NUREG/CR-2850 PNL-4221 Vol. 14

Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1992

Prepared by R. L. Aaberg, D. A. Baker

Pacific Northwest Laboratory Operated by Battelle Memorial Institute

Prepared for U.S. Nuclear Regulatory Commission

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- 1. The NRC Public Document Room, 2120 L Street, NW. Lower Level, Washington, DC 20555-0001
- The Superintendent of Documents, U.S. Government Printing Office, P. O. Box 37082, Washington, DC 20402-9328
- 3. The National Technical Information Service, Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda. NRC bulletins, circulars, information notices, inspection and investigation notices. Ilicensee event reports, vendor reports and correspondence, Commission papers, and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports. NRC-sponsored conference proceedings, international agreement reports, grantee reports, and NRC bookiets and brochures. Also available are regulatory guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission. forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. Federal Register notices. Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library. Two White Flint North. 11545 Rockville Pike. Rockville. MD. 20852-2738, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards. from the American National Standards Institute. 1430 Broadway. New York, NY. 10018-3308.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not intringe privately owned rights.

Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1992

Manuscript Completed: February 1996 Date Published: March 1996

hichared by R. L. Aaberg, D. A. Baker

Pacific Northwest Laboratory Richland, WA 99352

S. P. Klementowicz, NRC Project Manager

Prepared for Division of Reactor Program Management Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 NRC Job Code J2138

PREVIOUS REPORTS IN THIS SERIES

- Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1975, PNL-2439, October 1977.
- Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1976, NUREG/CR-1125, PNL-2940, December 1979.
- Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1977, NUREG/CR-1498, PNL-3324, October 1980.
- Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1978, NUREG/CR-2201, PNL-4039, June 1982.
- Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1979, NUREG/CR-2850, PNL-4221, Vol. 1, December 1982.
- Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1980, NUREG/CR-2850, PNL-4221, Vol. 2, August 1983.
- Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1981, NUREG/CR-2850, PNL-4221, Vol. 3, January 1985.
- Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1982, NUREG/CR-2850, PNL-4221, Vol. 4, June 1986.
- Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1983, NUREG/CR-2850, PNL-4221, Vol. 5. January 1987.
- Population Dose Commitments Due to Radicactive Releases from Nuclear Power Plant Sites in 1984, NUREG/CR-2850, PNL-4221, Vol. 6, January 1988.
- 11. Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1985, NUREG/CR-2850, PNL-4221, Vol. 7, August 1988.
- 12. Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1986, NUREG/CR-2850, PNL-4221, Vol. 8, September 1989
- 13. Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1987, NUREG/CR-2850, PNL-4221, Vol. 9, August 1990
- Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1988, NUREG/CR-2850, PNL-4221, Vol. 10, January 1992
- Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1989, NUREG/CR-2850, PNL-4221, Vol. 11, February 1993
- Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1990, NUREG/CR-2850, PNL-4221, Vol. 12, November 1994
- Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1991, NUREG/CR-2850, PNL-4221, Vol. 13, April 1995

ABSTRACT

Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1992. Fifty-year dose commitments for a 1-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teenager, and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses, which are compared with 10 CFR Part 50, Appendix I, design objectives.

The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 3.7 person-rem to a low of 0.0015 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 0.66 person-rem. The total population dose for all sites was estimated at 47 person-rem for the 130-million people considered at risk.

The individual dose commitments estimated for all sites were below the 10 CFR 50, Appendix I, design objectives.

CONTENTS

ABST	RACT															·	*		٠	1	٠			×	*	iii
ACKN	OWLEDGMENTS	,				ì	٠							*												хi
1.0	INTRODUCTION					ě			٠		*														,	1.1
	1.1 SITE-DE	PEN	IDEN	IT	PA	RA	ME	TE	RS						*											1.4
	1.2 RESULTS						ij									,				į						1.8
	1.3 SITE CO	MPA	RIS	ON	S															ř	Ţ		į			1.10
2.0	SITE SUMMARIES									į		į	×		*											2.1
	Arkansas One 1	&	2					í			×	×		*		*	į	į		*	×		Ţ			2.2
	Beaver Valley	1 &	2									4										7. 4.				2.4
	Big Rock Point					į		į		į								·	ć							2.6
	Braidwood 1 & 2	2			i					, i			ŀ					*			*					2.8
	Browns Ferry 1	, 2	, &	3									,									Ţ				2.10
	Brunswick 1 & 2																									
	Byron 1 & 2 .																									
	Callaway																									
	Calvert Cliffs																									
	Catawba 1 & 2																									
	Clinton																									
	Comanche Peak																									
	Cook 1 & 2 .																									
	Cooper																									
	Crystal River 3																									
	Davis-Besse																									2.32
	DUTID DC000	*		*		*		*		*		*			*	*	.8.							*		to a wife

Diablo Canyon 1 & 2	٠			٠		ï	*	٠	٠	٠		٠	×			×	٠	į	٠						2.34
Dresden 1, 2, & 3 .	ì						·								*					ď					2.36
Duane Arnold				*	÷			ì					·	Ţ,	*						į				2.38
J. M. Farley 1 & 2		×		į.									į.	,											2.40
Fermi 2																									
J. A. Fitzpatrick .				ì	į				·																2.44
Fort Calhoun	ï				*		ì					*		ď	į										2.46
R. E. Ginna											ľ				÷					ï					2.48
Grand Gulf									*				,		÷					*					2.50
Haddam Neck	,														×										2.52
Harris	*			Ŷ.	÷			×									,			ų.					2.54
E. I. Hatch 1 & 2 .					. *	į	į			×	×									,				i.	2.56
Hope Creek	į.							i.															ì	,	2.58
Indian Point 1, 2, &	3																ř								2.60
Kewaunee				*								÷	,												2.62
LaCrosse								ŀ	·		í			·			÷						ì		2.64
LaSalle 1 & 2	÷						,		į											į					2.66
Limerick 1 & 2								÷				*		į											2.68
Maine Yankee		*			*			,					*			*	×						į		2.70
McGuire 1 & 2	*							×					*							*	ï	*	×		2.72
Millstone 1, 2 & 3		*		×	*		·				×									*	×	,			2.74
Monticello		*								*	*										,		÷	×	2.76
Nine Mile Point 1 & 2	2		4.	*		*		×			*		*	*		*	*.			*	*	*			2.78
North Anna 1 & 2 .	¥		×		×	÷	х.	*		*	*			×	×	*					×	*		*	2.80
Oconee 1, 2, & 3 .													*			*									2.82

Oyster Creek			٠	٠					٠	ŕ	٠	٠	٠	'n,		٠	٠	٠	×	٠	,	*			. 2.84
Palisades			ŀ								٠		÷		·										. 2.86
Palo Verde 1, 2, &	3			,										٠						·					. 2.88
Peach Bottom 2 & 3							ì												ï						. 2.90
Perry						٠			٠							Ž								,	. 2.92
Pilgrim								٠													÷			,	2.94
Point Beach 1 & 2				×			×						ď	J											. 2.96
Prairie Island 1 &	2							i		ż			Ŷ,			à		*					÷		. 2.98
Quad Cities 1 & 2						÷				٠					÷				×	ŀ					2.100
Rancho Seco		,		÷	1									×					,			,			2.102
River Bend				,			٠								*		ě,	,				*			2.104
H. B. Robinson .									ì														÷		2.106
Saint Lucie 1 & 2							į				×					ě						·			2.108
Salem 1 & 2		ï					·				ı	i							¢		*	,			2.110
San Onofre 1, 2, &	3						i					ì				*							٠		2.112
Seabrook						÷		100			ř	٠		٠		Ä,									2.114
Sequoyah 1 & 2 .					·						,		į									٠			2.116
South Texas 1 & 2							,			į,	·					į			ŀ	٠					2.118
Summer					*		*						i								ï				2.120
Surry 1 & 2			,						,	*	*	*	×		*			÷	,		*			٠	2.122
Susquehanna 1 & 2	*	*	×	,	*	*	ř			*		*									ø.				2.124
Three Mile Island 1	1 8	4 2	2		*		,				ı		×					×						×	2.126
Trojan						ž										*			٠		÷	×			2.128
Turkey Point 3 & 4							×			*	,		*			*		·	+	*					2.130
Vermont Yankee .		į	*		÷	*	÷		×						*				*	*		*	*	*	2.132

	Vogtle 1 & 2		*		٠	٠	٠		٠	٠		٠	٠	٠	٠	٠	٠	٠			٠		2	. 134
	Waterford 3					i	į			٠	٠		Ġ,		٠			·		٠			2	. 136
	WNP-2			×								٠											2	. 138
	Wolf Creek		*												·							٠	2	. 140
	Yankee Rowe			·	·											ı	ì		×	٠			2	. 142
	Zion 1 & 2		٠					y															2	. 144
3.0	REFERENCES					1		,		×	ř				×		i							3.1
APPE	NDIX													4										A. 1

TABLES

1.1	Organs Considered in This Study
1.2	Pathways Considered in This Study
1.3	Environmental Statements (ES) and Offsite Dose Calculation Manuals (ODCM) Consulted for Power Reactors Included in This Study 1.3
1.4	Population Total-Body Dose Commitments and Individual 1.5 Dose Percentages of Appendix I Design Objectives, 1992
1.5	Comparison of Annual Population Dose Commitments and Energy Output for the Past 17 Years
1.6	Total-Body Population Doses from Nuclear Power Plant Effluents During Normal Operations, 1975-1992
1.7	Average Population Doses for Last Three Years, person-rem 1.16
1.8	Major Radionuclide Contributions to Population Doses from Liquid (L) and Air (A) Pathways

ACKNOWLEDGMENTS

The authors greatly appreciate the assistance provided by N.C. Batishko, N.C. Van Houten, and J.R. Weber. The authors also gratefully acknowledge the support provided by Stephen P. Klementowicz of the U.S. Nuclear Regulatory Commission.

1.0 INTRODUCTION

All commercial nuclear power reactors release small amounts of radio-active materials to the environment during normal operation. Because of these releases, concern was expressed about the magnitude of the collective dose received by the general population residing around these nuclear power plants. In response to this concern, the Pacific Northwest Laboratory (PNL) (a) contracted with the U.S. Nuclear Regulatory Commission (NRC) to undertake a series of studies to estimate radiation dose commitments produced by radionuclide releases from commercial light-water power reactors starting in 1975 (see previous reports in this series, p. ii). This document is a continuation of these studies and considers the doses from releases during 1992. In this study, as in previous studies, we estimated the collective (population) dose commitment (b) from both the liquid and gaseous releases to four age groups making up the population residing in the region of the site: infant (0 to 1 yr), child (1 to 11 yr), teenager (11 to 17 yr), and adult (17 yr and older).

In addition, individual doses were estimated for the sites and compared with the following 10 CFR Part 50, Appendix I, design objectives (AEC 1973):

Air Noble Gases

10 mrem for gamma and 20 for beta at site boundary

5 mrem to total body at residence

Iodines and Particulate Material

15 mrem to organ from inhalation at residence and ingestion of garden products and pasture food products

Liquid

3 mrem to total body 10 mrem to organ

The particular organs of reference in this study are listed in Table 1.1. The major pathways by which radionuclides travel from the reactor to the individual receptors are shown in Table 1.2. Other possible liquid pathways such as direct exposure from waterborne activities (swimming, boating, shoreline recreation [except for individual doses]) and internal exposure through ingestion of food produced using contaminated irrigation water (except for individual doses) were not included.

(a) Operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-ACO6-76RLO 1830.

⁽b) As used in this report, dose commitment describes the total-body or specified organ dose equivalent in rem (1 rem = 0.01 sievert) received over 50 years from intake during the year in which radioactive materials were released into the environment from the power plants.

TABLE 1.1. Organs Considered in This Study

Organs Affected by Airborne Releases Organs Affected by Waterborne Releases

Total body
Thyroid
Bone
Gastro-Intestinal (GI) tract
Liver
Lung

Total body Thyroid Bone GI tract Liver

TABLE 1.2. Pathways Considered in This Study

Pathways for Airborne Releases

Pathways for Waterborne Releases

Air submersion
Ground irradiation
Inhalation
Ingestion of food crops
and animal products

Ingestion of drinking water Ingestion of fish and invertebrates Shoreline exposure^(a) Irrigated food products^(a)

The "source terms" used to estimate dose commitments produced from each site were the annual measured releases of radioactive materials as reported to the NRC by the plant licensees, subsequently published in an NRC public document (Tichler et al. 1995). In addition, annual dilution flows for liquid releases were taken from the above document.

The regional population for which we estimated collective dose commitments included those persons estimated to be living in a region between 2 and 80 km around the reactor sites during 1992. Population distributions were supplied by the NRC's Office of Nuclear Reactor Regulation. Atmospheric transport factors (annual average dilution and annual average deposition) were calculated for the region around each site using appropriate meteorological data supplied by the licensee. To calculate the doses, we used models approved by the NRC. We incorporated these models into three computer programs to expedite the dose calculations involved for each site.

Site-specific parameters other than releases, meteorology, and population were obtained from the licensee's Offsite Dose Calculation Manuals (ODCM) and environmental statements (both final [FES] and draft [DES]) for the various reactors when available (see Table 1.3). Such parameter values include the total population drinking contaminated water, river flow, fish and invertebrate harvest for the region, and mixing ratio for drinking water and

⁽a) This pathway considered for the maximally exposed individual only, and is not included for population dose

TABLE 1.3. Environmental Statements (ES) and Offsite Dose Calculation Manuals (ODCM) Consulted for Power Reactors Included in This Study

Number	Reactor Site	Docket Wumber	ES	ODCH	Remarks
1	Big Rock Point	50-155		Rev 7, Jul 91	ES not available
2	Browns Ferry	50-259, 50-260, 50-296	Jul 71	Rev 1, Jan 93	ES Published by TVA
3	Cooper	50-298	Feb 73 (Draft)	ODAM, Oct 91	
4	Dresden	50-237, 50-249	Nov 73	Rev O.A. Apr 91	
5	Beaver Valley Humboldt Bay	50-334 50-133	Jul 73	Rev 2, Jun 89	
7	La Crosse	50~409	Jun 76 (Draft)	Rev 1, Mar 84	Discontinued from this study
8	Millstone Point	50-245, 50-336	Jun 73	RAS 4-3, 4-4, 4-5, Jun 90	Procedures
9	Monticello	50-263	Hov 72	Rev D. Feb 94	riocedures
10	Nine Mile Point	50-220	Jan 74	Rev 10, Jun 90	
11	Dyster Creek	50-219	Dec 74	Rev 3, Sep 91	
12	Peach Bottom	50-277, 50-278	Apr 73	1990 Dose Assessment No. 6	
14	Pilgrim Quad Cities	50~293 50~254, 50~265	May 72 Sep 72	Rev 5, Oct 91	
15	Vermont Yankee	50-271	Jul 72	Rev D.G. May 22 Rev 12, Sep 91	
16	St. Lucie	50-335	Jun 73	Rev 10, Jul 88	
17	Brunswick	50-324, 50-325	Jun 73 (Draft)	Rev 11, 92	
18	Duane Arnold	50-331	Mar 73	Rev 5, Dec 92 (ODAM)	
19	J. A. Fitzpatrick	50-333	Mar 73	Rev 7	
20	E. I. Hatch	50-321	Oct 72	Rev 7, Feb 92	
21	Arkansas One Haddam Neck	50-313, 50-368	Feb 73, Sep 72	Rev 2, Jan 92	
23	Fort Calhoun	50-213 50-285	Oct 73 Aug 72	RAB 4, Rev 4, Jun 90	Originally Connecticut Yankee
24	H. B. Robinson	50-261	Apr 74	CMP-6, May 91 Rev 7, Jul 91	
25	Indian Point	50-247	Sep 72	Rev 6, Jul 91	FES of Indian Point 2 used
26	Sal en	50-272, 50-311	Apr 73	Rev 6, Mar 90	
27	Kewaunee	50-305	Dec 72	Rev 3, Jul 91	
28	Maine Yankee	50-309	Jul 72	Rev 2	Proposed change, May 91
30	Oconee	50-269, 50-270, 50-287	Mar 72	Rev 32, Jan 92	
31	Palisades Point Beach	50-255 50-266, 50-301	Jun 72 May 72	Rev 5, Aug 91 Rev 5, Jun 90	
32	Prairie Island	50-282, 50-306	May 73	Rev 12, Jun 91	
33	R. E. Ginna	50-244	Dec 73	Rev 2, Mar 89	
34	San Onofre	50-206	Oct 73	SO1, Rev 8, Jun 92; SO23, Rev 2	5. Feb 92
35	Surry	50-281	Jun 72	Rev 2 (VPAP-2103)	FES of Surry 2 used
36	Three Mile Island	50~289	Dec 72	Rev 1, Dec 91	
37	Turkey Point	50-250, 50-251	Feb 72 (Draft)	Rev 3, Jun 91	The second secon
38	Yankee Rowe Zion	50-29 50-295, 50-304	Day 22	Rev 8, Aug 92	ES not available
40	Calvert Cliffs	50-317	Dec 72 Apr 73	Rev D.K. Jan 93 Rev 1, Jul 88	
41	Cook	50-315	Aug 73	Rev 5, Jan 92	
42	Trojan	50-344	Jan 73 (Draft)	Rev 4, Feb 88	
43	Rancho Seco	50~312	Mar 73	Rev 2	
44	Crystal River	5C-302	May 73	Rev 15, May 90	
45	Davis-Besse	50-346	Mar 73	Rev 5.2, Dec 92	
46	J. M. Farley North Anna	50-348, 50-364 50-338, 50-339	Jun 72 Apr 73	Rev 11, Dec 91 Rev 2 (VPAP-2103)	
48	Sequovah	50-327, 50-328	Feb 74	Rev 25, May 91	
49	McGuire	50-369, 50-370	Apr 76	Rev 33, Jan 92	
50	LaSalle	50-373. 50-374	Nov 78	Rev O.A, Apr 91	
51	Summer	50-395	Jan 73	Rev 15, Feb 91	
52	Susquehanna	50-387, 50-388	Jun 73	Dec 89	
53	Grand Gulf	50-416, 50-417	Aug 73	Rev 11, Jun 88	
54 55	Callaway Limerick	50-483, 50-486 50-352, 50-353	Mar 75 Nov 73	Rev 2, May 91 Rev 10, Oct 91	
56	Diablo Canyon	50-275, 50-323	May 73	Rev 10, Mar 91	
57	WNP-2	50-397	Dec //2	Rev O. Amend 11. Aug 92	
58	Palo Verde	50-528 thru 50-530	Sep 75	Rev 5. Oct 91	
59	Byron	50-454, 50-455	Jul 74	Rev D.A. Apr 91	
60	Waterford	50~382	Mar 73	Rev 0, Aug 90	
61	Wolf Creek	50-482	Jun 82	Rev 9, Apr 92	
62 63	Catawba Fermi	50-413, 50-414 50-341	Dec 73 Jul 72	Rev 34, Jan 92 Rev 0.0, Draft	
64	Shoreham	50-322	Sep 72	Rev 18, Aug 91	Discontinued from this study
65	Hope Creek	50-354, 50-355	Feb 74	Rev 11, Mar 90	
66	Perry	50-440, 50-441	Apr 74	Rev 3, Feb 88	TCN 8, Feb 90; TCN 9, Feb 91
67	River Bend	50-458. 50-459	Sep 74	Rev 3, Feb 89	
68	Braidwoon	50-456, 50-457	Mar 74	Rev 0.A. Apr 91	
69	Clinton	50-461, 50-462	Oct 74	Rev 8, Jul 91	
70	Harris	50-400 thru 50-403	Mar 74 Mar 74	Rev 3/1 (92) Rev 8, 91	
71 72	Vogtle South Texas Project	50-424, 50-425 50-498, 50-499	Mar 72	Rev 5, Jan 94	
73	Seabrook	50-443. 50-444	Dec 24	Rev 13, Sep 93	

aquatic foods. In those cases in which site-specific data are not readily available and the particular pathway is not expected to result in a large dose, conservative assumptions have been used to estimate doses. The use of more realistic data should result in lower dose estimates in most cases.

