Mr. James Knubel
Vice President and Director, TMI
GPU Nuclear Corporation
Three Mile Island Nuclear Station
P. 0. Box 480

Middletown, PA 17057-0191
SUBJECT: EMERGENCY PREPAREDNESS MEETING
Dear Mr. Knubel:
This letter and enclosures summarize the March 15, 1996, management meeting held at our request among Mr. M. Slobodien and members of your staff, and members of the NRC Region I staif, in King of Prussia, Pennsylvania. The purpose of the meeting was to discuss the bases for the protective action recommendation (PAR) methodology currently in place for the Three Mile Island and Oyster Crsek nuclear power facilities. Enclosed are a copy of the meeting notice, a list of attendees, and a copy of the handout provided by your staff.

We believe the meeting was beneficial and resnlved our concerns about the inconsistencies between your current PAK methodo'ogy and recently revised federal guidance.

As a result of the meeting, we understand that you will revise your current PAR methodology, and logic diagrams, to be consistent with recently revised federal guidance. We also understand that you will discuss, in detail, the new PAR methodology and, in particular, Emergency Action Levels, with the affected states in the near future.

We appreciate the time and effort expended by your staff in preparing for and participating in this meeting. No response to this letter is required unless our understandings of your proposed actions, as stated above, are incorrect. If that is the case, please inform us, in writing, within 30 days of receipt of this letter.
Sincerely,
(original signed by)

Richard R. Keimig, Chief
Emergency Preparedness and Safeguards Branch Division of Reactor Safety

Mr. James Knubel
Docket No. 50-289
Enclosure: As stated
cc w/encl:
E. L. Blake, Shaw, Pittman, Potts and Trowbridge (Legal Counsel for GPUN) Commonwealth of Pennsylvania
J. C. Fornicola, Director, Licensing and Regulatory Affairs
M. J. Ross, Director, Operations and Maintenance

TMI-Alert (TMIA)
3. S. Wetmore, Manager, TMI Licensing Department

Distribution w/encl:
Region I Docket Room (with concurrences)
T. Kenny, DRS
P. Eselgroth, DRP
D. Haverkamp, DRP

NRC Resident Inspector
Nuclear Safety Information Center (NSIC)
PUBLIC
D. Screnci, PAO
W. Dean, OEDO
R. Hernan, PD I-4, NRR
P. McKee, PD I-4, NRR

Inspection Program Branch, NRR (IPAS)
DRS Files (1)

DOCUMENT NAME: $G: \backslash E P \& S B \backslash L A U G H L I N \backslash T M I O C . E P$
To receive a copy of this documemt, indicate in the box: "C' = Copy without attachment/enclosure " E " $=$ Copy with attachment/enclosure ${ }^{\prime} N$ " $=$ No
copy

| OFFICE | RI/DRS | RI/DRS | 1 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NAME | JLAUGHLIN | RIA | RKEIMIG | | | | |
| DATE | $04 / 23 / 96$ | | $04 / 24 / 96$ | $04 / 196$ | $04 / 196$ | $04 / 196$ | |

OFFICIAL RECORD COPY

U.S. NUCLEAR REGULATORY COMMISSION
 REGION I
 NOTICE OF SIGNIFICANT LICENSEE MEETING

Licensee:

GPU Nuclear Corporation (GPUN)Facilities:

Docket No.:
Time and Date:
Location:

Purpose:

NRC Attendees:

Licensee Attendees:

Oyster Creek Nuclear Generating Station Three Mile Island Nuclear Station Unit 1

50-219; 50-289
9:00 a.m., Friday, March 15, 1996
U. S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, Pennsylvania DRS Conference Room

