OAK RIDGE
 NATIONAL LABORATORY

BWR-LTAS: A Boiling Water Reactor Long-Term Accident Simulation Code

R. M. Harrington

L. C Fuller

```
8503120456 850228
PDR NUREG
CR-3746 R & PDR
```

OPERATED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

NOTICE

Availability of Reference Materials Cited in NRC Publications
Most documents citbs in NRC publications will be available from one of the following sources:

1. The NHC, Public Document Room, 1717 H Street, N.W., Washington, DC 20555
2. The NPC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555
3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications. it is not intended to be exhaustive.

Referenced documents availabie for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda: NRC Office of inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following docurnents in the NUREG series are available for purchase from the NRC/GPO Sales Program: formal NAC staft and contractor reports, NPC-sponsored conference proceedings, and NPC bookiets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Comt mission Issuances.
Documents available from the National Technical Information Service include NUPEG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.
Documents availabie from public and special technical libraries include all open literature items, such as books, journai and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are availabie for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NPC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are availabie there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018

Notise

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their empioyees, makes any warrant;, express or implied, or assumes any legal liability or responsibility for the accuracy. colapleteness, or usefuiness of any information, apparatus, product, or process disclosed, or represents that its use would not intringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereot.

Engineering Technology Division Instrumentation and Controls Division

BWR-LTAS: A BOLLING WATER REACTOR LONG-TERM ACCIDENT SIMULATION CODE
R. M. Harrington
L. C. Fuller

Manuscript Complete - December 6, 1984 Date Published - February 1985

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research

Washington, DC 20555 Under Interagency Agreements DOE-551-75 and 40-552-75

NRC FIN. No. B0452

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-840R21400

CONTENTS

Page

ABSTRACT 1

1. INTRODUCTION 1
2. REACTOR VESSEL INJECTION SYSTEMS 7
2.1 RCIC/HPCI Systems 8
2.2 Control Rod Drive Hydraulic System (CRDHS) 10
3. 3 Condensate and Condensate Booster Pumps 13
2.4 Low Pressure Injection Systems 14
2.5 Manual Control of RCIC and/or HPCI Injection 15
4. 6 Net Positive Section Head (NPSH) Requirements 16
2.7 Sources of Water for Vessel Injection 18
5. PRIMARY COOLANT SYSTEM THERMOHYDRAULICS 38
3.1 Water/Steam Region 39
3.1.1 Core decay heat production 39
3.1.2 Downcomer and lower plenum 41
3.1.3 In-shroud region 44
3.1.4 In-vessel natural circulation 47
3.2 Steam-Only Region (Reactor Vessel Pressure) 48
6. SAFETY RELIEF VALVES (SRVs) 55
4.1 Automat 1e Actuation 56
4.2 Automatic Depressurization 57
4.3 Manual Actuation 57
7. PRIMARY CONTAINMENT THERMOHYDRAULICS 60
5.1 Introduction 60
5.1.1 Primary containment atmosphere mass balances 61
5.1.2 Intercompartment mass flows and compartment leakage 62
5.1.3 Drywell and wetwell steam flows 64
5.2 Calculations 65
5.2.1 Drywell and wetwell atmosphere energy balances 65
5.2.2 Drywell atmosphere heat sources 66
5.2.3 Convective and condensation heat transfer from atmosphere to heat sinks 66
5.2.4 Torus room temperature 68
5.2.5 Wetwell atmosphere heat sources 70
5.2.6 Drywell coolers 71
5.2.7 Calculation of drywell and wetwell atmosphere pressures and temperatures 72
5.3 Pressure Suppression Pool (PSP) Mass and Energy Balances 74
8. CONTROL ROOM INSTRUMENTATION 80
9. CALCULATION OF REACTOR POWER FOR MSIV-CLOSURE-INITIATED ATWS SEOUENCES 86
7.1 Point Kinetics 86
7.1.1 Fuel temperature and reactivity feedback 87
7.1.2 Void reactivity 88
7.1.3 Control rod reactivity 89
7.1.4 Boron concentration and reactivity 90
7.2 Calculation of Core Void Fraction 92
10. SOLUTION OF SYSTEM EQUATIONS 96
11. COMPARISON TO RESULTS OF OTHER CODES 97
APPENDIX A: REACTOR VESSEL AND PRIMARY CONTAINMENT INPUT PARAMETERS 101
APPENDIX B: SAMPLE INPUT AND OUTPUT 125
APPENDIX C: GLOSSARY OF ACRONYMS 157
Figure Page
2.1 Injection system connections to reactor vessel 27
2.2 Reactor core isolation cooling (RCIC) system 28
2.3 High pressure coolant infection (HPCI) system 29
2.4 Control rod drive hydraulic system (CRDHS) 30
2.5 Total developed head vs flow - CRDHS pump 31
2.6 Reactor vessel infection paths 32
2.7 Total developed head vs flow - condensate booster and condensate pumps 33
2.8 Condensate system injected flow - three condensate booster and three condensate pumps running (main feedwater pumps idle) 34
2.9 One loop of the core apray system 35
2.10 One loop of the residual heat removal (RHR) system 36
2.11 Total developed head vs flow - RHR and core spray pumpe 37
3.1 Regions within the reactor vessel 52
3.2 BWR reactor vessel internals 53
3.3 BWR reactor vessel and recirculation piping 54
4.1 Two-stage target rock safety/relief valve 59
5.1 BWR Mark I primary containment system 77
5.2 Mark I primary and secondary containment 78
5.3 Browns Ferry Mark I pressure suppression pool 79
6.1 Reactor vessel water level indication ranges 83
6.2 Heated reference leg water level indication 84
6.3 Unheated reference leg water level indication 85

BWR-LTAS: A BOILING WATER REACTOR

 LONG-TERM ACCIDENT SIMULATION CODER. M. Harrington
L. C. Fuller

Abstract

The BWR-LTAS code was developed by the SASA program at Oak Ridge National Laboratory for the detailed study of specific accident sequences at Browns Ferry Unit One: station blackout, small break LOCA outside primary containment, loss of decay heat removal, loss of vessel water injection, and anticipated transient without scram. The primary use of the code has been to estimate the effects of operator actions on the timing and course of events during the part of the sequence leading up to but not including severe fuel damage. This report documents the basis of the methods used to simulate the response of parameters in reactor vessel, primary coolant system, primary containment, and other reactor systems. Sample results are included in the appendix.

1. INTRODUCTKON

BWR-LTAS is a digital computer code written to calculate the effects of operator actions on the general thermohydraulic behavior of the Browns Ferry Unit 1 boiling water reactor (BWR) following a hypothetical station blackout event. The code consists of the differential and algebraic equations of mass and energy conservation and equations of state for the reactor vessel and containment; it was originally written in the IBM CSMP-3 (Continuous System Modeling Program) (Ref. 1.1) language to minimize programming and debugging time.

The original CSMP language version was designated BWR-LACP (BWRLoss of AC Power) for its (nitial use in the station blackout study. The BWR-LACP code was used for several years, and features were added as required for each accident studied. Recently a Fortran version, essentially the same in scope and structure, has been programmed. This version is designated BWR-LTAS (BWR-Long Term Accident Simulation) to correct the misimpression that the BWR-LACP code is applicable only to station blackout or loss of ac power events. It is the intent of this report to describe the basis and use of BWR-LTAS, the Fortran version.

Some of the important variables calculated by the BWR-LTAS code include:

1. Reactor vessel water levels (above the fuel as well as in the downcomer annulus),
2. Reactor vessel pressure,
3. Average fuel temperature,
4. Reactor vessel injection flow,
5. Safety-rellef valve (SRV) flow,
6. Containment pressures and temperatures, and
7. Suppression pool water level and temperature.

These variables may be calculated for arbitrary time periods following initiation of the accident sequence-typically several hours for a sequence such as station blackout. Run specific input includes:

1. Injection flow vs time or an algorithm to represent operator control of reactor vessel water level,
2. SRV opening(s) vs time or an algorithm to represent operator control of reactor vessel pressure with the SRVs, and
3. Initialization parameters: initial time elapsed since reactor trip, initial reactor vessel pressure and level, and initial containment pressures, temperatures, and suppression pool level.

In order to understand the intended use of the BWR-LTAS code it is well to review the history of the development and use of its precursor, BWR-LACP at the Oak Ridge National Laboratory (ORNL). In 1980, the Severe Accident Sequence Analysis (SASA) program was formed under the sponsorship of the Containment Systems Research Branch of the Division of Accident Evaluation of the USNRC. Among the cooperating national laboratories, ORNL was assigned the task of performing realistic analyses of BWR severe accidents, including core degradation and fission product transport. The objective of the studies centered on a limited number of postulated reactor accidents that could lead to severe fuel damage.

It was decided to concentrate the ORNL SASA Program analyses on a specific representative plart, Browns Ferry Unit 1, because the Tennessee Valley Authority (TVA) had agreed to cooperate fully with the ORNL SASA program and because the Browns Ferry plant is typical of operating BWRs. Even now, 13 of the 29 operating BWRs in the United States are BWR 4 with Mark I containment (Ref. 1.7), as is Browns Ferry, and nine BWR 2 and BWR 3 plants also have the Mark I containment.

The first accident sequence for SASA analysis was a station blackout accident involving the long term loss of all ac power at the plant (Ref. 1.2). In order to do a realistic study, the effects of possible or likely operator actions had to be considered. For some accidents, it is possible to learn about plant and operator response using only hand calculations. This is especially true of BWR accidents, such as the station blackout, that do not involve major coolant leakage and during which the core generates only decay heat. At first, hand calculations were used to estimate things $1 i$ ke time to core uncovery during a simple boil-off. The need for a mechanized calculational technique became evident as the focus of the analysis expanded from the primary coolant system into the primary containment and whenever different assumptions regarding operator action required additional calculation. Therefore, it was decided to use a computer-based method for the study of the part of the accident prior to severe fuel damage.

Two existing computer codes, MARCH and RELAP, were considered for this purpose. RELAP was not used because it did not model the primary contafnment and because it promised to use a lot of computer time for the slowly unfolding accident sequences being studied. MARCH was not used because, at the time, most of its programming was based on the pressurized water reactor (PWR) designs and because it did not have sufficient flexibility to model a variety of operator actions. Therefore, the previously used hand calculations were codified and developed into a single computer code, called BWR-LACP, from the subject of the first SASA study.

At the time of the station blackout analysis, BWR-LACP included the basic thermohydraulic models of primary coolant system and primary containment plus related systems that require no ac power: the reactor vessel safety relfef valves (SRVs) and the steam turbine driven Reactor Core Isolation Cooling (RCIC) and High Pressure Coolant Injection (HPCI) injection systems. Questions investigated for the station blackout study using BWR-LACP included: (1) Should the operators depressurize the reactor vessel as soon as possible?; (2) Would a stuck open SRV compromise the operator's ability to provide the necessary vessel water injection using the RCIC or HPCI systems?; (3) How long would it take to uncover the core after failure of the station batteries (and the resulting failure of the HPCI and RCIC systems)? ; and (4) How many times does the operator have to actuate an SRV during the period before core uncovery?

The second SASA study at ORNL was of a small break loss of coolant accident (LOCA) outside primary containment (Ref. 1.3). For this study, programming was added to BWR-LACP to simulate the leakage of saturated or subcooled water from the reactor vessel. In addition, models for the reactor vessel injection flow from the electric motor driven condensate booster pumps were added because it was found during practice sessions at the TVA Browns Ferry simulator that these pumps can be an important source of vessel injection even in the absence of operator action.

No additional modeling of primary containnent cooling systems, such as drywell coolers and pressure suppression pool coolers, was added for the small break LOCA outside primary containment study because, even witi the small break size assumed, most of the decay heat was deposited in the reactor building outside primary containment. Extensive modeling of the reactor building thermohydraulic response resulted in a reactor building model (described in Appendix A of Ref. 1.3) that could be run independently, utilizing as input the leakage vs time predicted by the BWR-LACP code. Questions investigated for this study using BWR-LACP included: (1) Based on indications available in the control room, how soon would the operators know of the existence of the break?; and (2) How fast would the reactor vessel flood after reactor vessel depressurization if the operators did not trip the condensate booster pumps?

The third accident study undertaken by the ORNL SASA team was the loss of decay heat removal accident (Ref. 1.4). In this accident, the operators are able to keep the core covered, but there is no suppression pool cooling. The link between the reactor and the ultimate heat sink, the river, is lost and containment pressure builds until the failure pressure is reached. For this study, programming to model the drywell coolers, the pressure suppression pool coolers, the net positive suction
head (NPSH) of any of the pumping systems that might need to pump from the overheated suppression pool, leakage and vent flow from the pressurized primary containment, and heat transfer from the unfnsulated wetwell torus to its surroundings was added. Questions investigated using the resulting version of BWR-LACP included: (1) How many pool coolers are necessary to prevent overheating of the suppression pool?; (2) Would there be adequate NPSH for the RHR pumps should pool cooling be recovered?; and (3) How long can the operators keep the core covered even though they cannot cool the primary containment?

The fourth ORNL SASA study investigated the effect of the smallcapacity, high-pressure injection systems on the TQUV accident sequences (Ref. 1.5). For this study, programing was added to model the flow injected into the reactor vessel by the Control Rod Drive Hydraulic System (CRDHS) pumps as a function of reactor vessel pressure. Representation of infection flow from the Standby Liquid Control (SLC) system positive displacement pump was also added. BWR-LACP was used to determine injection flow necessary to prevent core uncovery, as well as time to core uncovery for various scenarios of operator action to control reactor vessel injected flow and pressure.

The fifth and most recent ORNL SASA study was the Anticipated Transient Without Scram (ATWS) accident (Ref. 1.6). For this study, a major effort was required to add an option to allow the code to calculate the reactor power after the failure of the control rods to insert into the core. Programming was also added to calculate the in-vessel mixing of the sodium pentaborate solution (including possible stratification of boron-rich solution in the lower plenum) after initiation of the SLC system, the flow injected into the reactor vessel by the LPCI and Core Spray systems, the effects of reactor vessel pressure and drywell temperature on the various reactor vessel water level indication systems in the control room, and to pruvide a more complete simulation of automatic and manual SRV accuation. The resulting version of LACP was used to investigate the effect of operator control of reactor vessel water level and pressure on the reastor power and to determine the rate of pressure buildup in the primary containment.

Since all Browns Ferry instrumentation is in English unfts, the BWR-LTAS code is written to understand input, to operate, and to deliver output in English units. This is not to deny the advantage of SI units for all future work on modern systems but to ensure that study results can be provided in the units that the operators of the existing plant can readily understand and can relate to the readings on their control room instruments.

BWR-LTAS is not a simple "USER-FRIENDLY" tool. Rather, it consists of a set of thermodynamic and physical calculations that can be and have been of great value to an analyst who understands BWR systems and who can use this system of mathematical calculations to advantage. For such a user, it offers great savings in time and money over conventional codes.

Presently the Fortran version, BWR-LTAS, and the CSMP version, BWRLACP, are equivalent. However, future code modifications and improvements will be performed only on the Fortran version.

Chapters two through seven of this report describe the physical and mathmatical bases of the various parts of the simulation, starting, in

Chapt. 2, with the reactor vessel injection systems. Injection systems are considered first because they are of primary importance to the analysis of the initial phase of severe accident sequences (prior to permanent core uncovery and the resulting severe fuel damage). The BWRLTAS code is designed solely for the study of the initial phase of severe accident sequences, while the vessel injection systems remain operational, and thus able to prevent permanent core uncovery.

Chapters 3 and 4 discuss the models used to simulate the primary coolant system thermohydraulics and SRVs. Chapter 5 outlines the modeling of the primary containment (drywell and wetwell). The simulation of the response of control room indication of reactor vessel water level instruments is presented in Chapt. 6. The modifications necessary for the calculation of prompt power during ATWS accidents are considered separately, in Chapter 7, because they are invoked only for ATWS accidents. The solution of system equations is discussed very briefly in Chapter 8 and Chapter 9 compares the results achieved with BWR-LACP to those obtained with other computer codes for certain test transients. Appendix A lists and defines the input parameters, Appendix B presents a sample use, both input and output, of the BWR-LTAS code, and Appendix C is a glossary of frequently used acronyms.

REFERENCES FOR CHAPTER 1

1.1 Continuous System Modeling Program III (CSMP III) Prognam Reference Manual, IBM Corporation, 4th Edition (December 1975).
1.2 S. A. Hodge et al., Station Blackout at Browns Ferry Unit One Accident Sequence Analysis, NUREG/CR-2182 (ORNL/TM-455/V1), November 1981.
1.3 S. A. Hodge et al., SBLOCA Outside Containment at Browns Ferry Unit One - Accident Sequence Analysis, NUREG/CR-2672, Vol. 1 (ORNL/TM8119/V1), November 1982.
1.4 S. A. Hodge et al., Loss of DHR Sequences at Browns Ferry Unit One - Accident Sequence Analysis, NUREG/CR-2973 (ORNL/TM-8532), April 1983.
1.5 R. M. Harrington and L. J. Ott, The Effect of Small-Capacity, HighPressure Injection Systems on TQUV Sequences at Browns Ferry Unit One, NUREG/CR-3179 (ORNL/TM-8635) August 1983.
1.6 S. A. iodge and R. M. Harrington, ATWS at Browns Ferry Unit One Accident Sequence Analysis, NUREG/CR-3470 (ORNL/TM-8902), July,
1984.
1.7 Amer1can Nuclear Society, "Nuclear News Wor1d List of Nuclear Power Plants [Operable, Under Construction, or on Order (30 MWe and over) as of June 1984) $1, "$ Nuclear News (August 1984).

The functioning of the pumping systems that inject water into the reactor vessel is very important to any accident sequence. As long as the pumping systems continue to operate, there will be no permanent core uncovery or severe fuel damage. For this reason, the injection systems are presented in this chapter, ahead of the chapters dealing with the primary coolant system (Chapt. 3) or the primary containment (Chapt. 5).

The pumping systems that have been included in BWR-LTAS are the RCIC (Fig. 2.2) and HPCI (Fig. 2.3) systems, the CRD hydraulic system (CRDHS) (Fig. 2.4), the condensate/condensate booster pumps (Fig. 2.6), and the low pressure emergency core cooling systems (the LPCI mode of the RHR system (Fig. 2.10) and the Core Spray system (Fig. 2.9)]. The CRDHS and the RCIC and HPCI systems are capable of injecting adequate makeup flows against full reactor pressure; accordingly, they have been used most heavily in SASA studies to date. The steam-driven RCIC and HPCI systems are capable of running during station blackout. All the other pumps are driven by non-battery-backed electric motors that require a high voltage source of ac power.

Of the low pressure pumping systems, the operators would use the condensate/condensate booster pumps in preference to the Core Spray or the LPCI mode of the RHR systems. The Core Spray and RHR pumps are designed to inject very large flows ($40,000 \mathrm{gpm}$ nominal RHR system injection capacity and $12,500 \mathrm{gpm}$ nominal Core Spray system capacity) into the depressurized reactor vessel after large break LOCA accidents. They can be utilized by the operators to provide low pressure injection when there is no line break, however, this would be inconvenient since the injection required to remove the core decay heat is on the order of only one percent of the nominal capacity of the systems.

Figure 2.1 shows how each of the injection systems is piped into the reactor vessel. The HPCI and RCIC systems tee into the main feedwater header inside the drywell; their injection is sprayed into the reactor vessel downcomer region through the 96 main feedwater sparger nozzles. The CRDHS, an integral part of the Control Rod Drive (CRD) system, infects coolant past the CRD mechanism assembly seals and into the interstitial region of the reactor vessel through the control rod guide tubes. The RHR system pumps through the recirculation system piping external to the reactor vessel into the throats of the jet pumps inside the reactor vessel. The Core Spray piping penetrates the reactor vessel, terminating in spray spargers directly above the top of the core. The SLC system is capable of pumping 50 gpm (Browns Ferry nominal rating) of either borated or unborated water through a pipe that terminates in a perforated section below the core plate.

The degree of detail in the BWR-LTAS simulation of each injection sjstem is a reflection of the requirements of each of the six completed accident events studied by the ORNL SASA team. There has been no attempt to model all possible operating modes or each and every valve and control. Separate subruatines have been provided for the different injection systems so that the user may convenfently and selectively modify the programming for each system as needed for future studies.

2.1. RCIC/HPCI Systems

The RCIC and HPCI systems are steam-driven pumping systems that can be actuated either automatically or manually whenever necessary to supply cooling water to the reactor vessel. Figures 2.2 and 2.3 illustrate schematically the layout of the RCIC and HPCI systems. Table 2.1 is a list of the input parameters the model requires for the RCIC and HPCI systems. Both systems can pump from either the condensate storage tank (CST) or the pressure suppression pool; they are both normally aligned to the CST. The HPCI system has about ten times the capacity of the RCIC system; otherwise the systems are very similar. Appendices E and F of Ref. 2.1 provide a thorough description of the RCIC and HPCI systems.

The RCIC and HPCI systems are normally operated under automatic control whereby the speed of the turbine and the pump is adjusted to cause actual pumped water flow to equal the operator-set demand. Thus, the injected flows are proportional to the fractional demand:

```
Wreic = (Rcicmx) (Rcicd)
Whpei = (Hpcimx) (Hpcid)
```

where

```
Wrcic = RCIC flow (lb/s) injected into reactor vessel,
Whpci = HPCI flow (1b/s) injected into reactor vessel,
Rcicmx = maximum RCIC flow at rated conditions,
Hpcimx = maximum HPCI flow at rated conditions,
    Rcicd = operator-demanded fractional RCIC flow,
    Hpcid = operator-demanded fractional HPCI flow.
```

It is assumed that operators would avoid very low flows due to the possible onset of controller instability; therefore, Rcied and Hpcid are not allowed to assume non-zero values less than 0.2 .

The infected flow does not vary with reactor vessel pressure because the automatic flow controller opens or closes the turbine inlet valve as required to deliver the demanded injection. The steam flow required to drive the turbine does vary with pressure. When reactor vessel pressure is reduced, the pumping power requifed to maintain constant injected flow decreases in proportion to the decrease in pressure. But, reduced reactor vessel pressure also means reduced turbine inlet pressure. The mechanical energy that can be extracted by isentropically expanding steam from some pressure to atmosphere pressure varies from 250 $\mathrm{Bta} / \mathrm{lb}$ for an inlet pressure of 1125 psia , to $0 \mathrm{Bta} / \mathrm{lb}$ for an inlet pressure equal to atmospheric pressure. Therefore, as vessel pressure is reduced, a higher flow of steam is required to maintain constant production of mechanical energy. The two competing effects of reactor vessel pressure, when combined, yield an approximately linear relationship between vessel pressure and required steam flow:

$$
\text { Wte }=\text { Wte } 100(.1384+7.659 \mathrm{E}-4 \mathrm{P})
$$

where

```
    Wte = turbine exhaust flow (1b/s),
Wtel00 = turbine exhaust flow (lb/s) at rated injection flow with
    reactor vessel at a reference pressure of 1125 psia,
    P = reactor vessel pressure (psia).
```

The turbine steam flow is a function not only of reactor vessel pressure but also of the rate at which flow is being injected into the reactor vessel. If vessel pressure is maintained constant, but the rate of injection is reduced, the turbine will require less steam. This effect is simulated by allowing the turbine steam flow to vary in direct proportion to demand.

The steam turbine flows for RCIC and HPCI systems are:

$$
\begin{aligned}
& \text { Wte,hpci }=\text { Hpcid }(\text { Wtel00,hpci) }(.1384+7.659 \mathrm{E}-4 \mathrm{P}) \\
& \text { Wte, rcic }=\text { Rcicd }(\text { Wtel } 00, \text { rcic })(.1384+7.659 \mathrm{E}-4 \mathrm{P})
\end{aligned}
$$

where

$$
\begin{aligned}
\text { Wte, hpci }= & \text { total HPCI turbine exhaust flow }(1 \mathrm{~b} / \mathrm{s}), \\
\text { Wte, rcic }= & \text { total RCIC turbine exhaust flow }(1 \mathrm{~b} / \mathrm{s}), \\
\text { Hpcid and Rcicd }= & \text { as defined previously, fractional injection } \\
& \text { demand, } \\
\text { Wtel } 100, & \text { turbine exhaust flow (} 1 \mathrm{~b} / \mathrm{s} \text {) at rated } 100 \% \text { flow } \\
& \text { with reactor vessel at a reference pressure of } \\
& 1125 \text { psia. }
\end{aligned}
$$

The HPCI and RCIC turbine exhausts are piped to quenching spargers submerged in the suppression pool. These are vertical pipes, one for HPCI and one for RCIC, with many small holes to promote stable condensation of the turbine exhaust. The pressure suppression pool model (see Chapter 5) treats the turbine exhaust the same as the reactor vessel safety relief valve (SRV) exhaust. The turbine exhausts are at a lower enthalpy than SRV exhaust:

HSTE $=915 \mathrm{Btu} / \mathrm{lb}$,
which is assumed to be constant.
In an actual accident, the demand for HPCI and/or RCIC injection would be influenced by a number of factors. Without any operator action, both systems will automatically start on low reactor vessel water level and run at 100\% flow until the turbines are automatically tripped on high water level (after the vessel water level has increased by over $100 \mathrm{in})$. When water level again decreases to the inftiation setpoint, the HPCI system would again initiate automatically and again refill the vessel. The RCIC will not actuate for a second injection cycle unless the operator resets the turbine trip signal. Of course, the operators need not wait for automatic initiation. They may start either the RCIC or HPCL system at almost any time, and throttle demand as necessary to effect the desired control of vessel water level. Tie domanded frac= tional HPCI flow is equal to the operator-set demand, as modified by the
automatic trips or isolations:

```
Hpcid = (D,hpci)(B,hpci)
Rcicd = (D,rcic)(B,rcic)
```

where

```
D = operator-set fractional demand (function of indicated water
    level and desired water level),
B=1 if trip or is lation is not in effect, = 0 after trip or iso-
    lation.
```

Table 2.1 lists the different conditions that can cause automatic HPCI or RCIC turbine trips or turbine steam supply isolations. Section 2.5 explains the simulation of the operator-set demand.

2.2. Control Rod Drive Hydraulic System (CRDHS)

The CRDHS continuously pumps from the CST into the reactor vessel (via the seals in the 185 CRD mechanisms) during normal operations. The CRDHS injection will continue after reactor scram even without intervention by the operators. In the event of loss of off-site power, the electric motor driven CRDHS pumps stop, and operator action is required to restore power to the pumps. In an emergency, the CRDHS injection flow can be increased considerably by operator intervention. Chapter 3 of Ref. 2.2 and Appendix E of Ref. 2.3 describe the operation and design of the CRDHS. Injection flow as a function of reactor vessel pressare, the number of running CRDAS pumps (1 or 2), and the flow resistance, is calculated as outlined below. Table 2.2 lists input parameters and gives typical values applicable to Browns Ferry Unit 1. Figure 2.4 is a schematic diagram of the layout of the Browns Ferry Unit 1 CRDHS.

Straightforward application of Bernoulli's law between the condensate storage tank (CST) and the reactor vessel (RV) yields the following equation:

$$
h_{p}=2.32 \mathrm{P}_{\mathrm{rv}}+35+\mathrm{h}_{\mathrm{u}}
$$

where

$$
\begin{aligned}
\mathrm{h}_{\mathrm{p}}= & \text { head developed by the CRDHS pump(s) (ft), } \\
\mathrm{P}_{\mathrm{ry}}= & \text { reactor vessel pressure (psig), } \\
2.32= & 144 \mathrm{in}^{2} / \mathrm{ft}^{2} \text { divided by the density of water at } 90^{\circ} \mathrm{F}, \\
35= & \text { elevation difference between the CST and RV injection point } \\
& \text { (ft), } \\
\mathrm{h}_{u}= & \text { total unrecoverable losses between the CST and RV (ft). }
\end{aligned}
$$

This equation is a simple statement that the CRDHS pump must develop sufficient head to pump against reactor pressure while offsetting the elevation difference and unrecoverable (i.e., frictional and shock) losses. Acceleration or deceleration losses are neglegible for this balance between the CST and the RV.

After expressing the h_{p} and h_{u} terms as quadratics in flow, the above equation can be rearranged as a single quadratic equation which can then be solved for the unknown, flow, using the familiar relationship for the largest root of a quadratic polynomial:*

$$
B_{i}=\left(-b+\sqrt{b^{2}-4 a c}\right) / 2 a
$$

where

$$
\begin{aligned}
\mathrm{B}_{1}= & \text { flow injected into reactor vessel }(\mathrm{gpm}), \\
\mathrm{a}= & \left(\mathrm{K}_{1}-\mathrm{h}_{2} / \mathrm{N}_{\mathrm{p}}^{2}\right), \\
\mathrm{b}= & -\left(\mathrm{h}_{1}+2 \mathrm{~h}_{2} \mathrm{~B}_{\mathrm{m}} / \mathrm{N}_{\mathrm{p}},\right. \\
\mathrm{c}= & 35+2.32 \mathrm{P}_{\mathrm{rv}}-\left(\mathrm{h}_{\mathrm{o}}+\mathrm{h}_{1} \mathrm{~B}_{\mathrm{m}}+\mathrm{h}_{2} \mathrm{~B}_{\mathrm{m}}^{2}\right), \\
\mathrm{B}_{\mathrm{m}}= & \text { flow recirculated to pump suction }(\mathrm{gpm} \text { per pump), } \\
\mathrm{N}_{\mathrm{p}}= & \text { number of CRDHS pumps running, } \\
\mathrm{KI}= & \text { loss coefficient }\left(\mathrm{ft} /\left(\mathrm{gpm}^{2}\right),\right. \\
\mathrm{h}_{\mathrm{o}}, \mathrm{~h}_{1}, \mathrm{~h}_{2}= & \text { coefficients developed from least squares pump curve } \\
& \text { fit. }
\end{aligned}
$$

The loss coefficient, K_{1}, relates the unrecoverable losses to the injected flow as follows

$$
h_{u}=K_{1} B_{i}^{2}
$$

and the pump developed head is expressed as a quadratic function of B_{p}, the bulk flow per pump:

$$
h_{p}=h_{o}+h_{1} B_{p}+h_{2} B_{p}^{2}
$$

where

$$
B_{p}=B_{1} / N_{p}+B_{m}
$$

The values for the coefficients were determined by a least squares fit to the TVA-supplied pump head vs capacity curve (Fig. 2.5) resulting in the following expression:

$$
h_{p}=3816+1.552 B_{p}-0.02517 B_{p}^{2}
$$

The calculation of loss coefficient, K_{l}, is more involved because two parallel flow paths were considered: (1) the normal post-scram flow

[^0]path through the charging header and the open scram inle valves, and (2) the pump test bypass flow path (which can only be opened by operator action) into the reactor vessel via valves $85-551$ and $85-50$. (see Fig. 2.4). Thus, the loss term K 1 is a composite of the two parallel flow paths and also of a third, series resistance - the 85-527 throttling valve* through which all injection must flow before entering the charging header or the pump test bypass header:
$$
\mathrm{K}_{1}=1 /\left(1 \sqrt{\mathrm{~K}_{\mathrm{ch}}}+1 / \sqrt{\mathrm{K}_{\mathrm{ptb}}}\right)^{2}+\mathrm{K}_{\mathrm{tv}},
$$
where
\[

$$
\begin{aligned}
\mathrm{K}_{1} & =\text { overall loss coefficient, } \\
\mathrm{K}_{\mathrm{ch}} & =\text { loss coefficient for flow through the charging header, } \\
\mathrm{K}_{\mathrm{ptb}} & =\text { loss coefficient for flow through the pump test bypass, and } \\
\mathrm{R}_{\mathrm{tv}} & =\text { loss coefficient for the } 85-527 \text { throttling valve. }
\end{aligned}
$$
\]

Note that prior to operator action to enhance CRDHS flow, there is no flow through the pump test bypass, and $\mathrm{K}_{\mathrm{ptb}}$ is effectively infinite, so the above expression roduces to $\mathrm{K}_{1}=\mathrm{K}_{\mathrm{ch}}{ }^{\mathrm{p}}+\mathrm{K}_{t \mathrm{v}}$. The input parameters in Table 2.2 of this report utilize a value of ($\mathrm{K}_{\mathrm{ch}}+\mathrm{K}_{\mathrm{tv}}$) that was derived from Fig. 3.4.-10 of the Browns Ferry FSAR: $\left(\mathrm{K}_{\mathrm{ch}}+\mathrm{K}_{\mathrm{tv}}\right)=0.0954$
$\mathrm{ft} /\left(\mathrm{gpm}^{2}\right)$.

There is no FSAR data on flow through the pump test bypass, so a value was estimated by taking into account the known fittings and valves in each segment of piping of different diameter: $K_{p t b}=0.01 \mathrm{ft} /\left(\mathrm{gpm}^{2}\right)$.

The flow resistance of the $85-527$ throttling valve was inferred from Browns Ferry OI-85, "Control Rod Drive Hydraulic System," which states that the valve has been set to maintain a 1500 psig control rod drive pump discharge pressure (i.e., as measured directly upstream from the valve) under normal conditions (before scram, with 60 gpai injection flow and 80 gpm total pump flow, considering the 20 gpm recirculation flow). This information is sufficient to allow the pressure drop across the throtting valve to be estimated because the pump developed head is available from the head capacity curve, and because the relative elevations of the CST and the pump discharge header are known. The calculated estimate of throtting valve flow coefficient is:

$$
K_{\mathrm{tv}}=0.0507 \mathrm{ft} /\left(\mathrm{gpm}^{2}\right) .
$$

For cases in which the $85-527$ valve is fully opened as specified by Browns Ferry EOI-41, it is assumed that $K_{t v}$ is reduced by factor of ten to $0.00507 \mathrm{ft} /\left(\mathrm{gpm}^{2}\right)$.

[^1]As part of the CRDHS modeling, an expression was developed to calculate the pump suction pressure. This is necessary in order to determine at what flow the pump(s) would trip on low suction pressure (set at 18 in . mercury absolute, or 8.8 psia$)$. The calculation proceeds from Bernoulli's Law:

$$
P_{p s}=P_{\text {atm }}+\Delta P_{e l e v}-\Delta P_{1, a},
$$

where

$$
\begin{aligned}
\mathrm{P}_{\mathrm{ps}} & =\text { pump suction pressure (psia) } \\
\Delta \mathrm{r}_{\mathrm{elev}} & =21.2+0.431(\mathrm{CST} \text { level) (psi), } \\
\Delta \mathrm{P}_{1, a} & =\text { unrecoveral le pressure losses plus acceleration pressure } \\
& \text { drop (psi) }
\end{aligned}
$$

The value of the loss term, ΔP_{1}, was estimated from the calculated operating conditions provided in'tabular form on Fig. 3.4-10 of the Browns Ferry FSAR:

$$
\Delta \mathrm{P}_{1, \mathrm{a}}=0.000516 \mathrm{~B}_{\mathrm{p}}^{2},
$$

where $B_{p}=$ flow per pump (gpm).
The method described above for calculating pump suction pressure was developed under the assumption that 100% of the pump suction pressure loss occurs in the pump suction piping that is specific to each pump. This assuintion is reasonable since the section of piping between the CST and the CRD pumps that is common to both pumps is much larger, and since the pump-specific piping includes the suction strainer which is the largest single loss.

2,3. Condensate and Condensate Booster Pumps

Figure 2.6 shows schematically the relationship between the major parts of the feedwater and condensate systems. Table 2.3 lists required BWR-LTAS code input with typical Browns Ferry values. During normal power operation, the condensate pumps (CPs), condensate booster pumps (CBPs) and main feedwater pumps (MFPs) work in series to pump at a high rate $(\sim 30,000 \mathrm{gpm})$, from the main condenser hotwell into the reactor vessel. The BWR-LACP calculations performed for the SASA studies have invariably begun after closure of the main steam isolation valves (MSIVs), with the steam supply to the MFP turbines cut off, and the electric motor driven CPs and CBPs running but not able to inject into the pressurized reactor vessel. The combined shutoff head of the C?s and CBPs is only about 40% of the normal reactor vessel pressure. Figure 2.7 shows the head vs flow curves typical of Browns Ferry Unit 1.

Unless an accident sequence is initiated by loss of ac power, or unless the CPs and CBPs are tripped by an operator, the pumps will be running. If a depressurization of the reactor vessel occurs later in
the accident they will then be able to inject water from the hotwell into the reactor vessel.

The calculation of injected flow as a function of reactor vessel pressure is based on interpolation of an input table (or, on evaluation of the polynomial equivalent) of flow vs reactor vessel pressure. The values for this table must be prepared beforehand by a separate calculation that balances the head developed by the pumps against the line losses, elevation change, and static head in the reactor vessel:

$$
\Delta H_{p}=\Delta H_{1}+P_{v}(144 / R h o c)+\Delta H_{e}
$$

where

```
    \DeltaH
    \DeltaHI = unrecoverable losses (ft),
    \DeltaH
        hotwell (=56 ft),
    P
Rhoc = density of the condensate ( }1\textrm{b}/\textrm{ft}\mp@subsup{}{}{3}\mathrm{ ).
```

The ΔH_{p} term is calculated from the known performance curves (Fig. 2.7). The head loss term is proportional to loss coefficient times the square of flow. The loss coefficient is based on the approximation that the total unrecoverable loss ($\Delta \mathrm{P}$) between main condenser and reactor vessel is 212 psid for normal full power operation; the effective loss term at 100% flow is then increased to 250 psid to allow for the flow resistance of the idle MFPs. Frr each vessel pressure, P_{V}, there is an injected flow for which the above equation is satisfied. For the Browns Ferry input, this flow was calculated for a variety of vessel pressures. The resulting injected flow as a function of vessel pressure is plotted on Fig, 2.8. A table of condensate booster/condensate pump flow must be input by the user via data statements in function subprogram CBPF if a different injected flow versus vessel pressure relationship is desired.

2.4 Low Pressure Injection Systems

A schematic layout of the Core Spray (CS) system is shown on Fig. 2.9; that of the Residual Heat Removal (RHR) system is on Fig. 2.10. Table 2.4 specifies inpu: parameters required by the simulation. The CS system and the Low Pressure Coolant Injection (LPCI) mode of the RHR system can inject into the reactor vessel at a high rate if the reactor vessel pressure is below about 300 psia . These systems have such large pumps because they are designed for rapid reflooding of the reactor vessel following large-break loss of coolant accidents. For each accident sequence investigated to date by the ORNL SASA team, the CS and RHR systems were found to have a capacity some 20 to 50 times greater than would be required to adequately cool the core. It should be noted that there is no high level trip of these pumps.

Normal suction for both CS and RHR systems is from the pressure suppression pool (PSP), but the operators can remote-manually shift the suction to the condensate storage tank (CST). The CS system introduces infection into the reactor vessel via spray headers located directly above the top of the core. The RHR system injects into the discharge piping of the main recirculation pumps, and enters the zeactor vessel via the jet pump inlets. The entry point for low pressure injection does not make much difference for most non-LOCA sequences (at least before core damage or significant heatup). The reactor vessel thermohydraulic model (Chapt. 3) treats both injection paths similarly, with the exception that the core spray is assumed to combine directly with steam if the reactor vessel water level is below 380 in* (the level of the CS spray headers).

The operators can influence the flow injected by the CS or RHR systems after their automatic initiation by turning of \dot{f} one or more pumps or by throttling the flow by means of valves in the injection path. The following expressions for flow per pump were developed from hand calculations that considered the pump head vs flow curves and the unrecoverable losses in piping. (Ref. 2.4) The throttling of the injection valves is not simulated. Figure 2.11 shows the head vs flow curves typical for Browns Ferry.

$$
\begin{aligned}
& \text { B1pci }=(10316)(1-\text { Dpeccs } / 331)^{0.5} \\
& \text { Bcs }=(3879)(1-\text { Dpeccs } / 342)^{0.5}
\end{aligned}
$$

where
Blpci $=$ bulk flow (gom) pumped from PSP into reactor vessel per RHR puasp,
Bcs $=$ bulk flow pumped from PSP into reactor vessel per CS pump, Dpeccs = reactor vessel pressure minus PSP pressure (psid).

The corresponding mass flow equals the number of running pumps times the bulk flow per pump times the density of the PSP water.

2.5. Manual Control of RCIC and/or HPCI Injection

Operators pre. er to use the RCIC system to supply reactor vessel injection requirem ants during the recovery period following a reactor scram with MSIV closure. The 600 gpm RCIC capacity is very close to the injection required to maintain constant water level immediately after a scram from full power. Of course, if there is a coolant leak, another

[^2]pumping system, such as the HPCI system, would have to be started. About 1 h after a scram from full power, the decay heat has decreased such that the full RCIC capacity is about double that required to maintain constant water level.

ORNL investigators have observed at the Browns Ferry simulator that operators act to prevent the see-sawing up and down of reactor vessel water level and the abrupt stzrt and stop cycles of the HPCI turbine that would occur if strictly automatic control were relied upon. They effect this smooth control of vessel water level by periodically making small adjustments to the flow demand at the RCIC control station. This section outlines how operator control of the RCIC system is simulated. Operator control of the larger but very similar HPCI system is simulated in the same way.

The basic assumption employed in the simulation is that the operator will periodically check the reactor vessel water level and make corrections to the RCIC flow demand that depend on how far the indicated water level is from the desired water level. The programming to simulate this behavior is straightforward. Table 2.5 summarizes required input and also serves to outline the program logic. Very low flows are avoided due to the possible onset of controller instability (i.e. the controller that automatically adjusts RCIC or HPCI turbine speed to achieve the flow demanded by the operator); therefore the demand fraction is not allowed to go below a minimum value, Dmin.

2.6. Net Positive Suction Head (NPSH) Requirements

NPSH is a measure, expressed in equivalent height of the water being pumped, of how close the water is to saturation as it enters the pimp:

$$
\text { NPSH }=\left(P_{s}+P_{d}-P_{v}\right)(144 / R h o)
$$

where
$P_{\text {s }}=$ static pressure (psia),
$P_{d}=$ dynamic pressure (i.e. velocity head (ft) times density/144),
$\mathrm{P}_{\mathrm{v}}=$ vapor pressure (psia) evaluated at the temperature of the water as it enters the pump,
Rho $=$ density ($1 \mathrm{~b} / \mathrm{ft}^{3}$) of the water being pumped.
Most pumps require a minimum NPSH in order to operate properly. If a pump is run without sufficient NPSH, a variety of consequences can result, from degradation of the pump developed head to cavitation and erosion of the pump impeller, and possibly to total fallure of the pump or paep motur. Pump manufacturers typically publish a minimum recommended tis 3 fl for each of their pumps. Operation at or above this minimum will assurc smooth, cavitation-noise free operation with no more than a 3\% degradation of the developed head.

Each of the pumps discussed in this chapter (excepting the condensate pumps for the main condenser hotwells, which are designed to pump saturated water) can be influenced by a low NPSH condition. Such a condition might be caused by excessive flow resistance (e.g. a plugged strainer) in the suction, or by excessive temperature of the pumped water. Excessive temperature of the pumped water was of concern for the $0 \mathrm{E} . \mathrm{NL}$ SASA program study of the Loss of Decay Heat Removal (LDHP) accident. In this accident sequence, the pool cooling is lost, and very high pressure suppression pool (PSP) temperatures are reached. In order to predict whether the high pool temperature would cause a failure of the RHR pumps, the following expression was developed to calculate the NPSH of the RHR pumps:

```
Hsrhr = Hm + Dzrhr - (Hlrht (Nrhrl 2 ) + H2rhr) (Brhr/10000) 2
Hm}=(\mathrm{ Ptspg - Pv)(144/Rho) + Dlpsp
```

where

```
Hsrhr = NPSH (ft) of RHR pump(s),
        Hm = margin (ft) above saturation at the normal elevation of the
                        surface of the PSP,
Dzrhr = normal elevation (ft) of the surface of the PSP above the
        RHR pumps,
Hlrhr = head loss (ft) at 100% flow in the RHR suction piping
    common to both pumps in the loop,
Nrhrl = number of RHR pumps per loop (either 1 or 2),
H2rhr = head loss (ft) at 100% flow in the RHR suction piping
    particular to each individual pump,
    Brhr = flow (gpm) per RHR pump (10,000 gpm is nominal 100% flow),
Ptspg = total pressure (psia) of PSP atmosphere,
        Pv = vapor pressure (psia) of the water at the bottom of the
            PSP,
Dlpsp = change from normal of the PSP water level (ft).
```

Similar expressions were also developed for the NPSH of RCIC, HPCI, and Core Spray pumps. These expressions assume that each pump is pumping from the PSP; however, it should be emphasized that it is generally not necessary for these systems to pump from the PSP. Therefore the calculation of NPSH margin for the RCIC and HPCi systems is for information only, and no automatic failure on insufficient NPSH is programmed. If the PSP temperature were excessive (sis ${ }^{\prime}$, above $190^{\circ} \mathrm{F}$) it would be much better to take suction on the condensate storage tank where the water is sufficiently cool so that inadequate NPSH is not of concern. Terms in the following expressions are deftied similarly to those defined above
for the RHR system:

$$
\begin{aligned}
& \text { Hscs }=H m+\text { Dzcs }-\left(\text { Hlcs }\left(\text { Ncs } 1^{2}\right)+\mathrm{H} 2 c s\right)(\text { Bcs } / 3125)^{2} \\
& \text { Hshpci }=H m+\text { Dzhpci }- \text { Hlhpci }(\text { Bhpci/5000 })^{2} \\
& \text { Hsrcic }=H m+\text { Dzrcic }- \text { Hlrcic }(\text { Brcic/600 })^{2} .
\end{aligned}
$$

It should be mentioned that there is an additional failure mechanism for RCIC and HPCI if they should be used to pump hot water from the PSP. The lube oil of the RCIC and HPCI steam turbines is cooled by the pumped water. If the lube oil temperature exceeds $200^{\circ} \mathrm{F}$, failure of the turbines is likely, Therefore, if an attempt were made to pump PSP water elevated to the neighborhood of $200^{\circ} \mathrm{F}$, failure of the RCIC and HPCI turbines would result, even though the NPSH might be sufficient.