The reactors included in this study, their type, licensed thermal power rating, and net electrical output for 1992, are listed in Table 1.4. Collective dose commitments derived in the study are also shown in this table. In addition, the percentages of the 10 CFR 50, Appendix I, design objectives are tabulated for each site on a per-unit basis. That is, the doses shown are from all site releases divided by the number of plants at the site, even though some plants, which were licensed early, need only meet the Appendix I design objectives on a site basis.

SITE-DEPENDENT PARAMETERS

In the Site Summaries section (Section 2.0), the location (including latitude and longitude) for each reactor site and the estimated 1992 population within 2 to 80 km around each site are given. In addition, the locations of major metropolitan centers within 80 km are listed along with their estimated 1992 populations. The populations of the metropolitan statistical areas (MSAs), consolidated metropolitan statistical areas (CMSAs), primary metropolitan statistical areas (PMSAs), and New England county metropolitan areas (NECMAs) are given where applicable. Distances and directions from the site for these areas are only approximate, since some of these areas are quite large and at times include the site. Next, the site-specific data pertinent to the airborne pathways are specified. The average production rates of vegetable crops and animal products are given for the area within an 80-km radius based upon the statewide average. This production has been reduced for sites on lakes and seacoasts to account for the presence of the body of water. An animal grazing factor is estimated for each site location. This factor accounts for the fraction of the year during which grazing animals such as milk cows and beef cattle graze on fresh pasture in the region around the site. After average production rates are given, the period of record and the percent data recovery of the meteorological data used in calculating diffusion factors are indicated.

MA - A core area containing a large population, with adjacent communities having a high degree of economic and social integration with that core.

MSA - A metropolitan area with at least one city or urbanized area with 50,000 or more inhabitants and a total metropolitan population of at least 100,000.

CMSA - An MSA with a population of one million or more and with separate component areas within the entire area which meet the MSA criteria .

PMSA - Component areas belonging to a CMSA.

NECMA - The county-based alternative metropolitan areas for MSAs and CMSAs of the six New England States.

TABLE 1.4. Population Total-Body Dose Commitments and Individual Dose Percentages of 10 CFR 50, Appendix I, Design Objectives, 1992

			Licensed	Electric		on Dose Com (person-ren			Indi	vidual Appendix	I Percenta	iges (d)	
		100	Thermal Power	Energy Generation					quid		Ass		
Site	Unit	Type(a)	(me)	(1W.hr)(b)	Liquid	Air(c)	Total	T Body	Organ	Gamma	Beta	T Body	Organ
Arkansas One TOTAL	1 2	PWR PWR	2568 2815 5383	5.83 5.50 11.33	0.22	0.16	0.38	26	11	0.36	0.49	0.36	0.1
Beaver Valley TOTAL	1 2	PWR PWR	2660 2660 7980	6.30 5.64 11.94	0.048	1.0	1.0	5.8	7.00	<0.01	<0.01	0.01	0.1
Big Rock Point(e)	1	BWR	240	0.27	1.3	0.020	1.3	1.8	0.88	0.43	0.06	0.20	0.6
Braidwood TOTAL	1 2	PWR PWR	3411 3411 6822	7.15 8.75 15.90	0.16	0.37	0.53	5.7	2.4	0.01	0.01	0.61	0.1
Browns Ferry	1 2 3	BWR BWR BWR	3293 3293 3293 9879	0. 8.39 0. 8.39	1.1	0.63	1.7	1.2	0.55	0.34	0.08	0.38	6.3
Brunswick TOTAL	1 2	BWR BWR	2436 2436 4872	1.82 1.26 3.08	<0.001	0.015	0.016	0.29	0.62	0.07	0.04	0.06	0.0
Byron TOTAL	1 2	PWR PWR	3411 3411 6822	8.99 6.98 15.97	0.0051	0.0082	0.013	0.16	0.07	0.01	0.01	<0.01	0.0
Callaway	1	PWR	3565	8.09	<0.001	0.035	0.035	0.56	0.20	0.06	0.10	0.05	0.0
Calvert Cliffs TOTAL	1 2	PWR PWR	2700 2700 5400	4.11 6.59 10.70	1.6	0.39	2.0	0.90	2.9	0.19	0.28	0.30	0.3
Catawba TOTAL	1 2	PWR PWR	3411 3411 6822	7.03 9.27 16.30	0.62	0.76	1.4	5.4	3.3	5.8	1.3	6.7	0.3
Clinton	1	BWR	2894	4.94	1.3	0.0022	1.3	22	60	<0.01	<0.01	<0.01	0.0
Comanche Peak	1	PWR	1161	6.95	2.1	6.070	2.2	11	4.3	0.15	0.13	0.17	0.0
Cook	1 2	PHR PHR	3250 3391 6641	4.99 1.43 6.42	0.17	0.034	6.20	2.4	1.0	0.20	0.24	9.25	0.4
Cooper	1	BWR	2381	6.23	0.0014	<0.001	0.0015	21	9.3	<0.01	<0.01	<0.01	<0.0
Crystal River	3	PWR	2452	5.30	3.2	0.015	3.2	11	6.2	0.04	0.06	0.01	0.0
Davis-Besse	1	PWR	2772	7.65	0.083	0.018	0.10	4.4	1.8	0.03	0.03	0.03	0.1
Diablo Canyon	1 2	PWR PWR	3338 3411 6749	7.45 9.25 16.70	0.0020	0.013	0.015	0.14	0.20	<0.01	<0.01	<0.01	<0.01

		I			Populat	Population Dose Commitment (person-rem)	mitment n)		Ind	Individual Appendix I Percentages(d)	fix I Percent	(p) sage	
			Thermal Power	Electric Energy Generation				1	Liquid		Air		
Site	Unit	Type(a)	(88)	(18.hr)(b)	Liquid	Air(c)	Total	T Sody	Organ	Samme	Beta	T Body	Organ
Dresden 101AL	m pu m	BWR BWR	700 2527 2527 5754	0. 4.18 3.06 7.24	Ф	0.027	0.627	0.12	90.0	<0.01	<0.01	-0.01	40.61
Duane Arnold	-	SHER	1658	3.43	0	0.010	0.010	0	0	<0.01	<0.03	-6.01	9.05
J.M. Farley TOTAL	m 62	PWR	2652 2552 5384	6.65 5.41 11.06	0.014	0.934	0.048	09-0	1.00	0.03	0.01	0.62	6.01
Fermi	2	BWR	3292	5.41	<0.001	0.652	0.052	10.0>	<6.01	0.10	0.05	0.12	6.20
J.A. Fitzpatrick	-	BWR	2436	.0	0.0018	0.0032	0.0050	0.01	0.01	0.06	0.04	0.63	0.61
Fort Calhoun	-	PWR	1500	2.54	0.13	0.017	0.15	4.5	2.3	0.04	0.05	0.05	0.02
R.E. Ginna	-	PWR	1520	3.48	0.44	0.13	0.57	=	13	0.03	0.61	0.01	6.29
Grand Gulf		BWR	3833	8.17	<0.001	0.017	0.017	13	=	0.92	0.67	6.16	15.00
Haddan Reck	-	PWR	1825	3.88	0.24	0.74	1.0	9.6	3.7	<0.01	<0.01	< 9.01	90.0
Harris	-	PWR	2775	5.41	5.9	6.22	3.1	0.25	0.12	0.83	0.68	0.20	0.04
E. I. Hatch TOTAL	m tu	SWR SWR	2436 2436 48:7	6.16 4.69 10.85	0.19	0.053	92.0	61	9.6	0.65	0.29	0.32	0.85
Nope Creek	-	BWR	3293	7.05	0.34	0.042	0.38	*	3.1	0.19	0.10	<6.61	<0.01
Indian Point TOTAL		PWR PWR	615 2758 2759 6133	7.98 4.76 6.00 12.64	0.032	5.9	2.9	6.17	0.07	2	2.34	0.23	0.93
Kewaunee	-	PWR	1650	3.94	6.044	0.6635	0.047	90.0	6.49	<0.01	<0.03	<0.01	<0.91
LaCrosse ^{fc)}	-	BWR	165	.0	0.076	<0.091	9.076	16	7.5	0	0	0	<0.01
LaSaile TOTAL		SWR	3323 3323 6646	6.45 5.78 17.23	0	0.612	6.612	19.0>	10.0>	0.01	10.0>	0.01	0.03
Limerick	64	SWR SWR	3293 3293 7586	6.23 8.49 14.72	0.61	0.19	0.80	0.12	6.05	0.04	0.04	0.07	0.13
Haine Yankee	-	PWR	2630	5.36	0.0026	0.0089	0.012	0.04	9.18	9 0 0	0.09	0.10	0.24
AcGuire	- 62	PWR	3411	6.78	2.6	0.23	2.8	1.2	3.6	1.6	1.17	6.65	91.0

TABLE 1.4. (Contd)

			Licensed	Electric		on Bose Com (person-re		1		Indi	vidual Appendix	I Percenta	ges (d)	
			Thermal Power	Energy Generation				- 1	Li	quid		Air		
Site	Unit	Type(a)	(MN)	(TW.hr)(b)	Liquid	Air(c)	Total		T Body	Organ	Gamma	Beta	7 Body	Organ
Millstone	1 2 3	BWR PWR PWR	2011 2700 3411 4571	3.61 2.71 6.57 12.89	3.6	0.13	3.7		2.7	1.8	0.05	0.06	0.04	0.21
Monticello	1	BWR	1670	4.45	0	0.12	0.12		0	0	0.18	0.03	0.12	1.1
Nine Mile Point TOTAL	1 2	BWR BWR	1850 3323 5173	2.93 4.25 7.18	0.21	0.021	0.22		10	6.8	0.01	<0.01	<0.01	0.0
North Anna TOTAL	1 2	PWR PWR	2893 2893 5786	5.36 6.32 11.68	0.15	0.13	0.29		13	5.3	0.23	0.23	0.13	0.34
Oconee	1 2 3	PMR PMR PMR	2568 2568 2568 7704	6.28 5.94 5.45 17.67	0.77	0.17	0.94		2.5	1.6	0.02	0.01	0.02	0.25
Oyster Creek	1	BMB	1930	4.53	0	0.056	0.056		0	0	0.05	<0.01	0.03	0.21
Palisades	1	PWR	2530	4.87	0.010	0.0049	0.015		0.04	0.02	0.02	0.03	0.02	0.06
Palo Verde	1 2 3	PWR PWR PWR	3800 3800 3800 11400	7.12 10.10 8.39 25.61	0	0.65	0.65		0	0	0.22	0.31	0.03	0.14
Peach Bottom TOTAL	2 3	BWR BWR	3293 3293 6586	5.67 7.18 12.85	0.20	0.40	0.60		0.67	0.60	0.06	0.01	0.08	0.35
Perry	1	BWR	3579	7.17	0.9	0.049	1.0		0.32	0.17	1.1	0.46	0.61	35
Pilgrim	1	BWR	1998	4.74	<0.001	0.13	0.13		0.40	0.51	1.4	0.77	0.59	1.60
Point Seach IOTAL	1 2	PWR PWR	1518 1518 3036	3.60 3.67 7.27	0.069	0.019	0.088		3.70	1.5	<0.01	<0.01	<0.01	0.17
Prairie Island	1 2	PWR PWR	1650 1650 3300	3.50 3.22 6.72	0.014	0.24	0.25		0.05	0.03	0.03	0.04	0.01	0.15
Quad Cities TOTAL	1 2	8WR BWR	2511 2511 5022	4.17 3.90 8.07	0.031	0.032	0.063		0.11	0.05	<0.01	<0.01	<0.01	0.0
Rancho Seco	1	PWR	2772	0.	9.0018	0.033	0.035		8.3	4.70	<0.01	<0.01	<0.01	0.07
River Bend	1	BWR	2894	2.76	0.0047	0.063	0.068		12.3	46	1.3	0.38	0.86	0.40
H.B. Robinson	2	PWR	2300	4.06	0.0086	0.0017	0.010		0.23	0.25	<0.01	<0.01	< 0.01	<0.01

TABLE 1.4. (Contd)

					Populat	Population Bose Commitment (person-rem)	nitment i)		Indiv	Individual Appendix Percentages(d)	x i Percenta	ges(d)	
	-		Thermal	Energy Seneration				17	Liquid		Air		-
Site	Unit	Type(a)	(ни)	(TW.hr)(b)	Liquid	Air(c)	Total	T Body	Organ	Samma	Beta	I Body	Organ
St. tucie TOTAL	et by	PWR	2560 2700 5263	7.14 5.43 TZ.57	<0.001	0.091	0.092	6.23	6.36	6.05	90.0	90.0	0.15
Salem TOTAL	1 2	PWR	3338 3338 6676	5.30	0.29	6.75	1.0	1.09	1.83	0.12	6.18	0.01	0.02
San Onofre TOTAL	- 2 6	PVR PVR PVR	1347 3410 3390 8147	8.80 6.83 16.80	0.012	11	2	0.13	60.0	E	1.70	6.33	2
Seabrook	-	PWR	2000	7.87	0.6946	0.6011	0.0057	0.01	0.05	<0.01	<0.01	10.0>	<0.01
Sequoyah TOTAL	1.2	PWR	2815 2815 5630	8.36 7.27 T5.63	0.51	0.10	0.61	9.20	0.07	0.09	0.08	0.08	90.0
South Texas TOTAL	en 61	PWR	3800 3800 7500	10.30	9900'0	0.025	6.632	6.03	90.0	90.08	0.10	0.03	0.11
Summer	-	PWR	2775	7.52	1.5	0.018	1.5	2.1	1.0	0.12	0.15	0.10	0.11
Surry 101AL	en fu	PWR	2441 2882	5.22 6.43 T1.65	0.622	0.10	6.12	0.01	-0.01	0.01	0.02	<0.01	0.02
Susquehanne TOTAL	- 2	BAR	3293 3293 6586	6.39	0.075	6.11	0.19	0.05	10.01	0.04	9.08	0.02	0.16
Three Nile Island TOTAL	m 02	PWR	2535 2772 5307	7.22	0.18	0.64	28.0	0.86	0.36	0.50	0.62	9.56	77
Trojan	-	PWR	3411	4.57	0.0016	0.062	0.064	0.19	0.13	0.64	0.54	0.33	0.26
Turkey Point TOTAL	m 4	PWR	2200 2200 4450	3.42	0	0.0061	0.0061	0.03	٥	<0.01	<0.03	10.0>	<0.01
Vermont Yankee	-	BWR	1593	3.73	<0.001	6.13	0.13	<6.01	16.0	31	6.2	1.2	0.72
Vogtle TOTAL	-2	PWR	3411 3411 5827	9.38	0.0025	0.042	0.045	1.80	4.7	-0.03	<0.01	10.0>	0.02
Waterford		PWR	3390	7.62	0.650	0.89	9.94	4.70	5.6	1.7	1.0	0.88	0.89
WMF-2		BWR	3323	5.69	-0.961	0.25	0.25	0.56	0.26	0.68	0.24	0.05	6.21
Wolf Creek	-	PWR	3411	8.49	0.77	0.0040	0.77	2.4	26.0	0.03	9.14	0.05	0.92
Tankee Rowe	-	ono	200	**	01.0	-	01.0					•	-

					Populat	Population Bose Commitment (person-rem)	mitment		Indi	individual Appendix I Percentages(d)	. I Percenta	ges(d)	
			Thermal Power	Enectric Energy Generation					Liquid		Air		
Site	Unit	Type(a)	(mil)	(1W.hr)(b)	Liquid	Air(c)	Total	T Body	Organ	Sames	Beta	1 Body	Organ
Zion TOTAL	20 EU	PWR	3250 3250 6500	5.37 9.48	80 22	0.65	3.5	0.11	6.12	0.73	0.33	9.05	0.28
TOTAL FOR ALL SITES				615.57	32	15	47						
Arithmetic Mean				8.55	0.44	9.23	99.6	4.01	4.41	0.77	0.31	0.23	1.8
Geometric Mean				6.82	0.053	0.049	0.17	0.771	8.671	0.05	0.03	0.03	0.07

(a) BMR = boiling water reactor; PMR = pressurized water reactor.
(b) ITM-hr = 3.6615 joules.
(c) Des not include doses from nuclides not in reported releases, such as carbon-14.
(d) Percentages are calculated on a per-unit basis.
(e) Boes not have charcoal delay beds in the gaseous effluent line from air ejector.