Management Meeting to discuss the bases for the protective action recommendation logic diagram and methodology for implemetation at Three Mile Island and Oyster Creek.
R. Bores, Technical Assistant, Division of Reactor Safety (DRS)
P. Eselgroth, Chief, Projects Branch 7, Division of Reactor Projects
T. Essig, Chief, Emergency Preparedness and Environmental Health Physics Section, Office of Nuclear Reactor Regulation
R. Keimig, Chief, Emergency Preparedness and Safeguards Branch, DRS
J. Laughlin, Emergency Preparedness Specialist, DRS
T. Blount, Emergency Preparedness Manager, Oyster Creek
J. Grisewood, Emergency Preparedness Manager, Three Mile Island
A. Miller, Licensing Engineer, Three Mile Island
M. Slobodien, Director, Radiological Health and Safety

Note: This meeting is open to the ptiblic for observation. Attendance by additional NRC personnel or handicapped persons requiring assistance to attend or participate in the meeting should maxe their requests known by March 14, 1996 to Peter Eselgroth, Region I, at 610-337-5234.

ENCLOSURE 2

ATTENDEE LIST

T. Blount, Oyster Creek Emergency Preparedness Manager, GPUN
B. DeMerchant, Sr. Licensing Engineer, GPUN
N. DePierro, NJ Department of Environmental Protection (DEP) Bureau of Nuclear Engineering (BNE)
S. Finicle, Corporate Emergency Planner, GPUN
J. Grisewood, TMI Emergency Preparedness Manager
S. Maingi, Nuclear Engineer, Pennsylvania Bureau of Radiation Protection
A. Miller, TMI Licensing
P. Mulligan, NJ DEP, BNE
M. Slobodien, Director, Radiation Health and Safety, GPUN
K. Tosch, NJ DEP, BNE

U.S. Nuclear Regulatory Commission

R. Bores, Senior Project Manager
D. Chawaga, Regional State Liaison Officer
P. Eselgroth, Chief, Projects Branch No. 7
T. Essig, Section Chief, Emergency Preparedness (EP) and Environmental Health Physics (HP), NRR
J. Laughlin, EP Specialist
J. Lusher, EP Specialist

EXPAND EVACUATION RECOMMENDATION TO 10 MILES IF DOSE PROJECTIONS INDICATE AREAS OUTSIDE 5 MILES WILL EXCEED 1 REM TEDE OR 5 REM CHILD THYROID.

[^0]

> EVACUATE A 2 MILE RADIUS AND 5 MILES DOWNWIND UNLESS IT IS KNOWN THAT SHELTERING WILL OFFER GREATER PROTECTION *. SHELTER ANY AREAS OF THE PLUME EPZ NOT EVACUATED.

CONTINUE ASSESSMENT BASED ON ALL AVAILABLE PLANT AND FIELD MONITORING INFORMATION.

EXPAND EVACUATION RECOMMENDATION TO COVER AREAS WHERE DOSES ARE EXPECTED TO EXCEED I REM TEDE OR 5 REM ADULT THYROin

[^1]

1 - Severe core damage is indicated by (1) loss of critical functions required for core protection (e.g., loss of injection combined with a LOCA): (2) high core temperatures (PWR) or partially covered core (BWR); (3) very high radiation levels in area or process monitors.
${ }^{2}$ - Distances are approximate - actual distances will be determined by the size of the preplanned sub-areas that are based on local geo-political boundaries.

- Transit-dependent persons should be advised to remain indoors until transportation resources arrive if possible.
If there are very dangerous travel conditions or if there is a asiliity impaired population (i.e. acute care patients) then shelter those affected.

ZPA नECOMMENDED PROTECTIVE ACTIONS GUIDES FOR EARLY DHASES OF A NUCLEAR INCIDENT

CAUTION:
For non-reactor nuclear incidents, base protective actions on Table I-1 or for $U F_{5}$ releases on the guidance in Section E.

