GA 1485 (REV. 10/82)

GA Technologies Inc.

										IS	SUE	SU	IMN	AAH	IY												
TITLE N	NONDE	STR	ELE 3	IVE	E EN	FR	INA:	FOR	N OF	62 VR	FUEL	ANI	D RI	3-	080	R & I DV 8 DESI	D S GN		A	PPR	DVAL	LEN	/EL.		2	_	
DISCIPL	INE	SY	YSTE 18	M	D	OC. T	E		PROJE 770	CT 00	DOG	CUME	NTN	10.		907	785				ISS	UEN	IO/L	TR.			
QUALIT	Y ASSU	JRAN	NCEL	LEVE	EL		SAF	ETY	CLASS N/A	IFICA	TION		SEIS	MIC	N/A	EGOR	Y		EL	ECT	RICA	LCL	ASSI /A	FICA	ATIO	N	
				T								A	PPR	VAL					-				15	SUE			
ISSUE	0	DATE	TE PREPARED BY		D	ENGINEERING		QA		FL	NDI	NG	A	APPLICABLE PROJECT		LE	DESCRIPTION/ CWBS NO.										
N/C	JAN	24	1985	F	Mell Na 1/2:	Corce 12/8		R. I	Sche Jules nsfie /22/8 F. Tu Jun	inne 16	G.P.I	Conr	nors	to			D	J. Ko J. Ko J. J. Ko J. J. Ko Ko Ko Ko Ko Ko Ko Ko Ko Ko Ko Ko Ko K	owa W	LL K	Init	tia S 7	1 R	ele 21	ase 0 2	00	
CONTIN	IUE ON	IGA	FORI	M 14 Any F Jota ' Cepce Forciu	185-1 Purth r of There in G	IED er D this ein tu and Div Si	TECI scribu Does o Thi Fore sions add b ITGR Dopu 250	HNOI ution ment of U be Coo Dev artmet 402	LOGE by any or of a arties rean ubsidiar I.S. ordinate elopmen at of B	other ics action A B A D	5032 5000	21 226 2DR	7									NE	900	DEN UME	ITUR NTS	ED	
REV SH REV		-	+	+	-																						
REV SH REV SH	29	30	31	32	33	34	35	36	37 3	8 35	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	
REV SH REV SH REV	29	30	31	32	33	34	35	36	37 3	8 35	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	

. ...

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
		and the second second	_		and the second states of the

TABLE OF CONTENTS

1. INTRODUCTION			
2. IRRADIATION CONDITIONS. 14 3. METROLOGICAL EXAMINATIONS. 17 3.1 Description of Metrology Robot System. 17 3.2 Description of Metrology Robot System. 17 3.3 Metrology Robot Quality Acceptance. 18 3.4 Results of Metrology Robot. 20 3.5 Comparisons of Measured and Calculated Strains and Bow. 21 3.6 FTE-2 Metrological Results. 22 4. GAMMA AND NEUTRON ACTIVITY MEASUREMENTS. 54 4.1 Gamma Dose Rates. 54 4.2 Neutron Count Rates. 54 5. VISUAL EXAMINATION. 62 5.1 Regular and Surveillance Elements Visual Results. 63 5.1.2 Scratches and Scrapes. 64 5.1.3 Oridation. 65 5.1.4 Rub Marks. 65 5.1.5 Flow Marks. 65 5.1.6 Chips, Nicks and Debris. 67 6.1 Core Component Performance. 99 6.2 Code Verification. 90 6.3 FTE-2 Performance. 97 7. ACKNOWLEDGMENTS. 97	1.	INTRODUCTION	6
3. METROLOGICAL EXAMINATIONS. 17 3.1 Description of Metrology Robot System. 17 3.2 Description of Metrological Examination. 11 3.3 Metrology Robot Quality Acceptance. 15 3.4 Results of Metrology Robot. 22 3.5 Comparisons of Measured and Calculated Strains and Bow. 21 3.6 FTE-2 Metrological Results. 22 4. GAMMA AND NEUTRON ACTIVITY MEASUREMENTS. 54 4.1 Gamma Dose Rates. 54 4.2 Neutron Count Rates. 54 5. VISUAL EXAMINATION. 62 5.1 Regular and Surveillance Elements Visual Results. 63 5.1.2 Scratches and Scrapes. 64 5.1.3 Oxidation. 65 5.1.4 Rub Marks. 65 5.1.5 Flow Marks. 66 5.1.6 Chips, Nicks and Debris. 67 6.3 SUMMARY AND CONCLUSIONS. 93 6.1 Core Component Performance. 93 6.3 FTE-2 Performance. 97 7. ACKNOWLEDGMENTS. 97 8. REFERENCES. 99	2.	IRRADIATION CONDITIONS	14
3.1 Description of Metrology Robot System. 17 3.2 Description of Metrological Examination. 11 3.3 Metrology Robot Quality Acceptance. 15 3.4 Results of Metrology Robot. 20 3.5 Comparisons of Messured and Calculated Strains and Bow. 21 3.6 FTE-2 Metrological Results. 23 4. GAMMA AND NEUTRON ACTIVITY MEASUREMENTS. 54 4.1 Gamma Dose Rates. 55 4.2 Neutron Count Rates. 56 5.1 Regular and Surveillance Elements Visual Results. 63 5.1.1. Stains. 63 5.1.2 Scratches and Scrapes. 64 5.1.3 Oxidation. 65 5.1.4 Rub Marks. 65 5.1.5 Flow Marks. 66 5.1.6 Chips, Nicks and Debris. 67 6.3 SUMMARY AND CONCLUSIONS. 95 6.1 Core Component Performance. 95 6.2 Code Verification. 96 6.3 FTE-2 Performance. 97 7. ACKNOWLEDGMENTS. 97	3.	METROLOGICAL EXAMINATIONS	17
3.2 Description of Metrological Examination		3.1 Description of Metrology Robot System	17
3.3 Metrology Robot Quality Acceptance. 15 3.4 Results of Metrology Robot. 20 3.5 Comparisons of Measured and Calculated Strains and Bow. 21 3.6 FTE-2 Metrological Results. 22 4. GAMMA AND NEUTRON ACTIVITY MEASUREMENTS. 53 4.1 Gamma Dose Rates. 53 4.2 Neutron Count Rates. 54 4.2 Neutron Count Rates. 54 5. VISUAL EXAMINATION. 62 5.1 Regular and Surveillance Elements Visual Results. 63 5.1.2 Scratches and Scrapes. 64 5.1.3 Oxidation. 65 5.1.4 Rub Marks. 65 5.1.5 Flow Marks. 65 5.1.6 Chips, Nicks and Debris. 67 6.3 UNMARY AND CONCLUSIONS. 99 6.1 Core Component Performance. 95 6.2 Code Verification. 96 6.3 FTE-2 Performance. 97 7. ACKNOWLEDGMENTS. 97 8. REFERENCES. 99		3.2 Description of Metrological Examination	18
3.4 Results of Metrology Robot. 24 3.5 Comparisons of Measured and Calculated Strains and Bow. 21 3.6 FTE-2 Metrological Results. 23 4. GAMMA AND NEUTRON ACTIVITY MEASUREMENTS. 54 4.1 Gamma Dose Rates. 54 4.2 Neutron Count Rates. 55 5. VISUAL EXAMINATION. 62 5.1 Regular and Surveillance Elements Visual Results. 63 5.1.2 Scratches and Scrapes. 64 5.1.3 Oxidation. 65 5.1.4 Rub Marks. 66 5.1.5 Flow Marks. 66 5.1.6 Chips, Nicks and Debris. 67 6. SUMMARY AND CONCLUSIONS. 95 6.1 Core Component Performance. 95 6.2 Code Verification. 96 6.3 FTE-2 Performance. 97 7. ACKNOWLEDGMENTS. 99		3.3 Metrology Robot Quality Acceptance	19
3.5 Comparisons of Measured and Calculated Strains and Bow		3.4 Results of Metrology Robot	20
3.6 FTE-2 Metrological Results. 23 4. GAMMA AND NEUTRON ACTIVITY MEASUREMENTS. 54 4.1 Gamma Dose Rates. 54 4.2 Neutron Count Rates. 54 5. VISUAL EXAMINATION. 63 5.1 Regular and Surveillance Elements Visual Results. 63 5.1.1. Stains. 63 5.1.2 Scratches and Scrapes. 64 5.1.3 Oxidation. 65 5.1.4 Rub Marks. 65 5.1.5 Flow Marks. 66 5.1.6 Chips, Nicks and Debris. 67 6. SUMMARY AND CONCLUSIONS. 93 6.1 Core Component Performance. 93 6.2 Code Verification. 96 6.3 FTE-2 Performance. 97 8. REFERENCES. 99		3.5 Comparisons of Measured and Calculated Strains and Bow	21
4. GAMMA AND NEUTRON ACTIVITY MEASUREMENTS. 53 4.1 Gamma Dose Rates. 53 4.2 Neutron Count Rates. 53 5. VISUAL EXAMINATION. 62 5.1 Regular and Surveillance Elements Visual Results. 63 5.1.1. Stains. 63 5.1.2 Scratches and Scrapes. 64 5.1.3 Oxidation. 65 5.1.4 Rub Marks. 65 5.1.5 Flow Marks. 66 5.1.6 Chips, Nicks and Debris. 67 6. SUMMARY AND CONCLUSIONS. 95 6.1 Core Component Performance. 95 6.2 Code Verification. 96 6.3 FTE-2 Performance. 97 7. ACENOWLEDGMENTS. 97 8. REFERENCES. 99		3.6 FTE-2 Metrological Results	23
4.1 Gamma Dose Rates	4.	GAMMA AND NEUTRON ACTIVITY MEASUREMENTS	58
4.2 Neutron Count Rates. 51 5. VISUAL EXAMINATION. 62 5.1 Regular and Surveillance Elements Visual Results. 63 5.1.1. Stains. 63 5.1.2 Scratches and Scrapes. 64 5.1.3 Oridation. 63 5.1.4 Rub Marks. 64 5.1.5 Flow Marks. 65 5.1.6 Chips, Nicks and Debris. 67 5.2 Fuel Test Element FTE-2 Visual Results. 67 6. SUMMARY AND CONCLUSIONS. 93 6.1 Core Component Performance. 95 6.2 Code Verification. 96 6.3 FTE-2 Performance. 97 7. ACKNOWLEDGMENTS. 97 8. REFERENCES. 99		4.1 Gamma Dose Rates	58
5. VISUAL EXAMINATION. 63 5.1 Regular and Surveillance Elements Visual Results. 63 5.1.1. Stains. 63 5.1.2 Scratches and Scrapes. 64 5.1.3 Oxidation. 64 5.1.4 Rub Marks. 65 5.1.5 Flow Marks. 65 5.1.6 Chips, Nicks and Debris. 67 5.2 Fuel Test Element FTE-2 Visual Results. 67 6. SUMMARY AND CONCLUSIONS. 95 6.1 Core Component Performance. 95 6.2 Code Verification. 96 6.3 FTE-2 Performance. 97 7. ACKNOWLEDGMENTS. 97 8. REFERENCES. 99		4.2 Neutron Count Rates	58
5.1 Regular and Surveillance Elements Visual Results	5.	VISUAL EXAMINATION	62
5.1.1. Stains. 63 5.1.2 Scratches and Scrapes. 64 5.1.3 Oxidation. 62 5.1.4 Rub Marks. 62 5.1.5 Flow Marks. 62 5.1.6 Chips, Nicks and Debris. 67 5.2 Fuel Test Element FTE-2 Visual Results. 67 6. SUMMARY AND CONCLUSIONS. 95 6.1 Core Component Performance. 95 6.2 Code Verification. 96 6.3 FTE-2 Performance. 97 7. ACKNOWLEDGMENTS. 97 8. REFERENCES. 99		5.1 Regular and Surveillance Elements Visual Results	63
5.1.2 Scratches and Scrapes		5.1.1. Stains	63
5.1.3 Oxidation. 63 5.1.4 Rub Marks. 64 5.1.5 Flow Marks. 66 5.1.6 Chips, Nicks and Debris. 67 5.2 Fuel Test Element FTE-2 Visual Results. 67 6. SUMMARY AND CONCLUSIONS. 93 6.1 Core Component Performance. 93 6.2 Code Verification. 96 6.3 FTE-2 Performance. 97 7. ACKNOWLEDGMENTS. 97 8. REFERENCES. 99		5.1.2 Scratches and Scrapes	64
5.1.4 Rub Marks		5.1.3 Oxidation	65
5.1.5 Flow Marks		5.1.4 Rub Marks	65
5.1.6 Chips, Nicks and Debris		5.1.5 Flow Marks	66
5.2 Fuel Test Element FTE-2 Visual Results		5.1.6 Chips, Nicks and Debris	67
6. SUMMARY AND CONCLUSIONS. 93 6.1 Core Component Performance. 93 6.2 Code Verification. 96 6.3 FTE-2 Performance. 97 7. ACKNOWLEDGMENTS. 97 8. REFERENCES. 99		5.2 Fuel Test Element FTE-2 Visual Results	67
6.1 Core Component Performance. 92 6.2 Code Verification	6.	SUMMARY AND CONCLUSIONS	95
6.2 Code Verification		6.1 Core Component Performance	95
6.3 FTE-2 Performance		6.2 Code Verification	96
7. ACKNOWLEDGMENTS		6.3 FTE-2 Performance	97
8. REFERENCES	7.	ACKNOW LEDGMENTS	97
	8.	REFERENCES	99

Page

	DOCUMENT NO. 907785 ISSUE NO./LTR. N/C	
		Page
APPE	NDIX A	102
	LIST OF TABLES	
1-1	Summary of FSV Segment 3 Core Surveillance	11
8-1	Results of Dimensional Inspections of FSV Segment 3 Core Com- ponents Axial Strain and Bow	33
3-2	Results of Dimensional Inspections of FSV Segment 3 Core Com- ponents, Radial Strain	36
41	Comparisons of Calculated and Measured Gamma Dose Rates for FSV Segment 3 Elements	61
	LIST OF FIGURES	
1-1	FSV standard fuel element	9
1-2	FSV element sideface identification	10
2-1	Fort St. Vrain reactor power history: SURVEY analysis of cycles 1, 2, and 3	16
3-1	Metrology robot in HSF at FSV	24
3-2	Side view of metrology robot probe	25
3-3	Metrology robot coordinate system	26
3-4	Across-the-flats measurements	27
3-5	Side face measurements	28
3-6	Top surface measurements	29
3-7	Coolant hole measurements	31
3-8	Fiducial hole measurements	32

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3 44

٢

GA 1485 (REV. 10/82)

GA Technologies Inc.

TITLE NO FI SE DISCIPLIN N QUALITY I ISSUE	ONDESTRI LECTOR I EGMENT NE SY ASSURANI DATE	UCTIVE ELEMEN 3 STEM 18 CE LEVEI PI 1985 F.N	EXAN TS FR DOC. RT L REPAR BY MCCOT	TYPE ED Id	ENGI	OF 62 ST. VI ROJECT 7700 LASSIFIC N/A NEERING Scheffe			ENT M	E- NO. MIC (DVAL	CATE N/A	R & D DV & 1 DESIG 9077 GORY	85	EL	.ECT	OVA ISS RICA		VEL NOJL I/C ASSI	.TR.	2	N
DISCIPLIN N QUALITY I ISSUE	ASSURAN DATE	ISTEM 18 ICE LEVEI PI 1985 F.N	DOC. RI REPAR BY McCor 2 (des 2 2/8	ED SAF	ETY C ENGI	ROJECT 7700 LASSIFIC N/A NEERING Scheffe	ATION		SEIS	NO. MIC I DVAL	CATE N/A	9077 GORY	85	EI	ECT	RICA	SUE I N IL CL N	NO /I I/C ASSI	TR.	ATIO	N
I ISSUE	DATE	1985 F. M.	REPAR BY McCor 2 Cor 2 Cor 2 Cor 2 Cor 2 2 / 8	SAF ED	ENGI L.J.S	N/A NEERING	ATION	AD	SEIS	DVAL	CATE N/A	GORY	(E	LECT	RICA	NL CL	ASS /A	IFIC	ATIO	N
ISSUE N/C	DATE JAN 241	1985 F.1	REPAR BY McCor 2 Cor 2 Cor 2 Cor 2 2 / 8	teD	ENGI	NEERING Scheffe		QA	APPR	DVAL FU				-	-		-	-	-		-
N/C	DATE	1985 F.Y	McCor 2 Cos 2 2 / 8	id and a state		NEERING Scheffe	1	QA		FU		-				6			SULF		
N/C	JAN 24)	1985 F.1	McCor Cane (22/8	d P	1.J.)	Scheffe	1	-	FUNDING		NG CT	APPL	ICAE	T		0	ESCI	RIPT BS N	ION/ 0.		
					2. F.	ules stield taug 12/85 Turne Uni/16	G.P.	Cont	nors				Q ik 1/23/3	owa s pr	- LX	CWB	s 7	1 Re 720	ele: 21	ase 0 2	00
CONTINU	JE ON GA F	ORM 1485	5-1 PPLIED of this herein t ming F Governies and Div States	TECH Stribu Doctro This foreign mentri Forei Store Stribu Forei Stribu Stribu Stribu Stribu Stribu Stribu Stribu Doctro Stribu Doctro Stribu Doctro Stribu Doctro Stribu Doctro Stribu Doctro Stribu Doctro Stribu Doctro Stribu Doctro Stribu Stribu Doctro Stribu S	INOLC trion b itent o red Part Interes a Fore an Sut of U.S e Coor Devel remeat	DGE y any r of Other its sts. sn suidaries dinated wi opment of Baergy											NEX	90	DEN UMEI 738	TUR NTS	ED
SH							+-	+			-+			-	-						-
REV	29 20 3	1 22 3	2 34	25	26 1	27 38 3	40	41	42	43	44	45 (6 47	48	49	50	51	52	53	54	55
REV	23 30 51	1 32 3	3 34	30	30 3	1 30 3	3 40		42	40		40 .	0 11	40	40	50	51	52	55	04	55
CH				7	9	0 10 1	1 17	12	14	15	16	17 1	9 19	20	21	22	22	24	25	26	27