2.7 Sources of Water for Vessel Injection

Table 2.6 lists the sources of water available to each of the injection systems considered in this chapter. For most of the SASA investigations to date, the CST has been the primary source. The Browns Ferry Unit 1 CST normally holds about $362,000 \mathrm{gal}$ of condensate - sufficient to cool the shutdown core for more than 24 h . Of course, in the event of a primary coolant line break, the reserve inventory can be depleted much faster.

If a condensate booster pump and condensate pump are providing injection to the reactor vessel, then the main condenser hotwell becomes the primary source of water. The makeup connection between the CST and hotwell is controlled by an automatic valve that opens to allow flow from CST to hotwell if the hotwell level falls about 6 inches below normal. During normal operations, the CST makeup flow to the hotwell, if actuated, is substantial because of the vacuum within the main condenser. During most long accident sequences the condenser vacuum is lost, so the CST to hotwell flow is driven only by gravity, at a much lower flow. The hotwell makeup pipe is connected to the CST by means of a standpipe (inside the CST) of a height sufficient to reserve 135,000 gal of coolant for the safety systems (HPCI, RCIC, and CRDHS).

For SASA investigations to date, it has been necessary to program the following mass balance equations to keep track of the coolant inventory in CST and hotwell. Not all the possible flow connections listed on Table 2.6 are programmed. For example, if a future sequence requires that the operator switch the Core Spray suction from PSP to CST, then an additional term would have to be added to the CST mass balance:

$$
\begin{aligned}
& d / d t(\text { Mcst })=-\operatorname{Shwmu}(\text { Whot })-\operatorname{Shpsuc}(\text { Whpci })-\operatorname{Srcsuc}(\text { Wrcsuc })-\text { Wcrhy } \\
& d / d t(\text { Mhw })=\operatorname{Shwmu}(\text { Whot })-\text { Wcbp }
\end{aligned}
$$

where

```
    Mcst = mass of coolant in CST (1b),
    Shwinu = 0 if CST volume < 135000 gal or if hotwell water level
        >makeup point (= 1 otherwise),
    Whot = automatically controlled makeup flow (1b/s) from CST to
        hotwell (calculated as indicated below),
Shpsuc = logic to switch the HPCI suction from CST to PSP when
        indicated PSP water level exceeds +7 in,
Srcsuc = logic to allow operator to switch RCIC suction,
    Whpci = HPCI flow,
    Wrcic = RCIC flow,
    Wcrhy = CRDHS flow (injected into reactor vessel unless there is a
        line break),
        Mhw = mass of water in the main condenser hotwell,
    Wcbp = condensate flow pumped from hotwell by condensate and con-
        densate booster pumps.
```

The gravity driven hotwell makeup flow is given by

$$
\text { Whot }=.073+1.74(10)^{-7}(\text { Vcst }),
$$

where Vcst is the coolant volume (cu. ft) in the CST. There is no provision for modeling the effect of condenser vacuum because it is expected that the condenser would be at atmospheric pressure during a severe accident sequence.

The temperature of water in the CST has generally been assumed to be $90^{\circ} \mathrm{F}$, while the temperature of the PSP (initially $90^{\circ} \mathrm{F}$) is a function of the amount of steam quenched in the PSP following accident initiation. Therefore, a steady flow energy balance is necessary to calculate the temperature of water injected into the reactor vessel if water from both the PSP and the CST is being injected.

REFERENCES FOR CHAPTER 2

2.1 S. A. Hodge et al., Station Blackout at Browns Ferry Unit One Accident Sequence Analysis, NUREG/CR-2182 (ORNL/TM-455/V1), November 1981.
2.2 R. M. Harrington and L. J. Ott, The Effect of Small-Capacity, HighPressure Injection Systems on TQUV Sequences at Browns Ferry Unit One, NUREG/CR-3179 (ORNL/TM-8635) August 1983.
2.3 S. A. Hodge et al., SBLOCA Outside Containment at Browns Ferry Unit One - Accident Sequence Analysis, NUREG/CR-2672, Vol. 1 (ORNL/TM8119/V1), November 1982.
2.4 L. J. Ott, unpublished calculations, Oak Ridge National Laboratory, December 1983.

Table 2.1. Input parameters for HPCI and RCIC systems

Name	BFNP Value	Explanation
RCIC		
Rcicmx	$83.3 \mathrm{lb} / \mathrm{s}$	Rated reactor vessel injection with reactor at full pressure (equivalent to 600 gpm)
Wterco	$7.97 \mathrm{lb} / \mathrm{s}$	Turbine steam flow when pumping full flow into fully pressurized reactor vessel
Lrcmt	582 in.	Reactor vessel water level (ía above vessel zero) for manual turbine trip
Lrcmin	476.5 in.	Reactor vessel water level for manual initiation of RCIC flow
Orcman	$150 \mathrm{~s}^{\text {a }}$	Time to begin manual RCIC control
Orct	$7600 \mathrm{~s}^{\text {a }}$	Time for manual turbine trip
Orctr	$10800 \mathrm{~s}^{\text {a }}$	Time for resetting manual turbine trip
Lrct	$582 \mathrm{in}$.	Reactor vessel level for automatic turbine trip
Lrcin	476.5 in.	Vessal level for automatic inftiation
Perct	40 psia	Turbine exhaust pressure (= suppression pool pressure) for automatic curbine trip
Preis	65 psia	Reactor vessel steam pressure for automatic turbine steam supply isolation
Trefs	200 F	Turbine steam supply line space temperature for automatic turbine steam supply isolation
Trcf	190 F	PSP temp for RCIC/HPCI failure (only if suction has been shifted to suppression pool)
HPCI		
Hpcimx	$694.1 \mathrm{lb} / \mathrm{s}$	Rated reactor vessel injection with reactor vessel at full pressure (equivalent to 5000 gpm)
Wtehpo	$51.15 \mathrm{lb} / \mathrm{s}$	Turbine steam flow when pumping full flow into fully pressurized reactor vessel
Lhpmin	476.0 in.	Reactor vessel water level for manual initiation of HPCI flow
Lhprst	540 in.	Reactor vessel water level for manual turbine trip

Table 2.1. (continued)

Name	BFNP Value	Explanation
Ohpt	$600 \mathrm{~s}^{a}$	Time for manual turbine trip
Ohptr	$10^{6} \mathrm{~s}^{a}$	Time for reset of manual trip
Phpin	16.5 psia	Primary containment pressure for automatic HPCI inftiation
Lhpin	476 in.	Reactor vessel water level for antomatic HPCI initiation
Lhpt	582 in.	Vessel water level for automatic turbine trip
Phpis	115 psia	Vessel pressure for automatic turbive steam supply isolation
Pehpis	165 psia	Turbine exhaust pressure (= suppression pool pressure) for automatic isolation
Thpis	$200^{\circ} \mathrm{F}$	Turbine steam line space temperature for automatic isolation
Lspss	+7 in.	Indicated PSP level for automatic shift of HPCI suction from the CST to the PSP
Lestss	0.0 in .	CST level for automatic shift of HPCI suction from the CST to the PSP
Ohpman	150.0 s	Time to begin manual HPCI control

Table 2.2. Input parameters for the control rod drive hydraulic system

Parameter	Value	Definition
Dzv	35 ft	Elevation of the reactor vessel above the CST
Bm	20 gpm	Pump discharge to pump suction recirculation flow per pump
H0	3816 ft	Constant in the second order fit of the pump head vs flow curve
H1	$1.552 \mathrm{ft} / \mathrm{gpm}$	Coefficient of the first power of bulk flow (gpm) per pump in the pump head vs flow curve
H_{2}	-0.02517 ft/ ggpm^{2})	Coerficient of the second power of buik flow per pump in the pump head vs flow curve
Kcrdch	$0.0447 \mathrm{ft} /\left(\mathrm{gpm}^{2}\right)$	Loss coefficient for flow through the charging header (between the $85-527$ throttling valve and the interior of the reactor vessel)
Kcrdtv	$0.0507 \mathrm{ft} /\left(\mathrm{gpm}^{2}\right)$	Normal loss coefficient for flow through the CRD pump discharge throttle valve ($85-527$ valve at Browns Ferry Unit 1)
Kptb	$0.01 \mathrm{ft} /\left(\mathrm{gpm}^{2}\right)$	Loss coefficient for flow through the pump test bypass line (from pump discharge to interior of reactor vessel)
Dzs	21.2 ft	Elevation of the bottom of the CST above the CRD pump centerline
Ksu	. $000516 \mathrm{ft} /\left(\mathrm{gpm}^{2}\right)$	Loss coefficient (unrecoverable plus acceleration) for bulk flow (per pump) between CST and CRD pump suction
Osscrd	$10^{6} \mathrm{~s}^{a}$	Time for the operator to start the second CRD pump
Ltcrd	582 in .	Indicated reactor vessel water level above which operator throttles the CRD pump discharge valve (triples flow resistance, Ktv)
Ootv	$10^{6} \mathrm{~s}^{a}$	Time for operator to open the CRD f imp discharge valve (flow resistance, Ktv, reduced to 10% of normal value)
Ooptb	$10^{6} \mathrm{~s}^{\text {a }}$	Time for operator to open the pump test bypass valve

Table 2.2. (continued)

Parameter	Value	Definition
Otcrdp	$10^{6} \mathrm{~s}^{a}$	Time for operator to trip all CRD pumps (or for failure of CRD pumps)
Tsic	$10^{6} \mathrm{~s}^{a}$	Time at which the operator initiates injection of (non-borated) demineral- ized water by the SLC system to sup- plement the CRD pump injection.

 cated operator action.

Table 2.3. Input parameters for CPs/CBPs

Parameter	Value	Definition
Ocbpc	60 s	Time interval between the periodic operator checks of vessel water level and adjustment of injected flow
Oocbp	$10^{6} \mathrm{~s}^{\text {a }}$	Tine when operator control of condensate booster pump flow begins Time when operator trips the condensate and condensate booster pump
Otcbp	0.0 s	ander

$a_{\text {Very }}$ large values (e.g., 10^{6}) may be used to prevent the indicated operator action.

Table 2.4. Input data for low pressure injection systems

Parameter	Value	Definition
Hsrhrf	15.6 ft	Threshold net positive suction head for failure of RHR pump
Hscsf	16.2 ft	Threshold net positive suction head for fatlure of Core Spray pump
L1pi	413.5 in.	Reactor vessel water level for automatic start of CS and RHR pumps
Pvipi	480 psia	Low vessel pressure (in conjunction with high drywell pressure) for automatic start of CS and RHR pumps
Pdipi	16.95 psia	High drywell pressure (with low vessel pressure) for CS and RHR start
Pv1piv	480 psia	Low vessel pressure which permits injection valves to open after the CS and/or RHR automatically initiate
Ncs	$0 \leq \mathrm{A} \leq 4^{a}$	Number of operable core spray pumps
N1pci	$0 \leq \mathrm{A} \leq 4^{a}$	Number of operable RHR pumps
Oscs	$10^{6} \mathrm{~s}^{b}$	Time for operator to start core spray pumps
Oslpei	$10^{6} \mathrm{~s}^{b}$	Time for operator to start RHR pumps for LPCI
Odes	0.0 s	Time for operator to disable the automatic operation of the CS system
Od1pci	0.0 s	Time for operator to disable the automatic operation of the LPCI mode of RHR
L1pit	587.0 in.	Reactor vessel water level at which the operator would discontinue low pressure injection in order to prevent overfilling the reactor vessel
Tcfail	30 s	Time that an RAR pump or core spray pump must operate below the threshold net positive suction head (Hsrhrf or Hscsf) in order to cause pump failure

Table 2.5. Input parameters for simulation of manual control of HPCI and RCIC systems

Parameter	Value	Description
Opchre	60 s	Time interval between operator checks of the reactor vessel water level
	Ldcset +12	Water level (in.) above which the operator would run the system at miniaum demand
	Ldcset +8	Water level (in.) above which the operator would decrease the current flow demand setting by 10% of full scale
	Ldcset +5	Water level (in.) above which the operator would decrease demand by 5% of full scale
Ldcset	560 in.	Desired indicated reactor vessel water level (setpoint for manual control)
	Ldcset - 5	Water level (in.) below which the operator would increase demand by 5% of full scale
	Ldcset - 20	Water level (in.) below which the operator would restore demand to 100% of full scale
Dmin	0.20	Minimum demanded flow (fraction of full flow) allowed for manual control (turbine control might be unstable below this demand)

Table 2.6. Sources of water for reactor vessel injection

Injection system	Normal suction	Alternate suction	Suction shift
HPCI	CST	PSP	Manual or automatic
RCIC	CST	PSP	Manual
LPCI (RHR)	PSP	CST	Manual
Core Spray	PSP	CST	Manual
CRDHS	CST	None	None
SLCS	SLC tank	Demin. water	Local manual
Condensate	Hotwell	None	None
Note:	CST	PSP condensate storage tank	
	pressure suppression pool		

Fig. 2.1. Injection system connections to reactor vessel.

Fig. 2.2. Reactor core isolation cooling (RCIC) system.

Fig. 2.3. High pressure coolant injection (HPCI) system.

Fig. 2.4. Control rod drive hydraulic system (CRDHS).

ORNL-DWG 84-6508 ETD

Fig. 2.5. Total developed head vs flow - CRDHS pump.

Fig. 2.6. Reactor vessel injection paths.

ORNL-DWG 84-12655

Fig. 2.8. Condensate system injected flow - three condensate booster and three condensate pumps running (main feedwater pumps idle).

Fig. 2.9. One loop of the core spray system.

Fig. 2.10. One loop of the residual heat removal (RHR) system.

3. PRIMARY COOLANT SYSTEM THERMOHYDRAULICS

This chapter describes the modeling of thermohydraulic processes within the reactor vessel and attached recirculation piping and main steam piping. The system variables calculated by this part of the model are among the most vital and basic to a BWR: core coverage, reactor vessel injection requirements, reactor vessel pressure, steam flow to the primary containment, and the transfer of heat from the surfaces of the reactor vessel and associated piping to the drywell atmosphere. The mathematical model is programmed to function at any reactor vessel pressure between atmospheric pressure and 1300 psia (well above the normal pressure of 1025 psia). The reactor vessel water inventory can range from nearly empty (water in the vessel lower plenum only) to nearly full. [For proper convergence the pressure calculation assumes that there is always a steam space of at least $500 \mathrm{ft}^{3}$ volume (about 2% of vessel free volume)].

The BWR-LTAS code is intended to be used to investigate that portion of accident sequences up to but not including permanent core uncovery and subsequent fuel damage. For this reason, no provision is made to calculate heatup of the fuel during periods of core uncovery. This has allowed considerable simplification of the programming, but has not prevented the use of BWR-LTAS for the applicable portions of all of the accidents investigated by the ORNL SASA team. For sequences involving no core uncovery, or even a brief core uncovery (e.g. < 10 min) followed by recovery, the core does not heatup enough to reach damaging temperatures, and BWR-LTAS can be used to investigate the sequence. But, if there is a long term partial core uncovery, the core may heatup into the damage region (i.e. $>2200^{\circ} \mathrm{F}$) and the fuel temperature must therefore be calculated. In their investigation of the effect of small capacity, high pressure injection systems on TQUV accidents (Ref. 3.1), the ORNL SASA team used a special, modified version of the MARCH code to calculate the core heatup during prolonged partial core uncovery.

For modeling purposes in BWR-LTAS, the thermohydraulic processes within the reactor yessel are grouped into two regions: the sieam-only region, which normally comprises approxinately the top third of the reactor vessel; and the steam-water region, which includes water and steam/water regions and normally covers the reactor fuel. Given the injection flows and reactor vessel pressure, the steam/water region model calculates the reactor vessel water levels and the core steam production rate. The steam-only region calculation operates on the core steam production rate (and also on relief valve position information) to calculate reactor vessel pressure.

Certain simplifying assumptions are built into the reactor vessel thermohydraulic model. The justification for these assumptions is that BWR-LTAS is intended for use in the simulation of low power (e.g. decay heat) transients without any large liquid or steam line breaks: (1) The water in the reactor vessel downcomer and lower plenum regions contains no steam. In an actual reactor, it is known that there is carry-under of steam into the upper parts of the downcomer during full power operation, but with the reactor shut down and on decay heat, there should be very little carry-under. (2) Circulation of coolant within the reactor
vessel is always in the normal direction; i.e., from downcomer to lower plenum, to core, to steam separators, with the steam separators allowing steam to pass into the vessel steam space while returning any liquid to the downcomers. This a reasonable assumption since the reactor vessel internals are designed to promote this natural circulation flow. (3) The steam separators, aided by the dryers, are assumed to be 100% effective in eliminating entrained water from the steam-only region. Moreover, flow from the steam space to the pressure suppression pool via the safety relief valves is similarly assumed to contain no entrained water.

3.1 Water/Steam Region

The water/steam region includes four subregions: water in the downcomer annulus, water in the lower plenum, water/steam in and above the core (inside the core shroud, extending from the core inlet to the steam separators), and the fuel within the core. Figure 3.1 shows each of these regions, and Fig. 3.2 provides a three dimensional view of the reactor vessel internals.

Mass and/or energy conservation relations are solved for each region. The energy conservation relations yield the enthalpy and water level for the liquid in the downcomer and lower plenum, the subcooled region length, and the boiling rate in the core. The total driving head for natural circulation and the corresponding natural circulation flow can then be calculated. The rate of recirculation of coolant from the steam separators back to the downcomer annulus is dependent upon the mixture level in the shroud as explained in Section 3.1.3. In steadystate, the rate of recirculation is equal to the core inlet flow less the boiling rate.

3.1.1 Core decay heat production

The rate of heat generation in the core, based on the 1979 ANS standard (Ref. 3.1), includes the heat released not only by decaying fission products but also by decay of the actinides and other activation products. Table 3.1 lists values of total fractional decay heat as a function of time after scram. The pre-scram period of full power operation is assumed to be long in comparison to the half-lives for decay of the significant fission products.

The nuclear heat generation of the core is added to the fuel and then transferred from the surface of the fuel rods to the coolant. To simulate the delay between the addition of heat to the fuel and the transfer of heat from the surface of the fuel =ods, the following differential equation is solved:

$$
(d / d t) T_{f}=\left(P_{d}-P_{t}\right)\left(Q_{f p} / M C_{f}\right)
$$

where
$\mathrm{T}_{\mathrm{f}}=$ whole core, volume averaged fuel temperature (${ }^{\circ} \mathrm{F}$),
$\mathrm{P}_{\mathrm{d}}=$ decay heat power (fraction of full power),
$P_{t}=$ heat transfer (thermal power) from the surface of the fuel rods (fraction of full power),
$Q_{f p}=$ full power heat generation rate (Btu/s),
$\mathrm{MC}_{\mathrm{f}}=$ mass times specific heat of the fuel and clad ($\mathrm{Btu} /{ }^{\circ} \mathrm{F}$).
The heat capacity of the clad is lumped with that of the fuel; this is adequate because the zirconium-water reaction is not modeled by BWR-LTAS and the clad temperature does not need to be known.

The thermal power fraction transferred to the coolant depends on the fuel temperature, T_{f}, and on the saturation temperature of the core coolant (T_{s}) as follows:

$$
P_{t}=\left(T_{f}-T_{s}\right) /\left(T_{f}-T_{s}\right)_{f p}
$$

where $\left(T_{f}-T_{s}\right)_{f p}$ is the difference between volume averaged fuel temperature and coolant saturation temperature during full power operation.

The relationships above are utilized primarily as means of simulating the delay between heat generation and heat transfer to the coolant. This means of calculating the average fuel temperature is correct in an approximate sense as long as the reactor vessel two-phase water level is high enough to keep the core fully immersed. The addition of the core's sensible heat content to the coolant in the event of reactor vessel depressurization is properly accounted for.

The axial power shape must be considered in order to properly allocate the core heat generation to the two regions of the core average hydraulic channel, the subcooled region and the boiling region (Fig. 3.1). Table 3.2 specifies values of the average core axial power generation profile representative of the equilibrium core to be utilized in all future ORNL SASA studies of accident sequences at the Browns Ferry Unit 1 reactor. The rate of heat transfer to each region is determined as a function of the region length and the average of the axial power profile over that region:

$$
\begin{aligned}
& Q_{s c}=F_{s c} Q_{f p} P_{t}\left(L_{s c} / L_{t}\right) \\
& Q_{b}=F_{b} Q_{f p} P_{t}\left(L_{b} / L_{t}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{s c}= & \text { rate of heat transfer to coolant in the subcooled region } \\
& (\text { Btu/s), } \\
Q_{\mathrm{b}}= & \text { rate of heat addition to boiling region coolant (Btu/s), } \\
\mathrm{F}_{\mathrm{sc}}= & \text { normalized axial power, averaged betweer the core entrance } \\
& \text { (bottom) and the end of the subcooled region, }
\end{aligned}
$$

$F_{b}=$ normalized axial power, averaged between the end of the subcooled region (beginning of the boiling region) and the end of the boiling region,
$Q_{f p}, P_{t}=$ defined previousily,
$\mathrm{L}_{\mathrm{sc}}, \mathrm{L}_{\mathrm{b}}=$ subcooled and boiling region lengths (ft),
$L_{t}=$ total active fuel length ($f t$).
3.1.2 Downcomer and lower plenum

The downcomer region extends from the surface of the water, wherever it may be in the downcomer annulus, to the bottom of the jet pump diffusers (see Figs. 3.1 and 3.2). The liquid portion of the lower plenum and downcomer regions is assumed not to have any entrained steam. The volume of water in the downcomer region is variable, whereas the lower plenum region contains a fixed volume (except in the very rare instances in which the downcomer region is entirely emptied). The downcomer region mass balance is:

$$
\begin{aligned}
d / d t\left(M_{d c}\right)=W_{r s s}+W_{i n j}+ & W_{i n j a s}+W_{\text {expc }}+W_{e c c} \\
& +W_{c o n d}+W_{r p n}-W_{d c l p}-W_{f l d c}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{W}_{\mathrm{rss}}= & \text { flow of water returning from the steam separators back to } \\
& \text { the downcomer (lb/s), } \\
\mathrm{W}_{\text {inj }}= & \text { total high pressure injection plus flow from the main } \\
& \text { feedwater system (i.e. pumped by condensate booster pumps) } \\
& \text { (1b/s) }
\end{aligned}
$$

The flow $W_{\text {injas }}$ is non-zero only when the downcomer water level is below the level of the feedwater sparger nozzles (below 500 inches for Browns Ferry). When the downcomer water level is below the sparger nozzles, the infected flow, $W_{i n j}$, is heated as it falls through the steam atmosphere by the very rapid condensation of steam onto the surface of
the falling droplets or jets. The final enthalpy of the injected flow is

$$
h_{\text {injf }}=h_{i n j i}+\left(h_{f}-h_{i n j i}\right) F_{a}
$$

where

```
\(h_{\text {inji }}=\) enthalpy of injected flow as it enters the reactor vessel
        (Btu/lb),
\(h_{\text {injf }}=\) enthalpy of injected flow as it hits the surface of the
            downcomer region water (Btu/lb),
            \(\mathrm{h}_{\mathrm{f}}=\) enthalpy of saturated fluid (Btu/lb),
            \(\mathrm{F}_{\mathrm{a}}=\) fractional approach to saturation, limited between 0 and 1 ,
            = (Lspa - Ldc)/Lsat,
    \(\mathrm{L}_{\text {spa }}=\) elevation of the feedwater sparger nozzles ( ft ),
        \(\mathrm{L}_{\mathrm{dc}}=\) elevation of the surface of the downcomer water (i.e. water
            level) (ft),
\(L_{\text {sat }}=\) distance of fall through steam required for injected spray
            to become saturated (user input) (ft).
```

The flow ($1 \mathrm{~b} / \mathrm{s}$) induced in the recirculation piping W_{rp}, is proportional to the flow from the downcomer to the core (via the lower plenum), $W_{c i}$, times an input constant (FFREC, Table A.2); the residence time of coolant in the recirculation piping is:

$$
{ }^{\tau} r p=V_{r p} \rho_{r p} / W_{r p},
$$

Heat transfer from the recirculation piping is assumed to be negligible, so, on the average, coolant in the recirculation piping has the same properties as the downcomer coolant delayed by a first order lag equal to ${ }^{\tau}$. For example, the average density $\rho_{r p}$, is determined by the
solution of

$$
d\left(\rho_{r p}\right) / d t=\left(\rho_{d c}-\rho_{r p}\right) / \tau_{r p},
$$

where

$$
\rho_{\mathrm{dc}}=\text { density of coolant in the downcomer }\left(1 \mathrm{~b} / \mathrm{ft}^{3}\right)
$$

The net mass flow ($1 \mathrm{~b} / \mathrm{s}$) of coolant from the downcomer is then

$$
W_{r p m}=-V_{r p} d\left(\rho_{r p}\right) / d t=V_{r p}\left(\rho_{r p}-\rho_{d c}\right) / \tau_{r p}
$$

where

The flow from the downcomer region to the lower plenum region is calculated on the premise that the lower plenum must remain water filled. Thus the flow into the lower plenum from the downcomer must replace the mass flowing out of the lower plenum with an equal volume of water:

$$
W_{d c 1 p}=\left(W_{c i}+W_{f 11 p}\right)\left(\rho_{d c} / \rho_{1 p}\right)
$$

where

```
    W
        core) (1b/s),
W
        depressurization) (1b/s),
    \rho}\mp@subsup{\textrm{dc}}{}{=}\mathrm{ density of downcomer region water (lb/ft 3})\mathrm{ ,
    \rho
```

If the enthalpy of the downcomer region water, $h_{d c}$, is near saturation and the reactor vessel pressure begins to decrease, part of the water will begin to flash to steam at the rate $W_{f 1 d c}$. Since supersaturated water is very unstable, the flashing will continue until $h_{d c}$ is reduced to below h_{f}, the saturated fluid enthalpy. Therefore, if $h_{d c}$ $>\mathrm{h}_{\mathrm{f}}$:

$$
W_{f 1 d c}=M_{d c}\left(h_{d c}-h_{f}\right) F_{f 1 a s h}
$$

where

$$
\begin{aligned}
\mathrm{M}_{\mathrm{dc}}= & \text { mass of water in the downcomer region, } \\
\mathrm{F}_{\mathrm{flash}}= & \text { fraction of water flashing per second per Btu/lb of super- } \\
& \text { saturation. (This is a user input constant; a small value } \\
& \text { of } 0.001 \mathrm{lb} / \text { Btu } s \text { is typically used because of the sub- } \\
& \text { stantial mass }(\sim 150,0001 \mathrm{~b}) \text { normally in the downcomer.) }
\end{aligned}
$$

An expression of the same form is used to calculate the rate of fiashing from the lower plenum, $W_{f 11 p}$.

The lower plenum mass balance is:

$$
\mathrm{d} / \mathrm{dt}\left(\mathrm{M}_{1 \mathrm{p}}\right)=\mathrm{W}_{\mathrm{dclp}}-\mathrm{W}_{\mathrm{ci}}-\mathrm{W}_{\mathrm{f} 11 \mathrm{p}},
$$

where each of the flows has been defined previously.
The energy balance for the downcomer is:

$$
\begin{aligned}
& (d / d t)\left(M_{d c} h_{d c}\right)=h_{f} W_{r s s}+h_{i n j} W_{i n j}+h_{f} W_{i n j a s} \\
& +h_{f} W_{e x p c}+h_{e c c} W_{e c c}+h_{r p} W_{r p n}-h_{d c} W_{d c l p}-h_{g} W_{f l d c}
\end{aligned}
$$

where
$\mathrm{h}_{\mathrm{dc}}=$ downcomer water enthalpy (approximately equal to internal energy for water) (Btu/lb),
$h_{\text {ecc }}=$ enthalpy of low pressure ECCS injection (systems that inject from PSP) (Bta/lb),
$h_{\text {inj }}=$ enthalpy of high pressure system injection (HPCI, RCIC, CBP, CRDHS; systems that inject from CST) (Btu/lb),
$h_{r p}=$ enthalpy of the induced circulation from the recirculation piping as it reenters the downcomer region (Btu/lb),
$\mathrm{n}_{\mathrm{g}}=$ enthalpy of dry saturated steam (Btu/lb).
The enthalpy of water returning from the recirculation piping (Fig. 3.3), $h_{r p}$, is calculated by solving the equation of a first order delay that repfesents the residence time of fluid in the piping:
$\left(d / d^{*}\right) h_{r p}=\left(1 / \tau_{r p}\right)\left(h_{d c}-h_{r p}\right)$.
The energy balance for the lower plenum is:
$(d / d t)\left(M_{1 p} h_{1 p}\right)=h_{d c} W_{d c l p}-h_{1 p} W_{c i}-h_{g} W_{f 11 p}$,
where all terms have been defined previously. The lower plenum and downcomer enthalpies are found as follows:

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{dc}}=(\mathrm{Mh}) \mathrm{dc} / \mathrm{M}_{\mathrm{dc}} \\
& \mathrm{~h}_{1_{\mathrm{p}}}=(\mathrm{Mh})_{1 \mathrm{p}} / \mathrm{M}_{1 \mathrm{p}} .
\end{aligned}
$$

3.1.3 In-shroud region

This region extends from the bottom of the active fuel at the core inlet to the top of the steam separators. A mass balance for the whole region is solved:

$$
(d / d t) M_{t o t}=W_{c i}-W_{r s s}-W_{\text {tost }}+W_{f 11 p},
$$

where terms not previously defined include:

$$
\begin{aligned}
W_{\text {tost }}= & \text { total flow of steam to the reactor vessel steam space (in- } \\
& \text { cludes } W_{f 11 p}{ }^{\prime}(1 \mathrm{~b} / \mathrm{s}), \\
M_{\text {tot }}= & \text { total water/steam mass between core inlet and steam separa- } \\
& \text { tor outlet }(1 \mathrm{~b} / \mathrm{s}) .
\end{aligned}
$$

The flow of saturated water, $W_{\text {rss }}$, returned by the steam separators to the downcomer region depends on the location of the interface between the steam/water region above the core and the steam-only region which occupies the upper part of the reactor vessel. If the interface occurs below the elevation of the bottom of the steam separators, then phase
separation is occurring in the standpipes, outlet plenum, or in the core itself, and there is no flow of saturated water back to the downcomer. The lower steming rates associated with decay heat power make this phase separation possible. If the interface between the steam/kater and steam-only regions occurs at or above a certain point within the steam separators, assumed here to be the vertical midpoint of the steam separators, all the saturated water flowing into the steam separators is returned to the downcomer. This behavior is simulated by the following relationship:

$$
W_{r s s}=\left(W_{c i}-W_{b o}\right)\left(L_{\text {int }}-L_{\text {bot }}\right) /\left(L_{\text {mp }}-L_{\text {bot }}\right)
$$

where

$$
\begin{aligned}
\mathrm{W}_{\mathrm{ci}} & =\text { flow into the core }(\mathrm{lb} / \mathrm{s}), \\
\mathrm{W}_{\mathrm{bo}} & =\text { core boiling rate (} \mathrm{lb} / \mathrm{s} \text {), } \\
\mathrm{L}_{\text {int }}= & \text { elevation of the interface between the water/steam and } \\
& \text { steam-only regions (} \mathrm{ft} \text {), } \\
\mathrm{L}_{\mathrm{bot}}= & \text { elevation of the bottom of the steam separators (} \mathrm{ft} \text {), } \\
\mathrm{L}_{\mathrm{mp}}= & \text { reference elevation (halfway up the length of the steam } \\
& \text { separators) (} \mathrm{ft} \text {). }
\end{aligned}
$$

The value of the ratio ($\left.L_{\text {int }}-L_{\text {bot }}\right) /\left(L_{r p}-L_{\text {bot }}\right)$ is constrained between 0.0 and 1.0 .

The key to determining the core boiling rate and the distribution of the water/steam region mass inventory, M tot, between the subcooled and saturated subregions is the core subcooled region. Solution of the following equation yields the length of the subcooled region of an average channel, which is used by the model to represent the aggregate behavior of all core channels:

$$
\begin{aligned}
&(d / d t) L_{s c}=-\left[L_{s c} Q_{f s c} P_{c o r}-W_{c i}\left(h_{f}-h_{c i}\right)\right] / \\
& {\left[\rho_{c i} A_{c o r}\left(h_{f}-h_{c i}\right)\right] }
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{sc}}= \text { length of average channel subcooled region }(\mathrm{ft}), \\
& \mathrm{Q}_{\mathrm{fsc}}= \text { heat flux (Btu/s ft } \mathrm{ft}^{2} \text {) averaged over the subcooled region } \\
& \text { (see also Section 3.1.1), } \\
&{ }^{\mathrm{P}_{c o r}}= \text { heat transfer perimeter (heat transfer area divided by } \\
& \text { length) (ft } \\
&\left.\mathrm{ft}^{2}\right), \\
& \mathrm{h}_{\mathrm{ci}}= \text { core inlet enthalpy (also equals } \mathrm{h}_{1 \mathrm{p}} \text { as presented in 3.1.2) } \\
& \text { (Btu/lb), } \\
& \rho_{c i}= \text { density of water entering the core }\left(1 \mathrm{~b} / \mathrm{ft}^{3}\right), \\
& \mathrm{A}_{\mathrm{cor}}= \text { flow area of core }\left(\mathrm{ft}^{2}\right) .
\end{aligned}
$$

This equation was derived by combining the mass and energy conservation relations for the subcooled region.

The boiling region length, L_{b}, is equal to the total core active fuel length minus the subcooled length. The core boiling rate is:

$$
W_{b o}=\left(Q_{f b} P_{\text {cor }} L_{b}\right) /\left(h_{g}-h_{f}\right)
$$

where $Q_{f b}$ is the heat flux averaged over the boiling length of the core. The density of the water/steam mixture in the core, core outlet plenum, and standpipes is calculated by means of a drift-flux formulation in which the void fraction is calculated as a function of total flow and steam flow:

$$
\alpha=j_{g} /\left[C_{o}\left(j_{f}+j_{g}\right)+v_{g j}\right]
$$

where

$$
\begin{aligned}
\alpha & =\text { void fraction, } \\
j_{\mathrm{g}} & =\text { steam mass velocity (volumetric flow per unit area), } \\
\mathrm{j}_{\mathrm{f}} & =\text { water mass velocity (volumetric flow per unit area), } \\
\mathrm{C}_{\mathrm{o}} & =\text { distribution coefficient }=1.1, \\
\mathrm{~V}_{\mathrm{gj}} & =\text { drift velocity }=1.15 \mathrm{ft} / \mathrm{s} .
\end{aligned}
$$

The coefficient values for C_{o} and $V_{g j}$ were taken from Lahey and Kamath, (Ref. 3.2) and were selected to give void fractions in agreement with experimental data for water/steam at low (decay heat) steaming rates. The density of the water/steam mixture is:

$$
\rho=\alpha \rho_{\mathrm{g}}+(1-\alpha) \rho_{\mathrm{f}}
$$

where
$\rho_{g}=$ density of saturated dry steam $\left(1 \mathrm{~b} / \mathrm{ft}^{3}\right)$,
$p_{f}^{g}=$ density of saturated water $\left(1 \mathrm{~b} / \mathrm{ft}^{3}\right)$.
The density for each of the in-shroud two-phase regions (core boilivg region, core outlet plenum, and standpipes) is calculated. In the cove boiling region, the steam flow increases and density decreases with distance up the channel, so the density must be calculated at several points and an average utilized to represent the whole core boiling region. The total two phase mixture height inside the shroud is then calculated from the known quantities: the density in each subregion, the subcooled region length, and the total in-shroud mass.

At decay heat steaming rates, the densities of the water/steam mixture in the core boiling region, outlet plenum, and standpipes can be relatively high, consistent with a significant inventory of saturated water. During periods of changing reactor vessel pressure, this inventory of saturated water would have a transient influence on the net steaing rate that would be dependent on the mass of saturated water
present:

$$
\Delta W_{s r}=M_{p o o}\left(d h_{f} / d t\right) /\left(h_{g}-h_{f}\right)
$$

where

$$
\Delta W_{\mathrm{sr}}=\text { change to boiling rate },
$$

$$
M_{\text {poo }}^{\mathrm{sr}}=\text { total in-shroud inventory of saturated water, }
$$

$$
\mathrm{h}_{\mathrm{f}}, \mathrm{~h}_{\mathrm{g}}=\text { saturation properties. }
$$

3.1.4 In-vessel natural circulation

The circulation of water from the downcomer and lower plenum into the core occurs because the density of the two phase mixture inside the shroud is lower than the density of the single phase water in the downcomer region. The amount of flow is determined by a balance between the density-difference driving head and the unrecoverable pressure drops incurred by the coolant flowing in the natural circulation path. The driving head is:

$$
\Delta \mathrm{P}_{\mathrm{g}}=\left(\mathrm{L}_{\mathrm{dc}} \rho_{\mathrm{dc}}-\mathrm{L}_{s c} \rho_{s c}-\mathrm{L}_{\mathrm{b}} \rho_{\mathrm{b}}-\mathrm{L}_{\mathrm{op}} \rho_{o p}-\mathrm{L}_{\mathrm{sp}} \rho_{\mathrm{sp}}\right) / 144
$$

where

$\Delta \mathrm{P}=$	density difference driving head (psi),
$\mathrm{L}_{\mathrm{dc}}=$	height of water in downcomer, referenced to the bottom of
	active fuel,
$\mathrm{L}_{\mathrm{Sc}}=$	core subcooled length,
$\mathrm{L}_{\mathrm{b}}=$	core boiling length,
$\mathrm{L}_{\mathrm{Op}}=$	length of core outlet plenum,
$\mathrm{L}_{\mathrm{sp}}=$	length of standpipes.

In the steady state, the driving head will be exactly counter balanced by the unrecoverable losses associated with the circulation flow:

$$
\Delta \mathrm{P}_{\mathrm{ur}}=\mathrm{K}_{\ell}\left(\rho_{\mathrm{r}} / \rho_{\mathrm{b}}\right) W_{\mathrm{ci}}^{2}
$$

where

$\Delta P_{u r}=$	unrecoverable pressure drop throughout the circulation path,
K_{l}^{r}	$=$ loss coefficient (determined from reference conditions),
$\rho_{l}=$	average boiling region water/steam density,
$\rho_{r}=$	average boiling region water/steam density for reference
	conditions.

The "reference conditions" above must be taken from a steady-state, natural circulation (recirculation pumps off) operating condition for which reactor power, reactor vessel pressure, water level, and natural
circulation flow are known. The density ratio (ρ_{r} / ρ_{b}) is included in this expression because most of the unrecoverable pressure losses will occur in the water/steam regions, especially the core; and the two-phase losses are, very roughly, inversely proportional to the density. The flow is found by equating $\Delta P_{u r}$ and ΔP_{g}, and solving for $W_{c i}$.

3.2 Steam-Only Region (Reactor Vessel Pressure)

The reactor vessel steam-only space extends from the top of the downcomer water region to the top of the reactor vessel and includes the volume of the main steam lines out to the Main Steam Isolation valves (MSIVs). (In all SASA studies to date, the MSIVs have been shut very early in the accident sequence.) The mass inventory of the steam space is assumed to consist only of steam, with no entrained water droplets, and the flow from the steam space via the safety relief valves (SRVs) or the RCIC and HPCI turbines consists of dry steam.

To solve for the pressure, it is necessary first to compute the specific volume and enthalpy of the steam. These two properties uniquely determine the pressure via a steam-table look-up routine.

The mass balance for the steam space is

$$
d / d t\left(M_{s t}\right)=W_{\text {tost }}+W_{f 1 d c}-W_{\operatorname{expc}}-W_{\text {cond }}-W_{\text {injas }}-W_{\text {srv }}-W_{\text {ste }}
$$

where

```
    M st = total steam mass (1b),
    W
    Wfldc = rate of flashing of downcomer water (1b/s),
    Wexpc = condensation due to expansion of steam space (1b/s),
    W
        downcomer water (lb/s),
W Wnjas = rate of condensation from steam space onto injected spray
    W
    W
```

The volume of the steam space is

$$
V_{\text {st }}=V_{\text {free }}-V_{\text {water }}-V_{s}
$$

where

$$
\begin{aligned}
V_{\text {free }}= & \text { total vessel }+ \text { main steam lines free volume }\left(\mathrm{ft}^{3}\right), \\
V_{\text {water }}= & \text { free volume occupied by water in downcomer and lower } \\
& \text { plenum regions }\left(\mathrm{ft}^{3}\right), \\
V_{s}= & \text { volume within core shroud }\left(\mathrm{ft}^{3}\right) .
\end{aligned}
$$

The specific volume of the steam space steam is $v_{s v}=V_{s t} / M_{s t}$.

The energy balance for the steam space is
$d / d t\left(u_{s} M_{s t}\right)=h_{g} W_{\text {tost }}+h_{g} W_{f 1 d c}-h_{f} W_{\text {expc }}$
$-h_{s}\left(W_{\text {cond }}+W_{\text {injas }}+W_{\text {srv }}+W_{\text {ste }}\right)-P(d V s t / d t)(144 / 778)$
where

```
        us = average specific internal energy of steam throughout the
                        steam space (Btu/lb),
        hs}=\mathrm{ average specific enthalpy of steam throughout steam space
            (Btu/lb),
hg, hf = saturation properties,
    P}=\mathrm{ steam space pressure (psia).
```

The enthalpy is:

$$
h_{s}=\left(u_{s} M_{s t}\right) / M_{s t}+P v_{s v}(144 / 778)
$$

and total pressure is uniquely determined:

$$
P=f\left(v_{s v}, h_{s}\right)
$$

REFERENCES FOR CHAPTER 3

3.1 R. M. Harrington and L. J. Ott, The Effect of Small-Capacity, HighPressure Injection Systems on TQUV Sequences at Browns Ferry Unit One, NUREG/CR-3179, ORNL/TM-8635 (September 1983).
3.2 P. S. Kamath and R. T. Lahey, "The Analysis of Boiling Water Reactor Long-Terin Cooling," Nuclear Technology, Vol. 49, June, 1980.

Table 3.1. (\% of pre-scram heat after shutdown operating power)	
Time after shutdown (h)	Decay heat $(\%)$
$8.33(10)^{-3}(30$ s)	4.36
1	1.38
2	1.13
3	1.01
5	0.88
8	0.78
24	0.59
36	0.53

Table 3.2. Axial power shape (average channel)

Distance from core inlet fraction of active fuel length	Relative power
0.0000	0.61
0.0833	1.04
0.1666	1.16
0.2500	1.19
0.3333	1.16
0.4166	1.11
0.5000	1.09
0.5833	1.07
0.6666	1.05
0.7500	1.03
0.8333	0.92
0.9166	0.72
1.0000	0.33

Fig. 3.1. Regions within the reactor vessel.

Fig. 3.2. BVR reactor vessel internals. .

Fig. 3.3. BWR reactor vessel and recirculation piping.

4. SAFETY RELIEF VALVES (SRVs)

The SRVs (13 for each unit at Browns Ferry) are connected to the main steamlines inside the drywell. They protect the reactor vessel from overpressurization by automatically controlling reactor vessel pressure when the Main Steam Isolation Valves (MSIVs) are closed. When the MSIVs are closed, the SRVs provide the only path for relief of steam produced in the reactor vessel, except for the RCIC and HPCI turbines which accept relatively small steam flows when the turbines are running.

The SRVs are either open or closed - there are no intermediate valve positions. The two-stage Target Rock valves currently in use at Browns Ferry (see Fig. 4.1) are pilot operated. The pilot (i.e., first "stage") valve can be opened by efther differential between upstreamside steam pressure (\approx reactor vessel pressure) and downstream pressure (\approx wetwell pressure) or by the action of control air pressure on the air actuator. When the pilot valve opens,* it vents the above-piston chamber of the main valve (second "stage"), creating a pressure difference \dagger that pops the main valve open against the force of the main valve preload spring. When the pilot valve closes, the above-piston chamber of the main stage repressurizes (to upstream pressure) and the main valve is forced shut by the main valve preload spring.

Steam operation of the pilot valve is associated with automatic SRV actuation. The SRV opens when the differential between reactor vessel pressure and containment pressure exceeds the set differential pressure of 1105 pet or higher and then closes when reactor vessel pressure has been reduced by about $5 \%(\sim 50$ to 60 psi$)$ and the pilot valve repositions. However, as noted previously, it is the pressure differential across the main valve piston that actually holds the valve open. Therefore, even with the pilot valve positioned for SRV opening, the SRV will close if and when reactor vessel pressure is reduced to within 20 psi of wetwell pressure ${ }^{7}$; if this happens, the valve will reopen if reactor vessel pressure subsequently increases to 50 psi above wetwell pressure.

