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1.0 INTRODUCTION

[ The Nuclear Regulatory Commission Standard Review Plan,
NUREG-0800, requires the preparation of design reports for
Category 1 structures.

This design report represents one'of a series of 11 design
reports and one seismic analysis report prepared for the Vogtle
Electric Generating Plant (VEGP). These reports are listed

f below:

Containment Building Design Report*

( Containment Internal Structure Design Report*

Auxiliary Building Design Report*

[ Control Building Design Report*

Fuel Handling Building Design Report*

NSCW Tower and Valve House Design Report
{.

*

Diesel Generator Building Design Report*

Auxiliary Feedwater Pumphouse Design Report*

Category 1 Tanks Design Report*

Diesel Fuel Oil Storage Tank Pumphouse Design Report*

[ Category 1 Tunnels Design Report*

Seismic Analysis Report*

The Seismic Analysis Report describes the seismic analysis
methodology used to obtain the acceleration responses of

( Category 1 structures and forms the basis of the seismic loads
in all 11 design reports.

The purpose of this design report is to provide the Nuclear
Regulatory Commission (NRC) with specific design and construction
information for the fuel handling building, in order to assist in

planning and conducting a structural audit. Quantitative infor-
mation is provided regarding the scope of the actual design
computations and the final design results.

The report includes a description of the structure and its
{ function, design criteria, loads, materials, analysis and design

methodology, samples of governing design forces, a design summary
of representative key structural elements.

1
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2.0 DESCRIPTION OF STRUCTURE }
2.1 GENERAL DESCRIPTION [

The fuel handling building is a five-story reinforced concrete }
building common to the two-unit plant. It houses the new fuel I

storage area, cask storage pit and washdown area, and two spent -

fuel pools. The principal functions of the building are to
-

kreceive, store, and protect new and spent fuel and to prepare

spent fuel for shipment. The building is a shear wall box-type [
structure with floor and roof slabs acting as rigid diaphragms {
spanning between the walls. The building is functionally divided 5

into three major areas, a center section that houses the Unit 1 g

and 2 spent fuel pools, and the east and west wing sections that -

-

contain portions of the equipment buildings. Even though the h
equipment buildings are seismic Category 2, they are designed to

-

Category 1 criteria to eliminate any adverse interaction of the Z

wings with the adjacent Category 1 buildings. The fuel handling

building is designed to support the cask handling crane, which 7

is used to transport new and spent fuel casks to and from the
building. The interior and exterior walls are solid with
occasional openings for doorways, heating, ventilating, and air ,

conditioning (HVAC) ducts, piping and electrical cable trays and
a large opening at grade level (elevation '.20'-0"), in the center ;

of the south exterior wall, which provides access for the cask

handling crane to the auxiliary building. }

2.2 LOCATION AND FOUNDATION SUPPORT _

..

All Category 1 structures are founded within the area of the
power block excavation. The excavaticn removed in-situ soils
to elevation 130'i where the marl bearing stratum was encountered. -

All Category 1 structures are located either directly on the
marl bearing stratum or on Category 1 backfill placed above the =

marl bearing stratum. The backfill consists of densely compacted

select sand and silty sand. The nominal finished grade elevation
is 220'-0". The high groundwater table is at elevation 165'-0".

2
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The fuel handling building is located south of the control

Lbuilding,' north of the auxiliary building and in between the

Unit 1 and-Unit 2 containments (see figure 1). A 5-1/2-inch

{
seismic gap is provided to separate the fuel handling building

from these adjacent structures. The basemat is founded and
'placed directly on Category 1 backfill at elevation 154'-0" in the

equipment building wing sections, and at. elevation 173'-0" in the

center section. In addition, this Category 1 backfill is placed

h against the north walls in the equipment building wing sections,

west wall of the Unit 1 electrical tunnel, and the east wall of

f the Unit 2 piping tunnel (from elevation 154'-0" up to the bottom

of the' adjacent control building and raised center section

{
basemats, which is at elevation 173'-0").

2.3 GEOMETRY AND DIMENSIONS

.The fuel handling building is approximately 257 feet long by

75. feet wide and is 134 feet high. The stepped basemat eleva-

tions are 154 feet bottom of concrete (BOC) of the wings and

173 feet BOC at the raised center section. There are piping

and electrical tunnels that run north-south under the spent

fuel pool floor at the transition from the lower wing basemats

[- to the raised center section basemat (see figure 1). Building

plan and sections are shown in figures 2 through 4'.

(
2.4 KEY STRUCTURAL ELEMENTS

The key structural elements in the fuel handling building include

the roof and floor slabs, shear walls, walls that support the

cask handling crane, basemat, and the spent fuel pool walls.

Listed below is a brief description of the function and design

considerations for these elements.[
U

2.4.1 Roof and Floor Slabs

The fuel handling building has three main roof slabs, level 3

(
- (elevation 263'-8") of both wings, and level 4 (elevation 288'-i

2") at the center section. The roof slabs are 1 foot 9 inches

t
3
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thick-minimum and the' roof is flat. :The slabs are' structurally-

~

sup' ported by walls in the center section and walls and steel'
-

- : columns in:both wings. Both wing roof slabs comprise part. of the
.

]equipment building roof, and have' openings for.HVAC and the
containment access and vent shafts. There are no openings in the q

.

center section roof slab. ]
1

The main floor slabs are level B (elevation 179'-0"), level A-

(elevation 200'-_0"),. level'l (elevation 220'-0"), and level 3.

.(elevation 263'-8"). The' slabs vary from 1 foot 6 inches to

-4 feet 3 inches thick, and are structurally supported by walls. ]
'2.4.2 Shear Walls-

]
' Lateral-loads applied to the fuel handling building are resisted

'

walls indicated in figures 5 and 6. The-fuel pool walls-are'
']

'by the:four exterior walls, the fuel pool walls, and other shear

| -described in section 2.4.5. The exterio'r shear walls contain
~

}
|- ioccasional_ openings for doorways,, electrical and piping systems.

They vary from 2 to 3-feet thick.

]
2.4.3- -Walls Supporting.the Cask Handling Crane

New and spent = fuel casks are-transported within the fuel handling

building by the' cask handling crane. The cask handling crane-is'

located at the center bay of the building. The cask handling

crane is supported at elevation 264'-7" by a reinforced concrete

f wall. The crane supporting wall is laterally stiffened by the

| -level 3.and 4 slabs and has the structural characteristics of a

deep beam.

'

'2.4.4 Basemat

f The fuel handling building basemat is approximately 75 feet wide

|. by 257 feet long and has a uniform thickness of 6 feet. The

raised center section and both wings are structurally integrated

with'one another on a common stepped basemat. Top of the basemat
~

at the east.and west wing sections is at elevation 160'-0" and the

4
l
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raised center section is at elevation 179'-0". The basemat

f contains several. shallow sumps in both wings and center section

that are approximately 5 feet below the top of their respective

basemats. The cask loading pit (elevation 173'-0", top of(
concrete [ TOC]), two transfer tube canals, and two spent fuel

pools are located at the center section basemat. These sumps,
pit,, canals, and pools are lined'with 1/4-inch-thick stainless

steel plate to serve as a leaktight membrane. Electrical and

( piping tunnels run north-south under the raised center section of

.
the transition from the lower wings to the raised center section

f basemat. The basemat is stiffened by the tunnels, fuel pool

walls, interior and exterior walls at levels C and B that divide

the building into several room compartments. Equipment anchored
to or supported by the basemat includes the encapsulation vessels

and the spent fuel storage rack system.

2.4.5 Spent Fuel Pool Walls

[ The fuel handling building contains two spent fuel pools, one for

each unit. The fuel pool walls are a minimum of approximately

5 feet thick. The north wall of each pool forms part of the

transfer tube canal and contains a gate to provide access'for the

h transfer tube canal. The east wall of Unit 2 and the west wall

of Unit 1 form part of the new fuel storage pit and contain a

f _ gate to provide access to the cask loading pit. The fuel pool

walls are lined with 1/4-inch-thick stainless steel plate to

serve as a leak tight membrane.

2.5 MAJOR-EQUIPMENT

The primary function of the fuel handling building is to provide

- storage for new and spent fuel assemblies. The spent fuel

assemblies are lifted and transported by a bridge crane at

__

elevation 220'-0" that travels the east-west length of the building.