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
			_	the second s	

TABLE OF CONTENTS

INTRODUCTION..... 6 1. IRRADIATION CONDITIONS..... 2. 14 METROLOGICAL EXAMINATIONS..... 3. 17 17 3.1 Description of Metrology Robot System..... Description of Metrological Examination..... 18 3.2 19 3.3 Metrology Robot Quality Acceptance..... 20 3.4 Results of Metrology Robot..... 3.5 Comparisons of Measured and Calculated Strains and Bow..... 21 FTE-2 Metrological Results..... 23 3.6 4. GAMMA AND NEUTRON ACTIVITY MEASUREMENTS..... 58 4.1 Gamma Dose Rates..... 58 Neutron Count Rates..... 58 4.2 5. VISUAL EXAMINATION..... 62 5.1 Regular and Surveillance Elements Visual Results..... 63 63 5.1.2 Scratches and Scrapes..... 64 5.1.3 Oxidation..... 65 65 5.1.4 Rub Marks..... 5.1.5 Flow Marks..... 66 5.1.6 Chips, Nicks and Debris..... 67 5.2 Fuel Test Element FTE-2 Visual Results..... 67 SUMMARY AND CONCLUSIONS..... 95 6. 95 6.1 Core Component Performance..... 6.2 Code Verification..... 96 6.3 FIE-2 Performance..... 97 7. ACKNOWLEDGMENTS..... 97

8. REFERENCES.....

99

Page

	DOCUMENT NO. 907785 ISSUE NO./LTR. N/C	
		Page
APPE	NDIX A	102
	LIST OF TABLES	
1-1	Summary of FSV Segment 3 Core Surveillance	11
3-1	Results of Dimensional Inspections of FSV Segment 3 Core Com- ponents Axial Strain and Bow	33
3-2	Results of Dimensional Inspections of FSV Segment 3 Core Com- ponents, Radial Strain	36
4-1	Comparisons of Calculated and Measured Gamma Dose Rates for FSV Segment 3 Elements	61
	LIST OF FIGURES	
1-1	FSV standard fuel element	9
1-2	FSV element sideface identification	10
2-1	Fort St. Vrain reactor power history: SURVEY analysis of cycles 1, 2, and 3	16
3-1	Metrology robot in HSF at FSV	24
3-2	Side view of metrology robot probe	25
3-3	Metrology robot coordinate system	26
3-4	Across-the-flats measurements	27
3-5	Side face measurements	28
3-6	Top surface measurements	29
3-7	Coolast hole measurements	31
2_0	Ridmaini hole messagents	32

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

	DOCUMENT NO. 907785 ISSUE NO./LTR. N/C	
		Page
3-9	Bow of FSV core components	39
3-10	Axial strain distribution and bow in FSV core region 18	40
3-11	Axial strain and bow distribution in examined elements from FSV core region 22	48
3-12	Axial strain and bow in examined elements from FSV core region 13	49
3-13	Axial strain and bow from element 1-2943	50
3-14	Measured radial strain of fuel and control rod elements FSV core 3 from region 18	51
3-15	Measured radial strain of selected fuel elements and one side reflector from FSV core 3 region 22	52
3-16	Measured radial strain of selected fuel elements from FSV core 3 regions 13 and 3	53
3-17	Envelope of axial strains observed in FSV segments 1, 2, and 3 fuel elements	54
3-18	Envelope of radial strains observed in FSV segments 1, 2, and 3 fuel elements	55
3-19	Differences in calculated and measured axial strains for FSV segment 3 fuel elements	56
3-20	Differences in calculated and measured radial strains for FSV segment 3 fuel elements	57
4-1	Geometry for gamma dose rate measurements	60
5-1	Typical surface markings	70
5-2	Face E of element 1-0530	71
5-3	Face B of element 2-1120	72
5-4	Face E of reflector element 17-1128	73

Page 4

...

	DOCUMENT NO. 907785 ISSUE NO./LTR. N/C	
		Page
5-5	Face C of element 5-2104	74
5-6	Element 5-0751 and 1-1805	75
5-7	Face F of element 1-1228 and 1-2640	76
-8	Face E of element 1-2606 and reflector 42-1008	77
-9	Possible oxidation on face D of element 5-2104	78
-10	Face C of element 41-1004 and Face F of element 1-2396	79
-11	Face A of control element 2-1120	80
-12	Face E of element 1-4304	81
-13	Top half of face E of element 1-1817	82
-14	Top surface of element 1-1228	83
-15	Bottom surface near the B dowel socket of element 2-1707	84
-16	Top surface of element 2-2815	85
-17	Dowel pins of element 1-2282 and 1-1337	86
-18	Side face A of element 8-0206 (FTE-2)	87
-19	Side face B of element 8-0206 (FTE-2)	88
-20	Side face C of element 8-0206 (FTE-2)	89
-21	Side face D of element 8-0206 (FTE-2)	90
-22	Side face E of element 8-0208	91
-23	Side face E of element 8-0206.	92
-24	Ton enginee of FTE-2	93
	Desk sizes is a selice showed second fast balan and and	
-25	adjacent burnable poison holes on the top surface of FTE-2	94

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
			_		

1. INTRODUCTION

Remote metrological and visual nondestructive examinations were performed on 62 irradiated fuel and reflector elements removed from the High Temperature Gas Cooled Reactor (HTGR) core of the Fort St. Vrain (FSV) Nuclear Generating Station[®] following the January 1984 refueling operation. The examinations of these core segment 3 elements were performed in the hot service facility (HSF) at FSV from June 2 through June 23, 1984.

The standard fuel and reflector elements are 793 mm long graphite bodies with a hexagonal cross section of 359 mm (across-the-flats) and a total weight of 128 kg (Figures 1-1 and 1-2). Examinations of these large irradiated elements were performed by a metrological robotic device and an experimental gamma robotic device both developed by GA Technologies (GA). The inspected elements included all 42 fuel elements and 9 reflectors elements from region 18, a side reflector and 4 fuel elements including FTE-2 from region 22, a fuel element from region 3, 2 reflector elements and 3 fuel elements from region 13. All of the selected elements from regions 13 and 3, and 2 of the selected elements from region 22 were surveillance elements. Surveillance elements, easily recognized by the fiducial holes drilled in their corners, were extensively characterized prior to insertion into the core (Ref. 1).

The nondestructive examination included the following:

 Dimensional measurements (all fuel elements, selected reflector elements) on the following:

[&]quot;The Fort St. Vrain Nuclear Generation Station is owned and operated by the Public Service Company of Colorado (PSC).

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

	DOCUMENT NO. 907785 ISSUE NO./LTR. N/C
	a. Across-flats dimensions
	b. Length
	c. Coolant hole diameters
	d. Distances between coolant holes
	e. Distances between fiducial boles (surveillance elements and FTE-2 only)
	f. Bow
2.	Gross gamma activity (selected elements) and neutron activity (selected elements) measurements.
3.	Visual inspections (all elements) for the following:

- a. Cracks
- b. Graphite oxidation
- c. Any other structural damage (chips, scrathces, etc.)
- d. Evidence of mechanical interaction between elements
- Other features of interest (discolorations, corrosion, flow marks, etc.)
- Fission product isotopic distributions (selected elements) (NOTE: This data will be reported in early 1985).

Table 1-1 summarizes the surveillance of FSV core segment 3.

These nondestructive examinations were performed under the FSV Fuel Surveillance Program sponsored by the Department of Energy (DOE). Previously, 51 fuel and reflector elements from core segment 1 were similarly examined in July 1979 (Ref. 2), and fifty-four fuel and reflector elements from core segment 2 were inspected in April 1982 (Ref. 3).

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
-	-				

The nondestructive surveillances are intended to accomplish the following objectives:

- o obtain graphite element strain and bow data over a range of irradiation temperatures and fast fluences for comparison with large high-temperature gas-cooled reactor (HTGR) design code calculations
- o verify the structural integrity and dimensional stability of the graphite elements
- o obtain gross gamma and neutron activity data for comparison with HTGR shielding code calculations
- o obtain fission product isotopic distributions in fueled elements for calculating fuel burnup for comparison with HTGR design code calculations
- o obtain fission product isotopic distribution on reflector elements for comparison with plateout code calculations.

DOCUMENT NO	0. 907785	ISSUE	NO./LTR.	N/C
	and the second s			

Table 1-1

SUMMARY OF FSV SEGMENT 3 CORE SURVEILLANCE(a)

In- spec- tion No.	Element Ser. No.	Core Location(b) Element Type		Measurement Sequences(c)	Nuclear Measure- ments(d)
1	42-1005	13.05.R.03	Top Reflector (Surveillance)	L,1,2,3,4,5	
2	42-1008	13.05.R.10	Bottom Reflector (Surveillance)	L,1,2,3,4,5	
3	1-2606	13.03.F.06	Fuel (Surveillance)	L,1,2,3,4,5	GG, GS
4	1-0335	13.03.F.09	Fuel (Surveillance)	L,1,2,3,4,5	GG, GS
5	2-2781	13.01.F.03	Control Rod (Surveillance)	L,1,2,3,4,5	GS
6	1-2943	03.06.F.09	Fuel (Surveillance)	L,1,2,3,4,5	GG, GS
7	41-1004	22.10.R.06	Side Reflector (Surveillance)	L,1,2,3,5	
8	5-2104	22.04.F.06	Fuel (Surveillance)	L,1,2,3	GG, GS
9	8-0206	22.06.F.06	Fuel (FTE-2)	L,1,2,3,4,5	GG
10	5-2191	22.03.F.06	Fuel (Surveillance)	L,1,2,3,5	GS
11	5-0751	22.02.F.06	Fuel	L,1,2,3,4	GG, GS
12	1-1805	18.06.F.09	Fuel	A,1,2,3,4	
13	1-0530	18.04.F.09	Fue1	A,1,2,3,4	GG, GS
14	1-1018	18.04.F.04	Fuel	A,1,2,3,4	GG, GS
15	1-2640	18.05.F.09	Fuel	A,1,2,3,4	GG
16	1-1049	18.03.F.09	Fuel	A,1,2,3,4	
17	1-2563	18.02.F.09	Fuel	A,1,2,3,4	
18	1-1397	18.05.F.06	Fuel	A,1,2,3,4	GG,GS
19	4-0463	18.03.F.04	Fue1	A,1,2,3,4	
20	1-2351	18.04.F.06	Fnel	A,1,2,3,4	GG, GS
21	1-2447	18.02.F.06	Fuel	A,1,2,3	GS

(a) Visual examination were performed for all elements (Section 5.0)

(b)Core location is given as: Region Column Element type (F = fuel element, R = reflector element)

(c)L = full-length vesion; A = abbreviated version; 1 = across-the-flats measurements, 2 = Side face measurements, 3 = top surface measurements, 4 = coolant hole measurements, 5 = fiducial hole measurements (see Section 3.2)

(d) N = Neutron measurement performed; GG = gross gamma activity measurement performed; GS = gamma scanned.

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LT	L. N/C
----------	-----	--------	-------	--------	--------

Table 1-1 (con't)

SUMMARY OF FSV SEGMENT 3 CORE SURVEILLANCE (a)

In- spec- tion No.	Element Ser. No.	Core Location(b)	Element Type	Measurement Sequences(c)	Nuclear Measure- ments(d)
22	1-1228	18.03.F.06	Fue1	A,1,2,3,4	GS
23	1-0684	18.02.F.04	Fue1	A,1,2,3,4	
24	3-0787	18.01.F.08	Control Rod	A,1,2,3,4	
25	1-0715	18.07.F.09	Fue1	A,1,2,3,4	
26	2-1707	18.01.F.03	Control Rod	A,1,2,3,4	
27	1-1612	18.07.F.04	Fue1	A,1,2,3,4	
28	1-0647	18.06.F.04	Fuel	A,1,2,3	
29	1-2282	18.05.F.04	Fue1	A,1,2,3,4	
30	1-5217	18.06.F.07	Fuel	A,1,2,3,4	
31	1-2939	18.04.F.07	Fuel	A,1,2,3,4	GS
32	1-2396	18.04.F.08	Fue1	A,1,2,3,4	GS
33	1-4304	18.05.F.07	Fuel	A,1,2,3,4	GG
34	1-1817	18.03.F.07	Fue1	A,1,2,3,4	
35	1-0443	18.02.F.07	Fue1	A,1,2,3,4	
36	2-1120	18.01.F.05	Control Rod	A,1,2,3,4	GS
37	1-0091	18.03.F.08	Fuel	A,1,2,3,4	GG
38	1-1918	18.07.F.06	Fue1	A, 1, 2, 3, 4	GS
39	1-1621	18.02.F.08	Fue1	A,1,2,3,4	
40	1-0873	18.06.F.06	Fue1	A,1,2,3	N, GG, GS
41	2-0265	18.01.F.06	Control Rod	A,1,2,3	N, GG, GS
42	1-1773	18.07.F.07	Fue1	A,1,2,3	
43	2-1950	18.01.F.07	Control Rod	A,1,2,3	
44	1-0536	18.07.F.08	Fuel	A,1,2,3	
45	1-1337	18.06.F.08	Fue1	A,1,2,3	
46	1-1796	18.05.F.08	Fue1	A,1,2,3	
47	1-1990	18.02.F.05	Fue1	A,1,2,3	N, GG
48	1-0192	18.03.F.05	Fuel	A,1,2,3	N, GG
49	1-1555	18.05.F.05	Fue1	A,1,2,3	
50	1-1410	18.06.F.05	Fuel	A,1,2,3	

(a) Visual examination were performed for all elements (Section 5.0)

(b)Core location is given as: Region.Column.Element type (F = fuel element, R = reflector element)

(c) L = full-length vesion; A = abbreviated version; 1 = across-the-flats measurements, 2 = Side face measurements, 3 = top surface measurements, 4 = coolant hole measurements, 5 = fiducial hole measurements (see Section 3.2)

(d) N = Neutron measurement performed; GG = gross gamma activity measurement performed; GS = gamma scanned.

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C

Table 1-1 (con't)

In- spec- tion No.	Element Ser. No.	Core Location(b)	Element Type	Measurement Sequences(c)	Nuclear Measure- ments(d)
51	1-0974	18.07.F.05	Fue1	A,1,2,3	
52	2-2815	18.01.F.04	Control Rod	A, 1, 2, 3	
53	1-0305	18.04.F.05	Fuel	A, 1, 2, 3	N, GG, GS
54	17-1394	18.04.R.03	Top Reflector	A, 1, 2, 3	N, GG, GS
55	17-1371	18.07.R.03	Top Reflector	N. M. *	
56	17-1388	18.07.R.10	Bottom Reflector	N. M. *	
57	18-1008	18.01.R.09	Bottom Reflector	N. M. *	
58	17-1412	13.05.R.10	Bottom Reflector	N.M.*	
59	17-1409	18.06.R.10	Bottom Reflector	N. M. *	
60	17-1270	18.04.R.10	Bottom Reflector	A,1,3	GS
61	17-1128	18.03.R.10	Bottom Reflector	N. M. *	
62	17-1182	18.02.R.10	Bottom Reflector	N. M. *	

SUMMARY OF FSV SEGMENT 3 CORE SURVEILLANCE (a)

(a) Visual examination were performed for all elements (Section 5.0)

(b)Core location is given as: Region Column Element type (F = fuel element, R = reflector element)

(c)L = full-length vesion; A = abbreviated version; 1 = across-the-flats measurements, 2 = Side face measurements, 3 = top surface measurements, 4 = coolant hole measurements, 5 = fiducial hole measurements (see Section 3.2)

(d) N = Neutron measurement performed; GG = gross gamma activity measurement performed; GS = gamma scanned.

" NM - Not Measured

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
	-				

2. IRRADIATION CONDITIONS

The time-and-volume-averaged graphite calculated (via the SURVEY code) irradiation temperatures for the core segment 3 fuel elements examined in the HSF at FSV ranged from 380°C to 670°C at the element midplane. The fast neutron fluences ranged from approximately 0.96 to 2.82 x 10^{25} n/m² (E > 29 fJ)_{HTGR}.

The following HTGR codes were used to simulate the irradiation conditions:

- o GAUGE (Ref. 4). A two-dimensional, four-group neutron diffusion and core depletion code. GAUGE treats the core as a single layer and calculates nuclide densities as a function of time and radial core location.
- o FEVER (Ref. 5). A one-dimensional, multigroup neutron diffusion and depletion program for calculating nuclide densities as a function of axial core location.
- o BUG-2 (Ref. 6). A two-dimensional, multigroup neutron diffusion and depletion program for calculating nuclide densities as a function of axial core location for fuel assemblies influenced by partially inserted control rods.
- o SURVEY. A computer program for the thermal and fuel performance analysis of fuel elements. The code performs coarse mesh survey analyses for large numbers of spatial positions, calculating a time history of the irradiation conditions and fuel performance for each space point. SURVEY calculations are based on radial power distributions obtained from GAUGE and axial power distribution obtained from FEVER and BUG-2.