Control air operation of the pilot valve is necessary for operator initiated remote-manual actuation of any of the 13 SRVs , or for Automatic Depressurization System (ADS) actuation of the six ADS SRVs. Control air must act across the valve air actuator in opposition to the

[^3]drywell pressure in order to open the pllot valve. Drywell control air pressure (normally about 115 psia) must exceed drywell pressure by at least 25 psi to permit the opening of a closed SRV, and must continue to exceed drywell pressure by at least 5 psi in order to maintain the pilot valve positioned for SRV opening. Therefore, if drywell pressure exceeds 110 psia in an accident sequence, any remote-manually or ADSopened SRV will shut and stay shut until the reactor vessel pressure reaches the setpoint necessary for automatic steam actuation of the pilot valve.

The SRVs discharge to the suppression pool, whose pressure is normally close to atmospheric pressure and much lower than the reactor vessel pressure. Therefore, sonic flow normally prevails in the throat of an open valve, and flow is calculated as follows

$$
W_{\text {srv }}=W_{\text {rated }}\left[\rho P /\left(\rho_{r} P_{r}\right)\right]^{0.5}
$$

where

$$
\begin{aligned}
W_{s r v}= & \text { flow through the SRV if reactor vessel pressure is } P \text { and } \\
& \text { reactor vessel steam density is } \rho \text {, and } \\
W_{\text {rated }}= & \text { flow through the SRV under rated conditions, when vessel } \\
& \text { pressure is } P_{r} \text { and vessel steam density is } \rho
\end{aligned}
$$

If the suppression pool pressure is greater than 44% of the reactor vessel pressure, then the flow calculated by the formula above must be reduced since sonic flow conditions no longer prevail. When this is true, the flow is corrected as follows :

$$
W_{\mathrm{srv}}=W_{\mathrm{srvs}}\left[2.22\left(1-P_{\mathrm{sp}} / P\right)\right]^{0.5}
$$

where

$\mathrm{W}_{\text {sry }}$	$=$ flow through the SRV,
$\mathrm{W}_{\text {srvs }}$	$=$ flow through the SRV for sonic flow,
$\mathrm{P}_{\text {sp }}$	$=$ suppression pool pressure, and
P	$=$ reactor vessel pressure.

4.1 Automatic Actuation

The puspose of automatic SRV actuation is to prevent excessive pressurization of the reactor vessel. The ASME code for nuclear pressure vessels specifies performance requirements for safety valves: (1) at least some of the SRVs must be set to open at or below the reactor vessel design pressure, (2) each SRV must "pop" open (to $\geq 97 \%$ of its full flow) at a pressure within 1% of its pre-set opening pressure, and (3) each SRV must, unless specifically exempted, reclose after the pressure has been reduced by no more than 5%.

At Browns Ferry, there are three designated banks of SRVs. The four valves of the first bank are set to open at 1105 psig; the four valves of the second bank are set to open at 1115 psig ; and the five valves of the third bank are set to open at 1125 psig. Even though the valves in a given bank have the same setpoint, they do not open or close in concert. The setpoint for automatic SRV opening is set individually at each SRV by adjustment of the pilot valve setpoint adjustment spring. Therefore, as provided for by the ASME code, each of the valves in a bank might opew - vywhere within $+1 \%$ of the nominal opening pressure. For example, the valves in the first bank, nominally set at 1105 psig , may open anywhere between 1094 and 1116 psig . This effect may be simulated in BWR-LTAS by properly staggering the user-provided input for the SRV automatic opening pressure setpoints.

Experience with the SRVs at Brorns Ferry has shown that, after opening automatically, an SRV will remain open until pressure has been reduced by between about 6% and 11%. The realistic closing pressures can be simulated by staggering the user-provided input for automatic closing pressures between the maximum and minimum expected closing pressures.

4.2 Automatic Depressurization

Six of the 13 SRVs at Browns Ferry are associated with the Automatic Depressurization System (ADS). These valves are like the other seven SRVs, in that they respond identically to automatic actuation and to operator-initiated, remote-manual actuation. They are unlike the other seven in that the pilot-stage solenoid of each of the six ADS valves can respond to the ADS actuation signal (by admitting air to the inlet of t : air actuator) and in that each of the six is equipped with its own compressed air accumulator; thus, even in the event of the loss of both the drywell air compressor and the station control air, the ADS could still actuate to depressurize the reactor vessel.

At Browas Ferry, all the following indications are required for $A D S$ actuation: (1) high drywell pressure ($>2.45 \mathrm{psig}$), (2) low reactor vessel water level ($\langle 413.5 \mathrm{in}$.), (3) confirmatory low reactor vessel water level ($<546 \mathrm{in}$.), and (4) the expiration of the ADS two-minute timer. These features are built into the BWR-LTAS simulation and the setpoints may be changed by changing user-provided input.

4.3 Manual Actuation

An operator can open any one of the 13 SRVs by moving the handswitch for that valve to the "on" position; the valve will not close until the operator returns the handswitch to the "off" position. When the reactor vessel is isolated, the plant emergency procedures instruct the operator to control reactor vessel pressure in the neighborhood of 900 psig by manual actuation of the SRVs. Operator control is not absolutely necessary since automatic SRV actuation will, without any help from the operator, control the reactor vessel pressure between about

Abstract

1100 and 1000 psig. Operator control is preferred because SRV actuations are less frequent under manual control, and this minimizes wear on the valves and also the chance that an SRV will stick in the open position. Operator control also allows the operator to selectively alternate the SRVs in such a manner as to distribute the heat load associated with SRV discharge more evenly around the circumference of the pressure suppression pool.

BWR-LTAS simulates operator control by opening one SRV when pressure exceeds the reactor vessel pressure setpoint* by about 100 psi , and by closing the opened SRV when reactor vessel pressure has been reduced to about 50 psi below the vessel pressure setpoint. Operator initiated depressurization is simulated by ramping down the setpoint for vessel pressure i.e., the user input desired reactor vessel pressure; the start and end time, and final pressure reached are also specified by the user.

*The code is programmed with a setpoint of 950 psia; this is consistent with typical Browns Ferry emergency operating instructions and with operator performance observed at the Browns Ferry training simulator.

Fig. 4.1. Two-stage target rock safety/relief valve.

5. PRIMARY CONTAINMENT THERMOHYDRAULICS

5.1 Introduction

The primary containment thermohydraulic model is designed to predict pressures and temperatures over a wide range of conditions for a large, but not all inclusive, number of accidents. For example, the model is not intended to be adequate for the case of a large break LOCA accident; however, it has been applied to the stud; of loss of decay heat removal accidents and Ancicipated Transient Without Scram (ATWS) accident sequences in which there would be a relatively slow pressurization of the primary containment to 132 psia , the analytically predicted overpressure failure pressure of the Mark I containment drywell. The model calculates average temperatures and pressures for speciffed control volumes. No attempt is made to calculate localized phenomena such as the pool swell that occurs in the locality of a discharging PSP Tquencher.

Figure 5.1 shows the Browns Ferry primary containment. The inerted light bulb - shaped drywell is a $1-1 / 8 \mathrm{in}$. average thickness pressure vessel which is separated by several inches of foam insulation from the closely surrounding concrete structure. The Browns Ferry drywell liner weighs about $850,000 \mathrm{lbs}$ and, as a heat sink, has a significant effect on the temperature of the drywell atmosphere. The drywell houses the reactor vessel and associated primary coolant system (PCS) piping, including reactor vessel, reactor coolant recirculation pumps, steam lines, and safety relief valves, and is inerted during reactor operation. The primary containment is surrounded by the reactor building (Fig. 5.2.).

The drywell atmosphere temperature and pressure can be affected by the primary coolant system (PCS) by direct heat transfer from the hot PCS outer surfaces and by direct leakage of primary coolant. During normal operation, there are other heat sources in the drywell such as the recirculation pump motors. The drywell atmosphere coolers run during normal operation and maintain drywell temperature in the neighborhood of 135 F .

The wetwell (Fig. 5.3) is a 31 ft minor diameter by 111.5 ft major diameter torus made of 0.76 in thick steel, and located in the concretewalled torus chamber in the basement of the reactor building. The wetwell is approximately half-filled with water. This water, known as the pressure suppression pool (PSP), is designed to serve as a heat sink for condensation of steam discharged from the reactor coolant system under accident or transient conditions. During a LOCA, steam would enter the drywell atmosphere and then flow into the suppression pool through the 96 downcomer pipes distributed around the circumference of the PSP. Under transient conditions, excess steam pressure within the reactor vessel is relieved by SRVs whose discharge is piped directly into the PSP through T-quencher devices located about 5 ft off the bottom of the 15 ft deep pool. The T-quencher shown in Fig. 5.3 is rotated 90° from its normal tangential alignment, for illustrative purposes. The residual heat removal (RHR) system can be aligned to provide PSP cooling adequate to prevent excessive PSP temperatures even if all of the decay heat is being dissipated within the PSP.

The drywell and wetwell atmospheres communicate through the 96 dry-well-to-wetwell vent downcomers and the 8 wetwell-to-drywell vacuum breakers. If drywell atmosphere pressure exceeds the wetwell atmosphere pressure by about 1.75 psi , the water is forced from the interior of the downcomers and the drywell atmosphere bubbles up through the PSP into the wetwell atmosphere (most of the water vapor will be condensed). If the pressure in the wetwell atmosphere exceeds the drywell pressure by more than 0.5 psi, the wetwell-to-drywell vacuum breakers would open and allow flow from the wetwell atmosphere to the drywell until the pressure is equalized. These vacuum breakers are check valves, which can be tested by means of compressed air actuators. For all but brief periods during severe transients such as large break LOCA accidents, these mechanisms keep the wetwell and drywell atmosphere pressures within about 2 psi of each other.

The BWR-LTAS primary containment model performs energy and mass balances on three regions: the drywell atmosphere, the wetwell atmosphere, and the PSP. For the atmosphere regions, there is a separate mass balance for each of the two gaseous components, nitrogen (since the atmosphere is inerted) and water vapor. The assumption is made that these gases behave as perfect gases. This allows the computation of temperature from internal energy, and the calculation of pressure from temperature and the component masses.

5.1.1 Primary containment atmosphere mass balances

Four equations describe the conservation of mass for the drywell and wetwell atmospheres:
(d/dt) Mnspg $=$ Wndwsp - Wnspl - Wnspdw
(d/dt) Mndwg $=-$ Wndwsp - Wndwl + Wnspdw
(d/dt) Msspg $=$ Wssvnq + Wsdwsp (Fnq) + Wstenq + Wtespw - Wsspdw Wsspl - Wcspg
$(d / d t)$ Msdwg $=$ Wsdwr - Wsdwsp - Wcdwc + Wsspdw - Wsdwl - Wcdwg
where

```
Mnspg = mass of N2 in wetwell atmosphere (lb),
Msspg = mass of steam in wetwell atmosphere (1b),
Mrdwg = mass of N}\mp@subsup{N}{2}{}\mathrm{ in drywell atmosphere (1b),
Msdwg = mass of steam in drywell atmosphere (1b),
Wndwsp = flow of N2 from drywell to wetwell atmosphere (1b/s),
Wsdwsp = flow of steam from drywell to wetwell (1b/s),
    Fnq = fraction of steam flowing to the downcomers that does not
    condense before reaching the surface of the PSP,
Wnspdw = Flow of N2 from wetwell to drywell atmosphere (1b/s),
Wsspdw = flow of steam from wetwell to drywell atmosphere ( }1\textrm{b}/\textrm{s}\mathrm{ ),
    Wnspl = leakage flow of N2 from wetwell atmosphere (1b/s),
    Wsspl = leakage flow of steam from wetwell atmosphere ( }1\textrm{b}/\textrm{s}\mathrm{ ),
    Wndwl = leakage flow of N2 from drywell atmosphere ( }1\textrm{b}/\textrm{s}\mathrm{ ),
    Wsdwl = leakage flow of steam from drywell atmosphere (1b/s),
```

```
    Wssvnq \(=\) flow of steam from SRVs discharged into PSP but not
        quenched ( \(1 \mathrm{~b} / \mathrm{s}\) ),
    Wstenq \(=\) flow of steam from steam turbines (HPCI or RCIC) dis-
        charged into PSP but not quenched ( \(1 \mathrm{~b} / \mathrm{s}\) ),
    Wtespw = rate of evaporation from the surface of the suppression
        pool ( \(1 \mathrm{~b} / \mathrm{s}\) ),
    Wcspg \(=\) flow of steam condensed from the wetwell atmosphere
        ( \(1 \mathrm{~b} / \mathrm{s}\) ),
    Wcdwg \(=\) flow of steam condensed from the drywell atmosphere
        ( \(1 \mathrm{~b} / \mathrm{s}\) ),
    Wsdwr \(=\) flow of steam released directly to drywell atmosphere
        ( \(\mathrm{lb} / \mathrm{s}\) ),
    Wcdwc \(=\) flow of steam condensed in the drywell coolers ( \(1 \mathrm{~b} / \mathrm{s}\) ).
```


5.1.2 Intercompartment mass flows and compartment leakage

The density of each component is calculated by dividing its mass by the compartment (i.e., drywell or wetwell atmosphere) free volume. The mass rate of flow of N_{2} or steam between compartments or the compartment leakage flow is then calculated by multiplying an input or calculated bulk flow rate by the component density.

The compartment leakages are taken to be a constant input fraction of the compartment volume per unit time. This simulates the increased mass flow rate of leakage that occurs as primary containment pressure increases. For primary containment pressure over two atmospheres the calculated leakage flow approximates choked flow through a restrictive orifice. As a practical matter, the demonstrated leak rate of the Browns Ferry primary containment is so low that its effect would be significant unly in a days-long accident sequence. The equations for leakage fiow are,

```
    Bspl = (Vgsp) (F1spg)
Wsspl = (Bspl) (Msspg/Vgsp)
Wnspl = (Bspl) (Mnspg/Vgsp)
    Bdwl = (Vgdw) (Fldwg) + Bdwvl
Wndwl = (Bdwl) (Mndwg/Vgdw)
Wsdwl = (Bdwl) (Msdwg/Vgdw)
```

where

Venting of the drywell (bulk flow $=$ Bdwvl), if initiated by the operators, can have a greater effect on containment pressure than does the small leakage flow. Therefore, the vent flow is calculated with more accuracy. If the flow is choked, bulk flow is:

```
Bdwvl = FFdvec }\sqrt{}{\mathrm{ Tgdwr/Mwgdw}
```

where
Bdwvl = bulk flow ($\mathrm{ft}^{3} / \mathrm{s}$) through drywell vent,
Ffdvc $=$ flow factor $\left[\left(\mathrm{ft}^{3} / \mathrm{s}\right)(1 \mathrm{~b} / \mathrm{mole} \mathrm{R})^{0.5}\right]$ for choked flow through drywell vent line,
Tgdwr $=$ average temperature of drywell atmosphere (R),
Mwgdw = average molecular weight ($1 \mathrm{~b} / \mathrm{mole}$) of drywell atmosphere.
If the flow is not choked, the bulk flow is:

```
Bdwvl = Ffdvuc }\sqrt{}{(Ptdwg - Pa) (Tgdwr)/[Mwgdw (Ptdwg + Pa)]
```

where

Ffdvuc $=$	flow factor $\left.\left[\left(f t^{3} / \mathrm{s}\right) \text { (lb/mole } \mathrm{R}\right)^{0.5}\right]$ for unchoked flow
	through drywell vent line,
Ptdwg $=$	total pressure (psia) of drywell atmosphere,
$\mathrm{Pa}=$	ambient pressure (psia) of the reactor builiding surround-
	ing the drywell

The bulk flow from the drywell to the wetwell atmosphere is zero if there is not enough pressure difference to force the water down and out of the 96 downcomer pipes. If the pressure difference is great enough the bulk flow from drywell to wetwell is:

$$
\text { Bdwsp }=\text { Bdwsp0 }(\text { Ptdwg }- \text { Ptspg }- \text { Pdcvp })
$$

where

$$
\begin{aligned}
\text { Bdwspo }= & \text { user-input bulk flow from drywell to wetwell per unit } \\
& \text { pressure difference }\left(\mathrm{ft}^{3} / \mathrm{s} / \mathrm{psi}\right) \text {, } \\
\text { Ptspg }= & \text { total pressure of wetwell atmosphere (psia), } \\
\text { Pdcvp }= & \text { user input pressure difference necessary to clear the }
\end{aligned}
$$ downcomer vent pipes (~ 1.75 psi).

The bulk flow from the wetwell airspace above the suppression pool to the drywell consists of vacuum breaker flow and the wetwell-to-drywell compressor flow if the compressor is running. If the total pressure of the wetwell atmosphere is less than 0.5 psi above the drywell pressure, there is no vacuum breaker flow; when the wetwell pressure
increases to $>0.5 \mathrm{psi}$ above the drywell pressure, the vacuum breaker flow is:

$$
\text { Bvspdw }=\text { Bspdw0 (Ptspg }- \text { Ptdwg }- \text { Pdovb })
$$

where,

$$
\begin{aligned}
\text { Bvspdw }= & \text { bulk flow from wetwell to drywell through the vacuum } \\
& \text { breakers }\left(\mathrm{ft}^{3} / \mathrm{s}\right) \text {, } \\
\text { Bspdwo }= & \text { user-input total vacuum breaker bulk flow per unit pres- } \\
& \text { sure drop }\left(\mathrm{ft}^{3} / \mathrm{s} /\right. \text { psia), } \\
\text { Pdovb }= & \text { pressure difference required to open the vacuum breakers } \\
& \text { (psi). }
\end{aligned}
$$

If the suppression pool-to-drywell delta P compressor is running, the bulk flow is a user-input constant, Brdpc. If the drywell atmosphere pressure exceeds wetwell pressure by more than a user-input differential pressure Pmxdpc, the compressor is cut off; it may be restarted if the drywell pressure sinks to below Pmndpc. The purpose of this system is to maintain the drywell pressure above wetwell pressure to minimize the columns of water on the insides of the 96 drywell-to-wetwell downcomers. In the event of a large break LOCA, the slug of water inside each of the downcomers would be accelerated rapidly downward with the possibility of damage to PSP internals or pressure boundary.

5.1.3 Drywell and wetwell steam floks

To complete the mass balances, the steam flow rates must be specified. The condensation flows, Wcspg and Wcdwg, which consist primarily of condensation on the metal walls surrounding the wetwell and drywell

$$
W_{c}=Q_{c} /\left(h_{g}-h_{f}\right)
$$

where
$Q_{c}=$ condensation heat transfer (Btu/s),
$h_{\mathrm{g}}=$ saturated steam enthalpy (Btu/lb),
$h_{f}^{g}=$ saturated fluid enthalpy (Btu/lb).
The drywell cooler program calculates the rate of condensation inside the coolers, Wcdwc. The flow of steam from the suppression pool by evaporation (Wtespw) or direct bubble-through of non-quenched SRV or steam turbine exhaust (Wssvnq or Wstenq) are calculated by the PSP model. The flow of steam released directly to the drywell, Wsdwr, is the flash fraction of liquid coolant leqkage from the primary coolant system. The input constant Wdleak allows the user to specify a constant leakage of saturated water from the primary coolant system to the drywell.

5.2 Calculations

5.2.1 Drywell and wetwell atmosphere energy balances

The drywell and wetwell atmosphere energy balance equations are:

```
d/dt(Udwg) = EPsdw + EPndw + Qrvhl - Qldwg
d/dt(Uspg) = EPssp + EPnsp + Qsspg - Qlspg + Mwork
```

where

```
    Udwg = total internal energy [(mass) (specific internal energy)]
    of all gases in the drywell atmosphere (Btu)
    Uspg = total internal energy of gases in the wetwell atmosphere
        (Btu),
EPsdw = product of enthalpy and mass flow for all flows of steam
        entering or leaving the drywell atmosphere (positive sign
        for flow into drywell, negative for out-flow) (Btu/s),
EPssp = same as above but for the wetwell atmosphere (Btu/s),
EPndw = product of enthalpy and mass flow for all \(\mathrm{N}_{2}\) flows to or
    from the drywell atmosphere ( \(\mathrm{Btu} / \mathrm{s}\) ) ,
EPnsp \(=\) product of enthalpy and mass flow for all \(\mathrm{N}_{2}\) flows to or
    from the wetwell atmosphere (Btu/s),
Qrvhl = heat transfer from outer surfaces of reactor vessel and as-
    sociated piping (Btu/s),
Qldwg = heat loss from the drywell atmosphere to heat sinks within
    the drywell (primarily the \(1 / 8 \mathrm{in}\). thick sceel drywell
    wall) ( \(\mathrm{Btu} / \mathrm{s}\) ),
Q1spg = same as above for the wetwell atmosphere (Btu/s),
Qsspg \(=\) heat transfer from the surface of the suppression pool to
    the wetwell atmosphere ( \(\mathrm{Btu} / \mathrm{s}\) ) ,
Mwork = work done on the wetwell atmosphere by change in the sup-
    pression pool water level ( \(\mathrm{Btu} / \mathrm{s}\) ).
The enthalpy products include each mass stream to or from the atmosphere. Since perfect gas behavior is assumed for \(\mathrm{N}_{2}\) and water vapor, the specific enthalpy of each is a function only of temperature:
```

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{s}}=0.45 \mathrm{~T}-4.89 \\
& \mathrm{~h}_{\mathrm{n}}=0.2475 \mathrm{~T}
\end{aligned}
$$

where
$\mathrm{h}_{\mathrm{g}}=$ specific enthalpy of water vapor (3tu/1b),
$\stackrel{\mathrm{S}}{\mathrm{T}}=$ temperature of water vapor (degrees Rankine),
$h_{n}=$ specific enthalpy of nitrogen gas (Btu/lb).
In order to properly interface with other parts of the model, which use the ASME steam tables, it is necessary to subtract $854.5 \mathrm{Btu} / \mathrm{lb}$ from the

ASME steam table enthalpy before forming the prodact of enthalpy and mass flow rate for use in the energy balances above. This applies whenever steam is released from the primary coolant system to the primary containment.

5.2.2 Drywell atmosphere heat sources

The drywell heat source term, Qrvhl, consists primarily of heat transfer from the warm outer surfaces of the reactor vessel and associated piping. This heat transfer rate is proportional to the difference between the temperature of the water or steam within the reactor vessel and the temperature of the drywell atmosphere. A second, transient, term is included in Qrvhl to simulate the heat load (mainly associated with the recirculation pumps) that 1 ingers after reactor scram:

$$
\text { Qrvhl }=\text { UAorv (Tsat }- \text { Tgdw) }+ \text { Qophl }
$$

where

```
UAorv \(=\) product of heat transfer coefficient and the area of con-
                tact between hot reactor coolant and the cooler drywell
                atmosphere (Btu/s \({ }^{\circ} \mathrm{F}\) ),
    Tsat \(=\) temperature of reactor coolant, equal to saturation tem-
        perature at reactor vessel pressure ( \({ }^{\circ} \mathrm{F}\) ),
    \(\mathrm{Tg} \mathrm{dw}=\) temperature of drywell atmosphere ( \({ }^{\circ} \mathrm{F}\) ),
Qophl = transient heat load after reactor scram (Btu/s).
```

The product of heat transfer coefficient and area, UAorv, in the above expression is determined primarily by the relatively small effective conductance through the reactor vessel and piping insulation. Other conductances such as the exterior surface to air film coefficient, are relatively so great that they have practically no effect on the overall conductance. UAorv is calculated from plant data and/or from detailed design calculations of the drywell heat loads. The transient operating heat load is calculated by solving the following equation

$$
\mathrm{d} / \mathrm{dt}(\text { Qoph1 })=-(\text { Qoph1 }) / \mathrm{TAUoph:}
$$

Where TAUoph1 is the time constant for decay of the operating heat load. The initial value for solution of this equation is a code input based on detailed calculation or operational knowledge. A time constant of 600 s was assumed for Browns Ferry Unit 1.

5.2.3 Convective and condensation heat transfer from atmosphere to heat sinks

The $1 / 1 / 8 \mathrm{in}$, average thickness steel drywell liner is the major heat sink in the drywell. The heat loss term, Qldwg, includes all heat loss from the atmosphere to the drywell liner by natural convection heat
transfer and by condensation:
Q1dwg = Qdmdry + Qdmwet
where

$$
\begin{aligned}
& \text { Qdmdry }=\text { convective heat transfer rate }, \\
& \text { Qdmwet }=\text { condensation heat transfer rate. }
\end{aligned}
$$

The convective heat transfer rate depends on the temperature difference between the liner temperature, Tdmet, and the atmosphere temperature Tgdw:

$$
\text { Qdmdry }=\text { Admet } 5.3(10)^{-5}(\mathrm{Tgdw}-\text { Tdmet })^{0.33}(\mathrm{Tgdw}-\text { Tdmet })
$$

where Admet is the heat transfer area of the drywell metal (liner), and the units of Qdmdry are $\mathrm{Btu} / \mathrm{s}$. This equation is based on the following natural circulation heat transfer correlation: ${ }^{5.1}$

$$
\mathrm{Nu}=0.13\left(\mathrm{Gr}_{\mathrm{L}} \mathrm{Pr}\right)^{0.333}
$$

where

$$
\begin{aligned}
\text { Nu } & =\text { Nusselt number }=\mathrm{hL} / \mathrm{k} \\
\mathrm{Gr}_{\mathrm{L}} & =\text { Grashoff number }=\rho^{2} \mathrm{~g} \beta\left(\mathrm{~T}-\mathrm{T}_{\mathrm{a}}\right) \mathrm{L}^{3} / \mu^{2} \\
\mathrm{Pr} & =\text { Prandtl number }=\mu \mathrm{C}_{\mathrm{p}} / \mathrm{k} .
\end{aligned}
$$

and the length parameter, L , cancels. This correlation is good for vertical or nearly vertical surfaces and also for hot horizontal surfaces facing upward (or cool horizontal surfaces facing downward).

The condensation heat transfer is zero unless the heat sink temperature, Tdaet, is below the dewpoint. When condensation does occur, the rate is dependent on the relative amount of nitrogen present: ${ }^{5 \cdot 2}$

$$
\text { Cdmwet }=\text { Admet } 0.0185(\text { Msdwg } / \text { Mndwg })^{0.707}(\text { Tdewdw }- \text { Tdmet })
$$

where

```
Msdwg = mass of steam in drywell atmosphere (1b),
Mndwg = mass of N2 in drywell atmosphere (1b),
Tdewdw = dewpoint of drywell atmosphere ( }\mp@subsup{}{}{\circ}\textrm{F}\mathrm{ ).
```

During normal operation, the drywell coolers constantly remove moisture from the drywell atmosphere, so that the dewpoint is well below the atmosphere temperature. The dewpoint temperature is determined from the steam tebles: it is the saturation temperature evaluated at the specific volume of the drywell atmosphere steam (Vgdw/Msdwg).

An energy balance is utilized to solve for the drywell liner temperature, Tdmet:
$(\mathrm{d} / \mathrm{dt})$ Tdmet $=($ Qdmdry + Qdmwet $) /$ Cdmet
where Cdmet equals the mass times the specific heat of the $1-1 / 8$ inch thick steel drywell liner. There is no heat loss term in the calculation of drywell liner temperature because the drywell liner is insulated on the outside; the calculation assumes this insulation stops all heat loss.

The natural circulation convective heat transfer and the condensation heat transfer for the wetwell are calculated in a manner similar to that explained above for the drywell. The chief heat sink considered for the wetwell atmosphere is the $3 / 4-i n$. thick steel wall of the upper half of the torus, which is in contact with the atmosphere. The temperature of this steel shell is calculated by integration of the following energy balance:
$(\mathrm{d} / \mathrm{dt})$ Tpmet $=($ Qpmdry + Qpmwet - Qpgair - Qrpgc)/Cpmet
where

$$
\begin{aligned}
\text { Qpmdry }= & \text { natural circulation convective heat transfer from wetwell } \\
& \text { atmosphere to the torus wall (Btu/s), } \\
\text { Qpmwet }= & \text { condensatior heat transfer from wetwell atmosphere to the } \\
& \text { torus wall (Btu/s), } \\
\text { Qpgair }= & \text { natural cfrculation convective heat transfer from the out- } \\
& \text { side su:face of the torus to the air of the torus chamber } \\
& (B t u / s) \\
\text { Qrpgc }= & \text { radiant heat transfer from the torus wall to the concrete } \\
& \text { walls of the torus chamber (Btu/s), } \\
C p m e t= & \text { product of mass and specific heat of the torus shell } \\
& \left(B t u /{ }^{\circ} \mathrm{F}\right) .
\end{aligned}
$$

5.2.4 Torus room temperature

For many accident sequences, the temperature of the concrete torus room walls does not change; however, for an accident sequence such as the loss of decay heat removal (DHR) accident, the surface temperature of these walls can increase enough to significantly affect the torus heat loss. In an unmitigated loss of DHR accideat sequence, the surface temperature of the uninsulated torus can exceed $300^{\circ} \mathrm{F}$. The greatest heat loss from the surface of the torus at this temperature is by radiant heat transfer directly to the 3 ft thick concrete walls (also to the floor and ceiling) of the torus room. This heat transfer rate is evaluated using an assumed emissivity of 0.9 for both torus and concrete surfaces:5.1

$$
Q_{r}=S A_{t}\left(T_{t}^{4}-T_{c}^{4}\right) /\left[1 / e_{t}+\left(A_{t} / A_{c}\right)\left(1 / e_{c}-1\right)\right]
$$

where

Q_{r}	$=$ total radiant heat transfer rate $(\mathrm{Btu} / \mathrm{s})$,
S	$=$ Stefan-Boltzman conscant $\left(\mathrm{Btu} / \mathrm{ft}^{2} s^{\circ} \mathrm{R}^{4}\right)$,
A_{t}	$=$ surface area of torus $\left(\mathrm{ft}^{2}\right)$,
A_{c}	$=$ surface area of concrete $\left(\mathrm{ft}^{2}\right)$,
T_{t}	$=$ surface temperature of the torus $\left({ }^{\circ} \mathrm{R}\right)$,
T_{c}	$=$ surface temperature of the concrete $\left({ }^{\circ} \mathrm{R}\right)$,
$e_{t}=$ surface emissivity of the torus,	
$e_{c}=$ surface emissivity of the concrete.	

The rate of natural circulation convective heat transfer between the torus and the torus room air is as follows:

$$
\begin{aligned}
& Q_{c}=A_{t} h\left(T_{t}-T_{a}\right) \\
& h=5.3(10)^{-5}\left(T_{t}-T_{a}\right)^{0.33}
\end{aligned}
$$

where the units of h are $B t u /\left(\mathrm{ft}^{2} \mathrm{~s}^{\circ} \mathrm{F}\right)$. A similar expression is emplcyed for calculation of heat transfer between torus room air and torus room concrete surfaces.

A differential energy equation is solved for each of the following temperatures: torus surface, torus ro air, and torus room concrete. The 3 ft thick concrete wa'. s are divi. d into five parallel, slabgeometry, regions to insure accurate computation of the temperature distribution within the concrete. The surface slab is 1 in. thick, the adjacent slab 2 in. thick, and so on, with slab thickness increasing with penetration into the concrete. A typical concrete differential energy balance is:

$$
\begin{aligned}
d T_{i} / d t & =\left[2 K_{c} /\left(D X_{i} c_{p c}\right)\right]\left[\left(T_{i-1}-T_{i}\right) /\left(D X_{i-1}+D X_{i}\right)\right. \\
& \left.-\left(T_{i}-T_{i+1}\right) /\left(D X_{i}+D X_{i+1}\right)\right]
\end{aligned}
$$

where
$T_{i}=$ temperature of the $1-t h$ concrete slab $\left({ }^{\circ} \mathrm{F}\right)$,
$\mathrm{K}_{\mathrm{c}}=$ concrete thermal conductivity ($\mathrm{Btu} / \mathrm{s} \mathrm{ft}{ }^{\circ} \mathrm{F}$),
$\mathrm{DX}_{\mathrm{i}}=$ thickness of $i-t h$ concrete slab (ft),
$C_{p c}=$ product of specific heat and density of concrete ($\mathrm{Btu} / 1 \mathrm{~b}{ }^{\circ} \mathrm{F}$).
The expression for natural circulation of air from the reactor building basement corner roams into the torus room and out through sleeves in the ceiling of the torus room is based on the discussion in Sect. 5.2 .6 .3 o: the Browns Ferry FSAR that gives the circulation rate for a specific set of conditions. In adapting the circulation rate
given by the FSAR to other conditions, it was assumed that the rate of natural circulation is proportional to the square root of the density difference (i.e., density of reactor building basement air outside the torus room vs the density of the air inside the torus room) and, therefore, also proportional to the square root of the temperature difference. The basement air outside the torus room is assumed to remain close to $90^{\circ} \mathrm{F}$ throughout the loss of DHR sequence.

5.2.5 Wetwell atmosphere heat sources

In an accident sequence with MSIVs closed, the pressure suppression pool is heated as it condenses the steam discharged by the SRV T-quenchers. The atmosphere above the hotter pool is heated in two ways: by natural circulation convective heat transfer and by evaporation of water from the surface of the pool. The convective heat transfer coefficient is calculated by means of the same relation given in Sect. 5.2.3 that is used for heat transfer from the atmosphere to heat sinks,

$$
\mathrm{Nu}=0.13\left(\mathrm{Gr}_{\mathrm{L}} \mathrm{Pr}\right)^{0.333}
$$

Evaporation of water vapor from the surface of the suppression pool to the wetwell atmosphere can be the dominating mechinism for preasurization of the primary containment during accidents such as the Loss of DHR sequences. ${ }^{5.3}$ If the pool is slowly heated, evaporation can cause the containment pressurc to rise fast enough such that the suppression pool remains subcooled and there is no direct bubble-through of SRV discharge from the T-quenchers to the wetwell atmosphere even at elevated pool temperatures.

The wetwell atmosphere i. initially a mixture of nitrogen and a small amount of water vapor, and remains a binary mixture throughout most of the accident sequences. If the wetwell atmosphere were pure water vapor, then it would be correct to assume that the partial pressure of water vapor in the wetwell atmosphere is identical to the satface of the pool. face of the pool. Since the wetwell atmosphere is a binary mixture, this assumption is not correct because the rate of transfer of water vapor from the pool is limited by diffusion and convection through the air.

The relationship used to calculate the rate of evaporation from the pool is based 0.1 the heat transfer/mass transfer analog discussed in
Chap. 13 of Ref. 5.1 :

$$
W=\left(12.3 A_{p} R_{m}\right)\left(P_{v s}-P_{v a}\right) h / \bar{P}_{n}
$$

where

$$
\begin{aligned}
W & =\text { evaporation rate }(1 \mathrm{~b} / \mathrm{s}) \\
12.3 & =\text { constant of proportionality }\left[1 \mathrm{~b}_{\mathrm{m}}^{2}{ }^{\circ} \mathrm{R}^{2} /\left(\text { Btu psia } \mathrm{ft}^{3}\right)\right]
\end{aligned}
$$

```
\(A_{p}=\) surface area of pool \(\left(\mathrm{ft}^{2}\right)\),
\(R_{m}^{p}=\) suppression pool bulk atmosphere mole-fraction-weighted
                        (i.e. between nitrogen and water vapor) perfect gas constant
                        [psia \(\left.\mathrm{ft}^{3} / 1 \mathrm{~b}_{\mathrm{m}}{ }^{\circ} \mathrm{R}\right)\) ]
\(P_{v s}=\) vapor pressure (psia) of water, evaluated at the pool sur-
    face temperature,
\(P_{v a}=\) partial pressure of water vapor in wetwell atmosphere,
\(\bar{P}_{\mathrm{n}}=\) average nitrogen pressure in the convective boundary layer
            (psia),
\(h=\) coefficient of natural circulation heat transfer tetween the
            surface of the pool and the pool atmosphere [Btu/(s \(\left.{ }^{\circ} \mathrm{F} \mathrm{ft}{ }^{2}\right)\) ]
            \(=5.85 \times 10^{-5}\left(\mathrm{~T}_{\mathrm{p}}-\mathrm{T}_{\mathrm{a}}\right)^{0.333}\),
\(T_{p}=\) pool surface temperature \(\left({ }^{\circ} \mathrm{F}\right)\),
\(\mathrm{T}_{\mathrm{a}}^{\mathrm{p}}=\) wetwell atmosphere temperature \(\left({ }^{\circ} \mathrm{F}\right)\).
```


5.2.6 Drywell coolers

The drywell coolers transfer heat from the drywell atmosphere to the reactor building closed cooling water (RBCCW) system. The RBCCW system pumps water through the inside of the heat exchanger tubes; the cooler's blowers draw the drywell air (i.e. nitrogen and water vapor) across the exterior of the tubes. Air-side heat transfer is enhanced by the many closely spaced parallel copper sheets attached to the outside of the tubes.

The calculation of heat transfer within the drywell coolers is similar to that for the RHR heat exchangers in that the effectiveness formulation is used; however, an iterative solution is employed because the heat transfer properties of the air-side are radically altered when the water vapor fraction becomes significant (after 8 h , or more, into the loss of DHR accident sequence, for example).

The equation for counterflow heat exchanger cooling effectiveness* is: ${ }^{5.1}$

$$
E=\left(1-e^{-x}\right) /\left(1-c_{r} e^{-x}\right)
$$

where

$$
\begin{aligned}
C_{r}= & C_{m i n} / C_{\text {max }}, \\
C_{m i n}= & \text { smaller of the air-side mass flow times specific heat pro- } \\
& \text { duct and RBCCW-side mass flow times specific heat product } \\
& \left(B t u / s^{\circ} \mathrm{F}\right),
\end{aligned}
$$

[^4]```
\(\mathrm{C}_{\max }=\) larger of the air-side and RBCCW-side mass flow times
 specific heat products (\(\mathrm{Btu} / \mathrm{s}^{\circ} \mathrm{F}\)),
 \(x=\left(1-C_{r}\right) U A / C_{\min }\),
 \(\mathrm{UA}=\) product of overall air-to-water heat transfer coefficient
 and effective heat transfer area (Btu/s \({ }^{\circ} \mathrm{F}\)).
```

The iteration proceeds as follows:

1. A value of air-side $C_{a}$ is assumed (mass flow * specific heat),
2. E is calculated, along with the resulting heat transfer rate, airside $\Delta T$, and air-side exit temperature,
3. The air-side condensation rate is then calculated from the results of step 2, combined with the known saturation pressure of steam as a function of temperature (i.e. the air site exit temperature determines the maximum concentration of water that can exit as vapor and the rest must condense),
4. The condensation rate is then divided by the heat of vaporization and used to calculate the total heat transfer rate (latent + sensible), and a corrected value for $C_{a}$,
$C_{a}^{\prime}=\frac{Q}{\Delta T}$, is calculated.
5. If $C_{a}^{-} \cong C_{a}$, the iteration is terminated. If not, then steps 1 through 4 are repeated until convergence is achieved.

Major assumptions of the drywell cooler model include:

1. constant volumetric flow maintained by the drywell cooler blowers,
2. constant RBCCW system inlet temperature and flow,
3. constant overall air-to-RBCCW heat transfer coefficient * effective heat transfer area.

Input parameters for the drywell coolers include the setpoints for automatic trip of the blowers that occurs upon coincident high drywell pressure and low reactor vessel pressure if a loss of off-site power has occurred. This trip is a part of the automatic load shedding that follows a core spray initiation when the emergency diesels are providing power. The operator may restart the blowers unless off-site power is not available.

### 5.2.7 Calculation of drywell and wetwell atmosphere pressures and temperatures

By integration of the mass and energy balance equations discussed in the previous sections, the component masses and the total internal energies are known, and therefore the specific internal energy of the mixture is uniquely determined:
$u=U M / M$
where

```
 u = specific internal energy of the atmosphere mixture (Btu/lb),
UM = total internal energy of the atmosphere (Btu),
 M = total mass of the atmosphere (steam + N2) (lb).
```

Since for ideal gases, the internal energy is a function of temperature only, the temperature of the mixture can be calculated by solving the following equation:

$$
u=u_{s}(T) M_{s} / M+u_{n}(T) M_{n} / M
$$

where

```
 u= the known specific internal energy of the atmosphere mix-
 ture (Btu/lb),
us
 (Btu/lb),
M M
 (Btu/lb),
 M = mass of N2 in the atmosphere (lb).
```

Having calculated mixture temperature, the partial pressure of each component can now be calculated:

$$
\begin{aligned}
& P_{n}=\left(M_{n} / V\right) R_{n} T \\
& P_{s}=\left(M_{s} / V\right) R_{s} T \\
& P_{t}=P_{n}+P_{s}
\end{aligned}
$$

where
$\mathrm{P}_{\mathrm{n}}=$ partial pressure of $\mathrm{N}_{2}$,
$M_{n}=$ mass of nitrogen,
$\mathrm{V}=$ total free volume of the compartment,
$\mathrm{R}_{\mathrm{n}}=$ ideal gas constant for $\mathrm{N}_{2}$,
$\mathrm{P}_{\mathrm{s}}=$ partial pressure of steam,
$\mathrm{M}_{\mathrm{s}}=$ mass of steam,
$\mathrm{R}_{\mathrm{s}}=1$ deal gas constant for steam,
$P_{t}=$ total pressure of the atmosphere.
The atmosphere pressure and temperature calculations are done independently for the drywell and wetwell atmospheres.

### 5.3 Pressure Suppression Pool (PSP) <br> Mass and Energy Balances

Mass and energy balances are solved for a single-region control volume, resulting in the calculation of the PSP water level and a single average water temperature for the whole PSP. If it is desired to calculate the top-to-bottom or the circumferential temperature distributions in the PSP, it is possible to replace this single-region model with a much more detailed one developed at ORNL. ${ }^{5}{ }^{4}$ The single-region model is described below. The mass balance equation for the PSP is:

where

$$
\begin{aligned}
M= & \text { total mass of PSP water (1b), } \\
F_{\mathrm{q}}= & \text { fraction of the SRV or steam turbine exhaust that is } \\
& \text { condensed in the PSP (the non-condensed part would } \\
& \text { bubble up into the wetwell atmosphere), } \\
\text { Wssv }= & \text { SRV discharge flow to PSP (1b/s), } \\
\text { Wste }= & \text { HPCI or RCIC steam turbine discharge to PSP (1b/s), } \\
\text { Wc }= & \text { rate of steam conduensatioa in the wetwell atmosphere } \\
& \text { (lb/s), } \\
\text { Ws }= & \text { total flow to suction of pumping systems other than } \\
& \text { pool cooling (e.g. Core Spray, LPCI, or HPCI if the } \\
& \text { suction shift has occurred } \text { the water circulation } \\
& \text { provided by the pool cooling mode of the RHR system is } \\
& \text { assumed to effect no net mass transfer) (lb/s), } \\
\text { We }= & \text { rate of evaporation from the suppression pool surface } \\
& \text { into the wetwell atmosphere (lb/s), }
\end{aligned}
$$

The condensation of steam from SRV exhaust or from the HPCI and RCIC turbine exhausts is assumed to be complete (i.e. $F_{q}=1.0$ ) if the saturation temperature evaluated at the quenching depth (i.e. Tsat at wetwell atmosphere pressure plus hydrostatic pressure equivalent to the height of water above the quencher) is at least $10^{\circ} \mathrm{F}$ greater than bulk pool temperature (input parameter TSQUEN, Table A-4); there is no condensation ( $\mathrm{F}_{\mathrm{q}}=0.0$ ) if the bulk pool temperature exceeds saturation temperature. Between these limits, $H_{q}$ is linearly ramped from 1.0 to 0.0 as subcooling decreases from 10.0 to $0.0^{\circ} \mathrm{F}$. This treatment is considered to be a reasonable approximation for the expected performance of the currently installed "T-quencher" quenching devices. The T-quenchers are constructed with many small holes to promote stable condensation and prevent the condensation oscillations that could occur with the formerly employed "rams head" quenchers. A more detailed discussion of the physics of condensation is provided in Ref. 5.4.

The PSP energy balance is:

$$
\begin{aligned}
d / d t(M H)= & F_{q}[\text { Wssv }(\text { hst })+\text { Wste (hste) }]+W c\left(h_{f}\right) \\
& - \text { hpsp (Ws) -We (hg) }+ \text { hsdw (Wsdwsp) }(1-\text { Fnq) }
\end{aligned}
$$

where