The location relative to the release of the maximal air concentrations for the site boundary (gamma and beta radiation), residence (total body), garden (leafy vegetables and produce), and pasture (milk and meat) are given. These locations have been taken from the licensee's ODCM and from personal communications with their representatives.

Various site-dependent factors associated with the waterborne pathways are presented. The average dilution flow through the plant discharge structure for the year 1992 specified by Tichler et al. (1995) is given. For river sites, the average annual river flow is tabulated. Next is shown the estimated 1992 population utilizing drinking water drawn from supplies containing diluted effluents from the site. Next is tabulated the mixing ratios and usages for the four liquid pathways: drinking water, fish, shellfish, and shoreline (individual only). Fish and invertebrate catch data are taken from the respective plant environmental statement or ODCM, when available (see Table 1.3). When site-specific fish and invertebrate catch data were not available for population dose estimates, the generic consumption rates were used for the particular site. Sites on salt water were assumed to contribute no dose from drinking water.

For individual dose estimates, generic maximum individual "Reg Guide" usages were used. The notation "RG" denotes consumption rates taken from Regulatory Guide 1.109 (NRC 1977). The mixing ratios specify further dilution of the plant dilution flow as given above to arrive at a typical concentration at the point of drinking-water withdrawal or fish and shellfish habitat. The mixing ratios are the reciprocal of the dilution factors as given in the licensee ODCM. Note that a mixing ratio of unity (1) would denote no further mixing of effluent in the receiving body. Note that for rivers and estuaries this is different than the notation of years previous to 1989 where unity denoted complete mixing. When the pathway was not applicable to the site, the word "None" is specified. The shoreline dose was calculated for each site, assuming one year of radionuclide buildup in the sediment, whether or not stipulated by the licensee. However, in no case was the estimated shoreline dose of any significance.

1.2 RESULTS

The population dose commitments are presented in the Site Summaries section (Section 2.0), which summarize site-specific parameters for that site. These tables include both waterborne and airborne pathway dose commitments for the several organs of reference for each age group investigated. They also include the dose to the whole population, which includes all age groups.

The results of the individual dose estimates are also listed. Doses and percentages of the design objectives from 10 CFR 50, Appendix I, are given for both waterborne and airborne releases. These individual dose commitments are given on a per-unit basis, whereas the population dose commitments listed above them are given on a per-site basis, as in previous years. Any variation from this stipulation is noted on the page for the site.

Population dose commitments estimated for both the waterborne pathways and airborne pathways varied widely over the sites studied. The total dose commitments (from both pathways) varied from a high of 3.7 to a low of 0.0015 person-rem for plants in operation and producing power during the year. The arithmetic mean for the total dose from liquid pathways (0.44 person-rem) and airborne pathways (0.21 person-rem) was 0.66 person-rem (see Table 1.4).

As in past years, most of the plants accounted for less than 1 person-rem to their surrounding population from plant releases of radionuclides into liquid effluent streams. Only two sites had waterborne releases that resulted in a population dose of greater than 3 person-rem: Millstone, with 3.6 person-rem primarily from zinc-65 in bay oysters; and Crystal River, with 3.2 person-rem, mostly from cesium isotopes in aquatic foods. Other sites for which liquid pathways contributed more than 2 person-rem are Harris, Zion, and McGuire, with 2.9, 2.8, and 2.6 person-rem, respectively, mostly from tritium in drinking water; and Comanche Peak, with 2.1 person-rem, mostly from cesium isotopes in aquatic foods.

The doses from radionuclide releases from plant vents and/or stacks into the atmosphere also accounted for less than 1 person-rem for most sites. Two sites had airborne releases resulting in greater than 1 person-rem: Indian Point with 2.9 and San Onofre with 1.1 person-rem. These airborne doses were primarily the result of xenon-133.

The total population dose commitments from all sites for 1992 were estimated to be 32 person-rem via waterborne pathways and 15 person-rem via airborne pathways for a total of 47 person-rem (see Table 1.4).

Individual dose commitments from both waterborne and airborne pathways were estimated for the sites. The doses are given for each site in the Site Summaries section (Section 2.0) of this report. Table 1.4 lists the percentages of the 10 CFR 50, Appendix I, design objectives for both waterborne and airborne pathways. The values represent percentages of the annual design objectives. For compliance purposes, each pathway would be compared on a quarterly basis as in 10 CFR 50, Appendix I. The percentages are on a per unit basis unless otherwise noted in the table. Individual dose commitments for all sites were below design objectives.

We should point out here, however, that the doses estimated in this study are extremely low compared to an average annual background dose of approximately 100 mrem (excluding radon and its decay products). We have compared dose commitments calculated in this study with annual background. However, this comparison is not quite exact, since these dose commitments are total-body doses received from the year's effluent release over 50 years of a person's lifetime. However, most of the dose commitment calculated here is delivered in the first year, so the comparison is reasonably valid.

For comparison purposes, the doses greater than 0.001 person-rem listed in the tables are given to two significant figures; however, the data and models used to calculate the doses limit their accuracy to, at most, one significant figure.

1.3 SITE COMPARISONS

Table 1.5 shows the population dose commitments for the past 18 years, along with the energy produced in that year. The last column shows the cost/benefit for commercial nuclear power in terawatt-hours as a ratio of population dose to generated power. Except for 1979 (the year of the TMI-2 accident), this ratio has been tending downward even though the population around many of the sites has been rising.

TABLE 1.5. Comparison of Annual Population Dose Commitments and Energy Output for the Past 18 Years

		e Commite		Energy Output	Cost/Benefit (person-rem
Year	<u>Liquid</u>	Air	Total	(TW-hr)	TW-hr)
1975	76	1300	1300	170	7.6
1976	82	390	470	180	2.5
1977	160	540	700	250	2.8
1978	110	530	640	270	2.3
1979	220	1600	1800	250	7.2
1980	120	57	180	250	0.73
1981	87	63	150	280	0.54
1982	50	87	140	270	0.51
1983	95	76	170	280	0.60
1984	160	120	280	320	0.87
1985	91	110	200	370	0.54
1986	71	44	110	410	0.27
1987	56	22	78	450	0.17
1988	65	10	75	510	0.15
1989	68	16	84	535	0.16
1990	63	15	78	570	0.14
1991	70	17	88	613	0.14
1992	32	15	47	616	0.08
2000	0.0	2.0	47	010	0.00

The reactor sites are compared in Table 1.6 as to the total population dose over the years of this study, 1975-1992. The sites were placed within six groupings by person-rem depending on resulting population dose summed over each of the years through 1992:

I Greater than 100 II 30 - 100 III 10 - 30 IV 3 - 10 V 1 - 3 VI Less than 1

Table 1.6 shows the sites within the groups, along with the reactor manufacturer, year of commercial operation commencement, and indicated population doses in person-rem. The manufacturer codes are as follows:

AC Allis Chalmers
B Babcox and Wilcox
CE Combustion Engineering
GE General Electric
W Westinghouse

Table 1.7 shows the average population dose in person-rem for the last three years. The sites are listed in order of average dose with the high doses toward the top. Breaks in the table are indicated at every half-order of magnitude: 0.03, 0.1, 0.3, etc.

Table 1.8 shows the present contributions of all radionuclides contributing over 3% to the population dose from 1992 effluents. The contributors are shown for each site for both liquid (L) and air (A) pathways. Note that only a few nuclides of those reported by the licensees (Tichler et al. 1995) contribute much to the dose.

TABLE 1.6. Total-Body Population Doses from Nuclear Power Plant Effluents During Normal Operations, (a) 1975-1992

	Year Commercial					1		Tot	al Person	Rem for Ye	ar									
Site, Manufacturer	Operation	1975	1976	1977	1978	1979	1980	1981	_1982	1983	1984	1985	1985	1987	1988	1989	1990	1991	1992	TOTAL
[. (>100 Person-rem)																				
Millstone GE CE W Bresden GE Oyster Creek GE Browns Ferry GE Nine Mile Point GE Zion W McGuire W Geomee B Peach Bottom GE North Anna W Quad Cities, GE	71, 75, 86 60, 70, 71 69, 75, 77 69, 87 73, 74, 74 74, 74, 74 78, 80 73, 73, 73	758 360 47 2 9 69 6 1 9 2 2 4	160 120 37 1 1 8 7 17 20 17	220 180 41 3.2 3.1 22 38 11	200 170 110 2 2 0 07 23 12 15 0 48 7 3	1 8 15 220 9 6 140 14 5 8 30 4 9 6 5	2 9 13 9 5 2 8 0 04 11 10 4 7 3 1 42	4 8 10 15 7 8 5 2 1 7 0 2 13 7 4 2 16	1.83 6.2 7.611 34.1 0.028 2.62 2.75 9.9 5.3 5.24	0.96 2.2 0.712 45 0.0456 6.1 14.14 5.59 9.7 28.3 0.99	1 33 1 1 1 8 106 0 029 33 69 20 17 4 66 9 6 44 18 9 57	0 263 0 96 73 7 9 0 018 7 19 20 16 6 9 16 27 088 5 7	1 232 9 21 25 2 64 0 0243 6 04 31 1 5 93 4 7 1 675 0 8	1 2022 0 14 1 5013 1 6013 0 506 6 086 15 17 3 97 2 1 1 72 0 08	0 2227 0 11 2 2 1 2011 0 2144 7 24 16 17 3 84 0 33 0 036 0 06	10 0 25 2 6 0 39 0 035 0 76 14 3 8 0 33 1 3 0 094	1 8 0.11 0.28 9.77 0.023 3.5 15 2.8 9.85 0.13 0.12	22 14 0 044 0 074 0 92 0 15 3 2 13 22 0 91 1 7 0 21	3 7 0 027 0 056 1 7 9 22 3 5 2 8 0 94 0 6 0 29 0 063	1384 879 594 232 227 177 165 157 134 123 121
II. (30 - 100 person-)	rem)																			
Pilgrim, GE Cook, W Indian Pt., B, W, W Hatch, GE LaCrosse, AC Big Rock Point, GE Brunswick, GE Crystal River, B Haddan Neck, W Arkansas One, B Summer, W Rancho Seco, B Surry, W Kewaunee, W	72 75, 78 62, 74, 76 75, 79 69 63 75, 77 77 68 74, 80 82 75, 73 74	6 2 0 21 3 8 7 4 6 0 02 0 54 0 38 0 05 5 4 8 5	14 5 9 1 0 03 12 7 7 0 53 3 7 4 5 0 01 3 4 5 1	52 23 13 35 9 4 2 6 6 4 9 82 2 4 1 6 0 06 3 7 1 9	7 3 40 8 4 0 987 5 9 2 6 2 3 0 29 5 6 2 2 0 15 1 4 0 59	3 1 17 5 9 0 13 4 1 9 2 2 0 65 3 6 0 47 0 32 1 8	4 3 6 34 4 9 0 34 2 1 10 2 0 32 7 5 3 4	0 74 0 47 8 6 2 2 4 9 3 6 1 5 19 0 55 3 6 1 8 1 7 1 6	2 33 0 721 5 5 2 842 6 95 1 16 14 011 0 203 4 499 0 0005 1 68 2 26 1 703	4 107 0 206 4 59 5 84 1 75 0 57 10 4 8047 1 03 3 617 0 4437 2 91 1 98 0 7408	0.051 0.343 3.2 8.04 1.06 4.48 4.1002 6.809 1.49 3.75 0.547 9.73 1.92 0.5512	0 556 0 541 2 77 3 386 1 05 3 26 0 1815 4 42 0 606 2 01 0 5625 0 252 1 6	0 0186 0 1695 3 2 2 75 0 81 1 97 0 7121 2 41 0 54 4 735 3 6002 6 024 1 7 0 926	0 C129 0 617 6 2 4 96 0 82 6 74 0 6229 6 7158 0 9 1 7085 4 111 0 0101 1 037 0 721	0 092 0 2159 6 43 6 435 8 4193 6 85 0 0397 0 201 0 537 1 034 13 097 0 08 0 51 1 3022	0 071 0 18 0 51 0 36 0 21 1 6 0 041 4 8 0 33 5 9 0 44 0 93 1 3	0 093 0 51 1 6 0 32 0 07 9 77 0 038 0 72 1 1 0 15 4 1 0 061	0 16 0 2 8 67 8 27 8 985 9 21 0 931 0 939 3 442 9 32 2 2 0 041 0 87 0 1	0 13 0 2 2 9 0 24 0 076 1 3 0 016 3 2 1 8 8 38 1 5 0 035 0 12 0 047	95 90 85 73 59 57 45 40 39 36 33 32 32
III. (11 - 30 person-	ea)																			
Davis Besse, B Calvert Cliffs, CE Fitzpetrick, GE Humboldt Bay, GE San Onofre, W Braidwood, W Perry, GE Three Mile Isl. B Harris, W Robinson, W Salem, W Clinton, GE Turkey Point, W Sequoyah, W St Lucie, CE	77 75, 77 75 63, 83, 84 68, 83, 84 86 74, 78 87 71, 81 87 72, 73 89, 82 76, 83	0.5 0.09 18 0.28 0.57 9.3	0 74 1 4 5 8 1 4 0 28 0 28	14 1 9 0 56 0 78 2 0 47 0 12 0 4 0 65	0.6 2.6 0.37 1.8 2.2 0.45 0.37 9.1	0 52 3 0 24 0 52 0 29 0 19 2 3 0 17 0 76	11 1 7 2 8 3 1 2 2 0 2 0 28 0 28 0 22 0 51	0 65 0 72 6 7 1 8 0 24 1 3 0 85 0 07 0 67 0 62	0.09 2.15 6.93 0.513 0.277 0.0467 0.58 0.3051 1.25 0.87	0 128 0 92 2 83 0 71 0 0938 0 4355 2 41 0 2583 1 55 0 592	0 38 0 7 0 9717 3 5 0 078 0 2513 0 52 0 1727 1 81 1 4022	0 4961 0 82 0 405 1 96 0 057 0 214 0 565 0 1381 1 06 1 612	0 0568 0 81 0 0995 0 566 0 0012 0 57 0 105 0 72 0 2032 0 197 1 3027	0 1378 2 66 0 153 1 435 0 0093 6 232 1 777 0 83 1 17 8 83 0 22 0 159 0 5004	0 0178 1 74 0 157 0 503 1 1061 0 34 1 8 0 061 0 94 4 0087 0 279 0 3602	0 63 8 4 1 1 1 8 0 058 9 77 1 6 11 1 5 9 74	0.2 6.99 0.05 0.57 7.1 6.9 0.55 5.1 0.0086 1.2 0.16 1.8	0 14 0 076 0 51 2 5 2 5 2 1 0 65 2 2 0 0022 1 3 0 21	0 1 2 0 005 1 1 0 53 1 0 82 3 1 0 001 1 3 0 0061 0 61 0 092	30 30 24 22 19 16 16 16 14 13 12
IV. (3 - 10 person-ren	1)																			
Yankee Rowe, W Hope Creek, GE Catamba, W Wolf Creek, W Honticello GE Ft Calhoun, CE Farley, W Waterford, CE Limerick, GE Ginna, W Beaver Valley, W Pratrie Island, W Palisades, CE Point Beach, W Commanche Peak, W Palo Verde, CE	61 86 85 85 71 74 77. 81 85 84 70 76. 87 73. 74 71 70. 71 90 86. 86, 87	0 11 5 2 0 13 0 28 0 12 0 62 1 2	0.25 0.26 0.26 0.51 0.04 1.4 0.64 0.33	0.2 0.33 0.14 0.4 0.59 0.63 0.18	0 2 0 48 0 19 0 13 0 83 0 46 0 11 0 12	0 18 0 39 0 19 0 11 0 172 0 1 0 12 0 25	0 55 0 16 0 48 0 58 0 58 0 02 0 96 0 03 0 2	0 72 0 14 0 35 3 2 0 15 0 11 0 94 0 16	0 188 0 19 0 356 1 543 0 236 0 036 0 067 0 621 0 41	0 147 0 1887 0 356 0 406 0 11 0 047 0 29 9 33	0 049 1 917 0 226 0 00016 0 689 0 188 0 159 0 1214 0 235	0 39 0 74 0 11 0 14 0 244 0 1399 0 4732 0 078 0 314 0 053 0 305 0 995 6 0033	0 377 0 0593 2 15 0 398 0 096 0 216 0 091 0 799 0 209 0 274 0 063 0 1223 0 069	0 65 4 5 1 37 0 1448 0 17 0 2848 6 979 8 827 0 94 9 321 0 235 0 0341 8 277 0 059	0 488 1 09 1 61 0 191 0 18 0 338 0 065 0 543 0 25 0 233 0 131 0 0801 0 215 0 047	0 19 1 78 0 88 0 779 0 21 6 52 0 17 0 4 2 3 31 0 34 0 32 0 639 0 062	0 19 2 7 8 85 0 2 0 4 9 064 1 8 1 7 9 25 0 68 0 68 0 05 0 05 0 05 0 05 0 05 0 05 0 05 0 0	0.099 0.44 3.5.545 0.15 0.27 0.071 0.89 0.45 0.64 0.043 0.056 1.094	9 1 9 38 1 4 9 77 9 15 9 948 9 94 9 0 57 1 25 9 088 2 26 6 55	10 10 11 10 10 10 10 10 10 10 10 10 10 1

(a) Only the doses from the IMI accident, 1979, are excluded.