NOTE:

```
- Table I-1 depicts the new EPA PAGs published in 1991 and are
based on the sum of the effective dose equivalent resulting from
external exposure and the committed effective dose equivalen:
(CEDE) from inhalation. Additional guidance is provided on
thyroid or skin exposures.
- For most reactor accidents, the projected thyroid dose (5-25
rem) should determine the protective actions to be recommended
(even under the previous guidance).
- TEDE = CEDE + effective cloud shine - 4 days effective ground
shine.
```

Table I-1: PAGs ${ }^{2}$ for the Early Phase of a Nuclear Incident

Protective Action	PAG Projected Dose	Comments
Evacuation ${ }^{\text {b }}$ (or sheltering)	```1-5 rem or 5-25 rem thyroid or 50-500 rem skin```	Evacuation (or for some situations, sheltering ${ }^{\text {b }}$) should normally be initiated at the lowest level of the range.
Administration of stable iodine	25 rem thyroid	For mobility impaired wno are unable to evacuate. Requires approval of State Medical Officials.

${ }^{0}$ EPA Manual of Protective Action Guides and Protective Actions for Nuclear Incidents, 1991, Section 2.3 The Protective Action Guides

Sheltering may be the preferred protective action when it will provide protection equal to or greater than evacuation, based on consideration of factors such as source term. characteristics, and temporal or other site-specific conditions
'The sum of the effective dose equivalent resulting from exposure to external sources and the committed effective dose equivalent incurred from all significant inhalation pathways during the early phase. Committed dose equivalents to the thyroid and to the $5 k i n$ may be 5 and 50 times larger, respectively
${ }^{\text {d Committed }}$ dose equivalent to the thyroid from radioiodine.

Table 2-1 PAGs for the Early Phase of a Nuclear Incident

Protective	PAG	Comments
Action	(projected dose)	

Evacuation	$1-5 \mathrm{rem}^{b}$	Evacuation (or, for some
(or sheltering ${ }^{⿻}$)	situations, sheltering $)$	
	should normally be	
initiated at 1 rem.		
	Further guidance is	
	provided in Section 2.3.1	

Administration of $\quad 25 \mathrm{rem}^{c}$ stable iodine

Requires approval of
State medical officials.
aSheltering may be the preferred protective action when it will provide orote tion equal to or committed effective dose equivalent incurred from all significant inhalation pathways during the early phase. Committed dose equivalents to the thyroid and to the skin may be 5 and 50 times larger, respectively.
'Committed dose equivalent to the thyroid from radioiodine.
protective action at projected doses up to 5 rem . In addition, under unusually hazardous environmental conditions use of sheltering at projected doses up to 5 rem to the general population (and up to 10 rem to special groups) may become justified. Sheltering may also provide protection equal to or greater than evacuation due to the nature of the source term and/or in the presence of temporal or other site-specific
conditions. Mlustrative examples of situations or groups for which evacuation may not be appropriate at 1 rem include: a) the presence of severe weather, b) competing disasters, c) institutionalized persons who are not readily mobile, and d) local physical factors which impede evacuation. Examples of situations or groups for which evacuation at 1 rem normally would be appropriate include: a) an
incident which occurs at night, b) an incident which occurs when children are in school, and c) institutionalized persons who are readily mobile. Evacuation seldom will be justified at less than 1 rem. The examples described above regarding selection of the most appropriate protective action are intended to be illustrative and not exhaustive. In general, sheltering should be preferred to evacuation whenever it provides equal or greater protection.

No specific minimum level is esuablished for initiation of sheltering. Sheltering in place is a low-cost, low-risk protective action that can provide protection with an efficiency ranging from zero to almost 100 percent, depending on the circumstances. It can alsc be particularly useful to assure that a population is positioned so that, if the need arises, communication with the population can be carried out expeditiously. For the above reasons, planners and decision makers should consider implementing sheltering at projected doses below 1 rem: however, implementing protective actions for projected doses at very low levels would not be reasonable (e.g. below 0.1 rem). (This guidance should not be construed as establishing an additional lower level PAG for sheltering.) Sheltering should always be implemented in cases when evacuation is not carried out at projected doses of 1 rem or more