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
-	_		-		

The reactor operating power is logged hourly. However, because of the numerous changes in power during cycles 1, 2, and 3, a simulation of the actual reactor operating history would be prohibitively expensive. Consequently, the reactor power history for the cycles was represented by 651 time intervals of approximately uniform power. Cycles 1, 2, and 3 were simulated with the GAUGE code using this detailed power history. A SURVEY analysis of the segment 3 elements was then performed based on the GAUGE results. The number of time intervals was further reduced from 651 to 100 for this analysis. Figure 2-1 shows the reactor power history used for the SURVEY analysis. The time- and volume-averaged graphite irradiation temperatures for the segment 3 elements were obtained from the SURVEY code results.

The temperature uncertainty is primarily due to the uncertainty in the power. Based on the results of nuclear and thermal design verification studies performed with data from the Peach Bottom HTGR (Ref. 7), the uncertainty in the power (and fast neutron fluence) calculated for a given core location is ~ $\pm 10\%$ (1 σ). The uncertainty for a given temperature is therefore approximately 10% of the difference between the calculated temperature and the gas inlet temperature (~335°C, time averaged).

Fig. 2-1 Fort St. Vrain reactor power history: SURVEY analysis of cyclas 1, 2, and 3

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

1	DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C

3. METROLOGICAL EXAMINATIONS

Metrological examinations were performed on 55 of the 62 elements inspected. Seven reflector elements from region 18 were not measured but were examined visually. The dimensional measurements were performed in the HSF at FSV with the GA metrology robot. The strains and bow data obtained from these measurements were compared with the HTGR design code strain and bow predictions.

3.1 Description of Metrology Robot System

The metrology robot (Figure 3-1) consists of a structural frame, rotary table, probe, and instrumentation. Irradiated core components are placed on the rotary table by the FSV fuel handling machine. The rotary table permits all points on the top and sides of a component to be positioned within the operating range of the probe. The two-finger probe (Figure 3-2) moves in the $\pm x$, $\pm y$, and $\pm z$ directions (Fig. 3-3). Upon contact with the test object, the probe head undergoes a displacement which activates a microswitch and terminates probe movement. The probe head has a primary and backup microswitch for each direction of displacement ($\pm x$, $\pm y$, $\pm z$).

Programmable stepping motors power the four drive systems of the robot. The stepping motors are coupled with free-wheeling d.c. motors which serve as auxiliary drive systems. The motor drives are modularized for quick replacement. Each full motor step is equivalent to 0.025 mm (0.001 in.) movement in the x and y directions, 0.032 mm (0.00125 in.) in the z direction, and 0.03degree rotation. The coordinates of a point on the surface of an element are determined by running the probe into the element and recording the position and displacement of the probe. Magnetic encoders (Sony Magnescales) and rotary potentiometers (backup) measure the position of the probe. Linear potentiometers and linear variable differential transformers (backup) measure

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
	-		-		

the displacement of the probe head. A resolver measures the position of the rotary table. A second resolver serves as a backup. Resistivity thermometer devices (RTD's) monitored the temperatures of robot components.

The robot is controlled by a Nuclear Data 6620 process computer. The computer operates under the Nuclear data MIDAS operating system. The computer controls the robot and processes the data. A set of custom designed and fabricated circuit cards collects the raw data from the instrumentation systems of the robot. The cards are wired directly to the computer memory system so that a simple program subroutine can collect the robot data in a very short time (~1 millisecond) and deposit it directly into main memory. This more efficient method of data collection and transmission reduced the time for a full length inspection (approximately 600 data points) from 4-1/2 to 2-1/2 hours.

The robot operates in a fully automated, closed-loop mode. This includes computer verification of proper movement and corrective actions without any, or minimum, operator interface. Comparison of redundant measurement deviceo, as well as on-line data reduction, is done by the computer. This allows the system to automatically overcome potential malfunctions, such as motor stalling or missing an intended hole or surface. System redundancy is used to maximize data output and minimize downtime.

3.2 Description of Metrological Examination

The dimensional examination of an irradiated fuel or reflector element may consist of up to five types of measurements. The measurement type and order of performance (if selected) are as follows:

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C	
				and the second se		

- Across-the-flats measurements: measure the across-the-flats dimensions of the hexagonal element to determine radial strain (Fig. 3-4).
- Side face measurements: map the element bow at the side faces of the element at up to 55 points per face (Fig. 3-5).
- Top surface measurements: map the element height at the top surface of the element at up to 54 points to determine bulk length change for axial strain (Fig. 3-6).
- 4. Coolant hole measurements: measure the distance between and diameter of 40 coolant holes at the top of the element to determine the incremental radial strain (Fig. 3-7).
- 5. Fiducial hole measurements: measure distances between predrilled fiducial holes located along the corner of preselected elements only (surveillance elements and FTE-2) to determine incremental changes in axial lengths and axial strain (Fig. 3-8).

The measurement sequence and length of inspection are selective. The side face, top surface, and coolant hole measurements have both full length and abbreviated versions. The full length versions are used for the surveillance and test elements. The abbreviated version is generally used for all other elements. The abbreviated version is shorter by approximately one hour.

3.3 Metrology Robot Quality Acceptance

The metrology robot was accepted by GA's Quality Assurance Department for shipment to FSV. The acceptance was in accordance with requirements

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
Second Second Street			-		

specified for the calibration of the robot (Ref. 8). The detailed calibration data and a discussion of the metrology robot calibration are presented in Appendix A.

3.4 Results of Metrology Robot

Fifty-one H-327 graphite and one H-451 graphite fuel elements were metrologically examined. An infrared thermometer temperature gun was setup to perform the surface temperature measurements, however, it failed after eight inspections. A resistivity thermometer device located on the probe was then used to measure the surface temperatures. The measured element surface temperatures ranged from 33°C to 48°C. The metrological results along with the calculated results are presented in Tables 3-1 and 3-2. The core segment 3 maximum element average shrinkages in length and across-the-flats dimensions were 5.80 mm (0.23 in.) and 2.05 mm (0.08 in.), respectively. The maximum observed bow (see Fig. 3-9) was 0.69 mm (0.027 in.). The axial and radial dimensions of nearly all of the fuel elements shrank as a result of the irra-One H-327 graphite fuel element expanded slightly 0.03 mm (0.001 distion. in.) across-the-flats (radial). This element was located in region 18 core layer 9. This phenomena was also noted in the core segment 2 surveillance where one fuel element and a side reflector also expanded slightly in the radial direction (Ref. 3). The core 2 fuel element was also located one layer above the reflector elements (layer 9). No core segment 3 fuel elements expanded axially. However, there was measured axial expansion in the examined reflectors (one top, one side and one bottom). The maximum expansion measured was 0.48 mm (0.02 in.) in the bottom reflector.

All of the fuel elements in region 18 were included in the core 3 surveillance. Figure 3-10 shows the axial strain and bow distributions measured for these fuel elements. The intra-element axial strains tended to be lower on the E face side and on the sides adjacent to the E face, the F and D faces. The bow in region 18 corresponded with the axial strains. The sides with

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C	
				and the second		

lower (less negative) axial strains, faces E, D and F, had small bow or had negative bow (convex). The opposite sides, A, B and C, tended to have greater bow or positive bow (concave). The bow and axial strains in the other examined regions did not follow these trends. See Figures 3-11, 3-12, and 3-13. The radial strains tended to peak in core layer 5. This was also true of the axial strains. Figures 3-14, 3-15, and 3-16 show the intra-element measured radial strain for region 18, 22, and 13 and 3, respectively.

Each core surveillance provide additional in-pile data. These data are used to gain a better perspective of the range of potential strains in HTGR fuel elements⁶. The fast neutron doses received by the core segment 3 elements [$\langle 2.8 \ x \ 10^{25} \ n/m^2$ (E $\langle 29 \ fJ \rangle_{\rm HTGR}$] were less than the expected lifetime doses that would be received by most fuel elements in a HTGR. Since the fast fluences were low, the measured strains were relatively small ($\langle 1.0\% \rangle$). Figures 3-17 and 3-18 show the envelopes of measured strains for core segments 1, 2 and 3 surveillances as compared to the range of potential strains using the H-327 graphite design curves.

3.5 Comparisons of Measured and Calculated Strains and Bow

Strain and bow predictions were obtained using the SURVEY/STRESS (Ref. 9) code. SURVEY/STRESS calculates stresses, strains and deformations (bow) in an HTGR fuel element based on viscoelastic beam theory. It is the simplest and most efficient of three codes used to calculate stresses in HTGR fuel elements. It is used to survey the entire core to identify potential critical elements which can be further studied by more refined analysis. Since SURVEY/STRESS models all the important physical effects and structural

The measured strains $(\Delta L/L)$ include the creep strain and elastic strain as well as the irradiation-induced strain. However, the creep strain and elastic strain for these elements were small, so the measured strain is approximately equal to the irradiation-induced strain (at room temperature).

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
	-				

interactions, the results should correlate reasonably well with the more refined analyses. Tables 3-1 and 3-2 compare the measured axial strain and bow, and radial strain with the SURVEY/STRESS predictions.

Figures 3-19 and 3-20 show the differences between calculated and measured element-average axial and radial strains for the segment 3 elements versus fast neutron fluence. The results of core segment 3 surveillance strain comparisons are given below:

1. Axial Strain

- a. The calculated axial strains were consistently lower for all temperature and fluence ranges. The disagreement between measured and calculated strains increased with higher fast fluences.
- b. The agreement between measured and calculated axial strain was within the ± 0.0001 mm/mm to 0.002 mm/mm range for fluences lower than 2.0 x 10^{25} n/m². Whereas, the agreement between measured and calculated axial strain for fluences greater than 2.0 x 10^{25} n/m² ranged from 0.002 mm/m to 0.0045 mm/mm.

2. Radial Strain

- a. The calculated radial strains were consistently lower than the measured strains.
- b. The agreement between calculated and measured strains was within +0.003 mm/mm for all elements.
- c. The agreement between calculated and measured strains varied with fast fluence. The lower the fast fluence the better the agreement.

TITLE: NONDESTRUCTIVE EXAMINATION CF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
-			-		

The polynomial expression used in SURVEY/STRESS code to represent the design data for irradiation-induced dimensional change of H-327 graphite has been revised (Ref. 10) since the core segment 2 surveillance. The revised polynomial expression no longer exaggerates the rate at which the H-327 graphite shrinks with fast neutron exposure (Ref. 3). The revised expression does not exaggerate the strain in the low temperature, low fluence ranges. At fluences between 2.0 and 3.0 x 10^{25} n/m² the revised expression underpredicts the strain by a ratio of 2 to 1.

3.6 FTE-2 Metrological Results

FTE-2 underwent very little dimensional change as a result of irradiation. The element average axial and radial strains were measured to be -0.262% (0.9 mm shrinkage) and -0.099% (0.4 mm shrinkage), respectively. The maximum bow was 0.10 mm. The radial and axial strain distributions, (from across-flats dimension and element length measurements), for FTE-2 are shown in Figures 3-11 and 3-15. The maximum bow for each side face is also shown in Figure 3-11.

The measured strains were compared with the calculated strains (via the SURVEY/STRESS code). The differences between calculated and measured axial and radial strains were -0.018% and -0.112%, respectively (see Tables 3-1 and 3-2). The polynomial expression used in SURVEY/STRESS to represent the design data for irradiation-induced dimensional change of H-451 graphite slightly overpredicted the strains (see Tables 3-1 and 3-2).

Fig. 3-3 Metrology robot coordinate system

Fig. 3-4 Across-the-flats measurements

Fig. 3-5 Side face measurements

Page 28

DOCUMENT	NO.	907785	ISSUE	NO./L	TR.	N/C	
	-						-

AND ABBREVIATED INSPECTIONS

Fig. 3-6 Top surface measurements (Sheet 2 of 2)

FULL LENGTH INSPECTION - REGULAR FUEL ELEMENT

NOTE: COOLANT HOLES 66, 81, 103, 112, 144, 145, 180, 181, 213, 222, 244, AND 259 OMITTED FOR ABSREVIATED INSPECTION OF REGULAR FUEL ELEMENT. COOLANT HOLES 312, 270, 219, 181, 199, 235, 180, 216, 264, 303, 319, 295, 267, 13, 106, 144, 145, 109, AND 22 MEASURED FOR CONTROL-BOD ELEMENTS.

Fig. 3-7 Coolant hole measurements

ť
z
T
8
-
H
9 0
-
•
N
5
84
F
-

REFLECTOR ELEMENTS FROM FORT AND FUEL 62 OF NONDESTRUCTIVE EXAMINATION ST. VRAIN CORE SEGMENT 3 TITLE

		I
C		
Z		Ì
		ł
Ę		
=	d	Į
ż		
-		1
ISSU		
_	_	i
-		İ
35		Stational Street, Stre
785		and the other Distance in the other distance in the
07785		Stational and a strength with the statement of
907785		and produced in the state of th
0. 907785		and the state of t
NO. 907785		And the state of t
NT NO. 907785		And the second sec
IENT NO. 907785		A REAL PROPERTY AND ADDRESS OF A REAL PROPERTY ADDREAL PROPERTY ADDREAL PROPERTY ADDRESS OF A REAL PROPE
JUNENT NO. 907785		And a state of the
OCUMENT NO. 907785		A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PRO
DOCUMENT NO. 907785		And the state of t

Table 3-1

RESULTS OF DIMENSIONAL INSPECTIONS OF FSV SEGMENT 3 CORE COMPONENTS ALLAL STRAIN AND BOW

			1.1		TRITY				
		Irrad.	Conditions	Measu	pea	(0)		Bon	(
	Core	(Do)	Fast Fluence (x1025n/m2)	(<u>8</u> 2)	±10	(EZ) .	(BZ) e ^{-(BZ)}	No.s.	Calo. (d
1				0.1 0	+ 013	946.0-	0.061	0.30	0.002
107	18.01.F.03	387	1.67				0.021	0.25	0.15
684	18.02.F.04	381	1.71	104.0-	710.1		0 0 40	0.28	0.10
463	18.03.F.04	386	1.69	-0.412	c10.1				0.07
018	18.04.P.04	398	1.87	-0.457	200.4	202.0-			00.0
	18.05. P.04	396	1.88	-0.465	\$00.4	-0.376	0.085		
107			1 72	-0.416	+.012	-0.368	0.048	0.33	71.0
647	18.00.1.04			-0.392	\$000 +	-0.374	0.018	0.25	0.13
612	18.07.F.04			-0 437	1008	-0.277	0.260	0.31	10.01
813	18.01.F.04	104			1008	-0.315	0.332	0.43	0.18
666	18.02.F.05	448	1.31			-0.312	0.336	0.46	0.13
192	18.03.F.05	451	2.42			10.201	0.414	0.43	0.06
305	18.04.8.05	483	2.02	111.0-		202 0	0.424	0.41	0.13
555	18.05.F.05	476	2.39	101.0		102.0	0.379	0.48	0.16
410	18.06.F.05	436	2.43			-0.323	0.316	0.41	0.19
1014	18.07.F.05	44	2.30			101 9	0.237	0.23	0.03
120	18.01.F.05	211	2.23			010 01	0.370	0.25	0.11
1447	18.02.F.06	206	2.50	0000		1000	0.366	0.33	0.10
1228	18.03.F.06	219	7.00	110.0		186	0.375	0.25	0.06
1351	18.04.F.06	534	3.75	100.0		102	7447	0.30	0.10
1397	18.05.F.06	346	2.74	A		110.9	0.385	0.41	11.0
813	18.06.F.06	318	2.03			0 216	0.344	0.36	0.14
1918	18.07.8.06	204	2.31				0.070	0.08	0.04
0265	18.01.F.06	557	1.80	11.0			0 148	0.13	0.06
0443	18.02.8.07	545	2.03	-0.323	+.008	101.0	176	1 1 8	0.05
1817	18.03.F.07	562	2.11	-0.323	200.+	1.0			0.06
0100	18.04. F.07	602	2.24	-0.350	+.015	-0.133	117.0		

(a) Temperatures and fast fluences were optimized from our of the difference between the temperature code depletion analysis of FSV opeles 1.2, and 3. Temperatures are time and volume averaged. The temperature uncertainty (10) is estimated by 10% of the difference between the temperature of the section fluences (1 > 29 and the gas-inlet temperature (-3350C, time averaged). The fast neutron fluences (1 > 29 and the gas-inlet temperature (-3350C, time averaged). The fast neutron fluences (1 > 29 and the gas-inlet temperature (-3350C, time averaged). The fast neutron fluences (1 > 29 bisis is traine averaged. The uncertainty in the fast fluence is ±10% (10).
(b) hail strains are element averages.
(c) The calculated axial strains were obtained by subtracting the thermal atrain at 1770C (3500P) (0.027 x 10⁻² ms/mm) from the element midplase by SUNMI/STRRSS.