TABLE 1.7. Average Population Doses for Last Three Years, person-rem

Site	1990	1991	1992	Average
McGuire, W Millstone, GE, CE, W Perry, GE Harris, W Zion, W Braidwood, W	15 1.8 6.9 5.1 3.5	13 22 6.5 2.1 3.2 2.5	2.8 3.7 3.1 3.5 0.53	10 9.2 4.8 3.4 3.4 3.4
Clinton, GE Calvert Cliffs, CE	4.1 0.85 3.2 0.99 1.1 2.8 1.7 0.55 1.8 0.37 0.77	0.039	0.82 0.61 0.94 2.2	1.3
Hope Creek, GE Peach Bottom, GE Salem, W Surry, W Beaver Valley, W Big Rock Point, GE	2 0.85 1 6 0.68 0.77 0.55 0.75 0.25 1 0.51	0 44 1 2 0 65 0 87 0 64 0 21 0 51 0 94 0 45 0 1	0.38 0.6 1.12 1.3 1.1 0.65 0.25 0.57 0.047	0.94 0.88 0.88 0.86 0.77 0.76 0.73 0.71 0.47 0.38 0.30
Arkansas One, B Hatch. GE Ft. Calhoun, CE Susquehanna, GE North Anna. W WNP-2, GE Monticello, GE Vermont Yankee, GE Davis-Besse, B Trojan, W St. Lucie, CE Oyster Creek, GE Nine Mile Point, GE Yankee Rowe, W Pilgrim, GE Quad Cities, GE	0.15 0.32 0.4 0.29 0.13 0.16 0.2 0.16 0.2 0.12 0.28 0.023 0.093 0.093	0.27 0.18 0.21 0.18 0.15 0.16	0.38 0.24 0.15 0.19 0.22 0.13 0.1 0.092 0.056 0.22 0.13 0.13	0.27 0.22 0.21 0.20 0.16 0.15 0.15
River Bend, GE LaCrosse, AC Fermi, GE Point Beach, W Farley, W Dresden, GE Turkey Point, W Vogtle, W Rancho Seco, B Fitzpatrick, GE	0.083 0.07 0.12 0.05 0.064 0.11 0.16 0.05 0.061		0.068 0.076 0.052 0.088 0.048 0.027 0.0061 0.045	0.078 0.077 0.074 0.065 0.061 0.060 0.056 0.050 0.046
Callaway, W Brunswick, GE Palisades, CE Maine Yankee, W Byron, W South Texas, W Piablo Canyon, W Robinson, W Seabrook, W Grand Gulf, GE Duane Arnold, GE LaSalle, GE Cooper, GE	0 038 0 024 0 038 0 046 0 017 0 015 0 0086 0 016 0 0055 0 0063	0.014 0.01 0.0043	0 016 0 015 0 012 0 013 0 032 0 016 0 01 0 0057 0 017 0 012	0.009 0.007 0.006

NUREG/CR-2850, Vol. 1

TABLE 1.8. Percentage of Major Radionuclide contributions to Total Population Doses from Liquid (L) and Air (A) Pathways

										Maj	or Con	tribut	ors (P	ercent) *						
Site	Path	Dose	H 3	C 14	Ar 41	Mn 54	Fe 55	Fe 59	Co 58	Co 60	Zn 65	Kr 85m	Kr 87	Kr 88 +D	Sr 90 +D	I 131 +D	Cs 134	Cs 137 +D	Xe 133	Xe 135	Xe 138
ARKANSAS ONE	L	0.22	Ì														52	46			
	A	0.16	13						3										80	4	
BEAVER VALLEY	L	0.048	99																		
	A	1.0	95																3		
BIG ROCK POINT	L	1.3															3	95			
	A	0.020											16	54						15	10
BRAIDWOOD	L	0.16	17														40	37			
	A	0.37	94																6		
BROWNS FERRY	L	1.1															12	83			
	A	0.63										4	4	77					5	4	
BRUNSWICK	L	<0.001	3				14			77											
	A	0.015	8		13					5		4		37					9	21	
BYRON	L	0.0051	15				15										29	35			
	A	0.0082	11																84	4	
CALLAWAY	L	<0.001	50														25	25			
	A	0.035	70																27		
CALVERT CLIFFS	l.	1.6	6						4	3							46	40			
	A	0.39	_																93	3	
CATAWBA	t.	0.62	3														42	52			
	A	0.76	48		36														13		
CLINTON	L	1.7	5			33			3	56											
	A	0.0922	95																		
COMANCHE PEAK	L.	2.1														7	56	42			
	A	0.70	3											4					87	5	
COOK	L	0.17	33												4		33	30			
	A	0.034	52														7	7	25	4	
COOPER	L	0.0014								3							29	65			
	A	<0.001	-								_		12	62						16	6
CRYSTAL RIVER	L.	3.2					4	8	14	10							34	27			
	A	0.015	27																65	7	

TABLE 1.8 (Contd)

						ثلث				Maj	or Con	tribut	ors (P	ercent) *						
Site	Path	Dose	H 3	C 14	Ar 41	Mn 54	Fe 55	Fe 59	Co 58	Co 60	Zn 65	Kr 85m	Kr 87	Kr 88 +0	5r 90 +D	I 131 +D	Cs 134	Cs 137 +D	Xe 133	ке 135	Xe 138
DAVIS-BESSE	L	0.083	28														38	34			
	A	0.018	77															10	8	6	
DIABLO CANYON	L	0.0020	24			3	47	3	6	12								3			
	A	0.013	93							4											
DRESDEN	L	0																			
	A	0.027	24			4				61										7	
DUANE ARNOLD	L	0			***************************************			ŧ													
	A	0.010	62							25							2			9	
FARLEY	L	0.014	22							3						100	11	62			
	A	0.034	57		10														23	9	
FERMI	L	<0.001	95							4											
	A	0.052	42		4									26					6	13	4
FITZPATRICK (a)	ı	0.0018	48							5	17						12	16			
	A	0.0032	14							4	3	13	11	15					4	9	
FORT CALHOUN	L	0.13	80												3		6	6			
	A	0.017	41																55		
GINNA	L	0.44	15														52	30			
	A	0.13	30	41															20	8	
GRAND GULF	L	<0.001				8	3			3					57		17	7		47.	
	A	0.017	37																43	17	
HADDAM NECK	L	0.24	7				73			7					3		4	5			
	A	0.74	97																		
HARRIS	L	2.9	86														4	7			
	A	0.22												4					85	8	
E. I. Hatch	L	0.19									4						27	67			
	A	0.053	47																7	41	
HOPE CREEK	L	0.34						6			92										
	A	0.042	65			3				4	3			15						7	
INDIAN POINT	L	0.032															56	42			
	A	2.9		12															80	5	

TABLE 1.8 (Contd)

	100			,		,				Maj	or Con	tribut	ors (P	ercent) *						
Site	Path	Dose	H 3	C 14	Ar 41	Mn 54	Fe 55	Fe 59	Co 58	Co 60	Zn 65	Kr 85m	Kr 87	Kr 88 +D	Sr 90 +D	I 131 +D	Es 134	Cs 137 +D	Xe 133	Xe 135	Xe 1384 D
KEWAUNEE	L	0.044	99																		
	A	0.0035	97																		
LACROSSE	L	0.076																99			
	A	<0.001	9												91						
LASALLE	L	0																			
	A	0.012	29							6		4	7	53							
LIMERICK	L	0.61	78												8		4	5			
	A	0.19																	59	40	
MAINE YANKEE	L	0.0026	7				48	6	9	14				000			4	11			
	A	0.0089	15							3								3	75		
MCGUIRE	L	2.6	97																		
	A	0.23	40		7														37	_13	
MILLSTONE	4	3.6									94										
	A	0.13	61																26	9	
MONTICELLO	, L	0																			
	A	0.12	64											4					7	18	
NINE MILE POINT(6)	E	0.21	20							7	55										
	A	0.021	50		4					13	9	6							10		
NORTH ANNA	Ł	0.16															28	70			
	A	0.13	50																46		
OCONEE	L	0.77															44	54			
	A	0.17	11											14					42	31	
OYSTER CREEK	L	0																			-
	A	0.056	4									4	6	49					5	27	
PALISADES	L	0.010	45															53			
	A	0.0049	55																42		
PALO VERDE	L	0																			
	A	0.65	81																17		
PEACH BOTTOM	L	0.20																			
	A	0.40	9									3		18					24	42	

TABLE 1.8 (Contd)

										Maj	er Con	tribut	ors (P	ercent) *		يالد				
Site	Path	Dose	H 3	C 14	Ar 41	Mn 54	Fe 55	Fe 59	Co 58	Co 60	Zn 65	Kr 85m	Kr 87	Kr 88 +D	Sr 90 +0	I 131 +0	Cs 134	Cs 137 +D	Xe 133	Xe 135	Xe 138
PERRY	L.	0.9	3								48						23	23			
	A	0.049	-			-			-	-	-			5		6			20	61	-
PILGRIM	t	<0.001					20			58	5				6			10			
	A	0.13	21										3	20					3	48	
POINT BEACH	L	0.069	24		i												44	32			
	A	0.019	76														12	8			
PRAIRIE ISLAND	L	0.014	16				4		4	3							31	38			
	A	0.24	97																3		
QUAD CITIES	L	0.031	11															85			
	A	0.032	40							49								4			
RANCHO SECO	L	0.0018	3														10	87			
	A	0.033	100																		
RIVER BEND	L	0.0047				65				9	20										
	A	0.063										3	9	67						14	3
ROBINSON	t	0.0017	14							4								78			
	A	0.086	96																		
SAINT LUCIE	L.	<0.001	5				37			4							33	18			
	A	0.091	33											9					45	17	
SALEM	l.	0.29					8		38	12	3						22	14			
	A	0.75	68																32		
SAN ONOFRE	L	0.012	32				11										29	24			
	A	1.1	13																78	8	
SEABROOK	L	0.0046	28				65	4						-							
	A	0.0011	51		17	3			12	15											
SEQUOYAH	L	0.51	91														5	3			
	A	0.10	70																25	3	

TABLE 1.8 (Contd)

						,	,			Maj	or Con	tribut	ors (P	ercent) *						
Site	Path	Dose	H 3	C 14	Ar 41	Mn 54	Fe 55	Fe 50	Co 58	Co 60	Zn 65	Kr 85m	Kr 87	Kr 88 +D	Sr 90 +B	I 131 +D	Cs 134	Cs 137 +D	Xe 133	Xe 135	Xe 138+ D
SOUTH TEXA: (c)	L	0.0066	35				26			10							4	16			
	A	0.025	64																33		
SUMMER	L	1.5	38														28	34			
	Α	0.018																	83	16	
SURRY	t.	0.022	32							16								50			
	A	0.10	97																		
SUSQUEHANNA	ι	0.075	99																		
	A	0.11	88																8		
TMI	L	0.18	92														3	5			
	A	0.64	65																29	3	
TROJAN	L.	0.0016	7												3		24	64			
	A	0.062	54		3														31	11	
TURKEY POINT	L	0																			
	A	0.0061																	84	14	
VERMONT YANKEE (d)	L	<0.001	3													89					
	A	0.13	26										7	22					9	14	18
VOGTLE	Ł	0.0025	79						3								5	8			
	A	0.042	95																4		
WATERFORD	L	0.050					34	37	14	8							3				
	A	0.89	77																11	11	
WNP-2	L	<0.001	41							6	8						17	26			
	A	0.25	81																3	15	
WOLF CREEK (e)	L	0.77					1										61	37			
	A	0.0040	66		:	-								3					15	13	
YANKEE ROWE	L	0.10	4	7													31	57			
	A	0.0035	100		1																
ZION	Ł	21.0	81							3							8	.7			
	A	0.65	80			<u> </u>													15		

TABLE 1.8 (Contd)

- * Contributions less than 3% are not included in table.
- (a)

 131m/Xe and 131m/Xe also contribute 10% and 14%, respectively, of the drse from the air pathway at Fitzpatrick.

 (b)

 2m/Sr +D also contributes 16% to the dose from the liquid pathway, and 4% to the dose from the air pathway for Nine Mile Point.

 (c)

 12m/Sp and 12m/Sp also contributes 16% to the dose from the liquid pathway, and 4% to the dose from the air pathway for Nine Mile Point.

 (d)

 10m/Sp +D also contributes 5% of the dose for the liquid pathway at Vermont Yankee.

 (e)

 2m/Sp +D also contributes 5% of the dose for the liquid pathway at Vermont Yankee.

2.0 SITE SUMMARIES, 1992

This section contains the values, for both airborne and waterborne pathways, for the site-specific parameters used in dose calculations, for calculated population dose commitments, and for individual dose commitments (expressed per unit and as a percentage of the 10 CFR 50, Appendix I, design objectives).

Site: ARKANSAS ONE

POPE COUNTY, AR

Location:

N 35.3100°

W 93.2308°

Population Data

Total Population Within 2-to-80-km Region: 1.9E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Russelville Conway	20,000 26,000	10 km E 76 km ESE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-89 TO 31-DEC-89 97% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 5.8E+06 kilogram

Milk: 4.8E+07 liter Meat: 7.2E+07 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.7

Site Boundary: 1.100 meter Residence: Garden:

1,100 meter 1.300 meter SE Pasture: 2,100 meter NW

Site-Specific Data - Waterborne Pathways via ARKANSAS RIVER

Average Effluent Flow from Site:

4.4E+11 L/v

Average River Flow at Site:

3.2E+13 L/y

(36,000 cfs)

Drinking Water Population:

None

	Por	oulation	Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water Fish	1.4E-02 1.4E-02	None 1.4E+00	1.0E+00 1.0E+00	RG RG
Shellfish		None		None
Shoreline		***	1.0E+00	RG

Notes:

Average individual fish consumption rates as given in FES, 1972, used in lieu of catch data. Site-specific bioaccumulation factors used for cesium.

ARKANSAS ONE

	Popu	lation Dose	Commitment	ts (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 9.7E-03 1.8E-02 1.9E-01	0. 8.5E-03 1.8E-02 1.5E-01	0. 5.3E 3.9E 2.5E	-03	0. 4.2E-02 2.6E-02 1.5E-01	0. 5.1E-02 4.3E-02 2.6E-01
TOTAL	2.2E-01	1.8E-01	3.58	-02	2.2E-01	3.5E-01
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	2.3E-03 2.6E-02 1.9E-02 1.1E-01	2.2E-03 2.6E-02 1.9E-02 1.2E-01	2.6E-03 2.8E-02 2.0E-02 1.2E-01	2.0E-03 2.3E-02 1.6E-02 9.9E-02	2.3E-03 2.6E-02 1.9E-02 1.1E-01	2.5E-03 3.0E-02 2.3E-02 1.3E-01
TOTAL	1.6E-01	1.6E-01	1.7E-01	1.4E-01	1.6E-01	1.9E-01

Production/	Consumption	factors:
-------------	-------------	----------

mink, 1.5	Produce:	0.15	Milk: 1.9	Meat: 4.6
-----------	----------	------	-----------	-----------

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	9.8E-02 <1%
TOTAL	7.7E-01 26%		
Ingestion Dose to Any Organ (INFANT	THYROID)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	1.1E+00 None	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	1.1E+00 11%	TOTAL	1.7E-02 <1%

Notes:

Site: BEAVER VALLEY

SHIPPINGPORT, PA

Location:

N 40.6219°

W 80.4339°

Population Data

Total Population Within 2-to-80-km Region: 3.6E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Pittsburgh-Beaver Valley CMSA	2,200,000	42 km ESE
Youngstown-Warren MSA	490,000	56 km NNW
Stuebenville-Weirton MSA	140,000	33 km SSW
Wheeling MSA	160,000	66 km SSW
New Castle	28,000	43 km N

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 5.3E+07 kilogram Milk: 5.3E+08 liter Meat: 5.4E+07 kilogram

Regional Productivity Factor: 1.0 Animal Grazing Factor: 0.5

Site Boundary: Residence: Garden: Pasture:

570 meter NW 610 meter ENE 920 meter NE 1,600 meter ESE

Site-Specific Data - Waterborne Pathways via OHIC RIVER

Average Effluent Flow from Site:

4.1E+09 L/y

Average River Flow at Site:

2.7E+13 L/y

(30,000 cfs)

Drinking Water Population:

6,200

	Population			Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)		Mixing Ratio	Usage (kg/y)
Drinking Water Fish	1.7E-03 1.5E-04	RG 4.1E+02		1.7E-03 3.3E-01	RG RG
Shellfish		None	100		None
Shoreline				3.3E-01	RG

BEAVER VALLEY

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	9.2E-04 1.0E-02 3.9E-03 3.3E-02	9.2E-04 1.0E-02 4.1E-03 3.5E-02	1.0E 1.1E 4.1E 3.4E	-02 -03	2.5E-05 3.3E-04 8.0E-05 5.0E-04	9.3E-04 1.0E-02 3.9E-03 3.4E-02	
TOTAL	4.8E-02	5.1E-02	5.0E	-02	9.4E-04	4.9E-02	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	2.1E-02 2.1E-01 1.2E-01 6.0E-01	2.1E-02 2.1E-01 1.2E-01 6.0E-01	2.3E-02 2.3E-01 1.3E-01 6.2E-01	6.7E-04 7.4E-03 5.2E-03 3.2E-02	2.1E-02 2.1E-01 1.2E-01 6.0E-01	2.1E-02 2.1E-01 1.3E-01 6.0E-01	
TOTAL	9.6E-01	9.6E-01	1.0E+00	4.5E-02	9.6E-01	9.6E-01	

Production/Consumption factors:

Produce: 0.075 Milk: 1.1

Meat: 0.19

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gase to Air and Total Body	s
Drinking Water Fish/Shellfish Shoreline Recreation	1.6E-01		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	2.1E-04 <1%
TOTAL	1.7E-01	6%		
Ingestion Dose to Any Organ (ADULT G	iI-LLI)		Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	7.8E-03 6.9E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	7.0E-01	7%	TOTAL	1.8E-02 <1%

Site: BIG ROCK POINT

CHARLEVOIX CNTY, MI

Location:

N 45.3592°

W 85.1947°

Population Data

Total Population Within 2-to-80-km Region: 1.7E+05

Major Metropolitan Centers Within Region:

	Center	Population	Location		
Traverse		15,000	75 km SSW		
Petoskey		6,100	18 km E		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 6.9E+07 kilogram Milk: 2.9E+08 liter Meat: 4.5E+07 kilogram

Regional Productivity Factor: 0.5

Animal Grazing Factor: 0.5

Site Boundary: 920 meter E Residence: 2,300 meter E Garden: 2,300 meter E 4,000 meter E Pasture:

Site-Specific Data - Waterborne Pathways via LAKE MICHIGAN

Average Effluent Flow from Site: 6.5E+10 L/y

Drinking Water Population:

7,070

	Population		Individual		_
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	1.2E-03 6.7E-02	RG 5.0E+05	1.2E-03 6.7E-02	RG .	
Shellfish		None		None	
Shoreline		***	6.7E-02	RG	

BIG ROCK POINT

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	1.3E-06 5.5E-02 1.0E-01 1.1E+00	7.7E-07 1.2E-02 2.8E-02 2.5E-01	1.1E 7.3E 6.0E 4.8E	-06 -06	4.8E-06 3.5E-01 2.1E-01 1.2E+00	4.3E-06 3.5E-01 2.9E-01 1.7E+00	
TOTAL	1.3E+00	2.9E-01	6.1E	-05	1.8E+00	2.3E+00	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	2.9E-04 3.3E-03 2.4E-03 1.4E-02	2.9E-04 3.2E-03 2.4E-03 1.4E-02	6.4E-04 6.8E-03 3.7E-03 1.9E-02	2.9E-04 3.2E-03 2.3E-03 1.4E-02	2.9E-04 3.3E-03 2.4E-03 1.4E-02	3.0E-04 3.4E-03 2.5E-03 1.5E-02	
TOTAL	2.0E-02	2.0E-02	3.0E-02	2.0E-02	2.0E-02	2.1E-02	

Production/Consumption factors:

Produce: 1.0 Milk: 6.4

Meat: 1.6

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation	5.5E-02	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.3E-02 <1%
TOTAL	5.5E-02 2%		
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	3.1E-05 8.8E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	1.3E-04 None 9.4E-03
TOTAL	8.8E-02 <1%	TOTAL	9.6E-03 <1%

Site: BRAIDWOOD

BRAIDWOOD, IL

Location:

N 41.2683°

W 88.2133°

Population Data

Total Population Within 2-to-80-km Region: 4.3E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Chicago PMSA Gary-Hammond PMSA	6,100,000	70 km NE
Kankakee MSA	600,000 96,000	70 km ENE 32 km ESE
Aurora-Elgin PMSA Joliet PMSA	360,000 390,000	55 km N 40 km NNE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.1E+08 kilogram Milk: 1.8E+08 liter Meat: 1.9E+08 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.5

Site Boundary:	520	meter	W
Residence:	480	meter	W
Garden:	480	meter	W
Pasture:	3,900	meter	E

Site-Specific Data - Waterborne Pathways via KANKAKEE RIVER

Average Effluent Flow from Site:

1.9E+10 L/y

Average River Flow at Site:

5.0E+12 L/y

(5,630 cfs)

Drinking Water Population:

None

	Por	Population		idual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water		None	4.3E-02	RG
Fish	3.7E-03	1.8E+00	3.7E-03	RG
Shellfish		None		None
Shoreline			3.7E-03	RG

Notes:

Average individual fish consumption rate of 5 g/d as given in FES, 1974, used in lieu of catch data.

Ten percent of population are assumed to obtain fish from river.

BRAIDWOOD

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyro	oid	Bone	Liver
Infant Child Teen Adult	0. 1.0E-02 1.4E-02 1.4E-01	0. 4.5E-02 9.0E-02 7.8E-01	0. 3.4E. 3.1E. 2.4E.	-03	0. 2.7E-02 1.6E-02 9.5E-02	0. 3.6E-02 3.1E-02 1.9E-01
TOTAL	1.6E-01	9.1E-01	3.1E-	-02	1.4E-01	2.5E-01
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	3.4E-03 6.2E-02 4.5E-02 2.6E-01	3.4E-03 6.2E-02 4.5E-02 2.6E-01	3.5E-03 6.3E-02 4.5E-02 2.6E-01	3.3E-04 3.7E-03 2.7E-03 1.6E-02	6.2E-02 4.5E-02	3.5E-03 6.3E-02 4.5E-02 2.6E-01
TOTAL	3.7E-01	3.7E-01	3.7E-01	2.3E-02	3.7E-01	3.7E-01

Production/Consumption factors:

Produce: 0.12 Milk: 0.28 Meat: 0.49

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation	2.2E-03 1.1E-05		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	1.7E-01	6%		
Ingestion Dose to Any Organ (CHILD G	I-LLI)		Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	2.3E-01 3.6E-03		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	2.4E-01	2%	TOTAL	1.6E-02 <19

Site: BROWNS FERRY

DECATUR, AL

Location: N 34.7042°

W 87.1186°

Population Data

Total Population Within 2-to-80-km Region: 7.6E+05

Major Metropolitan Centers Within Region:

Center	Population		Location		
Huntsville MSA	240,000	49	km	E	
Florence MSA	110,000	52	km	WNW	
Decatur	49,000	16	km	SE	
Athens	17,000	17	km	NE	
Cullman	13,000	64	km	SSE	

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.7E+07 kilogram

Milk: 5.7E+07 liter Meat: 8.6E+07 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.7

(45.000 cfs)

Site Boundary: 1.700 meter NNW Residence: 1,000 meter Garden: 1,800 meter NNW 8,000 meter Pasture: N

Site-Specific Data - Waterborne Pathways via TENNESSEE RIVER AT WHEELER LAK

Average Effluent Flow from Site:

1.7E+11 L/y

Average River Flow at Site:

4.0E+13 L/v

Drinking Water Population:

26,000

	Po	pulation	Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water	4.3E-03	RG	4.3E-03	RG
Fish	4.3E-03	2.2E+05	4.3E-03	RG
Shellfish		None		None
Shoreline			4.3E-03	RG

Notes:

Dilution only 30% of complete river mixing so discharge recirculation factor of 3.3 used to account for reduced river flow (ODCM, Rev O, p.53).

BROWNS FERRY

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LUI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	4.4E-04 5.4E-02 8.8E-02 9.4E-01	1.6E-04 5.7E-03 9.0E-03 7.8E-02	3.68 2.78 9.08 6.28	-02 -03	2.8E-03 3.1E-01 1.8E-01 1.0E+00	1.5E-03 2.9E-01 2.3E-01 1.4E+00
TOTAL	1.1E+00	9.3E-02	1.0E	-01	1.5E+00	1.9E+00
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	8.9E-03 1.0E-01 7.3E-02 4.5E-01	9.0E-03 1.0E-01 7.4E-02 4.5E-01	1.8E-02 1.6E-01 9.9E-02 5.4E-01	8.9E-03 1.0E-01 7.2E-02 4.4E-01	9.1E-03 1.0E-01 7.4E-02 4.5E-01	9.3E-03 1.0E-01 7.9E-02 4.6E-01
TOTAL	6.3E-01	6.3E-01	8.1E-01	6.2E-01	6.3E-01	6.6E-01

Production/Consumption factors:

Produce: 0.11

Milk: 0.58

Meat: 1.4

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		<u>Airborne</u>	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	s
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.5E-02 <1%
TOTAL	3.6E-02 1%		
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	9.3E-04 5.4E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	1.6E-02
TOTAL	5.5E-02 <1%	TOTAL	4.7E-02 <1%

Site: BRUNSWICK

BRUNSWICK CNTY, NC

Location: N 33.9583° W 78.0106°

Population Data

Total Population Within 2-to-80-km Region: 2.5E+05

Major Metropolitan Centers Within Region:

	Population	Location		
Wilmington MSA	120,000	32 km NNE		
Whiteville	5,100	75 km WNW		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-91 TO 31-DEC-91 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.6E+07 kilogram Milk: 1.0E+08 liter Meat: 5.8E+07 kilogram

Regional Productivity Factor: 0.3

Animal Grazing Factor: 0.7

Site Boundary: 1,100 meter SSE Residence: 1,400 meter SE Garden: 2,600 meter S Pasture: 7,600 meter S

Site-Specific Data - Waterborne Pathways via ATLANTIC OCEAN

Average Effluent Flow from Site: 1.0E+11 L/y

Drinking Water Population:

None

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water		None		None	
Fish	1.0E-03	2.1E+05	1.0E+00	RG	
Shellfish	2.0E-03	1.1E+05	1.0E+00	RG	
Shoreline			1.0E+00	RG	

Notes:

No milk cows reported to be within 5 miles so default cow pasture set at 5 miles.

BRUNSWICK

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 1.0E-04 7.0E-05 4.2E-04	0. 1.8E-04 3.6E-04 3.2E-03	0. 2.0E 1.8E 1.4E	-06 -06	0. 1.2E-04 6.5E-05 3.8E-04	0. 1.0E-04 8.1E-05 4.9E-04
TOTAL	6.0E-04	3.7E-03	1.8E	-05	5.7E-04	6.7E-04
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	2.3E-04 2.6E-03 1.8E-03 1.1E-02	2.3E-04 2.6E-03 1.8E-03 1.1E-02	1.5E-03 1.0E-02 5.0E-03 2.2E-02	2.2E-04 2.3E-03 1.7E-03 1.0E-02	2.3E-04 2.6E-03 1.8E-03 1.1E-02	2.3E-04 2.7E-03 2.1E-03 1.2E-02
TOTAL	1.5E-02	1.5E-02	3.9E-02	1.4E-02	1.5E-02	1.7E-02

Production/Consumption factors:

Produce: 0.16 Milk: 0.94 Meat: 0.86

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation	None 8.3E-03 4.4E-04	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	8.8E-03 <1%		
Ingestion Dose to Any Organ (ADULT 6	GI-LLI)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	None 6.2E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	6.2E-02 <1%	TOTAL	1.2E-02 <1%

Site: BYRON

BYRON, IL

Location:

N 42.1300°

W 89.2550°

Population Data

Total Population Within 2-to-80-km Region: 9.5E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Rockford MSA	280,000	27 km NE
Freeport Belvidere	26,000 16,000	35 km NNW 40 km NE
Janesville-Beloit MSA De Kalb	140,000 35,000	67 km N 48 km ESE
Elgin	77,000	80 km E

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 1-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.1E+08 kilogram Milk: 1.8E+08 liter Meat: 1.9E+08 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.5

Site Boundary: 800 meter SSE Residence: 1,000 meter SSW Garden: 4,300 meter N Pasture: 3.100 meter

Site-Specific Data - Waterborne Pathways via ROCK RIVER

Average Effluent Flow from Site: 2.0E+10 L/y

Average River Flow at Site:

4.2E+12 L/y

(4,700 cfs)

Drinking Water Population: None

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	4.8E-03	None 2.1E+04	8.0E-04 4.8E-03	RG RG	
Shellfish		None		None	
Shoreline			4.8E-03	RG	

Notes:

No milk animals located within 5 miles so milk cows located at beef cattle pasture.

BYRON

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	0. 4.6E-04 4.7E-04 4.2E-03	0. 4.1E-04 7.2E-04 6.0E-03	0. 1.2E 9.9E 7.6E	-04 -05	0. 1.8E-03 1.1E-03 6.3E-03	0. 1.5E-03 1.2E-03 7.4E-03	
TOTAL	5.1E-03	7.1E-03	9.7E	-04	9.2E-03	1.0E-02	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	1.1E-C+ 1.3E-C 9.6E-U4 5.7E-03	1.1E-04 1.3E-03 9.6E-04 5.7E-03	3.7E-04 3.4E-03 1.7E-03 8.5E-03	1.0E-04 1.2E-03 8.5E-04 5.1E-03	1.1E-04 1.3E-03 9.6E-04 5.7E-03	1.2E-04 1.4E-03 1.1E-03 6.2E-03	
TOTAL	8.2E-03	8.1E-03	1.4E-02	7.2E-03	8.2E-03	8.8E-03	

Production/Consumption factors:

Produce: 0.55 Milk: 1.3

Meat: 2.2

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	s
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	4.9E-03 <1%		
Ingestion Dose to Any Organ (CHILD L	IVER)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	3.4E-03 4.1E-03	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	7.5E-03 <1%	TOTAL	1.1E-03 <1%

Site: CALLAWAY

FULTON, MO

Location: N 38.7618°

W 91.7979°

Population Data

Total Population Within 2-to-80-km Region: 3.8E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Columbia MSA	110,000	48 km WNW
Jefferson City	35,000	40 km WSW
Mexico	11,000	45 km NNW
Washington	11,500	69 km ESE
Fulton	10,000	19 km NW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 94% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 3.3E+07 kilogram Milk: 1.5E+08 liter Meat: 1.9E+08 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.6

Site Boundary: 2,200 meter NNW Residence: NNW 2,900 meter Garden: 2,900 meter NW Pasture: 2,200 meter WSW

Site-Specific Data - Waterborne Pathways via MISSOURI RIVER

Average Effluent Flow from Site: 1.5E+09 L/y

Average River Flow at Site:

7.2E+13 L/y (80,500 cfs)

Drinking Water Population:

None

	Po	Population		dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water		None		None
Fish	2.1E-05	1.0E+03	1.1E-02	RG
Shellfish	***	None		None
Shoreline			1.1E-02	RG

CALLAWAY

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver	
Infant Child Teen Adult	0. 1.2E-07 1.4E-07 1.3E-06	0. 1.2E-07 1.4E-07 1.2E-06	0. 1.4E 1.2E 8.9E	-07 -07	0. 1.5E-07 9.0E-08 5.2E-07	0. 2.7E-07 2.3E-07 1.5E-06	
TOTAL	1.6E-06	1.4E-06	1.28	-06	7.6E-07	2.0E-06	
Airbor e	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	4.4E-04 6.7E-03 4.3E-03 2.4E-02	4.4E-04 6.7E-03 4.3E-03 2.4E-02	6.8E-04 8.3E-03 4.9E-03 2.6E-02	1.5E-04 1.6E-03 1.2E-03 7.2E-03	6.7E-03 4.3E-03	4.5E-04 6.9E-03 4.5E-03 2.5E-02	
TOTAL	3.5E-02	3.5E-02	4.0E-02	1.0E-02	3.5E-02	3.7E-02	

Production/Consumption factors:

Produce: 0.4

Milk: 2.8

Meat: 5.7

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	2.0E-02 <1%
TOTAL	1.7E-02 <1%		
Ingestion Dose to Any Organ (ADULT L	IVER)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	None 2.0E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	2.0E-02 <1%	TOTAL	1.2E-02 <1%

Site: CALVERT CLIFFS

LUSBY, MD

Location:

N 38.4347°

W 76.4419°

Population Data

Total Population Within 2-to-80-km Region: 3.0E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Washington, DC-MD-VA MSA	3,900,000	73 km NW
Bowie	38,000	71 km NNW
Annapolis	33,000	61 km N
Salisbury	21,000	75 km E

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-91 TO 31-DEC-91 97% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 4.5E+07 kilogram Milk: 5.0E+08 liter Meat: 6.2E+07 kilogram

pegional Productivity Factor: 0.6

Animal Grazing Factor: 0.6

Site Boundary: 1,500 meter WSW Residence: 2,200 meter SE Garden: 2,700 meter SSE Pasture: 4,800 meter SSW

Site-Specific Data - Waterborne Pathways via CHESAPEAKE BAY

Average Effluent Flow from Site:

1.5E+12 L/y

Drinking Water Population:

None

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water		None		None	
Fish	6.2E-02	1.0E+07	1.0E+00	RG	
Shellfish	6.2E-02	7.4E+06	1.0E+00	RG	
Shoreline			1.0E+00	RG	

Notes:

Population mixing ratios given in FES, 1973.

CALVERT CLIFFS

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	0. 9.1E-02 1.3E-01 1.3E+00	0. 7.3E-01 1.5E+00 1.3E+01	0. 8.7E 6.3E 4.3E	-02 -02	0. 2.7E-01 1.6E-01 9.4E-01	0. 3.3E-01 2.8E-01 1.7E+00	
TOTAL	1.6E+00	1.5E+01	5.8E	-01	1.4E+00	2.3E+00	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	5.7E-03 6.3E-02 4.6E-02 2.8E-01	5.7E-03 6.3E-02 4.6E-02 2.7E-01	5.5E-02 3.1E-01 1.4E-01 5.7E-01	5.6E-03 6.1E-02 4.4E-02 2.7E-01	6.4E-02	6.0E-03 6.8E-02 5.3E-02 3.0E-01	
TOTAL	3.9E-01	3.9E-01	1.1E+00	3.8E-01	3.9E-01	4.2E-01	

Production/Consumption factors:

Produce: 0.046 Milk: 0.76 Meat: 0.15

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	5.6E-02 <1%
TOTAL	2.7E-02 <1%		
Ingestion Dose to Any Organ (ADULT G	I-LLI)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	None 2.9E-01	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	None
TOTAL	2.9E-C1 3%	TOTAL	5.6E-02 <1%

Site: CATAWBA

CLOVER, SC

Location:

N 34.9950°

W 81.2450°

Population Data

Total Population Within 2-to-80-km Region: 1.7E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Charlotte-Gastonia MSA Kannapolis	1,100,000	29 km NE 64 km NE
Rock Hill	42,000	11 km S
Spartanburg	44,000	80 km W

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.5E+06 kilogram Milk: 5.7E+07 liter Meat: 5.0E+07 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.75

Site Boundary: Residence: Garden: Pasture:

810 meter NNE 810 meter NNE 1,400 meter 5 3,700 meter NNW

Site-Specific Data - Waterborne Pathways via CATAWBA RIVER '

Average Effluent Flow from Site:

1.7E+11 L/y

Average River Flow at Site:

3.9E+12 L/y

(4,400 cfs)

Drinking Water Population: None

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	4.3E-02	None 1.0E+06	2.6E-02 1.0E+00	RG RG	
Shellfish		None		None	
Shoreline			1.0E+00	RG	

Notes:

Discharge recirculation factor of 1.027 used for cesium (ODCM 1992, p.C-13).

No milk animals located within 5 miles so milk cows located at beef cattle pasture.