Analyses for some hypothesized accidents, such as short-term releases of transuranic materials, show that sheltering in residences and other
buildings can be highly effective at reducing dose, may provide adequate protection, and may be more effective than evacuation when evacuation cannot be completed before plume arrival (DO-90). However, reliance on large dose reduction factors for sheltering should be accompanied by cautious examination of possible failure mechanisms, and, except in very unusual circumstances, should never be relied upon at projected doses greater than 10 rem. Such analyses should be based on realistic or "best estimate" dose models and include unavoidable dose during evacuation. Sheltering and evacuation are discussed in more detail in Section 5.5.

2.3.2 Thyroid and Skin Protection

Since the thyroid is at disproportionately high risk for induction of nonfatal cancer and nodules, compared to other internal organs, additional guidance is provided to limit the risk of these effects (see footnote to Table 2-1). In addition, effective dose, the quantity used to express the PAG, encompasses only the risk of fatal cancer from irradiation of organs within the body, and does not include dose to skin. Guidance is also provided, therefore, to protect against the risk of skin cancer (see Table 2-1 footnote b).

The use of stable iodine to protect against uptake of inhaled radioiodine by the thyroid is recognized as an effective alternative to evacuation for situations involving radioiodine releases when evacuation cannot be

NRC PAR ADVANTAGES
EASIER TO USE
FASTER

GPUN PAR DISADVANTAGES

- MORE COMPLEX
- GREATER CHANCE FOR ERROR
- RELIES ON ACCURATE EVACUATION TIME ESTIMATES

REALITY

- WE MAY NOT BE ABLE TO PRECISELY ESTIMATE TERMINATION TIME
- ALMOST ALWAYS ARRIVE AT THE SAME ANSWER
- VERY UNLIKELY TO HAVE A SHELTERING SITUATION
- NOT WORTH DOING THE "FINE-TUNING"

Three Mille isiand PAR Logic Diagram

	TMi Emergency Pian Implementing Docurnem	Number EPIP-TMI-. 27
Toie		Revision No.
Emergency Operations Facility		5

EXHIBIT 1C (Cont'd)

Protective Action Recommendation (PAR) Logic Diagram Notes

NOTE 1: Paview the Earrase PAR Logic Diagram before making this dacision. Uas data that is curremtiy availabie po net waII EPI MATA that could cause you to delay making the PAR within $=15$ minutes. The PAR may be modified end reiseusd as information becornes mailabie or changes.

1. RCS post accident sample analysis indicates fuei diamage olassification of ≥ 2.
2. RAC aotware code calculation indiostes fusi darnage olassification of ≥ 2
3. incore thermocoupies (5 highest) indicate $\geq 1400^{\circ} \mathrm{F} \mathrm{T}_{\text {ead }}$ curve.
4. Letdown monttor readings (RM-L-1 low and PM-Li higii) are off scaie high.
(If this reading is desired the isolation interiocics will have to be bypassed in order to get e representative sample.)
5. "Expected Core Darnace" whereby presently there is no core damage, but based upon deveriorating piant concifions, it is artioipated that one of the sbove 4 cornditions will ocour.

1. High rangs sontainment aree monitor (RAM-G-22 or RMA-G-23) in high aiarm.
2. Steam Generktor indications:
2.1 RN-G-25 reading $\geq 100,000 \mathrm{mR} / \mathrm{hr}$
2.2 RM-G-26 or RM-G-27 rasding $\geq 60.000 \mathrm{CPM}$
2.3. Main Steam (contact) reading z $100.000 \mathrm{mR} / \mathrm{hr}$
3. PM-A-8 Gas High reading $\geq 120 \mathrm{CPM}$

3REACME

1. Contanment is breached if there is a direct reactor building to atmosphere reisase patrway such as RB purge valves tailure to ciose.