Page 33
DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
			-		

Table 3-1

RESULTS OF DIMENSIONAL INSPECTIONS OF FSV SEGMENT 3 CORE COMPONENTS AXIAL STRAIN AND BOW

		Trend	Conditions(8)	1.1	Azial Strain ⁽⁶⁾ (%)				
Element	Core	Tam	Bast Finance	Heast	ared	(a)	Difference	· Bon	(
Number	Location	(°C)	(x10 ²⁵ m/m ²)	(BZ) .	±10	(B _Z)e	(EZ) e-(EZ)	Ness.	Cale. (d)
01-4304	18.05.F.07	592	2.21	-0.349	±.008	-0.130	0.219	0.20	0.04
01-5217	18.06.F.07	560	2.13	-0.375	+.015	-0.145	0.230	0.25	0.05
01-1773	18.07.F.07	543	2.04	-0.342	+.008	-0.156	0.186	0.13	0.07
02-1950	18.01.F.07	596	1.46	-0.184	+.008	-0.119	0.065	0.05	0.04
01-1621	18.02.F.08	583	1.64	-0.220	+.007	-0.130	0.090	0.20	0.02
01-0091	18.03.F.08	602	1.72	-0.223	+.008	-0.121	0.102	0.20	0.02
01-2396	18.04.F.08	649	1.82	-0.204	±.012	-0.124	C.080	0.20	0.13
01-1796	18.05.F.08	638	1.79	-0.228	±.008	-0.112	0.116	0.23	0.07
01-1337	18.06.F.08	602	1.71	-0.237	+.007	-0.112	0.125	0.20	0.03
01-0536	18.07.F.08	582	1.63	-0.220	+.007	-0.172	0.048	0.13	0.03
03-0787	18.01.F.08	613	0.96	-0.052	+.012	-0.087	-0.035	0.08	0.03
01-2563	18.02.F.09	601	1.08	-0.106	+.012	-0.100	0.006	0.08	0.02
01-1049	18.03.F.09	621	1.14	-0.103	±.008	-0.093	0.010	0.15	0.03
01-0530	18.04.F.09	671	1.21	-0.096	±.015	-0.101	-0.005	0.15	0.15
01-2640	18.05.F.09	659	1.19	-0.129	+.008	-0.090	0.039	0.15	0.08
01-1805	18.06.F.09	621	1.13	-0.095	±.012	-0.086	0.009	0.10	0.02
01-0715	18.07.F.09	598	1.07	-0.106	±.015	-0.097	0.009	0.08	0.02
08-0206 (FTE-2)	22.06.F.06	512	2.07	-0.262	±.005	-0.280	-0.018	0.10	0.05
05-2191	22.03.F.06	484	1.54	-0.244	+.008	-0.187	0.057	0.61	0.38
05-0751	22.04.F.06	497	1.92	-0.361	+.012	-0.199	0.162	0.69	0.36
05-2104	22.04.F.06	493	2.07	-0.373	+.008	-0.217	0.156	0.53	0.27
01-2943	3.06.F.09	639	1.42	-0.122	+.007	-0.096	0.026	0.18	0.03
02-2781	13.01.F.03	380	1.63	-0.376	+.008	-0.350	0.026	0.18	0.01
01-2606	13.03.F.06	535	2.82	-0.637	+.011	-0.233	0.404	0.46	0.06
01-0335	13.03.F.09	644	1.20	-0.108	±.011	-0.085	0.023	0.25	0.06

(a) Tomperatures and fast fluences were obtained from SURVET code calculations based on the GADGE code depletion analysis of FSV cycles 1, 2, and 3. Temperatures are time and volume averaged. The temperature uncertainty (1 σ) is estimated by 10% of the difference between the temperature and the gas-inlet temperature (~335°C, time averaged). The fast neutron fluences (E > 29 fJ) HTGR are volume averaged. The uncertainty in the fast fluence is ±10% (1 σ). (b) Artal strains are element averages.

(e) The calculated axial strains were obtained by subtracting the thermal strain at 177°C (350°F) (0.027 x 10⁻² mm/mm) from the end-of-life shutdown strains. (d) Bow calculated at the element midplane by SURVEY/STRESS.

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
	-				

Table 3-1

RESULTS OF DIMENSIONAL INSPECTIONS OF FSV SEGMENT 3 CORE COMPONENTS AXIAL STRAIN AND BOW

-		Trend	Conditions(a)		Azial	Strain	(%)		
Element	1.00		Conditions	Heast	red	c.1. (a)	Distances	Bow	(
Number	Location	(°C)	(x10 ²⁵ n/m ²)	(BZ) m	<u>+</u> 1σ	(EZ) e	(EZ) e-(EZ) m	Ness.	Cale. (d)
41-1004 17-1394 17-1270	22.10.R.06 18.04.R.03 18.04.R.10	NC(+) NC NC	NC NC NC	0.024 0.070 0.043	±.008 ±.020 ±.020	NC NC NC	NA NA NA	0.20 -0.05 NM	NC NC NC

(a) Temperatures and fast finences were obtained from SURVEY code calculations based on the GAUGE code depletion analysis of FSV cycles 1, 2, and 3. Temperatures are time and volume averaged. The temperature uncertainty (1s) is estimated by 10% of the difference between the temperature and the gas-inlet temperature (~335°C, time averaged). The fast neutron fluences (E > 29 fJ) HTGR are volume averaged. The uncertainty in the fast fluence is $\pm 10^{4}$ (1 σ).

(b)Arial strains are element averages.

(e) The calculated axial strains were obtained by subtracting the thermal strain at 177°C (350°F) (0.027 x 10⁻² mm/mm) from the end-of-life shutdown strains. (d) Bow calculated at the element midplane by SURVET/STRESS.

(e) NC = Not Calculated NA = Not Available; NH = Not Measured

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
-	_	and the second se			

Table 3-2

RESULTS OF DIMENSIONAL INSPECTIONS OF FSV SEGMENT 3 CORE COMPONENTS, RADIAL STRAIN

		Irra	Irradiation Conditions(a)		Radial Strain(b) (%)		
		Tes-	Fast		Aguiai S	C. L.	
Element	6	pera-	Fluence	Meas	ured	Laicu-	Difference
Number	Location	(°C)	n/m ²)	(EX)m	<u>+</u> 1σ	(EX) c	(EX) c-EX) m
02-1707	18.01.F.03	387	1.67	-0.274	0.046	-0.208	0.066
01-0684	18.02.F.04	381	1.71	-0.271	0.014	-0.220	0.051
04-0463	18.03.F.04	386	1.69	-0.334	0.008	-0.219	0.115
01-1018	18.04.F.04	398	1.87	-0.357	0.016	-0.244	0.113
01-2282	18.05.F.04	396	1.88	-0.303	0.017	-0.249	0.054
01-0647	18.06.F.04	384	1.72	-0.311	0.013	-0.227	0.084
01-1612	18.07.F.04	379	1.67	-0.241	0.025	-0.217	0.024
02-2815	18.01.F.04	457	2.20	-0.420	0.081	-0.189	0.231
01-1990	18.02.F.05	448	2.37	-0.480	0.008	-0.211	0.269
01-0192	18.03.F.05	457	2.42	-0.479	0.039	-0.220	0.259
01-0305	18.04.F.05	482	2.62	-0.491	0.006	-0.221	0.270
01-1555	18.05.F.05	476	2.59	-0.513	0.014	-0.227	0.286
01-1410	18.06.F.05	456	2.45	-0.569	0.042	-0.230	0.339
01-0974	18.07.F.05	446	2.36	-0.502	0.061	-0.220	0.282
02-1120	18.01.F.05	517	2.25	-0.325	0.030	-0.121	0.204
01-2447	18.02.F.06	506	2.50	-0.344	0.013	-0.140	0.204
01-1228	18.03.F.06	519	2.60	-0.401	0.068	-0.144	0.257
01-2351	18.04.f.06	554	2.76	-0.336	0.023	-0.125	0.211
01-1397	18.05.F.06	546	2.74	-0.425	0.027	-0.130	0.295
01-0873	18.06.F.06	518	2.63	-0.406	0.013	-0.152	0.254
01-1918	18.07.F.06	504	2.51	-0.356	0.021	-0.150	0.206

(a) Temperatures and fast fluences were obtained from SURVEY code calculations based on the GAUGE code depletion analysis of FSV cycles 1, 2, and 3. They are time- and volume-averaged temperatures for axial point 3, the mid-plane of the block. The temperature uncertainty (1g) is estimated by 10% of the difference between the tempreature and the gas-inlet temperature (~335°C), time averaged).

- (b) Radial strains are element-averaged strains at the mid-plane of the elements.
- (c) The radial strains were obtained by subtracting the thermal strain at 177°C (350°F) (0.056 x 10⁻² mm/mm) from the end-of-life shutdown strain calculated by SURVEY/STRESS for axial point 3, the mid-plane of the element.

1	DOCUMENT	NO.	907785	11	SSUE	NO./	LTR.	N/C	
		-					-		-

Table 3-2

RESULTS OF DIMENSIONAL INSPECTIONS OF FSV SEGMENT 3 CORE COMPONENTS, RADIAL STRAIN

		Irradiation Conditions(a) Radial Strain(b) (%)					
		Tem-	Fast		Radial C	crain	(11)
Element	Core	pera-	Fluence (x1025	Meas	ured	Calcu- lated(e)	Difference
Number	Location	(°C)	n/m ²)	(EX)m	<u>+</u> 1σ	(EX)c	$(E_{\underline{X}})_{c} - E_{\underline{X}})_{m}$
02-0265	18.01.F.06	557	1.80	-0.135	0.021	-0.073	0.062
01-0443	18.02.F.07	545	2.03	-0.164	0.015	-0.084	0.080
01-1817	18.03.F.07	562	2.11	-0.182	0.002	-0.080	0.102
01-2939	18.04.F.07	602	2.24	-0.201	0.014	-0.057	0.144
01-4304	18.05.F.07	592	2.21	-0.164	0.019	-0.057	0.107
01-5217	18.06.F.07	560	2.13	-0.231	0.011	-0.081	0.150
01-1773	18.07.F.07	543	2.04	-0.210	0.011	-0.089	0.121
02-1950	18.01.F.07	596	1.46	-0.119	0.003	-0.042	0.077
01-1621	18.02.F.08	583	1.64	-0.137	0.026	-0.049	0.088
01-0091	18.03.f.08	602	1.72	-0.104	0.028	-0.042	0.062
01-2396	18.04.F.08	649	1.82	-0.060	0.020	-0.024	0.036
01-1796	18.05.F.08	638	1.79	-0.074	0.012	-0.019	0.055
01-1337	18.06.F.08	602	1.71	-0.113	0.013	-0.037	0.076
01-0536	18.07.F.08	5 82	1.63	-0.109	0.014	-0.050	0.059
03-0787	18.01.F.08	613	0.96	-0.011	0.019	-0.021	-0.010
01-2563	18.02.F.09	601	1.08	-0.041	0.029	-0.025	0.016
01-1049	18.03.F.09	621	1.14	-0.005	0.014	-0.018	-0.013
01-0530	18.04.F.09	671	1.21	-0.028	0.023	-0.003	0.025
01-2640	18.05.F.09	659	1.19	-0.052	0.017	-0.000	0.052
01-1805	18.06.F.09	621	1.13	-0.047	0.007	-0.014	0.033
01-0715	18.07.F.09	598	1.07	0.009	0.015	-0.026	-0.035
08-0206 (FTE-2)	22.06.F.06	512	2.07	-0.099	0.012	-0.211	-0.112

(a) Temperatures and fast fluences were obtained from SURVEY code calculations based on the GAUGE code deplotion analysis of FSV cycles 1, 2, and 3. They are time- and volume-averaged temperatures for axial point 3, the mid-plane of the block. The temperature uncertainty (1σ) is estimated by 10% of the difference between the tempreature and the gas-inlet temperature (~335°C), time averaged).

- (b)Radial strains are element-averaged strains at the mid-plane of the elements.
- (c) The radial strains were obtained by subtracting the thermal strain at 177°C (350°F) (0.056 x 10⁻² mm/mm) from the end-of-life shutdown strain calculated by SURVEY/STRESS for axial point 3, the mid-plane of the element.

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
	_		-		

Table 3-2

RESULTS OF DIMENSIONAL INSPECTIONS OF FSV SEGMENT 3 CORE COMPONENTS, RADIAL STRAIN

		Irra Cond	diation itions(a)		Paddal 6	(b)	
Element	6	Tem- pera-	Fast Fluence	Meas	ured	Calcu-	Difference
Number	Location	(°C)	n/m ²)	(EX)m	<u>+</u> 1σ	(EX)c	$(E_{\mathbf{X}})_{c} - E_{\mathbf{X}})_{\mathbf{m}}$
05-2191	22.03.F.06	484	1.54	-0.186	0.024	-0.148	0.038
05-0751	22.02.F.06	497	1.92	-0.243	0.032	-0.155	0.088
05-2104	22.04.F.06	493	2.07	-0.311	0.032	-0.165	0.146
01-2943	03.06.F.09	639	1.42	-0.082	0.022	-0.025	0.057
02-2781	13.01.F.03	380	1.63	-0.298	0.034	-0.228	0.070
01-2606	13.03.F.06	535	2.82	-0.455	0.019	-0.180	0.275
01-0335	13.03.F.09	644	1.20	-0.048	0.024	-0.013	0.035
41-1004	22.10.R.06	NC(d)	NC	-0.038	0.018	NC	NC
17-1394	18.04.R.03	NC	NC	0.016	0.092	NC	NC
17-1270	18.04.R.10	NC	NC	0.071	0.026	NC	NC

(a) Temperatures and fast fluences were obtained from SURVEY code calculations based on the GAUGE code depletion analysis of FSV cycles 1, 2, and 3. They are time- and volume-averaged temperatures for axial point 3, the mid-plane of the block. The temperature uncertainty (1c) is estimated by 10% of the difference between the tempreature and the gas-inlet temperature (~335°C), time averaged).

(b)Radial strains are element-averaged strains at the mid-plane of the elements.

(c) The radial strains were obtained by subtracting the thermal strain at 177°C (350°F) (0.056 x 10⁻² mm/mm) from the end-of-life shutdown strain calculated by SURVEY/STRESS for axial point 3, the mid-plane of the element.

(d) NC = Not Calculated.

Fig. 3-9 Bow of FSV core components. Bow is defined as the displacement of the side face relative to a straight line connecting the top and bottom (below and above the chamfers) of the side face

Page 39

TITLE:

ST. VRAIN CORE SEGMENT 3

NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT

(1 of 8 sheets)

Fig. 3-10 Axial strain distribution and bow in PSV core region 18, layer 4 (2 of 8 sheets).

Fig. 3-10 Axial strain distribution and how in FSV core region 18, layer 5 (3 of 8 sheets)

Fig. 3-10 Axial strain distribution and how in FSV core region 18, layer 6 (4 of 8 sheets).

Fig. 3-10 Axial strain distribution and bow in FSV core region 18, layer 7 (5 of 8 sheets)

> Fig. 3-10 Axial strain distribution and bow in FSV core region 18, layer 8 (6 of 8 sheets).

> Fig. 3-10 Axial strain distribution and bow in FSV core region 18, layer 9 7 of 8 sheets)

DOCUMENT NO. 907785 ISSUE NO./LTR. N/C B 0 2 C 4 N.M. B 8 С 0 7 3 0 0 NM N.M. 0 0 8 1 0 0 0.052 O C 0.04/ 0.035 NM 6 4 M. 0.043 0 0 N.M. 0 0 2049 Q.028 0 B 3 5 0.0 57 N.M. C Region 18 C Layer 10 * NM : Not Measured

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

Fig. 3-10 Axial strain distribution and bow in FSV core region 18, Layer 10 (8 of 8 sheets)

.

Fig. 3-J1 Axial strain and bow distribution in examined elements from FSV core region 22

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
I					

Fig. 3-13 Axial strain and bow from element 03-06-F-09

		Colu		TIME-AVERHELD	MID PLANE SREPHIT	TE TEMP(°C) E 729 f J) %)
	2	3	4	5	6	7
	-0043	-0.093	-0.071	-0,067	-0.068	-0,032
1				1 Second	TRAVI AT TOP	1
- 0. 102	7	144		- KHDING	1 304	1 79
	1.71	1.69	7.67	1.88	1.72	1.67
	- 0.271	- 0. 334	-0.357	-0.303	_0. 3//	_0. 241
387			1 .	RADIAL	STRAIN AT BOTTON	M
_0.274	-0.346	-0.470		1 300	0 443	-1 318
	-0,342	-0.368	-0.402	-0.390	-0, 452	-0.3.87
-0 320	-0, 376					10.00
-0.412	-					1
	448	4 57	482	476	456	446
· · · ·	- 0. 480	2.42	2.62	- 0.513	2.45	2.36
457			-0.111		1	
-0.420	1				A Second Second	
	-0.432	-0.435	-0.4/3	-0.467	-0.517	-0.443
	-0, 510	- 0,415			-	
-0.393	-		1	1		1
	SAL	519	554	546	518	504
	2.50	260	-0.336	-0.425	-0.406	-0.356
517						
-0.325	in the second second	Change -	E. and S.			1 Same
	-0,219	-0.293	-0.219	-0.308	-0.261	-0.223
-0	-0.743	-4200	-0.001		1	
-0.223		1	1.1.1.1.1.1.1.1	1.1.1.1.1.1.1	1.1.1.1	1
0.176	545	562	602	592	560	2.04
-	2.03	2.11	_0.201	-0.164	-0.231	-0.210
5 57				- · · ·	1	
-0.135	i la contra di					1 Second
	-0.104	-0.117	-0.129	-0.078	-0.166	-0.126
	-0,10	-0.012			-0010	-0,004
-0 113	1		-	1.1.1		A second
0,	583	602	649	638	602	582
	1.64	-0104	-0.060	-0.074	-0.113	-0.109
596						
-0.119				-		1
	-0.081	-0.045	-0.012	-0.018	-0.048	-0.069
	-0.034	a. 014	-0.005	0.001	-0,010	0,012
-0.081	-	1	1.1.1			
-0,018	601	621	671	659	621	598
	- 5:001	-0.005	- 0.028	- 4052	- 0.047	0.009
613		1. 1. 1.			1	
-0.011						
	- 0.003	0.038	-0,002	- 0.018	-0.055	0.055

Page 51

Fig 3-15

15 Measured radial strain of selected fuel elements and one side reflector from FSV core 3 region 22

Fig. 3-16 Measured radial strain of selected fuel elements from FSV core 3 regions 13 and 3

FAST NEUTRON FLUENCE, Φ (10²¹ N/M²) (E > 0.18 MeV) HTGR

Fig. 3-17 Envelope of axial strains observed in FSV segments 1, 2, and 3 fuel elements

DOCUMENT	NO.	907785	11	SSUE	NO./	LTR.	N/C
			-1-		-		

Fig. 3-18 Envelope of radial strains observed in FSV segments 1, 2, and 3

fuel elements

18 1.4 1.5 1.6 1.7 1.9 1.0 14 12 15 20 2.1 2.2 23 25 17 2.8 2.4 24 Fluence (10 N/M2; E>2953) HTGR Fast Neutron

> Fig. 3-19 Differences in calculated and measured axial strains for FSV segment 3 fuel elements

0.9

segment 3 fuel elements

Page 57

DOCUMENT	NO.	907785	ISSUE	NO./	LTR.	N/C	

4. GAMMA AND NEUTRON ACTIVITY MEASUREMENTS

4.1 Gamma Dose Rates

Gamma dose rates at 91 cm (3 ft) and at 100 cm (39.5 in.) were measured for selected segment 2 elements with a Reuter-Stokes, Model RS-C4-1606-203, gamma ionization chamber.

