NRLHPP - 13 Rev. Date: 5/96

Title: Analysis of Radioactivity in Water.

Periodicity: As required.

Required By: 10 CFR 20.2003 and Appendix B to Part 20; 32 Illinois Administrative Code: Chapter II, Subchapter b, Subpart K, Section 340.1030.

Comments: This procedure is a guideline for the performance of this activity, deviations are permissible after consultation with the Reactor Health Physicist.

Procedure:

- 1.0 <u>Purpose</u>: To determine the *soluble* and *insoluble* alpha and beta/gamma activity, the tritium activity, and the total activity, in the liquid effluent storage tank; or the total alpha, beta/gamma, and tritium activity in other water sources.
- 2.0 Precautions: Always thoroughly clean all items to be used in sampling and counting before use.
- 3.0 Materials and/or Test Equipment:

3.1 One >100 ml and two 60 ml bottles.

- 3.2 One new planchet.
- 3.3 Filtering device with 0.45 µm filter.
- 3.4 Heat Lamp.

4.0 Procedure Steps:

- 4.1 <u>Sample collection</u>: for a liquid effluent storage tank sample (modify as appropriate for other water samples).
 - 4.1.1 Take two samples from valve RET-15, as indicated in Step 7 of NRLOP-10, by filling the >100 ml and one of the 60 ml bottles. Fill the other 60 ml bottle with water from the drinking fountain, to be used as a blank for tritium counting.
 - 4.1.2 Label the two 60 ml bottles and send to the Radiation Safety Office (RSO) of the Division of Environmental Health and Safety (DEH&S) for tritium counting by liquid scintillation.
- 4.2 <u>Sample preparation and counting</u>: for a liquid effluent storage tank sample (modify as appropriate for other water sources).
 - 4.2.1 Remove the regular planchets from, and wipe down, the sample handling trays of both the Eberline BC-4 and SAC-4 counters. Clean a new planchet, to be used for drying the 100 ml sample, and take a fifty (50) minute background on each instrument. Perform an MDA calculation using the

NRLHPP - 13 Rev. Date: 5/96

"MDA Calculation Worksheet for a Liquid Effluent Storage Tank Discharge" on Page 7 of this procedure.

- 4.2.2 Record the results on the "Analysis of Radioactivity in Water Data Sheet" on Page 5 of this procedure.
- 4.2.3 Make sure the >100 ml sample is well mixed. Using the filtering device with a 0.45 μm filter, filter 100 ml of the sample into a >100 ml sized bottle to be decanted and dried on the planchet. Remove the filter and set it aside for drying.
- 4.2.4 Using the heat lamp, decant and dry the 100 ml sample in the clean, new planchet (from Step 4.2.1).
- 4.2.5 Count the dried filter and planchet separately, for fifty (50) minutes each, in the BC-4 and SAC-4.

4.3 Sample Activity Calculations: for all types of water samples regardless of the source.

4.3.1 Calculate and record the *soluble*, *insoluble*, or *total* alpha and beta/gamma concentration, and the tritium concentration in μCi/ml on the data sheet as follows:

a) cpm / efficiency = dpm;
b) dpm / 2.22 E⁶ dpm/μCi = Activity in μCi;
c) Activity (μCi) / Volume of Sample in ml = Concentration of Sample in μCi/ml.

<u>Example</u>: a) 30 cpm / 34.3% (0.343) for beta/gamma activity = 87 dpm; b) 87 dpm / 2.22 E⁶ dpm/ μ Ci = 3.9 E⁻⁵ μ Ci; c) 3.9 E⁻⁵ μ Ci / 100 ml = 3.9 E⁻⁷ μ Ci/ml.

- 4.3.2 Record the Tritium results from the RSO on the data sheet and calculate the concentration of the sample, in μ Ci/ml, in the same manner as in Step 4.3.1 above.
- 4.4 <u>Discharge determination</u>: If the concentrations meet the Acceptance Criteria in 5.0 below then the water may be discharged.

5.0 Acceptance Criteria:

- 5.1 Liquid Effluent Storage Tank Discharge
 - 5.1.1 The *insoluble* Alpha activity on the filter paper shall be less than the MDA (this ensures that no *insoluble* activity is released).
 - 5.1.2 The <u>soluble Alpha activity</u> on the <u>planchet</u> shall be less than 2 E⁻⁸ μCi/ml (Appendix B to Part 20, Table 3 "Releases to Sewers", Page 391).