CATAWBA

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 3.0E-02 5.1E-02 5.4E-01	0. 5.6E-02 1.2E-01 1.0E+00	0. 3.2E 2.7E 2.0E	-03 -03	0. 1.3E-01 7.6E-02 4.4E-01	0. 1.5E-01 1.2E-01 7.4E-01
TOTAL	6.2E-01	1.2E+00	2.6E	-02	6.5E-01	1.0E+00
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	8.9E-03 1.2E-01 9.1E-02 5.4E-01	8.9E-03 1.2E-01 9.1E-02 5.4E-01	9.4E-03 1.2E-01 9.3E-02 5.5E-01	5.7E-03 6.3E-02 4.6E-02 2.8E-01	8.9E-03 1.2E-01 9.1E-02 5.4E-01	9.1E-03 1.2E-01 9.4E-02 5.5E-01
TOTAL	7.6E-01	7.6E-01	7.8E-01	4.0E-01	7.6E-01	7.8E-01

Production/Consumption factors:

Produce: 0.021 Milk: 0.24

Meat: 0.34

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gase to Air and Total Body	s	
Drinking Water Fish/Shellfish Shoreline Recreation			Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence		6% 1% 7%
TOTAL	1.6E-01	5%			
Ingestion Dose to Any Organ (ADULT 6	GI-LLI)		Iodine and Particulate Dose to Any Organ (CHILD TIYR		
Drinking Water Fish/Shellfish	5.4E-03 3.3E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	3.3E-01	3%	TOTAL	5.4E-02	<1%

Site: CLINTON

CLINTON, IL

Location: N 40.1517°

W 88.9533°

Population Data

Total Population Within 2-to-80-km Region: 8.8E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Decatur MSA Springfield MSA Champaign-Urbana-Rantoul MSA	120,000 190,000 170,000	32 km S 72 km SW 50 km E
Bloomington-Normal MSA	130,000	35 km NNW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 97% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.1E+08 kilogram Milk: 1.8E+08 liter Meat: 1.9E+08 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.5

Site Boundary: 980 meter NNE Residence: 1.500 meter NNE Garden: 1,500 meter NNE Pasture: 1,500 meter

Site-Specific Data - Waterborne Pathways via CLINTON LAKE

Average Effluent Flow from Site:

1.6E+08 L/y

Drinking Water Population:

None

	Population		Indivi	dual	
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	2.5E-01	None 1.8E+00	1.0E+00	None RG	
Shellfish		None		None	
Shoreline		***	1.0E+00	RG	

Notes:

Ten percent of population assumed to obtain fish from lake.

Everage individual fish consumption rate of 5 g/d as given in FES, 1974, used in lieu of catch data. Population file corrected from previous version; population estimate reduced from 2.7E+6 to 8.8E+5.

CLINTON

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 2.1E-01 1.5E-01 9.0E-01	0. 4.7E-01 1.1E+00 9.5E+00	0. 6.7E 6.0E 4.8E	-03	0. 1.5E-02 8.6E-03 5.1E-02	0. 3.2E-01 3.0E-01 1.9E+00
TOTAL	1.3E+00	1.1E+01	6.1E	-02	7.4E-02	2.5E+00
Airborne						
	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	3.4E-05 4.8E-04 2.7E-04 1.4E-03	3.4E-05 4.9E-04 2.7E-04 1.4E-03	7.0E-05 7.6E-04 3.8E-04 1.7E-03	1.7E-06 2.8E-05 1.4E-05 7.5E-05	3.4E-05 4.8E-04 2.7E-04 1.4E-03	3.4E-05 4.9E-04 2.8E-04 1.4E-03
TOTAL	2.2E-03	2.2E-03	2.9E-03	1.2E-04	2.2E-03	2.2E-03

Production/Consumption factors:

Produce: 0.59 Milk: 1.4

Meat: 2.4

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct D		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	3.8E-04 <1%
TOTAL	6.7E-01 22%		
Ingestion Dose to Any Organ (ADULT	GI-LLI)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	None 6.0E+00	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	None
TOTAL	6.0E+00 60%	TOTAL	1.1E-03 <1%

Site: COMANCHE PEAK

GLEN ROSE, TX

Location:

N 32.2974°

W 97.7850°

Population Data

Total Population Within 2-to-80-km Region: 1.2E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Fort Worth-Arlington PMSA	1,300,000	70 km NE
Hurst	34,000	80 km NE
Cleburne	22,000	37 km ENE
Weatherford	15,000	52 km N

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 91% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.3E+07 kilogram Milk: 4.3E+07 liter Meat: 1.1E+08 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.75

Site Boundary: 1,500 meter WSW Residence: 1,600 meter WSW Garden: 1,800 meter WSW Pasture: 8,000 meter WSW

Site-Specific Data - Waterborne Pathways via SQUAW CREEK RES.

Average Effluent Flow from Site: 4.2E+11 L/y

Drinking Water Population:

None

	Po	pulation	Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	1.0E+00	None 1.8E+00	1.0E+00 1.0E+00	RG RG	
Shellfish		None		None	
Shoreline		***	1.0E+00	RG	

Notes:

No milk animals reported to be within 5 miles so default cow pasture set at 5 miles.

COMANCHE PEAK

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 9.3E-02 1.7E-01 1.9E+00	0. 2.7E-02 5.2E-02 4.5E-01	0. 2.1E 1.6E 1.1E	-02	0. 4.1E-01 2.5E-01 1.4E+00	0. 4.9E-01 4.2E-01 2.5E+00
TOTAL	2.1E+00	5.3E-01	1.4E	-01	2.1E+00	3.4E+00
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	1.0E-03 1.1E-02 8.2E-03 5.0E-02	1.0E-03 1.1E-02 8.2E-03 5.0E-02	1.4E-03 1.4E-02 9.4E-03 5.4E-02	9.9E-04 1.1E-02 8.0E-03 4.9E-02	1.0E-03 1.1E-02 8.2E-03 5.0E-02	1.1E-03 1.2E-02 9.3E-03 5.3E-02
TOTAL	7.0E-02	7.0E-02	7.9E-02	6.9E-02	7.0E-02	7.6E-02

Production/Consumption factors:

Produce: 0.094

Milk: 0.26

Meat: 1.1

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		<u>Airborne</u>	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	s
Drinking Water Fish/Shellfish Shoreline Recreation	1.2E-01 2.2E-01 1.3E-04	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.5E-02 <1% 2.7E-02 <1% 8.3E-03 <1%
TOTAL	3.4E-01 11%		
Ingestion Dose to Any Organ (CHILD L	IVER)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	1.6E-01 2.7E-01	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	4.3E-01 4%	TOTAL	1.7E-03 <1%

Site: COOK

BENTON HARBOR, MI

Location:

N 41.9761°

W 86.5664°

Population Data

Total Population Within 2-to-80-km Region: 1.2E+06

Major Metropolitan Centers Within Region:

outh Bend-Mishiwaka MSA 1khart-Goshen MSA	Population	Location		
Gary-Hammond PMSA	600,000	77 km SW		
	250,000 160,000	42 km SE 58 km SE		
Michigan City	34,000	40 km SW		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.1E+08 kilogram Milk: 2.3E+08 liter Meat: 1.9E+08 kilogram

Regional Productivity Factor: 0.6

Animal Grazing Factor: 0.5

Site Boundary: Residence: Garden: Pasture:

660 meter N 660 meter 770 meter SSW 3,600 meter E

Site-Specific Data - Waterborne Pathways via LAKE MICHIGAN

Average Effluent Flow from Site: 1.8E+12 L/y

Drinking Water Population:

260,000

	Po	pulation	Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water Fish	2.5E-02 1.0E-02	RG 1.5E+06	3.8E-01 1.0E+00	RG RG
Shellfish		None		None
Shoreline	***		3.8E-01	RG

Notes:

Population-weighted mixing ratio used for population drinking water.

COOK

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver	
Infant Child Teen Adult	1.4E-03 2.1E-02 1.4E-02 1.4E-01	1.4E-03 1.9E-02 1.3E-02 1.1E-01	2.2E 2.0E 7.3E 5.9E	-02 -03	7.3E-04 2.9E-02 1.5E-02 9.2E-02	1.7E-03 4.0E-02 2.5E-02 1.7E-01	
TOTAL	1.7E-01	1.4E-01	8.9E	-02	1.4E-01	2.3E-01	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	4.4E-04 6.2E-03 4.1E-03 2.3E-02	4.0E-04 5.7E-03 3.7E-03 2.1E-02	9.0E-03 6.4E-02 2.6E-02 9.9E-02	4.2E-04 4.4E-03 2.2E-03 1.1E-02	7.3E-04 8.4E-03 4.8E-03 2.4E-02	4.5E-04 6.1E-03 4.0E-03 2.2E-02	
TOTAL	3.4E-02	3.1E-02	2.0E-01	1.8E-02	3.8E-02	3.2E-02	

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Meat: 1.2

Milk: 0.89

Waterborne		Airborne			
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gases to Air and Total Body			
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	4.8E-02 <1%		
TOTAL	7.3E-02 2%				
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (CHILD THYR			
Drinking Water Fish/Shellfish	3.2E-03 9.6E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture			
TOTAL	9.9E-02 <1%	TOTAL	6.4E-02 <1%		

Notes:

Production/Consumption factors:
Produce: 0.29

Site: COOPER

NEMAHA COUNTY, NE

Location:

N 40.3619°

W 95.6411°

Population Data

Total Population Within 2-to-80-km Region: 1.7E+05

Major Metropolitan Centers Within Region:

Center	Population	Location		
Nebraska City	6,500	40 km NNW		
Red Oak Plattsmouth	6,300	80 km NNE 76 km NNW		
Shenandoah	5,600	51 km NNE		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 9.7E+07 kilogram Milk: 7.2E+07 liter Meat: 2.0E+08 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.6

Site Boundary: Residence: Garden: Pasture:

1,100 meter 1.400 meter NW 3,100 meter NNW 17,000meter S

Site-Specific Data - Waterborne Pathways via MISSOURI RIVER

Average Effluent Flow from Site: 6.1E+10 L/y

Average River Flow at Site:

2.8E+13 L/y

(31,000 cfs)

Drinking Water Population: None

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	2.2E-03 2.2E-03	None 5.0E+03	2.0E-01 1.0E-01	RG RG	
Shellfish		None		None	
Shoreline			2.0E-01	RG	

Notes:

Population estimate assumes 1/2 fish caught below site.

Individual fish consumption only for 1/2 year: spring and summer months.

COOPER

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 7.3E-G5 1.2E-O4 1.2E-O3	0. 4.3E-05 9.7E-05 8.8E-04	0. 6.1E 4.7E 3.3E	-08	0. 3.2E-04 1.9E-04 1.1E-03	0. 3.7E-04 3.1E-04 1.9E-03
TOTAL	1.4E-03	1.0E-03	4.3E	-07	1.6E-03	2.6E-03
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	7.9E-07 8.8E-06 6.4E-06 3.9E-05	7.8E-07 8.7E-06 6.4E-06 3.9E-05	8.9E-06 8.4E-05 3.5E-05 1.4E-04	8.0E-07 8.9E-06 6.4E-06 3.9E-05	6.4E-06	8.1E-07 9.0E-06 6.8E-06 4.0E-05
TOTAL	5.5E-05	5.4E-05	2.7E-04	5.5E-05	5.5E-05	5.7E-05

Production/Consumption factors:

Produce: 2.9 Milk: 3.2

Meat: 14.0

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation TOTAL	5.7E-01	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	6.3E-05 <1%
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	5.2E-02 8.8E-01	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	9.3E-01 9%	TOTAL	5.3E-05 <1%

Site: CRYSTAL RIVER

CRYSTAL RIVER, FL

Location:

N 28.3619°

W 82.6989°

Population Data

Total Population Within 2-to-80-km Region: 5.1E+05

Major Metropolitan Centers Within Region:

Center	Population	Location		
Ocala	42,000	60 km ENE		
Leesburg	15,000	80 km E		
New Port Richey	14,000	79 km S		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-91 TO 31-DEC-91 97% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.8E+07 kilogram Milk: 1.1E+08 liter Meat: 7.2E+07 kilogram

Regional Productivity Factor: 0.5

Animal Grazing Factor: 1.0

Site Boundary: 1,300 meter NE Residence: 5,500 meter ENE Garden: 6,600 meter E 6,900 meter ENE Pasture:

Site-Specific Data - Waterborne Pathways via GULF OF MEXICO

Average Effluent Flow from Site: 3.5E+10 L/y

Drinking Water Population:

None

	Population		Indivi	dual	
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish Shellfish	1.0E-01 1.0E-01	None 3.2E+05 1.8E+05	1.0E-02 3.0E-01	RG RG None	
Shoreline			1.0E-02	RG	

CRYSTAL RIVER

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver	
Infant Child Teen Adult	0. 3.2E-01 3.1E-01 2.5E+00	0. 1.7E+00 3.6E+00 3.1E+01	0. 2.1E 1.6E 1.1E	-02	0. 6.2E-01 3.6E-01 2.1E+00	0. 6.8E-01 5.7E-01 3.4E+00	
TOTAL	3.2E+00	3.7E+01	1.5E	-01	3.1E+00	4.6E+00	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	2.1E-04 2.5E-03 1.7E-03 1.0E-02	2.1E-04 2.5E-03 1.7E-03 1.0E-02	7.0E-04 5.1E-03 2.7E-03 1.3E-02	1.5E-04 1.7E-03 1.2E-03 7.4E-03	2.1E-04 2.5E-03 1.7E-03 1.0E-02	2.2E-04 2.7E-03 1.9E-03 1.1E-02	
TOTAL	1.5E-02	1.5E-02	2.2E-02	1.0E-02	1.5E-02	1.6E-02	

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Meat: 0.89

Milk: 0.85

Waterborne		Airborne				
Ingestion and Direct Do All Nuclides to Total B		Direct Dose from Noble Gases to Air and Total Body				
Drinking Water Fish/Shellfish Shoreline Recreation	3.2E-01	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.1E-02 <1%			
TOTAL	3.4E-01 11%					
Ingestion Dose to Any Organ (ADULT	Ingestion Dose to Any Organ (ADULT GI-LLI)		ROID)			
Drinking Water Fish/Shellfish	1.3E-02 6.2E+00	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture				
TOTAL	6.2E+00 62%	TOTAL	2.0E-03 <1%			

Notes:

Production/Consumption factors:
Produce: 0.14

Site: DAVIS-BESSE

PORT CLINTON, OH

Location:

N 41.5972°

W 83.0864°

Population Data

Total Population Within 2-to-80-km Region: 1.8E+06

Major Metropolitan Centers Within Region:

Center		Population	Location			
	Toledo MSA	610,000	38	km	WNW	
	Dearborn	89,000	80	km	N	
	Taylor	71,000	71	km	N	
	Lorain	71,000			ESE	
	Lincoln Park	42,000		km		
	Findlay	36,000		km		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 97% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 6.9E+07 kilogram Milk: 3.7E+08 liter Meat: 1.2E+08 kilogram

Regional Productivity Factor: 0.6

Animal Grazing Factor: 0.5

Site Boundary: 790 meter NNE Residence: 870 meter NNE Garden: 1,100 meter Pasture: 4,300 meter WSW

Site-Specific Data - Waterborne Pathways via LAKE ERIE

Average Effluent Flow from Site:

4.2E+10 L/y

Drinking Water Population:

450,000

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	1.6E-04 1.8E-04	RG 5.7E+06	1.8E-02 1.0E-01	RG RG	
Shellfish		None	***	None	
Shoreline			1.0E-01	RG	

Population drinking-water mixing ratio estimated by averaging dilution factor derived from FES, 1973, suitably weighted by population.

Population fish mixing ratio and harvest taken from letter from Terry D. Murray, Toledo Edison

DAVIS-BESSE

	Popu	lation Dose	Commitment	s (person	-rem)	***************************************	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	5.0E-04 8.1E-03 6.7E-03 6.8E-02	5.1E-04 6.2E-03 3.0E-03 2.6E-02	5.18 5.88 2.38 1.98	-03 -03	2.7E-05 1.1E-02 6.7E-03 3.9E-02	5.3E-04 1.9E-02 1.3E-02 8.5E-02	
TOTAL	8.3E-02	3.5E-02	2.8E	-02	5.7E-02	1.2E-01	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	2.7E-04 3.3E-03 2.2E-03 1.2E-02	2.4E-04 3.1E-03 2.0E-03 1.1E-02	8.0E-04 6.2E-03 3.2E-03 1.5E-02	2.0E-04 1.8E-03 7.0E-04 2.8E-03	4.4E-04 4.5E-03 2.6E-03 1.3E-02	2.7E-04 3.4E-03 2.1E-03 1.1E-02	
TOTAL	1.8E-02	1.6E-02	2.5E-02	5.5E-03	2.0E-02	1.7E-02	

Production/Consumption factors:

Produce: 0.12 Milk: 0.93

Meat: 0.47

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation			Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	5.4E-03 <1%
TOTAL	1.3E-01	4%		
Ingestion Dose to Any Organ (TEEN L	(VER)		Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	9.0E-03 1.7E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	3.2E-03 1.1E-02 1.4E-03
TOTAL	1.8E-01	2%	TOTAL	1.5E-02 <1%

Site: DIABLO CANYON

AVILA BEACH, CA

Location:

N 35.2111°

W120.8522°

Population Data

Total Population Within 2-to-80-km Region: 3.3E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
San Luis Obispo	42,000	19 km ENE
Atascudero	23,000	34 km NNE
Lompoc	38,000	74 km SSE
Morro Bay	9,700	18 km N

Site-Specific Data - Airborne Pathway:

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 4.8E+07 kilogram Milk: 2.3E+08 liter Meat: 5.0E+07 kilogram

Regional Productivity Factor: 0.5

Animal Grazing Factor: 1.0

Site Boundary: Residence: Garden: Pasture:

800 meter NW 5,300 meter NNE 6,600 meter ESE 20,000meter NNE

Site-Specific Data - Waterborne Pathways via PACIFIC OCEAN

Average Effluent Flow from Site: 5.6E+11 L/y

Drinking Water Population:

None

	Popu	lation	Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water		None	***	None
Fish	1.0E-03	2.0E+06	2.0E-01	RG
Shellfish		None	2.0E-01	RG
Shoreline	***	***	2.0E-01	RG

DIABLO CANYON

	Popu	lation Dose	Commitment	s (person-	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	0. 3.4E-04 2.2E-04 1.4E-03	0. 3.9E-04 7.3E-04 6.1E-03	0. 6.68 5.68 4.38	-05 -05	0. 1.3E-03 7.4E-04 4.3E-03	0. 8.2E-04 6.4E-04 3.8E-03	
TOTAL	2.0E-03	7.3E-03	5.5E	-04	6.4E-03	5.2E-03	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	1.4E-04 2.3£-03 1.5E-03 8.5E-03	1.4E-04 2.4E-03 1.5E-03 8.8E-03	1.4E-04 2.3E-03 1.5E-03 8.5E-03	1.1E-05 1.2E-04 8.9E-05 5.4E-04	1.4E-04 2.3E-03 1.5E-03 8.5E-03	1.4E-04 2.4E-03 1.5E-03 8.6E-03	
TOTAL	1.3E-02	1.3E-02	1.2E-02	7.6E-04	1.2E-02	1.3E-02	

Production/Consumption factors:

Produce: 0.37

Milk: 2.6

Meat: 0.93

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	s	
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.4E-04 ·	<1%
TOTAL	4.3E-03 <1%			
Ingestion Dose to Any Organ (CHILD B	ONE)	Iodine and Particulate Dose to Any Organ (CHILD GI-L		
Drinking Water Fish/Shellfish	None 2.0E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	2.0E-02 <1%	TOTAL	3.6E-04	<1%

Site: DRESDEN

GRUNDY COUNTY, IL

Location:

N 41.3897°

W 88.2711°

Population Data

Total Population Within 2-to-80-km Region: 6.5E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Chicago PMSA	6,100,000	75 km NE
Gary-Hammond PMSA	600,000	80 km ENE
Kankakee MSA	96,000	45 km SE
Aurora-Elgin PMSA	360,000	41 km N
Joliet PMSA	390,000	22 km NE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.1E+08 kilogram Milk: 1.8E+08 liter Meat: 1.9E+08 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.5

Site Boundary: 1,000 meter SE Residence: 970 meter ENE Garden: 970 meter ENE Pasture: 8,000 meter ENE

Site-Specific Data - Waterborne Pathways via ILLINOIS RIVER

Average Effluent Flow from Site:

1.2E+10 L/y

Average River Flow at Site:

Drinking Water Population:

1.2E+13 L/y (13,700 cfs)

None

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	1.0E-03 1.0E-03	None RG	7.8E-03 1.0E-02	RG RG	
Shellfish	***	None		None	
Shoreline		***	1.0E-02	RG	

Notes:

Water use by population negligible, due to past history of river used for disposal of Chicago sewage.

