Mr. Michael B. Roche
Vice President and Director
GPU Nuclear Corporation
Oyster Creek Nuclear Generating Station
P.O. Box 388

Forked River, New Jersey 08731
SUBJECT: EMERGENCY PREPAREDNESS MEETING
Dear Mr. Roche:
This letter and enclosures summarize the March 15, 1996, management meeting held at our request among Mr. M. Slobodien and members of your staff, and members of the NRC Region I staff, in King of Prussia, Pennsylvania. The purpose of the meeting was to discuss the bases for the protective action recommendation (PAR) methodology currently in place for the Three Mile Island and Oyster Creek nuclear power facilities. Enclosed are a copy of the meeting notice, a list of attendees, and a copy of the handout provided by your staff.

We believe the meeting was beneficial and resolved our concerns about the inconsistencies between your current PAR methodology and recently revised federal guidance.

As a result of the meeting, we understand that you will revise your current PAR methodology, and logic diagrams, to be consistent with recently revised federal guidance. We also understand that you will discuss, in detail, the new PAR methodology and, in particular, Emergency Action Levels, with the affected states in the near future.

We appreciate the time and effort expended by your staff in preparing for and participating in this meeting. No response to this letter is required unless our understandings of your proposed actions, as stated above, are incorrect. If that is the case, please inform us, in writing, within 30 days of receipt of this letter.

> Sincerely,

> (original signed by)

Richard R. Keimig, Chief
Emergency Preparedness and Safeguards Branch
Division of Reactor Safety
Docket No. 50-219
Enclosures: As stated

Mr. Michael B. Roche
cc w/encl:
G. Busch, Manager, Site Licensing, Oyster Creek
M. Laggart, Manager, Corporate Licensing

State of New Jersey
Distribution w/encl:
Region I Docket Room (with concurrences)
P. Eselgroth, DRP
D. Haverkamp, DRP
T. Kenny, DRS

NRC Resident Inspector
Nuclear Safety Information Center (NSIC)
D. Screnci, PAO

PUBLIC
W. Dean, OEDO
J. Stolz, NRR/PD I-2
A. Dromerick, NRR/PD 1-4
P. McKee, NRR/PD 1-4

Inspection Program Branch, NRR (IPAS)
DRS File

DOCUMENT NAME: G: \EP\&SB\LAUGHLIN\OC.EP
To receive a copy of this document, indicate in the box: "C" = Copy without attachment/enslosure "E" Copy with attachment/enclosure "N' = No copy

| OFFICE | RI/DRS | E | RI/DRS | N | 1 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NAME | JLAUGHLIN | RKEIMIG | | | | | | | |
| DATE | $04 / 24 / 96$ | | $04 / 24 / 96$ | $04 / \quad 196$ | $04 / 196$ | $04 / 196$ | | | |

U.S. NUCLEAR REGULATORY COMMISSION
 REGION I
 NOTICE OF SIGNIFICANT LICENSEE MEETING

Licensee:

Facilities:

Docket No. :
Time and Date:
Location:

Purpose:

NRC Attendees:

Licensee Attendees:

GPU Nuclear Corporation (GPUN)

Oyster Creek Nuclear Generating Station Three MiTe Island Nuclear Station Unit 1

50-219; 50-289
9:00 a.m., Friday, March 15, 1996
U. S. Nuclear Regulatory Commission

475 Allendale Road
King of Prussia, Pennsylvania
DRS Conference Room
Management Meeting to discuss the bases for the protective action recommendation logic diagram and methodology for implemetation at Three Mile Island and Oyster Creek.
R. Bores, Technical Assistant, Division of Reactor Safety (DRS)
P. Eselgroth, Chief, Projects Branch 7, Division of Reactor Projects

1. Essig, Chief, Emergency Preparedness and Environmental Health Physics Section, Office of Nuclear Reactor Regulation
R. Keimig, Chief, Emergency Preparedness and Safeguards Branch, DRS
J. Laughlin, Emergency Preparedness Specialist, DRS
T. Blount, Emergency Preparedness Manager, Oyster Creek
J. Grisewood, Emergency Preparedness Manager, Three Mile Island
A. Miller, Licensing Engineer, Three Mile Island
M. Slobodien, Director, Radiological Health and Safety

Note: This meeting is open to the public for observation. Attendance by additional NRC personnel or handicapped persons requiring assistance to attend or participate in the meeting should maxe their requests known by March 14 , 1996 to Peter Eselgroth, Region I, at 610-337-5234.

