VOGTLE ELECTRIC GENERATING PLANT GEORGIA POWER COMPANY

.

.

ł

.

.

.

FUEL HANDLING BUILDING DESIGN REPORT

Prepared

by

Bechtel Power Corporation, Los Angeles, California

October 1984

8411050186 841031 PDR ADOCK 05000424 A PDR

-

TABLE OF CONTENTS

Sect	ion		Page
1.0	INTRO	DUCTION	1
2.0	DESCH	RIPTION OF STRUCTURE	2
	2.1	General Description	2
	2.2	Location and Foundation Support	2
	2.3	Geometry and Dimensions	3
	2.4	Key Structural Elements	3
	2.5	Major Equipment	5
3.0	DESIG	GN BASES	6
	3.1	Criteria	6
	3.2	Loads	7
	3.3	Load Combinations and Stress/Strength Limits	12
	3.4	Materials	12
4.0	STRU	CTURAL ANALYSIS AND DESIGN	15
	4.1	Selection of Governing Load Combination	16
	4.2	Vertical Load Analysis	16
	4.3	Lateral Load Analysis	17
	4.4	Combined Effects of Three Component	
		Earthquake Loads	18
	4.5	Roof and Floor Slabs	18
	4.6	Shear Walls	19
	4.7	Walls Supporting the Cask Handling Crane	21
	4.8	Basemat	22
	4.9	Spent Fuel Pool Walls	25

..

TABLE OF CONTENTS (cont)

Page

-			
5.0	MISC	ELLANEOUS ANALYSIS AND DESIGN	26
	5.1	Ctability Analysis	26
	5.2	Tornado Load Effects	27
	5.3	Abnormal Loads Effects	28
	5.4	Foundation Bearing Pressure	29
6.0	CONC	LUSION	29
7.0	REFE	RENCES	29
TABL	ES		
FIGU	RES		
APPE	NDICES		

A	Defini	tion	of	Loads
---	--------	------	----	-------

B Load Combinations

Section

1

2

C Design of Structures for Tornado Missile Impact

LIST OF TABLES

Table		Page
1	Fuel Handling Building Seismic Acceleration	
	Values	31
2	Tornado Missile Data	32
3	Design Results of Representative Slab Panels	33
4	Design Results of Representative Shear Walls	34
5	Design Results of Walls Supporting the Cask	
	Handling Crane	35
6	Factors of Safety for Structural Stability	36
7	Tornado Missile Analysis Results	37
8	Maximum Foundation Bearing Pressures	38

LIST OF FIGURES

Figure

1	Location of Fuel Handling Building
2	Fuel Handling Building Floor Plan, El. 220'-0"
3	Fuel Handling Building Section Looking North
4	Fuel Handling Building Sections Looking East
5	Lvl A Floor Plan Showing Location of Shear
	Walls
6	Lvl 3 Floor Plan Showing Location of Shear
	Walls
7	Dynamic Incremental Soil Pressure Profile
8	Hydrodynamic Pressure Profiles Acting on
	Basemat Under OBE
9	Hydrodynamic Pressure Profiles Acting on
	Pool Walls Under OBE
10	Hydrodynamic Pressure Profiles Acting on
	Basemat Under SSE
11	Hydrodynamic Pressure Profiles Acting on
	Pool Walls Under SSE
12	Wind and Tornado Effective Velocity Pressure
	Profiles
13	Representative Roof and Floor Slab Details
14	Representative Shear Wall Details
15	Cask Crane Beam Elevation
16	Cask Crane Beam Section
17	Basemat Finite Element Model
18	Representative Results of Basemat Analysis
19	Representative Results of Basemat Design
20	Center Section Basemat Reinforcing
21	Basemat Section Details
22	Representative Results of Spent Fuel Pool Wall
	Analysis
23	Representative Results of Spent Fuel Pool Wall
	Design
24	Representative Spent Fuel Pool Wall Details

iv

1.0 INTRODUCTION

The Nuclear Regulatory Commission Standard Review Plan, NUREG-0800, requires the preparation of design reports for Category 1 structures.

This design report represents one of a series of 11 design reports and one seismic analysis report prepared for the Vogtle Electric Generating Plant (VEGP). These reports are listed below:

- Containment Building Design Report
- Containment Internal Structure Design Report
- Auxiliary Building Design Report
- Control Building Design Report
- Fuel Handling Building Design Report
- NSCW Tower and Valve House Design Report
- Diesel Generator Building Design Report
- Auxiliary Feedwater Pumphouse Design Report
- Category 1 Tanks Design Report
- Diesel Fuel Oil Storage Tank Pumphouse Design Report
- Category 1 Tunnels Design Report
- Seismic Analysis Report

The Seismic Analysis Report describes the seismic analysis methodology used to obtain the acceleration responses of Category 1 structures and forms the basis of the seismic loads in all 11 design reports.

The purpose of this design report is to provide the Nuclear Regulatory Commission (NRC) with specific design and construction information for the fuel handling building, in order to assist in planning and conducting a structural audit. Quantitative information is provided regarding the scope of the actual design computations and the final design results.

The report includes a description of the structure and its function, design criteria, loads, materials, analysis and design methodology, samples of governing design forces, a design summary of representative key structural elements.

2.0 DESCRIPTION OF STRUCTURE

2.1 GENERAL DESCRIPTION

The fuel handling building is a five-story reinforced concrete building common to the two-unit plant. It houses the new fuel storage area, cask storage pit and washdown area, and two spent fuel pools. The principal functions of the building are to receive, store, and protect new and spent fuel and to prepare spent fuel for shipment. The building is a shear wall box-type structure with floor and roof slabs acting as rigid diaphragms spanning between the walls. The building is functionally divided into three major areas, a center section that houses the Unit 1 and 2 spent fuel pools, and the east and west wing sections that contain portions of the equipment buildings. Even though the equipment buildings are seismic Category 2, they are designed to Category 1 criteria to eliminate any adverse interaction of the wings with the adjacent Category 1 buildings. The fuel handling building is designed to support the cask handling crane, which is used to transport new and spent fuel casks to and from the building. The interior and exterior walls are solid with occasional openings for doorways, heating, ventilating, and air conditioning (HVAC) ducts, piping and electrical cable trays and a large opening at grade level (elevation 220'-0"), in the center of the south exterior wall, which provides access for the cask handling crane to the auxiliary building.

2.2 LOCATION AND FOUNDATION SUPPORT

All Category 1 structures are founded within the area of the power block excavation. The excavation removed in-situ soils to elevation 130'± where the marl bearing stratum was encountered.

All Category 1 structures are located either directly on the marl bearing stratum or on Category 1 backfill placed above the marl bearing stratum. The backfill consists of densely compacted select sand and silty sand. The nominal finished grade elevation is 220'-0". The high groundwater table is at elevation 165'-0".

The fuel handling building is located south of the control building, north of the auxiliary building and in between the Unit 1 and Unit 2 containments (see figure 1). A 5-1/2-inch seismic gap is provided to separate the fuel handling building from these adjacent structures. The basemat is founded and placed directly on Category 1 backfill at elevation 154'-0" in the equipment building wing sections, and at elevation 173'-0" in the center section. In addition, this Category 1 backfill is placed against the north walls in the equipment building wing sections, west wall of the Unit 1 electrical tunnel, and the east wall of the Unit 2 piping tunnel (from elevation 154'-0" up to the bottom of the adjacent control building and raised center section basemats, which is at elevation 173'-0").

2.3 GEOMETRY AND DIMENSIONS

The fuel handling building is approximately 257 feet long by 75 feet wide and is 134 feet high. The stepped basemat elevations are 154 feet bottom of concrete (BOC) of the wings and 173 feet BOC at the raised center section. There are piping and electrical tunnels that run north-south under the spent fuel pool floor at the transition from the lower wing basemats to the raised center section basemat (see figure 1). Building plan and sections are shown in figures 2 through 4.

2.4 KEY STRUCTURAL ELEMENTS

The key structural elements in the fuel handling building include the roof and floor slabs, shear walls, walls that support the cask handling crane, basemat, and the spent fuel pool walls. Listed below is a brief description of the function and design considerations for these elements.

2.4.1 Roof and Floor Slabs

The fuel handling building has three main roof slabs, level 3 (elevation 263'-8") of both wings, and level 4 (elevation 288'-2") at the center section. The roof slabs are 1 foot 9 inches

thick minimum and the roof is flat. The slabs are structurally supported by walls in the center section and walls and steel columns in both wings. Both wing roof slabs comprise part of the equipment building roof, and have openings for HVAC and the containment access and vent shafts. There are no openings in the center section roof slab.

The main floor slabs are level B (elevation 179'-0"), level A (elevation 200'-0"), level 1 (elevation 220'-0"), and level 3 (elevation 263'-8"). The slabs vary from 1 foot 6 inches to 4 feet 3 inches thick, and are structurally supported by walls.

2.4.2 Shear Walls

Lateral loads applied to the fuel handling building are resisted by the four exterior walls, the fuel pool walls, and other shear walls indicated in figures 5 and 6. The fuel pool walls are described in section 2.4.5. The exterior shear walls contain occasional openings for doorways, electrical and piping systems. They vary from 2 to 3 feet thick.

2.4.3 Walls Supporting the Cask Handling Crane

New and spent fuel casks are transported within the fuel handling building by the cask handling crane. The cask handling crane is located at the center bay of the building. The cask handling crane is supported at elevation 264'-7" by a reinforced concrete wall. The crane supporting wall is laterally stiffened by the level 3 and 4 slabs and has the structural characteristics of a deep beam.

2.4.4 Basemat

The fuel handling building basemat is approximately 75 feet wide by 257 feet long and has a uniform thickness of 6 feet. The raised center section and both wings are structurally integrated with one another on a common stepped basemat. Top of the basemat at the east and west wing sections is at elevation 160'-0" and the

raised center section is at elevation 179'-0". The basemat contains several shallow sumps in both wings and center section that are approximately 5 feet below the top of their respective basemats. The cask loading pit (elevation 173'-0", top of concrete [TOC]), two transfer tube canals, and two spent fuel pools are located at the center section basemat. These sumps, pit, canals, and pools are lined with 1/4-inch-thick stainless steel plate to serve as a leaktight membrane. Electrical and piping tunnels run north-south under the raised center section of the transition from the lower wings to the raised center section basemat. The basemat is stiffened by the tunnels, fuel pool walls, interior and exterior walls at levels C and B that divide the building into several room compartments. Equipment anchored to or supported by the basemat includes the encapsulation vessels and the spent fuel storage rack system.

2.4.5 Spent Fuel Pool Walls

The fuel handling building contains two spent fuel pools, one for each unit. The fuel pool walls are a minimum of approximately 5 feet thick. The north wall of each pool forms part of the transfer tube canal and contains a gate to provide access for the transfer tube canal. The east wall of Unit 2 and the west wall of Unit 1 form part of the new fuel storage pit and contain a gate to provide access to the cask loading pit. The fuel pool walls are lined with 1/4-inch-thick stainless steel plate to serve as a leak tight membrane.