'The spent fuel shipping cask is lifted and transported by the

cask handling crane at elevation 264'-7" that travels north-south

f in the center bay of the building. Spent fuel storage racks in

5
I
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the. spent fuel pool are used for storage of the spent fuel ]
. assemblies. The new fuel storage area is a reinforced concrete

pit that provides temporary dry storage for the new fuel assem-
blies. An equipment and cask cleaning area is located adjacent
|to the spent fuel pools and new fuel pit. The fuel transfer

.

canal system.is used to transport the new and spent fuel assem-
blies between the fuel handling building and the two containment
-buildings. )

.

]3.0 DESIGN BASES

3.1 CRITERIA

The''following documents are applicable to'the design of the fuel
handling building:

3.1.1 Codes and Standards

American-Concrete Institute (ACI), building code ]*

requirements for~ reinforced concrete, ACI 318-71,
including 1974 supplement. ]
American Institute of Steel Construction ( AISC),*

specification for the design, fabrication, and erection }
of structural steel for buildings, adopted February 12,

1969, and Supplements No. 1, 2, and 3.

3.1.2 Regulations

* -10 CFR 50, domestic licensing of production and utiliza-
tion facilities.

3.1.3 General Design Criteria (GDC)

GDC 1, 2, 4, and 5 of Appendix A, 10 CFR 50.*

3.1.4 Industry Standards

Nationally recognized' industry standards, such as American
Society for Testing and Materials (ASTM), American Concrete

6
_



_ _ _ - _ _ _ - _ _

,-

'VEGP-FUEL HANDLING CUILDING DESIGN REPORT.
.

fy

Institute, and American Iron and Steel Institute (AISI), are used

to specify material properties, testing procedures, fabrication,
and~ construction methods.

'

3.2 LOADS

h Definition of each load term considered in the fuel handling

building design is provided in Appendix A. The loads applicable

to the fuel handling building design are individually discussed

below.
L

'3.2.1 Normal Loads

3.2.1.1- Dead Loads (D)
-

The dead loads considered include the weight of concrete and

steel structures; piping, cable tray, conduit, HVAC duct loads,

large and small equipment loads, and hydrostatic load in the
spent fuel pools.

.

A minimum of 50 psf uniform load was applied on the applicable
area of each roof and floor slab to account- for piping, cable

[ tray,' conduit, HVAC duct, and small equipment loads.

The major equipment loads are listed below:
;

f- Center Area Wing Area

Floor Weight Weight
Elevation Equipment (lb) Equipment (lb)

263'-8" Exhaust 44,500 - -

unit

220'-0" Fuel cask 136,000 Exhaust and 60,000
filter unit

200'-0" New fuel 324,000 Spent fuel 52,000

racks (both pit heat
units) exchanger

179' " Fuel rack 3,930,000 - -

(one pool)

7
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. ; ive Load's-(L)- 3 . 2 .1. 2 - 1L

The'lidI-loadsinclude<occupancyloads,soilpressures, hydro-L

Lstatic pressuiesi due' to groundwater, movable equipment loads,
~ and precipitation loads.

-A uniform. load of 100, psf.was used as the floor design live load
applicable in. areas not occupied-by equipment. A uniform load of

.30~ psf was used ass the roof slab live: load, which envelops the
effects of occupancy,^ snow,.and 100-year rainwater ponding loads.

Static soil lateral pressure is also considered as live-load.
.

The lift capacity of the hoist plus the impact loads were con-

sidered as the bridge crane / monorail live loads.

3.2.1.3' Operating Thermal Loads (T )g

.The thermalLloads-on the spent fuel walls and floor under normal

operating conditions are considered in the pool wall and basemat
design.: .The temperature data'are listed below:

:*- ' Normal operating temperature. 120*F

in-pool

Normal inside temperature in 90 F^V *

]summer

Normal inside temperature in 60 F*

winter

3.2.1.4 operating Pipe and Equipment Load (R )g
The' pipe and equipment reactions during normal or shutdown
condition are accounted for as part of the 50 psf of the design

dead loads, (D).

|3'.2.2 Severe Environmental Loads

L3.2.2.1- Operating Basis Earthquake, OBE (E)

.. Based on the plant site geologic and seismologic investigations,
'the: peak ground acceleration for OBE Tus established as 0.12g.
LThe free-field response spectra and the development of horizontal

8
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h
and vertical floor. accelerations and in-structure response

h spectra at the basemat, floor, and roof slab elevations are
~

discussed in the seismic analysis report.

h 'The horizontal and. vertical floor accelerations are provided in

-table 1.

I The OBE damping values as percentages of critical applicable to

the fuel handling building design are as follows:

Reinforced concrete structures 4

Welded steel structures 2

f Bolted. steel structures 4

The dynamic lateral earth pressures due to the OBE are computed

by the Mononobe-Okabe method of analysis for dynamic earth

pressures in dry cohesionless materials. Figure 7 shows the

dynamic incremental soil pressure profile.-

Consideration is given to hydrodynamic pressures acting on the-

h fuel pool walls.~and basemat, (reference.1). Representative

~ hydrodynamic-pressure profiles are provided in figures 8 and 9.
,

(.
3.2.2.2 Design Wind (W)

{'
' Category 1 structures, and is designed for a wind velocity of

The fuel handling building is completely surrounded by other

-110' mph, which is based on a wind speed 30 feet above ground.
- Exposure C, applicable to flat open country is used. The

effective velocity pressure profile for the 110 mph wind used in

the design (see figure 12) is in accordance with reference 2.

3.2.3- Extreme Environmental Loads

3.2.3.1 Safe Shutdown Earthquake, SSE (E')

Based on the plant site geologic and seismologic investigations,

the peak ground acceleration for SSE is established as 0.20g.

f.) The free-field response spectra and the development of horizontal

and vertical floor accelerations and in-structure response

9
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spectra at the basemat, floor, and roof slab elevations are
discussed in the seismic analysis report.

The horizontal and vertical floor accelerations are provided in

table 1.

' The SSE damping values as percentages of critical applicable to
tle' fuel handling building design are as follows::

. Reinforced concrete structures 7

Welded steel structures 4

Bolted steel structures 7

The dynamic lateral earth pressures due to the SSE are computed
by the Mononobe-Okabe method of analysis for dynamic earth
pressures in dry cohesionless materials. Figure 7 shows the

dynamic incremental soil pressure profile.

Consideration is given to hydrodynamic pressures acting on the
fuel pool walls and basemat (reference 1). Representative ~

hydrodynamic pressure profiles are provided in figures 10 and 11.
.

3.2.3.2 Tornado Loads (W )t
Loads due to the design tornado include wind pressures, atmos-
pheric pressure differentials, and tornado missile strikes. The

design tornado parameters, which are in conformance with the
Region I parameters defined in Regulatory Guide 1.76, are as

follows:

Rotational tornado speed 290 mph*

fTranslational tornado speed 70 mph maximum*

5 mph minimum

Maximum wind speed 360 mph*

* Radius of tornado at 150 feet

maximum rotational speed

Atmospheric pressure -3 psi*

differential

Rate of pressure differential 2 psi /sec*

change ]

8
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L
The resultant' tornado effective velocity pressure profile used in

(' the design (see figure 12) is in accordance with reference 3.

The effective velocity pressure includes the size coefficient,

and is used in conjunction with the external pressure coefficient

to determine the net positive and negative pressures.

[
The fuel handling building is a partially vented structure.

Conservatively, all walls and slabs are designed for a tornado

pressurization effect of i 3 psi.

The fuel handling building is also designed to withstand tornado

missile input effects from airborne objects transported by the~

tornado. The tornado missile design parameters are listed in

table 2. Missile trajectories up to and including 45 degrees

off the horizontal use the listed horizontal velocities. Those

trajectories greater than 45 degrees use the listed vertical

velocities.

Tornado loading (W ) is defined as the worst case of the
t

( following combinations of tornado load effects:

tg (Vel city pressure effects)W =w
t

( tp (A hospheric pressure drop effects)W =
t

tm (Missile impact effects)W *W
t

tq + 0. 5 WtpW =w
t

W *wQ+wht

tg + 0.5 Wtp * tmW *
t

3.2.3.3 Probable Maximum Precipitation Load, PMP (N)

The load due to probable maximum precipitation is applied to the

fuel handling building roof areas.

Special roof scuppers are provided with sufficient capacity to

ensure that the depth of ponding water due to the PMP rainfall

does not exceed 18 inches. This results in an applied PMP load

of 94 psf.

,

11
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3.2.3.4' -Blast Load'(B) e

The blast load accounts for a postulated site-proximity explosion.