Approved By:

ENCLOSURE 2

ATTENDEE LIST

T. Blount, Oyster Creek Emergency Preparedness Manager, GPUN
B. DeMerchant, Sr. Licensing Engineer, GPUN
N. DePierro, NJ Department of Environmental Protection (DEP) Bureau of Nuclear Engineering (BNE)
S. Finicle, Corporate Emergency Planner, GPUN
J. Grisewood, TMI Emergency Preparedness Manager
S. Maingi, Nuclear Engineer, Pennsylvania Bureau of Radiation Protection
A. Miller, TMI Licensing
P. Mulligan, NJ DEP, BNE
M. Slobodien, Director, Radiation Health and Safety, GPUN
K. Tosch, NJ DEP, BNE
U.S. Nuclear Regulatory Commission
R. Bores, Senior Project Manager
D. Chawaga, Regional State Liaison Officer
P. Eselgroth, Chief, Projects Branch No. 7
T. Essig, Section Chief, Emergency Preparedness (EP) and Environmental Health Physics (HP), NRR
J. Laughlin, EP Specialist
J. Lusher, EP Specialist

[^0]

- Severe core damage is indicated by (1) loss of critical functions required for core protection (e.g., loss of injection combined with a LOCA): (2) high core temperatures (PWR) or partially covered core (BWR); (3) very high radiation levels in area or process monitors.
- Transit-dependent persons should be advised to remain indoors until transportation resources arrive if possible.
If there are very dangerous travel conditions or if there is a mobility impaired population (1.e. acute care patients) then shelter those affected.

בPA RECOMMENDED PROTECTIVE ACTIONS GUIDES FOR EARLY PHABES OF A NUCLEAR INCIDENT

CAUTION:
For non-reactor nuclear incidents, base protective actions on Table I-1 or for $U F_{s}$ releases on the guidance in Section E.
NOT:

- Tak. S I-1 depicts the new EPA PAGs published in 1991 and are
based on the sum of the effective dose equivalent resulting from
external exposure and the committed effective dose equivalent
(CEDE) from inhalation. Additional guidance is provided on
thyroid or skin exposures. Actidents, the projected thyroid dose (5-25
- For most reactor accid
rem) should determine the protective actions to be recommended
(even under the nrevious guidance).
- TEDE = CEDE - effective cloud shine - 4 days effective ground
shine.

Table I-1: 2AGs ${ }^{3}$ for the Early phase of a Nuclear Incident

Pretective Action	$\begin{gathered} \text { PAG } \\ \text { Projected Dose } \\ \hline \end{gathered}$	Comments
Evacuation ${ }^{b}$ (or sheltering)	$1-5 \mathrm{rem}^{\mathrm{c}}$ TEDE or -25 rem thyroid ${ }^{\text {a }}$ or 50-500 rem skin	Evacuation (or for some situations, sheltering ${ }^{\circ}$) should normally be initiated at the lowest leval of the range.
Administration of stable iodine	25 rem thyroid ${ }^{\text {d }}$	For mobility impaired who are unable to evacuate. Requires approval of State Medical officials.

${ }^{a}$ EPA Manual of Proiective Action Guides and Protective Actions for Nuclear Incidents, 1991, Section C. 3 The Protective Action Suides
"Sheltering may be the preferred protective action when it will provide protection equal to or greater than evacuation, based on consideration of factors such as source term, characteristics, and temporal or other site-specific conditions
'The sum of the effective dose equivalent resulting from exposure to external sources and the committed effective cose equivalent incurred from all significant inhalation pathways during the early phase. Committed dose equivalents to the thyroid and to the skin may be 5 and 50 times larger, respectively
${ }^{d}$ Committed dose equivalent to the thyroid from radioiodine

Table 2-1 PAGs for the Early Phase of a Nuclear Incident

Protective	PAG	Comments
Action	(projected dose)	

Evacuation	$1-5 \mathrm{rem}^{\mathrm{b}}$	Evacuation (or, for some
(or sheltering")	situations, shelts. ing	
		should normally be
	initiated at 1 rem.	
	Further guidance is	
	provided in Section 2.3.1	

Administration of $\quad 25 \mathrm{rem}$
stable iodine

Requires approval of State medical officials.