Figure 4-1 shows the geometry for the gamma dose rate measurements.

The PATH (Ref. 11) gamma shielding code was used to calculate the gamma dose rate at the above specified distances. The PATH analysis calculated nuclide densities of the major gamma contributors. Dose rates calculated by the PATH model were then scaled according to the nuclide densities of the major gamma contributors to give the calculated dose rate for each fuel element.

Table 4-1 shows the results of the measured and calculated gamma dose rates. The measured gamma dose rate for a top reflector was 76 mR/h. The measured gamma dose rate for fuel elements ranged from 605 to 2815 R/h. The ratio of calculated to measured gamma dose rate for examined fuel elements ranged from 0.78 to 2.11 with an average of 1.04. If the worst case ratio of 2.11 is omitted (see Table 4-1), the average ratio of calculated to measured gamma dose rate is 0.99. The previous surveillance (Ref. 3) had an average calculated to measured gamma dose rate of 1.7. The better agreement for the core 3 segment can be attributed to more precise source terms used in the PATH calculations.

4.2 Neutron Count Rates

Neutron count rates for selected segment 3 fuel elements were measured using a SNOOPY-type detector system equipped with a Reuter-Stokes, model RS-

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
	-		-	and a second second second	and the second second second

P6-085-134, fission counter. The measured counts are not believed to be correct because the detector indicated higher counting rates for the background than for a fuel element. The system is believed to have degraded due to electronic noise. Therefore, the neutron counts will not be presented in this report.

Page 60

TECHNOLOGIES INC.

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO.	/LTR.	N/C	
	_			_			-

Table 4-1

COMPARISONS OF CALCULATED AND MEASURED GAMMA DOSE RATES FOR FSV SEGMENT 3 ELEMENTS

Floment		Distance from Conter	Gamma (B			
Serial Number	Core Location	of Face (cm)	Calcu- lated	Mea- sured	Calc./ Meas.	
1-2606	13.03.F.06	91	2497	2664	0.94	
		100	2141	2370	0.90	
1-0335	13.03.F.09	100	1275	605	2.11	
1-2943	3.06.F.09	91	1632	1227	1.33	
		100	1398	1076	1.30	
5-2104	22.04.F.06	91	2669	2462	1.08	
8-0206	22.06.F.06	91	2924	2387	1.22	
		100	2507	2462	1.02	
5-0751	22.02.F.06	91	2895	2815	1.03	
		100	2482	2521	0.98	
1-0530	18.04.F.09	100	1285	1471	0.87	
1-1018	18.04.F.04	100	1404	1630	0.86	
1-2640	18.05.F.09	91	1438	1471	0.98	
1 1397	18.05.F.06	100	2162	2546	0.85	
1-2351	18.04.F.06	100	2223	2622	0.85	
1-4304	18.05.F.07	91	2118	2303	0.92	
1-0091	18.03.F.08	91	1948	2487	0.78	
1-0873	18.06.F.06	91	2562	2555	1.00	
2-0265	18.01.F.06	91	1566	1462	1.07	
1-1990	18.02.F.05	91	2493	2479	1.01	
1-0192	18.03.F.05	91	2286	2513	0.91	
1-0305	18.04.F.05	91	2223	2345	0.95	
a special		100 **	1905	2311	0.82	
17-1394	18.04.R.03	104	NC*	0.076		

NC = Not Calculated

** Detector was moved

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
		Contraction of the local division of the loc			

5. VISUAL EXAMINATION

The visual examinations were performed concurrently with the metrological examination. A core component (element) was lower into the HSF by the fuel handling machine (FHM). The element was placed on the turntable of the metrology robot. During the metrological examination, the turntable rotated the element so that each side face (Fig. 1-2) could be viewed through the HSF window and by the camera system.

The 62 segment 3 fuel and reflector elements were visually examined using four remotely controlled television cameras equipped with pan/tilt units and zoom lenses. Lighting was provided by the HSF lighting, by remotely controlled camera lights, and by three light banks. All surfaces of each element were thoroughly inspected and recorded on videotape. In addition the element side faces were photographed through the HSF window with a 35-mm camera equipped with a telephoto lens. Two photographs (the top half and bottom half) of each face were taken to give a composite picture of the entire face. Polaroid photographs were taken from the television monitors of features of interest.

The visual examinations were hampered by numerous camera and peripheral equipment malfunctions resulting from the high dose rates (≤ 2900 R/h at 1 meter). The dose rate for segment 2 elements ≤ 500 R/h at 1 meter. However, all 62 elements were videotaped.

The inspected elements were in good condition. No cracks were detected. Three dowel pins on an element were damaged. Another element had exterior damage in one dowel socket. Little evidence was observed of graphite oxidation or erosion. Most blemishes observed on the elements were typical strains of scratches, scrapes, rub marks, interface marks and flow marks (Fig.

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./	LTR.	N/C
	-			-	-	

5-1). These were similar to the observations of the first two segments (Refs. 2 and 3) and of the inspection of core region 35 in March of 1979 (Ref. 12). The results of the visual examinations of the regular and surveillance fuel and reflector elements are discussed in more detail below. The fuel test element, FTE-2, is also discussed below in a separate subsection.

5.1 Regular and Surveillance Elements Visual Results

The regular and surveillance fuel and reflector elements were fabricated from H-327 graphite. The observed blemishes are discussed below.

5.1.1 Stains

Dark stains were observed on many side faces of the elements. However, stains were seen most frequently on the control rod elements (column 1) and on the E face of elements (Fig. 5-2). The E face was always toward the control column. The general appearance of a typical stain was as if liquid had trickled down the element face leaving a dark residue. In general, there was no consistent staining pattern. Some stains were very prominent; others were barely visible. Some stains could be traced down a column, while others started or ended abruptly. The paths of a few stains were disrupted by the top edge of the adjacent element leaning against it which caused the staining liquid to run horizontally and disperse or continue downward at an offset (Fig. 5-3).

Similar stains were observed on the fuel and reflector elements during previous inspections. During the inspection of region 35 (Ref. 12), samples of the staining material were collected and subjected to gamma spectroscopic analysis. A high concentration of iron and silicon and lesser amounts of

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
			-		

aluminum, copper, and silver were detected. The presence of iron may have come from the unplanned water ingresses into the prestressed concrete reactor vessel (PCRV). The silicon and aluminum are believed to have come from the Kaowool insulation used in the core. The copper apparently came from alloys used for reactor or water system components. These material were apparently carried down the elements by the water, and was left behind as a residue.

Figure 5-4 shows another observed stain. These localized stains were seen on several elements. The appearance is circular with a darker central area which may contain contaminants.

5.1.2 Scratches and Scrapes

Numerous scratches and scrapes were observed on the surfaces of many of the elements. Most of these markings were insignificant; however, some are notable and are listed below.

o A continuous (sometimes discontinuous) vertical scratch of some depth down the center of face C of an element (Fig. 5-5).

Four of the core segment 3 elements were observed to have this scratch. This scratch was also noted during the previous two inspections, but is not believed to be of a depth to cause any structural problems.

o Vertical scrapes and scratches on the left and/or right sides of face D of the element (Figs. 5-6).

This type of marking varied in length and degree of scraping and scratching. Some elements only had a scrape or scratch for only a few vertical inches on the left or right side, while other had marking extending the length of the block. Forty-five elements were observed to exhibit these

DOCUMENT	NO.	907785	ISSUE	NO./LT	R.	N/C	
					-		

markings on face D. Elements from the segment 2 surveillance were observed to have similar markings.

o Vertical scratch on right and/or left side on face F of an element (Fig. 5-7).

Twenty one segment 3 elements exhibited this scratch on the right and some time left side of face F. This particular marking was noted only on one element during a previous surveillance.

Since the above mentioned scratches and/or scrapes were nearly identical in location and appearance, they are believed to have been made during handling and are not believed to be of sufficient consequence to cause any future structural problems.

5.1.3 Oxidation

Iron, which is a catalyst for graphite oxidation, was found on the residue of the evaporated stains (see Section 5.1.1). This suggests that oxidation may have occurred due to contamination by iron which seeped into the graphite. Therefore, darkened areas in the vicinity of stains or on control elements and face E of regular elements are possible sites for localized graphite oxidation. Figures (5-8, 9) show two suspicious darken areas which may have a little oxidation.

5.1.4 Rub Marks

Light vertical bands and/or columns of short, horizontal marks were observed near the left and/or right edges on some side faces (Fig. 5-10). Twenty of the examined elements showed this type of burnishing indicating some

DOCUM	INT N	0.	907785	ISSUE	NO./I	TR.	N/C
	Section and the second section of the second se						

contact with adjacent elements. The rubbing highlighted the machining marks on the side faces, but did not removed them. Since the degree of abrasion appears to be about the same as observed in surveillances 1 and 2, the observed rub marks probably are the results of earlier core movement (Ref. 2, 3 and 12). This observation represents evidence that the core restraint devices installed at the start of cycle 3 were effective in reducing fuel element movement.

5.1.5 Flow Marks

Dark horizontal bands, approximately 45 mm wide, were observed on nearly all faces of the control-rod elements (Fig. 5-11) and on face E of the regular fuel elements (Fig. 5-12). Face E of the regular elements always faced the column of control-rod elements. In the FSV core, the control-rod columns are vertically offset from the surrounding columns of regular fuel elements by one-quarter of a block length. The dark bands appeared at the axial locations corresponding to the top and bottom chamfers of the adjacent fuel elements. Two chamfers are a total of 45 mm wide, the same width as the dark bands.

The dark appearance of these areas is indicative of surface roughening due to graphite erosion caused by particulates in the coolant flowing through the flow paths formed by the sides of elements and the top and bottom chamfers of the adjacent elements. The horizontal displacement of stains (Subsection 5.1.1) at these block interfaces suggests that substantial coolant flowed through these flow paths. On several blocks, there were dark areas above or below the dark bands (Fig. 5-13). These are thought to have been soot deposits formed by the graphite abraded from the elements.

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./I	TR.	N/C
	-	and the second second second	-		-	and a local sector in the

5.1.6 Chips, Nicks and Debris

There were a few small nicks and chips on the elements. Most of these were very minor and insignificant. However, element serial number 1-1228 (core location 18.03.F.06) had minor damage to all three of its dowel pins. The two E face dowel pins were more chipped than the B face dowel pin. Figure 5-14 shows the damage to the E face dowel pins. The elements located above and below this element appeared to be free of dowel pin or socket damage.

Element serial number 2-1707 (core location 18.01.F.03) had damage to the B face dowel socket. A small chip of the graphite web between the dowel socket and the central coolant hole (319) on the B face edge was missing (Fig. 5-15). The element located above this element appeared to be free of dowel socket damage. The element located directly below element 2-1707 had debris around both E face dowel pins, but was free of debris near the B face dowel pin (Fig. 5-16). This indicates that probably all three dowel sockets of element 2-1707 had minor scaping and chipping. Since only the exterior of the E face dowel sockets of element 2-1707 could be viewed with the failing camera system, only the damage to the B face socket was observed.

A few dowel pins also had wear debris, which came to rest on the top of the dowels (Fig. 5-17). Apparently, material was shaved off dowel sockets in the bottom of one element by the dowel pins on the top of an element stacked below, and the shavings tended to accumulate on the upper dowel pin surface.

5.2 Fuel Test Element FTE-2 Visual Results

Fuel test element FTE-2, one of eight precharacterized elements with fuel test arrays (Ref. 13) was inserted in the FSV core during the first reload in March and April of 1979. Unlike the regular FSV fuel elements which

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C

were cured-in-bed, the fuel rods in FTE-2 were cured-in-place. Also, FTE-2 was fabricated from near isotropic H-451 grade graphite instead of the needlecoke H-327 grade graphite used in the initial core elements. Elements fabricated from H-451 grade graphite are designated for FSV refueling segments and advanced HTGR designs. The visual examinations of the test elements provide observable and concrete evidence of the H-451 graphite structural integrity and performance.

FTE-2 was in excellent condition. There were small scratches but no significant structural damage. No cracks were observed on any of the surfaces. There was no evidence of graphite oxidation.

The side faces of FTE-2 are shown in Figures 5-18 through 5-23. There was a discontinuous vertical scratch running nearly the length of face C (Fig. 5-20). Face D had vertical scrapes and scratches on the left side (Fig. 5-21). The upper right side of face F also had vertical scratches (Fig. 5-23). Similar markings were observed on the regular FSV elements during this and previous surveillances, and are believed to have been caused during handling.

The photographs and video tape of some of the side faces had darkened areas which had the appearance of build-up of some substance (Figs. 5-20, 21, 22, 23). However, the darkened areas disappeared when the element was rotated. A possible explanation is that particulate matter from the coolant flow or outgassing from the cure-in-place caused a change in the surface finish which altered the reflectivity. Some of the darkened areas on the E face did not disappear upon rotation and are thought to have been soot deposits formed by the graphite abraded from the elements (Fig. 5-22).

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
	-				

The top surface of FTE-2 is shown in Figure 5-24. A few dark markings (Fig. 5-25) were seen on this surface. These markings were located around fuel holes, coolant and adjacent burnable poison holes. These markings also were observed in FTE-1 where it was demonstrated that the darkened areas were not build-up of substances, but most probably stains caused by outgassing from the graphite cement used to cement the fuel hole plugs in place (Ref. 14). None of the observed regular FSV elements showed these types of markings.

The bottom surface of FTE-2 was in excellent condition and was relatively free of blemishes.

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

Fig. 5-1 Typical surface markings

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

	4			
8				
		1		
				alaanti Haansi
			5 3	1
		1		

Page 71

DOCUMENT NO. 907	785 ISSU	B NO./LTR. N	/c
V			
-		p / 🖓	
			and in the
		G	
	1 Tage		1
	E.		
N. Barris			
and the second second		- 31	
		Mi.	
1.(215).		6	
	421.1		
	1 E		
		1	
· · · · · · · · · · · · · · · · · · ·			
	t-1		
	A State State		
and the state	and the	12 6	3
	DOCUMENT NO. 907		IDOCUMENT NO. 907785 ISSUE NO./LIK. N

Fig. 5-3 Face B of element 2-1120: example of horizontal displacement of stains at the interface of two adjacent elements

(6)

Fig. 5-4 (a) Face E of reflector element 17-1128 and (b) bottom of face E of element 1-1805: examples of localized dark circular stains

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
			_		

Fig. 5-5 Face C of element 5-2104: example of central vertical scratch observed on face C of several elements

Fig. 5-6 (a) element 5-0751 and (b) element 1-1805: examples on vertical scratches and scrapes on left and/or right side of face D

NIC

Fig. 5-7 Face F of (a) element 1-1228 and (b) element 1-2640: examples of scratches and scrapes on the F face

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
the second s	_			terior sector sector sector	

Possible Surface Oxidation

Fig. 5-10 (a) face C of element 41-1004 (side reflector) and (b) face F of element 1-2396: examples of rubbing marks

Fig. 5-11 Face A of control element 2-1120 showing dark 45 mm wide band

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

		K	J.
	*		
			1 3
1			
× .	124/301	6-3	

Fig. 5-12 Face E of element 1-4304 shows the 45 mm wide band

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

-	DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
		-		-		

Fig. 5-13 Top half of face E of element 1-1817 showing dark areas above and below band

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

1	DOCUMENT	NO.	907785	ISSUE	NO.	LTR.	N/C	
						-		į,

(2)

(6)

Fig. 5-14 Top surface of element 1-1228 showing damage to dowel pins: (a) E dowel pin located between faces D and E and (b) E dowel pin located between faces E and F

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

1	DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C	
				-			

Fig. 5-15 Bottom surface near the B dowel socket of element 2-1707 showing a missing chip between the dowel socket and the central coolant hole (319) on the B face edge

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

Fig. 5-16 Top surface of element 2-2815 (located directly below element 2-1707) showing (a) B dowel pin free of debris and (b) both E dowel pins showing debris from the dowel sockets of element 2-1707

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C	
		and the second second	and the second second			

(a)

(6)

Fig. 5-17 Dowel pins of (a) element 1-2282 and (b) element 1-1337 both showing the wear debris of the element located directly above each

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

-	DOCUMENT	NO.	907785	1	ISSUE	NO./	LTR.	N/C
					and the second second second second		in the second se	

Fig. 5-18 Side face A of element 8-0206 (FTE-2)

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO. 90	7785	ISSUE	NO./LTR.	N/C
			1	and the second second	

Fig. 5-19 Side face B of element 8-0206 (FTE-2)

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

1	DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C

Fig. 5-20 Side face C of element 8-0206 (FTE-2). (Notice the central scratch).