EYPMasa

1. OTSG leakage ≥ 1 GPM (TS limit) with a direct reisase to atmosphere.
(Steam Line break outaide the RB. Atmospheric Dump Valve open, Stuok open Code Safety Vaive or Emergency Foedwater Pump exchaust)
2. OTSG isakage ≈ 50 GPM steaming through the condenser.
3. Leaknge ≥ 100 GPM in the Decary Hiat Sytam while on Decay Heat.
4. PiA A-8 tias High resding $z 120$ CPM.

CMALEMEEO

1. Containment will be determined to be senously chalienged through a detaibed engineering analysis.
2. If a detailed analysis of containment imegrity is not available then
containment will be oonsudersed chalienged it:
2.1 Reactor Bullding pressure >30 PSIG.
2.2 Reactor Bullding Hydrogen conoentretion is $z .4 \%$.

	TMI Emergency Plan Implemerting Documemt	Number EPIP-TMI-. 27
Titie		Revision No.
Emergency Operations Facility		5

EXHar it (Cont'd)

Adverse Weather - Westher that has caused or is expected to cause road conditions to deteriorate to the poirt where the rosed oapacrty has been recuced by mors than 20 percem. Some exampies wouid be actual or expected:

Heary Rain - hesvy enough to significantiy siow traific.
Snow - where the major highways are snow covered with more than 2 inches of anow.
Freezing Rain - where ice has accumulated on the road suriacss.
Dense fog - where the visibility is near zero

NOTE 6: MANDR HOLSBAYS

New Year's Day
Memorial Day
independence Day
Labor Day
Thanksgiving Day
Cay Atter Thanksgiving
Christrnas Day

NOTE 7: Desamine the appropriate Table based on wind direction to make your PAR.
Are aly of the effected or adjacent sectors $15,15,1,2,3$, or 4 ?
Ne

Ifae Isble I

Are any of the affected or adjapent sectors 5, 6, or 7 ?

Are sny of the affected or adjacent sectors 8, 9, 10 or 11 ?

Unes Tablise 4
Une Tabie 2

Note 7 (Cont'd)

Table 1

(Use this Table if Sectors 15, 16, 1, 2, 3, or 4 are downwind or adjacemt)

1. Dowenw - The sectors that are projected to be aftected (outside the 2 mile radius) during the course of the reiease plue the fwo adjecent sectors.
2. Determine ' $\mathrm{X}^{\text {' }}$, which equals the number of hours from NOW until the current or projected reiease is estimated to STOP. If is uniknow when the reisase will stant or stop, assume " X " $=8$.
3. Desermine the Probective Action Racommendztion by defermining which block of the column determined from the diagram that " X ' falis inte.
(II " x^{\prime} falis on a line use the block below the line.)

${ }^{\prime}{ }^{\prime}{ }^{\prime}$ Number of hours	COLUMN 1 (Night tirne, holiday, weeirends) NOPMAL WEATHER	COLUMN 2 Daytime (Workday) NORMAL WEATHER	COLUMN 3 (Night time, holiday, weekends ADVERSE WEATHER	COLLIMN 4 Daytume (Workclay) ADVERSE WEATHER
≤ 3	SHELTER 2 mile radius und SHELTER 10 miles downwind \qquad 3.50 \qquad	SHELTER 2 mile radius and SHELTER 10 milas downwind \qquad 3.50 \qquad	SHELTER 2 mile radius and SHELTER 10 miles downwing	SHELTER 2 mile radius and SHELTER 10 miles downwin: \qquad 3.50 \qquad
4	EVACUATE 2 mile radius and SHELTER 10 miles downwing	EVACUATE 2 mile radius and SHELTER 10 miles downwind	EVACUPTE 2 mie radius and SHELTER 10 miles downwind	EVACUATE 2 mile radius and SHELTER 10 miles downwind
6	EVACUATE 5 mile radius anc SHELTER 10 miles downwind		\qquad 6.25 EVACUATE 5 mile radius and SHELTER 10 miles downwind	
8		EVACUATE 5 mile radius and SHELTER 10 miles downwind		
9	EVACUATE 5 mile radius and EVACUATE 10 miles downwnd			
10 11		EVACUATE 5 mile radius and EVACUATE 10 miles dowriwind	-9.75-	EVACUATE 5 mile radius and SHELTER 10 miles downwind
12			EVACUATE 5 mile radius and EVACUATE 10 mies dowmind	- 12.00
≥ 13				EVACUATE 5 mile radius and EVACUATE 10 miles dowrwind