[^1]"The sum of the effective dose equivalent resulting irom exposure to external sources and the committed effective dose equivalent incurred from all significant inhalation pathways during the early phase. Committed dose equivalents to the thyroid and to the skin may be 5 and 50 times larger, respectively.

Committed dose equivalent to the thyroid from radioiodine.
protective action at projected doses up to 5 rem . In addition, under unusually hazaruious environmental conditions use of sheltering at projected doses up to 5 rem to the general population (and up to 10 rem to special groups) may become justified. Sheltering may also provide protection equal to or greater than evacuation due to the nature of the source term and/or in the presence of temporal or other site-specific
conditions. Ilustrative examples of situations or groups for which evacuation may not be appropriate at 1 rem include: a) the presence of severe weather, b) competing disasters, c) institutionalized persons who are not readily mobile, and d) local physical factors which impede evacuation. Examples of situations or groups for which evacuation at 1 rem normally would be appropriate include: a) an
incident which occurs at night, b) an incident which occurs when children are in school, and c) institutionalized persons who are readily mobile. Evacuation seldom will be justified at less than 1 rem. The examples described above regarding selection of the most appropriate protective action are intended to be illustrative and not exhaustive. In general, sheltering should be preferred to evacuation whenever it provides equal or greater protection.

No specific minimum level is established for initiation of sheltering. Sheltering in place is a low-cost, low-risk protective action that can provide protection with an efficiency ranging from zero to almost 100 percent, depending on the circumstances. It can also be particularly useful to assure that a population is positioned so that, if the need arises, communication with the population can be carried out expeditiously. For the above reasons, planners and decision makers should consider implementing sheltering at projected doses below 1 rem: however, implementing protective actions for projected doses at very low levels would not be reasonable (e.g. below 0.1 rem). (This guidance should not be construed as establishing an additional lower level PAG for sheltering.) Sheltering should always be implemented in cases when evacuation is not carried out at projected doses of 1 rem or more.

Analyses for some hypotresized accidents, such as short-term releases of transuranic materials, show that sheltering in residences and other
buildings can be highly effective at reducing dose, may provide adequate protection, and may be more effective than evacuation when evacuation cannot be completed before plume arrival (DO-90). However, reliance on large dose reduction factors for sheltering should be accompanied by cautious examination of possible failure mechanisms, and, except in very unusual circumstances, should never be relied upon at projected doses greater than 10 rem. Such analyses should be based on realistic or "best estimate" dose models and include unavoidable dose during evacuation. Sheltering and evacuation are discussed in more detail in Section 5.5.

2.3.2 Thyroid and Skin Protection

Since the thyroid is at disproportionately high risk for induction of nonfatal cancer and nodules, compared to other internal organs, additional guidance is provided to limit the risk of these effects (see footnote to Table 2-1). In addition, effective dose, the quantity used to express the PAG, encompasses only the risk of fatal cancer from irradiation of organs within the body, and does not include dose to skin. Guidance is also provided, therefore, to protect againsi the risk of skin cancer (see Table 2-1. footnote b).