2.5 MAJOR EQUIPMENT

The primary function of the fuel handling building is to provide storage for new and spent fuel assemblies. The spent fuel assemblies are lifted and transported by a bridge crane at elevation 220'-0" that travels the east-west length of the building. The spent fuel shipping cask is lifted and transported by the cask handling crane at elevation 264'-7" that travels north-south in the center bay of the building. Spent fuel storage racks in

the spent fuel pool are used for storage of the spent fuel assemblies. The new fuel storage area is a reinforced concrete pit that provides temporary dry storage for the new fuel assemblies. An equipment and cask cleaning area is located adjacent to the spent fuel pools and new fuel pit. The fuel transfer canal system is used to transport the new and spent fuel assemblies between the fuel handling building and the two containment buildings.

3.0 DESIGN BASES

3.1 CRITERIA

The following documents are applicable to the design of the fuel handling building:

3.1.1 Codes and Standards

- American Concrete Institute (ACI), building code requirements for reinforced concrete, ACI 318-71, including 1974 supplement.
- American Institute of Steel Construction (AISC), specification for the design, fabrication, and erection of structural steel for buildings, adopted February 12, 1969, and Supplements No. 1, 2, and 3.

3.1.2 Regulations

 10 CFR 50, domestic licensing of production and utilization facilities.

3.1.3 General Design Criteria (GDC)

• GDC 1, 2, 4, and 5 of Appendix A, 10 CFR 50.

3.1.4 Industry Standards

Nationally recognized industry standards, such as American Society for Testing and Materials (ASTM), American Concrete

Institute, and American Iron and Steel Institute (AISI), are used to specify material properties, testing procedures, fabrication, and construction methods.

3.2 LOADS

.9

Definition of each load term considered in the fuel handling building design is provided in Appendix A. The loads applicable to the fuel handling building design are individually discussed below.

3.2.1 Normal Loads

3.2.1.1 Dead Loads (D)

The dead loads considered include the weight of concrete and steel structures; piping, cable tray, conduit, HVAC duct loads, large and small equipment loads, and hydrostatic load in the spent fuel pools.

A minimum of 50 psf uniform load was applied on the applicable area of each roof and floor slab to account for piping, cable tray, conduit, HVAC duct, and small equipment loads.

	Center Area		Wing Area	
Floor Elevation	Equipment	Weight (1b)	Equipment	Weight (1b)
263'-8"	Exhaust unit	44,500	-	-
220'-0"	Fuel cask	136,000	Exhaust and filter unit	60,000
200'-0"	New fuel racks (both units)	324,000	Spent fuel pit heat exchanger	52,000
179'-½"	Fuel rack (one pool)	3,930,000	-	-

The major equipment loads are listed below:

3.2.1.2 Live Loads (L)

The live loads include occupancy loads, soil pressures, hydrostatic pressures due to groundwater, movable equipment loads, and precipitation loads.

A uniform load of 100 psf was used as the floor design live load applicable in areas not occupied by equipment. A uniform load of 30 psf was used as the roof slab live load, which envelops the effects of occupancy, snow, and 100-year rainwater ponding loads. Static soil lateral pressure is also considered as live load. The lift capacity of the hoist plus the impact loads were considered as the bridge crane/monorail live loads.

3.2.1.3 Operating Thermal Loads (T_o)

The thermal loads on the spent fuel walls and floor under normal operating conditions are considered in the pool wall and basemat design. The temperature data are listed below:

•	Normal operating	temperature	120°F	
	in pool			
			000	

- Normal inside temperature in 90°F summer
- Normal inside temperature in 60°F winter

3.2.1.4 Operating Pipe and Equipment Load (R)

The pipe and equipment reactions during normal or shutdown condition are accounted for as part of the 50 psf of the design dead loads, (D).

3.2.2 Severe Environmental Loads

3.2.2.1 Operating Basis Earthquake, OBE (E)

Based on the plant site geologic and seismologic investigations, the peak ground acceleration for OBE is established as 0.12g. The free-field response spectra and the development of horizontal

and vertical floor accelerations and in-structure response spectra at the basemat, floor, and roof slab elevations are discussed in the seismic analysis report.

The horizontal and vertical floor accelerations are provided in table 1.

The OBE damping values as percentages of critical applicable to the fuel handling building design are as follows:

Reinfor	rced co	oncrete structures	4
Welded	steel	structures	2
Bolted	steel	structures	4

The dynamic lateral earth pressures due to the OBE are computed by the Mononobe-Okabe method of analysis for dynamic earth pressures in dry cohesionless materials. Figure 7 shows the dynamic incremental soil pressure profile.

Consideration is given to hydrodynamic pressures acting on the fuel pool walls and basemat, (reference 1). Representative hydrodynamic pressure profiles are provided in figures 8 and 9.

3.2.2.2 Design Wind (W)

The fuel handling building is completely surrounded by other Category 1 structures, and is designed for a wind velocity of 110 mph, which is based on a wind speed 30 feet above ground. Exposure C, applicable to flat open country is used. The effective velocity pressure profile for the 110 mph wind used in the design (see figure 12) is in accordance with reference 2.

3.2.3 Extreme Environmental Loads

3.2.3.1 Safe Shutdown Earthquake, SSE (E')

Based on the plant site geologic and seismologic investigations, the peak ground acceleration for SSE is established as 0.20g. The free-field response spectra and the development of horizontal and vertical floor accelerations and in-structure response

spectra at the basemat, floor, and roof slab elevations are discussed in the seismic analysis report.

The horizontal and vertical floor accelerations are provided in table 1.

The SSE damping values as percentages of critical applicable to the fuel handling building design are as follows:

Reinfor	cced co	oncrete	structures	7
Welded	steel	struct	ires	4
Bolted	steel	struct	ures	7

The dynamic lateral earth pressures due to the SSE are computed by the Mononobe-Okabe method of analysis for dynamic earth pressures in dry cohesionless materials. Figure 7 shows the dynamic incremental soil pressure profile.

Consideration is given to hydrodynamic pressures acting on the fuel pool walls and basemat (reference 1). Representative hydrodynamic pressure profiles are provided in figures 10 and 11.

3.2.3.2 Tornado Loads (W₊)

Loads due to the design tornado include wind pressures, atmospheric pressure differentials, and tornado missile strikes. The design tornado parameters, which are in conformance with the Region I parameters defined in Regulatory Guide 1.76, are as follows:

•	Rotational tornado speed	290 mph
•	Translational tornado speed	70 mph maximum
		5 mph minimum
•	Maximum wind speed	360 mph
•	Radius of tornado at	150 feet
	maximum rotational speed	
•	Atmospheric pressure	-3 psi
	differential	
•	Rate of pressure differential	2 psi/sec
	change	

The resultant tornado effective velocity pressure profile used in the design (see figure 12) is in accordance with reference 3. The effective velocity pressure includes the size coefficient, and is used in conjunction with the external pressure coefficient to determine the net positive and negative pressures.

The fuel handling building is a partially vented structure. Conservatively, all walls and slabs are designed for a tornado pressurization effect of ± 3 psi.

The fuel handling building is also designed to withstand tornado missile input effects from airborne objects transported by the tornado. The tornado missile design parameters are listed in table 2. Missile trajectories up to and including 45 degrees off the horizontal use the listed horizontal velocities. Those trajectories greater than 45 degrees use the listed vertical velocities.

Tornado loading (W_t) is defined as the worst case of the following combinations of tornado load effects:

Wt = Wtq (Velocity pressure effects)
Wt = Wtp (Atmospheric pressure drop effects)
Wt = Wtm (Missile impact effects)
Wt = Wtq + 0.5 Wtp
Wt = Wtq + Wtm
Wt = Wtq + 0.5 Wtp + Wtm

3.2.3.3 Probable Maximum Precipitation Load, PMP (N)

The load due to probable maximum precipitation is applied to the fuel handling building roof areas.

Special roof scuppers are provided with sufficient capacity to ensure that the depth of ponding water due to the PMP rainfall does not exceed 18 inches. This results in an applied PMP load of 94 psf.

3.2.3.4 Blast Load (B)

The blast load accounts for a postulated site-proximity explosion. The blast load is conservatively taken as a peak positive incident overpressure of 2 psi (acting inward or outward) applied as a uniform static load.

3.2.4 Abnormal Loads

3.2.4.1 Thermal Load (Ta)

The thermal loads on the spent fuel wall and floor under abnormal conditions are considered in the spent fuel pool wall and basemat design. The design temperature in the pool is 195°F.

3.3 LOAD COMBINATIONS AND STRESS/STRENGTH LIMITS

The load combinations and stress/strength limits for structural steel and concrete are provided in Appendix B.

3.4 MATERIALS

The following materials and material properties are used in the design of the fuel handling building:

3.4.1 Concrete

•	Compressive strength	$f_c = 4 \text{ ksi}$
•	Modulus of elasticity	$E_{c} = 3,830$ ksi
•	Shear modulus	G = 1,530 ksi
	Poisson's ratio	v = 0.17 - 0.25

3.4.2 Reinforcement - ASTM A615, Grade 60

Minimum	yield stress	$F_v =$	60 ks	si
Minimum	tensile strength	Fult	= 90	ksi
Minimum	elongation	7-9%	in 8	inches
	Minimum Minimum Minimum	Minimum yield stress Minimum tensile strength Minimum elongation	Minimum yield stress $F_y =$ Minimum tensile strength F_{ult} Minimum elongation7-9%	Minimum yield stress $F_y = 60 \text{ ks}$ Minimum tensile strength $F_{ult} = 90$ Minimum elongation $7-9\%$ in 8

3.4.3 Structural Steel

.

3.4.3.1 ASTM A36 Minimum yield stressMinimum tensile strength $F_v = 36 \text{ ksi}$ F_{ult} = 58 ksi $E_{s} = 29,000 \text{ ksi}$ Modulus of elasticity 3.4.3.2 ASTM A500, Grade B: Structural Tubing Minimum yield stress $F_v = 46 \text{ ksi}$ Minimum tensile strength F_{ult} = 58 ksi Modulus of elasticity $E_{e} = 29,000 \text{ ksi}$ 3.4.4 Structural Bolts 3.4.4.1 ASTM A325 (1/2 inch to 1 inch diameter inclusive) Minimum yield stress $F_v = 92 \text{ ksi}$ • Minimum tensile strength $F_{ult} = 120$ ksi 3.4.4.2 ASTM A325 (1-1/8 inch to 1-1/2 inch inclusive) $F_y = 81 \text{ ksi}$ Minimum yield stress Fult = 105 ksi Minimum tensile strength 3.4.4.3 ASTM A307 Minimum yield stress F_y is not applicable • Minimum tensile strength $F_{ult} = 60$ ksi 3.4.5 Steel Liner Plate - ASTM A240, Type 304L

	MINIMUM	yield stress	$F_V = 25 \text{ KSI}$
•	Minimum	tensile strength	$F_{ult} = 70 \text{ ksi}$
•	Modulus	of elasticity	E _s = 29,000 ksi

.....