NRLHPP - 13 Rev. Date: 5/96

- 5.1.3 The *insoluble* beta/gamma activity on the filter paper shall be less than the MDA (this ensures that no *insoluble* activity is released).
- 5.1.4 The <u>soluble beta/gamma activity</u> on the <u>planchet</u> shall be less than 9 E⁻⁶ μCi/ml (for ¹³⁴Cs, not known to be absent from the mixture) (Appendix B to Part 20, Table 3 "Releases to Sewers", Pages 393 and 365).
- 5.1.5 The <u>Tritium concentration</u> shall be less than 1 E⁻² μCi/ml (Appendix B to Part 20, Table 3 "Releases to Sewers", "Hydrogen 3", Page 342).
- 5.1.6 The <u>Sum of the Fractions</u> shall not exceed unity for the <u>total soluble beta/gamma</u> fraction plus the <u>Tritium fraction</u>, however, the alpha concentration must be less than the MDA. If the alpha concentration is greater than the MDA then the <u>Sum of the Fractions</u> shall be derived by dividing the total of the soluble alpha and soluble beta/gamma concentrations by 2 E⁻⁸ µCi/ml (Appendix B to Part 20, Table 2, "Effluent Concentrations", Col. 2, "Water", Page 391) and adding the Tritium fraction. The total shall not exceed unity.
- 5.1.7 If any of these criteria are not met, the tank shall not be pumped, and the Reactor Health Physicist shall be notified immediately.

5.2 Other Water Source Discharge

- 5.2.1 The <u>total Alpha activity</u> on the <u>planchet</u> shall be less than 2 E⁻⁹ μCi/ml (A sou dix B to Part 20, Table 2, "Effluent Concentrations", Col. 2, "Water", Page 391).
- 5.2.2 The <u>total beta/gamma activity</u> on the <u>planchet</u> shall be less than 9 E⁻⁷ μCi/ml (for ¹³⁴Cs, not known to be absent from the mixture) (Appendix B to Part 20, Table 2, "Effluent Concentrations", Col. 2, "Water", Page 365).
- 5.2.3 The <u>Tritium concentration</u> shall be less than 1 E⁻³ μCi/ml (Appendix B to Part 20, Table 2, "Effluent Concentrations", Col. 2, "Water", "Hydrogen 3", Page 342).
- 5.2.4 The <u>Sum of the Fractions</u> shall not exceed unity for the <u>total soluble beta/gamma</u> fraction plus the <u>Tritium fraction</u>, however, the alpha concentration must be less than the MDA. If the alpha concentration is greater than the MDA then the <u>Sum of the Fractions</u> shall be derived by dividing the total of the soluble alpha and soluble beta/gamma concentrations by 2 E⁻⁹ µCi/ml (Appendix B to Part 20, Table 2, "Effluent Concentrations", Col. 2, "Water", Page 391) and adding the Tritium fraction. The total shall not exceed unity.
- 5.2.5 If any of these criteria are not met, the water may shall not be discharged, and the Reactor Health Physicist shall be notified immediately.

NRLHPP - 13 Rev. Date: 5/96

- 6.0 References: a) "Standard Methods for the Examination of Water and Wastewater"; American Public Health Association: Washington, DC; 17th ed., 1989.
 - b) "Solubility Criteria for Liquid Effluent Releases to Sanitary Sewerage Under The Revised 10 CFR Part 20"; NRC Information Notice 94-07, January 28, 1994.
 - c) "Disposal by release into sanitary sewerage", 10 CFR Part 20.2003; and Appendix B to Part 20; Revised as of January 1, 1995.
 - d) "Disposal by release into sanitary sewerage", 32 Illinois Administrative Code: Chapter II, Subchapter b, Subpart K, Section 340.1030"; October 1993.

7.0 Appendices: None.

8.0 Documents: "Analysis of Radioactivity in Water Data Sheet" (Liquid Effluent Storage Tank Sample) on Page 5 of this procedure; "MDA Calculation Worksheet for a Liquid Effluent Storage Tank Discharge" on Page 7 of this procedure; and "Analysis of Radioactivity in Water Data Sheet" (Other Water Sources) on Page 6 of this procedure.