4. Return to the beginning of the PAR logic diagram if there has been a substantal change in condifions.

Note 7 (Cont'd)

Table 2

(Use This Table if Sectors 5,6 , or 7 are Downwind or Adjacem But Sectors 15, 16, 1, 2, 3, or 4 are Not Downwind or Adjacent)

1. Borifinheip - The sectors that wre projected to be affected (Outside the 2 mile raclius) during the course of the relesse plus the two adjacent seotors.
2. Deterrnine " X ", which equais the number of hours from NOW until the current or projected reiesse is astimated to STOP. H it is uniknown when the reiesse will stop assume " x " $=8$.
3. Detsrmine the Protective Action Recommendation by deternining which block of the column determined from the diagram that ${ }^{2} \mathrm{C}$ falle into.
(If ' X ' falie on a line use the block below the line.)

4. Peturn to the begirning of the PAR logic diagram if there has been a subatartial change in condrions.

Note 7 (Cont'd)
Table 3
(Use This Table if Sectors 8, 9, 10 or 11 are Downwind or Adjacent But Sectors 15, 16, 1, 2, 3, 4, 5, 6, or 7 are Not Downwind or Adjacent)

1 Dowmwnic - The sectors that are projected to be affected (Outside the 2 mile racius) during the course of the relsase plus the two adjacent sectars.
2. Determine ' X ', which equais the number of hours from NOW until the current or projected reiease is estimated to STOP. If if is unknown when the reisase will stop aseum ' x ' $=8$.
3. Determine the Protective Action Pecommenastion by determining which block of the column determined from the diagram that ' x ' falls ints.
(if "x' falis on a line use the biocik below the line.)

4. Fetum to the beginning of the PAR logic diagram if there has been a substantial change in conditions.

THE ABOVE B © WAGRMKTED

Note 7 (Cont'd)
Table 4
(Use This Table if Sectors 12, 13, or 14 are Downwind or Adjacent But Sectors 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 are Not Dowmwind or Adjacent)

1. Dopewhap - The sectors that are projected to be affected (Outaide the 2 mile radius) during the oourse of the reisase plise the two acjacenk sectors.
2. Determine " K ", which equals the number of hours from NOW until the current or projected reisase is estimated to STOP. If it is uniknown when the reiease will stop assume " X " $=8$.
3. Determine the Protective Action Recommendation by determining which biock of the column determined from the diagram that " x " fails into.
(II ' x^{\prime} falis on a line use the biock below the line.)

4. Feturn to the beginning of the PAR logic elisgram if there has been a substantial change in contitions.
 Wamamyen.

OYSTER CREEK EMERGENCY PREPAREDNESS IMPLEMENTING PROCEDURE

Number EPIP-OC-. 25

Revision No.
9

> EXHIBIT $1 C$ OYSTER CREEK
> PAK LOGIC DIAGRAM

OYSTER CREEK EMERGENCY PREPAREDNESS IMPLEMENTING PROCEDURE

Number
EPIP-OC-. 25

Revision No.
7

EXHIBIT $1 C$ (Continued)

OYSTER CREEK
PAR IOGIC DIAGRAM NOTES

NOTE 1
SUBSTANTIAL CORE DAMAGE IS A POTENTIAL IF:

* RPV WATER LEVEL IS LESS THAN OR EQUAL TO - 30 INCHES FOR GREATER THAN OR EQUAL TO 2 MINUTES

ACTUAI SUBSTANTIAL CORE DAMAGE IS INDICATED BY:

* CHRRMS READING GREATER THAN $3.0 E 4 \mathrm{R} / \mathrm{HR}$ DRYWELL H_{2} CONCENTRATION IN EXCESS OF 25%

NOTE 2

UNDER WORST CASE METEOROLOGICAL CONDITIONS, A CHRRMS READING OF $1300 \mathrm{R} / \mathrm{HR}$ IS INDICATIVE OF A FISSION FRODUCT INVENTORY SUFFICIENT TO EXCEED EPA LOWER LIMIT PAG'S.

NOTE 3

CONTAINMENT IS BREACHED IF THERE IS A RELEASE TO THE SECONDARY CONTAINMENT OR ENVIRONMENT OR A DECISION TO VENT THE CONTAINMENT HAS BEEN MADE.

SOME EXAMPLES OF CONTAINMENT BEING BYPASSED INCLUDE ISO CONDENSER LEAKS, STEAM LINE BREAKS IN THE TURBINE BUILDING WITH NO MSIV CLOSURE, AND REACTOR CLEANUP SYSTEM LEAKS.

CONTAINMENT WILL BE DETERMINED TO BE SERIOUSLY CHALLENGED THROUGH A DETAILED ENGINEERING ANALYSIS. IF AN ANALYSIS OF CONTAINMENT INTEGRITY IS NOT AVAILABLE, THEN CONTAINMENT WILL BE CONSIDERED SERIOUSLY CHALLENGED IF CONTAINMENT PRESSURE EXCEEDS 38 PSIG AND BULK TEMPERATURE IS ABOVE 280° DEGREES F.

NOTE 4

AS GUIDANCE, IF 5 TIMES THE MAXIMUM PROJECTED INTEGRATED DOSE IS LESS THAN THE EPA LOWER LIMIT PAG, RECOMMEND SHELTERING 2 MILES RADIUS AND 5 MILES DOWNWIND. OTHERWISE, THE COMPUTERTZED PAR ANALYSIS OF THE RAC CODE OR ATTACHMENT 1 TO THIS NOTE MAY BE USED TO DETERMINE TPE PAR.

OYSTER CREEK EMERGENCY PREPAREDNESS
IMPLEMENTING PROCEDURE

Number
EPIP-OC-. 25

Title
Emergency Operations Facility (EOF)

Revision No
7

Modified Evacuation Time Estimates (METE's)

	WINTER				SUMMER			
	Daytime		Nighttime		Daytime		Nighttime	
	Normal	Adverse	Normal	Adverse	Normal	Adverse	Normal	Adverse
$\begin{aligned} & 2 \text { mile } \\ & \text { radius } \end{aligned}$	3.5	3.9	3.0	3.3	3.5	3.9	3.0	3.2
$\begin{aligned} & 5 \text { miles } \\ & \text { downwind } \end{aligned}$	3.9	4.3	3.7	4. 2	4.1	4.6	4.2	4.8
10 miles downwind	5.4	6.0	5.5	6.1	6.8	8.0	7.0	8.2

1) Choose the appropriate METE's and fill in A, B, \& C.
2 mile radius
5 mile downwind
10 mile downwind \square A
2) Calculate X using the following formula:

$X=$| The f of hours from now until the release |
| :--- |
| is estimated to start, if known. (Use 0 |
| if a release is in progress or if the time |
| of release is unknown.) |$\quad+$| The \# of hours |
| :--- |
| the release is |
| estimated to last. |

$x=$ \qquad $+$ \qquad $=$ \qquad
3) Fill in the blanks with the values for $A, B, \& C$ and choose a PAR using the value for X calculated above.