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT NO. 907785	ISSUE NO./LTR. N/C
	9 9

Fig. 5-21 Side face D of element 8-0206 (FTE-2). (Notice the scrapes and scratches on the left edge of the face)

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C	
		the second second second second second	and the second second	And the second se		

Fig. 5-22 Side face E of element 8-0206. (Notice the interface mark)

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

-	DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
				-		

Fig. 5-23 Side face F of element 8-0206

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

-	DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
1	-	-				

Fig. 5-24 Top surface of FTE-2 (element serial number 8-0206)

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

	DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
1				-		

Dark markings

Fig. 5-25 Dark circular markings observed around fuel holes coolant and adjacent burnable poison holes on the top surface of FTE-2.

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
	-				

SUMMARY AND CONCLUSIONS

Sixty-two fuel and reflector elements from FSV core segment 3 were nondestructively examined in the HSF at FSV during June, 1984. These examinations were performed by GA at FSV as part of the DOE-sponsored surveillance program. The time- and volume-averaged graphite irradiation temperatures and volume-averaged fast neutron fluences for the elements ranged from approximately 380° to 670° C and from 0.96 to 2.82×10^{25} n/m², respectively. The examinations were intended to verify the structural integrity and dimensional stability of the elements and to obtain dimensional change data and gamma dose rates to verify HTGR design code calculations.

The results and conclusions of the nondestructive examinations are summarized below.

6.1 Core Component Performance

The axial and radial dimensions of nearly all the inspected H-327 graphite fuel elements shrank as a result of irradiation, but the dimensional changes were relatively small. The maximum element-average axial ($\Delta Z/Z$) and radial ($\Delta X/X$) strains were -0.73% and -0.57%, respectively. The maximum bow was 0.69 mm. The examined reflector elements underwent very little dimensional expansion (less than ± 0.48 mm). The measured strains in segment 3 elements were reasonably close to or greater than the calculated dimensional changes. The measured bow was consistently higher than the calculated bow.

The visual examinations of the elements showed the elements to be in good condition. No cracks were observed. There was little evidence of graphite oxidation. The evidence of mechanical interactions (rub marks) was no

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
	-		-		the second s

more severe than in the two previous surveillances which suggested that the core movement was very minimal or had stopped. Minor dowel pin and dowel socket damage was observed on two elements, but the damaged areas did not affect the handling, storage nor core performance of the elements. A few chips, nicks and other handling scratches were noted, but these blemishes did not affect the performance of the core components.

6.2 Code Verification

Strain calculations were performed with the HTGR code SURVEY/STRESS and the results compared with measured strains. The results of the comparison showed the calculated (SURVEY/STRESS) strains to be underpredicted in almost every case. The differences between the calculated and measured axial strains were less than 0.16% for fast fluences less than or equal to 2.0 x 10^{25} n/m². For fast fluence greater than 2.0 x 10^{25} n/m² the maximum difference was 0.45%. The differences between calculated and measured radial strains were 0.12% and 0.34% for less than and greater than 2.0 x 10^{25} n/m², respectively. The polynomial expression for the H-327 graphite irradiation induced strain calculations models the strains better at lower fluences. The measured bow was consistently higher than the SURVEY/STRESS calculated values.

Gamma dose rates were calculated with the gamma shielding code PATH and compared with measured dose rates. The maximum measured dose rate at a distance of 36.0 inches (91 cm) for the examined elements was 2815 R/h. The calculated to measured ratio for gamma dose rate ranged from 0.78 to 2.11 with an average ratio of 1.04. If the worst case of 2.11 is omitted, the range is from 0.78 to 1.33 with an average of 0.99. These results are considered to be quite good for gamma dose rate calculations.

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
	-		_		

6.3 FTE-2 Performance

The visual examination of FTE-2 provided observable and concrete evidence of the H-451 graphite structural integrity and performance. There were small scratches, but no significant structural damage. A few darkened areas were observed on the top surface, but these discolorations were not considered significant. No cracks were observed on any of the surfaces. There was no evidence of graphite oxidation.

The measured strains were slightly lower than the calculated strains. The differences between the calculated and measured axial and radial strains were -0.018% and -0.112%, respectively.

7. ACKNOWLEDGMENTS

The author wishes to acknowledge the following individuals who contributed to this project:

Preparation and Pre-irradiation Characterization of Surveillance Elements:

W. W. Hudritsch, W. J. Scheffel, and O. M. Stansfield

Metrology Robot Development and Maintenance:

Hardware:

C. F. Wallroth, T. L. Smith, N. I. Marsh, J. P. Smith, P. Macy

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
		the second s		and the second se	and the second second second

Software:

J. Saurwein, R. Acotte (Simpact Associates)

Examination of Core Components at FSV:

F. C. Montgomery (Coordinator), W. Hoskins, W. Lefler, J. Saurwein, P. Macy,
C. Miller, R. Precourt, J. W. Ketterer, K. Partain, T. Smith and M. Dolphin.

Also, the following employees of PSC: L. Bishard, T. Schuyler, and crews (fuel handling), F. Novachek, M. Daum and J. Eggebroten (technical services); and W. Woodard and staff (health physics).

Nuclear, Thermal, and Strain Calculations:

W. Lefler, K. Partain, J. Ketterer.

Gamma Dose Rate Calculations:

K. Baylor and S. Su

Calibration of Instruments for Gamma and Neutron Dose Rate Measurements:

J. R. Shoptaugh, Jr.

Interpretation of Photographs:

R. J. Price

Quality Assurance:

V. Nicolayeff

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
			and the second second		

8. REFERENCES

- HUDRITSCH, W. W., et. al., 'Preirradiation Characterization of Material for the Fort St. Vrain HTGR Core Surveillance Program', General Atomic Report GA-A12455, June 30, 1975.
- MILLER, C. M., and J. J. SAURWEIN, ''Nondestructive Examination of 51 Fuel and Reflector Elements from Fort St. Vrain Core Segment 1'', DOE Report GA-A16000, General Atomic Company, December 1980.
- SAURWEIN, J. J., 'Nondestructive Examination of 54 Fuel and Reflector Elements from Fort St. Vrain Core Segment 2, DOE Report GA-A16829, General Atomic Company, October 1982.
- WAGNER, M. R., ''GAUGE, A Two-Dimensional Few Group Neutron Diffusion-Depletion Program for a Uniform Triangular Mesh'', USAEC Report GA-8307, General Atomic Company, October 1982.
- TODT, F. W., and L. J. TODT, ''FEVER/M1, A One-Dimensional Depletion Program for Reactor Fuel Cycle Analysis', General Atomic Report GA-9780, October 22, 1969.
- DORSEY, J. P., R. FROEHLICH, and F. TODT, 'BUG-2/BUGTRI, Two-Dimensional Multigroup Burnup Codes for Rectangular and Hexagonal Geometry'', USAEC Report GA-8272, General Atomic Company, August 22, 1969.
- SAURWEIN, J. J., and C. F. WALLROTH, 'Nuclear and Thermal Design Verification for the Peach Bottom High-Temperature Gas-cooled Reactor'', DOE Report GA-A14726, General Atomic Company, September 1979.

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

DOCUMENT	NO.	907785	ISSUE	NO./LT	R. N	V/C
	-				_	

- SAURWEIN, J. J., 'Test Procedure: Metrology Robot Recalibration'', Document No. 905979, March 3, 1982.
- SMITH, P. D., 'SURVEY/STRESS, A Model to Calculate Irradiation-Induced Stresses, Strains, and Deformation in an HTGR Fuel Block Using Viscoelastic Beam Theory. I. Theory', General Atomic Report GA-A13712 (Part I), October 20, 1975.
- PRICE, R. J., ''Design Polynomial for Irradiation Strain in H-327 and H-451 Graphite'', Document No. 907173, Rev. October 8, 1983.
- CLARK, S., and B. A. ENGHOLM, ''PATH A Highly Flexible General Purpose Gamma Shielding Program'', General Atomic Report GA-9908, December 10, 1969.
- MEYER, R. J., "Fort St. Vrain In-Core Inspection, Region 35 and Region 13 Core Support Block", General Atomic Report GA-A15465, June 1979.
- MILLER, C. M., ''Preirradiation Characterization of Fuel Test Elements FTE-1 through FTE-8'', Document No. 904451, Issue A, May 1, 1980.
- SAUPWEIN, J. J., 'Status Report: Non-Destructive Examination of FSV Fuel Test Element FTE-1', Document No. 906511, June 25, 1982.

TITLE: NONDESTRUCTIVE EXAMINATION OF 62 FUEL AND REFLECTOR ELEMENTS FROM FORT ST. VRAIN CORE SEGMENT 3

	DOCUMENT	NO.	907785	ISSUE	NO./LTR.	N/C
11		-				

APPENDIX A

METROLOGY ROBOT CALIBRATION

Eight full-length inspections of calibration element 8-0182^{*} were performed prior to shipping the metrology robot to FSV for the surveillance of core segment 3. The accuracies of the robot measurements were determined and found to satisfy the accuracy requirements specified in Ref. 8 (Table A-1). The results were reviewed and approved by GA Quality Assurance (QA). Quality Assurance approval of these results constituted QA acceptance of the metrology robot for shipment to FSV (Table A-1).

Five more inspections of calibration element $8-0182^*$ were performed at FSV prior to the inspection of the first irradiated element. The results of the first four of these inspections (Table A-2) demonstrated that the quality of the robot measurements had not deteriorated after shipping and established the measurement biases to be used in processing the robot measurement data into fuel or reflector block dimensions. Run 5 included the biases and was used to verify calibration runs 1 through 4 (Table A-3). The robot calibration procedure (Ref. 8) specifies that a final inspection of calibration element 8-0182 be performed after the last irradiated element of a surveillance campaign has been examined, this was done and the results are in Table A-4.

^{*}Element 8-0182 is a fully-machined graphite fuel element on which quality control measurements, corresponding to those performed on irradiated core components by the metrology robot, have been performed using calibrated measurement equipment traceable to the National Bureau of Standards. GA Quality Assurance has certified element 8-0182 as a special calibration standard for the metrology robot.

GA 139		TABLE	A-1	AGE INSP	T NO. 90	7785 RECOR	ISSUE NO.	LTR. N/C	NO. 1180
		TOOL	IN LIEU OF	GAGE			ASUSE	5	PAGE OF Z
TOOL O	AGE NO	010	B 1	A FILE NO.	5 DAT	4-84-	6. T.O. NO. 7.	WORK ORDER N	0. 8. PREV. TGIR
TOOL	DROL	44 Rose	7	10. SUPPLI	ER		SV-INSP	CTHER ISPE	CIFY: L-519
P.C.	NSP PLAN	SPRE-F	5 MODIFI			NSP.	SPECIFY)	YES	XNO ZA HRS
NO.	18. ITEM	19 20. QTY	REQUIREMEN	σ	21. RECYCLE	ACT	UAL RESULTS	DISCREP	DISPOSITION
10	1	1 REG	ALIBRATE	PHE	8	SEE	PAGE Z		
		MET	RewayRe	TODE					
		PER	TESTARCO	EDURE	-				
_		e*	05979-	A					
		(FL	SECNENT 3)				+	
-0									
-									
							2		
			Court INC		- Curra	20.00			
			CEYCLE IMAR	ECITON	JAAL		()		
		P P	FICK TO NO			- ME	2		
-				•					
-									Page 102
INSI	TCO AC	c. ly she	CH DATE ST	A) 26. 11	SP SUPERVI	SOR	Sheler	30. PHOJ DESI	GN REP DATE
1.1.5	Y 2 17 2	T	ENTIN DA	E 29 C	UAL ENGR		UATE .	11. CURTOMER	ugu DATE

Accuracy Blas Accur + 1 10 0.002 - 0.005 0.002	acy B las
0.002 -0.005 0.000	4007- 1
002 0004 000	
10.0 - DO UDD.	3 - 0.006
0.002 - 0.005 0.00	3 - 0.007
0.001 0.002 0.00	1 0.002
0.001 0.002 0.00	1 0.002
0.001 0.002 0.00	1 0.002
0.005 0.001 0.00	6 0.001
0000 1000 2000	2 0.001
0.00 100.0 200.0	4 0.001
0.004 -0.004 0.00	4 -0.007
0.004 -0.006 0.00	3 -0.007
0.004 -0.005 0.00	4 - 0.007
0.002 0.006 0.00	L 0.008
0.00L 0.007 0.001	L 0.008
0.002 0.007 0.00	1 0.008
0.003 - 0.002 0.00	100.0- 2
0.002 -0.001 0.00	2 -0.001 -
1003 -0001	
0.004 0.002 0.001 0.002 0.002 0.002	0.005 0.00 0.006 0.00 0.007 0.00 0.002 0.00 0.001 0.00

-Notations in this column indicate where changes have been made TABLE A - ICONTINUE DOCUMENT NO. 907785 ISSUE NO./LTR. N/C

PAGE 2 OF 2

HECORD # 1180

GA-1484

e changes have been mide

Notations in this couldrin indicate

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

TABLE A-2

11 1

140 -

Across Flat Dimensions - Calibration Element 8-0182

(inches) .

INSTRUMENTATION

Rog 1

Probe Table Position

Probe Displacement Line Pets

1

Faces/	Measurement	Test .C	ombinatio	Mean	Std. Dev.		
Corner		1 - 2.	5 - 4	0-0			
A - D	Q. C.	175	14.176	14.175	19.175	0006	
	Robot -	× 14.174	++++++++	14.175	14.174	16094	
2	Robot - Q. C.	col		\rightarrow	003	,0049	
A - D · .	Q. C.	14.176	14.176	14.176	14.171	÷	
	Robot	14.175	14 174	14 174	14.174	0006	
5.	Robot - Q. C.		-,002	- 002	002	.0006	
B - E	Q. C.	14.175	14.174	14.174	14/74	.0006	
-	Robot	14.173	12 173	14.173	14.173	÷	
3	Robot - Q. C.	002	001	001	cot	. 0006	
B - E	Q. C.	14.174	14.174	14.174	14 174	6	
	Robot	14.175	1 14.174	14.175	14 175	.4006	
6	Robot - Q. C.	+.001	\$	+,001.	+ 001	2006	
C - F	Q. C.	14.176	14.176	14.176	14.176	£	
	Robot	+ tabatista	14 173	14-171	12170		
1	Robot · Q. C.	-CIG	003	005	006	.0036	
C - F	Q. C.	14.176	14.176	14.176	14 176	÷	
	Robot	14.174	14.174	1.14.177	14 175	- 10 h 17	
4	Robot - Q. C.	002	5002	+.001	-001	0017	
Robot - Q. (C. Mean	0025	003	001	002	.0010	
	Std. Dev.	.0038	,0032	10023	.0024	,0031	

Page 104

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

6-11

Page 105

TABLE A-2 (CONT)

SIDE FACE BOW(a) - CALIBRATION ELEMENT 8-0182 (inches)

INSTRUMENTATION

Probe Table Position

Probe Displacement _____

Axial Level(b)	Face A(c)	Face B(c)	Face C(c)	Face D(c)	Face E(c)	Face F(c)	Mean	St.Dev.
2	1001	1.901	4.201	t. cal	Less	1.col	t.cost.	÷
3	: 202	1.003	+.002	1204	1.002	1.002	1.002	10009
4	1.007.	1.904	1.003	1.003	1.003	1.003	1-108-2	.0006
5	t.003.	1.004	1.003	1.003	1003	1.003	1 cont	000.4
6	1.003	.003	1.003	+.003	+.002	1.002	-1007	.0004
7	003.	1.203	1992	+ 003	1.503	1.002	1003	10005
8	t. <u>co</u> I.	1002	1.507	-292	+ 002	1.002	1.002	2004
9	r.00.1	+.001	1.001	1002	1.001	1.002	4001	aces.
10	0.	Leci.	<u>A</u>		1 2	+.001	1 and	10005
Mean	+.002	19912	±.003	+000	2 + 6 622	+ 202	+ 102	+
St.Dev.	12011	10012	.0011	1.2000	eccil.	0008	10210	12010

(a) Average for 5 points.

(b)Both measured and actual bow are 0 at levels 1 and 11, by definition.

(c) The measured bow represents a measurement error sime the actual bow (determined from QC measurements) is zero (<0.0005 in.) at all axial levels for all faces.</p>
DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

TABLE A-2 (ONZ)

(inches)

INSTRUMENTATION

Probe Table Position _____

Rove

Measur meat	Location	Q. C.	Robot	Lobos - Q. C.
1	C-324	31.223		1. 520
2	321-322	31.223		- 219
3	5-319	31.223	And a state of the second	and the second design of the s
4	316-317	31.223	Contraction is provided in the local distance of the	
5	C-314	31.223		
6	275-289	11,223		and the second diversion in which the second diversion is not in the second diversion is not
7	191-794	11		
8	296-297	31,222		
9	299-301	31.224		
10	5-750	11 222		
11	257-272	11 175		
12	237-254	11 111		
12	357-259	1 11 144		
14	232-243	31 445		the second second
10	433-649	31 333		1
	L+0-126	34 100		
10	3=144	34.4.4		
1/	190-209	1 31.223		1 630
18 1	192-211	31.222		7.646
19	195-214	31.222		- 123
20	203-221	31.222		- 0.36
21	206-224	31.222		5 A 2 1
22	208-226	31.222		1620
23	C-171	331.044		
26	165-166	31.222		T.G27
25	HE-163	31.222		- 6121
26	SH-200	31.222		1
27	37-198	31.222		
28	103-127	31.222		- 212
29	TE-125	31.223		
10	FT-162	11.222		
11	130-161	11.222	the second s	and the second sec
12	C-154	11 221		and the second second
17	00-117	11 139		
	101-110	11 123		
34	101-117	35 309		
12		221266		
10	115-130	Januar 1		O Al
17	114-133	34.222		
18	116-135	31.223		
39	5-01	31.222		+ 012
40	63-79	31.222		1024
41	76-92	31.222		- 614
42	73-74	31.222		- (2.2.8)
43	71-88	31.222		
44	53-68	31.222		- 323
45	5-60	31.223		
46	24-37	31,223		a 11 -
47	28-29	31.222		1. 1. 1. La
48 .	31-32	31.222		× 834
49	35-50	31.222		1 1 1 2 L
50	C-11	31,222		
51	3-9	11 199		
\$2	5-6	31, 227	And in case of the second state of	- 67.5
53	1 3-4	31 339	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	*26
84	Cel	11 222		
34	C-1	321566		
Std. Dev.	X	0004	X	

Notations in this column indicate what inges have been made -

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

Ren 1

TABLE A-2 (CONT.)