3.4.6 <u>A</u>	nchor Bolts and Headed Anchor Studs		
3.4.6.1	ASTM A36		
•	Minimum yield stress	$F_{v} = 36 \text{ ksi}$	
•	Minimum tensile strength	$F_{ult}^{I} = 58$ ksi	
3.4.6.2	ASTM A108		
•	Minimum yield stress	$F_y = 50 \text{ ksi}$	
•	Minimum tensile strength	F _{ult} = 60 ksi	
3.4.6.3	ASTM A307		
	Minimum yield stress	F, is not applicable	
•	Minimum tensile strength	$F_{ult} = 60 \text{ ksi}$	
3.4.6.4	ASTM A320, Grade B8		
	Minimum yield stress	$F_v = 30 \text{ ksi}$	
•	Minimum tensile strength	$F_{ult} = 75 \text{ ksi}$	
3.4.7	Foundation Media		
3.4.7.1	General Description		
See sect:	ion 2.2		
3.4.7.2	Category 1 Backfill		
	Moist unit weight	$\gamma_m = 126 \text{ pcf}$	
•	Saturated unit weight	$\gamma_t = 132 \text{ pcf}$	
•	Shear modulus	G Depth (feet)
		1530 ksf 0-10	
		2650 ksf 10-20	
		3740 ksf 20-40	
		5510 ksf 40-marl	
		bearing	
		stratum	
•	Angle of internal friction	$\varphi = 34^{\circ}$	
•	Cohesion	C = 0	

3.4.7.3 Modulus of Subgrade Reaction

•	Static	85 kcf
•	Dynamic	250 kcf

3.4.7.4 Net Bearing Capacities

•	Ultimate	64.0 ksf
•	Allowable static	21.3 ksf
•	Allowable dynamic	32.0 ksf

4.0 STRUCTURAL ANALYSIS AND DESIGN

This section provides the methodologies employed to analyze the fuel handling building and to design its key structural elements, using the applicable loads and load combinations specified in section 3.0.

A preliminary proportioning of key structural elements is based on plant layout and separation requirements, and, where applicable, the minimum thickness requirements for radiation shielding and for the prevention of concrete scabbing or perforation due to tornado missile impact. The proportioning of these elements is finalized by confirming that strength requirements and where applicable, ductility and/or stiffness requirements are satisfied.

The structural analysis is performed either by manual analysis or computer analysis. In the manual analysis, the building structure or substructure is considered as an assemblage of slabs, walls, and columns, and the analysis is performed using standard structural analysis techniques. In the computer analysis, the building structure or substructure is modeled as an assemblage of finite elements and the analysis is performed using the standard finite element method utilizing a computer program.

For manual analyses, the analysis techniques, boundary conditions, and application of loads are provided to illustrate the method of analysis.

For computer analyses, the modeling techniques, boundary conditions, application of loads, and description of the computer model are provided to illustrate the overall method of analysis. In addition, for both manual and computer analyses and design, representative analysis and design results are provided to illustrate the response of the key structural elements for governing load combinations.

4.1 SELECTION OF GOVERNING LOAD COMBINATION

An evaluation of load magnitudes, load factors and load combinations is performed to determine the load combination that governs the overall response of the structure. It is determined that load combination equation 2, for steel design (Appendix B, Table B.1) and equation 3 for concrete design (Appendix B, Table B.2) containing OBE, govern over all other load combinations, and hence forms the basis for the overall structural analysis and design of the fuel handling building.

All other load combinations, including the effects of abnormal loads and tornado loads, are evaluated where applicable on a local area basis (i.e., sections 5.2 and 5.3). The localized response is combined with the analysis results of the overall structural response, as applicable, to confirm that design integrity is maintained.

4.2 VERTICAL LOAD ANALYSIS

The vertical load carrying elements of the fuel handling building consist of concrete slabs that support the applied vertical loads, walls and columns that support the slabs, and the basemat which transmits the loads from the walls and columns to the foundation medium. Representative vertical load carrying elements are identified in figures 5 and 6.

The analysis of the building for vertical loads begins at the roof slab and proceeds progressively down through each level of the building to the basemat. Slabs and girders are analyzed for

the vertical loads applied to them. The total vertical load on a wall or column at a given level is computed based on its self weight, the vertical loads at that level from the slab tributary areas, and the cumulative vertical loads from the levels above.

4.3 LATERAL LOAD ANALYSIS

The lateral load carrying elements of the fuel handling building consist of concrete slabs acting as rigid diaphragms to resist applied lateral loads, the shear walls which transmit the loads from the slab diaphragm to the basemat, and the basemat which transmits the loads from the walls and columns to the foundation medium. Representative lateral load-carrying elements are identified in figures 5 and 6.

Since the building structure utilizes the slab diaphragms for horizontal shear distribution, the lateral load analysis is performed by a conventional rigidity and mass analysis. In this analysis, the maximum horizontal design forces for earthquake loads and soil pressure loads are applied at each slab level, as appropriate. The design horizontal earthquake load at each level of the building is obtained by multiplying the lumped story mass at that level by the maximum floor acceleration applicable to that level. The design horizontal soil pressure load of the building is obtained from the lateral earth pressure with due consideration to the seismic effects and the surcharge effects from the raised center section basemat. In the analysis, the horizontal shear loads are carried progressively down from the roof diaphragm through each level of the building to the basemat, to obtain the story shear at each level. The story shear load at each level is distributed to the shear walls at that level in proportion to their relative rigidities.

To account for the torsion caused by the seismic wave propagation effects, the inherent building eccentricity between the center of mass and center of rigidity at each level is increased by 5 percent of the maximum plan dimension in the computation of the torsional

moment. The torsional moment is obtained as the product of this augmented eccentricity and the story shear at that level. The shear in the walls resulting from this torsional moment is computed based on the relative torsional rigidities of the walls.

For a given shear wall, the shear due to story shear (direct shear) and shear due to torsional moment (torsional shear) are combined at a given level to obtain the total design shear load. The torsional shear is neglected when it acts in a direction opposite to the direct shear.

4.4 COMBINED EFFECTS OF THREE COMPONENT FARTHQUAKE LOADS

The combination of co-directional responses due to three component earthquake effects is performed using the Square Root of the Sum of the Squares (SRSS) method, i.e., $R = \begin{pmatrix} R_1^2 + R_j^2 + R_k^2 \end{pmatrix}^{1/2}$ or the Component Factor method, i.e.,

 $R = R_{i} + 0.4 R_{j} + 0.4 R_{k}$ $P = 0.4 R_{i} + R_{j} + 0.4 R_{k}$ $R = 0.4 R_{i} + 0.4 R_{j} + R_{k}$

wherein 100 percent of the design forces from any one of the three components of the earthquake is considered in combination with 40 percent of the design forces from each of the other two components of the earthquake.

4.5 ROOF AND FLOOR SLABS

4.5.1 Analysis and Design Methodology

A representative slab panel plan (elevation 200'-0") of the fuel handling building is presented in figure 5, showing the structural elements provided for vertical and lateral support of the slab panels, which consist of load bearing walls and load bearing shear walls. Based on the panel configuration, the relative stiffness of the supporting members and the type of fixity provided, slab panels are analyzed for one-way or two-way slab action using appropriate boundary conditions and standard beam and plate formulae.

Equivalent uniformly distributed loads are applied to slab panels. The design vertical earthquake loads for slab panels in a level are obtained by multiplying the effective mass from the applied loading (including its own mass) by the maximum floor acceleration at that level.

Based on the floor flexibility study, it is concluded that the effects of vertical flexibility on the fuel handling building floor accelerations and response spectra are insignificant, as long as the fundamental floor system frequency is equal to or higher than 10 cps. The evaluation of the floor systems in the fuel handling building demonstrates that their frequencies are higher than this value. The details of the floor flexibility study are provided in the seismic analysis report.

1

Slab panels are selected for design on the basis of the controlling combination of design load intensity, span, panel configuration, and support conditions.

The structural design is based on strength considerations and consists of sizing and detailing the reinforcing steel to meet the ACI 318 Code requirements. In general, the reinforcing requirements are determined for the governing face of the slab and conservatively provided on both faces.

As appropriate, additional reinforcement is provided in the slab adjacent to large floor openings.

4.5.2 Design Results

٠

The design results for governing load combinations are presented in table 3 for representative slab panels. See figure 13 for representative design details.

4.6 SHEAR WALLS

4.6.1 Analysis and Design Methodology

The location of shear walls are identified in figures 5 and 6 for representative elevations.

The details of the analysis methodology used to compute the total in-plane design loads at various levels of a shear wall are described under vertical and lateral load analyses in sections 4.2 and 4.3. The in-plane design loads include axial loads resulting from the overturning moment.

The out-of-plane design loads that are considered include the inertia loads on the walls due to the structural acceleration caused by the design earthquake.

The design in-plane shear force and the overturning moment acting on a shear wall at a given level is computed by considering the shear loads acting at all levels above, and the resulting overturning moments. Conventional beam analysis is used to compute the bending moment and out-of-plane shear forces resulting from the out-of-plane design loads. At controlling sections, the combined effects of in-plane overturning moment and axial loads, and the out-of-plane loads are evaluated.

The shear wall design is performed in accordance with the ACI 318 Code using the following methodology:

- A. The horizontal and vertical reinforcement required to resist the design shear loads is determined.
- B. The flexural capacity of the shear wall using the reinforcement determined is obtained using the Cardenas equation (reference 4).
- C. If the flexural capacity computed is less than the design overturning moment, then the reinforcement required is determined in one of the following two ways:
 - The total vertical reinforcement required for the design moment is computed using the Cardenas equation and is distributed uniformly along the length of the wall.
 - The reinforcement required in the end sections of the wall to resist the overturning moment is computed.

D. The reinforcement provided for the in-plane loads is evaluated for the combined effects of in-plane and out-of-plane loads, and additional reinforcing steel is added if necessary.

4.6.2 Design Results

The design results for governing load combinations are presented in table 4 for representative shear walls. See figure 14 for representative design details.

4.7 WALLS SUPPORTING THE CASK HANDLING CRANE

4.7.1 Analysis and Design Methodology

The structure supporting the cask handling crane is designed as a simply supported deep beam, consisting of the wall in web action, and the effective areas of the roof slab and the level 3 floor slab in flange action. The deep beam moments and shears are determined using standard beam formulas.

Uniformly distributed roof and floor loads are converted to an equivalent uniform linear load using the tributary load method. Concentrated cask handling crane truck loads are applied eccentrically to the bottom of the wall at the rail centerline. The design vertical earthquake load for the supporting wall is obtained by multiplying the tributary mass from the applied loading (including the deep beam wall's own mass) by the maximum floor acceleration at the level 4 roof.

The structural design of the walls supporting the cask handling crane is governed by strength considerations, and consists of sizing and detailing the reinforcing steel in accordance with the provisions of the ACI 318 Code. Appropriate consideration is given to the corbel-like torsion action on the wall ledge.

4.7.2 Design Results

The design results for governing load combinations are presented in table 5 for representative walls supporting the cask handling crane. See figures 15 and 16 for design details.

4.8 BASEMAT

4.8.1 Analysis Methodology and Computer Model

The basemat is analyzed utilizing a finite element model with the Bechtel Structural Analysis Program (BSAP), which is a general purpose computer program for finite element analyses. This program uses the direct stiffness approach to perform linear elastic analysis of a three-dimensional finite element model.