Revised By: Reviewed By: Title: Assistant Health Physicist Jonathan M. Ralston Approved By: Rich L. Holm

Title: Reactor Health Physicist and Senior Reactor Operator

and Senior Reactor Operator

Date: 5/16/96

Date: <u>5/16/96</u> Date: <u>5/16/96</u>

Title: Reactor Administrator

Date Reviewed by the Reactor Committee: Reactor Committee review not required, minor changes due to modification of NRLOP-10, "Liquid Effluent Discharge Procedure".

NRLHPP - 13 Rev. Date: 5/96

Analysis of Radioactivity in Water Data Sheet Liquid Effluent Storage Tank (App. B, Table 3 limits)

Sample Collected Date/Time:	Collected By:
Sample Counted Date/Time:	Counted By:
Tank Pumped Date/Time:	Pumped By:

	Alpha		Beta/Gamma		Tritium	
Sample Media	Filter	Planchet	Filter	Planchet	60 ml vial	
Counting System	SAC-4	SAC-4	BC-4	BC-4	LKB-11	
Sampie Volume (ml)	100	100	100	100	1	
Gross Counts					N/A	
Sample Counting Time	50 min.	50 min.	50 min.	50 min.	60 min.	
Gross cpm (dpm for ³ H)					dpm	
Background Counts					N/A	
Bkg. Counting Time	50 min.	50 min.	50 min.	50 min.	60 min.	
Background cpm (dpm for ³ H)					dpm	
Net cpm (dpm for ³ H)					dpm	
Efficiency (%)					N/A	
MDA (µCi/ml)					N/A	
Concentration (µCi/ml)						
Concentration Limit (µCi/ml)	MDA	MDA (< 2 E -8)	MDA	9 E -6	1 E -2	

Reviewed by:____Date:____

(hpdoc\procedur\hp13h2o.doc)

NRLHPP - 13 Rev. Date: 5/96

Analysis of Radioactivity in Water Data Sheet Other Water Sources (App. B, Table 2, Col. 2 limits)

Sample Taken From:

Date:	Time:	Performed By:				
anteres and tractor states and the second states of the		Alpha	Beta/Gamma	Tritium		
Sample Media		Planchet	Planchet	60 ml vial		
Counting Syste	em	SAC-4	BC-4	LKB-11		
Sample Volum	e (ml)	300	300	1		
Gross Counts				N/A		
Sample Counti	ing Time	50 min.	50 min.	60 min.		
Gross cpm (dp	m for ³ H)			dpm		
Background C	ounts			N/A		
Bkg. Counting	Time	50 min.	50 min.	60 min.		
Background c	om (dpm for ³ H)			dpm		
Net cpm (dpm	for ³ H)			dpm		
Efficiency (%)				N/A		
MDA (µCi/ml))			N/A		
Concentration	(µCi/ml)					
Concentration	Limit (µCi/ml)	MDA (< 2 E -9)	9 E -7	1 E -3		

Reviewed by:_____Date:_____

NRLHPP - 13 Rev. Date: 5/96

MDA Calculation Worksheet

Date: Time:	Calculated by:	Reviewed by:
Instrument Model Number	SAC-4	BC - 4
Serial Number	# 429	# 338
Type of Decay Detected	Alpha	Beta
50 min. Background Count (in cpm)		
Efficiency Calculation-Source Used	²³⁹ Pu	⁹⁰ Sr - ⁹⁰ Y
Source Counting Position	Deep / Shallow	Deep / Shallow
Net 50 min. Source cpm (2II)		
Calibrated Source cpm (2II)	433	2770
Efficiency (%)		

Note: MDA = Minimum Detectable Activity at the 95% Confidence Level.

 $\mathbf{MDA} = \frac{2.71 + 4.65 \sqrt{\text{Background cpm * Background count time (min)}} = \frac{X.x E^{-X}}{2.22 E^{6} \text{ dpm/}\mu\text{Ci} * \text{Efficiency (cpm/dpm) * Background count time (min) * } \underline{X} \text{ ml}} = \frac{X.x E^{-X}}{2} \mu\text{Ci/ml}$

ALPHA (SAC - 4)

MDA =	2.71 + 4.65 V	cpm *	50	min	=	µCi/ml
	2.22 E ⁶ dpm/µCi *	Eff(cpm/dpm) *	_50_min *	ml		

BETA (BC-4)

MDA =	2.71 + 4.65	cpm *	50	min	=	µCi/ml
	2.22 E ⁶ dpm/µCi *	Eff (cpm/dpm) *	50 min *	ml		

1 ... X X