The blast load is conservatively taken as a peak positive incident

overpressure'of-2 psi (acting ~inward or outward) applied cc a
uniform static load.

3.2.4 Abnormal Loads

3.2.4.1 Thermal Load (T,)
The thermal loads on the spent fuel wall and floor under abnormal

conditions are considered in the spent fuel pool wall and basemat

design. The design temperature in the pool is 195*F.

3.3 LOAD COMBINATIONS AND STRESS / STRENGTH LIMITS

The load combinations and stress / strength limits for structural

steel and concrete are provided in Appendix B.

3.4 MATERIALS

The following materials and material properties are used in the
}

design of the fuel handling building:

3.4.1 Concrete

Compressive strength f = 4 ksi*

,830 ksiModulus of elasticity E =* c
* Shear modulus G = 1,530 ksi

* Poisson's ratio o = 0.17 - 0.25

-3.4.2 Reinforcement - ASTM A615, Grade 60

y.= 60 ksiMinimum yield stress F*

Minimum tensile strength F = 90 ksi*
ult

Minimum elongation 7-9% in 8 inches*

1

|

12
<
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i

.3.4.3 Structural Steel
b

3.4.3.1 ASTM A36

(- Minimum yield stress F = 36 ksi*
y

Minimum tensile strength F = 58 ksi*
ult

( Modulus of elasticity E = 29,000 ksi*
s

. 3.4.3.2 ASTM A500, Grade B: Structural Tubing

Minimum yield stress F = 46 ksi*
Y

Minimum tensile strength Fult = 58 ksi*

Modulus of elasticity E = 29,000 ksi*
s

3.4.4 Structural Bolts

3.4.4.1 ASTM A325 (1/2 inch to 1 inch diameter inclusive)
Minimum yield stress F = 92 ksi*

y
Minimum tensile strength F = 120 ksi*

ult,

3.4.4.2 ASTM A325 (1-1/8 inch to 1-1/2 inch inclusive)
[ Minimum yield stress F = 81 ksi*

Y
Minimum tensile strength F = 105 ksi*

ult

3.4.4.3 ASTM A307

{ Minimum yield stress F is not applicable*
y

Minimum tensile strength F = 60 ksi*
ult

3.4.5 Steel Liner Plate - ASTM A240, Type 304L

Minimum yield stress F = 25 ksi*

Minimum tensile strength F 0 ksi* =
ult

( Modulus of elasticity E = 29,000 ksi*
s

f

(
,

. .

I
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3.4.6 Anchor Bolts and Headed Anchor Studs

3.<4.6.1 ASTM A36

Minimum yield stress F = 36 ksi*

Minimum tensile strength F = 58 ksi*
ult

3.4'.6.2 ASTM A108

Minimum yield stress F = 50 ksi*

Minimum tensile strength F = 60 ksi*
ult

.3.4.6.3. ASTM A307

Minimum yield stress F is not applicable* y
Minimum tensile strength F 60 ksi*

ult

3.4.6.4 ASTM A320, Grade B8

Minimum yield stress F = 30 ksi*
y

5 ksiMinimum tensile strength F =*
ult

3.4.7 Foundation Media
3.4.7.1 General Description

'

See section 2.2

3.4.7.2 Category 1 Backfill

Moist unit weight y = 126 pcf*
m

Saturated unit weight yt = 132 pcf*

* Shear modulus G Depth (feet)

1530 ksf 0-10

2650 ksf 10-20

3740 ksf 20-40

5510 ksf 40-marl

bearing

stratum
#

Angle of internal friction & = 34**

* Cohesion C=0 s

|*

14
<
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3.4|7.3' Modulus-of Subgrade Reaction
-

'

* ~ Static 85 kcf'

*2 Dynamic 250 kcf

3.4.7.4 -Net Bearing Capacities-

{- - * Ultimate 64.0 ksf

* Allowable static 21.3'ksf-

h Allowable dynamic 32.0 ksf:*

h
~

.4.0 STRUCTURAL ANALYSIS AND DESIGN

This'section provides the methodologies employed to analyze the:

h . fuel' handling' building and to design its key structural elements,
'

.using the applicable loads and load combinations specified in
- section 3~.~0.

A preliminary proportioning of key structural elements is based

(~ - on plant layout and separation requirements, and, where appli-

cable, the minimum thickness requirements for radiation shielding

and for the prevention of concrete scabbing or perforation due

i to tornado missile impact. The proportioning of these elements

3 is . finalized by confirming that strength requirements and where

. applicable, ductility and/or' stiffness requirements are satisfied.

| The structural analysis is performed either by manual analysis or

computer analysis. In the manual analysis, the building structure

.._or' substructure is considered as an assemblage of slabs, walls,

and columns, and the analysis is performed using standard structural

analysis techniques. In the computer analysis, the building
,

structure'or substructure is modeled as an assemblage of finite

elements and the analysis is performed using the' standard finite-
element method utilizing a computer program.

For manual analyses, the analysis techniques, boundary conditions,
- and application of loads are provided to illustrate the method of
'

analysis.

15
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For-computer: analyses,'the.modelingitechniques, boundary condi- t

.tions, application of loads, and description of the computer

1model are~provided to illustrate the overall method of analysis..

In addition;'for both manual and computer analyses and_ design,
~

representative analysis and design'results are provided to

= illustrate the response of the key structural elements for

governing load combinations.

-4.1 SELECTION OF GOVERNING LOAD COMBINATION

'An evaluation of load magnitudes, load factors and load combina-

tions is performed to determine the load combination that

governs the overall response of the structure. It is determined

.that load combination equation 2, for steel design (Appendix B,

Table B.1) and equation 3 for concrete design ( Appendix B,

Table B.2)'containing OBE, govern over all other load combina-

tions, .and hence forms the basis for the overall structural

analysis and design of the fuel handling building.

'All_other load combinations, including the effects of abnormal

loads.and tornado loads, are evaluated where applicable on a

local area basis (i.e., sections 5.2 and 5.3). The localized

response is combined with the analysis results of the overall

structural response, as applicable, to confirm that design

integrity is maintained.

4.2 VERTICAL LOAD ANALYSIS

The vertical load carrying elements of the fuel handling building

consist of concrete slabs that support the applied vertical loads, .

walls and columns that support the slabs, and the basemat which
transmits the loads from the walls and columns to the foundation
medium. Representative vertical load carrying elements are
identified in. figures 5 and 6.

The analysis of the building for vertical loads begins at the

roof slab and proceeds progressively down through each level of
the building to the basemat. Slabs and girders are analyzed for )

16
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F

(
the vertical loads applied to them.- The total vertical load on

f a wall or column at a given level-is computed based on its self

weight, the. vertical loads at that level from the slab tributary

[ areas, and the cumulative vertical-loads from the levels above.-

4.3 LATERAL LOAD ANALYSIS

The lateral' load carrying elements of the fuel handling building

{|
consist of concrete slabs acting as rigid diaphragms to resist

applied lateral loads, the shear walls which transmit the loads
from the slab diaphragm to the basemat, and the basemat which
transmits the loads from the walls and columns to the foundation

. medium. Representative lateral load-carrying elements are
identified in figures 5 and 6.

Since the building structure utilizes the slab diaphragms for

horizontal shear distribution, the lateral load analysis is

performed by a conventional rigidity and mass analysis. In this

(! analysis, the maximum horizontal design forces for. earthquake
loads and soil pressure loads are applied at each slab level, as

{ ' appropriate. The design horizontal earthquake load at each level
of the building is obtained by multiplying the lumped story mass
at that level by the maximum floor acceleration applicable to
that level. The design horizontal soil pressure load of the

building is obtained from the lateral earth pressure with due
consideration to the seismic effects and the surcharge effects

from the raised center section basemat. In the analysis, the

horizontal shear loads are carried progressively down from the

- roof diaphragm through each level of the building to the basemat,
.to obtain the story shear'at each level. The story shear load at

each level is distributed to the shear walls at that level in
proportion to their. relative rigidities.

.

To account for the torsion caused by the seismic wave propagation
effects, the inherent building eccentricity between the center of

mass and center of rigidity at each level is increased by 5 percent

of the maximum plan dimension in the computation of the torsional

17.
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moment. The torsional moment is obtained as the product of this
augmented eccentricity and the story shear at that level. The

shear in the walls resulting from this torsional moment is
computed based on the relative torsional rigidities of the walls.
For~a given shear wall, the shear due to story shear (direct
shear) and shear due to torsional moment (torsional shear) are ]
combined at a given level to obtain the total design shear load.
The torsional shear is neglected when it acts in a direction
opposite to the direct shear.