The finite element model includes the structural elements in the building through elevation 220'-0" and the basemat, and is prepared using conventional modeling techniques. Plate elements are used to model the basemat, the spent fuel pool walls, and all other structural walls and slabs below elevation 220'-0". Boundary (spring-type) elements are used as follows:

- A. To characterize the stiffness effects of soil beneath the basemat.
- B. To eliminate singularity conditions by providing boundary conditions that prevent in-plane rotation of walls that are oriented in a manner which precludes the use of global boundary conditions to eliminate the inplane rotational degrees of freedom.

The vertical stiffness of each soil spring is determined by multiplying the nodal tributary area by the modulus of subgrade reaction. The horizontal spring stiffnesses are computed to model the stiffness effect of the soil in the horizontal direction. The structural shear walls to elevation 220'-0" are modeled to represent the stiffness interaction effects at the wall/basemat junction. There are a total of 1002 boundary elements which represent soil stiffness, 1489 plate elements to model the basemat

and walls, and 8 beam elements along the periphery of the basemat in the penetration area to model the thickened portion of the mat around the containment building.

Computer plots of the fuel handling building basemat model, including node numbers and element numbers, are shown in figure 17. Only one half of the fuel handling building is modeled to take advantage of the symmetry of the building in the east-west direction about the centerline of the two-unit plant.

The boundary conditions for the basemat model are as follows: boundary elements, representing the translational soil stiffness, are applied at each basemat node in the three global translational directions; boundary elements with large rotational rigidity and no translational rigidity are applied at the plate element nodes to eliminate singularity conditions by restraining in-plane rotation; along the axis of building symmetry, symmetrical boundary conditions are used for vertical and north-south loads, and anti-symmetrical boundary conditions are used for east-west loads.

4.8.2 Application of Loads

The magnitude and distribution of loads applied to the basemat model are consistent with the cumulative results of the vertical and horizontal load analyses of the overall building structure. As described in the other sections of this report, the loads include dead load, live load, hydrostatic, and hydrodynamic loads, vertical and horizontal seismic loads, and lateral soil pressure loads.

Dead load, live load, and vertical and horizontal seismic loads for the elements in the model are accounted for internally by the computer program by assigning a mass density to the plate elements and applying the appropriate static acceleration. Dead load, live load, and vertical and horizontal seismic loads associated with the portion of the structure above elevation 220'-0" are applied as nodal forces at elevation 220'-0".

Hydrostatic loads due to water in the fuel pool are applied to the appropriate plate elements as equivalent pressure loads. The hydrodynamic effects of the water, including both impulsive and convective forces (reference 1) are applied to the appropriate plate elements as equivalent pressure loads.

Lateral soil pressure loads and surcharge from the center portion of the fuel handling building are applied to the electrical tunnel wall (refer to section 2.4.4).

4.8.3 Design Methodology

1

The design of the basemat, including the sizing and detailing the reinforcing steel, is done in accordance with the requirements of the ACI 318 Code.

The required flexural reinforcement in the basemat is calculated using the OPTCON module of program BSAP-POST. BSAP-POST (which consists of a collection of modules that perform specific independent tasks) is a general purpose, post-processor program for the BSAP finite element analysis program. BSAP-POST reads computed BSAP results into an internal common data storage base and optionally performs one or several additional operations (i.e., plotting) or calculations (i.e., creating load combinations or designing reinforced concrete members).

In general, the OPTCON processor is a reinforced concrete analysis and design program for doubly reinforced concrete sections which creates reinforced concrete interaction diagrams based on the maximum allowable resistance of a section for given stress and strain limitations (code allowables). Any load combination whose design axial force and corresponding moment (load set) falls within the interaction diagram indicates all stress and strain code criteria are satisfied.

The thermal effects on the basemat under operating conditions are evaluated using the methodology described in section 5.3.

Basemat shear is computed using the design moments from the finite element analysis and determining the moment gradient between adjacent elements.

4.8.4 Design Results

۴

6

Representative results of the basemat analysis is provided in figure 18. Representative results of the basemat design is provided in figure 19. Representative design details are shown in figures 20 and 21.

4.9 SPENT FUEL POOL WALLS

4.9.1 Analysis Methodology and Computer Model

The spent fuel pool walls are analyzed utilizing the basemat finite element computer model. The analysis methodology and computer model are described in section 4.8.1.

4.9.2 Application of Loads

The load application procedures for the analysis of the spent fuel pool walls are described in section 4.8.2.

4.9.3 Design Methodology

The design of the spent fuel pool walls, including the sizing and detailing of reinforcing steel, is done in accordance with the strength design provisions of the ACI 318 code.

The required flexural reinforcement in the spent fuel pool walls is determined based on the design forces obtained from the BSAP analysis (refer to sections 4.8.1 and 4.8.2), with the use of a OPTCON computer program. For a description of computer design using the OPTCON module of BSAP-POST refer to section 4.8.3.

4.9.4 Design Results

Representative results of the spent fuel pool analysis is provided in figure 22. Representative results of the spent fuel pool wall design is provided in figure 23. Representative design details are shown in figure 24.

5.0 MISCELLANEOUS ANALYSIS AND DESIGN

Once the basic design of the fuel handling building has been completed (refer to section 4), the structure is evaluated for the effects of abnormal loads and tornado loads. This is done on a local area basis where applicable. In addition, the overall stability of the fuel handling building is evaluated to ensure an adequate safety factor against instability is provided. This section describes these analyses and significant special provisions employed in the fuel handling building design.

5.1 STABILITY ANALYSIS

The overall stability of the fuel handling building is evaluated by determining the factor of safety against overturning, sliding, and flotation.

5.1.1 Overturning

The factor of safety against overturning is determined using the equivalent static method and the energy balance method.

The equivalent static method does not account for the dynamic characteristics of the loading and therefore results in a factor of safety lower than the energy balance method. The factor of safety obtained from the energy balance method reflects the actual design conditions and therefore provides a more appropriate measure of the design margin.

The factor of safety against overturning using the equivalent static method is defined as the ratio of the resisting moment due to net gravity forces to the overturning moment caused by the maximum lateral forces acting on the structure. The gravity forces are reduced to account for the effects of buoyancy and the vertical component of earthquake.

The factor of safety against overturning using the energy balance method is defined as the ratio of the increase in the potential energy at the point of overturning about the critical edge of the

structure to the maximum kinetic energy that could be imparted to the structure as a result of earthquake loadings. The energy balance analysis methodology is described in reference 5.

5.1.2 Sliding

The factor of safety against sliding is defined as the ratio of combined frictional and passive sliding resistance of the foundation to the maximum calculated lateral force.

5.1.3 Flotation

The factor of safety against flotation is defined as the ratio of the total weight of the structure and its foundation to the buoyant force, defined as the volume of the ground water displaced by the submerged portion of the structure multiplied by the unit weight of water.

5.1.4 Analysis Results

The minimum required factors of safety and the calculated factors of safety for stability are provided in table 6.

5.2 TORNADO LOAD EFFECTS

Tornado load effects result from wind pressures, atmospheric pressure differentials, and tornado missile strikes. The magnitude and combinations of tornado load effects considered are described in section 3.2. The load combination involving tornado load effects is specified by equation 8 of Table B.2 in Appendix B.

Controlling roof and exterior wall panels are evaluated for tornado load effects, and the localized response is combined with the analysis results of the overall structural response, as applicable, to confirm that design integrity is maintained. Additional reinforcing steel is provided in accordance with the ACI 318 Code, if necessary, to satisfy design requirements. In addition, barriers are provided for the openings in the exterior

walls or roofs unless the systems or components located in the exterior rooms are nonsafety-related. In this case, the interior walls and slabs are treated as barriers for the safety-related systems or components located in the interior rooms. Any openings in the exterior walls or slabs and the interior walls or slabs that may be susceptible to missile entry are evaluated to ensure that no safety-related systems or components are located in a potential path of the missile.

The methodology used to analyze and design the structural elements to withstand the tornado load effects is described in reference 3. Specific procedures used for analysis of missile impact effects are described in Appendix C.

Representative results of the tornado missile analysis are provided in table 7.

All wall and roof panels providing protection against tornado load effects have a minimum thickness of 24 and 21 inches respectively, to preclude missile perforation and concrete scabbing.

5.3 ABNORMAL LOADS EFFECTS

For this structure the only applicable abnormal loads are generated by a postulated accident which occurs only in the spent fuel pool.

The spent fuel pools are located between column lines $F_{A.3}$ and $F_{A.8}$, and F_4 and F_6 for Unit 1, and F_1 and F_3 for Unit 2. The spent fuel pool walls and floor are analyzed using the BSAP computer program, utilizing a finite element model as described in sections 4.8 and 4.9. The loads applied to the model include dead loads, live loads, vertical and horizontal OBE/SSE loads, hydrodynamic and hydrostatic, and thermal loads. Load combination equations 9, 10 and 11 of Appendix B, Table B.2 are considered in determining the design forces.

The reinforcing steel provided on the basis of overall structural response, as per the design methodology described in section 4, is evaluated for the governing design forces resulting from the effects of abnormal loads, to ensure that the requirements of the ACI 318 Code are satisfied. This is accomplished using OPTCON computed program described in section 4.8.3.

OPTCON calculates the thermal moment induced by the thermal gradient, by considering the relaxation effects of concrete cracking and reinforcement-yielding. For each load combination analyzed, the state of stress and strain is determined before the thermal load is applied. The thermal moment is approximated based upon an iterative approach which considers equilibrium and compatibility conditions. The final force-moment set (which includes the cracked section final thermal moment) is checked to verify that it falls within the code allowable interaction diagram.

5.4 FOUNDATION BEARING FRESSURE

The maximum calculated bearing pressures under the governing design load conditions are provided in table 8.

6.0 CONCLUSION

The analysis and design of the fuel handling building includes all credible loading conditions and complies with all applicable design requirements.

7.0 REFERENCES

- U.S. Atomic Energy Commission, Nuclear Reactors and Earthquakes, Division of Technical Information, <u>Report TID-7024</u>, August 1963.
- "Building Code Requirements for Minimum Design Loads in Buildings and Other Structures," <u>ANSI A58.1-1972</u>, American National Standards Institute, New York, N.Y., 1972.

- BC-TOP-3-A, Revision 3, Tornado and Extreme Wind Design Criteria for Nuclear Power Plants, Bechtel Power Corp., August 1974.
- Design Provisions for Shear Walls, Portland Cement Association, 1973.
- <u>BC-TOP-4-A</u>, <u>Revision 3</u>, Seismic Analyses of Structures and Equipment for Nuclear Power Plants, Bechtel Power Corp., November 1974.