The use of stable iodire to protect against uptake of inhaled : adioiodine by the thyroid is recognized as an effective alternative to evacuation for situations involving radioiodine releases when evacuation cannot be

NRC PAR ADVANTAGES

- EASIER TO USE
- FASTER

GPUN PAR DISADVANTAGES

- MORE COMPLEX
- GREATER CHANCE FOR ERROR
- RELIES ON ACCURATE EVACUATION TIME ESTIMATES

REALITY

. WE MAY NOT BE ABLE TO PRECISELY ESTIMATE TERMINATION TIME

- ALMOST ALWAYS ARRIVE AT THE SAME ANSWER
- VERY UNLIKELY TO HAVE A SHELTERING SITUATION
- NOT WORTH DOING THE "FINE-TUNING"

	TMI Emergency Plan Implementing Document	Number EPIP-TMI-. 27
Trite		Pevision No.
Emergency Opersuons Facility		5

EXHIBIT 1C (Cont'd)

Protective Action Recommendation (PAR) Logic Dlagram Notes

NOTE 1: Review the Errias PAR Logic Diagram betore maiking this decision. Use data that is currently availabie Bo serf wart FOR BATA that could cause you to deley making the PAR within $=15$ minutes. The PAR may be modified and reisausd as information becomes avaliable or changes.

1. RCS post acoident sample analyus indicates fuel diamage ciassification of ≥ 2.
2. RAC sotware code caiculation incicates tuel damage ciasarication of ≥ 2.
3. Incors thermocouplee (5 highest) indicate $z 1400^{\circ} \mathrm{F} \mathrm{T}_{\text {cuab }}$ curve.
4. Latslown monitor readings (RM-L-1 low and PM-L.1 high) are off scaie high.
(M) this reading is desired the isolation interiocks will have to be bypassed in order to get a representative sample.)
5. "Expected Cone Damage" whereby prasently there is no core damage, but based upon deteriorating plant conditions, it is articipeted that one of the above 4 conditions will ocour.

NOTE 3: A8 matimeate er gat of The followne:

1. High range containment ares monitor (RM-G-22 or RM-G-23) in high aiarm.
2. Stearn Generutor indications:
2.1 RM-G-25 reading $\geq 100.000 \mathrm{mR} / \mathrm{hr}$
2.2 PM-G-26 or RM-G-27 resding $\geq 60.000 \mathrm{CPM}$
2.3. Main Stearn (cortact) reading a $100,000 \mathrm{mR} / \mathrm{hr}$
3. RM-A-8 Gas High reading ≥ 120 CPM

NOTE 4: As macate er bhe of THE FOLgWiwe:

BREACMEI

1. Comtainment is breached if there is a direct reactor building to atmosphere reisase pathway auch as RB purge vaives failure to ciose.

EYPA3ser

1. OTSG isaicage ≥ 1 GPM (TS limit) with a direct reiease to atrnosphere.
(Staam Line Dreak outside the RB, Atmospheric Dump Vaive open, Stuok open Code Safety Valve or Emergency Foedwater Pump exhaust)
2. OTSG leakage $z 50 \mathrm{GPM}$ steaming through the oondenaer.
3. Lenkage $\geq 100 \mathrm{GPM}$ in the Decery Hest Systom while on Decey Heat.
4. PM-4-8 Ges High resding ≥ 120 CPM.

CunLemeed

1. Containment will be determined to be aeriously chalienged through a detwied engineering analyais.
2. If a detailed analysis of containmem integrity is not evailable then
cortsainment will be considered ohalienged it:
2.1 Resctor Bullding pressure >30 PSIG.
2.2 Reactor Building Hydrogen concentration is $\geq 4 \%$.

FIEA Nugieatr	TMI Emergency Plan Implementing Document	Number EPIP-TMI-.27
Tite	Revision No.	
Emergency Operations Facility		5

Exalit ic (Cont'd)

NOTE 5: AE Iamicate By DUF DF THE FDLOMADE:

Adverse Weather - Weaths that has caused or is expected to cause road opnditions to deteriorate to the point where the roac ampacity has been recuced by more than 20 percent. Some examples would be actual or expected:

1. Heavy Rain - heavy enough to significantiy siow tratfic.
2. Snow - where the major highways are snow coversd with more than 2 inches of snow
3. Freezing Rain - where ice has accumuiated on the road surtaces.
4. Dense fog - where the visibility is near zero.

NOTE 6: MAIOR HOLMAYS
New Year's Dey
Memorial Day
independence Day
Labor Day
Thanksgiving Day
Day After Thanksgiving
Chrisemas Day

NOTE.7- Determine the appropriate Tabie based on wind direction to make your PAR.
Are any of the atfected or adjacent sectors 15, 15, 1, 2, 3, of 4?