4.4 COMBINED EFFECTS OF THREE COMPONENT EARTHQUAKE LOADS

The combination of co-directional responses due to three component
earthquake effects is performed using the Square Root of the
Sum of the Squares (SRSS) method, i.e., R=[Ri+R +R #!

k
the Component Factor method, i.e., ( / ]

R=Ri + 0.4 R$ + 0.4 Rk 1
J

n = 0.4 Ri+R$ + 0.4 Rk
R = 0.4 Ri + 0.4 R$+R'k

wherein 100 percent of the design forces from any one of the
three components of the earthquake is considered in combination
with 40 percent of the design forces from each of the other two
components of the earthquake.

4.5 ROOF AND FLOOR SLABS

4.5.1 Analysis and Design Methodology

A representative slab panel plan (elevation 200'-0") of the fuel f
handling building is presented in figure 5, showing the structural
elements provided for vertical and lateral support of the slab
panels, which consist of load bearing walls and load bearing shear
walls. Based on the panel configuration, the relative stiffness
of the supporting members and the type of fixity provided, slab
panels are analyzed for one-way or two-way slab action using
appropriate boundary conditions and standard beam and plate .

.
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Equivalent uniformly distributed loads are applied to slab

f panels.. The design vertical earthquake loads for slab panels

in a level are obtained by multiplying the effective mass from

(_ the applied loading (including its own mass) by the maximum floor

acceleration at that level.

f Based on the floor flexibility study, it is concluded that the

effects of vertical flexibility on the fuel handling building

{ floor accelerations and response spectra are insignificant,-as

long as the fundamental floor system frequency is equal to or

higher than 10 cps. The evaluation of the floor systems in the
- fuel handling building demonstrates that their frequencies are

higher than this value. The details of the floor flexibility

study are provided in the seismic analysis report.

Slab panels are selected for design on the basis of the con-

trolling combination of- design load intensity, span, panel

configuration, and support conditions.

The structural design is based on strength considerations and

consists of sizing and detailing the reinforcing steel to meet

f the ACI 318 Code requirements. In general, the reinforcing

requirements are determined for the governing face of the slab

( and conservatively provided on both faces.

.
As appropriate, additional reinforcement is provided in the

( slab adjacent to large floor openings.

4.5.2 Design Results

The design results for governing load combinations are presented

in table 3 for representative slab panels. See figure 13 for

representative design details.

4.6 SHEAR WALLS

4.6.1 Analysis and Design Methodology

The location of shear walls are identified in figures 5 and 6

for representative elevations.

19
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]

The' details:of-the. analysis methodology-used to compute the total-s

- -in-plane design loads at various-levels of a shear wall are
described under vertical and lateral load analyses in sections 4.2

and 4.3'. -The in-plane design loads-include axial loads resulting
,

from-the overturning moment.

'The out-of-plane-design loads thatLare considered include the )
inertia loads on the walls due to the structural acceleration
caused by the design earthquake. ]c

The design in-plane shear force and the overturning moment acting
on:a shear wall at a given_ level is computed by considering the
shear loads acting at all levels above, and the resulting over-
turning moments. Conventional beam analysis is used to compute

the bending moment and out-of-plane shear forces resulting from
the out-of-plane design loads. At controlling sections, the com-

bined effects of in-plane overturning moment and axial loads, and
-the out-of-plane loads are evaluated.

The shear wall design is performed in accordance with the ACI 318 -

Code using the following methodology:

A. The horizontal and vertical reinforcement required to

resist the. design shear loads is determined.
'B. The flexural capacity of the shear wall using the

reinforcement determined is obtained using the Cardenas

equation (reference 4).

C. If the flexural capacity computed is less than the

design overturning moment, then the reinforcement
required is determined in one of the following two
ways:

1. The total vertical reinforcement required for the

design moment is computed using the Cardenas
equation and is distributed uniformly along the
length of the wall. ,

2. The reinforcement required in the end sections of
the wall to resist the overturning moment is

computed. j

8
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-D. The reinforcement provided for the in-plane loads is
( evaluated for the combined effects of in-plane and

out-of-plane loads, and additional reinforcing steel

( is added if necessary.

4.6.2 Design Results
__

The design results for governing load combinations are presented

{
in table 4 for representative shear walls. See figure 14 for

representative design details.

4.7 WALLS' SUPPORTING THE CASK HANDLING CRANE

4.7.1 Analysis and Design Methodology

The structure supporting the cask handling crane is designed as
a simply supported deep beam, consisting of the wall in web
action, and the effective areas of the roof slab and the level 3

floor slab in flange action. The deep beam moments and shears
are determined using standard beam formulas.

. Uniformly distributed roof and floor loads are converted to an
equivalent uniform linear load using the tributary load method.
Concentrated cask handling crane truck loads are applied eccentri-
cally to the bottom of the wall at the rail centerline. The

design vertical earthquake load for the supporting wall is

f obtained by multiplying the tributary mass from the applied
loading (including the deep beam wall's own mass) by the maximum
floor acceleration at the level 4 roof.

{
The structural design of the walls supporting the cask handling

{
crane is governed by strength considerations, and consists of
sizing and detailing the reinforcing steel in accordance with the
provisions of the ACI 318 Code. Appropriate consideration is
given to the corbel-like torsion action on the vall ledge.

i
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4.7.2 Design Results

The design results for governing load combinations are presented
in table 5 for representative walls supporting the cask handling

crane. See figures 15 and 16 for design details.

4.8 BASEMAT

4.8.1 Analysis Methodology and Computer Model

The basemat is analyzed utilizing a finite element model with the

Bechtel Structural Analysis Program (BSAP), which is a general

purpose computer program for finite element analyses. This
program uses the direct stiffness approach to perform linear

elastic analysis of a three-dimensional finite element model.

The finite element model includes the structural elements in the
building through elevation 220'-0" and the basemat, and is prepared

using conventional modeling techniques. Plate elements are used

to model the basemat, the spent fuel pool walls, and all other

structural walls and slabs below elevation 220'-0". Boundary

(spring-type) elements are used as follows:

A. To charncterize the stiffness effects of soil beneath

the basemat.
B. To eliminate singularity conditions by providing

boundary conditions that prevent in-plane rotation of

walls that are oriented in a manner which precludes

the use of global boundary conditions to eliminate the

inplane rotational degrees of freedom.

The vertical stiffness of each soil spring is determined by

multiplying the nodal tributary area by the modulus of subgrade

reaction. The horizontal spring stiffnesses are computed to

model the stiffness effect of the soil in the horizontal direction.
The structural shear walls to elevation 220'-0" are modeled to
represent the stiffness interaction effects at the wall /basemat

junction. There are a total of 1002 boundary elements which

represent soil stiffness, 1489 plate elements to model the basemat

22
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and walls, and 8 beam elements along the periphery of the basemat

( in the penetration area to model the thickened portion of the mat
around the containment building.

( Computer plots of the fuel handling building basemat model,
' including node numbers and element numbers, are shown in figure 17.

( Only one half of the fuel handling building is modeled to take
advantage of the symmetry of the building in the east-west
direction about the centerline of the two-unit plant.

The boundary conditions for the basemat model are as follows:
boundary elements, representing the translational soil stiffness,
are applied at each basemat node in the three global translational
directions; boundary elements with large rota'tional rigidity and
no translational rigidity are applied at the plate element nodes

to eliminate singularity conditions by restraining in-plane

( rotation; along the axis of building symmetry, symmetrical
boundary conditions are used for vertical and north-south loads,

( and anti-symmetrical boundary conditions are used for east-west
loads.

4.8.2 Application of Loads

The magnitude and distribution of loads applied to the basemat
model are consistent with the cumulative results of the vertical
and horizontal load analyses of the overall building structure.

As described in the other sections of this report, the loads

include dead load, live load, hydrostatic, and hydrodynamic
loads, vertical and horizontal seismic loads, and lateral soil

pressure loads.

Dead load, live load, and vertical and horizontal seismic loads

for the elements in the model are accounted for internally by the

f computer program by assigning a mass density to the plate elements
and applying the appropriate static acceleration. Dead load,

{
live load, and vertical and horizontal seismic loads associated

with the portion of the structure above elevation 220'-0" are
applied as nodal forces at elevation 220'-0".