TABLE 1

	FLOOR ACCELERATIONS (g's) ⁽¹⁾					
	SSE		OBE			
Elevation	E-W	N-S	Vert.	E-W	N-S	Vert.
160'-0"	0.24	0.21	0.39	0.16	0.14	0.24
179'-032"	0.34	0.25	0.41	0.22	0.17	0.27
200'-0"	0.37	0.27	0.42	0.24	0.19	0.28
220'-0" (grade level)	0.39	0.30	0.43	0.25	0.20	0.29
263'-8"	0.54	0.41	0.46	0.35	0.28	0.31
263'-8"	0.54	0.42	0.46	0.35	0.28	0.31
288'-2"	0.61	0.49	0.49	0.42	0.33	0.33

FUEL HANDLING BUILDING SEISMIC ACCELERATION VALUES

 The actual acceleration values used in the design of the structure may be higher than the values shown.
TABLE 2

Missile	Weight W (lb)	End-On Height Limit (ft)	End-On Horizontal Velocity (ft/sec)	Vertical Velocity (ft/sec)
4" x 12" x 12' Plank	200	216	200	160
3" Ø std x 10' Pipe	78.5	212	200	160
1" Ø x 3' Steel Rod	8	Unlimited	317	254
6" Ø std x 15' Pipe	285	101	160	128
12" Ø std x 15' Pipe	744	46	150	120
13-1/2" Ø x 35' Utility Pole	1490	30(1)	211	169
Automobile (20 ft ² project area)	4000	c	75	60

.

TORNADO MISSILE DATA

 To 30' above all grade levels within 1/2 mile of facility structures.

and the second		· · · · · · · · · · · · · · · · · · ·	1 A
-1 · A	121	1.0	
10	101	100	-
-			

	. (1)		A _s Required (in. ² /ft)				A _s Provided (in. ² /ft			
	Governing Load	Design Force	N-S		E-W		N-S		E	-W
Element	Combination Equation	Moment k-ft/ft	Тор	Bot.	Тор	Bot.	Тор	Bot.	Тор	Bot.
Level A Center Section Corridor Slab	3	$N-S +M_{u} = 32.2$ $N-S -M_{u}^{u} = 24.3$	0.39 (2)	0.51	0.39 (2)	0.39 (2)	0.60	0.60	0.44	0.44
Level A New Fuel Storage Pit Slab	3	E-W M _u = ± 54.0	0.56 (2)	0.56 (2)	0.56	0.56 (2)	1.00	1.00	1.00	1.00
Level 1 Center Section Corridor Slab	3	$N-S +M_{u} = 21.8$ $N-S -M_{u} = 30.5$	0.54	0.38	0.28	0.28	0.60	0.60	0.44	0.44
Level 1 Cask Washdown Area Slab	3	$N-S +M_{u} = 43.3$ $N-S -M_{u}^{u} = 79.0$	0.93 (2)	0.93 (2)	0.93 (2)	0.93	1.00	1.00	1.00	1.00
Level 4 Roof Slab Between F ₂ & F ₄	3	$\begin{array}{l} N-S +M &= 65.9 \\ N-S -M^{u} &= 140.5 \\ E-W +M^{u} &= 120.1 \\ E-W -M^{u} &= 266.9 \end{array}$	1.67	0.74	2.90	1.28	3.12	1.56	3.12	3.12

DESIGN RESULTS OF REPRESENTATIVE SLAB PANELS

Load combination equations correspond to equations in Appendix B.
Governed by minimum code reinforcement requirements.

VEGP-FUEL HANDLING BUILDING DESIGN REPORT

3

1.6

		De	esign Fo (In-Plan	prces ne)	A _s Required			A _s Provided		
	Governing ⁽¹⁾				(in. ²	/ft)	(in. ²)	(in. ² /ft)		(in. ²)
Element	Combination Equation	N (k)	u (k)	M u (k-ft)	Horiz.	Vert.	ER(3)	Horiz.	Vert.	ER(3)
Level 3 North Wall Between F_1 and F_6	3	747	4,575	112,047	0.72 (2)	0.72	-	2.00	2.00	-
South Wall Between F_4 and F_6	3	89	1,406	34,433	1.08 (2)	1.08	-	2.00	2.00	-
Level 2 East or West Wall Between F _A and F _B	3	473	9,735	516,989	2.28	2.00	133.4	3.12	2.54	220.00
Level B North Wall Between F_1 and F_6	3	13,717	25,271	1,013,740	2.35 (2)	2.35 (2)	-	2.54	2.54	-
Level B South Wall Between F ₁ and F ₆	3	8,869	15,628	1,126,030	1.08 (2)	1.08	-	2.00	2.00	-

TABLE 4

DESIGN RESULTS OF REPRESENTATIVE SHEAR WALLS

Load combination equations correspond to equations in Appendix B.
Governed by minimum code reinforcement requirements.
ER - End reinforcement

VEGP-FUEL HANDLING BUILDING DESIGN REPORT

34

3

-	-	_	and the second second	1000
	æ	D 1		- Marco - 1
- 10	m.	D.	LAD.	2
		-		

Element	Governing ⁽¹⁾ Load Combination Equation	Design Force	A _s Required	A _s Provided
Deep Beam Wall	3	80,000 k-ft	70.33 in. ²	83.25 in. ²
		Shear-friction 144 k/ft	2.02 in. ² /ft	3.00 in. ² /ft
Corbel	3	Direct tension 46k/ft moment 215 k-ft/ft	2.21 in. ² /ft (2)	2.53 in. ² /ft
Crane Beam	3	Torsion 2,280 k-ft	Torsional stirrup 0.74 in. ² /ft Longitudinal reinf. 18.3 in. ²	1.00 in. ² /ft 34.3 in. ²
			the second se	

DESIGN RESULTS OF WALLS SUPPORTING THE CASK HANDLING CRANE

Load combination equations correspond to equations in Appendix B. Governed by minimum code reinforcement requirements. $\binom{(1)}{(2)}$

VEGP-FUEL HANDLING BUILDING DESIGN REPORT

New State

m	A	D	r 1	E?	6
1	п	D		C I	0
	• •	-	-		-

	0 Fac	verturning tor of Safet	·У	Sli Factor	ding of Safety	Flotation Factor of Safety		
		Calculated						
Load ⁽¹⁾⁽³⁾ Combination	Minimum Required	Equivalent Static	Energy Balance	Minimum Required	Calculated	Minimum Required	Calculated	
D + H + E	1.5	1.6	See note (2)	1.5	1.67	-	-	
D + H + E'	1.1	1.3	184	1.1	1.34	-	-	
D + F'	-	-	-	-	-	1.1	15	

FACTORS OF SAFETY FOR STRUCTURAL STABILITY

(1) D = Dead weight of structure

H = Lateral earth pressure

= OBE

E

 $E^1 = SSE$

F' = Buoyant force

- (2) The factor of safety for the SSE load case also satisfies the minimum required factor of safety for the OBE case.
- (3) Lateral loads caused by design wind, tornado, and blast are less in magnitude than lateral loads caused by design OBE and SSE.

36

÷.,

VEGP-FUEL HANDLING BUILDING DESIGN REPORT

TABLE 7

		Panel S	ize	Computed	Allowable	
Panel Description and Location	Length Widt (ft) (ft)		Thickness (ft)	Ductility Ratio	Ductility Ratio	
Level 4 Roof Area Between Lines F_1 and F_2 and F_A and F_B	73	26	2	2.0	10	
Level 4 Roof Area Between Lines F_3 and F_4 and F_A and F_B	73	47	2	1.3	10	
Level 3 Exterior Wall Along F _B Line	26	24.5	3	1.0	10	
Level 3 Exterior Wall Along F ₁ Line	73	24.5	3	1.2	10	

TORNADO MISSILE ANALYSIS RESULTS (1)

(1) Governing combination of tornado load effects is $W_t = W_{tq} + 0.5 W_{tp} + W_{tm}$ VEGP-FUEL HANDLING BUILDING DESIGN REPORT

TABLE 8

Computed Factor (3) Allowable $Net^{(2)}$ Bearing Capacity of Safety Gross Net Gross Net Static Static Dynamic Dynamic Static Dynamic (ksf) Static Dynamic (ksf) (ksf) (ksf) (ksf) (ksf) 640 4.2 23.4 15.4 21.3 32.0 8.1 0.1

MAXIMUM FOUNDATION BEARING PRESSURES (1)

(1) Maximum foundation bearing pressures are defined as follows:

Gross Static	=	Total structure dead load plus operating live load divided by total basemat area.
Net Static	=	The static pressure in excess of the over- burden pressure at the base of the structure.
Gross Dynamic	=	Maximum soil pressure under dynamic load- ing conditions (i.e., unfactored SSE).
Net Dynamic	=	The dynamic pressure in excess of the over- burden pressure at the base of the structure.

- (2) The allowable net static and dynamic bearing capacities are obtained by dividing the ultimate net bearing capacity by factors of 3 and 2 respectively. The ultimate net bearing capacity is the pressure in excess of the overburden pressure at the foundation level at which shear failure may occur in the foundation stratum.
- (3) The computed factor of safety is the ultimate net bearing capacity divided by the net static or net dynamic bearing pressure.

.

Seat Star

17 4

length St. J. S. S.

A

. •

4 5° 4 7 °

LOCA TION OF FUEL HANDLING BUILDING

8411050186-0/

Figure 2 FUEL HANDLING BUILDING FLOOR PLAN, EL. 220'-0"

8411050186-02

UNIT NO.I UNIT NO. 2 TWO UNIT PLANT 4 . (=3) (FA) (Ps) ((= 2) TOP EL 290-2' TO CONC. EL 288-2" BUILDING EQUIPAENT BUILDING UNIT NO.2 R-705 P-804 A-902 P-101 EL.263-8 CRANE LEVEL 3 A-108 -102 R-10 P-109, F CONTAINAENT BUILDING UNIT NO. 2 CONTAINAENT BUILDING LEVEL 2 POVABLE PLATFORM EL 220-0 LEVEL I R-406 (2-20) 19-809 R-BOS 17 EL 200 -01 ST LINED PT LEVEL A A BOO SST LINED POOL R-811 SST UNED POOL ABOOL PLATRORA PLATPORA PH 801 EL 179-04 LEVEL B R-001 R-003 A-005 R-004 R-005 EL. 160-01 LEVEL C A F162 SECTION

16

Figure 3 FUEL HANDLING BUILDING SECTION LOOKING NORTH

100

ULDING DESIGN REPORT

-4

LEGEND:

LOAD BEARING SHEAR WALL

L. 200'-0" (UNO)

Also Available On Aperture Card

Figure 5 LVL A FLOOR PLAN SHOWING LOCATION OF SHEAR WALLS

8411050186-03

LEGEND:

EL. 263'-8"

Also Available On Aperture Card

Figure 6 LVL 3 FLOOR PLAN SHOWING LOCATION OF SHEAR WALLS 8411050186-04

4

H: HEIGHT FROM BASE OF STRUCTURE TO SOIL SURFACE

Pd = DYNAMIC INCREMENTAL SOIL PRESSURE

- R: RESULTANT FORCE
- $R = .075 V_m H^2 (SSE)*$
 - = .045 V_mH² (OBE)*

$$P_d = \frac{2H}{H}$$

 $\gamma_{\rm m}$ = SOIL MOIST UNIT WEIGHT, PCF

*DERIVED USING THE PEAK GROUND ACCELERATIONS OF 0.12g AND 0.20g FOR OBE AND SSE RESPECTIVELY.