Use Table I

Are any of the sffected or adjacent sectors 5, 6, or T?
No
1
Yes
Use Table 2

Are arry of the affected or adjacent sectors 8, 9, 10 or 11 ?
No

Unes Teblate 4

Use Tabhe 3

Note 7 (Cont'd)
Table 1
(Use this Table if Sectors 15, 16, 1, 2, 3, or 4 are downwind or adjacent)

1. Dowhway - The sectors that are projected to be aftected (outside the 2 mile radius) during the course of the reiease plue the two adjacem sectors.
2. Detarmine " X ", whioh equats the number of hours from NOW until the current or prrjected release is estimated to STOP. If it is uniknow when the release will start or stop, assumte " $X=8$.
3. Determine the Protective Action Pecommendation by determining wich block of t.e column determined from the diagram that ' X 'falis into.
(M " K^{\prime} falls on a line use the biock beiow the line.)

4.

Retum to the beginning of the PAP logic diagram if there has been s substantial change in conditions.

Note 7 (Cont'd)
Teble 2

(Use This Table if Sectors 5,6, or 7 are Downwind or Adjacemt But Sectors 15, 16, 1, 2, 3, or 4 are Not Downwind or Adjacent)

1. powmwnup - The sectors that are projected to be affected (Outside the 2 mile radius) during the course of the release plus the two adjucent sectors.
2. Determine " X ", which sauais the number of hours from NOW until the currem or projected reiease is eatimated to STOP. If it is unicnown when the reiease will atop assume " x " $=8$.
3. Deterrnine the Protective Action Aecommenciation by determining which biock of the coiumn determined from the diegram thet x^{\prime} ' falis into.
(fi' ' X ' falis on a line use the block below the line.)

4. Rerturn to the beginning of the PAR logic diagram if there has been a substamtial change in conditions.
 WAMAMTEL.

Table 3
(Use This Table if Sectors 8, 9, 10 or 11 are Downwind or Adjacent But Sectors 15, 16, 1, 2, 3, 4, 5, 6, or 7 are Not Downwind or Adjacent)

1. Downwivi - The sectors that are projectec to be affected (Outaide the 2 mie radius) during the course of the ceisase plus the two adjacent sectors.
2. Detemmine ' X ', which equas the number of hours from NOW until the current or projected reiease is estimated to STOP. H it is unknown when the reiease will stop assume " X " $=8$.
3. Determine the Protective Action Pecommenaation by determining which block of the column determined from the diagram the ${ }^{4} x$ ' falls into. (M' 'X' falis on a line use the block beiow the line.)

4. Return to the beginning of the PAR logic diagram if there has been a substantial change in conditions.
 WARMANTED.

Note 7 (Cont'd)

Table 4

(Use This Table it Sectors 12, 13, or 14 are Downwind or Adjacent But Sectors 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 are Not Downwind or Adjacerri)

1. Dommwer - The sectors that are projected to be affected (Outside the 2 mile radius) during the course of the reibase pius the two adjacent sectors.
2. Determine ' X ', which equats the number of hours from NOW umil the current or projected release is estimated to STOP. If it is unknown when the reisase will stop sasume " X " $=8$.
3. Detarmine the Protective Action Pecommendation by determining which block of the column determined from the diagram that " x " falls into.
(if ' x ' falis on a line use the biock below the line.)

4. Peturn to the beginning of the PAR logic diagram if there has been a substantial change in conditions.
 WАйMarte.

OYSTER CREEK EMERGENCY PREPAREDNESS Number
EPIP-OC-. 25

```
Title
    Emergency Operations Facility (EOF)
```

Revision No.
9

> EXHIBIT $1 C$
> OYSTER CREEK PAR IOGIC DIAGRAM

OYSTER CREEK EMERGENCY PREPAREDNESS IMPLEMENTING PROCEDURE

```
                                    EPIP-OC-. 25
```

```
Revision No.
```

```
Title
    Emergency Operations Facility (EOF)
```

