOSE

The purpose of this test was to determine the flow rate in each reactor coolant loop in order to confirm that the total core flow met the minimum flow requirement given in Technical Specifications.

SUMMARY OF RESULTS

To comply with the Technical Specifications, the total reactor coolant system flow rate determined at normal operating temperature and pressure must equal or exceed 393,136 gpm. The total core flow was determined to be 415,033 gpm.