	OYSTER CREEK EMERGENCY PREPAREDNESS IMPLEMENTING PROCEDURE	number $\text { EPIP-OC-. } 25$
```Title Emergency Operations```	Facility (EOF)	Revision No. 7

## EXHIBIT 1 C

NOTE 4 ATTACHMENT 1 (Continued)
USE IF WIND DIRECTION (from) IS: 282-11 Degrees
Modified Evacuation Time Estimates (METE's)

	WINTER				SUMMER			
	Daytime		Nighttime		Daytime		Nighttime	
	Normal	Adverse	Normal	Adverse	Normal	Adverse	Normal	Adverse
$\begin{aligned} & 2 \text { mile } \\ & \text { radius } \end{aligned}$	3.5	3.9	3.0	3.2	3.5	3.9	3.0	3.2
5 miles downwind	3.6	4.0	3.1	3.3	3.6	4.0	3.2	3.5
10 miles downwind	4.1	4.4	4.2	4.5	5.7	6.9	6.2	7.2

1) Choose the appropriate METE's and $f i 11$ in $A, B, \& C$.
2 mile radius
5 mile downwind
10 mile downwind $\square \mathrm{A}$
2) Calculate $X$ using the following formula:
$x=$
```
The # of hours from now until the release is estimated to start, if known. if , the time of release is unknown.)
```

$+$
The \# of hours the release is estimated to last.
$x=$ $\qquad$ $+$ $\qquad$ $=$ $\qquad$
3) Eill in the blanks with the values for A, B, \& C and choose a PAR using the value for $X$ calcılated above.
$x<\frac{A}{A}$ Shelter 2 mile radius and 10 miles downwind
or
$\frac{}{A} \leq x<\frac{}{B}$
Evacuate 2 mile radius and shelter 10 miles downwind
or


Evacuate 2 mile radius, 5 miles downwind, and shelter 10 miles downwind
or
Evacuate 2 mile radius and 10 miles downwind

| OTASTER CREEK EMERGENCY PREPAREDNESS |
| :---: | :---: | :---: | :---: |
| IMPLEMENTING PROCEDURE | | Number |
| :---: |
| EPIP-OC-. 25 |

## EXHIBIT 2 C

NOTE 4 ATTACHMENT 1 (Continued)
USE IF WIND DIRECTION (from) IS: $12-191$ Degrees
Modified Evacuation Time Estimates (METE's)

	WINTER				SUMMER			
	Daytime		Nighttime		Daytime		Nighttime	
	Normal	Adverse	Normal	Adverse	Normal	Adverse	Normal	Adverse
2 mile   radius	3.5	3.9	3.0	3.2	3.5	3.9	3.0	3.2
5 miles   downwind	3.6	4.0	3.1	3.3	3.6	4.0	3.1	3.3
10 miles   downwind	3.7	4.2	3.2	3.5	3.7	4.2	3.2	3.5

1) Choose the appropriate METE's and fill in A, B, \& C.
2 miles radius
5 mile downwind
10 mile downwind
2) Calculate $X$ using the following formula:

$X=$| The $\#$ of hours from now until the release |
| :--- |
| is estimated to start, if known. (Use 0 |
| if a release is in progress or if the time |
| of release is unknown.) |$\quad+$| The \# of hours |
| :--- |
| the release is |
| estimated to last. |

$X=$ $\qquad$ $+$ $\qquad$ $=$ $\qquad$
3) Fill in the blanks with the values for $A, B, \& C$ and choose a $P A R$ using the value for $X$ calculated above.



[^0]:    * The decision to recommend sheltering rather than evacuation should be made only when it is clear that sheltering will result in less dose to the public (For example, if it is hNOWN that the release will be terminated within 2 hours of the declaration.)

[^1]:    * The decision to recommend sheltering rather than evacuation should be made only when it is clear that sheltering will result in less dose to the public (For example, if it is KNOWN that the release will be terminated within 2 hours of the declaration.)