> Figure 7 DYNAMIC INCREMENTAL SOIL PRESSURE PROFILE

.....

(OPPOSITE SIGN FOR S- N EXCITATION)

÷

(OPPOSITE SIGN FOR W- E EXCITATION)

Figure 8 HYDRODYNAMIC PRESSURE PROFILES ACTING ON BASEMAT UNDER OBE

.

SOUTH (NORTH) POOL WALL UNDER N-S (S-N) EXCITATION

WEST (EAST) POOL WALL UNDER E - W (W-E) EXCITATION

(OPPOSITE SIGN FOR REVERSED EXCITATION)

Figure 9 HYDRODYNAMIC PRESSURE PROFILES ACTING ON POOL WALLS UNDER OBE

N-S EXCITATION (LOOKING WEST)

(OPPOSITE SIGN FOR S- N EXCITATION)

(LOOKING NORTH)

4

-

(OPPOSITE SIGN FOR W- E EXCITATION)

Figure 10 HYDRODYNAMIC PRESSURE PROFILES ACTING ON BASEMAT UNDER SSE

,

SOUTH (NORTH) POOL WALL UNDER N-S (S-N) EXCITATION

.

WEST (EAST) POOL WALL UNDER E-W (W-E) EXCITATION

(OPPOSITE SIGN FOR REVERSED EXCITATION)

Figure 11 HYDRODYNAMIC PRESSURE PROFILES ACTING ON POOL WALLS UNDER SSE

r.

2

.4

40

.

4

6

 $P = C_s P_{max} C_p$ WHERE: $C_s = SIZE COEFFICIENT$ = .64P_{max} = 0.00256 (V_{max})² = 0.00256 (360 mph)²

= 332 Psf

Cp = EFFECTIVE EXTERNAL PRESSURE COEFFICIENT (SEE FIG. 14)

P = (.6^) (332 psf) Cp = 212 C_p (psf)

Figure 12 WIND AND TORNADO EFFECTIVE **VELOCITY PRESSURE PROFILES**

LEVEL 1 FLOOR SLAB

PARTIAL PLAN AT ELEVATION 240'-0"

1

n : 78

.

ý

. .

1

Ť

a. S

a a bella

- 28 8

a .R

1. 24

*

°.-3

* #

Karat a

97 • *

×.,

್ ಕೃತಿಕ ಕ್ರಿತಿಕ

÷ .×

5

1

VEGP-FUEL HANDLING BUILDING DESIGN REPORT

· * **

а^л .

- 3 # *

, 100 and 100 a

S Alman .

শ

Figure 15 CASK CRANE BEAM ELEVATION

Z

<u>"is</u>ray (

100 C

i.

N. Kat

200

1. A.

1992 - 5 H

 $\frac{\Phi}{2q}$

18 1. S. 1.4

1. A. C.

. 2

а К А А А

۲ ک

a 2

A,

1.

.

-

a

್ಷೆ ಸ್ಥಾನಿಗಳು

j.

* .-

580 151

1

2 X 2

2

Pa

al as al as al as al as al as

α,

-----• ×

.

100 1

ic.

×.

1 2

8 16 1 * * *

 $\approx \frac{2}{2} \chi$

ř

÷ • •

1.6 8

143	128	99	98						
121	107	61							
144	129	101	100						1 million
			11						GN
122	108	82							U
145	130	103	102	73	72	50	A5 _		
123	109	84	83	58	57	36	2	BEAM	UMBER (
146	131	105	104	75	74	51	47 4	6	
124	110	86	85	60	59	37	30	3	
147	132	107	106	77	76	52	48	24	
125	111	88	187	62	61	38	32	1a	
148	1133	109	108	79	78	53	49	26.25	
						1	1	The	5
126	112	90	69	64	63	40	39	33/6	9
149	134	111	110	81	80	55	54	28	27
127	113	92	191	66	65	42	41	34	(6)
150	135	113	112	83	82	57	56	30	29
128	114	94	93	66	67	44	43	35	
151	136	115	114	85	84	59	58	32	31
129	115	96	95	70	69	46	45	18	17
152	137	117	116	87	86	61	60	34	33
130	116	98	97	72	71	48	47	20	19
153	138	119	118	89	88	63	62	36	35
131	117	100	69	74	73	50	PU	22	21
154	139	121	120	91	90	65	64	38	31
132	118	102	101	76	75	52	51	24	23
155	140	123	122	93	92	67	66	40	39
133	110	104	1 100	78	77	511	63	26	25
135	115	104		10			00	20	2.5
56	141	125	124	95	94	69	68	42	41
134	120	106	105	80	79	56	55	28	27
157	142	127	126	97	96	71	70	44	43

(A)

BASEMAT AT ELEVATION 157.00 FEET

A FIGURE 19 SHEET 2 OF 2

KEY ISOMETRIC

TI APERTURE CARD

Also Available On Aperture Card

-X

2

TYP.)

350	349	299	297	295	293	250	249	248	233	204	203	18
167	166	116	115	114	113	73	72	71	57	30	29	
352	351	300	296	296	294	253	252	251	234	206	205	18
169	168	120	119	116	117	76	75	74	58	32	31	
354	353	307	305	303	301	256	255	254	235	208 (B)	207	15
171	170	124	123	122	121	79	78	77	59	34	33	
356	355	308	306	304	302	259	258	257	236	210	209	15
173	172	128	127	126	125	82	81	80	60	36	35	
358	357	315	313	311	309	262	261	260	237	212	211	19
175	174	132	131	130	129	85	84	83	61	38	37	
360	359	316	114	312	310	205	264	203	230	214	213	
177	i76	138	137	136	133	88 268	87 267	86 266	62 239	40	39 215	15
362	361	323	321	319	317 134	91	90	89	63	42	41	
	1993	12.21				271	270	269	240	218	217	19
179	178	141	140	139	135	94	93	92	64	44	43	
364	363	324	322	320	318	274	273	272	241	220	219	15
181	180	145	144	143	142	97	96	95	65	46	45	
366	365	331	358	327	325	211	276	215	242	222	221	
183	182	149	148	147	146	100	99	98	66	48	47	
200	307	336	335	520	520	200	613	210	1245		223	+
185	184	153	152	151	150	103	102	101	67	50 B	49	-
370	369	339	337	335	333	283	282	281	244	226	225	-
187 372	186 371	157 340	156 338	155 336	154 334	106 286	105 285	104 284	68 245	52 228	51 227	20
189	188	161	160	159	158	109	108	107	69	54	53	
374	373	347	345	343	341	289	288	287	246	230	229	20
191	190	165	164	163	162	112	111	110	70	56	55	
376	375	348	346	344	342	292	291	290	247	232	231	21
No. of Concession, Name of Street, or other	Statement Statement and Statement and	Contraction of the local division of the loc	the rest from the second second	the second se	NAME AND ADDRESS OF TAXABLE PARTY.	or the same plate to save the same in case the same	the second se	the second second second	and the second se	the second	the second se	and the owner where the party is not