23
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Hydrostatic loads due to water in the fuel pool are applied to
Thethe appropriate plate elements as equivalent pressure loads.

hydrodynamic effects of the water, including both impulsive and
convective forces (reference 1) are applied to the appropriate
plate elements as equivalent pressure loads.
Lateral soil pressura loads and surcharge from the center portion
of the fuel handling building are applied to the electrical
tunnel wall (refer to section 2.4.4).

4.8.3 Design Methodology

The design of the basemat, including the sizing and detailing the
reinforcing steel, is done in accordance with the requirements of
the ACI 318 Code.

The required flexural reinforcement in the basemat is calculated
using the OPTCON module of program BSAP-POST. BSAP-POST (which

consists of a collection of modules that perform specific indepen-
dent tasks) is a general purpose, post-processor program for the
BSAP finite element analysis program. BSAP-POST reads computed

BSAP results into an internal common data storage base and
optionally performs one or several additional operations (i.e.,
plotting) or calculations (i.e., creating load combinations or
designing reinforced concrete members).

In general, the OPTCON processor is a reinforced concrete analysis
and design program for doubly reinforced concrete sections which
creates reinforced concrete interaction diagrams based on the
maximum allowable resistance of a section for given stress and
strain limitations (code allowables). Any load combination whose

fallsdesign axial force and corresponding moment (load set)
within the interaction diagram indicates all stress and strain
code criteria are satisfied.
The thermal effects on the basemat under operating conditions are
evaluated using the methodology described in section 5.3.

Basemat shear is computed using the design moments from the finite
I

element analysis and determining the moment gradient between
adjacent elements.

f24
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4.8.4 Design Resnlts

( Representative results of the basemat analysis is provided in
figure 18. Representative results of the basemat design is
provided in figure 19. Representative design details are shown

in figures 20 and 21.

4.9 SPENT FUEL POOL WALLS

4.9.1 Analysis Methodology and Computer Model

The spent fuel pool walls are analyzed utilizing the basemat
finite element computer model. The analysis methodology and

computer model are described in section 4.8.1.

4.9.2 Application of Loads

The load application procedures for the analysis of the spent

fuel pool walls are described in section 4.8.2.

( 4.9.3 Design Methodology

The design of the spent fuel pool walls, including the sizing and

( detailing of reinforcing steel, is done in accordance with the

strength design provisions of the ACI 318 code.

( The required flexural reinforcement in the spent fuel pool walls

is determined based on the design forces obtained from the BSAP

( analysis (refer to sections 4.8.1 and 4.8.2), with the use of a

OPTCON computer program. For a description of computer design

using the OPTCON module of BSAP-POST refer to section 4.8.3.

/ 4.9.4 Design Results

Representative results of the spent fuel pool analysis is
provided in figure 22. Representative results of the spent fuel

pool wall design is provided in figure 23. Representative design
details are shown in figure 24.

25
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5.0 MISCELLANEOUS ANALYSIS AND DESIGN

Once..the' basic design of the fuel handling building has been

. completed (refer to section 4), the structure is evaluated for

..the effects of abnormal loads and tornado loads. This is done

on a local area basis where applicable. In addition, the overall

stability of the fuel handling building is evaluated to ensure

an adequate safety factor against instability is provided. This

section-describes these analyses and significant special pro- )
visions employed in the ' fuel handling building design.

5 .1- STABILITY ANALYSIS

The overall stability of the fuel handling building is evaluated

by determining the factor of safety against overturning, sliding,

and flotation.

5.1.1 Overturning

The factor of safety against overturning is determined using the

equivalent static method and the energy balance method.

The equivalent static method does not account for the dynamic
characteristics of the loading and therefore results in a factor

of safety lower than the energy balance method. The factor of

safety obtained from the energy balance method reflects the

actual design conditions and therefore provides a more appropriate
measure of the design margin.

The factor of safety against overturning using the equivalent

static method is defined as the ratio of the resisting moment due

to net gravity forces to the overturning moment caused by the

maximum lateral forces acting on the structure. The gravity

forces are reduced to account for the effects of buoyancy and the

vertical component of earthquake.

The factor of safety against overturning using the energy balance

method is defined as the ratio of the increase in the potential

energy at the point of overturning about the critical edge of the ,

J

3
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structure to the maximum kinetic energy that could be imparted to

the structure as a result of earthquake loadings. The energy

balance analysis methodology is described in reference 5.

5.1.2 Sliding

(- The factor of safety against sliding is defined as the ratio of

combined frictional and passive sliding resistance of the founda-

tion to the maximum calculated lateral force.

5.1.3 Flotation

The factor of safety against flotation is defined as the ratio of

the total weight of the structure and its foundation to the

buoyant force, defined as the volume of the ground water displaced

by the submerged portion of the structure multiplied by the unit

( weight of water.

( 5.1.4 Analysis Results

The minimum required factors of safety and the calculated factors

( of safety for stability are provided in table 6.

5.2 TORNADO LOAD EFFECTS

Tornado load effects result from wind pressures, atmospheric

[
pressure differentials, and tornado missile strikes. The magni-
tude and combinations of tornado load effects considered are

described in section 3.2. The load combination involving tornado

load effects is specified by equation 8 of Table B.2 in Appendix B.

Controlling roof and exterior wall panels are evaluated for

tornado load effects, and the localized response is combined with

the analysis results of the overall structural response, as

applicable, to confirm that design integrity is maintained.

Additional reinforcing steel is provided in accordance with the

ACI 318 Code, if necessary, to satisfy design requirements. In

addition, barriers are provided for the openings in the exterior

27



. . .. . . .

_ _ _ _ _ _ _ _ ____

r

5
VEGP-FUEL HANDLING BUILDXNG DESIGN REPORT r

-

-

=
-

walls or roofs unless the systems or components located in the --

exterior rooms are nonsafety-related. In this case, the interior
-

walls and slabs are treated as barriers for the safety-related j

systems or components located in the interior rooms. Any openings
-

in the exterior walls or slabs and the interior walls or slabs
-

-

that may be susceptible to missile entry are evaluated to ensure _

that no safety-related systems or components are located in a
potential path of the missile.

'

The methodology used to analyze and design the structural elements ;

to withstand the tornado load effects is described in reference 3. -

_

Specific procedures used for analysis of missile impact effects i

are described in Appendix C.

gRepresentative results of the tornado missile analysis are -

provided in table 7.

All wall and roof panels providing protection against tornado 5
load effects have a minimum thickness of 24 and 21 inches

-

-

_

respectively, to preclude missile perforation and concrete ;
'

scabbing.
-

-

5.3 ABNORMAL LOADS EFFECTS
.

For this structure the only applicable abnormal loads are -

_

generated by a postulated accident which occurs only in the
spent fuel pool.

_

andThe spent fuel pools are located between column lines FA.3
F and F and F f r Unit 1, and F and F f r Unit 2.

_A.8, 4 6 1 3

The spent fuel pool walls and floor are analyzed using the BSAP
'

computer program, utilizing a finite element model as described
-

in sections 4.8 and 4.9. The loads applied to the model include
dead loads, live loads, vertical and horizontal OBE/SSE loads,
hydrodynamic and hydrostatic, and thermal loads. Load combination
equations 9, 10 and 11 of Appendix B, Table B.2 are considered in
determining the design forces.

28
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The reinforcing steel provided on the basis of overall structural'*c

response, as per the design methodology described in section 4,
is evaluated for the governing design forces resulting from the

effects of abnormal loads, to ensure that the requirements of
'

the.ACI.318' Code are' satisfied. This is accomplished using

OPTCON computed program described in section 4.8.3.

OPTCON calculates the thermal moment induced by the thermal

gradient, by considering the relaxation effects of concrete

: cracking and reinforcement-yielding. For each load combination
analyzed, the state of stress and strain is determined before

the thermal load is applied. The thermal moment is approximated
i

based upon an iterative approach which considers equilibrium and

compatibility conditions. The final force-moment set (which'

includes the cracked section final thermal moment) is checked to
(- verify that it falls within the code allowable interaction

. diagram.

5.4 FOUNDATION BEARING PP. ESSURE

The maximum calculated bearing pressures under the governing
design load conditions are provided in table 8.
'-

,

'

6.0 CONCLUSION

The analysis and design of the fuel handling building includes

all credible loading conditions and complies with all applicable

design requirements.
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TABLE 1

FUEL HANDLING BUILDING SEISMIC ACCELERATION VALUES

FLOOR ACCELERATIONS (g's)III
f

SSE OBE
.