```
 MH = product of total mass and enthalpy for PSP water (for water
 h*u
 hst = enthalpy of steam discharged by the SRVs (Btu/1b),
 hste = enthalpy of steam discharged by the steam turbines (Btu/lb),
 hf}=\mathrm{ saturated fluid enthalpy evaluated at PSP atmosphere temper-
 ature (Btu/lb),
hpsp = enthalpy of PSP water (Btu/lb),
 hg}=\mathrm{ saturated dry steam enthalpy evaluated at PSP temperature
 (Btu/lb),
hsdw = enthalpy of steam (Btu/lb) evaluated at drywell atmosphere
 temperature.
```

    Having integrated the mass and energy balances, the program next
    calculates the pool temperature, $T_{p s p}$, from the specific enthalpy
$T_{p s p}=(M H / M)+32$.
The PSP water level is a function of total water volume:
$L_{s p}=f[M / \rho(T)]$
where
$\mathrm{f}[$ ] = water level as function of volume
$M=$ PSP water mass
$\rho(T)=$ PSP water density as a function of water temperature.

## REFERENCES FOR CHAPTER 5

5.1 Frank Kreith, Principles of Heat Transfer, International Textbook Company, Scranton, Pennsylvania (January 1966).
5.2 R. 0. Wooton and H. I. Avci, MARCH Code Description and Users Manual, NUREG/CR-1711, BMI-2064 (October 1980).
5.3 D. H. Cook et al., Loss of DHR Sequences at Browns Ferry Unit One Accident Sequence Analysis, NUREG/CR-2973, ORNL/TM-8532 (May 1983).
5.4 D. 7. Cook, Pressure Suppression Pool Thermal Mixing, NUREG/CR3471, ORNL/TM-8906 (October 1984).


Fig. 5.1. BWR Mark I primary containment system.

ORNL-DWG 84-6512 ETD


Fig. 5.2. Mark I primary and secondary containment.


Fig. 5.3. Browns Ferry Mark I pressure suppression pool.

## 6. CONTROL ROOM INSTRUMENTATION

In general, the response of control room instrumentation is not simulated in BWR-LTAS. However, due to the relative importance of the indicated reactor vessel water level in determining the actions that the operator might take, it was decided to simulate the response of the two most safety-related water level instruments. The calculated instrument responses are used within the code where appropriate for the automatic or manual control of injection systems and SRVs. The simulation calculates the effect of drywell temperature and of reactor coolant temperature on the indicated water level.

There are two vessel water level instruments considered in this report: the Energency Systems range indicator and the Post-Accident Flooding range indicator. Their ranges in relation to the Browns Ferry reactor vessel and internals are shown on Fig. 6.1. Zero on the Emergency Systems range corresponds to the bottom of the dryer skirt, 528 inches above vessel zern. Zero on the Post-Accident Flooding range corresponds to the top of the active fuel in the core, 360 inches above vessel zero. Both of these instruments measure the collapsed water level in the downcomer annulus of the reactor vessel.

The Einergency Systems indication covers the range from above normal water level down to about 1 ft above the top of active fuel (TAF). This indication is calibrated to read correctly when the reactor coolant is hot and at full pressure. The Yarway system of reierence leg compensation minimizes the error when the reactor coolant is cooled to below operating temperature. The variable leg is outside the reactor vessel and is clamped physically and thermally to che reference leg (see Fig. 6.2). Steam from the reactor vessel condenses in the constant head condensing chamber and circulates back to the reactor vessel through the variable leg, transferring enough heat to maintain the reference leg temperature about $50 \%$ of the way between the drywell air temperature and the reactor coolant temperature.

The Post-Accident Flooding range indicator covers the range from 100 in . below the TAF to 200 in , above the TAF. The indication is calibrated to read correctly when the reactor vessel is depressurized and the reactor coolant is at about $212^{\circ} \mathrm{F}$. The variable leg is inside the reactor vessel (it is the vessel downcomer annulus), and the reference leg is not heated (see Fig. 6.3). The reference leg temperature will therefore remain close to the temperature of the drywell atmosphere.

Both of the level indication systems under consideration here consist of a $\Delta \mathrm{P}$ sensing element, an electronic circuit to transform the $\Delta \mathrm{P}$ signal to a level signal, and an indicating meter. The $\Delta \mathrm{P}$ element measures the difference between the pressure at the bottom of the reference leg and the pressure at the bottom of the variable leg. The reference leg is (or should be) always water-filled*; the amount of water and/or steam in the variable leg depends on the actual water level inside the vessel downcomer.

[^5]The potential for error addressed here is in the circuitry that transforms the pressure difference into a water level. This circuitry is designed to always give the same level indication for the same measured pressure difference. Suppose that the vessel water level stays the same, but that the density of the water either in the reference leg or in the variable leg changes; the measured pressure difference would change and thus the indicated water level would change when, in fact, there was no change in actual water level.

The following equations are used to compute the effect on indicated level of reference leg or variable leg conditions that differ from calibration conditions:

$$
\mathrm{L}_{\text {ind }}=\mathrm{L}_{\text {max }}-\left(\Delta \mathrm{P}-\Delta \mathrm{P}_{\mathrm{t}}^{*}\right)\left(\Delta \mathrm{L}_{\mathrm{i}}\right) /\left(\Delta \mathrm{P}_{\mathrm{b}}^{*}-\Delta \mathrm{P}_{\mathrm{t}}^{*}\right)
$$

where,
$\mathrm{L}_{\text {ind }}=$ indicated height of water in the downcomer annulus ( ft ),
$L_{\text {max }}=$ height of the upper end of the indication range ( ft ),
$\Delta \mathrm{P}=$ measured pressure difference ( psi ),
$\Delta P_{t}^{*}=$ pressure difference that would be measured at calibration conditions if the vessel water level were at the top end of the indication range (psi),
$\Delta L_{i}=$ length of the indication range ( ft ), and
$\Delta p_{b}^{k}=$ pressure difference that would be measured at calibration conditions if the reactor vessel water level were at the bottom end of the indication range (ft).

The measured $\Delta \mathrm{P}$ is a function of the actual vessel water level and the reference leg and variable leg water densities:

$$
\Delta \mathrm{P}=(\Delta \mathrm{L}) \rho_{\mathrm{r}}-\left(\Delta \mathrm{L}_{\ell}\right) \rho_{\ell}-\left(\Delta \mathrm{L}-\Delta \mathrm{L}_{\ell}\right) \rho_{\mathrm{g}}
$$

where

$$
\begin{aligned}
\Delta \mathrm{L} & =\text { distance between the upper and lower } \Delta \mathrm{P} \text { taps, } \\
\rho & =\text { water density of the reference leg, } \\
\Delta \mathrm{L}_{\ell}^{\mathrm{r}} & =\text { reactor vessel downcomer liquid level above the lower } \Delta \mathrm{P} \\
& \text { tap, } \\
\rho_{\ell} & =\text { density of variable leg water (i.e., reactor coolant in the } \\
& \text { downcomer annulus), } \\
\rho_{\mathrm{g}} & =\text { density of the reactor vessel steam. }
\end{aligned}
$$

The calculation makes the assumption that $\rho_{\ell}$ is equal to the density of saturated fluid evaluated at reactor vessel pressure. The steam density is set equal to the density of dry saturated vapor at vessel pressure. The reference leg density is evaluated at reference leg temperature $\mathrm{T}_{\mathrm{r}}$
and vessel pressure:

$$
\rho_{r}=\rho_{r}\left(T_{r}, P_{v}\right)
$$

where

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}} & =0.4 \mathrm{~T}_{\text {sat }}+0.6 \mathrm{~T}_{\mathrm{dw}} \text { for the Emergency System range, } \\
\mathrm{T}_{\mathrm{r}} & =\mathrm{T}_{\mathrm{dw}} \text { for the Post-Accident Monitoring range, } \\
\mathrm{P}_{\mathrm{v}} & =\text { reactor vessel pressure, } \\
\mathrm{T}_{\mathrm{s} \text { at }} & =\text { saturation temperature at } \mathrm{P}_{\mathrm{v}}, \text { and } \\
\mathrm{T}_{\mathrm{dw}} & =\text { drywell atmosphere temperature. }
\end{aligned}
$$

The remaining terms in the expression for $\mathrm{L}_{\text {ind }}$ are given by the following

$$
\begin{aligned}
& \Delta \mathrm{P}_{\mathrm{t}}^{*}=\Delta \mathrm{L}_{\mathrm{i}}\left(\rho_{\mathrm{r}}^{*}-\rho_{\ell}^{*}\right) \\
& \Delta \mathrm{P}_{\mathrm{b}}^{*}=\Delta \mathrm{L}_{\mathrm{i}}\left(\rho_{\mathrm{r}}^{*}-\rho_{\mathrm{g}}^{*}\right)
\end{aligned}
$$

These expressions (programmed into the current version of BWR-LTAS) imply the assumption that the indiction range is the same as the distance between the $\Delta \mathrm{P}$ taps. If this were not the case, then a slightly more complicated expression (obtained by substituting the appropriate dimensions and densities into the expression for $\Delta \mathrm{P}$ given on the previous page) would have to be used.

For the Emergency Systems level indication, the reference leg calibration density, $\rho_{\mathrm{r}}^{\star}$, is evaluated at $290^{\circ} \mathrm{F}$ and $\rho_{l}^{*}$ and $\rho_{\mathrm{g}}^{*}$ are evaluated at a 1000 psia saturation condition.

For the Post-Accident ${ }_{\star}$ Monitoring level indication, the reference leg calibration density, $\rho_{r}^{\star}$, is evaluated at $135^{\circ} \mathrm{F}$, and $\rho_{l}^{\star}$ and $\rho_{g}^{\star}$ are
evaluated at a 14.7 psia saturation condition.


Fig. 6.1. Reactor vessel water level indication ranges.


Fig. 6.2. Heated reference leg water level indication.


Fig. 6.3. Unheated reference leg water level indication.

## 7. CALCULATION OF REACTOR POWER FOR MSIV-CLOSURE-INITIATED ATWS SEQUENCES

This chapter provides details of modifications to the BWR-LTAS code made specifically for the ATWS study. The models used in BWR-LTAS to calculate core voiding and fission power are considerably simplified in comparison to the detailed, first principles models used in codes such as RAMONA, RELAP, or TRAC. To assess what differences might exist between results predicted by BWR-LTAS and the more complex codes, a comparison is presented in Appendix A of the ORNL SASA study of BWR ATWS (NUREG/CR-3470). The comparison is made between RELAP5 results (provided by the SASA team at INEL) and BWR-LACP results for the same test ATWS transient. In general, BWR-LACP is shown to be a very useful scoping tool for ATWS analyses, but it is the opinion of the authors that any major findings derived from BWR-LTAS results should be confirmed by calculations using the nore sophisticated codes, i.e., TRAC, RELAP, or RAMONA, as applicable.

The models described in this chapter are active only when the user specifically selects the ATWS option.

### 7.1 Point Kinetics

In an ATWS accident, the reactor power is the sum of decay heat power plus fission power. The fission power is a transient function of the reactivity of the core; decay heat power is a function of the elapsed time since the attempted but unsuccessful reactor shutdown. Whenever the negative reactivity insertion brings the core subcritical, the total power in BWR-LACP is set equal to the decay heat power as soon as the calculated fission power is negligjble.

The decay heat function is calculated in accordance with the ANS 5.1-1979 standard decay heat curve (with actintdes). This calculation for decay heat is exactly correct only for the case of a full successful scram; however, it is a reasonable approximation for most of the ATWS studies because reactor power is quickly reduced to low levels by recirculation pump trip, reduction in reactor vessel injection, and the effect of operator actions.

$$
P_{d k}=f\left(t, P_{0}\right)
$$

where
$P_{d k}=$ decay heat power (fraction of full power),
$t=$ elapsed time since the scram or accident initiation (s),
$P_{0}=$ initial reactor power $(=100 \%$ for all cases).
The prompt-jump approximation to the point kinetics prompt neutron balance and the six delayed neutron equations are solved for fission power. These equations can be fcund in any nuclear analysis textbook
and are not discussed here. The code input for delayed neutron properties is listed on Table 7.1. These parameters are embedded in data statements in function subprogram "PK" in the BWR-LTAS code. Four sources of reactivity are considered: fuel temperature change (via doppler coefficient), coolant void fraction change (via void coefficient), control rod insertion, and boration of reactor coolant. Each of these sources of reactivity is discussed in the following subsections.

### 7.1.1 Fuel temperature and reactivity feedback

A single average fuel temperature is calculated by solving the following equation

$$
\frac{\mathrm{dT}_{\mathrm{f}}}{\mathrm{dt}}=108 \mathrm{P}_{\mathrm{t}}-.1624\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{sat}}\right)
$$

where

$$
\begin{aligned}
\mathrm{T}_{\mathrm{f}} & =\text { volumetric average fuel temperature }\left({ }^{\circ} \mathrm{F}\right), \\
\mathrm{P}_{\mathrm{t}} & =\text { fission plus decay heat power (fraction of full power), } \\
\mathrm{T}_{\mathrm{sat}} & =\text { saturation temperature }\left({ }^{\circ} \mathrm{F}\right) \text {, of the coolant in the core. }
\end{aligned}
$$

The numerical coefficients in the above equation take into account the fuel heat capacity and the average fuel-to-coolant heat transfer coefficient.* The coefficient of $P_{t}$ is the thermal equivalent of full power, divided by the fuel heat capacity. The coefficient of ( $T_{f}-T_{\text {sat }}$ ) is the effective heat transfer coefficient between the volumetric average fuel temperature and the coolant average temperature, divided by the fuel heat capacity.

The net reactivity due to a change in average fuel temperature is a function of the doppler coefficient which is corrected for change in coolant void fraction:

$$
\Delta p_{d}=\left(T_{f}-1210\right) a\left(D_{o}+D_{1} V\right)
$$

where
$\Delta \rho_{d}=$ the change in total doppler reactivity ( $\Delta k / k$ ),
$\mathrm{T}_{\mathrm{f}}^{\mathrm{d}}=$ average fuel temperature ( ${ }^{\circ} \mathrm{F}$ ),

[^6]```
\(1210=\) average fuel temperature \(\left({ }^{\circ} \mathrm{F}\right)\) at full power,
    \(\alpha=\) doppler cuefficient
            \(=-1.58(10)^{-5}\left(\Delta \mathrm{k} / \mathrm{k} /{ }^{\circ} \mathrm{F}\right)\),
\(D_{0}=\) doppler correction factor with \(0 \%\) core average void
    \(=.83\),
\(D_{1}=\) rate of change of doppler coefficient with core average
        void ( \(\Delta \alpha / \%\) )
    \(=4.4(10)^{-3}\),
    \(V=\) core coolant average \(\%\) void \((=38 \%\) at full power).
```

Numerical values given above for the doppler coefficient, including the effect of coolant void fraction, are from to the Browns Ferry FSAR, Figs. 3.6-5 and 3.6-6. The doppler coefficient, above, includes a weighting factor of 1.33 , as recommended by NFDU-20964. This 1.33 factor accounts for the greater temperature changes in the more important parts of the fuel.

If the reactor is brought from full power to hot shutdown at 1000 psia, the fuel, on average, cools by about $660^{\circ} \mathrm{F}$ since the fuel temperature is very close to the coolant saturation temperature at hot shutdown. By the above formula, a negative reactivity of $0.00865 \Delta k / k$ would have to be added to compensate for the increased reactivity of the cooler fuel.

7.1.2 Void reactivity

The calculation of void reactivity is based on the average void fraction in the average channel. As explained in Sect. 7.2 , the void fraction is calculated at 1 ft axial intervals up the average channel. The calculation of average void fraction weights the void in each 1 ft section with the square of the normalized axial power distribution over that section. Table 7.2 gives the axial power distribution used for the weighting. The use of flux squared weighting accounts for the greater reactivity of a given void when it is in a higher worth axial location.

The equation for void reactivity change accounts for the change in void reactivity coefficient with void fraction (void coefficient becomes more negative as void increases):

$$
\Delta p_{v}=C_{o}\left(V-V_{100}\right)+C_{1}\left(V^{2}-v_{100}^{2}\right) / 2
$$

where

```
\(\Delta \rho_{V}=\) the change in total void reactivity \((\Delta k / k)\),
    \(V=\) average void fraction (\%),
V100 \(=\) average void fraction at \(100 \%\) power (\%)
            \(=38 \%\),
    \(C_{0}=\) void coefficient with no voids present \((\Delta k / k / \%)\)
            \(=-5.3(10)^{-4}\),
    \(\mathrm{C}_{1}=\) derivative of void coefficient with respect to void
        \(\left(\Delta \mathrm{k} / \mathrm{k} /(\%)^{2}\right)\)
            \(=-.1138(10)^{-4}\).
```

As the reactor is brought from full power to hot shutdown, the core average void changes from 38% to 0%. By the above formula, a negative reactivity of $0.0283 \Delta \mathrm{k} / \mathrm{k}$ would have to be added to compensate for the increased reactivity of the core without any voids. By adding this void reactivity change to the doppler reactivity change (see subsection 7.1.1), one can estimate that a total negative reactivity of 0.0369 would bring the reactor from full power to hot shutdown. This estimate does not consider the relatively slowly changing xenon reactivity which would, during the first $\sim 8 \mathrm{~h}$ after accident initiation, help to shut down the reactor. In a period of only one or two hours, the buildup of xenon would not provide a substantial ${ }^{c}$ raction of the reactivity required to reach hot shutdown. Therefore, in the relatively short-term ATWS transients examined by BWR-LTAS, either the control rods or coolant boration must supply a negative reactivity of at least $0.0369 \Delta k / k$ to bring the reactor to hot shutdown.

7.1.3. Control rod reactivity

The reactivity due to manual control rod insertion in an ATWS accident would be a function not only of the physics and configuration of the reactor core, but also would depend on the reactor operators. Exercises conducted at the TVA Browns Ferry simulator showed that the proclivity of operators to perform all the manipulations necessary to maintain continuous control rod insertion during an ATWS would depend heavily on characteristics of the individual operator. Since constant attention is required to maintain continuous control rod insertion, it is assumed here that an operator could easily be diverted from the manual rod insertion task 50% of the time. Therefore, the reactivity insertion rate is based on an effective average control rod speed of 1.5 in./s instead of the nominal rod speed of $3.0 \mathrm{in} . / \mathrm{s}$. The assumption of faster sustained control rod insertion can not be assumed at present because the training of operators to the EPG procedures for ATWS is still in an early stage.

$$
\mathrm{t}_{1}=144 \mathrm{in} . / 1.5 \mathrm{in} . / \mathrm{s}=96 \mathrm{~s}
$$

where

$$
\begin{aligned}
t_{i} & =\text { time consumed for each rod inserted }(s) \\
144 & \text { in. }
\end{aligned}
$$

Section 3.6 .5 .6 of the Browns Ferry FSAR explains that a control rod worth of $10^{-3} \Delta \mathrm{k} / \mathrm{k}$ would be very weak. Using this to represent average rod worth, the rate of reactivity addition during periods of manual rod insertion would be

$$
\dot{\rho}=-10^{-3}(\Delta \mathrm{k} / \mathrm{k}) / \mathrm{t}_{1} \cong-10^{-5} \Delta \mathrm{k} / \mathrm{k} / \mathrm{s}
$$

where $\dot{\rho}$ is the average rate of reactivity insertion after the initiation of manual rod insertion.

7.1.4 Boron concentration and reactivity

The boron concentration in the reactor coolant depends on the rate at which the sodium pentaborate solution is pumped into the reactor vessel, the total volume of coolant in the reactor vessel, and the mixing of the boron solution within the reactor coolant. It is stated in the lesson plan for the Standby Liquid Control System provided in Volume 4 of the Browns Ferry Hot License Training Manual that there is 990 lb of boron in a volume of 4550 gal in the SLCS storage tank, and that, upon SLCS actuation, this solution is pumped into the reactor vessel at a rate of 50 gpm . Therefore, the rate of injection of boron into the reactor vessel is:

$$
W_{b i n j}=\frac{9901 \mathrm{~b} \mathrm{~B}}{4550 \mathrm{gal}} \frac{50 \mathrm{gal}}{\mathrm{~min}} \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=0.181 \mathrm{lb} \mathrm{~B} / \mathrm{s} .
$$

If the boron mixes perfectly within the reactor vessel, the boron concentration after SLC initiation is

$$
C_{b}=t_{i}(0.1811 \mathrm{~b} B / \mathrm{s}) / V_{t}
$$

where
$C_{b}=$ boron concentration ($1 \mathrm{~b} \mathrm{~B} / \mathrm{ft}^{3}$),
$t_{i}=$ elapsed time since SLCS initiation (s),
$V_{t}=$ total volume of water within the reactor vessel $\left(\mathrm{ft}^{3}\right)$.
According to TVA operations analysis engineers, a boron fraction in the coolant of 320 ppm would bring the reactor from full power to hot shutdown. Using a coolant volume of $14785 \mathrm{ft}^{3}$ at the normal reactor water level of 561 in., the mass of boron within the reactor vessel would be:

$$
M_{b}=14785 \mathrm{ft}^{3} \frac{45.41 \mathrm{~b} \mathrm{H}_{2} \mathrm{O}}{\mathrm{ft}^{3}} \frac{320 \mathrm{lb} \mathrm{~B}}{10^{6} 1 \mathrm{~b} \mathrm{H} \mathrm{H}_{2} \mathrm{O}}=2151 \mathrm{~b} .
$$

Therefore, with perfect mixing, hot shutdown could be reached after only 19.8 min of SLC injection at 50 gom .

When the Browns Ferry specific EPGs are written, they will probably reflect a slightly more conservative hot shutdown mass of 2651 bs B , based on a boron fraction of 395 ppm boron in reactor coolant required
to reach hot shutdown with a margin of $0.02 \Delta \mathrm{k} / \mathrm{k}$. The corresponding SLCS injection time would be 24.4 min .

For ATWS transients with boron injection, it is necessary to calculate the boron reactivity at each instant during the transient. The method used for this is based on the TVA estimate of the hot shutdown ppm boration requirement and the boron mixing information presented in the GE BWR owners group report "Power Suppression and Boron Remixing Mechanism for General Electric Boiling Water Reactor Emergency Procedures," DAC 261, NEDC-22166, August 1983 (prepared by L. Chu).

Boron concentration is calculated for two subvolumes within the reactor vessel: (1) the volume of coolant at the bottom of the vessel lower plenum, and (2) all other coolant within the vessel. As explained in NEDC-22166, if the core inlet flow is less than 5% of its full power value, 100% of the injected boron solution sinks into the bottom of the lower plenum (i.e., the initial mixing efficiency is 0\%). At 25% flow, the initial mixing efficiency climbs to 75% and it is 100% at full flow. The residence time of the heavier boron solution in the lower plenum is also dependent on the reactor coolant flow. If primary coolant flow is 4\% or less, the residence time is infinite but when primary coolant flow is above about 15%, the residence time is only about 22 s . In the BWRLACP model, the mass of boron in each of the two control volumes is calculated using the following set of equations

$$
\begin{aligned}
& d\left(M_{b l p}\right) / d t=\left(1-E_{i m}\right) W_{b i n j}-M_{b l p} / T_{r m} \\
& d\left(M_{b g}\right) / d t=E_{i m} W_{b i n j}+M_{b l p} / T_{r m}
\end{aligned}
$$

where

```
Mblp =mass of boron stratified in the bottom of the lower plenum
        (1b),
    Mbg}=\mathrm{ mass of boron in general circulation, in the balance of the
    coolant (1b),
    E
    Trm}=\mathrm{ residence time(s) of stratified boron in the bottom of the
        lower plenum.
```

The concentration of boron in general circulation, also assumed to be the boron concentration of the coolant in the core, is

$$
C_{b g}=M_{b g} / V_{t}
$$

where
$\mathrm{C}_{\mathrm{bg}}=$ boron concentration ($1 \mathrm{~b} / \mathrm{ft}^{3}$) in reactor coolant,
$V_{t}=$ total coolant volume $\left(f t^{3}\right)$ in the vessel.

The net boron reactivity is then

$$
\rho_{b}=\Delta k_{\text {hsd }} C_{b g} / C_{\text {bhsd }}
$$

where

```
\(\Delta k \quad \rho_{b}=\) total boron reactivity,
\(\Delta k_{\text {hsd }}=\) total reactivity that must be supplied to reach hot shut-
                    down
    \(=-0.0369 \Delta \mathrm{k} / \mathrm{k}\) (per Sect. 7.1.2),
\(C_{\text {bhsd }}=\) boron concentration corresponding to the TVA estimate of
        320 ppm B required to reach hot shutdown
    \(=0.0145 \mathrm{lb} \mathrm{B} / \mathrm{ft}^{3}\).
```


1.2. Calculation of Core Void Fraction

The ATWS routine in BWR-LTAS calculates the void fraction profile at 1 ft intervals over the length of an average fuel assembly channel. Each time the void fraction routine is called, it is given the core thermal power, the vessel pressure, the and downcomer water level and enthalpy. The core inlet flow must also be known to allow calculation of the core void profile. The void fraction routine calculates the core inlet flo's by means of an iterative procedure that assumes steady-state thermohydraulic conditions over each time step.

At the beginning of the iteration, a primary coolant flow is assumed and the core void profile of the average channel is calculated at 1 ft intervals from the inlet to the outlet. Since the core is 12 ft long, this amounts to 13 node points. The average channel is a representative fuel assembly (one of a total of 764) that is assumed to generate ($1 / 764$) -th of the total core thermal power and to receive the same fraction of the total core inlet flow. The axial power distribution assumed for the average channel is specified by Table 7.2.

The conservation of energy is applied across each 1 ft axial segment to calculate the steam generation rate. If the bulk coolant temperature is below saturatirn, a void fraction of zero is assigned. After the coolant reaches saturation, the void fraction is calculated from the steam and water fluws by the drift flux equations:

$$
\begin{aligned}
V & =J_{g} /\left(C_{o} J+V_{g j}\right) \\
J_{g} & =X G / \rho_{g} \\
J & =G\left[X / \rho_{g}+(1-X) / \rho_{f}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& G=\text { mass flux } \\
& V=\text { void fraction },
\end{aligned}
$$

```
\(\mathrm{J}_{\mathrm{g}}=\) steam mass velocity,
\(\mathrm{C}_{\mathrm{o}}^{\mathrm{g}}=\) concentration parameter \(=1.0\),
    \(J=\) total mass velocity,
\(V_{g j}=\) drift velocity \(=1.0 \mathrm{ft} / \mathrm{s}\),
    \(\mathrm{g} \frac{\mathrm{X}}{\mathrm{g}}=\) flow quality (steam flow/total flow),
\(\rho_{g}=\) saturated vapor density ,
\(\rho_{f}^{g}=\) saturated fluid density.
```

The values used for the C_{o} and $V_{g j}$ parameters were taken from the report "BWR Low Flow Bundle Uncovery Test and Analysis," NUREG/CR-2232, EPRI NP-1781, GEAP-24964, by D. S. Seeley and R. Muralidharan (Apri1 1962).

After the core void profile is calculated, the unrecoverable pressure drops around the primary coolant loop are calculated. These unrecoverable losses include friction and/or form losses in the average channel unheated and heated portions, core outlet plenum, standpipes, steam separators, and jet pumps. The equations used to calculate these losses, and typical coefficients for each loss term, were taken from the EPRI report, "NATBWR; A Steady-State Model for Natural Circulation in Boiling Water Reactors," EPRI NP-2856-CCM, by J. M. Healzer and D. Abdollahian, S. Levi, Inc. (February 1983).

The only major difference between the natural circulation calculations in NATBWR and BWR-LTAS is that the natural circalation through the core bypass path (mainly the interstitial region between fuel assemblies into which the control rods insert) is neglected in BWR-LTAS. At full power conditions, about 10% of the core inlet flow bypasses the active fuel, flows up through the bypass paths, and rejoins the main flow in the core outlet plenum. Under natural circulation conditions, the direction of bypass flow can reverse, with coolant from the core outlet plenum flowing downard through the bypass paths to join with the majority of the core flow into the active fuel. The core bypass flow path was left out of BWR-LTAS because it was felt that its relatively high flow resistance would limit the bypass flow to a small fraction of the total natural circulation flow. If this circulation path were included in BWR-LTAS, the additional core flow under conditions of low vessel water level (i.e., downcomer water level near the top of the active fuel) would decrease the in-core coolant voiding and therefore lead to the prediction of higher core power. The effect would be negligible for a normal vessel water level (i.e., 12 to 18 ft above the top of active fuel) because the change in core flow would be small compared to the already substantial natural circulation.

Elevation pressure drops (gains) around the reactor vessel primary coolant natural circulation flow path are also calculated after the void fractions are calculated. At the end of each iteration, the net elevation head (elevation pressure increases minus drops) around the loop is compared to the total unrecoverable losses around the loop. The value of flow for use in the next iteration is determined by the formula:

$$
W_{\text {rew }}=W_{\text {old }} \sqrt{\Delta P_{\text {te }} / \Delta P_{\text {tul }}}
$$

where

```
    \(W_{\text {new }}=\) total natural circulation flow to be used on the next iteration,
    \(\mathrm{W}_{\text {old }}=\) current iteration value of flow,
\(\Delta \mathrm{P}\) te \(=\) net elevation pressure gain around the loop in the direc-
    tion of natural circulation,
\(\Delta P_{\text {tul }}=\) total unrecoverable pressure losses around the natural cir-
    culation loop.
```

If the new flow iteration is within 0.5% of the current flow iteration, further iteration is unnecessary and control is returned to the main program.

Distance from bottom of active fuel (Fraction of active fuel length	Relative power
0.0000	0.61
0.0833	1.04
0.1666	1.16
0.2500	1.19
0.3333	1.16
0.4166	1.11
0.5000	1.09
0.5833	1.07
0.6666	1.05
0.7500	1.03
0.8333	0.92
0.9166	0.72
1.0000	0.33

$a_{\text {Applicable to end- }}$ of-cycle, equilibrium xenon full power operation.

8. SOLUTION OF SYSTEM EQUATIONS

The solution of the system equations is based on the straightforward solution of simple Euler steps. Once during each 0.5 s time step, the derivative is calculated for each variable whose value deperds on the solution of a differential equation. The time step size is fixed and may not be changed by the user. The change in each such variable is the product of the time step size times the derivative, and the variable is updated each time step:
$X_{t+0.5}=X_{t}+(0.5 s) *(d X / d t)_{t}$
Since the computer time used by the program is nnt excessive, no attempt has been made to improve upon this scheme.

9. COMPARISON TO RESULTS OF OTHER CODES

BWR-LTAS is a FORTRAN language version of its simulation languagebased progenitor, BWR-LACP. Throughout the task of converting from simulation language to FORTRAN, there were no changes to the mathematical models employed to simulate the plant or plant systems, and frequent checks were made to assure that the conversion to FORTRAN did not change calculational results. Therefore, code comparison and other verification activities conducted over the four-year period of development and use of BWR-LACP are applicable to BWR-LTAS.

The use of BWR-LACP by the ORNL SASA program for detailed study of five severe accident sequences (see Chapter 1 for more historical detail) constituted a period of extensive use and testing. Various verification activities were pursued to establish the validity of conclusions based on BWR-LACP results. Comparison to hand calculations, results published in the Browns Ferry FSAR, data obtained at the Browns Ferry training simulator, and RELAP calculations have all proven useful in this respect. Experimental data has been unavailable for the long, drawn-out, beyond-design-basis accidents typically studied with BWRLACP. The most powerful means for validation of BWR-LACP results has been that of comparison to RELAP calculations performed at INEL for the SASA program. Such comparisons were performed and documented for three of the accident sequences: Station Blackout (Ref. 9.1), Small Break LOCA Outside Primary Containment (Ref. 9.2), and ATWS (Ref. 9.3). The comparison cases were run with either identical or similar input assumptions. The closeness of comparison has ranged from surprisingly good to only approximate. In all cases, both codes predicted the same basic sequence of events. It must be kept in mind that the BWR-LACP code is intended to be a scoping tool and therefore is not required to match the RELAP results to an extremely close tolerance. The results of each comparison are summarized below.

For the Station Blackout investigation, a boil-off transient was selected for comparison of RELAP-IV and BWR-LACP predictions. This comparison is discussed in detail in Chapter 4 of Ref. 9.1. The RELAP4/MOD7 calculation started at nominal full power plant conditions. During the first several seconds, the reactor tripped and the main steam isolation valves closed. Initially, several SRVs were requiced to control vessel pressure, but after about 40 seconds, one SRV was sufficient. Injection flow was zero throughout. The BWR-LACP calculation was inftialized at 30 seconds because it was, at that time, programmed only for decay heat operation. The steam/water level above the core was calculated by each code. Results for vessel water level are very similar, with RELAP predicting an elapsed time of 33 minutes and BWR-LACP predicting 30 minutes prior to the initial uncovering of active fuel. Results for reactor vessel pressure control are similar although RELAP predicts a longer SRV cycle (about 60 s) than BWR-LACP (about 38 s).

For the small break LOCA outside containment investigation, a small break accid nnt without operator action was selected for comparison of RELAP-5 and BWR-LACP results. The comparison is discussed in detail in Appendix G of Ref. 9.2. The essential features of this accident sequence, as predicted by BWR-LACP, include a gradual downward trend in
vessel pressure that is overshadowed by the wide swings in pressure associated with automatic HPCI actuation cycles. After about four hours, the vessel pressure dips low enough to allow the condensate booster pumps to inject from the main condenser hotwell. Without operator control, the booster pumps quickly flood the reactor vessel and main steam lines out to the main steam isolation valves and continue to pump with the vessel pressurized almost to the pump shutoff head. Failure of all vessel water injection occurs when the hotwell becomes exhausted at five hours (water in the steamlines prevents further successful automatic HPCI operation, and all of the necessary conditions for automatic LPECCS actuations are not met). The five hour RELAP-5/MOD1(Cycle 13) calculation verifies this behavior in every respect, including both the gradual and the short-term vessel pressure swings, and the timing and mode of the eventual failure of vessel water injection.

For the ATWS investigation, the comparison to RELAP results was done for an MSIV-closure-initiated ATWS accident. Operator actions to reduce the power level by reducing the reactor vessel water level and to depressurize the reactor vessel were allowed, but operator action to initiate the injection of sodium pentaborate solution and to manually drive in the control rods was assumed not to take place. The comparison is discussed in detafl in Appendix A of Ref. 9.3.

Essential features predicted by BWR-LACP for this accident include the successful reactor power reduction by lowering of the vessel water level, followed by a fairly smooth depressurization of the reactor vessel (from about 1000 psia to about 100 psia); however, even with operator pressure/level control, BWR-LACP predicted spontaneous repressurization of the reactor vessel accompanied by power excursions.

The RELAP-5/MOD 1.6 run verified the essential features of this accident sequence, but with a slower time scale for most of the major events. For example, the RELAP calculation predicts that the first power excursion after depressurization would occur after 40 min instead of after 24 min . The difference in timing is due to the lower power levels calculated by RELAP after completion of the vessel water level reduction maneuver. Differences between RELAP and BWR-LACP in the prediction of this power level are acceptable because of the consiatrable uncertainty in the current knowledge of what the actual power level would be.

The RELAP/BWR-LACP comparisons have validated the use of BWR-LACP as a scoping tool to establish the essential features of BWR accident sequences. The quantitative differences noted above show that BWR-LACP is a complement to, and not a replacement for, sophisticated codes such as RELAP. Major new finding, obtained by use of BWR-LACP should in the future continue to be validated by comparison to applicable results calculated by another code such as RELAP.

REFERENCES FOR CHAPTER 9

9.1 R. M. Harrington et al., Station Blackout at Browns Ferry Unit OneAccident Sequence Anaîysis, NUREG/CR-2182, ORNL/NUREG/TM-455/VI (November 1981).
9.2 S. R. Greene et al., SBLOCA Outside Containment at Browns Ferry Unit One - Accident Sequence Analysis, NUREG/CR-2672 (Vol. 1), ORNL/TM-8119/VI (November 1982).
9.3 S. A. Hodge and R. M. Harrington, ATWS at Browns Ferry Unit OneAccident Sequence Analysis, NUREG/CR-3470, ORNL/TM-8902 (July 1984).

Appendix A

REACTOR VESSEL AND PRIMARY CONTAINMENT INPUT PARAMETERS

is discussed in Chapt. 1, BWR-LTAS is intended to be used for investigation of accident sequences on a shutdown BWR 4 with Mark I containment (Browns Ferry style BWR), up to but not including permanent core uncovery and/or severe fuel damage. Accident sequences to which BWR-LTAS has been applied are discussed in Chapt. 1. For all of these accidents except ATWS, the reactor is scrammed and the MSIVs are shut. For the ATWS accident the MSIVs are shut but the reactor is not scrammed.

Tables A. 1 through A. 6 list input data requirements for the simulation of reactor vessel and primary containment. Tables A. 1 and A. 3 contain parameters that may need to be changed for each run, whereas Tables A. 2 and A. 4 contain parameters that will be chauged less frequently. Table A. 5 lists input parameters for the calculation of drywell cooler operation. Table A. 6 lists parameters necessary for the simulation of reactor vessel pressure control via the SRVs. Tables 2.1 through 2.5 list input parameters for the reactor vessel injection systems.

The numbers given in Tables A.1 through A.6 and 2.1 through 2.5 comprise the default data set and will be utilized by the code unless modified by the user. All input data parameters are listed in alphabetical order in Table A.7, with their default values and indication of the table in which they are explained. Appendix B explains how to modjfy the input data.

Overall control parameters for the optional ATWS calculation have been included among the other input variables listed in Tables A. 1 and A.2. Physical input parameters such as the doppler or void coefficients for the ATWS routines are, in general, specified by data statements in each routine; these parameters may be altered by recompiling the applicable subroutine.

Table A.1. Run Specific Parameters - Reactor Vessel

Parameter Name	Value	Units	Definition
ALEAKO	A^{a}	ft^{2}	Initial liquid break size $(=0.007$ ft^{2} for SDV break). (Model assumes leak outside primary containment.)
ATWSF	0.0		Set to 1.0 to signify an ATWS condition is in effect
DALEAK	A^{a}	$f t^{2}$	Amount by which area of liquid line break outside primary containment increases, beginning at Tblein and ending at Tslein ($=.016 \mathrm{ft}^{2}$ for SDV break)
FINTIM	$\mathrm{A}^{\text {a }}$	s	End time for the BWR-LTAS run
fTStab	$1(10)^{6}$	s	Failure time of station batteries during extended station blackout (causes failure of RCIC, HPCI, and manual mode of SRV control)
HCIO	539.0	Btu/lb	Initial core inlet enthalpy
HCST	58.0	Btu/lb	Enthalpy of condensate storage tank water
LDC0	23.67	ft	Initial downcomer water level (ft above the bottom of active fuel) (note: the BOAF is 18 ft above vessel zero)
IFLAG	0,1 , or 2		This flag may be set to 0 for a no-operator-action run, to 1 for a run with expected operator action, and to 2 for the default operator action parameters (see Table B-2)
OSBOR	250.0	5	In an ATWS event, the time elapsed before the operators initiate SLC system injection of sodium pentaborate solution.
OSCRI	250.0	s	In an ATWS event, the time elapsed before the operators initiate manual insertion of control rods.
OSDLEV	250.0	s	In an ATWS event, the time elapsed before the operators begin the vessel water level reduction maneuver.
P0	1025.0	psia	Initial reactor vessel pressure

Table A.1. (continued)

Parameter Name	Value	Units	Definition
SBOFLG	0.0 or 1.0		Set to 1.0 to signify a station blackout condition.
SDVFLG ${ }{ }^{\text {b }}$	0.0 or 1.0		Set to 1.0 to signify a scram discharge volume break is in effect.
TBLEIN	$\mathrm{A}^{\text {a }}$	8	Elapsed time prior to beginning of the increase in liquid line break area (initial area $=$ ALEAKO)
TSLEIN	$\mathrm{A}^{\text {a }}$	s	Elapsed time prior to the ending of the increase in liquid line break area
TDIESL	A^{a}	s	Emergency diesel start time after station blackout
T0	$30.0{ }^{\text {c }}$	s	Inftial time after reactor scram
WGUESS	3578.0	1b/s	Guess for initial core inlet flow
$a_{\mathrm{A}}=$ arbitrary user input, may be set to very high (or low, if appropriate) values to entirely disable. $b^{\text {This }}$ flag to be used in conjunction with parameters DALEAK, TBLETN, and TSLEIN. $c^{\text {TO }}=50.0 \mathrm{~s}$ used for ATWS accident sequence. Time zero is defined as the time of recirculation pump trip for ATWS sequences.			

Table A.2. Plant Specific Parameters - Reactor Vessel

Parameter Name	Value	Units	Definition
ACOP	234.0	ft^{2}	Cross-sectional free area of core outlet plenum
ACOR	137.0	ft^{2}	Cross-sectional free area of core in active fuel region
ART	42.3	$f t^{2}$	Total cross-sectional free area of standpipes
CPO	3293.0	MW	100\% reactor power
CPREF	3293.0	MW	Core full power for reference* conditions
CPST	0.1	$\mathrm{Btu} / 1 \mathrm{~b}^{\circ} \mathrm{F}$	Specific heat of steel (in reactor vessel internals)
DKDTCR	$-1.0(10)^{-5}$	$(\Delta \mathrm{K} / \mathrm{K}) / \mathrm{s}$	Reactivity insertion rate for manual control rod insertion (must be negative)
DTRVHL	404.0	${ }^{\circ} \mathrm{F}$	Overall temperature difference associated with initial reactor vessel external heat losses input parameter QRVHLO
FFLASH	0.001	(1b/Btu s)	Fraction of supersaturated water (i.e. in downcomer or lower plenum) flashed per second per $\mathrm{Btu} / 1 \mathrm{~b}$ of enthalpy in excess of saturated fluid enthalpy at the applicable pressure
FFREC	0.02	NA	Fraction of total natiral circulation flow that flows into the recirculation piping
HREF	522.0	$\mathrm{Btu} / 1 \mathrm{~b}$	Core inlet enthalpy for reference* condition
JETPMP	0.0	1b/s	Extra core flow added by recirculation pumps running 20% speed
LBOT	24.85	ft	Elevation (above the BOAF) of the bottom of the steam separators
LDCR	27.58	ft	Downcomer water level (above $B O A F)$ for reference* condition
LHEDER	23.4	ft	Elevation of the (upper) feedwater sparger ring above the BOAF

Table A.2. (continued)

Parameter Name	Value	Units	Definition
LOP	5.58	ft	Effective length of the core outlet plenum ($=$ volume \div crosssectional area)
LRT	10.0	ft	Average length of the standpipes (from the core outlet plenum to the mid-height of the steam separators)
LTRJP	490.0	in.	Indicated vessel water level below which the recirculation pumps are automatically tripped.
MINT	$4.77(10)^{5}$	1 bs	Mass of steel in the reactor vessel internals (includes everything inside reactor vessel except the core)
MRVST	$1.5(10)^{6}$	1 bs	Mass of the reactor vessel
PCOR	5518.0	ft	```Total core heat transfer peri- meter (total heat transfer area/ length of active fuel)```
PRATED	1120.0	psia	Steam pressure at which the rated safety relief valve flow (WRATED) is specified
PRELR	0.32		Relative fractional power for reference* condition
PRR	1020.0	$p-1 a$	Reactor vessel steam pressure for reference* condition
QRVHLO	948.0	Btu/s	Initial heat transfer rate between surface of reactor vessel (and associated piping) and the drywell (atmosphere and or walls or other equipment) when the temperature difference is DTRVHL
UAIRV	33.0	$\mathrm{Btu} /{ }^{\circ} \mathrm{F} / \mathrm{s}$	Product of heat transfer coefficient and area for heat transfer from reactor coolant to reactor vessel
VANN	1044.0	$f t^{3}$	Free volume of downcomer annulus (i.e. outside the core shroud) between the jet pump suction and the top of the core outlet plenum (between XL2 and XL3)
VDIFF	192.0	$f t^{3}$	Total free volume of jet-pumps and diffusers below the BOAF

Table A.2. (continued)

P Arameter Name	Value	Units	Definition
VFREE	13000.0	$f t^{3}$	Free volume of reactor vessel, not including: in-shroud free volume or lower plenum free volume
VJET	58.4	$f t^{3}$	Total free volume of jetpumps between the jet pump suction and the BOAF (i.e. between XLI and XL.2, defined below)
VOLP	2325.0	$f t^{3}$	Volume of the reactor vessel lower plenum outside the CRD guide and stub tubes
VREC	1150.0	$f t^{3}$	Free volume of reactor vessel recirculation piping
VSL	1811.0	$f t^{3}$	Free volume of reactor vessel between the top and bottom of the main steam line penetration (between XL5 and XL6) plus the volume of the main steam lines out to the inner main steam isolation valve
VSSOP	4435.0	$f t^{3}$	Free volume of downcomer annulus between cop of the core outlet plenum and the top of the steam separators (between XL3 and XL4)
VUV1	1063.0	$f t^{3}$	Free volume of reactor vessel between the top of the steam separators and the bottom of the main steam line penetration (between XL4 and XL5)
VUV2	2031.0	$f t^{3}$	Free volume of reactor vessel between the top of the main steam penetration and the bottom of the vessel upper head (between XL6 and XL7)
WRATED	240.0	1b/s	Steam flow through fully open safety relief valve when pressure is PRATED (value given above)
WREF	9111.0	$1 \mathrm{~b} / \mathrm{s}$	Core inlet flow for reference* condition

Table A.2. (continued)

Parameter Name	Value	Units	Definition
WBSLC	0.183	1b/s	Boron injection rate after initiation of the SLC system
XL1	0.0	ft	Height of bottom of active fuel
XL2	8.0	ft	Height of jet pump suction inlet
XL3	17.5	ft	Height of top of core outlet plenum
XL4 4	32.63	ft	Height of the top of the steam separators
XLS	35.88	ft	Height of the bottom of the main steam line penetrations
XL6	37.88	ft	Height of the top of the main steam line penetrations
XL7	44.09	ft	Height of the bottom of the vessel upper head
XREF	0.133		Core outlet quality for reference* conditions

*The reference condition referred to here is a low power steady state condition used by the code during initialization to normalize the reactor vessel natural circulation calculation.