BASEMAT AT ELEVATION 176.00 FEET

8	159	158	1090	1097	1098	1109
15		193	196	147	199	
4	161	160	1127	1128	1129	1130
		100				1.00
16	2	192	194	195	198	
D	163	162	499	510	511	530
17	3	184				
1	165	164				
18	u					
10	167	166				
19	5					
3	169	168			LAL	2
20	6				AL.	/
4	171	170				
21	7					
5	173	172				
~~~	8					
•	175	114				
23	9					
7	177	176				
25	10					
8	179	178				
25	11					
9	181	180	- FIGURI	E 19 SHEE	ETTOP 2	
26	12					
0	183	182				
27	13					
	10	1.011				
	165	104				
28	14					
2	187	186				



**KEY ISOMETRIC** 

TI APERTURE CARD

Also Available On Aperture Card

Figure 17 BASEMAT FINITE ELEMENT MODEL (Sheet 2 of 6)

8411050186-06

545	566	567	586	587	633	637	641	645	649	653
17	18	39	40	111	112	113	114	115	116	117
544	564	565	584	585	632	636	640	644	648	652
15	16	37	38	104	105	106	107	108	109	110
543	562	563	582	583	631	635	639	643	647	651
14	560	35	36	97	98	99	100	101	102	103
13		33	34	90	91	92	93	gu	95	96
541	558	559	578	579	605	609	613	617	621	625
11	12	31	32	83	84	85	86	87	88	89
540	556	557	576	577	604	608	612	616	620	624
9	10	29	30	76	77	78	79	80	81	82
539	554	555	574	575	603	607	611	615	619	623
8		27	28	69	70	71	72	73	74	75
538	552	553	572	573	602	606	610	614	618	622
7		25	26	62	63	64	65	66	67	68
186	184	182	180	178	176	174	172	170	168	166
5	6	25	24	55	56	57	58	59	60	61
549	550	551	570	571	589	591	593	595	597	599
з	ų	21	22	48	49	50	51	52	53	54
546	547	548	568	569	588	590	592	594	596	598
1	2	19	20	41	42	43	44	45	46	47
126	124	122	120	118	116	114	112	110	108	106

EAST WALL OF FUEL POOL (LOOKING WEST)

1	657	494	666	667
	134	135	136	
	656	493	664	665
	131	132	133	
	655	492	662	663
	128	129	130	
	654	491	660	661
Strong and	125	126	127	
	629	490	658	659
	124			
	628	483		
Solution By	123			
	627	488		
A LEWIS CONTRACTOR	122			
	626	487		
	121			
	164	162	160	158
A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	120	139	140	
1	601	497	1278	1279
	119	130	141	
	60	495	1277	1280
and the second se	118	137	142	
	104	102	100	96

Z

Y



**KEY ISOMETRIC** 

TI APERTURE CARD

Also Available On Aperture Card

Figure 17 BASEMAT FINITE ELEMENT MODEL (Sheet 3 of 6)

8411050186-07

WEST WALL OF FUEL POOL (LOOKING WEST)

16	17		53	54	55	56	57	
687	688	689	716	720	724	728	732	7
14	15		48	49	50	51	52	
684	685	686	715	719	723	727	731	7
12	13		43	44	45	46	47	
681	682	683	/14	718	722	726	730	1
10	11		38	39	40	41	42	
674	\$75	680	693	697	701	705	709	7
ų	е /		33	34	35	36	37	
672	673	1678	679	696	700	104	708	7
з	7	8	28	29	30	31	32	
670	671		677	695	699	703	707	7
2		6	23	24	25	26	27	
668	669		676	694	698	702	706	7
,		5	18	19	20	21	22	
328	327		320	19		312	311	30

	434	752	753
79	80	61	25.
76	433 77	78	749
73	74	75	747
70	71	72	745
67	83	69 742	743
64	65	66	741
61	62	63	739
58	59	60	295

Z



**KEY ISOMETRIC** 

APERTURE CARD

Also Available On Aperture Card

Figure 17 BASEMAT FINITE ELEMENT MODEL (Sheet 4 of 6)

8411050186-08

434	438	442	446	450	454	462	477	478	486
36	37	38	39	40	48		59	67	75
433	437	441	445	449	453	461	475	476	485
31	32	33	34	35	47		58	66	74
432	436	440	444	448	452	460	473	474	484
26	27	28	29	30	46		57	65	73
43!	435	439	443	447	451	459	471	472	483
21	22	23	24	25	45		56	64	72
410	414	418	422	426	430	458	469	470	482
16	17	18	19	20	44		55	63	71
409	413	417	421	425	429	457	467	468	481
11	12	13	14	15	43	53	54	62	70
408	412	416	420	424	428	456	455	466	480
6	7	8	9	10	42	5	1 52	61	69
407	411	415	1.9	423	427	455	463	464	479
1	2	3	4	5	41	4	9 50	60	68
303	301	256	255	254	235	208	207	190	163

NORTH WALL OF FUEL POOL (LOOKING NORTH)
A

**KEY ISOMETRIC** 

APERTURE CARD

Also Available On Aperture Card

Figure 17 BASEMAT FINITE ELEMENT MODEL (Sheet 5 of 6)

8411050186-09

	494	505	526	527	537
	83	101	102	111	
	493	504	524	525	536
A. and the second s			100	110	
	402		522	523	535
	432		366	525	333
1 1 1 1			99		
	491		520	521	
and the second se			98		
	490	503	518	519	534
	82	96	97	109	
	489	502	516	517	533
	81	94	95	108	
	488	501	514	515	532
	80	92	93	107	
	487	500	512	513	531
the state of	79	90	91	106	
2	162	499	510	511	530
	78	88	89	105	
	497	498	508	509	529
and the second se	77	86	87	104	
	495	496	506	507	528
and the second se	76	84	85	103	
	102	73	72	50	45

z 1

-X

775	776	177	805	690	809	813	817	821	825
15	16	63	64	65	66	67	68	69	77
772	773	774	804	687	808	812	816	820	824
13	14	56	57	58	59	60	61	62	76
769	770	771	803	684	807	611	815	819	823
11	12	49	50	51	52	53	54	55	75
766	767	768	802	681	806	810	814	616	822
9	10	42	43	44	45	46	47	48	74
763	764	765	781	674	785	789	793	797	801
1	8	35	36	37	38	39	40	41	73
760	761	762	780	672	784	788	792	796	800
5	6		29	30	31	32	33	34	72
757	758	759	779	670	783	787	791	795	799
3	ų		23	24	25	26	27	28	71
754	755	756	778	668	782	786	790	794	798
1	2		17	18	19	20	21	22	70
368	367	332	330	328	326	280	279	278	243

SOUTH WALL OF FUEL POOL (LOOKING NOR

833	848	849	857	587
92	93	101	109	
832	846	847	856	585
90	91	100	108	
831	844	845	655	583
88	69	99	107	
830	842	843	854	581
86	87	98	106	
829	840	841	853	579
84	85	97	105	
928	838	839	852	577
82	83	96	104	
827	836	837	851	575
80	61	35	103	
826	834	835	850	573
78	79	94	102	
224	223	198	179	178

(H

Z

- X



KEY ISOMETRIC

TI APERTURE CARD

Figure 17 BASEMAT FINITE ELEMENT MODEL (Sheet 6 of 6)

8411050186 -/0

.

1



.

1. .



Figure 18 REPRESENTATIVE RESULTS OF BASEMAT ANALYSIS (Sheet 1 of 2)



.

.

×.



Figure 19 REPRESENTATIVE RESULTS OF BASEMAT DESIGN (Sheet 1 of 2)

S 44 184

AXIAL FORCE (F) + = TENS

2. 2. 2

5.4

1 - C

.

.





LEGEND:

O LOAD COMBINATION 3

△ AVERAGE FOR LOAD COMBINATION 3 ALONG STRIP A-A OF FIGURE 17 SHEET 1 OF 6.

Figure 19 REPRESENTATIVE RESULTS OF BASEMAT DESIGN (Sheet 2 of 2)

AXIAL FORCE (F) + = TENS



r,

.

14. A.

an An a 🖗

Figure 20 CENTER SECTION BASEMAT REINFORCING

j.

1.88

.

VEGP-FUEL HANDLING BUILDING DESIGN REPORT

S. 51

11:20

n Contractor

-

1 . 1 .



2) 2

0

e ŝ

<u>ار ا</u>

G

k i f

1.

5

1 64





Figure 21 BASEMAT SECTION DETAILS

-





i.

Figure 22 REPRESENTATIVE RESULTS OF SPENT FUEL POOL WALL ANALYSIS



AXIAL FORCE (F) + = TENS

○ LOAD COMBINATION 3
◇ LOAD COMBINATION 6
△ LOAD COMBINATION 10

Figure 23 REPRESENTATIVE RESULTS OF SPENT FUEL POOL WALL DESIGN



. The

St. tre

2

· · · · · ·

6. F

ŧ

- 3

**1**. F

-



1





#### PARTIAL PLAN AT ELEVATION 179'-0-1/2"



Figure 24 REPRESENTATIVE SPENT FUEL POOL WALLS DETAILS

- 1

1

.

<

.

## APPENDIX A

DEFINITION OF LOADS

#### APPENDIX A

#### DEFINITION OF LOADS

The loads considered are normal loads, severe environmental loads, extreme environmental loads, abnormal loads, and potential site proximity loads.

#### A.1 NORMAL LOADS

Normal loads are those loads to be encountered, as specified, during construction stages, during test conditions, and later, during normal plant operation and shutdown. They include the following:

- D Dead loads or their related internal moments and forces, including hydrostatic loads and any permanent loads except prestressing forces.
- L Live loads or their related internal moments and forces, including any movable equipment loads and other loads which vary with intensity and occurrence, e.g., lateral soil pressures. Live load intensity varies depending upon the load condition and the type of structural element.
- T_o Thermal effects and loads during normal operating or shutdown conditions, based on the most critical transient or steady-state condition.
- R_o Pipe reactions during normal operating or shutdown conditions, based on the most critical transient or steady-state conditions.

#### A.2 SEVERE ENVIRONMENTAL LOADS

Severe environmental loads are those loads to be infrequently encountered during plant life. Included in this category are:

- E Loads generated by the operating basis earthquake (OBE). These include the associated hydrodynamic and dynamic incremental soil pressures.
- W Loads generated by the design wind specified for the plant.

#### A.3 EXTREME ENVIRONMENTAL LOADS

Extreme environmental loads are those loads which are credible but are highly improbable. They include:

- E' Loads generated by the safe shutdown earthquake (SSE). These include the associated hydrodynamic and dynamic incremental soil pressures.
- Wt Loads generated by the design tornado specified for the plant. They include loads due to wind pressure, differential pressure, and tornado-generated missiles.
- N Loads generated by the probable maximum precipitation.
- B Loads generated by postulated blast along transportation routes.

#### A.4 ABNORMAL LOADS

Abnormal loads are those loads generated by a postulated highenergy pipe break accident within a building and/or compartment thereof. Included in this category are the following:

- P_a Pressure load within or across a compartment and/or building, generated by the postulated break.
- T_a Thermal loads generated by the postulated break and including T_a.

- $R_a$  Pipe and equipment reactions under thermal conditions generated by the postulated break and including  $R_o$ .
- Y_r Load on a structure generated by the reaction of a ruptured high-energy pipe during the postulated event.
- Y_j Load on a structure generated by the jet impingement from a ruptured high-energy pipe during the postulated break.
- Ym

Load on a structure or pipe restraint resulting from the impact of a ruptured high-energy pipe during the postulated event.

4

APPENDIX B

LOAD COMBINATIONS

٤,

#### APPENDIX B

#### LOAD COMBINATIONS

#### B.1 STEEL STRUCTURES

The steel structures and components are designed in accordance with elastic working stress design methods of Part 1 of the American Institute of Steel Construction (AISC) specification, using the load combinations specified in table B.1.

#### B.2 CONCRETE STRUCTURES

The concrete structures and components are designed in accordance with the strength design methods of the American Concrete Institute (ACI) Code, ACI 318, using the load combinations specified in table B.2.

## TABLE B.1(a)

#### STEEL DESIGN LOAD COMBINATIONS ELASTIC METHOD

	ECN	D	L	P _a	<u>T_</u>	T _a	E	<u></u>		Wt	Ro	Ra	Yj_	Y <u>r</u>	<u>Y</u> m_	<u>N</u>	<u></u>	Limit(f _g )
Service Load Conditions																		
	1	1.0	1.0															1.0
	2	1.0	1.0				1.0											1.0
	3	1.0	1.0						1.0									1.0
	4	1.0	1.0		1.0						1.0							1.5
	5	1.0	1.0		1.0		1.0				1.0							1.5
	6	1.0	1.0		1.0				1.0		1.0							1.5
Factored Load																		
	7	1.0	1.0		1.0			1.0			1.0							1.6
(See note b.)	8	1.0	1.0		1.0					1.0	1.0							1.6
	9	1.0	1.0	1.0		1.0						1.0						1.6
(See notes c and d.)	10	1.0	1.0	1.0		1.0	1.0					1.0	1.0	1.0	1.0			1.6
(See notes c and d.)	11	1.0	1.0	1.0		1.0		1.0				1.0	1.0	1.0	1.0			1.7
	12	1.0	1.0		1.0						1.0						1.0	1.6
	13	1.0	1.0		1.0						1.0					1.0		1.6

- a. See Appendix A for definition of load symbols. f is the allowable stress for the elastic design method defined in Part 1 of the AISC, "Specification for the DesIgn, Fabrication, and Erection of Structural Steel for Buildings." The one-third increase in allowable stresses permitted for seismic or wind loadings is not considered.
- b. When considering tornado missile load, local section strength may be exceeded provided there will be no loss of function of any safety-related system. In such cases, this load combination without the tornado missile load is also to be considered.
- c. When considering Y_j, Y_r and Y_r loads, local section strength may be exceeded provided there will be no loss of function of any safety-related system. In such cases, this load combination without Y_j, Y_r, and Y_m is also to be considered.
- d. For this load combination, in computing the required section strength, the plastic section modulus of steel shapes, except for those which do not meet the AISC criteria for compact sections, may be used.

B-3

# TABLE B.2(a)(f)

#### CONCRETE DESIGN LOAD COMBINATIONS STRENGTH METHOD

	EQN	_D_	L	Pa	<u>T</u> o	Ta	E	<u> </u>	_w_	Wt	Ro	Ra	Yj	Y <u>r</u>	<u>Y</u> m_	<u>N</u>	B	Strength Limit
Service Load Conditions																		
	1	1.4	1.7															U
(See note b.)	2	1.4	1.7						1.7									U
(See note c.)	3	1.4	1.7				1.9											U
	4	1.05	1.275		1.275						1.275							U
	5	1.05	1.275		1.275				1.275		1.275							U
	6	1.05	1.275		1.275		1.425				1.275							U
Factored Load Conditions																		
	7	1.0	1.0		1.0			1.0			1.0							U
(See note d.)	8	1.0	1.0		1.0					1.0	1.0							U
	9	1.0	1.0	1.5		1.0						1.0						U
(See note e.)	10	1.0	1.0	1.25		1.0	1.25					1.0	1.0	1.0	1.0			U
(See note e.)	11	1.0	1.0	1.0		1.0		1.0				1.0	1.0	1.0	1.0			U
	12	1.0	1.0		1.0						1.0						1.0	U
	13	1.0	1.0		1.0						1.0					1.0		U