Elevation E-W N-S Vert. E-W N-S Vert.

160'-0" 0.24 0.21 0.39 0.16 0.14 0.24

179'-0\" 0.34 0.25 0.41 0.22 0.17 0.27

f 200'-0" 0.37 0.27 0.42 0.24 0.19 0.28

220'-0" 0.39 0.30 0.43 0.25 0.20 0.29

(-
(grade level)

263'-8" 0.54 0.41 0.46 0.35 0.28 0.31

( 263'-8" 0.54 0.42 0.46 0.35 0.28 0.31

288'-2" 0.61 0.49 0.49 0.42 0.33 0.33

( (1) The actual acceleration values used in the design of the
structure may be higher than the values shown.

(-

(-

[

(

(

(
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1
TABLE 2

TORNADO MISSILE DATA f
End-On End-On 1

Height Horizontal Vertical J

Weight Limit Velocity Velocity

Missile W (lb) (ft) (ft/sec) (ft/sec)

4" x 12" x 12' Plank 200 216 200 160
,

'

3" 9 std x 10' Pipe 78.5 212 200 160
,

1" 9 x 3' Steel Rod 8 Unlimited 317 254'
s

6" # std x 15' Pipe 285 101 160 128

12" 9 std x 15' Pipe 744 46 150 120

13-1/2" 9 x 35' 1490 30(1) 211 169
Utility Pole

2-Automobile (20 ft 4000 0 75 60

project area)

(1) To 30' above all grade levels within 1/2 mile of facility
structures.

.
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TABLE 3

DESIGN RESULTS OF REPRESENTATIVE SLAB PANELS

Required (in.2/ft) A Provided (in. /ft)A s
Governing (1) s

Load Design Force N-S E-W N-S E-W $
OCombination Moment

Element Equation k-ft/ft Top Bot. Top Bot. Top Bot. Top Bot. 7

Level A N-S +!!" = 32. 2 "
Center 3 N-S -M" = 24.3 0.39 0.51 0.39 0.39 0.60 0.60 0.44 0.44

Section (2) (2) (2) @
Corridor Slab g

t'
*

Level A 3 E-W M" = 1 54.0 0.56 0.56 0.56 0.56 1.00 1.00 1.00 1.00
$New Fuel (2) (2) (2) (2)
tnStorage Pit
$w

" Slab
b

Level 1 N-S +M" = 21.8 0.54 0.38 0.28 0.28 0.60 0.60 0.44 0.44 -

Center 3 N-S -M = 30.5 (2) (2) y
uSection

@Corridor Slab un

Level 1 N-S +M = 43.3 0.93 0.93 0.93 0.93 1.00 1.00 1.00 1.00 o
Z

N-S-(=79.0 (2) (2) (2) (2)Cask Washdown 3
Area Slab y

m

H@Level 4 N-S +M = 65.9y
Roof Slab 3 N-S -M = 140.5 1.67 0.74 2.90 1.28 3.12 1.56 3.12 3.32

Between E-W +M = 120.1
F &F E-W -Mu = 266.9

3 4 u

(1) Load combination equations correspond to equations in Appendix B.
(2) Governed by minimum code reinforcement requirements.

. .+ w. . - u..s . 2 2 . m ; m -;. . . ; _ , ~. .n ,, ; . . . y .y_;..g 3,.,79 .g. ., , p. .j p ,,,y .(,,, . . _. .3-,
-

3:- +
. ..

,

_

_ ,
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TABLE 4
t

DESIGN RESULTS OF REPRESENTATIVE SHEAR WALLS
-

Design Forces
(In-Plane) A Required A Provided

s s

III (in.2/ft) (in.2) (in.2/ft) (in.2) gGoverning
Load ON V M '

Combination u u u I) hElement Equation (k) (k) (k-ft) Horiz. Vert. ER(3) Horiz. Vert. ER
tn

2.00 2.00Level 3 3 747 4,575 112,047 0.72 0.72 --

North Wall (2) (2)
Between F

-

and F6 2
O

2.00 2.00
.. vel 3 3 89 1,406 34,433 1.08 1.08 m--

A South Wall (2) (2) $u,

Between F g
4 -and F6 g

O

Level 2 3 473 9,735 516,989 2.28 2.00 133.4 3.12 2.54 220.00 e
@East or H

West Wall OBetween
F and F @A B

m
2.54 2.54 - f3Level B 3 13,717 25,271 1,013,740 2.35 2.35 -

H
North Wall (2) (2)
Between Fy
and F6

1 2.00 2.00
1 Level B 3 8,869 15,628 1,126,030 1.08 1.08 --

South Wall (2) (2)
Between Fy
and F6

(1) Load combination equations correspond to equatf 's in Appendix B.
(2) Governed by minimum code reinforcement requirements.
(3) ER - End reinforcement

I

_'
'

p. ;y _ [; a;,;. : ;.y y .; v75 -f .-;;,-:y;; ;.-: [.' ,; L : ..;h . ; u .e -
- -

_'c.' g_y.; g- > g :- q q s y v p _. n | '-.
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TABLE 5

DESIGN RESULTS OF WALLS SUPPORTING THE CASK HANDLING CRANE

IIIGoverning
Load _ $ '.

Combination Design Force A Required A, Provided o
7g

Element Equation

Deep Beam 3 80,000 k-ft 70.33 in.2 83.25 in.2 h
"

wall

Shear-friction
144 k/ft 2.02 in.2/ft 3.00 in.2/ft e

m

E
Corbel 3 Direct tension ;

46k/ft. m
2.21 in.2/ft (2) 2.53 in.2/ft $w

* moment
215 k-ft/ft g

Torsional stirrup h
Torsion 0.74 in.2/ft 1.00 in.2/ft e

Crane Beam 3 2,280 k-ft Longitudinal reinf. Q
18.3 in.2 34.3 in.2

(1) Load combination equations correspond to equations in Appendix B. g
m(2) Governed by minimum code reinforcement requirements.
Os
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TABLE 6

FACTORS OF SAFETY FOR STRUCTURAL STABILITY

Overturning Sliding Flotation
Factor of Safety Factor of Safety Factor of Safety $

o
7-

Calculated

II}I ) Minimum Equivalent Energy Minimum MinimumLoad "
Combination Required Static Balance Required Calculated Required Calculated

D+H+E 1.5 1.6 See note 1.5 1.67 - -

(2) e
E
o

D + H + E' 1.1 1.3 184 1.1 1.34 - -

to
w 1.1 15 $- - - - -m D + F'

b
-

Dead weight of structure g(1) D =

Lateral earth pressure
@H =

OBEE =
$= SSEE' o

Buoyant force :2F' =

(2) The factor of safety for the SSE load case also satisfies the minimum y
mrequired factor of safety for the OBE case. o
:o

(3) Lateral loads caused by design wind, tornado, and blast are less in H

magnitude than lateral loads caused by design OBE and SSE.

- - - - ..

- - - - . . _ _
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L VEGP-FUEL HANDLING BUILDING DESXGN REPORT

[
TABLE 7

II)TORNADO MISSILE ANALYSIS RESULTS

( Panel Size
Computed Allowable

Panel Description Length Width Thickness Ductility Ductility

( and Location (ft) (ft) (ft) Ratio Ratio

Level 4 Roof 73 26 2 2.0 10

{
Area Between
Lines F and F
and F kndF3 B

( Level 4 Roof 73 47 2 1.3 10
Area Between
Lines F and F

( and F nd FA B

Level 3 Exterior 26 24.5 3 1.0 10
Wall Along F

( B
Line

Level 3 Exterior 73 24.5 3 1.2 10

f Wall Along Fy
Line

{ (1) Governing combination of tornado load effects is
tg + 0.5 Wtp + tmW *

t

-

L(

l

37
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VEGP-FUEL HANDLING BUILDING DESIGN REPORT

r

E

TABLE 8 [
II) [MAXIMUM FOUNDATION BEARING PRESSURES

=

Allowable Net (2) Computed Factor (3) _}
Bearing Capacity of Safety [

Gross Net Gross Net _

Static Static Dynamic Dynamic Static Dynamic .

(ksf) (ksf) (ksf) (ksf) (ksf) (ksf) Static Dynamic
E

.

8.1 0.1 23.4 15.4 21.3 32.0 640 4.2

I

(1) Maximum foundation bearing pressures are defined as follows:

Total structure dead load plus operating -Gross Static =

live load divided by total basemat area. -

The static pressure in excess of the over-Net Static =

burden pressure at the base of the
-

structure.