Table A.3. Run Specific Parameters - Primary Containment

Parameter Name	Value	Units	Definition
DM	29000.0	1 bs	Mass of steam condensed in the suppression pool between event initiation and the beginning of the calculation
FLDWG	$3.12(10)^{-8}$	s^{-1}	Fractional leakage rate of drywell (volume fraction per unit time of the drywell atmosphere leaking to the reactor building atmosphere)
FLSPG	$1(10)^{-8}$	s^{-1}	Fractional leakage of suppression pool atmosphere
HUMDWO	20.0	\%	Initial humidity of drywell atmosphere
HUMSP0	100.0	\%	Initial humidity of suppression pool atmosphere
LBASE	-4.0	in.	Initial suppression pool water level (in above instrument zero)
NTRHR	4		Number of RHR coolers/pumps utilized for suppression pool cooling
OSDPC	$10^{6 a}$	s	Time at which the operator starts the wetwell-to-drywell differential pressure compressor
PIDWV	10^{6} a	psia	Drywell pressure at which operators would initiate venting through the 2.5 in . lines leading to the SGT system
PTDWGO	15.7	psia	Initial drywell atmosphere pressure
PTSPG0	14.5	psia	Initial suppression pool atmosphere pressure
TBASE	90.0	${ }^{\circ} \mathrm{F}$	Initial suppression pool temperature
TBGRHR	14400.0	8	Elapsed time at which the operators begin pool cooling
TDMET0	145.0	${ }^{\circ} \mathrm{F}$	Initial drywell metallic heat sink temperature (primarily the $\sim 1 \mathrm{in}$. thick drywell liner)

Table A.3. (continued)

Parameter Name	Value	Units	Definition
TPMET0	90.0	${ }^{\circ} \mathrm{F}$	Initial suppression pool metallic heat sink temperature (primarily the ~ 0.75 in. thick suppression pool shell). Initial drywell atmosphere temper- ature
TGDW0	145.0	${ }^{\circ} \mathrm{F}$	Initial suppression pool atmosphere temperature
WDLEAK	90.0	$1 \mathrm{~F} / \mathrm{s}$	Leakage flow of saturated water from the reactor vessel to the dry- well

Very large values (e.g., 10^{6}) may be used to prevent the indicated operator action.

Table A.4. Plant Specific Parameters - Primary Containment

Parameter Name	Value	Units	Definition
ADMET	18700.0	ft^{2}	Area for heat transfer between drywell atmosphere and metallic heat sinks (i.e. the $\sim 1 \mathrm{in}$. thick steel drywell liner)
APMET	17000.0	$\mathrm{ft}{ }^{2}$	Area for heat transfer between suppression pool atmosphere and metallic heat sinks (i.e. the ~ 0.75 in. thick steel pool shell).
ASSPW	10860.0	$f t^{2}$	Surface area of suppression pool water
BDWSP0	2500.0	($\mathrm{ft}^{3} / \mathrm{s} / \mathrm{psi}$)	Coefficient for flow between drywell and suppression pool atmosphere after the vent pipe is cleared
BRDPC	2.5	$\mathrm{ft}^{3 / \mathrm{s}}$	Bulk flow from suppression pool atmosphere to drywell atmosphere when the suppression-pool-to-drywell differential compressor is operating
BRHRP	22.2	$\mathrm{ft}^{3 / \mathrm{s}}$	bulk flow per RHR pump in the pool cooling mode
BSPDW0	2000.0	($\mathrm{ft}^{3} / \mathrm{s} / \mathrm{psi}$)	Flow coefficient for flow between the suppression pool atmosphere and the drywell atmosphere when the vacuum breakers are open
B SUMP	50.0	gpm	Reactor building basement drain sump pump flow (relevant only to accident with liquid line break outside primary containment).
CDMET	97100.0	$\mathrm{Btu} /{ }^{\circ} \mathrm{F}$	Product of mass and specific heat of metallic heat sink in contact with the drywell atmosphere (primarily the 1 in , thick steel drywell liner)
CPMET	55300.0	Btu/ ${ }^{\circ} \mathrm{F}$	Product of mass and specific heat of metallic heat sink in contact with the suppression pool atmosphere
DTRVHL	404.0	${ }^{\circ} \mathrm{F}$	Temperature difference corresponding to reactor vessel-to-drywell heat loss QRVHLO

A.4. (continued)

Parameter Name	Value	Units	Definition
ERHRR	0.433		Effectiveness of RHR heat exchangers for reference conditions (see parameters WSWR, WRHRR): reference heat transfer rate divided by the product of mintmum mass flow, specific heat, and temperature difference (between cold and hot side inlet temperatures)
FFDVC	1.252	$\left(\mathrm{ft}^{3 / \mathrm{s}}\right)(1 \mathrm{~b} / \text { mole R })^{0.5}$	Flow factor for choked drywell venting
FFDVUC	3.01	$\left(\mathrm{ft}^{3 / \mathrm{s}}\right)(1 \mathrm{~b} / \mathrm{mole} \mathrm{R})^{0.5}$	Flow factor for unchoked drywell venting
HUDWCI	20.0	\%	Humidity of the drywell consistent with the specification of reference drywell cooler performance (see also parameters TWDWCI, TADWCI, BDWCO, QDWCR)
PDCVP	1.75	psi	Pressure difference (drywell pressure - suppression pool atmosphere pressure) necessary to clear all the water from inside the drywell vent pipes and allow a flow from the drywell atmosphere to bubble through the suppression pool into the suppression pool atmosphere
PMNDPC	1.1	psid	Pressure differential below which the wetwell to drywell differential. compressor will start if operating in automatic
PMXDPC	1.35	psid	Pressure differential above which the wetwell to drywell compressor will shut off if operating in automatic
QOPHLO	452.0	Btu/s	Drywell heat load (in addition to QRVHL) present during normal operation but which diminishes to zero after reactor scram
QRVHLO	948.0	Btu/s	```Reference reactor vessel-to-drywell heat loss corresponding to temperature difference DTRVHL```
TAUOHL	600.0	8	Time constant for decay of operating heat load QOPHLO after reactor scram

A.4. (continued)

Parameter Name	Value	Units	Definition
TSQUEN	10.0	${ }^{\circ} \mathrm{F}$	Subcooling required for the complete condensation of SRV discharge in the suppression pool (saturation temperature evaluated at T-quencher submergence depth - pool temperature)
TSTRAT	0.0	${ }^{\circ} \mathrm{F}$	Difference between bulk pool teaperature and the suppression pool temperature in the neighborhood of a discharging T-quencher
TSW	95.0	${ }^{\circ} \mathrm{F}$	Temperature of the service water that circulates hrough the RHR coolers:
VGDW	$1.59(10)^{5}$	ft^{3}	Volume of drywell atmosphere
VTSP	$2.67(10)^{5}$	ft^{3}	Total free volume (water plus atmosphere) of the wetwell torus
WSWR	625.0	1b/s	Reference service water flow per RHR cooler (see also parameters ERHRR, WRHRR)
WRHRR	1389.0	1b/s	Reference RHR pumped flow per RHR cooler (see also parameters ERHRR and WSWR)
WRHRSW	625.0	$1 \mathrm{~b} / \mathrm{s}$	RHR service watar flow per RHR cooler.

Table A.5. Input parameters for drywell coolers

Name	BFNP value	Explaination
Bdwc0	$2800 \mathrm{ft}^{3} / \mathrm{s}$	Total drywell cooler air flow
Ltrdwc	99.0 in.	Low reactor vessel water level that will cause trip of the drywell cooler blowers providing that a loss of off-site power is in effect (SBOFLG $=1.0$ in Table A. 1 , but time > TDIESL)
Otdwc	600.0 s	Time of operator trip (if any) of drywell coolers
Ordwc	14400.0 s	Time of operator restart (if any) of drywell coolers
Ptrdwc	16.95 psia	High drywell pressure that in conjunction with low reactor vessel pressure, Pvtdwc, will cause automatic trip of the drywell cooler blowers providing that a loss of off-site power is in effect (SBOFLG $=1.0$ in Table A.1, but time $>$ TDIESL)
Pvtdwe	465 psia	Low reactor vessel pressure for trip of drywell coolers as explained above
Qdwer	$1389 \mathrm{Btu} / \mathrm{s}$	Heat removal by drywell coolers under rated conditions: Tadwci, Twdwci, Wwdwc, and B1dwc0
Tadwci	145 F	Drywell cooler air temperature under rated conditions
Twdwci	100 F	Temperature of cooling water circulating through the drywell coolers
Tfdwc	200 F	Drysell atmosphere temperature sufficiently high to cause failure of the drywell cooler blowers
Wwdwc	$143.4 \mathrm{lb} / \mathrm{s}$	Flow of cooling water circulated through the drywell coolers by the RBCCW system

Table A.6. Input parameters for SRVs

Parameter	Value	Units	Definition
ADSOVR	1.0 or 0.0	$\mathrm{NA}^{\text {a }}$	Flag set equal to 1.0 by user to override automatic ADS
LRVADS	413.5	in.	Indicated low reactor vessel water level required for ADS initiation
NSORV	0.0	NA^{a}	Number of SRVs that stick open at time TSORV
OBRVD	$A^{\text {b }}$	s	Time at which operator begins manual depressurization of the reactor vessel (accident sequence dependent)
OERVD	$A^{\text {b }}$	s	Time at which operator ends manual depressurization of the reactor vessel
OPCHSV	60.0	s	Elapsed time between operator checks of reactor vessel pressure
OSVMAN	$100.0^{\text {c }}$	s	Time at which operator begins manual control of SRVs
PC(1)	1052	psia	Closing pressure for automatic actuation of SRV No. 1
PC(2)	1030	psia	Closing pressure for automatic actuation of SRV No. 2
PC(3)	1042	psia	Closing pressure for automatic actuation of SRV No. 3
PC(4)	1014	psia	Closing pressure for automatic actuation of SRV No. 4
PC(5)	1023	psia	Closing pressure for automatic actuation of SRV No. 5
PC(6)	1062	psia	Closing pressure for automatic actuation of SRV No. 6
$\mathrm{PC}(1)$	1042	psia	Closing pressure for automatic actuation of SRV No. 7
PC(8)	1051	psia	Closing pressure for automatic actuation of SRV No. 8
PC(9)	1072	psia	Closing pressure for automatic actuation of SRV No. 9
PC(10)	1032	psia	Closing pressure for automatic actuation of SRV No. 10

Table A.6. (continued)

Parameter name	Value	Units	Definition
$\mathrm{PC}(11)$	1060	psia	Closing pressure for automatic actuation of SRV No. 11
PC(12)	1053	psia	Closing pressure for automatic actuation of SRV No. 12
PC(13)	1015	psia	Closing pressure for automatic actuation of SRV No. 13
PFODP	100.0	psia	Final target pressure for the manual depressurization initiated at time OBRVD
P0(1)	1115	psia	Opening pressure for automatic actuation of SRV No. 1
PO(2)	1118	psia	Opening pressure for automatic actuation of SRV No. 2
PO(3)	1120	psia	Opening pressure for automatic actuation of SRV No. 3
PO(4)	1125	psia	Opening pressure for automatic actuation of SRV No. 4
PO(5)	1126	psia	Opening pressure for automatic actuation of SRV No. 5
PO(6)	1130	psia	Opening pressure for automatic actuation of SRV No. 6
PO(7)	1131	psia	Opening pressure for automatic actuation of SRV No. 7
PO(8)	1135	psia	Opening pressure for automatic actuation of SRV No. 8
PO(9)	1138	psia	Opening pressure for automatic actuation of SRV No. 9
PO(10)	1140	psia	Opening pressure for automatic actuation of SRV No. 10
PO(11)	1141	psia	Opening pressure for automatic actuation of SRV No. 11
PO(12)	1145	psia	Opening pressure for automatic actuation of SRV No. 12
PO(13)	1147	psia	Opening pressure for automatic actuation of SRV No. 13
PDHOSV	20	psi	Pressure difference, (reactor vessel pressure - ¿rywell pressure), required to hold open an SRV under ADS or manual actuation

Table A.6. (continued)

Parameter name	Value	Units	Definition
PDOCSV	50.0	psi	Pressure difference, (reactor vessel pressure - drywell pressure), re- quired for a closed SRV to open in response to a manual or ADS SRV actuation
PDWADS	16.95	psiaHigh drywell pressure for automatic ADS actuation (logic seals in and will not automatically reset) Drywell pressure above which a	
TSORV	110.	psiamanually opened SRV or one opened by ADS will fail closed due to drywell pressure approaching the control air pressure	

```
a
    b
    c}\mathrm{ Expected value specified for operator action.
```

Table A.7. Alphabetical listing of all input parameters

Parameter	Default value	Units	Table where defined
ACOP	234.0	$f \mathrm{t}^{2}$	A. 2
ACOR	137.0	ft^{2}	A. 2
ADMET	18700.0	ft^{2}	A. 4
ADSOVR	1.0	NA	A. 6
ALEAKO	0.0	ft^{2}	A. 1
APMET	17000.0	ft^{2}	A. 4
ART	42.3	ft^{2}	A. 2
ASSPW	10860.0	ft^{2}	A. 4
ATWSF	0.0	NA	A. 1
BDWCO	2800.0	$\mathrm{ft}^{3} / \mathrm{s}$	A. 5
BDWSPO	2500.0	$\mathrm{ft}^{3 / \mathrm{s} / \mathrm{ps} 1}$	A. 4
BM	20.0	gpm	2.2
BRDPC	2.5	$\mathrm{ft}^{3} / \mathrm{s}$	A. 4
BRHRP	22.2	$\mathrm{ft}^{3} / \mathrm{s}$	A. 4
BSPDWO	2000.0	$\mathrm{ft}^{3} / \mathrm{s} / \mathrm{psi}$	A. 4
BSUMP	50.0	gpm	A. 4
CDMET	97100.0	Btu/F	A. 4
CPMET	55300.0	Btu/F	A. 4
CPREF	3293.0	MW	A. 2
CPST	0.1	Btu/ $1 \mathrm{~b}^{\circ} \mathrm{F}$	A. 2
CPO	3293.0	MW	A. 2
DALEAK	0.0	ft^{2}	A. 1
DM	29000.0	1 bs	A. 3
DMIN	0.2	NA	2.5
DKDTCR	$-1.0(10)^{-5}$	$(\Delta \mathrm{K} / \mathrm{K}) / \mathrm{s}$	A. 2
DTRVHL	404.0	F	A. 2
DZS	21.2	ft	2.2
DZV	35.0	ft	2.2
ERHRR	0.433	NA	A. 4
FFDVC	1.252	$\left(\mathrm{ft}^{3 / \mathrm{s}}\right)(1 \mathrm{~b} / \text { mole R })^{1 / 2}$	A. 4
FFDVUC	3.01	$\left(\mathrm{ft}^{3 / \mathrm{s}}\right)(1 \mathrm{~b} / \text { mole R })^{1 / 2}$	A. 4

Table A.7. (continued)

Parameter Name	Default value	Units	Table where defined
FFLASH	0.001	1b/Btu s	A. 2
FFREC	0.02	NA	A. 2
FINTIM	18000.0	s	A. 1
FLDWG	3.12×10^{-8}	s^{-1}	A. 3
FLSPG	1.0×10^{-8}	s^{-1}	A. 3
FTSTAB	1.0×10^{6}	s	A. 1
HCIO	539.0	Btu/lb	A. 1
HCST	58.0	$\mathrm{Bta} / 1 \mathrm{~b}$	A. 1
HPCIMX	694.1	$1 \mathrm{~b} / \mathrm{s}$	2.1
HREF	522.0	Btu/lb	A. 2
HSCSF	16.2	ft	2.4
HSRHRF	15.6	ft	2.4
HUDWCI	20.0	\%	A. 4
HUMDWO	20.0	\%	A. 3
HUMSPO	100.0	\%	A. 3
но	3816.0	ft	2.2
H1	1.552	$\mathrm{ft} / \mathrm{gpm}$	2.2
H2	-0.02517	$\mathrm{ft} / \mathrm{gpm}^{2}$	2.2
JETPMP	0.0	$1 \mathrm{~b} / \mathrm{s}$	A. 2
KCRDCH	0.0447	$\mathrm{ft} / \mathrm{gpm}^{2}$	2.2
KCRDTV	0.0507	$\mathrm{ft} / \mathrm{gpm}^{2}$	2.2
KPTB	0.01	$\mathrm{ft} / \mathrm{gpm}^{2}$	2.2
KSU	0.000516	$\mathrm{ft} / \mathrm{gpm}^{2}$	2.2
LBASE	-4.00	in.	A. 3
LBOT	24.85	ft	A. 2
LCSTSS	0.0	in.	2.1
LDCR	27.58	ft	A. 2
Ldeset	560.0	in.	2.5
LDCO	23.67	ft	A. 1
LHEDER	23.4	ft	A. 2

Table A.7. (continued)

Parameter Name	Default value	Units	Table where defined
LHPIN	476.0	in.	2.1
LHPMIN	476.0	in.	2.1
LHPMT	540.0	in.	2.1
LHPT	582.0	in.	2.1
LLPI	413.5	in.	2.4
LLPIT	587.0	in.	2.4
LOP	5.58	ft	A. 2
LRCIN	476.5	in.	2.1
LRCMIN	476.5	in.	2.1
LRCMT	582.0	in.	2.1
LRCT	582.0	in.	2.1
LRT	10.0	ft	A. 2
LRVADS	413.5	in.	A. 6
LSPSS	7.0	in.	2.1
LTCRD	582.0	in.	2.2
LTRDWC	99.0	in.	A. 5
LTRJP	490.0	in.	A. 2
MINT	477000.0	1 bs	A. 2
MRVST	$1.5(10)^{6}$	1 bs	A. 2
NCS	4.0	NA	2.4
NLPCI	4.0	NA	2.4
NSORV	0.0	NA	A. 6
NTRHR	4.0	NA	A. 3
OBRVD	1800.0	8	A. 6
OCBPC	60.0	s	2.3
ODCS	0.0	s	2.4
ODLPCI	0.0	8	2.4
OERVD	2400.0	s	A. 6

Table A.7. (continued)

Parameter Name	Default value	Units	Table where defined
OHPMAN	150.0	s	2.1
OHPT	600.0	s	2.1
OHPTR	l $(10)^{6}$	s	2.1
OOCBP	$1(10)^{6}$	s	2.3
OOPTB	$1(10)^{6}$	8	2.2
OOTV	$1(10)^{6}$	s	2.2
OPCHRC	60.0	s	2.5
OPCHSV	60.0	s	A. 6
ORCMAN	150.0	s	2.1
ORCT	7600.0	s	2.1
ORCTR	10800.0	s	2.1
ORDWC	14400.0	s	A. 5
OSBOR	250.0	s	A. 1
OSCRI	250.0	s	A. 1
oscs	$1(10)^{6}$	s	2.4
OSDLEV	250.0	s	A. 1
OSDPC	$1(10)^{6}$	s	A. 3
OSLPCI	$1(10)^{6}$	s	2.4
OSSCRD	$1(10)^{6}$	s	2.2
OSVMAN	100.0	s	A. 6
OTCBP	0.0	s	2.3
OTCRDP	$1(10)^{6}$	s	2.2
OTDWC	600.0	s	A. 5
PC	Various	psia	A. 6
PCOR	5518.0	ft	A. 2
PDCVP	1.75	psi	A. 4
PDHOSV	20.0	psi	A. 6
pdocsv	50.0	psi	A. 6
PDLPI	16.95	psia	2.4
PDWADS	16.95	psia	A. 6

Table A.7. (continued)

Parameter Name	Default value	Units	Table where defined
PEHPIS	165.0	psia	2.1
PERCT	40.0	psia	2.1
PFMOSV	110.0	psia	A. 6
PHPIN	16.5	psia	2.1
PHPIS	115.0	psia	2.1
PIDWV	$1(10)^{6}$	psia	A. 3
PMNDPC	1.1	psi	A. 4
PMXDPC	1.35	psi	A. 4
P0	Several	psia	A. 6
Prated	1120.0	psia	A. 2
PRCIS	65.0	psia	2.1
PRELR	0.32	NA	A. 2
PRR	1020.0	psia	A. 2
PTDWG0	15.7	psia	A. 3
PTRDWC	16.95	psia	A. 5
PTSPGO	14.5	psia	A. 3
PVLPI	480.0	psia	2.4
PVLPIV	430.0	psia	2.4
PVTDWC	465.0	psia	A. 5
P0	1025.0	psi	A. 1
QDWCR	1389.0	$\mathrm{Btu} / \mathrm{s}$	A. 5
QOPHLO	452.0	Btu/s	A. 4
QRVHLO	948.0	Btu/s	A. 2
RCICMX	83.3	1b/s	2.1
SBoflg	0.0	NA	A. 1
SDVFLG	0.0	NA	A. 1
TADWCI	145.0	${ }^{\circ} \mathrm{F}$	A. 5
TAUOHL	600.0	s	A. 4
tbase	90.0	${ }^{\circ} \mathrm{F}$	A. 3
TBGRHR	14400.0	s	A. 3
TBLEIN	0.0	8	A. 1
TCFAIL	30.0	s	2.4

Table A.7. (continued)

Parameter Name	Default value	Units	Table where defined
TDIESL	$1(10)^{6}$	s	A. 1
TDMETO	145.0	${ }^{\circ} \mathrm{F}$	A. 3
TFDWC	200.0	${ }^{\circ} \mathrm{F}$	A. 5
TGDWO	145.0	${ }^{\circ} \mathrm{F}$	A. 3
TGSP0	90.0	${ }^{\circ} \mathrm{F}$	A. 3
THPIS	200.0	${ }^{\circ} \mathrm{F}$	2.1
TPMET0	90.0	${ }^{\circ} \mathrm{F}$	A. 3
TRCF	190.0	${ }^{\circ} \mathrm{F}$	2.1
TRCIS	200.0	${ }^{\circ} \mathrm{F}$	2.1
TSLC	$1(10)^{6}$	s	2.2
TSLEIN	$1(10)^{6}$	s	A. 1
TSQUEN	10.0	${ }^{\circ} \mathrm{F}$	A. 4
TSORV	$1(10)^{6}$	s	A. 6
tstrat	0.0	${ }^{\circ} \mathrm{F}$	A. 4
TSW	95.0	${ }^{\circ} \mathrm{F}$	A. 4
TWDWCI	100.0	${ }^{\circ} \mathrm{F}$	A. 5
T0	30.0	8	A. 1
UAIRV	33.0	$\mathrm{Btu} /{ }^{\circ} \mathrm{F} / \mathrm{s}$	A. 2
Vann	1044.0	ft^{3}	A. 2
VDIFF	192.0	ft^{3}	A. 2
vFrete	13000.0	ft^{3}	A. 2
VGDW	$1.50(10)^{5}$	ft^{3}	A. 4
VJET	58.4	ft^{3}	A. 2
VOLP	2325.0	ft^{3}	A. 2
VREC	1150.0	ft^{3}	A. 2
VSL	1811.0	ft^{3}	A. 2
vSSOP	4435.0	ft^{3}	A. 2
VTSP	$2.67(10)^{5}$	ft^{3}	A. 4
vuv1	1063.0	ft^{3}	A. 2
vuv2	2031.0	ft^{3}	A. 2

Table A.7. (continued)

Parameter Name	$\begin{gathered} \text { Default } \\ \text { value } \end{gathered}$	Units	Table where defined
WBSLC	0.183	1b/s	A. 2
WDLEAK	0.68	$1 \mathrm{~b} / \mathrm{s}$	A. 3
WGUESS	3578.0	$1 \mathrm{~b} / \mathrm{s}$	A. 1
WRATED	240.0	$1 \mathrm{~b} / \mathrm{s}$	A. 2
WREF	9111.0	$1 \mathrm{~b} / \mathrm{s}$	A. 2
WRHRR	1389.0	$1 \mathrm{~b} / \mathrm{s}$	A. 4
WRHRSW	625.0	$1 \mathrm{~b} / \mathrm{s}$	A. 5
WSWR	625.0	$1 \mathrm{~b} / \mathrm{s}$	A. 4
WTEHPO	51.15	1b/s	2.1
WTERC0	7.97	$1 \mathrm{~b} / \mathrm{s}$	2.1
WWDWC	143.4	lb / s	A. 5
XL1	0.0	ft	A. 2
XL2	8.0	ft	A. 2
XL3	17.5	ft	A. 2
XL4	32.63	ft	A. 2
XL5	35.88	ft	A. 2
XL6	37.88	ft	A. 2
XL7	44.09	ft	A. 2
XREF	0.133	NA	A. 2

Appendix B

SAMPLE INPUT AND OUTPUT

The purpose of this appendix is not only to present the input and output from a sample use of BWR-LTAS, but also to instruct potential users how to run the code. It is assumed that the user is acquainted with FORTRAN in general and the use of BLOCK DATA in particular.

In order to moiify input parameters for a BWR-LTAS run, it is necessary to recompile at least the INOUT subroutine. All the input parameters are initialized with default values in a single alphabetically arranged BLOCK DATA subprogram; INOUT obtains access to these parameters via labeled commons. Any or all of the input parameters may be changed by adding assignment statements to INOUT. In addition, by setting the flac variable, IFLAG, to 0,1 , or 2 the user may initialize a subset of the input data for, respectively, no operator action, expected operator action, or operator action for the demonstration transient that was used for code checkout. INOUT prints a namelist of all the input parameters both before (default) and after the input data changes. In addition, it prints a subset of the input data in a system summary of parameters (listed on Table B-2) that control the injection systems, the SRVs, and the containment cooling systems.

Table B-1 outlines the major steps in the operation of the MAIN program and INOUT. Besides the selection of preselected subsets of input data by IFLAG, the user may set flags ATWSF, SBOFLG, and SDVFLG to invoke three preselected accidents (see Table B-3). Random fallure of individual systems may be simulated by including an assignment statement in INOUT to change the appropriate variable. For example, to fail the RCIC system, the input parameter ORCT can be used to cause the RCIC system to be tripped after ORCT elapsed seconds.

The end time of the run, FiNTIM, and the output print interval, PINTVL, can be modified by assignment statements in INOUT.

During execution, the program updates the value of all program variables after each 0.5 s time step. After PINTVL seconds have elapsed, a preselected list of key variables is written to Unit 6, for hard copy, and, if desired, to Unit 20 , which may be designated by site-specific job control language to be either punch cards or magnetic disc storage. Table B-4 defines the output variables that are typically written to Unit 6 and/or Unit 20. The data stored by writing to Unit 20 would typically be used separately for plotting purposes. Another output feature is available to give a very detailed picture of the calculation at a specific instant. Whenever the DEBUG flag is set to 1.0 in MAIN, the NURV, POOL, and CONT subroutines will each print a detailed namelist of variables. The user may control the number and time of DEBUG printouts by "if" statements starting three lines after statement number 60 C In MAIN. For example, the statement "IF (TIME.EQ.1000.) DEBUG $=1.0^{\prime \prime}$ will produce a DEBUG printout after 1000 s .

A hypothetical Station Blackout case was chosen fo. the sample transient. The output is included as Table B.5; it includes both the normal column output printed every 10 s , as well as a DEBUG print at 3600 s . To run this case it was necessary to add the following assignment statements to the INOUT subroutine:

```
        IFLaG = 1.0 (Select best-estimate operator actions)
        SBOFLG = 1.0 (Station Blackout Flag)
    FTSTAB = 5400.0 (Time of station battery failure)
        OBRVD = 3600.0 (Begin time for reactor vessel depressurization)
        OERVD = 9000.0 (End time for reactor vessel depressurization)
FINTIM = 10800.0 (Desired end time of run)
```

Use of the Station Blackout Flag SBOFLG automatically changes the value of the parameters LHPMIN, LRCMIN, LTCRD, ODCS, ODLPCI, OHPT, ORCMAN, ORCT, ORCTR, ORDWC, OTCBP, and TBGRHR. The values used for the Station Blackout calculations are listed in the "Modified Input Data" section of the output (Table B.5). The DEBUG variable list was selected for printing by inserting the following statement three lines after Statement 600 in MAIN: "IF (TIME.EQ.3600.) DEBUG $=1.0$ ".

This case is not intended to represent a realistic station blackout accident sequence. The battery failure time of $1.5 \mathrm{~h}(5400 \mathrm{~s})$ was in this case chosen to minimize the number of pages of printed output. The battery failure time for Browns Ferry has been estimated by TVA to exceed 6 h .

The manual depressurization initiated at OBRVD $=3600 \mathrm{~s}$ is a typical and desirable operator action. The normal shutdown depressurization rate of $100^{\circ} \mathrm{F} / \mathrm{h}$ was chosen by setting OERVD $=9000 \mathrm{~s}$. The target final pressure for the depressurization, 100 psia , was determined by choosing IFLAG $=1.0$ (best estimate operator actions). The program then automatically assumes that the target low pressure is 100 psia .

Due to the battery failure at 1.5 h , the RCIC and HPCI systems and manual control of the SRVs fail; the reactor vessel repressurizes, and vessel water level begins to steadily decrease. At the end of the run the downcomer water level is within inches of the level of the top of the active fuel.

Table B.1. Outline of BWR-LTAS execution sequence
MAIN Program
M. 1 Call subroutine INOUT
Subroutine INOUT
I. 1 Print the default input data
Call to NAMOUT provides a namelist print of all parameters
I. 2 Option to modify subset of default input data applicable to plant injection, cooling systems (see Table B-2).IFLAG $=0$: No operator action, automatic control onlyIFLAG $=1:$ Best estimate operator actions and controlsetpointsIFLAG $=2$: Values used for demonstration transient
I. 3 Select Accident Flags (Default $=0.0$) (see Table B-3)
ATWSY $=1.0: \quad$ MSIV-closure-initiated ATWS SBOFLG $=1.0:$ Station blackout SDVFLG $=1.0:$ Scram discharge volume break
I. 4 Modify other parameters, if desired FINTIM, PINTVL, any other block data parameter
I. 5 Print modified input data
System summary for each injection system, the SRVs, and containment cooling system. Call to NAMOUT for namelist print of all input parameters.

1. 6 Return to MAIN
M. 2 Initialize all transient variables
M. 3 (Begin transienc calculation)
M. 4 Set parameter DEBU to 1.0 at selected time(s) ($=0$ otherwise) tocause suhroutines NURV, POOL, and CONT to print detailed namelists
M. 5 Calculate value of all system variables at the end of the 0.5 stime step by calling subroutines REALG2, XLIND, XSRV, RIKSEY,HIPSEY, LPECCS, NURV, CRODHY, CBOOTT, WELL, POOL, and CONT
M. 6 Write out sut variables (Table B-4) to UNITS 6 and 20if PINTVL seconds have elapsed
M. 7 Return to step M. 3 unless elapsed time exceeds FINTIM

Table B.2. Summary of parameters that control automatic and manual control actions, and system failures for injection systems, SRVs, and containment cooling systems

System	Parameter name	Standar	d Parameter	Values	Units
		IFLAG $=0$	IFLAG=1	IFLAG=2	
HPCI	LHPMIN	0*	490	476	in.
HPCI	LHPMT	1.E6*	540	540	in.
HPCI	OHPT	1. E6	1. E6	600	
HPCI	OHPR	1. E6	1. E6	1 . E6	s
HPCI	OHPMAN	1. E6	150	150	s
HPCI	PHPIN	16.5	16.5	16.5	psia
HPCI	LHPIN	476	476	476	in.
HPCI	LHPT	582	582	582	1 n .
HPCI	PHPIS	115	115	115	psia
HPCI	PEHPIS	165	165	165	psia
HPCI	THPIS	200	200	200	${ }^{\circ} \mathrm{F}$
HPCI	LSPSS	7	7	7	in.
HPCI	LCSTSS	0	0	0	ft
RCIC	LRCMT	1.E6	570	582	in.
RCIC	LRCMIN	0	520	476.5	in.
RCIC	ORCT	1. E6	1.E6	7600	
RCIC	ORCTR	1.E6	1.E6	10800	s
RGIC	ORCMAN	1. E6	150	150	s
RCIC	LDCSET	560	560	560	in.
RCIC	OPCHRC	60	60	60	
RCIC	DMIN	0.2	0.2	0.2	
RCIC	LRCT	582	582	582	in.
RCIC	LRCIN	476.5	476.5	476.5	in.
RCIC	PERCT	40	40	40	psia
RCIC	PRCIS	65	65	65	psia
RCIC	TRCIS	200	200	200	${ }^{\circ} \mathrm{Fs}$
RCIC	TRCF	190	190	190	${ }^{\circ} \mathrm{F}$
CRDHS	OSSCRD	1.E6	1.E6	1. E6	s
CRDHS	LTCRD	1.E6	582	582	in.
CRDHS	00TV	1.E6	1. E6	1.E6	s
CRDHS	OOPTB	1.E6	1.E6	1. E6	
CRDHS	OTCRDP	1. E6	1. E6	1. E6	s
CP/CBP	OCBPC	60	1. E6	60	s
CP/CBP	OOCBP	1.E6	1.E6	1. E6	s
CP/CBP	OTCBP	1. E6	120	1. E6	s
LPECCS	oscs	1.E6	1.E6	1.E6	s
LPECCS	OSLPCI	1.E6	1.E6	1. E6	8
LPECCS	ODCS	1.E6	1.E6	0	
LPECCS	ODLPCI	1. E6	1.E6	0	s
LPECCS	LLPIT	1.E6	587	587	in.
LPECCS	LLPI	413.5	413.5	413.5	in.

Table B. 2 . (continued)

System	Parameter name	Standard Parameter Values			Units
		IFLAG $=0$	IFLAG=1	IFLAG=2	
LPECCS	PVLPI	480	480	480	psia
LPECCS	PDLPI	16.95	16.95	16.95	psia
LPECCS	PVLPIV	480	480	480	psia
LPECCS	HSRHRF	15.6	15.6	15.6	ft
LPECCS	HSCSF	16.2	16.2	16.2	ft
LPRECCS	NCS	4	4	4	
LPECCS	NLPCI	4	4	4	
LPECCS	TCFAIL	30	30	30	s
SRV	ADSOVR	0	1	1	
SRV	OBRVD	1. E6	1800	1800	s
SRV	OERVD	1. E6	10800	2400	s
SRV	OPCHSV	60	60	60	ε
SRV	OSVMAN	1. E6	100	100	5
SRV	LRVADS	414	414	414	in.
SRV	PDWADS	17	17	17	psia
SRV	NSORV	0	0	0	
SRV	PDHOSV	20	20	20	psid
SRV	PDOCSV	50	50	50	psid
SRV	PFMOSV	110	110	110	psia
SRV	TSORV	1.E6	1. E6	150	s
Primary containment	PIDWV	1. E6	16.5	1. E6	psia
	TBGRHR	1.E6	1800	14400	s
	OTDWC	1. E6	1.E6	600	s
	ORDWC	1. E6	1. E6	14400	s

Note: These parameters are defined in the body of the report in Tables $2.1-2.5$, and Tables A. $1-\mathrm{A} .6$, and also in the "system summary" part of a typical code output (Table B.5, this appendix).
*Values of $1 . \mathrm{E} 6$ or 0.0 , as appropriate, may be used to prevent a potential operator action.

Table B.3. Outline of accident flags and their associated system effects

Flag	Definition	Effects
ATWSF	ATWS	(1) Initialize reactor at 28% power
		(2) Calculate prompt power, add to decay heat power
		(3) Select $X=1.0$ in subroutine XSRV (decreased operator sensitivity to RV pressure fluctuations)
		(4) Lower LDCSET from 560 in , to 380 in , at time > OSDLEV
		(5) Begin control rod insertion at time > OSCRI
		(6) Begin boration at time > OSBOR
SBOFLG	Station blackout	(1) Fail all pumps and blowers that depend on $A C$ power, until time TDIESL
SDVFLG	Scram discharge volume break	(1) Begin leak from reactor vessel to reactor building at time 0.0 (2) Leak area increases to ALEAKO + DALEAK between times TBLEIN and TSLEIN
		(3) CRD hydraulic system injection zeroed.

Table B.4. Defiaition of typical output variables

Variable	Definition
time	Time elapsed (s) since $\mathrm{TO}^{(\mathrm{T} O}=$ the initial time after reactor scram that calculations begin)
PREL	Reactor thermal power: heat transfer from the fuel to coolant as fraction of full power (3293.0 MW)
LDCVZ	Actual collapsed reactor vessel water level (in.) vessel zero)
LYAR ${ }^{\text {a }}$	Reactor vessel water level, as measured via the Energency S, tems instrument (in > vessel zero)
LSHRD ${ }^{\text {a }}$	Reactor vessel water level, as measured via the PostAccident Flooding instrument (in $>$ vessel zero)
WINJ	Total reactor vessel injection from RCIC, HPCI, CRD hydraulic system, and condensate/condensate booster pumps ($1 \mathrm{~b} / \mathrm{s}$)
P	Reactor vessel pressure (psia)
wrost	Total steam flow from reactor vessel 1 iquid and two-phase regions to the reactor vessel steam space
WSTC	Total steam flow (SRV + HPCI, RCIC turbine exhaust) from reactor vessel to suppression pool (lb / s)
LOGREL	The number of open SRVs
TGDW	Temperature (${ }^{\circ} \mathrm{F}$) of the drywell atmosphere
PTDWG	Total pressure (psia) of drywell atmosphere
LWSPAV	Suppression pool water level (inches above instrument zero)
TWSPAV	Suppression pool bulk temperature (${ }^{\circ} \mathrm{F}$)
WECC	Total reactor vessel injection from the Core Spray and LPCI systems
$a_{\text {LDC }}$ LDCVZ whe calibrati LSHRD dif maximum	Z is used for internal code calculations. LYAR differs from the reactor vessel is depressurized because of instrument and has maximum value of $588 \mathrm{in.}$, minimum value of 373 in . ers from LDCVZ when the reactor vessel is pressurized and has lue of $560 \mathrm{in.}$, minimum value of 260 in . (see Chap. 6).

DEFALLT liaput cata

mudified input data
Station blackuut in efrect umtil 1000000 . Etap̄ed seconos. eatieries fall after 5400 . tlapsed secunds. tmis is a tyrical cperator action run.
uperator actions :
\square
tricmin
ORCT
ORCTR
ORCM
onctra
CRCMAIF
LCCSET
UPCHRC
CMIN
Automatic controt:
LRCT
PERCI
PRCIS
trets
tacF

RCIC SYSTEM SUMMARY
STC.OC RV WATER LEVEL IIN. GBCVF VESSEL LEROI FCR NANUAL TURBINE TRI
S20.00 RY WATER LEVEL FUR MANLAL INTITATICN OF RGIC FLOK
1000000. TINE FCA MANUAL TURBINE TRID
1000000. TiNE FCR RESETTING NANLAL TURBINE TRIP
30. TIME TO BEGIN MANUAL INCREMENTAL RCIC CCNTRCL

OO. TIME INTERVAL BETWEEN CPER. CHECKS OF THE RV WATER LEVEL FOR INCREMENIAL FLOW CONTRCL 0.2 min. oEnanded flum fracticn allcmec for manlal ccatrll
582. RV LEVEL (INCHES) FCR AUTC, TURBINE TRIP
16.2. RUZSNEL EXHAUST PRESSURE I I PSP PRESSLREI FCR ALTC. TURBINE TRIP
05. PY PRESSURE FOR AUTO. TUREINE STEAM SUPPLY ISDLAIION
200. TURBINE STEAM SUPPLY LINE SPACE TENP. FCR AUTO. TURBINE STEAM SUPPLY I SCLATION
190. PSP TEMP FCK RCICIFPCI FAILURE

HPCL SYSTEN SUNNARY
operator actions:
$\mathbf{4 9 0 . 0 0}$ RV WATER LEVEL FUR MANUAL INITIATIOM OF HPCI FLO
560.00 HY WATER LEVEL FCR MANUAL TURBINE TRIO
SAC.OO RV WAIER LEVEL FCR MANUAL TURBINE TRIP
thpmi
cher
CHPT
ChPMAN
1000600. TIME FOK MESET TE MANLAL TRIP

Cmpman
phpin
LHPIN
LHPY
preis
PEHPIS
twpis
LSPSS
LCSTSS
SYSTEM FAILLRES:
tref

GPERATUR ACTIUNS:
osscro
LTCRD
cCTV
CTGRD

OPERATER ACTIONS:
ctcsp

OPERATCR ACTICNS:
CSCS

estect

CCCS
CECS
LCPIT
time to eegin manual hpCi contrul
auromatic conricu
16.5 PRIMARY CONTAINMENT PRESS. FOR AUTC. HPCI INITIAIICN
Q. WAIER LEVEL FUR AUTO. HPCI START
115. iV PRESSURE FOR AUTO. TUREINE STEAN SLPPLY ISCLATICN
165. TUREINE EXKAUST PRESSURE (=PSP PRESSUREI FOR ALTO. ISOLATICA
200. TUREIAE STEAF LINE SPACE TEMP. FER AUTO. ISOLATION

- Indicated psp level fCr auto. Shift of fpci sucticn from the cst to the psp
- CST LEVEL FOR AUTO. SHIFT OF HPLI SUCIICN FRCM THE CST TC THE PSP

190. PSP TEMP. FCR RCIC/HPCI FALLURE

CRD hyoraulic system summary
1000COO. HME FOR CPERATCR IO START SECOND CRD PUMP
281. Indicatto rv atter level abcve mhich operatcrs tractile the cad pump disch. valve
1000000. TIME FUR UPERATGR TO OPEN CRD PUMP OISCH. VALVE
1000600. TIME FOR CPERATCR TC CPEN THE PUMP YEST EYPASS VALVE
1000COO. TIME FOP OPERATUR TO TRIP ALI CKD PURPS

CP/LEP SUMMARY
60. TiNE IMIERVAL BETWEEN THE PERICUIC CPERATGR CMECKS OF RV NATEK LEVEL FOR FLGM CONTRCL 1000000. TIME WHEN CPERATUR CONTROL OF CBP FLOE BEGIN

LP injegtion syster summary
1000000. TIME FOR CPERATUR TO STARI CURE SPRAY PLMPS

1000G00. TINE FOR CPERATOR TO START RHR PUMPS FOR LPC
1000000 TIME FOZ UPERATOR TO DISABLE THE ACTO, DPERATICA CF
Ge7.0 av water levet hetve which the operator ngulo eiscontinuelpi to prevekt cveafilliag ry

Table B. 3 (cont inued)

Table B. 5 (continued)