DRESDEN

	Popu	lation Dose	Commitment	s (person-	rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	0. 0. 0.	0. 0. 0.	0. 0. 0.		0. 0. 0.	0. 0. 0.	
TOTAL	0.	0.	0.		0.	0.	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	3.5E-04 4.6E-03 3.2E-03 1.9E-02	3.5E-04 4.8E-03 3.9E-03 2.4E-02	1.3E-03 1.3E-02 6.7E-03 3.3E-02	3.1E-04 4.5E-03 2.7E-03 1.6E-02	3.6E-04 4.9E-03 3.4E-03 2.0E-02	6.4E-04 9.5E-03 7.7E-03 3.8E-02	
TOTAL	2.7E-02	3.3E-02	5.3E-02	2.4E-02	2.9E-02	5.6E-02	

Production/Consumption factors:

Produce: 0.089

Milk: 0.21

Meat: 0.36

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	s
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	2.7E-06 <1%
TOTAL	3.7E-03 <1%		
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (TEEN GI-LL	
Drinking Water Fish/Shellfish	1.3E-04 5.7E-03	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	1.5E-05 5.8E-04 1.2E-04
TOTAL	5.9E-03 <1%	TOTAL	7.1E-04 <1%

Site: DUANE ARNOLD

CEDAR RAPIDS, IA

Location:

N 42.1006°

W 91.7772°

Population Data

Total Population Within 2-to-80-km Region: 5.8E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Cedar Rapids MSA	170,000	17 km SE
Waterloo-Cedar Falls SMSA	150,000	66 km NW
Iowa City MSA	96,000	52 km SSE
Marion	20,000	16 km ESE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 9.8E+07 kilogram Milk: 2.6E+08 liter Meat: 4.2E+08 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.5

Site Boundary: 1,300 meter NNW Residence: 1,600 meter NNW Garden: 1,600 meter NNW Pasture: 2,700 meter WNW

Site-Specific Data - Waterborne Pathways via CEDAR RIVER

Average Effluent Flow from Site: 0. L/y

Drinking Water Population: 170,000

	Population		Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water	***	RG		None
Fish		None		None
Shellfish		None		None
Shoreline				RG

Notes:

No waterborne pathways.

DUANE ARNOLD

	Popu	lation Dose	Commitment	s (person-	rem)	The second secon
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 0. 0.	0. 0. 0.	0. 0. 0.	().).).	0. 0. 0.
TOTAL	0.	0.	0.	().	0.
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	1.0E-04 1.8E-03 1.1E-03 6.5E-03	1.0E-04 1.9E-03 1.2E-03 7.2E-03	1.3E-04 2.0E-03 1.2E-03 6.8E-03	4.9E-05 5.8E-04 4.1E-04 2.5E-03	1.0E-04 1.8E-03 1.1E-03 6.5E-03	1.2E-04 2.2E-03 1.5E-03 8.0E-03
TOTAL	9.6E-03	1.0E-02	1.0E-02	3.5E-03	9.6E-03	1.2E-02

Production/Consumption factors:

Produce: 0.87 Milk: 3.4

Meat: 8.9

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne Ingestion and Direct Dose from All Nuclides to Total Body			Airborne Direct Dose from Noble Gases to Air and Total Body	
Ingestion Dose to Any Organ (TEEN LIVER)		Iodine and Particulate Dose to Any Organ (CHILD GI-LLI)		
Drinking Water Fish/Shellfish	None None		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	4.2E-04 1.9E-03 4.5E-04
TOTAL	None	<1%	TOTAL	2.7E-03 <1%

Site: J. M. FARLEY

DOTHAN, AL

Location: N 31.2228°

W 85.1126°

Population Data

Total Population Within 2-to-80-km Region: 3.8E+05

Major Metropolitan Centers Within Region:

Center	Population	Location	
Dothan MSA Enterprise	130,000	27 km W 71 km W	
Ozark Eufaula	13,000 13,000	56 km WNW 75 km N	
Bainbridge	11,000	62 km SE	

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 87% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.7E+07 kilogram Milk: 5.7E+07 liter Meat: 8.6E+07 kilogram

Regional Productivity Factor: 0.95

Animal Grazing Factor: 0.8

Site Boundary: 1,600 meter SSE Residence: 1,900 meter SW Garden: 1,900 meter SW Pasture: 9.600 meter SSE

Site-Specific Data - Waterborne Pathways via CHATTAHOOCHEE RIVER

Average Effluent Flow from Site: 1.2E+11 L/y

Average River Flow at Site:

1.1E+13 L/y (12,000 cfs)

Drinking Water Population: None

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kq/y)	
Drinking Waters		None		None	
Fish	1.1E-02	2.3E+05	2.0E-01	RG	
Shellfish		None	***	None	
Shoreline		***	2.0E-01	RG	

J. M. FARLEY

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 9.3E-04 1.3E-03 1.2E-02	0. 4.8E-03 9.6E-03 8.3E-02	0. 3.8E 3.4E 2.7E	-04	0. 2.8E-03 1.7E-03 9.6E-03	0. 3.2E-03 2.7E-03 1.7E-02
TOTAL	1.4E-02	9.8E-02	3.5E	-03	1.4E-02	2.3E-02
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	5.5E-04 6.4E-03 4.1E-03 2.3E-02	5.5E-04 6.4E-03 4.1E-03 2.3E-02	6.2E-04 6.8E-03 4.3E-03 2.3E-02	1.9E-04 2.2E-03 1.6E-03 9.6E-03	6.4E-03 4.1E-03	5.6E-04 6.6E-03 4.3E-03 2.3E-02
TOTAL	3.4E-02	3.4E-02	3.5E-02	1.4E-02	3.4E-02	3.5E-02

Production/Consumption factors:

Produce: 0.22

Milk: 1.1

Meat: 2.7

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation	5.5E-03 1.2E-02 9.3E-05	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.5E-03 <1%
TOTAL	1.8E-02 <1%		
Ingestion Dose to Any Organ (ADULT G	I-LLI)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Irrigated Foods Fish/Shellfish	5.6E-03 9.4E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	1.0E-01 <1%	TOTAL	1.4E-03 <1%

Notes:

Irrigated leafy vegetable pathway not significant compared to fish for individual doses.

Site: FERMI

LAGOONA BEACH, MI

Location:

N 41.9781°

W 83.2594°

Population Data

Total Population Within 2-to-80-km Region: 5.0E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Detroit PMSA	4,400,000	24-80 km
Toledo MSA	610,000	40 km SW
Ann Arbor PMSA	280,000	48 km NW
Sandusky	30,000	72 km SE
Monroe	23,000	13 km WSW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 6.8E+07 kilogram Milk: 2.9E+08 liter Meat: 4.5E+07 kilogram

NW

WNW

NNE

Regional Productivity Factor: 0.6

Animal Grazing Factor: 0.5

920 meter Site Boundary: Residence: 1,100 meter Garden: 1,800 meter 3,000 meter N Pasture:

Site-Specific Data - Waterborne Pathways via LAKE ERIE

Average Effluent Flow from Site:

2.0E+10 L/y

Drinking Water Population:

525,000

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	5.6E-04 1.0E-03	RG 8.9E+06	1.3E-02 2.0E-01	RG RG	
Shellfish	***	None		None	
Shoreline			2.0E-01	RG	

FERMI

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	4.1E-06 5.0E-05 2.0E-05 1.7E-04	4.1E-06 5.3E-05 2.9E-05 2.5E-04	4.1E 4.7E 1.9E 1.6E	-05 -05	0. 0. 0.	4.1E-06 5.0E-05 2.1E-05 1.7E-04
TOTAL	2.4E-04	3.4E-04	2.3E	-04	0.	2.5E-04
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	6.6E-04 8.5E-03 6.2E-03 3.7E-02	7.0E-04 9.1E-03 6.4E-03 3.7E-02	5.8E-03 4.4E-02 2.2E-02 9.7E-02	4.5E-04 5.2E-03 3.6E-03 2.2E-02	6.7E-04 8.6E-03 6.2E-03 3.7E-02	6.9E-04 8.8E-03 6.6E-03 3.8E-02
TOTAL	5.2E-02	5.3E-02	1.7E-01	3.1E-02	5.2E-02	5.4E-02

Production/Consumption factors:

Produce: 0.042

Milk: 0.26

Meat: 0.066

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Do All Nuclides to Total B		Direct Dose from Noble Gase to Air and Total Body	es .
Drinking Water Fish/Shellfish Shoreline Recreation	1.2E-05	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	3.1E-05 <1%		
Ingestion Dose to Any Organ (ADULT	GI-LLI)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	1.9E-05 5.4E-05	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	7.3E-05 <1%	TOTAL	3.1E-02 <1%

Site: J. A. FITZPATRICK

OSWEGO, NY

Location:

N 43.5239°

W 76.3983°

Population Data

Total Population Within 2-to-80-km Region: 8.7E+05

Major Metropolitan Centers Within Region:

Center		Population	Loc	cat	ion
Syracuse	MSA	660,000			SSE
Rome		44,000	80	km	ESE
Auburn		31,000	66	km	SSW
Watertown	1	29,000	64	km	NE
Kingston		23,000	79	km	N

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.6E+07 kilogram Milk: 7.0E+08 liter Meat: 3.3E+07 kilogram

Regional Productivity Factor: 0.7

Animal Grazing Factor: 0.5

Site Boundary: 950 meter E Residence: 1,400 meter E Garden: 1,400 meter E Pasture: 3,500 meter SE

Site-Specific Data - Waterborne Pathways via LAKE ONTARIO

Average Effluent Flow from Site: 2.0E+11 L/y

Drinking Water Population:

530,000

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	3.0E-03 5.0E-03	RG 7.3E+05	6.1E-03 8.3E-02	RG RG	
Shellfish		None		None	
Shoreline			5.6E-02	RG	

Notes:

Population consumption of drinking water derived from Nine Mile Point FES, 1974. Dilution factors for population derived from FES, 1973.

J. A. FITZPATRICK

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver	
Infant Child Teen Adult	2.1E-05 3.1E-04 1.6E-04 1.3E-03	2.1E-05 2.8E-04 1.8E-04 1.6E-03	1.7E 1.9E 7.5E 6.4E	-04 -05	2.6E-06 1.5E-04 8.4E-05 5.1E-04	2.2E-05 4.2E-04 2.5E-04 1.7E-03	
TOTAL	1.8E-03	2.1E-03	9.2E	-04	7.5E-04	2.4E-03	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	4.9E-05 5.8E-04 3.8E-04 2.2E-03	5.2E-05 5.5E-04 3.8E-04 2.2E-03	1.4E-04 1.1E-03 5.9E-04 2.8E-03	4.1E-05 4.5E-04 3.1E-04 1.9E-03	5.5E-05 6.1E-04 4.0E-04 2.2E-03	4.9E-05 5.8E-04 4.1E-04 2.3E-03	
TOTAL	3.2E-03	3.2E-03	4.7E-03	2.7E-03	3.3E-03	3.3E-03	

Production/Consumption factors:

Produce: 0.32

Milk: 4.3

Meat: 0.33

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	s
Drinking Water Fish/Shellfish Shoreline Recreation	2.2E-06	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	7.42-03 <1%
TOTAL Ingestion Dose to Any Organ (TEEN LI	3.5E-04 <1% VER)	Iodine and Particulate Dose to Any Organ (CHILD BONE)
Drinking Water Fish/Shellfish	5.7E-05 5.8E-04	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	3.7E-05
TOTAL	5.8E-04 <1%	TOTAL	9.7E-04 <1%

Site: FORT CALHOUN

WASHINGTON CNTY, NE

Location:

N 41.5208°

W 96.0767°

Population Data

Total Population Within 2-to-80-km Region: 7.6E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Omaha MSA	620,000	32 km SSE
Council Bluffs	54,000	34 km SE
Freemont	24,000	36 km WSW
Bellevue	31,000	44 km SSE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 9.7E+07 kilogram

Milk: 7.2E+07 liter Meat: 2.0E+08 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.5

(27,000 cfs)

Site Boundary: 910 meter Residence: 1,400 meter S Garden: 1,400 meter S Pasture: 4,400 meter S

Site-Specific Data - Waterborne Pathways via MISSOURI RIVER

Average Effluent Flow from Site:

5.4E+11 L/y

Average River Flow at Site:

2.4E+13 L/y

Drinking Water Population:

570,000

	Po	pulation	Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	2.3E-02 2.3E-02	RG 1.0E+04	3.2E-02 1.0E+00	RG RG	
Shellfish		None		None	
Shoreline			1.0E+00	RG	

Notes:

Population exposed to drinking water assumed to be Omaha SMSA.

FORT CALHOUN

	Popu	lation Dose	Commitment	s (person-	rem)		
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver	
Infant Child Teen Adult	2.2E-03 2.6E-02 1.0E-02 8.8E-02	2.3E-03 2.8E-02 1.4E-02 1.2E-01	1.7E 1.3E 4.1E 3.0E	-01 -02	1.2E-03 1.4E-02 4.1E-03 2.8E-02	2.8E-03 3.0E-02 1.1E-02 9.0E-02	
TOTAL	1.3E-01	1.7E-01	4.9E	-01	4.7E-02	1.3E-01	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	2.0E-04 3.0E-03 2.0E-03 1.1E-02	2.0E-04 3.0E-03 2.0E-03 1.1E-02	3.9E-04 4.8E-03 2.7E-03 1.4E-02	1.4E-04 6E-03 1.1E-03 6.8E-03	2.0E-04 3.0E-03 2.0E-03 1.1E-02	2.1E-04 3.1E-03 2.1E-03 1.2E-02	
TOTAL	1.7E-02	1.6E-02	2.2E-02	9.6E-03	1.7E-02	1.7E-02	

Production/Consumption factors:

Produce: 0.65

Milk: 0.72

Meat: 3.2

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne	
Ingestion and Direct Do: All Nuclides to Total Bo			Direct Dose from Noble Gase to Air and Total Body	s
Drinking Water Fish/Shellfish Shoreline Recreation	1.3E-01		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.1E-02 <1%
TOTAL	1.3E-01	4%		
Ingestion Dose to Any Organ (ADULT (GI-LLI)		Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	8.2E-04 2.3E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	3.7E-04 1.5E-03 5.3E-04
TOTAL	2.3E-01	2%	TOTAL	2.4E-03 <1%

Site: R. E. GINNA

ONTARIO, NY

Location:

N 43.2778°

W 77.3089°

Population Data

Total Population Within 2-to-80-km Region: 1.2E+06

Major Metropolitan Centers Within Region:

Center	Population	Location		
Rochester MSA Auburn	1,000,000	27 km W 71 km E		
Oswego	19,000	67 km E	NE	
Batavia Geneva	16,000 14,000	78 km W 52 km S		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.6E+07 kilogram Milk: 7.0E+08 liter Meat: 3.3E+07 kilogram

Regional Productivity Factor: 0.6

Animal Grazing Factor: 0.5

Site Boundary: 450 meter Residence: 450 meter S Garden: 450 meter Pasture: 5,000 meter SW

Site-Specific Data - Waterborne Pathways via LAKE ONTARIO

Average Effluent Flow from Site: 6.0E+11 L/y

Drinking Water Population:

560,000

	Po	pulation	Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	1.0E-02 1.0E-02	RG 7.3E+05	5.0E-02 1.0E+00	RG RG	
Shellfish		None	***	None	
Shoreline			1.0E+00	RG	

Notes:

Dilution factors for population derived from FES, 1973.