Maximum soil pressure under dynamic load- -Gross Dynamic =

ing conditions (i.e., unfactored SSE).

The dynamic pressure in excess of the over-Net Dynamic =
,

burden pressure at the base of the -

structure.

(2) The allowable net static and dynamic bearing capacities
are obtained by dividing the ultimate net bearing capacity
by factors of 3 and 2 respectively. The ultimate net .

bearing capacity is the pressure in excess of the overburden
pressure at the foundation level at which shear failure
may occur in the foundation stratum.

;

(3) The computed factor of safety is the ultimate net bearing -

capacity divided by the net static or net dynamic bearing
pressure. _

_

;

=

.

38
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VEGP-FUEL HANDLING BUILDING DESIGN REPORT

f APPENDIX A

DEFINITION OF LOADS

The loads considered are normal loads, severe environmental

loads, extreme environmental loads, abnormal-loads, and potential

site proximity loads.

A.1 NORMAL LOADS

Normal loads are those loads to be encountered, as specified,

during construction stages, during test conditions, and later,

during normal plant operation and shutdown. They include the

following:

D Dead loads or their related internal moments and

forces, including hydrostatic loads and any permanent

loads except prestressing forces.

L Live loads or their related internal moments and

forces, including any movable equipment loads and

other loads which vary with intensity and occurrence,

e.g., lateral soil pressures. Live load intensity

( varies depending upon the load condition and the type

of structural element.

( T Thermal effects and loads during normal operating
g

or shutdown conditions, based on the most critical

transient or steady-state condition.

R Pipe reactions during normal operating or shutdowng
conditions, based on the most critical transient or

steady-state conditions.

I

J.

A-1

_ _ - - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ __ _ _ _ _ _ _ _ _ _ _- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _
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A.2 SEVERE ENVIRONMENTAL LOADS

Severe environmental loads are those loads to be infrequently

encountered during plant life. Included in this category are:

E Loads generated by the operating basis earthquake
(OBE). These include the associated hydrodynamic

and dynamic incremental soil pressures.

W Loads generated by the design wind specified for the

plant.

A.3 EXTREME ENVIRONMENTAL LOADS

Extreme environmental loads are those loads which are credible
but are highly improbable. They include:

E' Loads generated by the safe shutdown earthquake (SSE).
These include the associated hydrodynamic and dynamic

incremental soil pressures.

W L ads generated by the design tornado specified for the
t

plant. They include loads due to wind pressure, ,

differential pressure, and tornado-generated missiles.

N Loads generated by the probable maximum precipitation.

B Loads generated by postulated blast along transporta-

tion routes.

A.4 ABNORMAL LOADS .

Abnormal loads are those loads generated by a postulated high-

energy pipe break accident within a building and/or compartment
thereof. Included in this category are the following:

P Pressure load within or across a compartment and/or
a

building, generated by the postulated break.

T, Thermal loads generated by the postulated break and
including T .g

A-2

- _ _
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.

i

_R, -Pipe and equipment reactions under thermal conditions

;
- generated by the postulated break and including R .g

Y L ad n a smeture generated by de reacdon of a
r

.

ruptured high-energy pipe during the postulated event.

Y Load on a structure generated by the jet impingementj
from a ruptured high-energy pipe during the postulated

break.

Y, Load on a structure or pipe restraint resulting from

the impact of a ruptured high-energy pipe during the

postulated event.

(~

l

(

( .

l

.
.

A-3/4
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APPENDIX B

LOAD COMBINATIONS

B.1 STEEL STRUCTURES

The steel structures and components are designed in accordance

with elastic working stress design methods of Part 1 of the

.American Institute of Steel Construction (AISC) specification,

using the load combinations specified in table B.l.

B.2 CONCRETE STRUCTURES

The concrete structures and components are designed in accor-

' dance with the strength design methods of the American Concrete
Institute (ACI) Code, ACI 318, using the load combinations

f specified in table B.2.

[

l

I

I

,
,

6

B-1/2

1. . . . .
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TABLE B.l "}I

STEEL DESIGN LOAD COMBINATIONS
ELASTIC METHOD

strength

r n N 3 Limit (f,)IbIa E E' W "t I IT, T o aM D L a

Service Imad conditions
Q1.0

1 1.0 1.0

2 1.0 1.0 1.0 1.0 I

3 1.0 1.0 1.0 1.0

4 1.0 1.0 1.0 1.0 1.5 t-'

5 1.0 1.0 1.0 1.0 1.0 1.5

6 1.0 1.0 1.0 1.0 1.0 1.5

p
Factored Load w

g7 1.0 1.0 1.0 1.0 1.0 1.6

(See note b.) 8 1.0 1.0 1.0 1.0 1.0 1.6

f 9 1.0 1.0 1.0 1.0 1.0 1.6 h
W (See actes c and d.) 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.6

(See notes e and d.) 11 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.7 g

g12 1.0 1.0 1.0 1.0 1.0 1.6

13 1.0 1.0 1.0 1.0 1.0 1.6 |
M
to

See Appendix E for definition of load symbols, f is the allowable stress for the elastic design method defineda. in Part 1 of the AISC, " Specification for the Design, Fabrication, and Erection of Structural Steel for
Buildings." The one-third increase in allowable stresses permitted for seismic or wind loadings is not h

mconsidered. OWhen considering tornado missile load, local section strength may be exceeded provided there will be no loss ofb. Wfunction of any safety-related system. In such cases, this load combination without the tornado missile load is d
also to be considered. and Y loads, local section stren9th may be exceeded provided there will be no loss of
When considering Y , Y,relateE system. In such cases, this load combination without Y , Y ' ""O I is also to bec. functionofanysakety- 3 r n
considered.

d. For this load combination. in computing the required section strength, the plastic section modulus of steel
shapes, except for those which do not meet the AISC criteria for compact sections, may be used.

i

.

L
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TABLE B.2 " II

CONCRETE DESIGN LOAD COMBINATIONS
STRENGTH METHOD

P Y Y W R R Y Y Y Strength
E D L a o a E E' W t o a i r a N B LimitE

Service Load conditions <
M

@1 1.4 1.7 U

(See note b.) 2 1.4 1.7 1.7 U I

(see note c.) 3 1.4 1.7 1.9 U
M4 1.05 1.275 1.275 1.275 U p

5 1.05 1.275 1.275 1.275 1.275 U

6 1.05 1.275 1.275 1.425 1.275 U

Factored Load Conditions [
z7 1.0 1.0 1.0 1.0 1.0 U g

(see note d.) 8 1.0 1.0 1.0 1.0 1.0 U g
U3 9 1.0 1.0 -1.5 1.0 1.0 U C
I M
.h (See note e.) 10 1.0 1.0 1.25 1.0 1.25 1.0 1.0 1.0 1.0 U

(See note e.) 11 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 U g

12 1.0 1.0 1.0 1.0 1.0 U 55
O

13 1.0 1.0 1.0 1.0 1.0 U
U
M
Un
H

a. See Appendix A for definition of load symbols. U is the required strength based on strength method per ACI 318-71. bg
b. Unless this equation is more severe, the load combination 1.2D+1.7W is also to ba considered.
c. Unless this equation is more severe, the load combination 1.2D+1.9E is also to be considered. p3
d. When considering tornado missile load, local section strength may be exceeded provided there will be no loss of function of M

any safety-related system. In such cases, this load combination without the tornado missile load is also to be considered. M

When considering Y , Y , and Y,such caees, this load combination without Y , Y , local'section strength may be exceeded provided there will be no loss of function of
Oloads,e.

$any safety-related sysfem. In and Y, is also to be considered.
| f. Actualloadfactorsusedindesignmayhaveexceededthoseshowninthistdbler
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APPENDIX C

DESIGN OF STRUCTURES FOR TORNADO MISSILE IMPACT

C.1 INTRODUCTION

This appendix contains methods and procedures for analysis and
design of steel and reinforced concrete structures and structural

elements subject to tornado-generated missile impact effects.
Postulated missiles, and other concurrent loading conditions are

identified in Section 3.2 of the Design Report.

Missile impact effects are assessed in terms of local damage and
structural response. Local damage (damage that occurs in the
immediate vicinity of the impact area) is assessed in terms of

perforation and scabbing.
Evaluation of local effects is essential to ensure that protected

items would not be damaged directly by a missile perforating a
protective barrier or by scab particles. Empirical formulas are

used to assess local damage.