TIME	PREL	LOCVL	trate	LSmed	WINJ	P	WTCST	*ST6	L0GREL	T6CW	PIEWG	LwSPAV	TwSPav	ECC
0.00	0.037	500.0	>01. 3	426.3	0.0	1025.0	168.	0.0	0.	145.0	15.70	-3.322	94.2	0.0
10,00	0.c.ss	498.8	499.4	424.0	0.0	1061.3	60.	0.0	0.	145.4	15.72	-3.322	94.2	0.0
20,00	0.038	497.4	498. 4	421.9	0.0	1089.3	55.	0.0	0.	146.8	15.76	-3.322	94.2	c. c
30.00	0.037	496.6	497.6	420.6	83.3	1113.7	50.	7.9	0.	149.1	15.82	-3.322	94.2	0.0
40.00	0.040	496.4	498.0	422.2	d3.3	1080.4	197.	236.9	1.	152.3	15.91	-3.268	94.5	0.0
Sc.00	0.640	476.2	$4 \rightarrow 8,4$	423.7	83.3	1056.5	198.	232.3	1.	156.2	16.02	-3.212	94.8	c. C
60.00	0.035	495.3	497.4	423.6	43.3	1076.4	59.	7.1	0.	160.6	16.14	-3.195	94.9	c. C
70.00	0.054	4.94 .7	471.6	422.4	83.3	1099.3	51.	7.8	c.	165.3	16.27	-3.193	94.9	0.0
ac. 00	0.c35	444.3	497.7	422.6	83.3	1101.4	182.	241.2	1.	169.7	16.35	-3.180	$95 . \mathrm{C}$	0.0
90.00	0.031	474.3	498.3	424.6	83.3	1071.0	196.	235.4	1.	174.3	16.43	-3.124	95.3	c.c
100.00	0.035	494.3	498.3	425.6	177.5	1000.2	99.	56.2	0.	178.9	16.51	-3.078	95.6	0.0
110.00	0.639	49 c . 6	501.c	427.7	777.5	1067.5	90.	56.5	c.	183.4	16.59	-3,065	95.7	0.0
120.00	0.032	496.9	502.3	428.7	177.5	1078.0	10.	286.2	1.	188.0	10.66	-3.053	95.7	c.c
130.00	0.036	498.2	504.5	432.4	117.5	1c31. !	184.	276.8	1.	192.4	16.74	-2.987	96.1	$0 . \mathrm{c}$
140.00	0.036	499.5	306.5	435.7	117.5	995.9	180.	265.1	1.	196.9	16.82	-2.924	96.5	0.0
150.co	0.036	500.8	$5 \mathrm{cs.6}$	439.6	777.5	959.3	171.	255.3	1.	2 Cl .2	16.89	-2.863	96.8	c.e
160.00	0.036	502. 3	s11.0	442.6	177.5	\$22.8	162.	245.5	1.	205.4	16.96	-2,804	97.2	0.0
170.00	0.035	504.1	313.6	446.4	177.5	¢86.6	154.	235.8	1.	269.5	17.03	-2.148	97.5	0.0
136.00	0.c35	506.1	516.4	450.4	117.5	851.0	146.	226.4	1.	213.5	17.16	-2.694	97.8	0.0
190.00	0.035	508.2	519.4	454.5	171.5	816.0	139.	217.1	1.	217.3	17.16	-2.642	¢8.1	c.e
200.00	0.034	510.6	322.6	458.8	177.5	761.9	132.	43.7	6.	220.9	17.22	-2.592	98.4	0.0
210.00	0.c30	$512=8$	525.3	461.1	171.5	187.1	34.	43.8	0.	224.4	17.28	-2.582	98.4	0.0
220.00	0.030	515.5	528.5	463.9	177.5	185.4	27.	43.7	0.	227.7	11.33	-2.572	96.5	c.c
230.00	0.030	518.4	532.0	467.1	177.5	782.2	25.	43.6	0.	230.9	17.38	-2.563	98.5	c. 0
240,00	0.029	522.1	536.1	470.7	717.5	118.6	19.	43.4	c.	233.8	17.43	-2.553	98.6	0.0
250.00	0.024	525.0	539.5	473.9	777.5	173.0	15.	43.2	0.	236.8	17.48	-2.543	$98 . t$	c.c
260.00	0.028	525.8	540.8	475.2	83.3	173.1	2.	5.8	0.	239.6	17.52	-2.541	98.6	c.e
270.00	0.028	527.1	542.5	476.8	83.3	173.8	3.	5.8	0.	242.2	17.56	-2.540	98.6	0.0
280.00	0.c28	528.C	543.8	47 A .1	83.3	174.1	2.	5.8	0.	244.7	17.06	-2.539	98.7	0.0
290.00	0.028	529.0	545.0	419.3	83.3	114.4	2.	5.8	0.	247.0	17.64	-2.537	98.7	c.e
300.00	0.027	529.9	546.3	$480 \cdot 5$	83.3	174.5	2.	5.8	c.	249.3	17.68	-2.536	98.7	0.0
310.00	0.ce7	536.4	\$47.5	481.8	63.3	174.6	2.	5.8	0.	251.5	17.11	-2.535	98.7	0.0
320.00	0.021	531.8	548.7	483.0	83.3	774.6	2.	5.8	0.	253.5	17.74	-2.533	96.7	c. c
330.00	0.027	532.7	549.9	404.1	83.3	114.5	2.	5.8	0.	255.4	17.71	-2.532	98.7	0.e
\$40,00	0.026	533.6	551.1	485.3	83. 3	174.3	2.	5.8	c.	257.3	17,80	-2.531	98.7	0.0
350.00	0.026	534.6	552.3	496.4	83.3	174.0	1.	5.8	0.	$259 . \mathrm{C}$	17.83	-2,53C	9 P . 7	c.e
360.00	0.026	535.5	553.5	487.6	83.3	173.6	t.	5.8	0.	260.7	17.85	-2.528	98.7	$0 . \mathrm{c}$
370.00	0.026	536.4	354.1	488.1	83.3	173.2	U.	5.8	0.	262.3	17.88	-2.527	98.7	0.0
380.00	0.026	531.4	355.9	489.8	83.3	172.3	0.	5.8	0.	263.8	17.90	-2.526	98.7	0.0
390.00	0.026	534.3	351.0	491.5	83.3	111.2	0.	5.8	0.	265.2	17.92	-2.524	98.7	0.6
400.00	0.026	539.3	558.2	492.1	d3.3	170.2	c.	5.8	0.	266.5	17.94	-2.523	98.7	0.0
410.00	0.025	540.3	559.4	493.2	83.3	769.2	0.	5.8	0.	267.8	17.96	-2.522	98.7	0.0
420.00	Q.C25	541.3	560.6	494.3	83.3	76 B .2	0.	5.8	0.	269.0	17.98	-2.521	98.7	c. C
430.00	0.025	542.3	561.8	495.5	83.3	767.3	0.	5.8	0.	270.1	17.99	-2.519	98.7	0.6
440.00	0.025	543.3	563.1	496.6	83.3	760.4	0.	5.8	c.	271.1	18.ct	-2.518	98.7	0.0
450.00	0.025	544.3	564.3	497.7	13.3	765.5	0.	5.8	0.	272.1	18.03	-2.517	98. 8	c.c
460.00	0.025	545.4	565.5	448. 8	79.1	164.7	0.	5.5	0.	273.1	16.04	-2.515	98.8	c. C
470.00	0.024	546.4	566.8	499.9	19.1	764.c	0.	5.5	c.	274.0	18.05	-2.514	98.8	0.0
$4 \mathrm{AC.00}$	0.624	547.5	568.0	501.6	79.1	763.4	0.	5.5	0.	274.8	16.07	-2.513	98.8	0.0
490.00	0.024	548.7	369.4	502.1	19.1	161.0	o.	5.5	0.	275.6	18.08	-2.512	98.8	0.0
\$00.00	0.024	549.7	\$70.5	503.1	0.0	763.7	0.	0.0	0.	276.3	18.09	-2.511	98.8	0.0
510.00	0.624	550.5	>71.4	503.7	0.0	765.8	0.	0.0	0.	271.6	18.16	-2.511	98.8	0.0
\$20,00	0.023	551.3	572.2	504.4	0.0	767.8	e.	0.0	0.	277.7	18.11	-2.511	98. E	c. ${ }^{\text {c }}$
530.00	0.023	552.0	573.0	505.c	$0 . \mathrm{c}$	769.9	0.	0.0	0.	278.3	18.12	-2.511	98.8	c. 0
\$40.00	0.023	552.8	573.8	505.6	0.0	171.9	0.	0.0	-.	218.8	18.13	-2.511	98.8	0.0
550.00	0.023	553.5	574.6	506.2	0.0	173.8	0.	0.0	0.	279.4	18.13	-2.511	98.8	u.r
560.00	0.023	554.2	575.4	506.8	c.c	715.8	0.	0.0	0.	279.9	18.14	-2.511	98.8	0.0
570.00	0.023	554.9	576.1	507.3	0.0	117.6	0.	0.6	c.	$2 \mathrm{EC.4}$	18.15	-2.511	98.8	0.0
\$80.00	c. 023	555.4	576.7	507. ${ }^{\text {a }}$	0.0	774.1	0.	0.0	0.	280.8	16.16	-2.511	98.8	0.0

Table B. 5 (cont Inued)

*E	prel	$v 2$	trap	IShrc
590.00	0.023	556.3	Sil.t	508.4
600.00	0.02t	557.1	576	509
610.00	0.622		579.3	
620.00	0.622	558.7	380.	51
630.00	0.022	559.5	58	510.7
640.00	0.022	560.4	281.	511.3
650.00	0.022	561.2	582	51
060.00	0.022	562.0	583.	512.3
670.00	0.022	562.8	584.	512.8
680.00	0.622	563.		513.2
690.00	0.021	564.3	585.	513
100.00	0.021	S6)	586	
710.00	0. 621	565.	58	514
720.00	0.021	566.	587	
130.00	0.021	567.0	288	514
140.00	0.021	567.6	58	514
150.00	0.021	568.	588	
T60.00	0.021	568.	588	51
170.00	0.021	569.2	58 b	51
78c.co	0.421	569.7	388	51
790.00	0.021	570.1	SE	51
800.00	0.020	570.6	Sh8.	
810.00	0.020	571.1	988.	515
820.00	0.020	571.5	se	515
830.00	0.020	571.9	58	515
840.00	0.020	572	588.	51
850.00	0.020	512.8	se8.	51
860.00	0.020	573.2	588.	51
870.00	0.020	573.7	SHE	51
880.00	$0 . \mathrm{C2C}$	57.	5 A	515
890.00	0.020	574.5	5.	51
900.00	0.020	574	588.	515
910.00	0.c?	575	488.	515
920.00	$0 . \mathrm{c} 20$	57	Se	515.0
930.50	0.020	576.2	388.0	514
940,00	0.020	576.6	588.0	
950.00	0.020	577.0	568.	514
960.00	0.019	511.4	588.0	514
970.00	0.014	571.8	588.0	51
980.00	$0 . \mathrm{c1s}$	578.2	588.	514
990.00	0.019	578.7	58a.0	514
000.00	0.019	19.1	588.0	51.
1010.00	0.019	579.5	988.0	514
1020.00	0.019	574.9	S88.	514.
1030.00	0.019	580.3	588.0	514
1040.00	0.019	580.6	588.C	514
1050.00	0.617	581.2	588.c	
1060.00	0.013	581.6	sab.	51
1070.00	0.019	582.0	S8f.0	514
108c.co	0.618	582.4	\$88.0	514.
1090.00	0.019	582.9	588.0	514
1100.00	0.019	583.3	>88.0	514.
1110.00	0.619	583.7	588.0	514
1120.00	0.014	584.1	ses.	514
1130.00	0.024	534.7	588.	518.C
1140.00	0.021	586.3	588.0	520
1150.00	0.020	586, 2	588.0	520
O.co	0.020	585.0	588.0	520.3

$n 1 \mathrm{NJ}$	p	wT0ST	WSTC
c. C	181.6	0.	0.0
0.c	783.9	0.	c. 0
0.0	186.1	0.	0.0
0.0	788.4	0.	0.0
c.c	190.8	c.	c.0
0.0	793.5	1.	0.0
0.0	796.5	1.	0.0
c. C	199.8	2.	0.0
0.0	e6,.ob	2.	0.0
0.0	807.5	3.	0.0
c. C	811.9	3.	0.0
0.0	P16.4	4.	c. 0
$0 . n$	821.2	4.	c. 0
0.	826.3	5.	0.0
c.c	831.5	5.	0.0
0.0	836.9	5.	0.0
0.0	842.5	6.	0.0
c. c	848.1	6.	0.0
$0 . \mathrm{C}$	853.8	6.	c.e
0.0	859.7	6.	0.0
c. c	(6) 3.6	6.	0.0
0.0	671.5	6.	0.0
0.0	877.4	6.	0.0
0.0	88:-4	6.	0.0
c. c	889.4	7.	0.0
0.0	895.4	7.	c. 0
$0 . n$	901.4	7.	0.0
c. c	9 Ct .5	7.	0.0
0.0	913.5	7.	0.0
0.0	917.5	6.	0.0
0.0	925.5	6.	0.0
0.0	¢31.5	6.	0.0
0.0	937.6	6.	0.0
0.0	943.6	6.	6.0
$r, 6$	949.6	6.	0.0
0.0	955.6	6.	0.0
0.0	961.5	6.	0.0
c. 0	967.5	6.	0.0
0.0	973.5	6.	0.0
0.0	979.5	6.	0.0
a.c	983.4	6.	0.0
0.0	951.4	6.	c. 0
0.0	997.3	6.	0.0
0.0	$1{ }^{\text {cos. }} 3$	0.	0.0
c.c	1069.2	6.	c. 0
0.0	1015.2	6.	0.0
0.0	1021.1	6.	0.0
c. C	1027.0	6.	0.0
0.0	1032.9	6.	0.0
0.0	1036.8	6.	0.0
$0 . \mathrm{C}$	1044.7	6.	0.0
0.0	1050.6	6.	0.0
0.0	1056.5	6.	E. 0
0.0	1062.4	6.	216.7
0.0	1-C0.0	153.	$2 \mathrm{C5.9}$
0.0	984.4	97.	203.7
0.0	975.8	125.	202.7
$0 . \mathrm{C}$	968.5	120.	201.8

$\begin{aligned} & 0 . \\ & 0 . \\ & 0 . \end{aligned}$	
$0 \cdot$	
c.	
0.	
${ }_{0}{ }^{0}$	
0.	
0.	
${ }_{\text {c, }}^{\text {c. }}$	
0 O.	
\cdots	
0.	
c.	
	O.
0 -	
${ }_{0} 0$.	
$\stackrel{0}{6 .}$	
0.	
0.	
$\stackrel{0}{0}$	
0 0.	
0.	
0.	
c.	
0.	
$\stackrel{0}{0 .}$	
0.	
0.	
0.	
c.	
	1.
	1.
	1.

1G0w	prows	Luspay	Twspay	wecc
281.2	18.16	-2.511	¢8.E	. $¢$
281.6	18.17	-2.511	98.8	$0 . \mathrm{c}$
281.9	18.17	-2.511	98.8	0.0
282.2	18.18	-2.511	$98 . \varepsilon$	c
282.5	18.18	-2.511	98.8	0.0
282.8	18.19	-2.511	98.8	0.0
283.1	18.19	-2.511	9P. $\frac{1}{}$	c.
283.3	18.20	-2.511	98.8	c.c
283.5	18.10	-2.511	98.8	0.0
283.7	18.2 C	-2.511	จ8. 8	c
283.9	18.21	-2.511	98.8	c.t
284.0	18.21	-2.511	98.8	0.0
284.2	18.21	-2.511	98.8	0.0
284.3	18.22	-2.511	98. ℓ	c. ${ }^{\text {c }}$
284.4	18.22	-2.511	98.8	0.6
284.5	18.22	-2.511	98.8	0.0
284.6	18.22	-2.511	se. t	c.c
284.7	18.22	-2.511	98.8	0. 0
284.8	18.23	-2.511	98.8	0.0
284.8	18.23	-2 511	98.8	0.0
284.9	18.23	-2.511	$98 . t$	c.c
284.9	18.23	-2.511	98.8	0.0
284.9	16.23	-2.512	78.8	0.0
285.0	18.23	-2.512	9e. ε	0.6
285.0	18.24	-2.512	98.8	0.6
285.6	18.24	-2.512	98.8	0.0
285.6	18.24	-2.512	$9 \mathrm{9}$. .	c.0
285.0	18.24	-2.512	98.8	o. ${ }^{\text {c }}$
285.0	18.24	-2.512	98.8	0.0
$285 . \mathrm{C}$	16.24	-2.512	96.8	0.0
284.9	18.24	-2.512	98.8	c.
284.9	18.25	-2.512	98.8	0.0
264.9	16.25	-2.512	98.8	0.0
284.9	18.25	-2.512	98. E	c.
284.8	18.25	-2.512	98.8	0.
284.8	18.25	-2.512	98.8	0.0
284.8	18.25	-2.512	$98 . \varepsilon$	c.
284.7	18.25	-2.512	98.8	$0 . \mathrm{C}$
284.7	18.25	-2.512	98.8	0.0
284.6	18.25	-2.512	98. 8	0.
284.6	18.26	-2.512	88.8	0.8
284.5	18.26	-2.512	98.8	0.0
284.5	18.26	-2.512	¢8. ε	0.0
284.4	18.26	-2.512	98. t	c.
284.4	18.26	-2.512	98.8	0.
284.3	18.26	-2.512	$98 . \varepsilon$	0.
284.2	18.26	-2.512	98. ε	0.
284.2	18.26	-2.512	98.8	$0 . \mathrm{C}$
284.1	18.27	-2.512	98.8	0.0
284*1	18.27	-2.512	98.8	0.0
284.0	18.27	-2.512	Se. 8	0.
283.9	18.27	-2.512	98.8	0.0
283.9	18.27	-2.512	98.8	0.
283.8	18.27	-2.512	$9 \mathrm{e} . \mathrm{E}$	0.
283.8	18.28	-2.461	99.1	0.
283.8	18.28	-2.413	99.4	0.0
283.1	18.29	-2.364	S9. 1	0.
283.7	18.29	-2.316	100.	O.

Table B. 5 (continued)

TME	prel	LUCVI	LYAR	LSHRE
1170.00	0.620	$5 \mathrm{E3.2}$	588.0	519.4
1180.00	0.020	581.1	988.0	518.3
1190.00	U.C20	578.9	588.0	517.1
1200.00	0.c20	576.7	S88.c	515.8
1210.00	0.020	574.6	588.0	514.7
1220.00	0.620	572.4	588.0	513.4
123 c .00	0.020	570.3	sea. C	512.2
1240.00	4.020	568.2	587.4	511.c
1250.00	0.020	566.1	585.4	509.8
1260.00	0.620	564.1	583.5	508.6
1270.00	0.017	362.5	581.4	506.2
1240.00	0.017	560.6	379.3	504.1
1290.00	0.017	556.9	577.3	S02.1
1300.00	0.017	557.8	575.9	500.7
1310.00	6.018	557.1	575.0	439.7
1320.00	0.01H	556.1	574.4	4*8.7
1370.00	0.018	556.5	574.1	478.4
1340.00	0.018	556.5	573.8	497.5
1350.00	0.018	556.5	373.8	497.6
1360.00	0.618	556.7	373.6	497.3
1370.00	0.018	556.a	573.8	497.1
1380.00	0.018	557.1	>73.9	496.9
1390.00	0.618	537.3	574.0	446.88
1400.00	0.617	557.t	574.2	446-7
1410.00	0.017	557.9	574.9	496.6
1420.00	0.017	558.3	514.5	496,5
1430.00	0.017	5se.6	574.7	496.4
1440.00	0.017	558.9	514.4	496.3
1450.00	0.017	559.3	575.1	476.3
1400.c0	0.017	559.6	315.4	49.
1470.00	0.022	56 C .	517.0	49
1480.00	0.020	561.3	378.6	501.3
1490.00	$0 . \mathrm{cis}$	561.2	378.1	sol. 7
isco.00	0.019	559.9	577.t	56.12
1510.00	0.017	558.1	576.0	500.3
1320.00	0.017	556.1	574.1	499.8
1530.00	0.019	554.0	572.7	498. 1
1540.00	0.018	551.9	570.2	496.8
1550.00	0.018	549.8	s68. ${ }^{\text {a }}$	495.7
1580.00	0.616	547.7	566. 3	494.6
1310.00	0.618	545.7	564.4	493.4
1580.00	0.018	543.8	562.6	492.3
1596.00	$0 . \mathrm{Cl} 18$	541.9	360.8	491.3
1600.00	0.018	546.6	339.0	$4 * 0.2$
1610.00	0.016	538.6	557.2	488.1
1620.00	0.016	537.1	555.5	*86, 4
1030.00	0.016	S35.8	554.0	484.8
1640.00	0.016	534.4	552.9	483.6
1630.00	0.016	534.4	552.3	482.7
1060.co	$0 . \mathrm{Cl6}$	534.1	531.H	482.1
1670.00	0.010	533.9	551.3	481.5
1680.00	0.016	533.4	5s1.3	481.1
1670.00	$0 . C 16$	533.4	5 S 1.2	480.8
1700.00	0.016	534.0	551.2	490.5
1710.00	0.016	534.1	551.2	480.2
1720.00	0.016	534.2	52.62	40.0
1730.00	0.016	534.4	551.3	479.8
1140.00	0.016	534.6	551.4	419

(NJ	.
c. C	961.4
0.0	953.5
0.0	445.8
0.0	936.3
c.e	¢30.9
0.0	923.6
0.0	910.4
C.C	$9 \mathrm{C9.4}$
0.0	9 CL .9
0.0	896.2
c. c	914.7
0.0	927.5
0.0	$93 \mathrm{d.4}$
0.0	946.0
0.0	956.1
0.0	964.6
0.0	972.1
c.c	979.1
0.0	985.8
0.0	992.4
0.0	¢98.8
$0 . \mathrm{c}$	1,ces-5
0.0	1614.t
0.0	1617.1
0.0	$1 \mathrm{c}_{2} \mathrm{~s} .1$
0.0	1029.0
0.0	1034.8
c.c	1046.6
0.0	1046.4
0.0	1052.1
$0 . \mathrm{C}$	994.2
0.0	980.6
0.0	971.9
0.0	963.8
0.0	853.7
0.0	947.6
0.0	939.6
c.e	931.9
$0 . \mathrm{C}$	924.3
$0 . \mathrm{C}$	910.1
c. C	$9 \mathrm{C9.2}$
$0 . \mathrm{C}$	901.9
0.0	894.6
0.0	$86 / .5$
0.6	905.7
0.0	914.0
16.7	928.6
16.7	838.2
16.7	\$41.c
16.7	955.3
16.7	963.2
16.7	970.7
20.8	977.8
20.A	784.6
20.8	S91.1
20.3	997.5
20.8	1003.6
$2 \mathrm{C}$. 8	16C9.5

*Tast	WSTC	LTGREL	160.	prows	Luspay	Tuspar	nECC
104.	200.9	1.	283.7	18.36	-2.208	1cc.2	$0 . \mathrm{c}$
106.	199.8	1.	283.7	18.30	-2.220	100.5	$0 . \mathrm{c}$
106.	198.6	1.	283.6	18.30	-2.173	160.8	0.0
106.	197.4	1.	283.6	18.31	-2.126	161.1	c.c
105.	196.2	1.	283.6	18.31	-2.079	101.4	0.c
104.	194.9	1.	283.5	18.32	-2.033	101.7	0.0
104.	193.6	1.	83.5	18.32	-1.987	101.5	c.c
103.	192.3	1.	283.5	18.33	-1.941	102.2	0.6
98.	191.0	1.	283.4	18.33	-1.895	102.5	0.0
99.	0.0	0.	283.4	18.34	-1.850	102.7	0.0
28.	0.0	0.	283.3	1 1e. 34	-1.85c	102.7	0.c
27.	c. 0	0.	283.3	18.34	-1.850	102.1	0.0
22.	0.0	0.	283.2	16.34	-1.85c	102.7	0.0
18.	0.0	0.	283.1	18.34	-1.esc	102.7	c.e
15.	c.0	0.	283.1	16.35	-1.850	102.7	c. C
13.	0.0	o.	$283 . \mathrm{C}$	18.35	-1.850	102.7	0.0
12.	0.0	0.	282.9	18.35	-1.850	162.7	c.e
10.	0.0	0.	282.9	18.35	-1.850	102.7	$0 . \mathrm{c}$
10.	0.0	0.	282.8	18.35	-1.850	102.7	0.0
9.	0.0	0 .	282.8	16.36	-1.esc	102.7	$0 . \mathrm{c}$
8.	0.0	0.	282.7	18.36	-1.esc	102.7	c.e
8.	c.0	0.	282.6	18.36	-1.850	102.7	0.0
8.	c.0	0.	2 E 2.6	16.36	-1.85c	102.7	0.0
7.	0.0	0.	282.5	18.36	-1.esc	ic2.7	c.e
7.	0.0	0.	282.5	18.36	-1.850	102.7	$0 . \mathrm{C}$
7.	c. 0	c.	282.4	18.37	-1.850	102.7	0.0
7.	0.0	0.	282.4	18.37	-1.850	102.7	c.c
?	0.0	0.	282.3	18.37	-1.850	102.7	$0 . \mathrm{C}$
1.	0.6	c.	282.3	18.37	-1.850	102.7	0.0
7.	219.4	1.	282.2	12.38	-1.85C	102.7	$0 . \mathrm{C}$
147.	208.7	1.	282.2	18.38	-1.799	103.0	c.e
95.	206.4	1.	282.2	18.39	-1.750	103.3	0.0
123.	204.9	1.	282.2	16.39	-1.701	$1 \mathrm{C3.6}$	0.0
131.	203.5	1.	282.2	18.40	-1,653	163.5	c. c
134.	202.1	1.	282.2	18.40	-1.604	104.2	c.e
135.	200.6	1.	282.2	18.41	-1.557	1c4. 5	0.0
135.	199.1	1.	282.2	18.41	-1.505	164.E	c.e
132.	197.5	1.	282.2	18.42	-1.462	105.c	0.6
130.	195.8	1.	282.2	18.43	-1.415	105.3	0.0
129.	194.1	1.	282.2	18.43	-1.369	105.6	0.0
128.	152.4	1.	282.2	18.44	-1.323	105.8	0.c
127.	190.8	1.	282.1	18.44	-1.277	106.1	0.0
127.	189.2	1.	282.1	18.45	-1.232	106.4	$0 . \mathrm{c}$
126.	0.0	0.	282.1	18.45	-1.187	1 Cb . ${ }^{\text {c }}$	c.e
27.	c. 0	0.	282.1	10.46	-1.187	106.7	$0 . \mathrm{t}$
26.	0.0	0.	282.1	18.46	-1.187	106.7	$0 . \mathrm{C}$
23.	1.4	${ }^{\circ}$.	262.5	18.46	-1.187	106. 3	c.e
20.	1.4	0.	282.0	18.47	-1.187	106.7	c.e
17.	1.4	c.	281.9	18.47	-1.187	106.1	0.0
16.	1.4	0.	281.5	18.47	-1.18t	106.7	0.0
14.	1.4	0.	281.9	18.47	-1.186	106.7	$0 . \mathrm{C}$
13.	1.4	0.	281.8	18.48	-1.186	106.7	0.0
13.	1.8	0.	281.8	18.48	-1.186	106.7	0.0
12.	1.8	0.	281.8	18.48	-1.185	166.7	c.e
12.	1.8	0 .	281.8	18.49	-1.185	106.7	e.c
11.	1.8	c.	281.7	18.49	-1.184	106.7	0.0
11.	1.8	0.	281.1	18.49	-1.184	1ct. 1	c.e
10.	1.8	c.	281.7	18.50	-1.184	106.7	c.c

Table B.s (continued)

	Pricticher		Crar	
15	0.016	534.9	551.6	479.6
00	0.016		S51, ?	
1770.00	0.016			
1786.00	0.C16	535	332	
1790.00	0.016			
1800.00	0.015			
1810.	0.61			
1820.00	0.016		553	
1830.00	0.016	537.	$3>3$	
1840.00	0.016	537		
1450.00	0.01	538.	553	
1860.00	0.016			
1870.00	0.021	538.5	S5	
18ac, 00	0.621	54.	551	
1890.00	0.018	54	35	
1900.00	0.01	53		486.8
1916.00	$0 . \mathrm{Cl}$			
1720.00	0.018	531.2	35	
1930.00	0.018	535.6	35	
1940.00	$0 . C 18$	534.0	Ss	
1950.00	0.01	532.4	55	40
1960.00	0.01	530.8	548	
1970.00	0.017	524.2	548	
1980.00	0.817	527	54	48
1990.00	0.01	526	54	480.1
2000.00	0.01	524	54	
2010.00	$0 . \mathrm{Cl}$	52	44	
2020.00	0.015	522	541	
2030.00	0.015	521	539	475.6
2040.00	$0 . C 15$	520	539	74.6
2050.00	$0 . c 15$	520	538	
2060.00	0.015	520.5	338.	43.t
2070.00	0.015			47
2080.00	0.015	52 C	53	47
2090.00	0.015	520.	53	472.1
2100.00	0.015	520	53	47.
10.00	C.c15	5<1.		
2120.00	0.015	521	539	42
2130.00	0.015	521.	39	472
40.00	C13			
150.00	0.015	522.	539	412
60.00	0.013	522.7	540	
2170.00	0.015	523.1	540	12
2180.00	C.C15	523.4	540	472
2190.00	0.015	523.8	341.	
2200.00	0.015	524.3	541	
2210.00	0.615	524.	541	47
2220,00	0.015	525.1		, 3
2230.00	0.015	525.6	542	473
2240.00	0.615	526.0	543.	473.5
2250.00	0.015	526.5	54	473
2260.00	0.015	527.6	543.	473
2270.00	0.015	S27, 5	析	
1280.00	$0 . C 15$	528.0	544.	476
2290.00	0.015	528.5	345.2	47
2300.00	0.015	\$29.0		
10.60	0.015	52	546.2	475.3
20	0.015			

- 1 Na ,	${ }^{p}$
25.0	1015.2
25.4	1 C 20.7
25.0	1 CLO .1
25.0	1031.3
25.C	1636.4
25.0	
c7.2	1046.0
<9.?	1050.6
29.2	1055.0
29.2	1059.4
29.2	1063.6
29.2	1067.6
13.3	1066.0
13.3	967.5
33.3	956.1
33.3	946.7
33.3	932.2
33.3	927.7
37.5	916.3
37.5	9 CB .7
37.5	89.3
37.5	$890 . c$
37.3	880.9
37.5	871.9
$41 . t$	863.0
41.6	E54.1
41.6	870.7
41.6	882.0
41.6	e92.0
41.6	901.3
d3, 3	$907+6$
83.3	817.4
83.7	924.1
83.3	931.6
83.3	938.1
83.3	944.3
83.3	950.3
83.3	953.9
83.3	861.3
83.3	966.4
d3. 3	911.3
83.3	976.0
a3. 3	980.4
83.3	984.7
83.3	98.7
83.3	492.5
83.3	996.1
83.3	\$99.6
83.3	1602.8
83.3	1005.9
13.3	1006.7
33.3	1014.4
83.3	1013.9
83.3	1015.2
83.3	$1 \mathrm{C18.4}$
83.1	1020.3
83.3	1022.1
a3. 3	1023.7

wTost	WSTC	LOGREL
20.	2.2	0.
10.	2.2	0.
9.	2.2	c.
9.	2.2	0.
9.	2.2	0.
8.	2.2	0.
8.	2.6	0.
8.	2.6	0.
8.	2.6	0.
${ }_{8}$	2.6	-.
7.	2.7	0.
7.	224.8	1.
145.	213.8	i.
149.	206.6	1.
100.	204.5	1.
128.	$2 \mathrm{cz.8}$	1.
135.	201.0	1.
137.	199.2	1.
138.	197.5	1.
139.	195.3	1.
138.	193.2	1.
137.	191.1	1.
136.	189.1	1.
136.	187.1	1.
135.	185.4	1.
134.	3.2	0.
26.	3.2	3.
26.	3.2	0.
23.	3.3	0.
21.	3.3	0.
21.	6.7	0.
19.	6.7	0.
18.	6.7	c.
18.	6.8	6.
17.	6.8	0.
16.	6.9	0.
15.	6.9	0.
15.	6.9	0.
14.	7.0	0.
14.	7.0	0.
13.	7.0	0 ,
13.	7.1	e.
13.	7.1	c.
12.	7.1	0.
12.	7.1	0.
11.	7.2	0.
11.	7.2	0.
11.	7.2	0.
10.	7.2	0.
10.	1.2	c.
10.	1.3	0.
9.	7.3	0.
9.	1.3	0.
9.	1.3	0.
8.	7.3	0.
8.	7.3	0.
8.	7.3	0.
7.	7.4	0.

160*	PTCug	LuSpay	TwSpay	necc
281.7	18.50	-1.183	106.7	c. C
281.6	18.50	-1.183	106.7	c.e
281.6	18.51	-1.182	106.7	0.0
281.6	18.51	-1.182	106.7	0.0
281.6	16.51	-1.181	106.7	c.e
281.6	18.52	-1.181	106.7	0.0
281.6	18.52	-1.180	106.7	0.c
281.5	18.52	-1.180	1ce.7	c. $¢$
281.5	18.53	-1.179	106.1	c. 0
281.5	18.53	-1.179	106.?	0.0
281.5	18.53	-1.178	1 Ct .7	c. C
281.5	16.54	-1.178	106.7	o. C
281.5	18.54	-1.125	107.c	$0 . \mathrm{c}$
281.6	18.55	-1.c75	107.3	0.6
281.6	18.56	-1.0¢7	107.6	$0 . \mathrm{C}$
281.6	18.56	-0.978	107.9	0.0
281.6	16.57	-C.53C	108.2	0.0
281.7	18.58	-0.683	1CE. 5	c. 6
281.7	18.58	-0.835	$1 \mathrm{cs.7}$	0.0
28.17	18.59	-0.789	1cs.c	0.0
282.8	18.60	-0.763	1c9. 3	c. C
2el ${ }^{\text {d }}$	18.60	-0.697	109.5	c.e
28.1 .8	18.61	-0.652	109.8	$0 . \mathrm{c}$
281.8	18.62	-0.607	116. 1	0.6
281.9	28.62	-0.563	110.3	$0 . \mathrm{C}$
281.9	18.63	-0.519	110.6	0.0
281.9	18.64	-0.516	:1c. 6	0.0
281.9	18.64	-0.518	11c. 6	c. ${ }^{\text {c }}$
281.9	18.64	-0.517	116.6	0.0
281.9	18.es	-0.516	11 C .6	0.0
281.9	18.65	-0.515	116. 6	c.c
281.9	18.66	-0.514	$110 . t$	C.C
28.8	18.66	-0.512	110.6	0.0
281.8	18.66	-0.511	$11 \mathrm{c} . \mathrm{t}$	c.e
281.8	18.67	-0.509	116.6	$0 . \mathrm{c}$
281.8	16.67	-0.508	110.6	$0 . \mathrm{c}$
281.8	18.67	-0.506	$110 . t$	0.0
281.8	18.68	-0.505	11c.t	c.c
281.8	18.68	-0.503	110.6	0.0
281.8	18.6)	-0.501	116.7	0.0
281.9	18.69	-0.5cc	11c.?	c.e
281.9	18.70	-0.498	110.7	$0 . \mathrm{C}$
281.9	16.70	-0.497	110.7	0.0
281.9	18.76	-0.495	11c.?	c.e
281.9	18.71	-0.494	110.7	c.e
284.9	18.71	-0.492	110.7	0.0
281.9	18.12	-0.491	110.7	$0 . \mathrm{C}$
281.9	18.72	-0.489	116.7	c. C
281.9	18.72	-0.487	11c.?	0.0
281.9	18.73	-0.486	116.7	0.0
281.9	16.73	-0.484	11c.	c.e
281.9	13.74	-0.483	11c.7	c.e
$282 . \mathrm{C}$	18.74	-0.481	110.8	0.0
$282 . \mathrm{C}$	18.74	-0.479	11c.e	c.e
282.0	18.75	-0.478	110.8	c.c
282.5	18.75	-0.476	110.8	0.0
282.6	18.76	-0.475	11c.8	0.0
282.0	18.76	-0.473	110.E	0.C

Table B. 5 (continued)

30	c.cis	53	34	
40.00	0.c1s	53		
0	0.015			
2300.00	0.cis			
2370.00	0.015	532		
380.00	0.015			
90.00	0.015	534		
00.00	0.015	534	53	
410.00	0.01	535		19
2420.00	0.015	535	55	
30.00	0.615	536		
2440.00	0.015	537	55	48
S0.00	0.01	537	554	48
60.00	$0 . \mathrm{Cl}$	538		
70.00	0.01	53		
80.00	0.01	534	536	
<490.00	0.01	540		
2500.00	0.015	541	55	483.8
2S 10.00	0.016	541	53	
cs20.00	0.016	542	35	485.1
2530.00	0.015	54	35	
2540.00	0.01	543	560	
2550.00	0.015	544	501	
2560.00	C.Ci	54.	502	
2570.00	0.61	540	563	
2580.00	0.01	547	361	48
2590.00	0.01	548	56	49
600,00	0.01	548		
10.00	0.01	549.	S6	491.5
2620.00	0.01	550.		
630.00	0.cis		56	
640.00	0.01	552	569	
2650.00	0.01	553.0		
66.00	C.Cl	553		
70,00	0.01	554.0	571	
2680.00	0.015			
90.00	0.015			
100.00	0.015	555	912	
10.00	0.015	555.9	312	
20.00	0.01	556	573	
130.00	$0 . c 15$	557.1	573	
40.00	0.015	557.7	514	
50.00	0.01	558.2		
760.00	$0 . C 1$	558.8	515	
170,00	0.015	559.3	575	
180.00	0.015	539.	576	
90.00	0.015	560.	sto	
30ヶ,00	0.015	561.0	51	49
110.00	0.014	561.4	52.	49
32.00	0.014	961.9	378	
330.00	$0 . \mathrm{Cl}^{4}$	562.4	578	
2840.00	0.014	562.9	579	49
2850,00	0.014	563.		
960.00	$0 . C 14$	563.8	579	
870.00	0.014	568	58	
2880.00	0.01			
00	0.	565.c		500.1

2890.00
2700.00

plick	LwSPAV	tuspay	wece
18.77	-0.471	110.8	0.0
18.77	-0,470	116.8	0.6
18.77	-0,468	110.8	0.0
18.78	-5,467	11c. 8	0.0
18.78	-0.465	11c. 8	c. C
18.79	-0.463	110.8	c.c
18.79	-0.462	110.8	0.0
18.80	-0.46C	110.8	c. ${ }^{\text {c }}$
18.80	-0.458	110.9	$0 . \mathrm{c}$
18.80	-0.457	110.9	0.0
18.81	-0.455	116.9	0.0
18.81	-0.454	110.8	o.c
18.82	-0.452	110.9	0.0
18.82	-0.45c	11 c .9	0.0
18.82	-0.448	11c.s	c.e
18.83	-0.447	116.9	0.6
16.83	-0.446	116.9	0.0
18.87	-0.444	11c. 5	6.6
18.84	-0.442	110.9	c.e
18.85	-0,441	110.9	0.0
18.85	-0.439	110.9	4.0
18.85	-0.438	111.0	c.e
18.86	-0.436	111.0	0.0
18.86	-0.434	111.C	0.0
18.87	-0.433	111.6	c. c
18.87	-0.431	$111 . \mathrm{C}$	c.c
18.88	-0.436	111.6	0.0
18.88	-0.428	$111 . c$	c.e
18.88	-0.427	111.c	0.6
18.89	-0.425	111.c	0.0
16.89	-0.424	111.6	0.0
18.90	-0.422	111.0	0.0
18.90	-0.420	111.0	0.0
18.98	-0.420	111.c	0.0
18.91	-0.420	1.1.6	c.c
18.91	-0.421	111.c	e.c
18.92	-0.421	111.5	0.0
18.92	-0.421	$111 . \mathrm{C}$	c.e
18.92	-0.421	$111 . \mathrm{c}$	0.6
18.93	-0.421	111.0	0.0
18.93	-0.421	111.C	0.0
18.94	-0.421	111.0	$0 . \mathrm{C}$
18.94	-0.421	111.0	0.0
18.95	-0.421	111.c	0.0
18.95	-0.421	111.c	c.
18.95	-0.421	111.c	0.0
18.96	-0.421	111.c	0.0
18.96	-0.421	111.c	c.
18.97	-0.421	111.c	c. 1
18.97	-0.421	111.0	0.0
18.97	-c.421	111.c	c. C
18.98	-0.621	$111 . \mathrm{C}$	$0 . \mathrm{C}$
18.98	-0.421	111.0	0.0
18.99	-0.421	111.c	0.0
18.99	-0.421	111.6	c.
18.99	-0.421	111.6	0.0
19.0c	-0.421	111.c	0.0
19.00	-0.421	11	

Table B. 5 (continued)

int	PREL		irar	LSHRL
2910.00	C.C14	565.8	>81.	500.3
2920.00	0.014	$56 t .2$	з	5
2930.00	0.019	566.3	58	
2940.00	0.016	566.	503	
2950.00	0.cle	56	58	
2760.00	0.016	56	S8	
2970.00	0.016	562.	s80	
2980.00	c.cit	560	518	
2490.00	0.cit	55e.	51	S021
3000.00	0.015	556.		
3010.00	$0 . C 15$	554.1		
3020.00	0.015	552.0	5 to.	
1030.00	$0 . C 15$	549	568.	
3340.00	0.015	54.	St6	
3050.00	0.015	545.8	564.	
3060.00	0.615	543.	563.	
3070.00	0.613	54	50	
3080.00	0.013	541.4		
3090.00	0.013	540.3	55	488.9
3100.00	0.013	539.	557.	4
3110.00	0.014	536		
1120.00	0.014	53	556.0	
\$136.co	0.014	53 H.	556	485.8
3140.00	0.014	538.	556	485.4
1150.00	0.014	538.1	S55.	485.0
3160.00	0.614	538.1	555.	
3170.00	0.014	538.2	555.	48
3180.00	0.014	538	555	48
1190.00	0.014	538	555	
3200.00	0.014	536	55	483.8
3210.00	0.014	538.6	553	48
3220.00	0.014	538.8	356	
3230.00	$0 . C 14$	539	556	48
1240.00	$0 . \mathrm{C14}$	539.1	556.	483
3250.00	0.014	539.3	5s6.	
1260.00	0.614	539.5	55	48
\$270.00	$0 . \mathrm{C14}$	¢39.	550	48
3230.00	0.014	539.9	556	
$32^{\circ} 0.00$	0.014	540.2	556	48
3) 0.00	0.014	540.	556	482
3310.00	0.014	540.6	557	
3320.00	0.014	540.9	557.	482
3330.00	0.ci8	540.8	558	485
\$340.00	0.016	541.2	558.	486
\$350.00	0.013	540.	558	487
3360.60	$0 . \mathrm{Cl}$	539.5	557	486
1370.00	0,015	537.	556	
3380.00	0.015	535.9	554	4 H
3390.00	0.015	534.1	352.	$4 \mathrm{H}_{4}$
3400.00	0.015	532.3	551.	$4{ }^{4}$
3410.00	0.015	530.5	349.	482
1420.00	0.015	528.7	547.	481.6
3430.00	0.015	527.6	546.1	430.7
3440.00	0.015	525.2	544.	479
3450.00	0.015	\$23.0	542.	479.0
3460.00	0.615	521.9		
3470.00	0.613	520.8	539.8	476
3480.00	0.013			

c. c
$0 . \mathrm{c}$
0.0
0.5
$0 . \mathrm{c}$
0.0
0.0
0.0
0.0
$0 . C$
0.0
0. C
0.0
0.0
0.0
0.0
0.0
0.0
c. ${ }^{\text {c }}$
$0 . \mathrm{C}$
0.0
$0 . \mathrm{c}$
0.0
0.0
0.0
0.6
0.0
0.0
c. C
0.0
0.0
c. c
0.0
0.0
0.0
0.0
0.0
0.0
c. C
0.0
0.0
C. 6
0.6
0.0
0.0
16.7
16.7
16.7
16.7
16.7
16.7
20.8
20.8
20.8
20.8
<0.8

WTOST	WSTC	Logrel	rgen	PTCMG	ewspay	Twspay	wece
4.	0.0	c.	283.7	19.01	-0.421	111.C	0.0
4.	222.4	1.	283.7	19.01	-0.421	111.c	c.e
149.	211.0	1.	283.8	19.02	-0.370	111.3	$0 . \mathrm{c}$
${ }^{87}$.	209.4	1.	283.9	19.07	-0.320	111.6	0.0
116.	207.9	1.	283.9	19.53	-0.270	111.5	c.e
123.	206.4	1.	284.0	19.04	-0.221	112.2	c.e
125.	2C4.8	1.	284.1	19.05	-0.172	112.5	0.6
126.	203.	1.	284.2	19.c6	-c.123	112.8	0.0
126.	201.5	i.	284.2	19.06	-0.c75	113.1	c. C
126.	199.3	1.	284.3	19.07	-0.027	113.3	0.0
123.	198.1	1.	284.4	19.08	0.020	113.6	0.0
123.	196.2	1.	284.4	19.09	0.067	113.9	0.0
121.	194.3	1.	284.5	19.16	0.113	114.1	0.0
115.	192.5	1.	284.6	19.10	0.159	114.4	c.e
118.	$19 \mathrm{C}$.	1.	284.6	19.11	0.205	114.7	0.0
117.	0.0	0.	284.7	19.12	0.249	114.8	0.c
22.	0.0	0.	284.7	19.12	0.249	114.5	c.e
21.	c. 0	c.	284.8	19.13	0.249	114.9	c.e
19.	0.0	c.	264.8	19.13	0.249	114.8	0.0
16.	0.0	0.	284.8	19.14	0.245	114.5	c.e
14.	c. 0	0.	284.9	19.14	0.249	114.9	c.e
13.	2.0	c.	284.9	19.15	0.249	114.9	0.0
11.	0.0	0.	274.9	19.15	0.249	114.9	0.0
11.	0.0	0.	284.9	19.16	0.249	114.9	0.6
10.	0.0	0.	285.6	19.16	0.249	114.9	0.0
9.	0.0	0.	265.0	19.11	0.249	114.9	$0 . \mathrm{c}$
9.	0.0	0.	285.0	19.17	0.249	114.5	c.e
9.	0.0	0.	285.1	19.17	0.249	114.8	c.e
${ }^{8}$.	0.0	c.	285.1	19.18	0.249	114.9	0.0
8.	0.0	0.	285.1	19.18	0.249	114.5	c.e
3.	0.0	0.	285.2	19.19	0.249	114.9	0. C
1.	0.0	c.	285.2	14.19	0.249	114.8	0.0
7.	0.0	0.	285.2	19.20	0.249	114.9	0.0
1.	0.0	0.	285.2	19.20	0.249	114.9	c.e
7.	0.0	0.	285.3	19.21	0.249	114.9	0.0
7.	0.0	0.	285.3	19.21	0.249	114.9	0.0
7.	0.0	0.	285.3	19.21	0.249	114.5	c. C
6.	c. 0	0.	285.4	19.22	0.249	114.9	c.e
6.	c. 0	c.	285.4	19.22	0.249	114.9	0.0
6.	0.0	0.	283.4	19.23	0.249	114.5	c.e
6.	0.0	0.	283.5	19.23	0.249	114.9	c.c
6.	220.7	1.	285.5	19.24	0.249	114.9	0.0
145.	209.8	1.	265.6	19.24	0.299	115.2	0.0
87.	206.6	1.	285.1	19.25	0.349	115.5	0.0
112.	204.8	1.	285.7	19.26	0.398	115.8	0.0
119.	203.2	1.	285.8	19.23	0.446	116.1	c. 0
122.	201.5	1.	285.9	19.28	0.494	116.4	0.C
127.	201.1	1.	286.0	19.29	0.542	116.6	0.c
127.	199.2	1.	266.6	19.29	0.589	116.9	0.0
127.	197.0	1.	286.1	19.30	0.636	117.2	c.e
127.	194.9	1.	286.2	19.31	0.682	117.5	0.6
126.	192.8	1.	286.2	19.32	0.728	117.7	0.0
125.	190.7	1.	286.3	19.33	0.774	$118 . \mathrm{C}$	0.0
125.	189.0	1.	286.4	19.33	0.819	118.2	0.c
124.	187.0	1.	286.4	19.34	0.863	118.5	0.0
123.	1.6	0.	286.5	19.35	0.908	118.8	0.0
22.	1.6	0.	286.5	19.36	0.968	112.E	c. C
21.	1.6	0.	286.5	19.36	0.908	118.8	0.0

sevo

 ,VCSPu= 140504.500 ,VW= 13C976.50C ,VWC= 127E95.5CC

-GPMAIR= $49.9021606 \quad$,QRPGC $=12.53812 C 3$ \qquad	$6 R P W C=$
90.0000000 .813416	

 ano

 Ctwo
Table B. 5 (cont inued)

co	c. Cl^{3}			
3610.00	0.C13	52 C	S	47
3620.00	0.013	520.5		
3630.00	0.013	520.8	53	41
3640.00	0.613	521		47
3650.00	0.013	521	+	
3660.00	0.013		3	4
307c.ce	C.613	52.		
3680.00	0.613	522		
3690.00	0.013	522	340	47
3700.00	e.c13	523.	540	47
8710.00	0.013	523.	541	41
3120.00	0.013	524.	341	
3730.00	0.013	524		47
$374 \mathrm{C.ca}$	6.013	525	542	47
3750.00	0.013	525.	342	473.5
\$160.00	0.013	525.	543	473.
3770.00	0.613	526	543	47
3780.00	$0 . \mathrm{Cl} 3$	\$2t.	544.	414
1790.00	0.018	526.	344	476.9
3800.00	0.CIt	520.	545	479
3810.00	0.018	520.	545	491.1
3820.00	0.017	526.	546	
3830.00	0.017			
3840.00	0.016	52 t	54	
3850.00	0.013	528	54	487.6
9860.00	0.015	528.2	549.	687.8
3870.00	$0 . C 13$	$5<1.7$	348	
3880.00	0.012	527.		486
3890.00	0.013	526.4	347	485
3900.00	0.cis	526		484
3910.00	$0 . \mathrm{CL3}$	526	346	46
3920.00	0.013	526.0	546	$4{ }^{4}$
1930.00	0.013	526.	546	483
3940.00	0.013	526	546	483.3
3950.00	0.013	526.3	546	483.2
3060.00	0.013	520.3	546.	44_{3}
3970.00	$0 . \mathrm{C13}$	$5<6$	546	$4{ }_{4}$
3930.00	$0 . \mathrm{C13}$	527.1	346	483.2
3990.00	0.01,	527.4	547	48
4000.00	c. ClH	527.7	347	483
4010.00	0.613	528.1	547.	483.5
4020.00	0.013	528.5	548.	483.6
4030.00	0.013	528.8	548	483
4040.00	0.013	529.2	54	48
4050.00	. 013			