Distances Between Coolant Holes - Calibration Element 8-0182

INSTRUMENTATION

Probe Displacement

Probe Table Position

Hole to Hole	Q. C.	Robot	Robot - Q. C.
312 to 270	1.595	1.513	1
270 to 219	1.594	1.591	
219 to 106	3.814	7 814	4 02.4
106 to 55	1.594	1591	
55 to 13	1.593	1548	- 0.5 5
312 to 13	12:693	12 644	
319 to 295	0.656	1 6.652	
295 to 267	0.657	0.1.52	+ 5.00 th
267 to 235	0.656	0.453	
235 to 90	4.500	4 4 99	
90 to 58	0.656	0.652	
58 to 30	0.655	0.657	
30 to 6	0.655	5.651	+ 2 4 4
319 to 6	12.189	12182	
303 to 264	1.595	1.591	- cra
264 to 216	1.594	1. 1.539	
216 to 109	3.814	3 317	
109 to 61	1.593	1.589	- 10.00
61 to 22	1.593	1 1587	
303 to 22	12.693	12682	
170 to 167	1.594	1 1589	-305
167 to 164	1.595	543	- 2073
164 to 161	3.815	3,819	+ 004
161 to 158	1.594	1 572	
158 to 155	1.594	1.573	
170 to 155	12.695	12.700	1 + 1005
13 to 22	6.034	6 025	
22 to 170	64033	1 6.031	
170 to 312	6.033	6.0.25	1
312 to 303	6.034	6 6 87	and the second
303 to 155	6.034	6.0.34	-
155 to 13	6.033	5.6.23	d
fean Std. Dev.	X	X·	· 6626

A

Notations in this column indicate when anges have been made

DOCUKENT NO. 907785

ISSUE NO./LTR. N/C

Kin 1

TABLE A-2 CCONTINUED

Coolant Hole Diameters - Calibration Element 8-0182

1.12

INSTRUMENTATION

Probe Table Position

Probe Displacement

Hole	Q. C.	Robot	Robot - Q. C.
6	.627	.631	+ 1002
13	.627	. 632	1.065
22	.627	.632	+ 505
30	.627	.630	t Calif +
55	.626	1 627	+.007
58	.627	429	1.057
61	.627	1630	1.037
66	.626	.6.30	+ 404
81	.626	630	+ 004
90	.626	1-29	+ 007
103	.626	. 629	4 403
106	. 626	.629	+ 003
109	.626	629	+ 003
112	.626	630	+ crid
126	.498	.503	+ 0:05
144	.498	Ser .	- 1.4
145	.498	503	71.1
155	.626	. 6.2.F	+ 197 2
158	.626	428	+ 1/22
161	.625	6.28	+ 103
164	.626	629	
167	.626	430	+104
170	.626	1631	LODE
180	.498	.299	+ 0/1
181	.498	\$10	E 11717
199	.498	. 5012	a creat
213	.625	.6.29	+ 004
216	.626	6.2.8	111-7
219	.625	127	+ 0131
222	.626	628	+ 84500 · ·································
235	.626	6.2%	* 7 0 7
244	.626	4+30	+004
259	.626	428	+1239
264	.626	102F	- + //32
267	.626	628	4 10 0 2
270	.625	624	+ crid
295	.626	1.24	+ 003
303	.626	.629	+ 100 P
312	.626	6.24	+ 103
319	.626	.629 -	+ 253
Mean Std. Dev.	X	X	1.0032

-Notations in this column indicate the changes have been made -

DOCUMENT NO. 907785

ISSUE NO./LTP. N/C

Run 1

TABLE A-2 (CONT.)

Distances between Fiducial Holes - Calibration Element 8-0182 (inches)

INSTRUMENTATION

Probe Table Position

Probe Displacement

. .

-

Corner No.	Measurement	L Dim	M Dim	N Dim	R Dim
1	Q. C.	9.003	9.002	9.000	27.005
	Robot	8.997	8 997	\$ 997	25 971
	Robot - Q. C.	006	005	003	014
2	Q. C.	9.003	9.001	9.000	27.004
	Robot	8 999	8,996	9 000	23 195
	Robot - Q. C.	004	005	Ð	009
3	Q. C.	9.003	9.001	9.001	27.005
	Robot	9.002	8.798	E 779	26,999
	Robot - Q. C.	-,001:	003	cOZ	- 006
4	Q. C.	9.004	9.001	9.001	27.007
	Robot	6.998	2.519	3 001	26.998
	Robot - Q. C.	- 006	0.02	÷	300.7
s	0. C.	9.004	9.002	9.001	27.006
	Robot	8,997	8.997	9.002	26.996
	Robot - Q. C.	007	005	+ 001	- 010
5	Q. C.	9.002	9.002	9.001	27.005
	Robot	8.978	9.002	9 503	27.001
	Robot - Q. C.	004	-,002	+ 02	-004
Robot -	Q. C. Mean	- 005	004	0003	0085
	Std. Dev.	0022	10015	10019	, 0034

Grand Mean - 0029 Sid. Dev CO26 (V-181

.

-

goot only

Notations in this column indicate who hands have been made --

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

Kon Z

=

TABLE A-2 (CONT.)_

Distances Between Coolant Holes - Calibration Element 8-0182

INSTRUMENTATION

Probe Table Position

-	-	and the second second	
Probe	Disp	lacement	

Hole to Hole	Q. C.	Robot	Robot - Q. C.	
312 to 270	1.595	1.570	+ cost	
270 to 219	1.594	1 593	and the second second	
219 to 106	3.814	T 1219		
106 to 55	1.594	1.5.77	- 12.3	
55 to 13	1.593	1589	- 1313.44	
312 to 13	12:693	126.95	1 + 005	
319 to 295	0.656	0.655	- 1967	
295 to 257	0.657	+ 653		
267 to 235	0.656	5.656		
235 to 90	4.500	4 502	+ 007	
90 to 58	0.656	0.455	- 001	
58 to 30	0.655	6653	- 1703	
30 to 6	0.655	5152	- 003	
319 to 6	12.189	12 194		
303 to 264	1.595	1.597	5.05.7	
264 to 216	1.594	1 1.591	003	
216 to 109	3.814	7.8/6	- 053	
109 to 61	1.593	1.541		
61 to 22	1.593	1 1.587	1	
303 to 22	12.693	12686	7	
170 to 167	1.594	1 591		
167 to 164	1.595	1595	÷	
164 to 161	3.815	3 4 2 2	- 107	
161 to 158	1.594	1 1 593	001	
158 to 155	1.594	10573	- 201	
170 to 155	12.695	1 12 703	1 4 5 F	
13 to 22	6.034	6.032		
22 to 170	6:033	1 6.034	+ 121	
170 to 312	6.033	5.030		
312 to 303	6.034	6.036	+:01	
303 to 155	6.034	4 70 85	+ 273	
155 to 13	6.033	6 \$ 34	+.001	
fean	V	V	1.0006	
Std. Dev.	X		1032	

-

Notations in this column indicate we changes have been made -

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

Real Z

TABLE H-2 (CONT.)

ere changes have been made --

Notations in this column indicate

Coolant Hole Diameters - Calibration Element 8-0182

. ...

INSTRUMENTATION

Probe Table Position

Probe Displacement

Hole	Q. C.	Robot	Robot - Q. C.
6	.627	6.35	+ 003
13	.627	631	+ 4
22	.627	6-28	+ 201
30	.627	428	3.261
55	.626	1 4.28	4000
58	.627	1-27	1 .2
61	.627	4.78 -	+ net
66	.626	10.27	1 - 001
81	.626	1	+ 551
90	.626	1625	
103	. 626	1.624	
106	.626	.626	1 ir
109	. 626	1626	EF.
112	.626	677	+ 001
126	.498	See	1102
144	.498	500	4002
145	.498	600	1.02
155	,626	6.27	+ 201
158	.626	.62F	4002
161	. 525	- 1.26	+.001
164	.626	. 627	+ 2121
167	.626	628	1 6 7 7
170	.625	163C	+, <1.4
180	.498	.499	4.19
181	.498	.449	10000
199	.498	. 50.0	+ ((?
213	.625	625	1 act
216	.626	6.24	E.
219	.626	626	12 A
222	.626	628	+ 261
235	.626	.626	ê
244	.626	.6.24	1.003
259	.626	1427	+ 603
264	.626	14.27	A. David
267	.626	627	+ 1221
270	.625	6.24	1
295	.626	i ile	
303	.626	621	+ 661
312	.626	1. 6.25	1,002
319	.626	1626	~
Mean Std. Dev.	X	X	$f_{1} \varphi \zeta I_{2}^{3}$

Page 111

٠

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

Kun Z

TABLE A-2(CONT)

Distances between Fiducial Holes - Calibration Element 8-0182 (inches)

INSTRUMENTATION

Probe Table Position

Probe Displacement

Corner No.	Measurement	L Dim	M Dim	N Dim	R Dim
1	0. C.	9.003	9.002	9.000	27.005
12.20	Robot	8.77c	9.500	954	70.997
	Robot - Q. C.	007	5002	4.001	009
2	Q. C.	9.003	9.001	9.000	27.004
	Robot	# 990	8 997	9 002	24 995
	Robot - Q. C.	007	004	1.002	009
3	0. C.	9.003	9.001	9.001	27.005
	Robot	8 998	9.550	9.000	IL MAR
	Robot - Q. C.	- ,005:	-001	-,001	-007
4	0. C.	9.004	9.001	9.001	27.007
	Robot	8 992	E 195	9.007	28.994
	Robot - Q. C.	012	-1006	+,006	013
5	0. C.	9.004	9.002	9.001	27.006
-	Robot	9002	8.994	8.998	75. 272
	Robot - Q. C.	002	- 603	- 203	5.007
6	0. C.	9.002	9.002	9.001	27.005
	Robot	3996	8.999	× 198	26.793
	Robot - Q. C.	- 006	1.000	cc3	012
Robot -	Q. C. Mean Std. Dev.	0065	003	+ 0003	- 009 0026

Grand Mean · co31 Std Dea · 0040 Stel Dev

(N-18)

.

Notations in this column indicate changes have been made -

9000 april

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

Kin 3

TABLE A-2 (CONT.)-

Across Flat Dimensions - Calibration Element 8-0182

(inches)

- even mede have been mede

Notations in this column indicate when

INSTRUMENTATION

Probe Table Position

Probe Displacement

Faces/		Test C	Test Combination -			Cad Day
Corner	Measurement	1 - 2	3 - 4-	5 - 6	Mean	Stu. Dev.
A - D	Q. C.	14.175	14.176	14.175	14.175	0006
	Robot	14,174		14.174	14 174	<i>4</i>
2	Robot - Q. C.			-,001		Ŷ
A - D	Q. C.	14.176	14.176	14.176	19.17=	4
	Robot	14,175	14 175	14173	11 174	0012
5	Robot - Q. C.	001	001	003	002	,0012
8 - E	Q. C.	14.175	14.174	14.174	14 174	0006
-	Robot	14.172	14 171	14 173	14472	, octo
3	Robot - Q. C.	003	- 003	- 001	002	.0012
B - E	Q. C.	14.174	14.174	14.174	14.174	Æ
	Robot	14 172	14,171	14.172	14 172	CREE
6	Robot - Q. C.	- 002	-103		- 602	10006
C - F	Q. C.	14.176	14.176	14.176	14.176	÷.
	Robot	+++++++-	14,172	14 172	14 171	1997
1	Robot - Q. C.	ex.	004	1004	005	0017
C - F	Q. C.	14.175	14.176	14.176	14.176	ć
	Robot	14,170	14 173	14 (73	14172	2417
4	Robot - Q. C.	-,006	- 003	1003	004	10017
Robot - Q. C.	Mean	- 003	003	-,002	003	.2006
	Std. Dev.	0026	,0011	10012	10015	-, ¢¢/7

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

Run 3

TABLE A-2 (CONT.)

SIDE FACE BOW^(a) - CALIBRATION ELEMENT 8-0182 (inches)

INSTRUMENTATION

Notations in this column indicate where changes have been made

Probe Table Position Sel

Probe Displacement Linear - Carting

Arial Level(b)	Face A(c)	Face B(c)	Face C(c)	Face D(c)	Face E(c)	Face F(c)	Mean	St.Dev.
2	e	±.co]_	. .	.cc1.	2000		tana.	2005
3	1.002	+.0.0Z	1.001	t.002	1.00Z	1.904	1.000	0007
4	1.003	1.007	1002	1.202	1.602.	1.002.	1.00.2	.0004
5	1.003	- 292	1.002	1.003	- 002	+ 202	1,0025	1005-5
6	1.002	1.003	1.002	1.003	+ 003	1.603	+	1005
7	+.002	+.sci2	±.00.L	+.00.3	1.9.92	1002	1.002	.000.6
8	1.001	+.001	+.001	+_03-2	1.602	1.602	10005	005
9	1.001	tool.	.e	- 502	1.001	1.002	+.001	.0008
10	5.		1.001	+		. 001	e	4005
Mean	4.002	1.002	1.09J	1.002	1002	1.002	1002	,0004
St.Dev.	10011	1000	10002	1.0012	,0009	Incos	.00107	-007

(a) Average for 5 points.

(b)Both measured and actual bow are 0 at levels 1 and 11, by definition.

(c) The measured bow represents a measurement error since the actual bow (determined from QC measurements) is zero (<0.0005 in.) at all axial levels for all faces.</p>

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

tun

1

TABLE A-2 (CONT.)

Element Length - Calibration Element 8-0182 (inches)

INSTRUMENTATION

Probe Table Position ____

Probe Displacement

61001

309483 Location Q. C. Robor Lobor - Q. C. C-324 31.223 31.223 321-372 5-319 31.223 31.223 31.223 31.223 316-317 4 C-314 275-289 5 293-294 31.222 296-297 298-301 9 31.223 31.223 31.222 31.222 31.223 31.223 10 5-259 257-272 237-234 12 13 14 251-252 31.222 31.222 31.222 31.223 233-249 15 46-252 16 S-244 190-209 17 31.222 31.222 31.222 18 192-211 19 195-214 20 203-221 206-224 31.222 22 208-225 31.223 C-171 24 165-160 25 31.222 31.222 31.222 928-163 ME-200 27 16-198 H-127 H-127 H-125 H-162 154-160 C-154 28 31.222 31.222 31.222 31.222 31.223 31.223 31.223 31.223 31.222 29 30 11 32 33 99-117 101-119 31.222 31.222 31.222 31.222 31.222 31.222 31.222 31.222 31.222 35 104-122 35 114-123 17 38 116-135 3-81 63-79 76-92 73-74 71-88 53-68 39 40 41 11.222 31.222 31.222 42 43 44 45 5-60 31.223 46 47 28-29 31.222 48 32-32 36-50 49 31.222 31.222 31.222 31.222 31.222 31.222 50 51 C-11 3-9 52 ----3-4 C-1 54 Mean 31.22 4 X SEd. Dev. 4

Notations in this column Indicate whether thanges have been made

!

Rge 115

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

Ken 4

TABLE A-2 (CONT.) ---

Across Flat Dimensions - Calibration Element 8-0182

changes have been made

Notations in this column indicate when

(inches)

INSTRUMENTATION

Probe Table Position

Probe Displacement

Paces/		Test C	Test Combination -			Sed Der
Corner	Measurement	1 - 2	3 - 4-	5 - 6	Mean	Std. Dev.
A - D	Q. C.	14.175	14.176	14.175	14 175	006
	Robot	17.173	++++63.	14.172	14 172	. 66.60 T
2	Robot - Q. C.	002		003	003	10007
A - D	Q. C.	14.176	14.176	14.176	14 176	
	Robot	14.172	14 172	14 173	14.172	2006
5	Robot - Q. C.	004	004	003	004	.0006
B - E	Q. C.	14.175	14.174	14.174	14.174	0006
-	Robot	14.123	14.170	14.170	14.171	017
3	Robot - Q. C.	00Z	+.004	004	003	.0012
B - E	q. c.	14.174	14.174	14.174	14 174	4
	Robot	14.122	14.173	14170	10 173	CUE
6	Robot - Q. C.	001	001	-	6 631	2.006
C - F	q. c.	14.176	14.176	14.176	14.17	4
	Robot		14 172	14.172	14: 172.	+
1	Robot - Q. C.	-204	004	004	cc4	4
C - F	Q. C.	14.176	14.176	14.176	14 176	E.
· ·	Robot	14,17/	14 172	14173	14 172	0010
4	Robot - Q. C.	005	004	003	004	.0010
Robot - Q. C.	Mean	003	- 003	203	- 003	4
	Std. Dev.	0015	1.0013	.0015	10012	0014

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

TABLE A-2 (CONT.)