Evaluation of structural response is essential to ensure that

protected items are not damaged or functionally impaired by
/ deformation or collapse of tho impacted structure.

Structural response is assessed in terms of deformation limits,
.

strain energy capacity, structural integrity, and structural

stability. Structural dynamics principles are used to predict
structural response.

C.1.1 Procedures

The general procedures for analysis and design of struc a res or ?

structural elements for missile impact effects include:

Defining the missile properties (such as type, material,a.

deformation characteristics, geometry, mass, trajectory,

strike orientation, and velocity).

C-1
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b. Determining impact location, material strength, and
thickness required to preclude local failure (such as
perforation for steel targets and scabbing for rein-
forced concreteitargets).

c. Defining the structure and its properties (such as
geometry, section strength, deformation limits, strain
energy absorption capacity, stability characteristics,
and dynamic response characteristics).

d. Determining structural response considering other
.

concurrent loading conditions.

Checking adequacy of structural design (stability,e.

integrity, deformation limits, etc.) to verify that

local damage and structural response (maximum defor-
mation) will not, impair the function of safety-related

items.

C.2 LOCAL EFFECTS

Evaluation of local effects consists of estimating the extent of

local damage and characterization of the interface force-time
function used to predict structural response. Local damage is
confined to the immediate vicinity of the impact location on the

struck element and consists of missile deformation, penetration

of the missile into the element, possible perforation of the

element, and, in the case of reinforced concrete, dislodging of
concrete particles from the back face of the element (scabbing).

Because of the complex physical processes associated with missile
impact, local effects are evaluated primarily by applicntion of
empirical relationships based on missile impact test results.
Unless otherwise noted, these formulas are applied considering a
normal incidence of strike with the long axis of the missile

parallel to the line of flight.

C-2
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C.2.1 Reinforced Concrete Elements
{

The parts of the building structure that offer protection for

{
safety-related equipment against tornado-generated missiles are
provided with f = 4000 psi minimum concrete strength, have
24-inch-minimum-thick walls, and have 21-inch-minimum-thick roofs.
Therefore, the walls and roofs of these structures are resistant
to perforation and scabbing by the postulated missiles discussed
in Section 3.2 of the Design Report under tornado loads.

C.2.2 Steel Elements

Steel barriers subjected to missile impact are designed to
preclude perforation. An estimate of the steel element thick-
ness for threshold of perforation for nondeformable missiles is

{
provided by equation 2-1, which is a more convenient form of the
Ballistic Research Laboratory (BRL) equation for perforation of
steel plates with material constant taken as unity (reference 1).

(E ) * bYk s (2-1)T =
p 672D k 2

where:

steel plate thickness for threshold of perforationT =
p

(in.).

m ssile kinetic energy (ft-lb).E =
k

2

M, mass of the missile (lb-s /ft).=

missile striking velocity (ft/s).V =
g

missile diameter (in.).I"}D =

For irregularly shaped missiles, an equivalent diameter isa.
used. The equivalent diameter is taken as the diameter of a
circle with an area equal to the circumscribed contact, or
projected frontal area, of the noncylindrical missile. For

pipe missiles, D is the outside diameter of the pipe.

C-3
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The design thickness to prevent perforation, t , must be greaterp
than the predicted threshold value. The threshold value is
increased by 25 percent to obtain the design thickness.

t = 1.25 T (2-2)
p p

where:

design thickness to preclude perforation (in.).t =
p

C.3 STRUCTURAL RESPONSE DUE TO MISSILE IMPACT LOADING

When a missile strikes a structure, large forces develop at the

missile-structure interface, which decelerate the missile and

accelerate the structure. The response of the structure depends
on the dynamic properties of the structure and the time-dependent
nature of the applied loading (interface force-time function).
The force-time function is, in turn, dependent on the type of

iepact (elastic or plastic) and the nature and extent of local
damage.

C.3.1 General

In an elastic impact, the missile and the structure deform
elastically, remain in contact for a short period of time (dura-
tion of impact), and subsequently disengage due to the action of
elastic interface restoring forces.

In a plastic impact, the missile or the structure or both may
deform plastically or sustain permanent deformation or damage
(local damage). Elastic restoring forces are small, and the

missile and the structure tend to remain in contact after impact.
Plastic impact is much more common in nuclear plant design than
elastic impact, which is rarely encountered. For example, test

data indicate that the impact from all postulated tornado-
generated missiles can be characterized as a plastic collision.

C-4
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{
If the interface forcing function can be defined or conserva-

tively idealized (from empirical relationships or from theoreti-

cal considerations), the structure can be modeled mathematically,

and conventional analytical or numerical techniques can be used

to predict structural response. If the interface forcing func-

tion cannot be defined, the same mathematical model of the

structure can be used to determine structural response by appli-

cation of conservation of momentum and energy balance techniques

with due consideration for type of impact (elastic or plastic).

In either case, in lieu of a more rigorous analysis, a conserva-

tive estimate of structural response can be obtained by first

determining the response of the impacted structural element and

then applying its reaction forces to the supporting structure.

The predicted structural response enables assessment of struc-

tural design adequacy in terms of strain energy capacity, defor-
mation limits, stability, and structural integrity.

Three different procedures are given for determining structural
response: the force-time solution, the response chart solution,

and the energy balance solution. The force-time solution involves

numerical integration of the equation (s) of motion and is the
most general method applicable for any pulse shape and resistance
function. The response chart solution can be used with compar-
able results, provided the idealized pulse shape (interface

forcing function) and the resistance function are compatible
with the response chart. The energy balance solution is used in
cases where the interface forcing function cannot be defined or

where an upper limit check on structural response is desired.
This method will consistently overestimate structural response,

since the resisting spring forces during impact are neglected.

In defining the mass-spring model, considerution is given to
local damage that could affect the response of the element. For

concrete slab elements, the beneficial effect of formation of a

fracture plane which propagates from the impact zone to the back
of the slab (back face fracture plane) just prior to scabbing

C-5
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(reference 2) is neglected. The formation of this fracture plane

limits the forces transferred to the surrounding slab and signifi-

cantly reduces overall structural response. Since scabbing is

to be precluded in the design, the structural response check is
made assuming the fracture plane is not formed. It is recognized,

however, that should the missile velocity exceed that for thresh-

old of scabbing, structural response would be limited by this
mechanism.

Therefore, the structural response is conservatively evaluated

ignoring formation of the fracture plane and any reduction in
response.

C.3.2 Structural Assessment

The predicted structural response enables assessment of design
adequacy in terms of strain energy capacity, deformation limits,
stability, and structural integrity.

For structures allowed to displace beyond yield (elasto-plastic

response), a check is made to ensure that deformation limits
would not be exceeded, by comparing calculated displacements or
required ductility ratios with allowable values (such as those

contained in table C-1).
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TABLE C-1

DUCTILITY RATIOS (Sheet 1 of 2)-

Maximum Allowable Value
Member Type and Load Condition of Ductility Ratio (p )

Reinforced Concrete

FlexureIII:
Beams and one-way slabs (2) 0.10 110

P-P'

Slabs with two-way reinforcing (2) 0.10 <10 or 30
p-p' TSee 3 and 4)

Axial-compression (1)

Walls and columns 1.3

Shear, concrete beams and slabs in
region controlled by shear:

Shear carried by concrete only 1.3

Shear carried by concrete and
stirrups 1.6

Shear carried completely by
stirrups 2.0

Shear carried by bent-up bars 3.0

Structural Steel'

Columns (5) A/r 120 1.3

A/r >20 1.0

Tension due to flexure 10

Shear 10

e
Axial tension and steel plates in 0.5

"

Y
membrane tension (6)

Compression members not required 10

|
for stability of building structures

i
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TABLE C-1

DUCTILITY RATIOS-(Sheet 2 of 2)

Notes: ,

i

(1) The interaction' diagram used to determine the allowable
ductility. ratio =for elements subject to combined flexure and
axial compression is provided in figure C-1.

(2) p and p' are the positive and negative reinforcing steel
ratios, respectively.

(3) LDuctility. ratio up to 10 can be used without an angular
rotation check.

. (4). Ductility ratio up to 30 can be used provided an angular
rotation check is made.

(5)- 2/r is the member slenderness ratio. The value specified is
-for axial compression. For columns and beams with uniform
moment the following value is used:

14 x 104 1
[g&T ,2 < 10-

Fy \r /<

(6)_ e and e are the ultimate and yield strains.
shallybe taken as the ASTM-specified minimum.e

.

A

i

|
t
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