 7
 EXHIBIT 1 C (Continued)
OYSTEP CREEK
PAR LOGIC DIAGRAM NOTES

```
                                    NOTE }
SUBSTANTIAL CORE DAMAGE IS A POTENTTAL IF:
* RPV WATER LEVEL IS LESS THAN OR EQUAL TO - 30 INCHES FOR GREATER
    THAN OR EQUAL TO 2 MINUTES
ACTUAL SUBSTANTIAL CORE DAMAGE IS INDICATED BY:
    * CHRRMS READING GREATER THAN 3.0E4 R/HR
    DRYWELL H2 CONCENTRATION IN EXCESS OF 25%
```


NOTE 2

UNDER WORST CASE METEOROLOGICAL CONDITIONS, A CHRRMS READING OF $1300 \mathrm{R} / \mathrm{HR}$ IS INDICATIVE OF A FISSION PRODUCT INVENTORY SUFFICIENT TO EXCEED EPA LOWER LIMIT PAG'S.

NOTE 3

```
CONTAINMENT IS BREACHED IF THERE IS A RELEASE TO THE SECONDARY
CONTAINMENT OR ENVIRONMENT OR A DECISION TO VENT THE CONTAINMENT HAS
BEEN MADE.
SOME EXAMPLES OF CONTAINMENT BEING BYPASSED INCLUDE ISO CONDENSER
LEAKS, STEAM LINE BREAKS IN THE TURBINE BUILDING WITH NO MSIV
CLOSURE, AND REACTOR CLEANUP SYSTEM LEAKS.
CONTAINMENT WILL BE DETERMINED TO BE SERIOUSLY CHALLENGED TYROUGH A
DETAILED ENGINEERING ANALYSIS. IF AN ANALYSIS OF CONTAINMENT
INTEGRITY IS NOT AVAILABLE, THEN CONTAINMENT WILL BE CONSIDERED
SERIOUSLY CHALLENGED IF CONTAINMENT PRESSURE EXCEEDS 38 PSIG AND BULK
TEMPERATURE IS ABOVE 280% DEGREES F.
```


NOTE 4

AS GUIDANCE, IF 5 TIMES THE MAXIMUM PROJECTED INTEGRATED DOSE IS LESS THAN THE EPA LOWER LIMIT PAG, RECOMMEND SHELTERING 2 MILES RADIUS AND 5 MILES DOWNWIND. OTHERWISE, THE COMPUTERIZED PAR ANALYSIS OF THE RAC CODE OR ATTACHMENT 1 TO THIS NOTE MAY BE USED TO DETERMINE THE PAR.

OYSTER CREEK EMERGENCY PREPAREDNESS
IMPLEMENTING PROCEDURE

Number
EPIP-OC-. 25

Revision No.
7

EXHIBIT 1 C

NOTE 4 ATTACHMENT 1
USE IF WIAD DIRECTION (from) IS: 192-281 Degrees
Modified Evacuation Time Estimates (METE's)

	WINTER				SUMMER			
	Daytime		Nighttime		Daytime		Nighttime	
	Normal	Adverse	Normal	Adverse	Normal	Adverse	Normal	Adverse
$\begin{aligned} & 2 \text { mile } \\ & \text { radius } \end{aligned}$	3.5	3.9	3.0	3.3	3.5	3.9	3.0	3.2
$\begin{aligned} & 5 \text { miles } \\ & \text { downwind } \end{aligned}$	3.9	4.3	3.7	4.2	4.1	4.6	4.2	4.8
10 miles downwind	5.4	6.0	5.5	6.1	6.8	8.0	7.0	8.2

1) Choose the appropriate METE's and fill in A, B, \& C.
2 mile radius
5 mile downwind
10 mile downwind $\square \mathrm{A}$
2) Calculate X using the following formula:

$X=$| The $\#$ of hours from now until the release |
| :--- |
| is estimated to start, if known. (Use 0 |
| if a release is in progress or if the time |
| of release is unknown.) |$+$| The f of hours |
| :--- |
| the release is |
| estimated to last. |

$\mathrm{x}=$ \qquad $+$ \qquad $=$ \qquad
3) Fill in the blanks with the values for $A, B, \& C$ and choose a PAR using the value for X calculated above.