${ }^{3} 3.3$	971.8
83.3	976.5
63.3	981.0
83. 3	985.3
63.3	98.4
83.3	593.4
83, 3	¢9\%.1
83.3	1000.7
83.3	$1 \mathrm{CCH}^{\text {a }}$
83.3	$16 \mathrm{Cl} \mathrm{S}^{3}$
83.3	1010.3
83.3	1013.2
83.3	1015.9
83.3	1018.4
83.3	1020.8
83.3	$1 \mathrm{C23.c}$
83.3	1625.1
83.3	1027.0
a3. 3	1026.7
83.3	$96 \div$.
83.3	91% \%
83.3	882.5
83.3	849.5
63.3	820.6
83.3	800.6
83.3	192.7
83.3	784.2
d3. 3	191.0
d3. ${ }^{\text {a }}$	EC5.4
83.3	812.9
83.3	819.6
83.3	e2s. 7
83.3	83.3
83.3	836.5
43. 3	841.4
83.3	843.9
83.3	830.2
93, 3	854.3
83.3	ess.1
83.3	E61.7
63.3	865.1
63.3	268. 3
43.3	871.3
43.3	c74. 1
83.3	876.7
83.3	879.2
83.3	881.5

14.	7.0
13.	1.1
13.	7.1
13.	7.1
12.	7.1
12.	7.2
12.	7.2
11.	7.2
11.	7.2
11.	1.3
10.	7.3
10.	7.3
10.	7.3
9.	7.3
ง.	7.3
9.	7.3
8.	7.4
8.	7.4
8.	221.8
135.	209.1
132.	200.8
120.	193.0
123.	185.5
125.	179.0
76.	174.5
109.	172.1
119.	5.9
21.	6.0
21.	6.0
20.	6.
18.	0.1
17.	6.1
15.	6.2
14.	6.2
13.	6.2
13.	6.3
12.	6.3
12.	6.3
11.	6.3
11.	6.4
10.	6.4
10.	6.4
10.	6.4
9.	6.4
9.	6.5
9.	6.5
8.	6.5

286.9	19.42
280.9	19.42
287.0	19.43
287.5	19.43
287.C	19.44
287.1	19.44
287.1	19.45
287.1	19.45
287.2	19.46
287.2	19.46
287.2	19.47
287.3	19.47
287.3	19.48
287.3	14.48
287.4	19.49
287.4	19.49
287.4	19.50
287.5	19.50
287.5	19.51
287.6	19.51
287.6	19.52
287.7	19.53
287.8	19.54
281.9	19.55
287.9	19.55
288.0	19.56
zer.c	14.57
28\%.1	19.5E
286.1	19.58
286.1	19.58
288.2	19.59
288.2	19.59
288.2	19.60
$2 \mathrm{EB}$.	19.60
288.3	19.61
288.3	19,61
288.3	19.62
288.4	19.62
288.4	18.63
288.4	[4.63
268.5	19.64
288.5	19.64
288.5	19.64
288.	19.65
288.6	19.65
288.6	19.66
288.6	19.66

 $\underset{3}{3}$ㄴ․ .,(1):

Z

[^7]| fime | Prel | LDCV? | LYAR | 15 HzC | Wind | p | WTOST | hstic | LCCPEL | TGCW | PITMG | LWSPAV | Twspav | *ECC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4650.00 | 0.014 | 537. | -. 2 | 509.1 | 0.6 | 831.4 | 82. | 115.0 | 1. | 290.7 | 19.43 | 1.587 | 122.6 | 0.0 |
| 4660.00 | 0.614 | 53 | r. 7 | 508. 3 | 0.0 | 824.9 | 69. | 173.8 | 1. | 250.e | 19.94 | 1.638 | 122.8 | 0.0 |
| 4670.00 | 0.014 | 534. | 16.1 | 507.3 | 0.0 | E1d.4 | 66. | 172.4 | 1. | 290.8 | 19.95 | 1.679 | 123.4 | c. C |
| 4580.00 | 0.014 | 552.0 | 314.4 | 506.4 | c. 0 | E11.5 | 66. | 170.9 | 1. | 290.9 | 19.96 | 1.720 | 123.3 | 0.6 |
| 4690.00 | 0.014 | 550.8 | 512.8 | 505.4 | 0.0 | 804.7 | 67. | 169.4 | 1. | 251.6 | 17.96 | 1.760 | 123.5 | 0.0 |
| 4700.00 | 0.014 | 549.1 | 571.1 | 504,4 | 0.0 | 793.0 | 6%. | 168.0 | 1. | 292.c | 18.97 | 1.8cc | 123.7 | c. c |
| 4710.00 | 0.014 | 547.3 | 369.4 | 503.4 | c.e | 181.4 | 67. | 166.5 | 1. | 291.1 | 19.98 | 1.840 | 124.c | c.e |
| 4120.00 | 0.014 | 545.7 | 307.8 | 502.3 | 0.0 | 784.9 | 66. | 165.1 | 1. | 291.2 | 19.99 | 1.879 | 124.2 | 0.0 |
| 4730.00 | 0.C14 | 544.0 | 566. 2 | 501.5 | 3.0 | 178.5 | 66. | 163.7 | 1. | 291.2 | 18.58 | 1.918 | 124.4 | 0.0 |
| 4740.00 | 0. 114 | 542.4 | $564 . t$ | 500.6 | 0.0 | 772.2 | 67. | 162.3 | 1. | 291.3 | 20.60 | 1.857 | 124.6 | c. C |
| 4750.00 | 0.014 | 540.8 | Se3.1 | 497.1 | c. 6 | 760.c | 66. | 161.0 | 1. | 291.3 | 20.01 | 1.995 | 124.8 | 0.6 |
| 4760.00 | 0.014 | 539.3 | 561.c | 498.8 | 0.0 | 159.9 | 66. | 159.7 | 1. | 281.4 | 20.02 | 2.033 | 125.1 | 0.0 |
| 4170.00 | 0.014 | 537.7 | 560. C | 478.c | 0.0 | 753.9 | 66. | 158.4 | 1. | 251.4 | 20.62 | 2.671 | 125.3 | c. C |
| 4780.00 | 0.014 | 536.2 | 553.5 | 497.1 | c.e | $748 . \mathrm{C}$ | 66. | 157.1 | 1. | 291.5 | 20.03 | 2.108 | 125.5 | c.e |
| 4790.00 | 0.014 | 534.7 | 537.0 | 496.2 | 0.0 | 74.21 | 66. | 155.8 | 1. | 251.5 | 20.04 | 2.145 | 125.7 | 0.0 |
| 4800.60 | 0. 1214 | 533.2 | 535.6 | 495.4 | 0.0 | 736.4 | 66. | 154. | 1. | 291.6 | 20.05 | 2.182 | 125.9 | 0.0 |
| 4810.00 | 0.014 | ¢51.8 | 554.2 | 494.6 | 16.7 | 130.3 | 68. | 154.4 | 1. | 291.6 | 20.05 | 2.219 | 126.1 | $0 . \mathrm{C}$ |
| 4820.00 | 0.014 | 530.5 | 552.9 | 493.9 | 16.7 | 124.1 | 69. | $153 . \mathrm{c}$ | 1. | 291.7 | 20.06 | 2.255 | 126.3 | 0.0 |
| -83c. 60 | 0.014 | 529.1 | 551.6 | 443.2 | 16.7 | 718.0 | 65. | 151.7 | 1. | 291.7 | 20.67 | 2.292 | 126.5 | 0.0 |
| 4840.00 | 0.014 | 527.6 | 530.3 | 472.4 | 16.7 | 712.0 | 68. | 150.4 | 1. | 291.8 | 20.07 | 2.327 | 126.7 | c. 6 |
| 4850.00 | 0.014 | 526.5 | 547.6 | $4 \cdot 1.7$ | 16.7 | $7 \mathrm{ce.1}$ | 68. | 149.1 | 1. | 291.8 | 20.08 | 2.363 | 126.9 | 0.5 |
| 4860.00 | 0.014 | 523.2 | 547.7 | 491.0 | +6. 1 | 700.3 | 67. | 1.1 | c. | 251.9 | 20.09 | 2.398 | 127.1 | 0.0 |
| 4870.00 | c. 012 | 524.1 | 546.4 | 489.5 | 20.8 | 711.0 | 17. | 1.4 | 0. | 291.9 | 20.16 | 2. 398 | 127.1 | c. C |
| 4880.00 | 0.012 | 523.4 | 545.5 | 488.5 | 2 C .8 | 719.1 | 17. | 1.4 | 0. | 291.9 | 20.10 | 2. 399 | 127.1 | c. C |
| 4890.00 | 0.012 | 522.6 | 544.5 | 487.5 | 20.8 | 126.6 | 16. | 1.4 | c. | 291.9 | 20.11 | 2.399 | 127.1 | 0.0 |
| 4900.00 | 0.012 | 521.9 | 543.7 | 486.6 | 20.6 | 733.5 | 14. | 1.4 | 0. | 252.0 | 20.11 | 2.399 | 127.1 | $0 . \mathrm{c}$ |
| 4910.00 | 0.612 | 521.5 | 543.2 | 485.9 | $2 \mathrm{C}$. | 140.C | 13. | 1.4 | 0. | 292.0 | 20.12 | 2.394 | 127.2 | c.e |
| 4920.00 | 0.012 | 521.2 | 542.8 | 485.3 | 20.8 | 746.3 | 12. | 1.7 | 0. | 292.0 | 20.12 | 2.400 | 127.2 | 0.0 |
| 4930.00 | c. Cl^{2} | 521.1 | 542.6 | 484.7 | 25.0 | 152.3 | 12. | 1.7 | c. | 292.6 | 20.13 | 2.40 C | 127.2 | c. C |
| 4940.00 | 0.012 | \$21.1 | 54.2 .5 | 444.6 | 25.0 | 758.1 | 11. | 1.7 | 0. | 292.0 | 20.13 | 2.40 C | 127.2 | c. C |
| 4950.00 | 0.012 | 521.0 | 542.4 | 484.3 | 25.0 | 763.7 | 11. | 1.7 | $0 \cdot$ | 292.1 | 20.14 | 2.400 | 127.2 | c. 6 |
| 4760.00 | 0.012 | 521.1 | 542.3 | $44_{4.0}$ | 25.0 | 769.2 | 11. | 1.7 | c. | 292.1 | 20.14 | 2.401 | 127.2 | 0.0 |
| 4970.00 | 0.012 | 521.1 | 542. 3 | 483.8 | 25.0 | 774.6 | 10. | 1.7 | 0. | 288.1 | 20.15 | 2.401 | 127.8 | ${ }_{6} \mathrm{C}$ |
| 4980.00 | 0.012 | 521.2 | 542.3 | $483 . t$ | 25.6 | 719.9 | 10. | 1.8 | 0. | 292.1 | 20.15 | 2.401 | 127.2 | c. 0 |
| 4990.00 | 0.012 | 521.3 | 542.4 | 483.4 | 29.2 | $785 . \mathrm{c}$ | 10. | 2.1 | c. | 292.1 | 20.15 | 2.402 | 127.2 | 0.6 |
| 5000.00 | $0 . \mathrm{Cl2}$ | 521.4 | 342.4 | 483.2 | 29.2 | 190.0 | 10. | 2.1 | 0. | 292.2 | 20.16 | 2.402 | 127.2 | 0.0 |
| 5010.00 | 0.012 | 521.5 | 542.5 | $4{ }^{4} 3.1$ | 29.2 | 154.9 | 10. | $2 \cdot 1$ | 0. | 292.2 | 20.16 | 2.403 | 127.8 | c.e |
| 5020.00 | 0.012 | 321.7 | 542.6 | 482.9 | 29.2 | 799.8 | 9. | 2.1 | 0. | 292.2 | 20.17 | 2.403 | 127.2 | $0 . \mathrm{c}$ |
| 5030.00 | 0.Ci2 | 521.8 | 342. 7 | 482.8 | 27.2 | 804.5 | 9. | \%. 1 | c. | 292.3 | 26.17 | 2.403 | 127.2 | 0.0 |
| S040,00 | 0.012 | 522.0 | 342.8 | $44^{2} .7$ | 29.2 | 809.2 | 9. | $2 \cdot 1$ | 0. | 292.3 | 20.18 | 2.404 | 127.8 | c. C |
| 5050.00 | 0.012 | 522.2 | 542.9 | 482. 6 | 33.3 | E13.1 | 9. | 2.4 | 0. | 292.3 | 20.18 | 2.404 | 127.2 | 0.6 |
| 5060.20 | 0.012 | 522.4 | 343.1 | 482.5 | 33.3 | 818.1 | 7. | 171.5 | 1. | 292.3 | 20.19 | 2.405 | 227.2 | 0.0 |
| 5070.co | 0.016 | 522.2 | 543.5 | 484.5 | 33.3 | 778.0 | 119. | 164.1 | 1. | 258.3 | 20.18 | 2.445 | 127.4 | c. C |
| 5080.00 | 0.016 | 522.3 | 543.9 | $486 . \mathrm{C}$ | 33.3 | 749.4 | 117. | 158.8 | 1. | 292.4 | 20.20 | 2.483 | $127 . t$ | $0 \cdot \mathrm{c}$ |
| 3090.00 | 0.016 | 522.8 | 344.1 | 487.7 | 13.3 | 123.1 | 117. | 154.3 | 1. | 292.4 | 20.21 | 2.520 | 127.8 | 0.0 |
| 5100.00 | c. C14 | 522.9 | 545.1 | 488.3 | 31.3 | 714.0 | 75. | 151.9 | 1. | 242.5 | 20.22 | 2.556 | 128.C | 0.0 |
| 5110.00 | 0.013 | 522.1 | $545 . \mathrm{C}$ | 486.7 | 37.5 | 761.9 | 89. | 150.9 | 1. | 292.5 | 20.22 | 2.592 | 128.2 | c. C |
| \$120.00 | 0.013 | 522,2 | 544.3 | 488.7 | 37.5 | 162.6 | 64. | 149.7 | 1. | 292.6 | 20.23 | 2.628 | 128.4 | 0.0 |
| \$130.00 | c. Cl^{3} | 5ch.4 | 343.8 | 488.4 | 37.5 | 690.3 | 67. | 148.3 | 1. | 25.20 | 2 C .24 | 2.663 | 128.6 | $0 . \mathrm{C}$ |
| 5140.00 | 0.013 | 520.5 | 542.8 | 488.5 | 37.5 | 690.0 | 68. | 147.0 | 1. | 292.6 | 20.24 | 2.698 | 12 E ¢ | c. C |
| \$150.00 | 0.013 | 519.6 | $542 . C$ | 487.6 | 37.5 | 683.7 | 69. | 145.6 | 1. | 292.7 | 20.25 | 2.733 | 129.c | c. C |
| \$160.00 | 0.015 | 518.6 | 341.0 | 487.1 | 37.5 | 677.4 | 69. | 144.2 | 1. | 292.7 | 20.26 | 2.768 | 129.8 | 0.0 |
| S170.00 | 0.013 | 517.6 | 540.C | 486.1 | 41.6 | -71.1 | 70. | 143.1 | 1. | 292.E | 20.26 | 2.802 | 129.4 | c. C |
| \$180.00 | 0.013 | 516.6 | 539.1 | 486.2 | $41 . t$ | $6 t 4.9$ | 70. | 141.6 | 1. | 292.8 | 20.27 | 2.835 | 129.6 | 0. 0 |
| 3490, 90 | 0.013 | 515.6 | 338.1 | 485.8 | $41 . t$ | 658.7 | 10. | 140.4 | 1. | 252.8 | 20.28 | 2.869 | 129.8 | 0.0 |
| \$200.00 | $0 . C 13$ | 514.7 | 337.1 | 485.3 | 41.6 | 652.7 | 70. | 2.5 | 0. | 282.9 | 20.28 | 2.902 | $13 \mathrm{c} . \mathrm{c}$ | 0.0 |
| \$210.00 | 0.011 | 513.7 | 535.9 | 483.5 | 41.6 | 662.8 | 17. | 2.6 | 0. | 292.9 | 20.29 | 2.902 | 13 c .6 | $0 \cdot \mathrm{C}$ |
| \$220.00 | 0.011 | 513.2 | 535.3 | 483.2 | 41.6 | 670.5 | 17. | 2.6 | 0. | 292.9 | 20.30 | 2.903 | 130.0 | 0.0 |

Table B. 5 (continued)

Itme	Prel	cocuz	LYAR	LSHRC
\$2 30,00	0.011	512.	534.7	482.4
$3<40.00$	0.uit	512.3	334. 3	481.8
s250.00	0.012	512.2	534.0	481.3
3260.00	0.012	512.1	533.9	$4 \mathrm{Al.0}$
\$270.00	0.cts	512.2	533.9	480.8
3280,00	0.012	512.3	534.C	480.6
5290.00	0.012	512.5	534.1	480.5
\$300.00	0.012	512.7	534.3	480.4
3316.00	$0 . \mathrm{Cl2}$	\$12.9	314.	489,3
3320.00	0.012	513.2	534.7	430.3
53, 3.00	0.012	513.4	394.	480.2
5340.00	0.012	513.7	535.1	480.4
5350.00	0.012	514.6	535.4	480. 3
2360,00	0.012	514,3	535.7	480.3
5370.00	0.612	514.6	536.0	480.3
3380.00	0.012	514.9	536.1	480.4
\$390.00	e.012	515.3	536.6	480.5
5400.00	0.012	515.6	336.9	480.6
3410.00	c.C12	515.6	536.8	480.4
\$420.00	0.012	515.7	336.4	480.3
\$430.00	0.012	515.8	$337 . C$	480.1
5440.00	0.612	516.0	537.1	480.0
3450.00	0.012	ste. 1	537.2	473.5
3460.00	0.012	516.2	537.2	479.8
3470.00	$0 . C 12$	516.4	537.3	479.6
>480.00	0.612	516.5	537.4	479.5
\$490.00	0.012	516.6	537.5	477.4
\$500.00	0.012	\$16.7	537.6	479.3
\$510.00	c.C12	516.9	337.1	479.2
3520.00	0.012	517.0	537.8	419.C
3530.00	0.012	517.1	337.8	418.9
5540.00	C. 212	517.3	537.9	478.8
2550.00	0.012	517.4	338.6	478.7
\$300.00	0.012	517.5	338.1	474.6
\$510.00	$0 . \mathrm{Cl2}$	517.7	538.2	478.5
5580.00	0.012	517.8	538.3	478,4
5590.00	0.012	¢13.0	538.4	478.3
\$600.00	0.012	518.1	538.5	478.2
5610.05	$0 . \mathrm{Cl2}$	518.2	538.t	478.1
5620.00	0.012	518.4	53日. 1	$478 . \mathrm{C}$
\$630.00	0.012	518.5	538.8	417.9
5640.00	$0 . \mathrm{Cl2}$	518.7	538.8	477.8
5650.00	3.012	518.e	539.C	471.1
3660,00	0.012	518.9	\$39.1	471.6
3670.00	C.Cl2	514.1	339.2	477.5
3680.00	0.012	519.2	339.3	471.4
3690.00	0.012	519.4	539.4	411.3
\$700.00	0.012	519.5	539.5	471.2
5710.00	c.ciz	519.7	539.6	477.1
5720.00	0.012	519.8	539.7	477.6
5730.00	0.012	520.0	539.8	471.6
5740.00	$0 . \mathrm{Cl12}$	52 c .1	539.9	475.
5750.00	0.012	520.3	540.C	416.8
5780.00	0.012	520.4	540.1	476.1
5770.00	0.612	52C.6	340.2	476.7
2780.00	$0 . \mathrm{c} 12$	520.7	540.3	476.6
5790.00	0.012	520.9	540.4	476.5
\$800.00	0.012	524.0	340.7	476.4

$-5 T$

ccgrel 0.
0.
0.
0.
0.

T6C\%	PTEw	LwSpay	TwSpay	¢ECC
253.6	20.30	2.904	130.0	0.0
$283 . \mathrm{C}$	2 C .31	2.905	$13 \mathrm{C}, \mathrm{c}$	0.0
293.0	20.32	$2.90 t$	$13 \mathrm{C} \cdot \mathrm{C}$	c. C
293.0	20.32	2.907	130.6	0.0
253,6	26.33	2.908	13 c . 6	0.6
293.1	20.33	2.909	13C.C	c.e
293.1	20.34	2.911	130.0	c.c
283.1	26.34	2.912	$130 . \mathrm{C}$	0.0
293.1	20.34	2.913	13 C .6	c. 0
293.1	20.35	2.914	$130 . \mathrm{c}$	0.0
293.1	20.35	2.915	136.0	0.0
293.2	2C. 36	2.916	13c.c	0.6
293.2	20.36	2.518	136.6	c.e
293.2	20.37	2.919	130.1	0.0
293.2	20.37	2.926	13C.1	0.0
293.2	20.38	2.521	$13 \mathrm{C}, 1$	c. C
293.2	20.38	2.922	136.1	c. 6
283.3	20.39	2.924	130.1	0.0
293.3	20.35	2.926	13C.1	c. c
293.3	20.40	2.925	136.1	c.e
293.3	20.40	2.925	130.1	$0 . \mathrm{c}$
293.3	20.41	2.925	13C.1	0.0
293.3	20.41	2.925	13C.1	c.c
293.4	20.41	2.925	130.1	0.0
283.4	20.42	2.925	13C.1	0.0
293.4	20.42	2.925	136.1	c.e
293.4	20.43	2.925	130.1	c.e
293.4	20.43	2.925	130.1	0.C
283.5	$2 C .44$	2.925	13C.1	c.e
293.5	20.44	2.925	136.1	0.6
283.5	20.45	2.925	130.1	0.0
283.5	20.45	2.925	13C.1	0.0
293.5	20.46	2.525	$13 \mathrm{C}$.	c. C
293.6	20.46	2.925	130.1	0.0
283.t	20.46	2.925	13 C .1	0.0
293.6	20.47	2.925	13C.1	c.
293.6	20.47	2.925	130.1	0.0
293.7	20.48	2.925	130.1	0.c
293.7	20.48	2.925	13 C .1	c.c
293.7	20.49	2.925	130.1	c.e
293.7	20.49	2.924	130.1	0.0
293.7	2 c .5 C	2.524	136.1	0.0
293.8	20.50	2.924	136.1	c.
293.8	20.59	2.924	130.1	0.0
293.6	20.51	2.924	130.1	0.0
293.8	20.51	2.924	$13 \mathrm{C} \cdot 1$	c.e
293.9	20.52	2.924	130.1	c. C
293.9	20.52	2.924	130.1	0.0
293.5	20.53	2.524	13C.1	r
294.0	20.53	2.924	130.1	, t
284.0	20.54	2.924	130.1	0.
254.6	20.54	2.924	130.1	0.1
294.0	20.55	2.926	13C.1	c. 6
294.:	20.55	2.924	130.1	. 0
294.1	20.55	2.924	13C.1	0.0
294.1	20.56	2.924	13C.1	c.e
294.2	20.56	2.924	130.1	c.e
294	20.57	2.924	130.1	$0 . \mathrm{C}$

Table B. 5 (cont 1nued)

IME	EL		AR	
>10.00,	0.012	521.2	540.6	
5820.00	0.01	521	540	
5830.00	c. $\mathrm{Cl}^{2} 2$	521.5		
5840.00	0.012	521.7	54	
5850.00	0.012			
5860.00	$0 . C 12$	522	54	
5870.00	$0 . \mathrm{Cl} 12$			
\$880.00	0.012	522.3		
5890.00	$0 . \mathrm{C} 12$			
5900.00	0.012	522		
2910.00	0.012	52	54	
\$920.00	0.612	32		
5930.co	0.612	52	34	
5740.00	0.012			
5950.00	0.012	523.5	542	475
5760.00	0.612	523.	542	
5970.00	0.612	523		
5980.00	0.012	524.	542	
\$990.00	$0 . C 12$	524.	542	
6000.00	0.012	524.4		
6010.00	0.012	524	54	
6020.00	0.012	524	343	
5030.00	0.611	525.	543.	
6040.90	0.011	525.	543	
6050.30	0.011	525.4	543	47
6060.co	$0 . \mathrm{Cl1}$	525.	54.	
6070.00	0.011	525	344	47
6080.00	0.011	S20	344	415
6090.00	c.c11	526		
-100.00	0.011	526.	54.4	475
6110.00	0.011	526.6	544.	475
6120.00	0.011	526	34	47
6136.00	0.611	527.0	545	475
0140.00	0.011	527.		
6150.00	0.011	527	54	475
6160.00	$0 . \mathrm{CLI}$	527		
6170.00	0.011	527.8	545	
6180.00	0.011	528.0	545	
6190.00	0.611	528.2		
6200.00	0.011	528	540	
6210.00	0.011	528.7		
6220.00	0.011	528.9	546	41
6230.00	$0 . \mathrm{Cli}$	529.		
0240.00	0.011	524.3	546.	415
6250.00	0.011	529.5	547.1	
6250.00	0.611	529		
6270.00	0.011	530.0	547	47
0280.00	0.011	530.2	547.6	475
6290.00	$0 . \mathrm{CH}$	530.4	547	
6300.00	0.011	23C.7	548.	415
6310.00	0.011	530.9	348.	415
6320.00	0.011	531.2	348	475
6330.co	e.cil	531.4	548.6	475.
6340.00	0.011	531.6	548	476
6350.00	0.017	530.9	349	478
636C. 00	c. 12	531.1		478
0370.00	0.011	S31.3		
6380.00	0.011			

wrest	WSTC	logrel
6.	c. 0	0.
6.	0.0	0.
6.	0.0	0.
6.	0.0	0.
6.	c. 0	0.
6.	0.0	0.
6.	0.0	0.
6.	c. 0	0.
6.	c.0	0.
6.	0.0	0.
5.	c. 0	0.
5.	c. 0	c.
5.	0.0	0 .
5.	0.0	0.
5.	0.0	c.
5.	0.0	0.
5.	0.0	0.
5.	c.n	c.
5.	c. 0	0.
5.	0.0	0.
5.	c. 0	0.
5.	0.0	0.
5.	0.0	\bigcirc
5.	0.0	0.
5.	c. 0	c.
5.	0.0	0.
5.	0.0	0.
5.	c. 0	0.
5.	c. 0	0.
5.	0.0	0.
4.	c. 0	0.
4.	c. 0	0.
4.	0.0	0.
4.	0.0	0.
4.	c. 0	c.
4.	0.0	0.
4.	0.0	0.
4.	c. 0	0.
4.	c. 0	c.
4.	0.0	0.
4.	0.0	0.
4.	0.0	c.
4.	0.0	0.
4.	0.0	0.
4.	0.0	c.
4.	0.0	0.
3.	0.0	0.
3.	c. 0	0.
3.	0.0	0.
3.	0.0	0.
3.	0.0	0.
3.	c. 0	c.
3.	0.0	0.
3.	0.0	0.
148.	212.7	1.
4 .	0.0	0.
5.	0.0	0.
4.	0.0	0.

Ptions	LwSPay	Twspay	nECC
20.57	2.924	136.1	0.4
20.58	2.923	130.1	0.0
20.58	2.923	13C.1	c. ${ }^{\text {c }}$
20.59	2.923	130.:	e. 5
20.59	2.923	130.1	0.0
20.6 C	2.923	13 c -1	0.0
20.60	2.923	13 C .1	c.c
20.61	2.923	$130-1$	0.0
20.61	2.923	13 C .1	0.0
20.61	2.923	13c.1	c. C
20.62	2.923	13 c . 1	c.c
20.62	2.923	130.1	0.0
20.63	2.523	13c.c	c. c
20.63	2.923	136.0	c.e
20.64	2.923	130.0	0.0
20.64	2.923	13c.c	0.0
20.65	2.923	13 c .6	c. C
20.65	2.923	130.0	0.0
20.66	2.923	$13 \mathrm{C}, \mathrm{C}$	0.0
20.56	2.523	13c. 5	c. C
20.67	2.923	$130 . \mathrm{c}$	c. C
20.67	2.922	130.6	0.0
20.67	2.922	$13 \mathrm{c} . \mathrm{C}$	c. c
20.68	2.922	$13 \mathrm{c} . \mathrm{C}$	c. 6
20.68	2.922	130.6	0.0
20.68	2.922	$130 . \mathrm{C}$	0.0
20.69	2.922	13 C .6	c.c
20.70	2.922	130.0	0.0
20.75	2.922	13c.6	0.0
20.71	2.522	13 c . 6	c.e
20.71	2.922	136.c	0.6
20.12	2.922	130.0	0.0
20.72	2.922	$13 \mathrm{C}, \mathrm{C}$	c.c
20.73	2.922	136.c	c.c
26.13	2.922	$130 . \mathrm{C}$	0.0
20.74	2.922	$13 \mathrm{C}, \mathrm{C}$	0.0
20.14	2.922	136.c	c. 1
20.75	2.922	$130 . \mathrm{c}$	0.0
20.75	2.922	13c.c	0.0
20.75	2.922	$13 \mathrm{C}$. -	c. C
20.76	2.922	130.0	c.e
20.76	2.922	130, C	$0 . \mathrm{e}$
2 c .71	2.921	13c.	c. C
20.77	2.921	$13 \mathrm{c}, \mathrm{c}$	c. C
20.78	2.921	130.0	0.0
20.78	2.321	13C.c	0.0
20.79	2.521	:3C.c	c. C
20.79	2.921	130.6	0.0
2 c .8 C	2.921	13 C .5	0.0
20.80	2.921	136.5	c. C
20.81	2.921	$130 . \mathrm{c}$	0.6
$2 \mathrm{C}$.	2.921	130.0	0.0
2 C .82	2.521	136.6	c.e
20.82	2.921	130.0	c.e
20.83	2.965	130.3	0.0
20.83	2.968	13C.3	0.0
20.84	2.968	13C.3	c.c
20.84	2.968	130.3	$0 . \mathrm{C}$

${ }^{p}$	* Tost	uste	LOGREL
[673.6	4.	0.0	0.
1077.2	4.	c. 0	-.
1080.7	4.	0.0	c.
1084.3	4.	0.0	0.
$1 \mathrm{C}_{67.7}$	4.	c. 0	\bigcirc -
1091.4	4.	0.0	c.
1086-6	4.	0.0	0.
1698.	4.	0.0	0.
1161.3	4.	c.0	c.
1104.6	4.	0.0	0.
1167.9	4.	0.0	0.
1111.2	4.	c.0	0.
1114.4	4.	c. 0	c.
1053.7	151.	215.2	1.
1062.6	6.	c. 0	0.
1067.2	6.	0.0	¢.
1071.7	6.	0.0	0.
167.3	6.	0.0	0.
$1 c^{\text {ce. }}$?	6.	c. 0	c.
1083.2	6.	0.0	0.
	6.	0.0	0.
1094.c	6.	0.0	c.
1098.3	6.	c.0	c.
1102.6	6.	0.0	0.
116.8.	6.	c. 0	0.
1111.0	6.	0.0	c.
1113.2	6.	0.0	0.
$1 \mathrm{Cs2} .0$	156.	215.3	1.
10t4.2	9.	C. 0	c.
1071.0	10.	0.0	0.
1077.s	10.	0.0	0.
1083.9	1 c .	c. 0	0.
1090.1	10.	0.0	c.
1096.1	10.	0.0	0.
1162.0	9.	0.0	0.
1107.7	9.	0.0	c.
1113.2	9.	0.0	0.
1073.3	162.	220.1	1.
1059.9	11.	f.0	c.
1068.7	13.	0.0	0.
$1 \mathrm{Cl7} .3$	' 6	0.0	0.
1085.3	14.	c. 0	0.
1092.9	14.	0.0	c.
1100.0	13.	0.0	0.
$11 \mathrm{Cb}$.	12.	c. 0	0.
1113.2	11.	c. 0	c.
1073.2	166.	221.5	1.
1052.a	122.	218.4	1.
1064.7	15.	0.0	0.
1073.8	15.	0.0	0.
1082.3	16.	0.0	0.
1090.3	15.	c. 0	c.
1097.8	14.	0.0	0.
1164.9	13.	c. 0	0.
1111.7	12.	c. 0	e.
1083.7	164.	224.8	1.
1054.9	125.	220.0	1.
1063.4	15.	c. 0	0.

NNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

InSPA

2.968	13 C
2.968	130.3
2.968	13C. 3
2.967	13C.3
2.967	136.3
2.967	130.3
2.567	13 C .3
2.96)	136.3
2.967	130.3
2.967	13C. 3
2.967	13 C .3
2.967	130.3
2.967	13C. 3
3.cot	13C.5
3.017	$130 . t$
3.017	130.6
3.617	130.6
3.017	130.6
3.016	130.6
3.016	13C.t
3.016	13C.t
3.016	130.6
3.1016	13C.t
3.C16	$13 \mathrm{c} . \mathrm{t}$
3.016	130.6
3.016	130.6
3.616	$13 \mathrm{C}, \mathrm{t}$
3.066	$13 \mathrm{C}$.
3.071	130.9
3.671	13 C .9
3.671	$13 \mathrm{C}, 5$
3.071	130.9
3.C71	13 c .9
3.c71	13 c .5
3.071	136.9
3.071	130.9
3.071	13C.s
3.103	131.1
3.144	131.3
3.144	131.3
3,144	131.3
3.144	131.3
3.144	131.3
3.144	131.3
3.144	131.3
3.144	131.3
3.179	131.5
3.231	131.8
3.239	131.e
3.239	131.8
3.239	131.8
3.239	131.8
3.239	131.8
3.239	131.8
3.239	131.8
3.263	$132 . \mathrm{C}$
3.316	132.3

time	Prel	Locvz	lyar	LShrc	mind	P	*TCSt	WSTC	locrel	160\%	P ICwG	LwSPAY	ThSpav	HECC
6,70.00	0.011	530.9	549.1	478.4	c. C	$1 \mathrm{Cl2.6}$	16.	0.0	0.	299.7	21.16	3.332	132.4	c.e
6980.00	0.011	530.7	348.8	417.8	c. 0	1081.3	16.	0.0	0.	299.7	21.17	3.332	132.4	0.0
-990.00	0.c11	530.4	548.4	417.2	0.0	1089.5	15.	c. 0	0.	299.8	21.17	3.331	132.4	0.0
7000.00	0.011	530.0	S48.C	476.6	0.0	1097.3	14.	0.0	0.	299.8	21.18	3.331	132.4	c.e
1010.00	0.011	529.8	547.6	416.5	0.0	1104.7	13.	c.0	0.	299.9	21.18	3.331	132.4	c.e
7020.00	0.011	529.6	547.3	475.6	0.0	1111.6	13.	c. 0	c.	259.9	21.19	3.331	132.4	0.0
7030.00	9.014	529.5	547.6	476.6	4.0	1084.7	164.	226.2	1.	3C6. $¢$	21.19	3. 356	132.5	c. c
1040.00	0.014	528.5	547.2	477.5	c.e		126.	221.6	1.	300.1	21.20	3.409	132.8	c. ${ }^{\text {c }}$
7050.00	0.011	527.1	546.2	476.5	0.0	1003.6	16.	0.0	c.	$3 \mathrm{Co}$.	21.21	3.425	132.9	0.0
7060.00	0.611	527.6	546.0	476.1	0.0	1072.7	16.	0.0	0.	3 CO .2	21.22	3,425	132.9	0.0
1070.00	0.011	521.4	545,7	475.5	c. ${ }^{\text {c }}$	1081.5	16.	0.0	0.	300.2	21.22	3.425	132.9	c. 0
1080.00	0.011	527.2	545.3	474.9	0.0	1689.8	15.	c. 0	c.	300.3	21.23	3.425	$1 \geq 2.9$	0.0
7090.00	0.611	526.9	544.9	474.3	0.0	1091.9	15.	0.0	0.	$3 \mathrm{CL}$.	21.23	3.425	132.9	0.0
1100.00	0.011	526.6	544.0	473.8	0.0	1103.6	14.	0.0	0.	300.4	21.24	3.424	132.5	c. C
1110.00	0.011	526.4	544.3	473.3	c.c	1113.6	13.	c. 0	0.	300.4	21.24	3.424	132.8	C. C
720.00	0.014	526.3	544.7	474.8	0.0	1076.8	167.	225.7	1.	3 Cc .5	21.25	3.460	133.1	0.0
1130.00	e. 014	525.0	543.8	475.2	0.0	1052.3	128.	221.4	1.	$3 \mathrm{Co.6}$	21.26	3.513	133.4	c.e
7140.00	0.011	524.4	343.0	474.2	c. C	C65. 3	16.	0.0	-	300.7	21.26	3.518	133.4	c.e
7150.00	0.010	524.3	542.8	473.7	0.0	$1{ }^{1} 74.5$	16.	0.0	c.	$3 \mathrm{CO}, 7$	21.27	3.518	133.4	0.0
760.00	0.c10	524.1	542.5	473.1	0.6	1083.3	16.	0.0	0.	3 CO .1	21.27	3.518	133.4	0.0
7170.00	0.610	523.9	542.2	472.6	c. 0	1681.8	16.	0.0	0.	300.8	21.28	3.518	133.4	0.6
7180.00	0.011	523.6	341.9	412.0	0.0	1689.9	15.		c.	3 CO .8	21.29	3.518	133.4	0.0
П198. 00	0.C11	523.4	541.6	471.5	0.0	1107.8	14.	0.6	0.	3 CO .9	21.25	3.51E	133.4	0.0
1200.00	0.011	523.3	541.3	471.6	0.0	1115.5	14.	233.6	1.	300.9	21.30	3.518	133.4	c. C
1210.00	0.015	522.9	541.t	473.1	0.0	1663.4	168.	224.0	1.	301.0	21.30	3.512	133.7	c.c
1220.00	0.012	521.4	540.3	412.4	0.0	1059.1	17.	0.0	0.	$3 \mathrm{Cl}, 1$	21,31	3.612	133.9	0.0
1230.00	0.011	521.1	539.8	411.7	0.0	1068.3	16.	0.0	0.	3 Cl .1	21.32	3.612	133.5	c. C
7240.00	0.010	521.0	$539 . t$	411.2	c.c	$1 \mathrm{Cl7} .5$	16.	0.0	c.	3 Cl .2	21.32	3.612	133.9	c. C
1250.00	0.010	520.8	539.3	470.7	$0 . \mathrm{C}$	1686.3	16.	0.0	c.	3 Cl .2	21.33	3.612	133.9	0.0
1280.00	0.610	52C.6	339.0	470.1	0.0	1094.8	16.	0.0	0.	3 Cl .3	21.33	3,612	133.9	0.0
1270.00	0.010	520.4	539. 7	469.6	c.e	1163.1	15.	0.0	0 .	301.3	21.34	3.612	133.9	c.e
1280.06	6.010	520.2	538.5	469.1	0.0	1114.2	15.	C. 0	0.	301.4	21.35	3.612	133.9	0.0
1290.00	0.614	52c. 2	538.7	470.1	0.0	1087.0	166.	229.0	1.	$3 \mathrm{Cl}, 4$	21.35	3.636	134.1	0.0
1300.00	0.014	519.1	538.2	471.0	0.0	1054.4	125.	223.0	1.	301.5	21.36	3. ${ }^{\text {c9C }}$	134.4	c.t
7310.00	6.011	518.0	536.9	467.7	0.0	1064. 1	17.	c.0	0.	301.6	21.37	3.703	134.4	$0 . \mathrm{c}$
1320.00	0.010	517.9	536.7	469.2	0.0	1073.4	16.	0.0	c.	3 Cl .6	21.37	3.703	134.4	0.0
1330.00	0.010	517.8	536.5	468.8	0.0	1082.5	16.	0.0	0.	3 Cl .1	21.38	3.763	134.4	c. C
7340.00	0.010	517.6	536.2	468.8	c. 6	1691.3	16.	0.0	0.	301.7	21.38	3.703	134.4	0.e
7350.00	0.010	517.4	535.9	467.7	0.0	1ico. 6	16.	0.0	0.	3 Cl .8	21.39	3.703	134.4	0.0
1360.00	0.610	527.3	535.1	467.2	0.0	1100.4	15.	0.0	0.	$3 \mathrm{Cl} . \mathrm{e}$	21.39	3. 703	134.4	0.0
1370.00	0.011	517.1	535.5	467 c	c.e	11 C 3.5	114.	232.8	1.	301.8	21.40	3.708	134.5	c. ${ }^{\text {c }}$
1380.00	0.015	516.6	335.6	468.8	0.6	1062.c	109.	224.8	1.	301.9	21.41	3.763	134.8	0.0
1390.00	c. 611	514.y	534.0	467.7	0.0	1060.6	24.	0.0	0.	$3 \mathrm{C2} . \mathrm{c}$	21.42	3. 795	135.6	0.0
1400.00	0.010	514.8	533.8	467.2	0.0	[C70.3	17.	0.0	0.	302.1	21.42	3.785	135.6	c. c
1410.00	0.010	514.7	533.6	406.7	0.0	1679.6	16.	0.0	0.	302.1	21.43	3.795	$135 . \mathrm{C}$	0.0
1420.00	0.016	514.6	333.4	466.2	0.0	1083.6	16.	0.0	c.	$3 \mathrm{C2.1}$	21.43	3.795	135.6	0.0
1430.00	$0 . C 10$	514.4	533.1	465.1	0.0	1097.5	16.	0.0	0.	302.2	21.44	3. 795	135.C	c. C
1440.00	0.010	514.3	532.9	465.2	c.e	1160.2	16.	c. 0	0.	302.2	21.44	3.194	135.c	0.6
1450.00	0.016	514.1	332.7	464.8	c.e	1114.7	16.	c. 0	0.	$3 \mathrm{Cz.3}$	21.45	3.794	$135 . \mathrm{c}$	0.0
7460.00	$0 . C 14$	513.7	532.8	466.4	0.0	1070.4	171.	226.8	1.	3 Cz .	21.46	3.864	135.2	c. $=$
14.70 .00	0.012	512.2	331.5	465.5	c. C	1660.2	22.	0.0	0.	302.4	21.47	3.884	135.5	$0 . \mathrm{c}$
7480.00	0.011	511.8	330.9	465.1	0.0	1069.5	17.	c. 0	c.	3 C 2.5	21.47	3.884	135.5	0.0
7690.00	$0 . \mathrm{cic}$	511.7	530.7	464.7	0.0	1078.8	17.	0.0	0.	$3 \mathrm{C2} 5$	21.48	3.884	135.5	0.0
1500.00	$0 . c 10$	$511 . t$	530.5	404.7	c. C	$1 \mathrm{C8H.c}$	17.	0.0	0.	302.6	21.48	3.884	135.4	c.c
1510.00	0.010	\$11.5	530.3	463.1	0.0	1697.1	17.	0.0	c.	302.6	21.49	3.884	135.4	0.0
1520,00	c.cic	511.3	330.1	463.2	0.0	1100.0	16.	0.0	c.	$33^{2} .7$	21.5 C	3.684	135.4	0.0
1530.00	0.010	511.2	529.9	462.7	0.0	1114.8	16.	0.0	0.	302.7	21.50	3.883	135.4	c. C
1540.00	0.014	510.8	529.9	464.3	c.e	1621.3	171.	227.3	1.	304.8	21.51	3.933	135.7	c. C

Table B.S (continued)

	Pxtt			
Sse.00	0.012	509.2	328.	
7560.00	c.cic	so		
1570.00	0.610	508		
1280.00	0.010			
1590.00	0.010	508		
000.00	c.cic			
1610.00	0.010	So		
1620.00	0.014		S2	
7630.00	c.ci2			
7640.00	0.c10	505		
1050.00	0.015	S0	524	
7660.00	c.cic	505.		
7670.00	0.01	505	524	
1680.00	0.010	sos		
7690.00	0.012	505	324	45
7100.co	0.c14	504	324	
1710.00	0.011	502		
7120.00	0.010	502	$\$ 22$	
7130.00	0.Cio	502	\$22	
1740.00	0.010	502	522	
1750.00	0.010	502.7	321.	
1760.00	$0 . \mathrm{Cl} \mathrm{c}^{0}$	502.6	52	
1770.00	0.013	502	521.	45
1780.c0	0.014	501.1	520	45
1790.00	0.011	500.0	319	456.7
180c.00	0.610	499	319	4
1810.00	0.010	449.9	519	453
1820.00	o.cio	499.8	$\rightarrow 19$	
1830.00	cic	499		
1840.00	0.010	498.7	318	454
8850.00	0.014	499.0	518	
7860.00	O.Ci	497.1	516	455.4
1870.00	0.010	437.1	516	45
1880.00	0.010	497		
1890.00	0.010	491	316	453.8
т906.co	e.cic	497	516	
1910.00	0.610	496	51	
20.00	0.013	496.6	S10	
30.00	$0 . C 14$			
1940.00	0.011	494.1	513	452.9
1950.00	0.010	493.9	513	
1960.00	c.C10	493.8	513	45
1970.00	0.010	483.8	513	451.5
1980.00	0.010	493.7	513	
1990.00	0.010	493.	513	
8000.00	0.61:	493.2	512	451
4010.00	0.014	472.0	512	
3020.00	0.011	490.0	S10	450.5
8030.00	$0 . \mathrm{cic}$	490.6	510	450
\$040.00	$0 . \mathrm{cic}$	490.5	510.	449
8050.00	0.010	490.5	510.	449.1
3060,00	$0 . \mathrm{Cl} \mathrm{c}^{6}$	49 C .4	510	448
3070.00	0.610	496.4	510.1	448
8080.00	0.014	490.0	s09.8	449
90ง0.00	$0 . \mathrm{ci4}$	488.6	509.	449
8100.00	0.010	487.		
8110.00	c.cio	487.3		
8120.00	0.			

wicst	*ST6	LCEREL
23.	0.0	c.
17.	0.0	c.
17.	0.0	0.
17.	c. 0	0.
17.	0.0	c.
17.	0.0	0.
17.	236.0	1.
172.	227.0	1.
28.	0.0	0.
17.	e. 0	0.
17.	c. 0	e.
17.	c.0	c.
17.	0.0	0.
17.	c. 0	c.
148.	233.6	1.
172.	226.4	1.
21.	0.0	0.
11.	c. 0	c.
17.	0.0	0.
17.	0.0	0.
17.	0.0	0.
18.	0.0	0.
173.	230.8	1.
163.	224.2	1.
18.	0.0	c.
17.	0.0	0.
18.	0.0	0.
18.	c. 0	c.
18.	0.0	0.
18.	236.6	1.
173.	228.1	1.
32.	0.0	c.
18.	0.0	0.
18.	c. 0	0.
18.	c. 0	0.
18.	0.0	0.
18.	0.0	0.
175.	231.7	1.
166.	225.1	1.
19.	0.0	0.
18.	c. 0	0.
18.	0.0	c.
18.	0.0	0.
18.	c. 0	0.
18.	c. 0	0.
175.	230.7	1.
159.	224.4	1.
20.	0.0	0.
18.	0.0	0.
18.	0.0	0.
18.	0.0	0.
18.	0.0	c.
18.	0.0	0.
172.	23 c .0	1.
111.	0.0	c.
19.	0.0	c.
18.	0.0	0.
18.		