a. See Appendix A for definition of load symbols. U is the required strength based on strength method per ACI 318-71.

Unless this equation is more severe, the load combination 1.2D+1.7W is also to be considered. b. .

Unless this equation is more severe, the load combination 1.2D+1.9E is also to be considered. C.

When considering tornado missile load, local section strength may be exceeded provided there will be no loss of function of d. any safety-related system. In such cases, this load combination without the tornado missile load is also to be considered. When considering  $Y_1$ ,  $Y_2$ , and  $Y_3$  loads, local section strength may be exceeded provided there will be no loss of function of any safety-related system. In such cases, this load combination without  $Y_1$ ,  $Y_2$ , and  $Y_m$  is also to be considered. Actual load factors used in design may have exceeded those shown in this table. æ.,

APPENDIX C

DESIGN OF STRUCTURES FOR TORNADO MISSILE IMPACT

#### APPENDIX C

#### DESIGN OF STRUCTURES FOR TORNADO MISSILE IMPACT

#### C.1 INTRODUCTION

This appendix contains methods and procedures for analysis and design of steel and reinforced concrete structures and structural elements subject to tornado-generated missile impact effects. Postulated missiles, and other concurrent loading conditions are identified in Section 3.2 of the Design Report.

Missile impact effects are assessed in terms of local damage and structural response. Local damage (damage that occurs in the immediate vicinity of the impact area) is assessed in terms of perforation and scabbing.

Evaluation of local effects is essential to ensure that protected items would not be damaged directly by a missile perforating a protective barrier or by scab particles. Empirical formulas are used to assess local damage.

Evaluation of structural response is essential to ensure that protected items are not damaged or functionally impaired by deformation or collapse of the impacted structure.

Structural response is assessed in terms of deformation limits, strain energy capacity, structural integrity, and structural stability. Structural dynamics principles are used to predict structural response.

#### C.1.1 Procedures

The general procedures for analysis and design of structures or structural elements for missile impact effects include:

 Defining the missile properties (such as type, material, deformation characteristics, geometry, mass, trajectory, strike orientation, and velocity).

- b. Determining impact location, material strength, and thickness required to preclude local failure (such as perforation for steel targets and scabbing for reinforced concrete targets).
- c. Defining the structure and its properties (such as geometry, section strength, deformation limits, strain energy absorption capacity, stability characteristics, and dynamic response characteristics).
- d. Determining structural response considering other concurrent loading conditions.
- e. Checking adequacy of structural design (stability, integrity, deformation limits, etc.) to verify that local damage and structural response (maximum deformation) will not impair the function of safety-related items.

#### C.2 LOCAL EFFECTS

Evaluation of local effects consists of estimating the extent of local damage and characterization of the interface force-time function used to predict structural response. Local damage is confined to the immediate vicinity of the impact location on the struck element and consists of missile deformation, penetration of the missile into the element, possible perforation of the element, and, in the case of reinforced concrete, dislodging of concrete particles from the back face of the element (scabbing).

Because of the complex physical processes associated with missile impact, local effects are evaluated primarily by application of empirical relationships based on missile impact test results. Unless otherwise noted, these formulas are applied considering a normal incidence of strike with the long axis of the missile parallel to the line of flight.

## C.2.1 Reinforced Concrete Elements

The parts of the building structure that offer protection for safety-related equipment against tornado-generated missiles are provided with  $f'_c = 4000$  psi minimum concrete strength, have 24-inch-minimum-thick walls, and have 21-inch-minimum-thick roofs. Therefore, the walls and roofs of these structures are resistant to perforation and scabbing by the postulated missiles discussed in Section 3.2 of the Design Report under tornado loads.

#### C.2.2 Steel Elements

Steel barriers subjected to missile impact are designed to preclude perforation. An estimate of the steel element thickness for threshold of perforation for nondeformable missiles is provided by equation 2-1, which is a more convenient form of the Ballistic Research Laboratory (BRL) equation for perforation of steel plates with material constant taken as unity (reference 1).

$$T_p = \frac{(E_k)^{2/3}}{672D}$$
  $E_k = \frac{M_m V_s^2}{2}$  (2-1)

where:

'n	=	steel plate	thickness	for	threshold	of	perforation
٢		(in.).					

 $E_{\rm b}$  = missile kinetic energy (ft-lb).

 $M_{\pm}$  = mass of the missile (lb-s²/ft).

V_ = missile striking velocity (ft/s).

D = missile diameter (in.). (a)

a. For irregularly shaped missiles, an equivalent diameter is used. The equivalent diameter is taken as the diameter of a circle with an area equal to the circumscribed contact, or projected frontal area, of the noncylindrical missile. For pipe missiles, D is the outside diameter of the pipe.

The design thickness to prevent perforation,  $t_p$ , must be greater than the predicted threshold value. The threshold value is increased by 25 percent to obtain the design thickness.

$$t_{p} = 1.25 T_{p}$$

where:

tp

design thickness to preclude perforation (in.).

(2-2)

## C.3 STRUCTURAL RESPONSE DUE TO MISSILE IMPACT LOADING

When a missile strikes a structure, large forces develop at the missile-structure interface, which decelerate the missile and accelerate the structure. The response of the structure depends on the dynamic properties of the structure and the time-dependent nature of the applied loading (interface force-time function). The force-time function is, in turn, dependent on the type of impact (elastic or plastic) and the nature and extent of local damage.

#### C.3.1 General

In an elastic impact, the missile and the structure deform elastically, remain in contact for a short period of time (duration of impact), and subsequently disengage due to the action of elastic interface restoring forces.

In a plastic impact, the missile or the structure or both may deform plastically or sustain permanent deformation or damage (local damage). Elastic restoring forces are small, and the missile and the structure tend to remain in contact after impact. Plastic impact is much more common in nuclear plant design than elastic impact, which is rarely encountered. For example, test data indicate that the impact from all postulated tornadogenerated missiles can be characterized as a plastic collision.

If the interface forcing function can be defined or conservatively idealized (from empirical relationships or from theoretical considerations), the structure can be modeled mathematically, and conventional analytical or numerical techniques can be used to predict structural response. If the interface forcing function cannot be defined, the same mathematical model of the structure can be used to determine structural response by application of conservation of momentum and energy balance techniques with due consideration for type of impact (elastic or plastic).

In either case, in lieu of a more rigorous analysis, a conservative estimate of structural response can be obtained by first determining the response of the impacted structural element and then applying its reaction forces to the supporting structure. The predicted structural response enables assessment of structural design adequacy in terms of strain energy capacity, deformation limits, stability, and structural integrity.

Three different procedures are given for determining structural response: the force-time solution, the response chart solution, and the energy balance solution. The force-time solution involves numerical integration of the equation(s) of motion and is the most general method applicable for any pulse shape and resistance function. The response chart solution can be used with comparable results, provided the idealized pulse shape (interface forcing function) and the resistance function are compatible with the response chart. The energy balance solution is used in cases where the interface forcing function cannot be defined or where an upper limit check on structural response is desired. This method will consistently overestimate structural response, since the resisting spring forces during impact are neglected.

In defining the mass-spring model, consideration is given to local damage that could affect the response of the element. For concrete slab elements, the beneficial effect of formation of a fracture plane which propagates from the impact zone to the back of the slab (back face fracture plane) just prior to scabbing

C-5

(reference 2) is neglected. The formation of this fracture plane limits the forces transferred to the surrounding slab and significantly reduces overall structural response. Since scabbing is to be precluded in the design, the structural response check is made assuming the fracture plane is not formed. It is recognized, however, that should the missile velocity exceed that for threshold of scabbing, structural response would be limited by this mechanism.

Therefore, the structural response is conservatively evaluated ignoring formation of the fracture plane and any reduction in response.

#### C.3.2 Structural Assessment

The predicted structural response enables assessment of design adequacy in terms of strain energy capacity, deformation limits, stability, and structural integrity.

For structures allowed to displace beyond yield (elasto-plastic response), a check is made to ensure that deformation limits would not be exceeded, by comparing calculated displacements or required ductility ratios with allowable values (such as those contained in table C-1).

#### C.4 REFERENCES

- Gwaltney, R. C., "Missile Generation and Protection in Light-Water-Cooled Power Reactor Plants," <u>ORNL NSIC-22</u>, Oak Ridge National Laboratory, Oak Ridge, Tennessee, for the USAEC, September 1968.
- Rotz, J. V., "Results of Missile Impact Tests on Reinforced Concrete Panels," Vol 1A, pp 720-738, Second Specialty Conference on Structural Design of Nuclear Power Plant Facilities, New Orleans, Louisiana, December 1975.

## TABLE C-1

## DUCTILITY RATIOS (Sheet 1 of 2)

Member Type and Load Condition	Maximum Allowable Value of Ductility Ratio (μ)
Reinforced Concrete	
Flexure ⁽¹⁾ :	
Beams and one-way slabs ⁽²⁾	<u>0.10</u> ≤10 p-p'
Slabs with two-way reinforcing ⁽²⁾	0.10 <10 or 30 p-p' (See 3 and 4)
Axial compression ⁽¹⁾ :	
Walls and columns	1.3
Shear, concrete beams and slabs in region controlled by shear:	
Shear carried by concrete only	1.3
Shear carried by concrete and stirrups	1.6
Shear carried completely by stirrups	2.0
Shear carried by bent-up bars	3.0
Structural Steel	
$Columns^{(5)}$ $\ell/r \leq 20$	1.3
l/r >20	1.0
Tension due to flexure	10
Shear	10
Axial tension and steel plates in membrane tension ⁽⁶⁾	0.5 $\frac{e_u}{e_y}$
Compression members not required for stability of building structures	10

#### TABLE C-1

#### DUCTILITY RATIOS (Sheet 2 of 2)

#### Notes:

- (1) The interaction diagram used to determine the allowable ductility ratio for elements subject to combined flexure and axial compression is provided in figure C-1.
- (2) p and p' are the positive and negative reinforcing steel ratios, respectively.
- (3) Ductility ratio up to 10 can be used without an angular rotation check.
- (4) Ductility ratio up to 30 can be used provided an angular rotation check is made.
- (5) l/r is the member slenderness ratio. The value specified is for axial compression. For columns and beams with uniform moment the following value is used:

$$\frac{14 \times 10^4}{F_y \left(\frac{k\ell}{r}\right)^2} + \frac{1}{2} \le 10$$

(6) e and e are the ultimate and yield strains. e shall be taken as the ASTM-specified minimum.

Q



(A) REINFORCED CONCRETE INTERACTION DIAGRAM (P VS M) (B) ALLOWABLE DUCTILITY RATIO HVS P

Figure C-1 MAXIMUM ALLOWABLE DUCTILITY RATIO FOR REINFORCED CONCRETE SECTION WITH BEAM-COLUMN ACTION