	OYSTER CREEK EMERGENCY PREPAREDNESS IMPLEMENTING PROCEDURE	$\begin{aligned} & \text { Number } \\ & \text { EPIP-OC- } .25 \end{aligned}$
Title Emergency Operations	Facility (EOF)	Revision No. 7

EXHIBIT 1 C

NOTE 4 ATTACHMENT 1 (Continued)
USE IF WIND DIRECTION (from) IS: 282-11 Degrees
Modified Evacuation Time Estimates (METE's)

	WINTER				SUMMER			
	Saytime		Nighttime		Daytime		Nighttime	
	Normal	Adverse	Normal	Adverse	Normal	Adverse	Normal	Adverse
$\begin{aligned} & 2 \text { mile } \\ & \text { radius } \end{aligned}$	3.5	3.9	3.0	3.2	3.5	3.9	3.0	3.2
5 miles downwind	3.6	4.0	3.1	3.3	3.6	4.0	3.2	3.5
10 miles downwind	4.1	4.4	4.2	4.5	5.7	6.9	6.2	7.2

1) Choose the appropriate METE's and fill in A, B, \& C.
2 mile radius
5 mile downwind
10 mile downwind $\square \mathrm{A}$
2) Calculate x using the following formula:
$X=\begin{aligned} & \text { The \# of hours from now until the release } \\ & \text { is estimated to start, if known. (Use 0 } \\ & \text { if a release is in progress or if the time } \\ & \text { of release is unknown.) }\end{aligned}$

> The \# of hours the release is estimated to last.
$x=$ \qquad $+$ \qquad $=$ \qquad
3) Fill in the blanks with the values for $A, B, \& C$ and choose a PAR using the valus for X calculated above.

OYSTER CREEK EMERGENCY PREPAREDNESS
IMPLEMENTING PROCEDURE

Number
EPIP-OC-. 25

Revision No.
7

EXHIBIT 1 C

NOTE \& ATTACHMENT 1 (Continued)
USE IF WIND DIRECTION (from) IS: 12-191 Degrees
Modified Evacuation Time Estimates (METE's)

	WINTER				SUMMER			
	Daytime		Nighttime		Dayt.ime		Nighttime	
	Normal	Adverse	Normal	Adverse	Normal	Adverse	Normal	Adverse
$\begin{aligned} & 2 \text { mile } \\ & \text { radius } \end{aligned}$	3.5	3.9	3.0	3.2	3.5	3.9	3.0	3.2
$\begin{aligned} & 5 \text { miles } \\ & \text { downwind } \end{aligned}$	3.6	4.0	3.1	3.3	3.6	4.0	3.1	3.3
10 miles downwind	3.7	4.2	3.2	3.5	3.7	4.2	3.2	3.5

11 Choose the appropriate METE's and fill in A, B, \& C.
2 miles radius
5 mile downwind
10 mile downwind \square A
2) Calculate X using the following formula:

The \# of hours from now until the release
$X=$ is estimated to start, if known. (Use 0
The \# of hours if a release is in progress or if the time of release is unknown.)
$+\quad$ the release is estimated to last.
$X=$ \qquad $+$ \qquad = \qquad
3) Fill in the blanks with the values for $A, B, \& C$ and choose a PAR using the value for X calculated above.
$X<\frac{A}{A}$ Shelter 2 mile radius and 10 miles downwind
or
$\bar{A} \leq X<\frac{}{B}$ Evacuate 2 mile radius and shelter 10 miles downwind
or
$\bar{B} \leq x<-\frac{}{C}$
Evacuate 2 mile radius, 5 miles downwind, and shelter 10 miles downwind

Evacuate 2 mi radius and 10 miles downwind

[^0]: * The decision to recommend sheltering rather than evacuation should be made only when it is clear that sheltering will result in less dose to the public (For example, if it is KNOWN that the release will be terminated within 2 hours of the declaration.)

[^1]: "Sheltering may be the preferred protective action when it will p. vide protection equal to or greater than evacuation, based on consideration of factors such as :ource term characteristics, and temporal or other site-specific conditions isee Section 2.3.1).