SPAV	ThSPAV
3.973	135.9
3.573	135.8
3.973	135.5
3.973	135.9
3.573	135.9
3.573	135.5
3.973	135.5
4.028	136.2
4.062	136.4
$4 . \mathrm{CEz}$	136.4
4.062	136.4
$4 . \mathrm{C62}$	136.4
$4 . C 62$	136.4
4.062	136.4
4.070	136.5
4.125	$136 . \mathrm{E}$
4.149	136.9
4.149	136.9
4.145	136.9
4.145	136.5
4.149	136.9
4.145	136.9
4.178	137.1
4.233	137.4
4.236	137.4
4.236	137.4
4.236	137.4
4.236	137.4
4.236	137.4
4.236	137.4
4.291	137.7
4.323	137.9
4.323	137.5
4.323	137.9
4.323	137.9
4.323	137.5
4.323	137.9
4.351	138.0
4.405	138.3
4.415	138.4
4.415	138.4
4.415	138.4
4.415	138.4
4.415	138.4
4.415	138.4
4.451	$138 . t$
4.305	138.9
4.508	138.9
4.508	138.9
4.508	138.5
4.508	138.9
4.508	138.9
4.508	138.5
4.552	139.1
4.603	139.4
4.603	139.4
4.603	139.4

Table B.S (continued)

time	prel	tocyz	Lram	LSmat
8130.00	0.610	481.1	567.1	446.8
8140.00	0.010	487.0	se7.e	446.4
8150.00	0.010	487.0	506.9	445.9
81) 3.00	$0 . \mathrm{Cl} 4$	4 $\mathrm{H6} 6.6$	506.	44.7 .0
9170.00	0.014	485.5	sus.	
6180.00	0.010	484.1	504.	445
8190.00	0.610	-83.9	904. 1	445
3200.00	0.010	483.8	Sc3. 9	444.8
3210.00	0.010	483.7	503.8	444.4
8220.00	0.010	483.7	303.7	446.3
323c.00	c.c1c	483.6	503.7	443.6
8240.00	6,013	$4{ }^{4} 3.4$	503.6	444.1
8 850.00	0.014	482.2	502.b	445.2
3260.60	0.016	$4 \mathrm{HC}$.	501.1	443.4
3270.00	0.016	$4 \mathrm{da} \cdot 5$	300.8	442.7
8280.00	0.010	480.4	300.6	442.4
8290.00	0.016	480.3	500.6	442.0
8300.00	0.010	430.2	500. 5	441.6
8310.00	0.010	466.2	500.4	441.2
8320.00	0.013	436.0	300.3	4.2 .3
8330.00	0.614	478.9	499.4	442.8
8340.00	0.010	471.4	497.6	441.5
8350.00	0.010	477.1	497.5	440.5
8360.00	0.010	417.0	4×7.4	440.0
8370.00	$0 . \mathrm{C} 10$	476.9	4×7.3	439.6
8380.00	0.010	476.8	497.2	439.2
8390.00	$0 . \mathrm{ClO}$	476.8	497.1	438.8
8400,00	0.613	476.6	497.1	$439 . t$
8410.06	0.014	475.5	496.2	440.4
\$420.00	0.010	476.0	494.5	438.1
8430.00	$0 . \mathrm{cic}$	413.7	474.2	438.1
3440.00	0.010	473.6	494.1	$437 . t$
3450.00	0.010	413.5	494.0	437.2
8460.00	0.610	413.4	494.0	436.8
8470.00	0.010	473.4	473.9	436.5
8480.00	0.013	473.2	493.8	437.4
8490.00	0.ci4	412.2	493. 0	438.0
3500.00	0.010	47C. 6	491.3	436.3
as 10.00	0.010	470.3	490.9	435.1
-3520.00	0.010	476.2	470.8	435.3
3530.00	0.610	$47 \mathrm{C}, 1$	490.8	434.9
4540.00	0.010	470.0	490.1	434.5
8550.00	0.010	470.0	490.7	434.1
4560.00	C.C1:	469.8	490.3	434.8
4570.00	0.014	468.1	489.8	435.5
4580.00	0.010	467.2	4 dx .1	433.9
8570.00	$0 . \mathrm{Cil}$	466.9	4 d7. 1	433.3
8600.00	0.010	466.8	487.6	432.9
16 10.00	0.010	406.7	$44^{4} 7.5$	432.5
8620.00	$0 . c 10$	466.6	481.3	412.1
8630.00	$0.6 i c$	4 ct. 5	487,4	431.7
4640.00	0.013	$460 \cdot 3$	487.2	432.3
8650.00	0.614	665.8	486.0	433.2
н6ьc. 00	$0 . \mathrm{CH}$	463.9	484. त	431.6
66 70.00	$0 . \mathrm{Cl} 0^{0}$	463.5	484.4	411.6
\$680.00	0.016	463.4	484.3	430.3
869\%.0C	0.616	463.3	484.3	430.2
8700.00	0.016	463.2	484.7	42

- P - 1	p
0.1	1094.3
c.c	1164.0
$0 . \mathrm{c}$	1113.7
0.0	1079.1
0.0	1652.3
$0 . \mathrm{C}$	1065.7
0.0	1075.e
0.0	1034.8
c.c	$1 \mathrm{CS4.3}$
0.0	1104.0
0.0	1113.6
0.c	1679.4
0.0	1052.6
0.0	1005.7
0.0	1075.2
0.0	1084.7
0.0	1094.3
0.0	1103.9
c. C	1113.6
0.6	1086.4
0.0	1050.1
c. C	1 1063.6
0.0	1075.0
0.0	1084.3
0.0	$1 \mathrm{CS4.1}$
0.0	1163.6
0.0	1113.2
6.0	1681.1
c. C	$1 \mathrm{CSO}, \mathrm{c}$
0.0	1065.3
0.0	1074.7
c. $¢$	$1 \mathrm{CBH}^{\text {a }} 1$
0.0	1093.6
$0 . \mathrm{c}$	1103.2
c.e	1112.8
0.e	1682.8
0.0	1051.4
0.0	1064.7
c.e	1674.1
0.0	1083.6
0.0	1043.1
c. C	1162. 6
0.0	1112.2
0.0	108. ${ }^{\text {a }}$
c. c	1054.9
$0 . \mathrm{c}$	1.64.c.
0.0	1073.5
0.6	1082.7
c. C	$1 \mathrm{CS2} .3$
0.0	1701.8
0.4	:111.2
c. C	1687.8
$0 . \mathrm{c}$	1656. 1
0.0	1063.3
c. C	tc3. 6
0.6	1cet. 9
0.0	1091.4
0.0	1100.8

-rast	nstic	Logrel
18.	0.0	0.
19.	0.0	0.
18.	0.0	0.
173.	229.9	1.
117.	0.0	0 .
20.	c.0	-.
18.	c. 0	c.
18.	0.0	0.
19.	c. 0	c.
19.	0.0	c.
19.	0.0	0.
171.	230.0	1.
115.	c. 0	0.
21.	0.0	0.
18.	0.0	0.
19.	0.0	0.
18.	0.0	0.
19.	0.0	0.
19.	c. 0	0.
170.	236.4	1.
100.	0.0	0.
? 0.	0.0	0.
19.	c. 0	0 -
18.	0.0	0.
18.	0.0	0.
19.	0.0	e.
19.	c.0	c.
170.	230.4	1.
160.	0.0	0.
20.	c. 0	c.
18.	0.0	0.
19.	0.0	0.
19.	c. 0	c.
19.	0.0	0.
19.	0.0	0.
17.	$23 \mathrm{C}$.	1.
10.	224.3	1.
21.	0.0	0.
20.	c. 0	c.
19.	c. 0	c.
17.	0.0	0.
19.	0.0	0.
19.	c.e	c.
170.	231.4	1.
158.	225.1	1.
23.	0.0	0.
19.	c.e	c.
19.	0.0	0.
19.	c. 0	0.
19.	0.0	c.
20.	0.0	0.
169.	231.6	1.
157.	225.4	1.
22.	0.0	0.
19.	0.0	0.
19.	C. 0	\bigcirc.
19.	0.0 0.0	${ }_{0} \mathrm{C}$.

LWSPAV TWSFAV
4.603139 .4
4.603139 .4
4.603139
$\begin{array}{ll}4.603 & 139 . \\ 4.647 & 139 .\end{array}$
$\begin{array}{lll}4.647 & 139.7 \\ 4.696 & 14 C . C\end{array}$

$4 . t 9 e^{4} 14 \mathrm{C} . \mathrm{C}$

4.698
$4.6 \rightarrow 8$
4.60 .6
4.0

$\begin{array}{ll}4.678 & 140.6 \\ 4.698 & 140.0\end{array}$
4.698
$4.69 E$
$4.14 \mathrm{C}$..6

$\begin{array}{ll}4.794 & 140.5 \\ 4.794 & 14 \mathrm{C} .5\end{array}$
$\begin{array}{ll}4.794 & 14 \mathrm{C.} .5 \\ 4.794 & 14 \mathrm{C} .5\end{array}$
4.794140 .5
4.794
4.743
4.74 C .5
4.793
$\begin{array}{ll}4.793 & 14 \mathrm{C.} .5 \\ 4.793 & 14 \mathrm{C} .5\end{array}$
$\begin{array}{lll}4.793 & 14 \mathrm{c.5} \\ 4.835 & 140.7\end{array}$
$4.869141 . \mathrm{C}$
$4.889141 . \mathrm{C}$
4.889141 .6
4.889141 .0
4.889
$141 . \mathrm{C}$
$4.889141 . \mathrm{C}$
$4.8898141 . \mathrm{C}$
$4.889141 . \mathrm{C}$
4.889
$4.141 . \mathrm{C}$

4.889
$4.889141 . \mathrm{C}$

$4.83 C 141.2$
4.984141 .5

$4.984 \quad 141.5$
4.984
.91 .5

$\begin{array}{ll}4.984 & 141.5 \\ 4.584 & 141.5\end{array}$
4.584141 .5
4.984141 .5
4.984161 .5
4.984161 .5
4.984141 .5
4.984141 .5
4.984141 .5 $\begin{array}{ll}5.0<3 & 141.7 \\ 5.077 & 142 . \mathrm{C}\end{array}$ 5.079142 .6 5.079142 .0 5.019142 .6
$5.079142 . \mathrm{c}$
5.075 $\begin{array}{ll}5.079 & 142.6 \\ 5.079 & 142.0\end{array}$ $5.019142 . \mathrm{C}$ $\begin{array}{ll}3.112 & 142.2 \\ 5.166 & 142.6\end{array}$ 5.16142 .8
5.174
5.142 .6 5.174142 .6
5.174
5.114
52.142 .6 5.174142 .6
5.174
142.6 5.174
5.174
$5.142 . t$ 5.174142 .6
5.174142 .6 5.174142 .6
5.205142 .7 5.205142 .7
$5.259143 . \mathrm{C}$ 5.276143 .1 5.261
5.269
5.263 .1 5.269143 .1
5.265143 .1 5.269143 .1

time	rett	LECV2	lyar	15
1 c .	0.616	463.1	434.	
6720.00	0.613	467.0	484.	4
8730.00	0.014	4.2 .5	481	
\$760.00	0.6.1	46	481.6	
8150.00	c.cic	$4 \in C .1$	481.	42
8760.00	0.010	459.9	$4{ }_{4} 1$.	
8770.00	0.010	45	481	
87800	0.cio	439.	480	
8790.00	0.010	453.	48 C	
8800.00	0.0610	457.6	480	
3810.00	0.613	459.4	480.	42
8820.00	0.612	457.	473.	
8830.00	0.216	456.	71.	
8846.00	$0 . \mathrm{CaO}$	450	471	
$8 \mathrm{sco.co}$	$0 . C$ te	456.4	477.	
8860.00	0.010	456.3	477.	425
8870.00	0.010	436.2	471.	42
assc.co	0.610	456.	471	
8890.00	0.013	$456 . \mathrm{c}$	417.	
a 700.00	0.012	454.9	476.	
8910.00	c.cic	453.4	474.	
8920.00	0.016	453,1	474.	42
3430.00	0.019	453.0	414.	
1940.00	0.010	452.9	474	42
4950.00	c.cic	452.	474	
8960.00	0.010	452.8	416	
9970.00	0.013	452	47	42
8980.00	0.614	451	473	
8990.00	0.010	43	471.	42
9000.00	0.010	449.8	471.2	42
9010.00	c.cic	449.7	-71.2	
7020.00	0.610	449	471	420.5
9030.00	0.010	449.5	$4 / 11.1$	42
7040.00	0.c10	449.4	411.1	41
90sc.00	C.C13	449.2	470.8	42
1060.00	0.014	448.7	410.	42
7070.00	0.010	448	46 B	
9080.00	e.cic	446	467	41
1090.00	0.610	446.3	467.	41
7100.00	0.010	446.2	467.	418
9110.00	$0 . C 16$	446.	467	41
9120.00	0.010	446.0	467.8	
9130.00	0.012	445.8	467.	41
9140.00	$0 . \mathrm{CL} 4$	445.6	467.	418
9150.00	$0 . C 11$	443.5	465.	417
4160.00	0.010	443.0	464.	416
9170.00	0.010	442.9	464.	416
9180.00	0.610	442.8	464.	415
1190.00	$0 . C 10$	442.7		415
9200.00	0.010	442.6	464	415
7210.00	0.616	442.5	464.	414
7220.00	0.013	442.4	464.2	416
9230.00	0.012	440.6	S2.3	425.3
7240.00	0.010	439.7	461.5	414.3
925 c .00	0.016	434.5	461	41
1200.00	. 010	439.4		41
9270,00	0.010	439.3	401.4	
1486.00	.	439.2		

W14s	${ }^{9}$
0.0	1110.3
0.0	1095.3
c.c	1-60. 1
0.0	1060.1
0.0	106\%.5
c. c	167\%.8
0.6	$1 \mathrm{CBE}, \mathrm{C}$
0.0	1091.5
c. $¢$	11 co. 9
0.0	1111.6
0.0	1671.8
0.0	1057.8
c.e	[Cod. 1
0.0	1071.4
0.0	1080.7
$0 . \mathrm{C}$	1050.1
0.0	116.5.4
0.0	1114.9
c. 6	1076.6
0.0	1056.3
0.0	1060.6
0.0	1075.9
c. C	iCES. 2
0.0	1094.4
0.0	1103.8
c. ${ }^{\text {c }}$	1113.2
0.0	1081.3
0.0	1050.3
c. C	1605.0
0.0	1074.2
0.0	1083.4
0.0	1092. 7
c.c	1162.0
0.0	1111.4
0.0	1085.0
c. c	1056.3
0.6	1063.2
0.0	1072.2
c.c	$1 \mathrm{Cem}^{\text {es }}$
0.6	1 CsO .8
0.0	1100.0
0.0	1104.3
c.e	1690.9
0.0	1063.5
0.0	1060.9
c. C	1670.1
$0 . \mathrm{c}$	1079.3
0.0	10856
c. C	1057.8
0.0	1ict.
0.0	1111.7
0.0	1072.0
c. C	16Se.c
0.0	1067.9
0.0	107\%.0
c. 6	168.-1
0.0	1095.4

*Tast	75\%	LOGREL
19.	c. 0	0 ,
170.	232.6	1.
169.	226.3	1.
25.	c.e	c.
19.	0.0	0.
19.	0.0	0.
20.	c. C	0.
19.	0.0	0.
20.	0.0	0.
88.	236.0	1.
166.	228.6	1.
46.	0.0	0.
20.	0.0	0.
19.	0.0	c.
19.	0.0	3.
19.	0.0	0.
20.	c.c	0.
20.	0.0	0.
166.	229.5	1.
66.	0.0	0.
20.	c.e	c.
19.	0.0	0.
19.	0.0	c.
19.	0.0	6.
19.	0.0	0.
19.	0.0	0.
166.	$23 \mathrm{C}$.	1.
154.	0.0	0.
21.	0.0	0.
19.	c. 0	0.
19.	0.0	c.
19.	0.0	0.
19.	c. 0	0.
20.	c.0	c.
167.	231.6	1.
155.	225.4	1.
22.	0.0	c.
20.	0.0	0.
19.	0.0	0.
19.	c. 0	c.
19.	0.0	c.
20.	0.0	0.
165.	233.3	1.
166.	227.0	1.
27.	0.0	0.
20.	0.0	0.
20.	c. 0	c.
19.	0.0	0.
19.	0.0	0.
19.	c. 0	0.
66.	236.1	1.
104.	228.6	1.
45.	c. 0	0.
20.	0.0	c.
20.	0.0	0.
20.	0.0	0.
19.	c. 0	0.

Table B. 5 (continued)

	PREL		Irar	
$92+0.00$	0.010		461.3	
7300.00	0.613			
9310.00	0.013	438.0		
7320.00	0.010	436.4	458	
9330.00	0.010		4 s	
9340.00	0.010	436.0	458	
7350.00	0.010	435.9	458	
9360.00	0.010			
9370.00	0.016	435	458	410.2
9380.00	0.013	435.	457	
9390.00	0.013	435.	457	411.4
9400.00	0.010	433.1	455	
9410.00	0.010	432.7	454	
9420.00	0.010	432.6		
743000	O.cic	432.5	454	408.6
4446.00	0.010	432.	454	408.3
9450.00	0.010	432.	-36	407.9
*460.60	C.cto	432.	456	
9470.00	0.013	432.	454	$40 \mathrm{H}, \mathrm{E}$
9480.00	0.012	430.3	432	408.2
9490.00	0.010	424.4	451	
500.00	0.010	429.2	451	406.6
9510.00	0.010	429.1	451	406. 3
9520.00	0.010	429.1	451	406.0
3530.00	$0 . \mathrm{ClC}$	428	451	
9540.00	0.010	428.	451	
9350.00	0.013	428.	451	406.0
9560.00	0.613	426	450	406.5
9570.00	0.010	426.	44 A	404.9
9580.00	0.010	425.	448	404.2
9590.00	0.010	425.5	448	
9600.00	0.010	425.3	447	403
9610.00	0.010	425.1	447	
*620.00	0.010	424.8	447	
9630.00	C.Cil	424.3	447	402.5
9640.00	0.013	423.7	446	
9650.00	0.011	419	442	400.5
9660.00	0.cic	418.2	440	
9670.00	0.010	417.9	440	3
1680.00	0.010	417.8	440.	398.1
9690.00	0.010	417.	440	397.8
9700.00	0.010	417.3	440	39
9710.00	0,010	417.2	440	397
+120.06	0.013	416.6	439.	397
130.00	0.C13	414.	437	396
9740.00	2.010	411.1	433.9	344.0
7750.00	0.010	410.8	433.6	393
9760.00	0.816	410.6	433.	393
7770.00	0.010	416.3	433	
180.00	0.010	410.1	433.3	392
9790.00	0.010	409	433.3	391.9
9800.00	0.012	409.7	432.	$3+2.6$
+810.00	0.013	409.0	41	30
220.00	0.011	400		390
830.00	$0 . \mathrm{Cl}$ c	40		
340.00	0.c09			
4850.00	0.007	406.8	430.1	190
60. 0	$0.6 C$			

$\begin{array}{r} \text { NINJ. } \\ 0.0 \end{array}$
0.0
c. c
c. 0
0.0
c.e
0.0
0.0
c. C .
C.C
0.0
c. C
0.0
0.0
c. c
0.0
0.0
c. ${ }^{\text {c }}$
0.0
c. 0
C. ${ }^{\text {c }}$
0.0
c. C
$0 . \mathrm{C}$
0.0
0.0
0.0
0.0
c.c
0.0
0.0
C. 0.0
0.0
0.0
0.0
0.0
0.0
c. C
0.0
0.0
c. C
0.0
0.0
0.0
0.0
0.0
c. c
c. 0
0.0
c. C
0.0
0.0

*T0s 1	*STC	legrel	16L*
20.	c. 0	c.	311.5
164.	230.1	1.	311.5
113.	0.0	0.	311.6
21.	0.0	0.	311.7
20.	0.0	0.	311.7
20.	0.0	0.	311.7
19.	c.e	c.	311.8
19.	c. 0	c.	311.8
20.	0.0	0.	311.9
165.	232.0	1.	311.9
155.	225.8	1.	312.0
26.	0.0	0.	$312 . \mathrm{c}$
20.	0.0	c.	312.1
19.	0.0	c.	312.1
19.	0.0	0.	312.2
20.	0.0	0.	312.2
20.	c.0	e.	312.2
20.	236.9	1.	312.3
162.	228.8	1.	312.3
55.	c. 0	0.	312.4
22.	0.0	c.	312.5
20.	9.0	0.	312.5
20.	0.0	0.	312.5
20.	0.0	c.	312.6
20.	0.0	0.	312.6
20.	0.0	0.	312.7
164.	231.1	1.	312.7
151.	224.8	1.	312.8
23.	0.0	0.	312.8
2 C .	c.e	0.	312.9
20.	c. 0	c.	312.8
20.	0.0	0.	313.6
20.	0.0	0.	313.0
21.	0.0	0.	313.6
161.	233.3	1.	313.1
164.	226.9	1.	313.1
3 C .	c.0	0.	313.2
20.	c. 0	0.	313.2
20.	0.0	0.	313.3
2 c .	c. 0	0.	313.3
20.	c. 0	c.	313.4
20.	0.0	0.	313.4
20.	0.0	0.	313.5
162.	$23 \mathrm{C}$.	1.	213.5
149.	0.0	0.	313.6
22.	0.0	0.	313.6
20.	c. 0	0.	313.7
20.	c.0	0.	313.7
20.	0.0	0.	313.3
2 c .	0.0	0.	313.8
20.	0.0	c.	313.8
158.	233.3	1.	313.9
160.	226.9	1.	313.9
22.	0.0	c.	314.0
20.	0.0	0.	314.1
2 c .	0.0	0.	314.1
20.	c. 0	c.	314.1
21.	0.0	0.	314.

PTCu	twspay	TwSpav	wecc
22.68	5.938	146.7	0.0
22.68	5.982	146.8	c. C
22.70	6.034	147.2	c.e
22.11	6.033	147.2	0.0
22.12	6.C33	147.2	0.0
22.12	$6 . C 33$	147.2	c. ${ }^{\text {c }}$
22.73	6.033	147.2	0.0
22.13	$6 . C 33$	147.2	0.0
22.74	6.033	147.2	c.e
22.75	6.061	147.4	c. C
22.75	6.115	147.6	0.0
22.16	6.131	147.7	c.t
22.17	6.131	167.7	0.6
22.78	6.131	147.7	0.0
22.78	6.131	147.7	0.0
22.79	6.131	167.7	c. C
26.88	6.131	147.7	0.0
22.8 C	6.131	147.7	0.0
22.81	6.186	$148 . C$	c.e
22.82	6.227	148.2	0.6
26.83	6.226	148.2	0.0
22.83	6.226	148.2	c. c
22.84	6.226	148.z	c.c
22.85	6.226	148.2	0.0
22.85	6.226	148.2	0.0
22.86	$6.22 t$	148.2	c.e
22.87	6.262	148.4	0.0
23.87	6. 317	148.7	0.0
26.88	6.322	148.8	c. C
22.89	6.322	148.8	0.5
22.90	6.322	148.8	0.0
22.90	6.321	$14 \mathrm{E} \cdot \mathrm{E}$	c. C
22.91	6.321	148.8	c.e
22.92	6.321	148.7	0.0
22.92	6.338	148.8	0.0
22.93	6.393	149.1	c. C
22.94	6.420	149.3	0.0
22.95	6.42 C	149.3	c. 0
22.95	6.420	149.3	c.e
22.96	6.419	149.3	c.e
22.97	6.419	149.3	0.0
22.97	6.419	149.3	c. C
22.98	6.419	149.3	c. C
22.99	6.464	149.5	0.0
23.06	6.518	149.8	0.0
23.00	t.517	149.8	c.c
23.01	6.517	149.8	0.0
23.62	6.517	149.8	0.0
23.02	6.517	145.8	c. C
23.03	6.517	149.8	0.5
23.04	6.517	149.8	0.0
23.04	6.534	145.5	0.1
23.05	6.589	150.2	c.e
23.06	6.613	150.3	0.0
23.c7	6.613	15 C .3	0.0
23.08	6.613	150.3	c.c
23.08	6.612	150.3	0.0
23.cs	6.612	150.3	0.0

Table B. 5 (continaed)

70.	0.609			
28sc, 00	c.Cit			
+840				
500,00				
± 91	0.0			
4*20.00	O.			
1930.00	0.00			
50				
9960.00	$0 . \mathrm{Cl}$	40	4	
1970.00	O.			
80				
1970.00				
10000,00				
10010.00	0.00	40	4	
2020.00	.			
10030.00	0.00		42	
0040.00	. 00	38	$4<3$	
1005 C .00	0.ci			
10060.09	0.01			
0ro.0	,	39		
10080.00	0.co	39		
10070,00	0.00		42	
100000	0.00		420	
110.06	c.cu		420	
0.00	0.0	34	420	
10130.00	0.01			
10140.00	0.01			
1150.00	O.c			
60,00	$0 . \mathrm{c}$			
170.0	0.00	393	41	
10180.00	c.cu	393	41	
	6.0			
200.00	0.01			
10210.00	0.01		41	
20.00	0.01			
0230.00	0.01	39	41	
10240.00	0.00			
235.0	C.co	39	4	
10260.00	0.00	$3>0$	41	
-	0.00	389		
1028 cc 00	$0 . \mathrm{Ct}$	365		
10290.00	0.01		411	
300.00	.			
1310.00	0.60	38		
320.00	a.cu			
10330.00	0.00			
10340.00	0.00	386	411	
10350.00	c.co	386	411	
10360.00	0.013	385	409	
10370.00	0.01	384		
10380.00	0.61	3,	407.8	
10390.00	0.009			
10400.00	0.004	384.2	408	
00	O.cos			
00	0.009			
10430.00				

${ }^{p}$
1168.2
1101.2
1065.8
1060.2
1070.1
1079.4
flebed
1650.1
1108.4
1107.8
1068.?
1058.2
1003.7
1 C 7 c .2
1087.6
1097.0
1168.4
1115.9
1071.7
$1 \mathrm{CSO}_{4} 4$
$1 \mathrm{Cby.}^{4}$
1079.0
1085.4
icst.9
1107.3
1108.0
1067.9
1 CSO .5
1069.9
$1 \mathrm{C74.5}$
1087.1
1093.6
1108.2
2161.3
1063.8
1060.0
1570.2
1079.9
1089.7
105s. 3
1169.0
1096.2
1059.7
$1 \mathrm{CbO}_{2}$?
1776.7
1082.6
1092.3
1102.0
1111.8
$1 \mathrm{Ca4.3}$
1050.8
1063.1
1015.1
tces.0
1094.9
1104.7
1114.5

WTOST 21.
144.
159.
25.
20.
20.
21.
21.
96.
160.
34.
21.
2 c .
21.
21.
21.
21.
158.
39.
21.
21.
21.
21.
22.
93.
156.
30.
21.
21.
21.
21.
21.
136.
155.
26.
21.
21.
21.
22.
22.
151.
153.
23.
22.
21.
22.
22.
22.
156.
138.
22.
22.
22.
32.
23.
152.

*) $T_{\text {c. }}$
234.1
227.4
c. 0
c. 0
0.0
0.0
0.0
0.0
235.3
227.9
0.0
0.0
C. 0
0.0
0.0
0.0
236.9
228.5
0.0
0.0
c. 0
C. 0
c. 0
235.3
227.8
0.0
0.0
0.0
c. 0
0.0
0.0
234.1
227.0
0.0
c. 0
0.0
0.0
0.0
c. 0
233.1
226.2
c. 0
c. 0
0.0
c. 0
0.0
0.0
230.9
224.2
0.0
0.0
c. 0
c. 0
0.0
c. 0
228.7

1016
314.2
314.2
314.3
314.4
314.4
314.4
314.5
314.5
314.6
314.6
314.7
314.7
314.8
4.8

315.0
315.0
315.6
315.1
315.2
315.2
315.3
315.3
315.3
315.4
315.4
315.5
315.5
315.6
315.6
315.7
315.7
315.7
315.8
315.8
315.9
316.6
316.6
316.0
316.1
316.1
316.2
316.2
316.3
316.3
316.4
316.4
316.4
316.5
316.5
316.6
316.6
316.7
316.7
316.8
316.8
316.8
P1 1×6
23.69
23.16
23.11
23.12
23.13
23.13
23.14
23.15
23.15
23.16
23.17
23.18
23.18
23.19
23.20
23.20
23.21
23.22
23.22
23.23
23.24
23.25
23.26
23.26
23.27
23.27
23.27
23.29
23.36
23.31
23.31
23.32
23.33
23.33
23.34
23.35
23.36
23.37
23.37
23.38
23.39
23.39
23.40
23.41
23.42
23.43
23.43
23.44
23.44
23.45
23.46
23.47
23.48
23.48
23.49
23.50
23.50
23.51

-spav	In
s.t 12	150.3
6.t6.	$15 \mathrm{c}, 4$
6.t7e	15 C
6.108	150
6.708	150
t.7ce	$15 \mathrm{c} . \mathrm{E}$
6.708	150.8
h. 708	150.8
6.107	15 C
6. 113	15 C
6.768	151.1
6.803	151
6.603	151
6.803	151.
0.003	151.
6.803	151.3
5.803	151.
6.803	151.3
6.ES8	151.6
6.896	151
6.896	151
6.895	15.
6.895	151.
6.895	151.e
6.895	151.8
6.901	151.8
6.956	152.1
6.988	152.3
6.988	152.3
6. Ser	152.
$6 . \times 88$	152.
6.988	152
6.988	152.3
6.999	152.
1.cs4	152.7
1.c8c	152.
7.080	152.8
7.080	152.8
1.C6C	152.
1.080	152.8
7.080	152
7.c97	152.
1.152	153.2
1.170	153.
7.11 C	153.
1.17 C	153.3
1.170	153.
1.170	153.
1.170	153.3
7. 203	153.5
1.257	153.8
7.260	153.8
1.26C	153
1.260	153.8
7.260	153.8
1.26C	153.8
. 260	153

table B. 5 (continued)

HE	Prel			
10450	0.011		40	
460.00	0.01			
10470.00				
480.00	0.00			
12490.00	0.009			
10500.00	c.ces	38		
10510.00	0.01			
10520.00	0.013			
10530.00	c.ck	37		
10540.00	0.00			
550.00	0.00			
10560.00	0.00	378		
10570.c0	c.cos	37		
10580.00	0.009	37	40	
10590.00	0.013			
10600.00	0.612	37		
10610.00	$0 . \cos$	31	147	
106>0.00	0.00			
10. $\rightarrow 2.00$	$0 . C 0$			
10040.00	o.cos	31.	399	
10650.00	0.00			
66	0.01		19	
10670.00	0.613	372	39	
10680.00	0.010	372.3		
10690.00	0.009	372	19	
10700.00	-.ces	372.2	196	
10710.00	$0 . \operatorname{cas}$	371.9		
10720.00	0.009	371.		
10730.00	c.los	371.	396	
10740.00	$0 . \mathrm{Cl3}$	370.0	394.	
10750.00	0.010	369.3	393	
10760.00	0.009			
10770.00	c. CO 9			
10180.00				

W1NJ	${ }^{p}$
c.c	1050. 1
0.0	$1 \mathrm{Cbseg}^{2}$
0.0	1074.8
c. c	1ce9.?
0.6	1 169.6
0.0	1109.6
0.6	1091.3
0.0	1055.3
0.0	1064.0
$0 . \mathrm{C}$	1074.3
c.c	
$0 . \mathrm{c}$	1094.4
0.0	1104.4
0.6	1114.4
$0 . \mathrm{C}$	1674.2
c. 0	1050.2
0.0	1688.4
0.0	1078.7
0.0	1088.8
0.6	1098.9
c.e	1167.0
$0 . \mathrm{c}$	1093.3
0.0	1055.d
0.0	1064.7
0.0	1075.1
0.0	1ubs. 4
c.c	1285.6
0.0	1:05.8
0.0	1111.8
0.0	1065.4
C.c	1660.4
0.0	1071.4
c. 0	1081.8
O.C	1092.2

WT0ST	HSTC
42.	0.0
22.	$C .0$
22.	0.0
22.	0.0
22.	0.0
23.	0.0
152.	232.2
141.	225.2
23.	0.0
22.	0.0
23.	0.0
23.	0.0
23.	0.0
23.	0.0
150.	228.9
51.	0.0
23.	0.0
22.	0.0
23.	0.0
23.	0.0
24.	6.0
145.	232.6
140.	225.3
24.	0.0
23.	0.0
23.	0.0
23.	0.0
23.	0.0
54.	236.1
146.	227.3
29.	0.0
23.	0.0
23.	0.0
23.	0.0
24.	0.0

TGDM	PTC*6	Lwspay	Twspay	- ECC
316.9	23.52	7.347	154.2	c.c
317.6	23.53	7.347	154.2	0.0
$317 . \mathrm{C}$	23.54	7.347	154.2	$0 . \mathrm{c}$
317.0	23.54	7.367	154.2	c.c
317.1	23.55	7.347	154.2	0.0
311.1	23.56	7.347	154.2	0.0
317.2	+3.56	1.369	154.3	c.e
317.2	23.57	7.423	154.6	0.0
317.3	23.58	7.434	154.7	0.0
317.3	23.58	7.434	154.7	c.e
317.4	23.60	7.434	154.7	0.c
317.4	23.60	7.434	154.7	0.0
317.6	23.61	7.434	154.7	c. 6
317.5	23.61	1.434	154.7	0.6
317.5	23.62	7.481	154.9	0.0
317.6	23.63	7.521	155.1	0.0
317.6	23.64	7.521	155.1	c.e
317.7	22.65	7.521	155.1	0.0
317.7	23.65	7.521	155.1	0.0
317.8	23.66	7.521	155.1	c. C
317.8	23.67	7.521	155.1	$0 . \mathrm{c}$
317.8	23.67	7.540	155.2	0.0
317.9	23.68	7.595	155.5	c. c
317.9	23.69	7.605	155.6	c.c
318.6	23.10	1.805	155.6	0.0
318.6	23.71	7.605	155.6	0.0
318.1	23.71	7.605	$155 . t$	c. C
318.1	23.72	7.605	155.6	0.0
318.1	23.73	7.608	155.6	0.0
318.2	23.73	7.663	155.4	c.e
318.3	23.14	7.690	156.c	e.e
318.3	23.75	7.690	156.0	0.0
318.4	23.76	7.696	156.c	c. C
318.4	23.71	7.690	156.c	c.e
318.4	23.17	7.689	156.0	0.0

APPENDIX C. GLOSSARY OF ACRONYMS

AC	Alternating current
ADS	Automatic depressurization system
ANS	American Society of Mechanical Engineers
ATWS	Anticipated transient without scram
BWR	Boiling water reactor
CBP	Condensate booster pump
CP	Condensate pump
CRD	Control rod drive
CRDHS	Control rod drive hydraulic system
CS	Core spray
CST	Condensate storage tank
DHR	Decay heat removal (fron the pressure suppression pool)
ECCS	Emergency core cooling systems (typically refers to the HPCI, LPCI, and CS systems)
EOI	Emergency operating instruction
EPGs	Emergency Procedure Guidelines (published by the GE BWR Owners Group)
FSAR	Final Safety Analysis Report
GE	General Electric Company
HPCI	High pressure coolant injection
LOCA	Loss of coolant accident
LPCI	Low pressure coolant injection (emergency coolant injection operating mode of the RHR system)
LPECCS	Low pressure emergency core cooling systems (includes LPCI and CS systems)
MFP	Main feedwater pump
MSIV	Main steam isolation valve
NP SH	Net positive suction head
ORNL	Oak Ridge National Laboratory
OI	Operating instruction
PCS	Primary coolant system
PSP	Pressure suppression pool
RBCCW	Reactor building closed cooling water (provides cooling water to the drywt .11 atmosphere coolers)
RCIC	Reactor core isolation cooling (steam-driven high pressure injection system)
RHR	Residual Heat Removal (multi-purpose heat removal and/or injection system with various operating modes - for example the LPCI mode or the PSP cooling mode)
SASA	Severe accident sequence analysis
SB	Small break (typically used to describe loss of coolant accidents)
SLC	Standby liquid control (system provided to pump sodium pentaborate solution into the reactor vessel, if necessary)
SRV	Safety relief valve
TAF	Top of active fuel (i.e. the elevation thereof)
TVA	Tennessee Valley Authority

NUREG/CR-3764
ORNL/TM-9163
Dist. Category RX

Internal Distribution

1. S. J. Ball
2. T. E. Cole
3. S. D. Clinton
4. B. G. Eads
5. G. F. Flanagan
6. L. C. Fuller
7. S. R. Greene
8. D. Griffith

9-10. R. M. Harrington
11. C. R. Hyman

12-13. S. A. Hodge
14. J. E. Jones Jr.
15. T. S. Kress
16. A. P. Malinauskas
17. L. C. Oakes
18. L. J. Ott
19. A. Sozer
20. R. S. Stone
21. H. E. Trammell
22. R. P. Wichner
23. Patent Office
24. Central Research Library
25. Document Reference Section

26-27. Laboratory Records Department
29. Laboratory Records (RC)

External Distribution

29-30. Director, Division of Accident Evaluation, Nuclear Regulatory Commission, Washington, DC 20555
31-32. Chief, Containment Systems Research Branch, Nuclear Regulatory Commission, Washington, DC 20555
33. Office of Assistant Manager for Energy Research and Development, DOE, ORO, Oak Ridge, TN 37830
34-38. Director, Reactor Safety Research Coordination Office, DOE, Washington, DC 20555
39. L. Smith, Science Applications, Inc., 505 Marquette Avenue, NW, Albuquerque, NM 87102
40. L. D. Proctor, Tennessee Valley Authority, W10D199 C-K, 400 West Summitt Hill, Knoxville, TN 37902
41. J. D. Woolcott, Engineering Section, Browns Ferry Nuclear Plant, Decatur, Alabama 35602
42. Wang Lau, Tennessee Valley Authority, WlOC126 C-K, 400 West Summit Hill, Knoxville, TN 37902
43. Mr. Adi Irani, GPU Nuclear, 100 Interpace Parkway, Parsippany NJ 07054
44. J. A. Raulston, Tennessee Valley Authority, W10C126 C-K, 400 West Summitt Hill, Knoxville, TN 37902
45. E. G. Bauer, Jr., Philadelphia Electric Company, 2301 Market Street, Philadelphia, PA 19101
46. L. Claassen, General Electric Company, 175 Curtner Avenue, San Jose, CA 95215
47. Z. R. Rosztoczy, Research and Standards Coordination Branch, Office of Nuclear Reactor Regulatory, U.S. Nuclear Regulatory Commission, Washington, DC 20555
48. K. W. Holtzclaw, General Electrical Company, 175 Curtner Avenue, San Jose, CA 95125
49. Mr. Rob Woolley, Pennsylvania Power and Light, 2 North Ninth Street, Allento..., PA 18101
50. A. C. Peterson, Nuclear Safety Systems Technology, Division 6411, Sandi: National Laboratory, P.O. Box 5800, Albuquerque, NM 87185
51-52. Technical Information Center, DOE, Oak Ridge, TN 37830 53-452. Given distribution as shown under categories RX (NTIS-10).

$$
\begin{array}{llrl}
120555078871 & 1 & \text { IANIRX } \\
\text { US PRC } & \\
\text { ADM-DIV OF TIDC } & & \\
\text { POLICY E PUB MGT } & \text { BR-PDR NUREG } \\
\text { W-5OI } \\
\text { WASHINGTON } & \text { OC } & 20555
\end{array}
$$

[^0]: *Actual values of system parameters lead to only one positive root.

[^1]: *See Fig. 2.4.

[^2]: *Normal reactor water level is 561 in . above vessel zero. The top of active fuel (TAF) is at 360 in .

[^3]: *For the zalve configuration shown on Fig. 4.1, the pilot valve opens by being moved to the right. This requires compression of the setpoint adjustment spring.
 \dagger The below-piston chamber of the main valve is always connected to the upstream pressure.
 \#SRV exhaust is piped to T-quencher discharge devices submerged within the suppression pool. Therefore, the back pressure which is seen by the above-piston chamber of the main valve when the pilot valve is open is the wetwell pressure.

[^4]: *Heat exchanger effectiveness is defined as the ratio of the actual heat transfer rate to the rate that would be obtained if the heat exchanger surface were unlimited.

[^5]: *During rapid reactor vessel depressurization the heated reference leg of the Yarway instrument can flash, causing a temporary full-to-thetop level indication. This effect is not simulated in BWR-LTAS.

[^6]: *See Sectiol 3 of Browns Ferry FSAR for fuel weights, steady state volumetric average temperatures, and average heat flux. A value of $0.28 \mathrm{Btu} / 1 \mathrm{~b}$ F was used for UO_{2} specific heat (Nuclear Engineering Handbook, H. Etherington, Editor).

[^7]: Table B. 5 (cont inued)