7.3

gth - Calibration Element 8-0182 (inches)

INSTRUMENTATION

Probe Table Position

.004 (1-)

Probe Displacement

Nonour ment	Location	Q. C.	Lobot	Lobot - Q. C.
1	C-324	31,223		- 013
2	321-322	31.223		+ 1717
3	5-319	31.223		- 113
4	316-317	31.223		
5	C-314	31.223		- 1112
6	275-289	31.223		+ 2321
1	293-294	31.222		CV 3
	296-297	31.222		- 013
9	298-301	31.223		- 114
10	5-259	31.222		- C13
12	257-272	31.222		-,617
12	151-157	31 444		- 17/7
	232-244	31 433		2.617
15	246-752	31,222		- A14
16	5-244	11,222		
17	190-209	1 31,223		= 0.72
18	192-211	31.222		- 2 / 7
19	195-214	31.222		- 0.21
20	203-221	31.222		-, 1× 22
21	206-224	31.222		617
22	208-226	31.222		2.617
23	G-171	31.225		16
24	165-166	31.222		- 623
25	EH-163	31.222		- 023
26	HE-200	31.222	-	- 6 33
27	an-198	31.222		- 41-1
28	12-127	31.222		- 617
29	13-123	31.444		
30	120-120	31.664		- Oly
12	C-154	11 721		and the second
13	99-117	11,223		and the second second
34	101-119	31.222		and the second se
35	104-122	31.222		- 1531
36	112-130	31.222		E
37	114-133	31.222		+
38	116-135	31.223		e. 0.22
19	5-81	31.222		
40	63-79	31.222		- 1219
41	76-92	31.222		5.616
42	73-74	31.222		
	11-08	31.222		- Gel
45		11 223		and the fact of the second
46	74-17	11 779		
67	28-29	31,222		A CIT
48	31-32	31.222		- LI+
49	36-50	31.222		- CIP
50	C-11	31.222		1. 611
51	3-9	31.222		51321
52	5-6	31.222		1.1310
53	· 3-4	11.222		
54	C-1	31.222		
Std. Dev.	X	31 222	X	10 40

changes have been made Notations in this column Indicate v

DOCUMENT NO. 907785

TABLE A-3

Across Flat Dimensions - Calibration Element 8-0182

(inches)

INSTRUMENTATION Probe Table Position <u>SONY's</u> Probe Displacement <u>Sincar</u> POT's

Calibration Run 5 at FSV

Faces/		Test C	embinatio	Maan	Sed Dov		
Corner	Measurement	1 - 2	3 - 4	5 - 6	Mean	sca. Dev.	
A - D	Q. C.	14.175	14.176	14.175	14.175	.0006	
Here and the second	Robot	14.180	19.175	14,180	14.178	,0029	
2	Robot - Q. C.	.005	001	.005	.003	,0035	
A - D	Q. C.	14.176	14.176	14.176	14.176	A.	
	Robot	14.185	14.177	14.178	14.180	.0044	
5	Robot - Q. C.	.009	.001	.002	.004	.0044	
8 - E	Q. C.	14.175	14.174	14.174	14.174	,0006	
	Robot	14.187	14.178	14.179	14.181	.0049	
3	Robot - Q. C.	.012	.004	.005	.007	.0044	
8 - E	Q. C.	14.174	14.174	14.174	14.174	0	
	Robot	14.175	14.181	14.179	14.178	. 0031	
6	Robot - Q. C.	.001	.007	.005	.004	. 0031	
C - F	0. C.	14.176	14.176	14.176	14.176	0	
	Robot	19.174	14.178	14.174	14.175	. 0023	
1	Robot - Q. C.	002	. 002	002	001	. 0023	
C - F	Q. C.	14.176	14.176	14.176	14.176	÷	
	Robot	14.177	14.182	14.182	14.180	.0029	
4	Robot - Q. C.	.001	.006	.006	.004	.0029	
Robot - Q. (C. Mean	,0043	.0032	.0035	.0035		
	Std. Dev.	.0054	.0031	.0030	.0038	-	

changes have been made.

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

POTS

- TABLE A-3 (CONT.) -

1

hanges have been made -

Notations in this column indicate wh

alis Run 5 at FSV & verif. of Calib Runs 1-4 2/84 4'

Element Length - Calibration Element 8-0182 (inches)

INSTRUMENTATION

Probe Table Position SONY'S Probe Displacement Cincor P

Measurment	Location	Q. C.	Robot	Robot - Q. C.
1	C-324	31.223		.005
2	321-322	31.223		1 .005
3	5-319	31.223		002
4	315-317	31.223	and the second se	. 006
5	C-314	31.223		001
6	275-289	31.223		0
7	293-294	31.222		. 001
8	295-297	31.222		1007
9	288-301	31.223		, 103
10	S=259	31.222		.003
12	257-272	31.222		.004
12	237-254	31.223		.003
13	251-252	31.222		4
14	233-249	31.222		.004
15	246-252	31.222		
16	5-244	31,222		0
17	190-209	31.223		-
18	192-211	31.222		-
19	195-214	31.222		1006
20	203-221	31.222		0.04
21	206-224	31.222		.00.8
22	208-226	31.222		-0.0.5
23	C-171	31.223	and the local diversion of the local diversio	,006
24	165-106	31.222		,004
25	hH-163	31.222		#
26	HH-200	31.222	and the state of t	A
27	EH-193	31.222		A
28	HH-127	31.222		.001
29	HH-125	31.222		
30	HH-152	31.222		
31	159-100	31.222		1001
32	C-154	31.223		7.00.7
33	99-117	31.223		100
34	101-119	31.222		100
15	104-122	21,222	and a local day of the Principle law	100.
36	111-130	31,222		
37	114-131	1 31, 222		005
18	116-135	31.223		001
30	5-81	31,222		A
40	63-79	31.222		
41	76-92	31.222		
42	72-74	31.222		
43	71-68	31,222		001
64	53-68	31,222		0
45	5=55	31,223		002
46	24-17	31,223		.005
47	23-29	31,222	and the second second second second	.002
48	31-32	1 31.222		.002
49	16-50	31.222		. 004
10	C-11	31,222		.008
51	3-9	11.222		001
6.2	Sect	11, 222		.001
57	4 1	31,322		. 002
50	Cal	31,222		1 001
Maan		71		,0022
Std. Dev.		31. 3 4 4	V	4405
Seat Sere		1.00 04	Al	.0023

Page 120

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

6/12/84

TABLE A-3 (CONT.)

Calib Run 5 @

Distances Between Coolant Holes - Calibration Element 8-0182

INSTRUMENTATION

FSV

Probe Table Position SONYS Probe Displacement Linear Pot's

Hale to Hole	Q. C.	Robot	Robot - Q. C.
312 to 270	1.595	1.597	.002
270 to 219	1.594	1,596	.002
219 to 106	3.814	3,822	.008
106 to 55	1.594	1.598	.004
55 to 13	1.593	1.593	0
312 to 13	12.693	12.693	0
319 to 295	0.656	,658	.002
295 to 267	0.657	.658	.001
267 to 235	0.656	. 656	0
235 to 90	4.500	4.505	005
90 to 58	0.656	,658	. 002
58 to 30	0.655	.654	001
30 to 6	0.655	.657	500.
319 to 6	12.189	12,191	.002
303 to 264	1.595	1.594	001
264 to 216	1.594	1.595	.001
216 to 109	3.814	3.824	.010
109 to 61	1.593	1.593	•
61 to 22	1.593	1.594	.001
303 to 22	12.693	12.696	,003
170 to 167	1.594	1.593	001
167 to 164	1.595	1,594	001
164 to 161	3.815	3.813	002
161 to 158	1.594	1.599	.005
158 to 155	1.594	1.591	003
170 to 155	12.695	12.700	.005
13 to 22	6.034	6.048	.014
22 to 170	6.033	6,033	0
170 to 312	6.033	6.019	014
312 to 303	6.034	6.022	012
303 to 155	6.034	6.023	011
155 to 13	6.033	6.063	.030
Mean			. 0024
Std. Dev.	X	X	.007 4

changes have been made

A

Notations in this column indicate wh

TECENOLOGIES INC. G A

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

TABLE A-3 (CONT.)

Calib Run 5@ FSV 6/12/84 Verif of Runo 1 - 4

Coolant Hole Diameters - Calibration Element 8-0182

INSTRUMENTATION

Probe Table Position Sawt's

Probe Displacement Lincer Por's

Hole	Q. C.	Robot	Robot - Q. C.		
6	.627	. 625-	002		
13	.627	. 625	002		
22	.627	, 625	002		
30	.627	.625	002		
55	.626	1.623	003		
58	.627	625	002		
61	.627	. 626	001		
66	.626	. 623	003		
81	.626	1626	÷		
90	.626	1624	002		
103	.626	. 625	001		
106	.626	. 619	007		
109	.626	. 625	001		
112	.626	. 626			
126	.498	. 499	1001		
144	.498	. 495	003		
145	.498	. 495	- 003		
155	.626	. 627	.001		
158	.626	. 624	- ,002		
161	.625	1626	.001		
164	.626	.630	.004		
167	. 526	.629	, 0 0 3		
170	.626	, 629	.003		
180	.498	. 500	. 002		
181	.498	. 494	004		
199	.498	. 496	002		
213	.625	1627	. 00 2		
216	.626	. 623	- 1003		
219	.626	.621	- ,005		
222	.626	. 623	- 1003		
235	.626	.626	Ð		
244	.626	. 625	001		
259	.626	.622	004		
264	.626	. 622	- ,004		
267	.626	.625	001		
270	.625	1624	001		
295	.626	. 621	- ,005		
303	.626	. 627	,001		
312	.626	.627	,001		
319	.626	.623	003		
Mean Std. Dev.		X	0013		

Age 122.

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

TABLE A-3 (CONT.)_

Notations in this column indicate when hanges have been made -

Distances between Fiducial Holes - Calibration Element 8-0182 (inches)

TANK S

INSTRUMENTATION

Probe Table Position Sont')

Probe Displacement Lincar Por',

	and the second	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER	and the second	And Interesting to start the second party of the second second second second second second second second second	A Real of the local sector of the sector of
Corner No.	Measurement	L Dim	M Dim	N Dim	R Dim
1	Q. C.	9.003	9.002	9.000	27.005
	Robot	9,000	9.005	9.000	27.00%
	Robot - Q. C.	003	.003	6	,001
2	Q. C.	9.003	9.001	9.000	27.004
	Robot	9,004	8.999	9.001	27.005
	Robot - Q. C.	.001	002	.001	,001
3	Q. C.	9.003	9.001	9.001	27.005
	Robot	9.003	9.003	8.999	27.006
	Robot - Q. C.	-0-	.002	002	.001
4	Q. C.	9.004	9.001	9.001	27.007
	Robot	9,007	8,997	9.006	27.011
	Robot - Q. C.	.003	004	.005	.004
5	Q. C.	9.004	9.002	9.001	27.006
17 Sec. 1	Robot	9,005	9.002	9,002	27.010
	Robot - Q. C.	.001	•	.001	,004
6	Q. C.	9.002	9.002	9.001	27.005
1.1.1	Robot	8.996	9.007	9.000	27.004
1000	Robot - Q. C.	00 6	.005	001	001
Robot -	Q. C. Mean Std. Dev.	0007	.0007	.0007	.0017

Grand mean 0.000 b

50. ,0010

					0. 90778.		
	Mean		Π			.	
	B 1as						
it 8-0182	R. Pot - iccuracy						
fon Elemen	Blas A						
- Calibrat	R. Rot - Accuracy + # 10						
Accuracy	Blas						
surement	SONY - Accuracy + # 10						1/21/82
Robot Mea	L. Pot Blas .0038	5000.	5700.	200	4.0024	Press	1/05/
unmary of	SONY - Accuracy + # 10 •0035	2000.	5200.	4700'	5100	.600 6 9 TAKEU	Signature
	Test	2 Mean 1 2 Mean	1 2 Mean	1 2 Mean	1 2 Mean	1 2 Mean ONLY DAR	Stamp and
	pe of Measurement stance Across	ats de Face asurements	ement Length	stance between olant Holes	olant Hole ameters	ductal Hole	8 23

.

...

.....

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

TABLE A-4

Calib Blk & FSV 6/23/84

Across Flat Dimensions - Calibration Element 8-0182

(inches)

INSTRUMENTATION

Probe Table Position <u>Jon'</u> Probe Displacement <u>Circar for</u>,

Faces/		Test C	ombinatio	Mann	Cad Dave		
Corner	Measurement	1 - 2	3 - 4	5 - 6	Mean	Std. Dev.	
A - D	0. C.	14.175	14.176	14.175	14.175	,0006	
	Robot	19.174	14,175	14.175	14.174	.0006	
2	Robot - Q. C.	001	001	00	001	0 -	
A - D	Q. C.	14.176	14.176	14.176	14.176	0	
	Robot	14.179			14,179		
5	Robot - Q. C.	.003			.003		
B - E	Q. C.	14.175	14.174	14.174	14.174	.0006	
	Robot	14.176	14.175	14.181	14.177	,0032	
3	Robot - Q. C.	.001	. 001	.007	.0030	,0035	
B - E	Q. C.	14.174	14.174	14.174	14,174	0	
	Robot	14.169			14.169		
6	Robot - Q. C.	005			005	-	
C - F	0. c.	14.176	14.176	14.176	14.176	0	
	Robot	14.171	14.178	14.181	14.177	.0051	
1	Robot - Q. C.	005	.002	. 005	0.0007	.0051	
C - F	0. C.	14.176	14.176	14.176	14.176	0	
	Robot	14,170			14.170		
4	Robot - Q. C.	- 206			-006	-	
Robot - 0. C	. Mean	- 0022	.0007	.0037	+,0007		
	Std. Dev.	.0037	.0015	.0042	.0031		

Age 125

Notations in this column indicate where changes have been made

DOCUMENT NO. 907785

ISSUE NO./LTR. N/C

Calib. Block

6/23/84

SIDE FACE BOW(a) - CALIBRATION ELEMENT 8-0182 (inches)

Mas- 7

INSTRUMENTATION

1.

Probe Table Position ______

TABLE A-4 (CONT.)

Probe Displacement_ LINEAR POT', _

Face Face Face Face Face Arial Face F(c) Level(b) St.Dev. E(c) A(c) B(c) C(c) D(c) Mean .001 .0007 . 0008 2 . 2. .001 .002 4 0 3 .001.001.0008 .0004 .001 .001 .001 Ð 4 .0008 002 .001 .0008 0 .001 .001 0 5 .001 .0005 .0005 0 2 O. .001 001 6 7 8 9 10 .0008 .0003 .0010 .0010 .0005 .0008 .0007 Mean St. Dev. .0005 .0005 .0008 .0006 .0006 .0005 .0006

(a) Average for 5 points.

(b)Both measured and actual bow are 0 at levels 1 and 11, by definition.

(c) The measured bow represents a measurement error since the actual bow (determined from QC measurements) is zero (<0.0005 in.) at all axial levels for all faces.</p>

A

DOCULENT NO. 907785

IZSSUE NO./LTL. N/C

TABLE A-4 (CONT.)

ţ

thanges have been made

Notations in the solution mulcate wh

Calib. Block

Element Length - Calibration Element 8-0182 (inches)

INSTRUMENTATION

Probe Table Position SONY'S Probe Displacement Linear POT's

Measurement	Location	Q. C.	Robot	Lobot - Q. C.
1	C-324	31.221		001
2	321-327	31,223		-
3	5-319	31,223		2
4	316-317	31.223		001
5	C-314	31.223		- 004
6	275-289	31.223		1 10 3
7	293-294	31.222		1 - 00 - 7
8	296-297	31.222		1 001
9	288-301	31.223		002
10	5-259	31.222		1.00/
11	257-272	31.222		202
12	237-254	31.223		003
13	251-252	31.222		003
14	233-249	31.222		005
15	246-263	31.222		1-,004
16	5=2-4	31.222		005
17	190-209	31.223		011
8	192-211	31.222		007
19	195-214	31.222		002
20	203-221	32.222		004
71	205-224	36.666		004
22	200-2-0	31 223		AT
	165-166	31 223		-1002
	103-100	31 222		-1000
26	329-200	11.222		000
27	101-193	31,222		- 000
29	HH-127	31.222		- 001
29	HH-125	31.222		- 001
30	HH-162	31.222		- 002
31	159-160	31.222		003
32	C-154	31.223		004
33	29-117	31.223		006
	101-119	31.222		003
	104-122	21.222		.001
- 19	111-110	31.222		003
11	11133	31.222		
	110-132	31.223		
	5-01	31.444		004
41	76-33	11.222		1000
47	73-74	31.747		
43	71-48	31,222		- 004
44	53-68	31.222		-,004
45	5=25	31.223		006
46	24=37	31,223		00%
47	23-22	31,322		006
48	31-32	31.722		00 6
49	36-50	31.222		9
50	C-11	31.122	termine some sedan some som	-,001
51	8-9	31.222		007
52	· · · ·	21,222		1922
- 22		11		
49	C-1	31.222		007
Mean				004
Std. Dev.	-			1.004

Rge 127

- Notations in this column indeed where changes have been made -

NO N

¢

EOCULTE NO. 907785

ISSUE NO./LTR. N/C

Type of Measurement	Test	SONY - L. Pot SONY - LVDT		R. Rot - L. Pot		R. Pot - LVDT		Mean		
Type of measurement		Accuracy ± # 1σ	Bias	Accuracy ± # 1σ	Bias	Accuracy ± # 1σ	Bias	Accuracy ± # 10	B ias	
Distance Across Flats	1 2	+.0007	.0031							
	Mean									
Side Face Measurements	1 2	.0007	.0006							
	Mean									
Element Length	1 2	004	.004							
	Mean									
Distance between Coolant Holes	1 2									
	Mean									
Coolant Hole Diameters	1 2									
	Mean									
Distance between Fiducial Hole	1 2									-
	Mean									

1/21/85

ONLY REJULTS RECORDED

QC Stamp and Signature