R. E. GINNA

	Popu	lation Dose	Commitment	s (person-	-rem)		
<u>Waterborne</u>	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	1.9E-03 3.6E-02 3.5E-02 3.7E-01	1.6E-03 1.9E-02 8.3E-03 7.0E-02	2.5E 1.8E 5.7E 4.1E	-01 -02	2.6E-03 8.6E-02 4.2E-02 2.6E-01	3.8E-03 1.1E-01 7.4E-02 4.6E-01	
TOTAL	4.4E-01	9.9E-02	6.7E	-01	3.9E-01	6.5E-01	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	4.6E-03 4.1E-02 1.6E-02 6.9E-02	4.6E-03 4.1E-02 1.6E-02 6.9E-02	5.6E-03 4.7E-02 1.9E-02 7.8E-02	1.8E-02 1.6E-01 4.9E-02 1.6E-01	4.6E-03 4.1E-02 1.6E-02 6.9E-02	4.6E-03 4.1E-02 1.7E-02 7.1E-02	
TOTAL	1.3E-01	1.3E-01	1.5E-01	3.9E-01	1.3E-01	1.3E-01	

Production/Consumption factors:

Produce: 0.19 Milk: 2.6

Meat: 0.2

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gases to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation TOTAL	9.3E-01	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	2.2E-03 <1%
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (CHILD BONE)
Drinking Water Fish/Shellfish	2.0E-03 1.3E+00	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	3.6E-04 3.5E-02 8.0E-03
TOTAL	1.3E+00 13%	TOTAL	4.3E-02 <1%

Site: GRAND GULF

PORT GIBSON, MS

Location:

N 32.0270°

W 91.2530°

Population Data

Total Population Within 2-to-80-km Region: 3.3E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Vicksburg Tallulah Natches	21,000 9,000 19,000	40 km NNE 45 km NNW 60 km SSW
Brookhaven	10,000	76 km SSE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 86% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 4.4E+06 kilogram Milk: 7.1E+07 liter Meat: 9.9E+07 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.8

Site Boundary: Residence: Garden: Pasture:

700 meter SSE 1,000 meter E 600 meter S 600 meter S

Site-Specific Data - Waterborne Pathways via MISSISSIPPI RIVER

Average Effluent Flow from Site: 2.2E+09 L/y

Average River Flow at Site:

3.8E+14 L/y (430,000 cfs)

Drinking Water Population:

None

	Po	pulation	Individual		
	Mixing	Usage or	Mixing	Usage	
	Ratio	Harvest (kg/y)	Ratio	(kg/y)	
Drinking Water	5.7E-06	None	5.0E-01	None	
Fish	5.7E-06	7.0E+05		RG	
Shellfish Shoreline	5.7E-06	7.0E+03	5.0E-01	None RG	

GRAND GULF

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 2.1E-05 1.8E-05 1.4E-04	0. 1.4E-05 2.9E-05 2.6E-04	0. 8.9E 6.5E 4.3E	-06	0. 9.1E-05 6.6E-05 4.5E-04	0. 2.3E-05 2.0E-05 1.2E-04
TOTAL	1.7E-04	3.0E-04	5.9E	-05	6.0E-04	1.7E-04
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	2.5E-04 2.9E-03 2.0E-03 1.1E-02	2.4E-04 2.8E-03 2.0E-03 1.1E-02	4.8E-03 2.8E-02 1.2E-02 4.8E-02	1.6E-04 1.7E-03 1.2E-03 7.2E-03	2.5E-04 2.9E-03 2.0E-03 1.2E-02	2.5E-04 3.0E-03 2.1E-03 1.2E-02
TOTAL	1.7E-02	1.7E-02	9.4E-02	1.0E-02	1.7E-02	1.7E-02

Production/Consumption factors:

Produce: 0.061 Milk: 1.5

Meat: 3.3

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		<u>Airborne</u>	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.3E-01 <1%
TOTAL	4.0E-01 13%		
Ingestion Dose to Any Organ (ADULT E	ONE)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	None 1.4E+00	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	1.4E+00 14%	TOTAL	2.2E+00 15%

Site: HADDAM NECK

HADDAM NECK, CT

Location:

N 41.4819°

W 72.4992°

Population Data

Total Population Within 2-to-80-km Region: 3.6E+06

Major Metropolitan Centers Within Region:

Center	Population	Loc	ation
Hartfd-New BritMiddletn-Bristol NECMA Springfield NECMA New Haven-Waterbury-Meriden NECMA Bridgeport-Stamford-Norwalk-Danbury NEC New London-Norwich NECMA	600,000 800,000	70 40 66	km NNW km N km WSW km WSW km ESE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 92% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 3.2E+07 kilogram Milk: 4.4E+08 liter Meat: 2.0E+07 kilogram

Regional Productivity Factor: 0.7

Animal Grazing Factor: 0.6

Site Boundary: 480 meter NNW Residence: 750 meter NW Garden: 810 meter NW Pasture: 7,200 meter

Site-Specific Data - Waterborne Pathways via CONN. R. TO LONG ISL. SOUND

Average Effluent Flow from Site: 6.8E+11 L/y

Drinking Water Population:

None

	Po	pulation	Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water Fish	1.0E+00 1.8E-02	None 1.2E+06	1.0E+00	None RG
Shellfish		None		None
Shoreline		***	1.0E+00	RG

Notes:

Population fish harvest is from river (fresh); shellfish harvest is from sound (salt). Individual fish catch is from canal (fresh) (RAB 4-3 1990).

HADDAM NECK

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 1.0E-02 2.0E-02 2.1E-01	0. 7.2E-04 1.1E-03 9.0E-03	0. 2.9E 2.6E 2.1E	-04 -04	0. 5.4E-02 3.3E-02 1.9E-01	0. 5.9E-02 5.0F-02 3.0E-01
TOTAL	2.4E-01	1.1E-02	2.6E	-03	2.8E-01	4.0E-01
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	1.4E-02 1.5E-01 9.5E-02 4.8E-01	1.3E-02 1.5E-01 9.2E-02 4.7E-01	1.3E-02 1.5E-01 9.2E-02 4.7E-01	2.1E-03 1.6E-02 5.2E-03 1.5E-02	1.6E-02 1.6E-01 9.9E-02 4.9E-01	1.4E-02 1.5E-01 9.3E-02 4.7E-01
TOTAL	7.4E-01	7.2E-01	7.2E-01	3.8E-02	7.6E-01	7.2E-01

Production/Consumption factors:

Produce: 0.032 Milk: 0.65

Meat: 0.05

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gase to Air and Total Body	S	
Drinking Water Fish/Shellfish Shoreline Recreation			Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	9.0E-06 1.5E-05 9.2E-06	<1%
TOTAL	2.6E-01	9%			
Ingestion Dose to Any Organ (TEEN LI	VER)		Iodine and Particulate Dose to Any Organ (CHILD LIVE		
Drinking Water Fish/Shellfish	None 3.7E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	7.6E-04 6.3E-03 2.6E-03	
TOTAL	3.7E-01	4%	TOTAL	9.6E-03	<1%

Site: HARRIS

Location:

N 35.6 °

W 79.0 °

Population Data

NEWHILL, NC

Total Population Within 2-to-80-km Region: 1.5E+06

Major Metropolitan Centers Within Region:

Center	Population	Lo	cat	ion
Raleigh-Durham MSA	740,000			NE
Fayetteville MSA	270,000	60	km	SSE
Burlington MSA	108,000	64	km	NW
Chapel Hill	39,000	32	km	NNW
Sanford	14,000	22	km	SW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 99% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.6E+07 kilogram Milk: 1.0E+08 liter Meat: 5.8E+07 kilogram

Regional Productivity Factor: 0.9 Animal Grazing Factor: 0.72

Site Boundary: 2,100 meter SSW
Residence: 2,400 meter NNW
Garden: 2,700 meter NNE
Pasture: 3,500 meter N

Site-Specific Data - Waterborne Pathways via CAPE FEAR RIVER

Average Effluent Flow from Site: 2.6E+10 L/y

Average River Flow at Site: 2.9E+12 L/y (3,200 cfs)

Drinking Water Population: 167,000

Po	pulation	Indivi	dual
Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
9.2E-03 1.0E+00	RG 2.4E+00	1.2E-03 1.6E-02	RG RG
	None		None RG
	Mixing Ratio 9.2E-03 1.0E+00	Ratio Harvest (kg/y) 9.2E-03 RG 1.0E+00 2.4E+00	Mixing Ratio Usage or Harvest (kg/y) Mixing Ratio 9.2E-03 RG 1.2E-03 1.0E+00 2.4E+00 1.6E-02 None

Notes:

Average individual fish consumption rate of $2.4 \, kg/y$ as given in FES, 1974 used in lieu of catch data. One percent of population assumed to obtain fish from undiluted effluent.

HARRIS

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	4.7E-02 5.5E-01 2.4E-01 2.1E+00	4.7E-02 5.7E-01 2.9E-01 2.5E+00	7.4E 7.7E 3.0E 2.4E	-01 -01	4.0E-04 7.3E-02 4.2E-02 2.4E-01	4.7E-02 6.1E-01 2.7E-01 2.2E+00
TOTAL	2.9E+00	3.4E+00	3.6E	+00	3.6E-01	3.1E+00
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	3.1E-03 3.5E-02 2.6E-02 1.6E-01	3.1E-03 3.5E-02 2.6E-02 1.6E-01	3.9E-03 4.0E-02 2.8E-02 1.6E-01	3.1E-03 3.5E-02 2.6E-02 1.5E-01	3.2E-03 3.5E-02 2.6E-02 1.6E-01	3.4E-03 3.8E-02 3.0E-02 1.7E-01
TOTAL	2.2E-01	2.2E-01	2.4E-01	2.2E-01	2.2E-01	2.4E-01

Production/Consumption factors:

Produce: 0.081 Milk: 0.48 Meat: 0.44

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation	3.2E-03 4.2E-03 3.6E-05	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	7.4E-03 <1%		
Ingestion Dose to Any Organ (ADULT (GI-LLI)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	3.3E-03 8.6E-03	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	1.2E-02 <1%	TOTAL	6.2E-03 <1%

Site: E. I. HATCH

BAXLEY, GA

Location:

N 31.9342°

W 82.3444°

Population Data

Total Population Within 2-to-80-km Region: 3.7E+05

Major Metropolitan Centers Within Region:

<u>Center</u> <u>Population</u>				
16,000	80	km	S	
16,000	78	km	NE	
22,000	171		SW	
10,000	67		SW	
11,000	32			
	16,000 16,000 22,000 10,000	16,000 80 16,000 78 22,000 171 10,000 67	16,000 80 km 16,000 78 km 22,000 171 km 10,000 67 km	

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 8.8E+06 kilogram Milk: 7.0E+07 liter Meat: 8.1E+07 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.8

Site Boundary:	1,600 meter	ENE
Residence:	1,800 meter	SW
Garden:	1,900 meter	WSW
Pasture:	1,800 meter	NNW

Site-Specific Data - Waterborne Pathways via ALTAMAHA RIVER

Average Effluent Flow from Site:

6.7E+09 L/y

Average River Flow at Site:

1.2E+13 L/y

(13,000 cfs)

Drinking Water Population:

None

Population		Individual		
Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
5.7E-04 5.7E-04	None 6.3E+05	1.0E-01	None RG	
	None	***	None RG	
	Mixing Ratio 5.7E-04 5.7E-04	Ratio Harvest (kg/y) 5.7E-04 None 5.7E-04 6.3E+05	Mixing Usage or Mixing Ratio Harvest (kg/y) Ratio 5.7E-04 None 5.7E-04 6.3E+05 1.0E-01 None	

Commercial catch plus 3 pounds of game fish per year taken from river by average person according to FES, 1972.

Site-specific bioaccumulation factors used for cesium and zinc (ODCM 1984, p.1.2-4).

E. I. HATCH

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 9.5E-03 1.6E-02 1.7E-01	0. 1.2E-03 2.5E-03 2.2E-02	0. 2.9E 2.1E 1.4E	-03 -03	0. 4.6E-02 2.8E-02 1.6E-01	0. 4.8E-02 4.0E-02 2.4E-01
TOTAL	1.9E-01	2.6E-02	1.98	-02	2.4E-01	3.3E-01
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	7.7E-04 9.4E-03 6.3E-03 3.6E-02	7.8E-04 9.2E-03 6.3E-03 3.6E-02	1.2E-02 7.0E-02 3.0E-02 1.1E-01	4.4E-04 4.7E-03 3.2E-03 1.9E-02	8.2E-04 9.7E-03 6.5E-03 3.6E-02	7.5E-04 9.4E-03 6.5E-03 3.7E-02
TOTAL	5.3E-02	5.3E-02	2.2E-01	2.8E-02	5.4E-02	5.4E-02

Production/Consumption factors:

Produce: 0.12

Milk: 1.4

Meat: 2.7

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	5.9E-02 <19
TOTAL	5.8E-01 19%		
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	None 8.6E-01	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	None
TOTAL	8.6E-01 9%	TOTAL	1.3E-01 <19

Site: HOPE CREEK SALEM COUNTY, NJ

Location:

N 39.5733°

W 75.4667°

Population Data

Total Population Within 2-to-80-km Region: 4.9E+06

Major Metropolitan Centers Within Region:

Center	Population	Location		
Philadelphia PMSA	4,900,000	64 km NNE		
Wilmington PMSA	580,000	30 km N		
Vineland-Millville-Bridgeton PMSA	140,000	38 km E		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 99% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.4E+07 kilogram Milk: 2.7E+08 liter Meat: 2.4E+07 kilogram

Regional Productivity Factor: 0.8

Animal Grazing Factor: 0.6

Site Boundary: Residence: Garden: Pasture:

200 meter SW 6,900 meter NNE 6,900 meter NNE 7,800 meter

Site-Specific Data - Waterborne Pathways via DELAWARE RIVER AND BAY

Average Effluent Flow from Site: 5.6E+10 L/y

Average River Flow at Site: Drinking Water Population:

1.5E+13 L/y (16,500 cfs)

None

	Po	pulation	Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water		None		None	
Fish	3.8E-03	3.6E+05	5.0E-02	RG	
Shellfish	3.8E-03	1.6E+05	5.0E-02	RG	
Shoreline			5.0E-02	RG	

HOPE CREEK

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 5.9E-02 4.0E-02 2.4E-01	0. 2.7E-02 5.7E-02 5.1E-01	0. 5.0E 4.5E 3.5E	-05	0. 4.2E-02 2.9E-02 1.9E-01	0. 9.8E-02 8.9E-02 5.5E-01
TOTAL	3.4E-01	6.0E-01	4.5E	-04	2.6E-01	7.4E-01
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	5.7E-04 7.5E-03 5.1E-03 2.9E-02	6.1E-04 7.2E-03 5.2E-03 2.9E-02	5.2E-04 7.1E-03 5.0E-03 2.8E-02	2.3E-04 2.4E-03 1.7E-03 1.0E-02	6.2E-04 7.8E-03 5.3E-03 2.9E-02	5.6E-04 7.6E-03 5.5E-03 3.0E-02
TOTAL	4.2E-02	4.2E-02	4.1E-02	1.4E-02	4.3E-02	4.4E-02

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Meat: 0.049

Produce: 0.061 Milk: 0.33

Waterborne			Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation			Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	2.0E-02 <1%
TOTAL	1.3E-01	4%		
Ingestion Dose to Any Organ (ADULT G	I-LLI)		Iodine and Particulate Dose to Any Organ (CHILD LIVE	
Drinking Water Fish/Shellfish	None 3.1E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	4.9E-05 1.9E-04 8.9E-05
TOTAL	3.1E-01	3%	TOTAL	3.3E-04 <1%

Notes:

Production/Consumption factors:

Site: INDIAN POINT

BUCHANAN, NY

Location:

N 41.2714°

W 73.9525°

Population Data

Total Population Within 2-to-80-km Region: 1.6E+07

Major Metropolitan Centers Within Region:

Center	Population	Loc	cat	ion
New York PMSA	8,500,000	57	km	S
Newark PMSA	1,800,000	62	km	S
Nassau-Suffok PMSA	2,600,000	70	km	SSE
Jersey City PMSA	550,000	61	km	S
Bergen-Passaic PMSA	1,300,000	44	km	SSW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.6E+07 kilogram

Milk: 7.0E+08 liter Meat: 3.3E+07 kilogram

380 meter

Regional Productivity Factor: 0.8

Animal Grazing Factor: 0.5

SSW

Site Boundary: Residence: Garden:

Pasture:

1,500 meter 1.300 meter

SSW S 8.000 meter SW

Site-Specific Data - Waterborne Pathways via HUDSON RIVER

Average Effluent Flow from Site:

2.3E+12 L/y

Average River Flow at Site:

1.8E+13 L/y

(20,000 cfs)

Drinking Water Population:

None

	Po	pulation	Indivi	duai
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water Fish	1.3E-01 1.3E-01	None RG	2.0E-01	None
Shellfish		None	2.0E-01	RG
Shoreline		***	2.0E-01	RG

Notes:

Average individual fish consumption rates as given in Table A-1 used in lieu of catch data. One percent of population assumed to obtain 10% of fish from river according to FES, 1972. Site-specific bioaccumulation factors used for cesium, silver, and niobium (ODCM 1991, p.2-11).

INDIAN POINT

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 1.4E-03 2.6E-03 2.8E-02	0. 1.7E-04 2.7E-04 2.2E-03	0. 3.6E 2.6E 1.7E	-03	0. 6.5E-03 3.9E-03 2.3E-02	0. 7.4E-03 6.3E-03 3.8E-02
TOTAL	3.2E-02	2.6E-03	2.48	-02	3.3E-02	5.2E-02
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	6.9E-02 6.1E-01 3.5E-01 1.9E+00	6.9E-02 6.1E-01 3.5E-01 1.9E+00	1.2E-01 9.1E-01 4.9E-01 2.5E+00	2.0E-01 1.6E+00 6.5E-01 2.7E+00	6.9E-02 6.1E-01 3.5E-01 1.9E+00	7.1E-02 6.4E-01 3.9E-01 2.1E+00
TOTAL	2.9E+00	2.9E+00	4.0E+00	5.1E+00	2.9E+00	3.1E+00

Production/Consumption factors:

Produce: 0.02

Milk: 0.27 Meat: 0.021

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gases to Air and Total Body		
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence		2%
TOTAL	5.0E-03 <1%			
Ingestion Dose to Any Organ (TEEN 1.1	VER)	Iodine and Particulate Dose to Any Organ (CHILD BONE)		
Drinking Water Fish/Shellfish	None 7.1E-03	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	7.1E-03 <1%	TOTAL	1.4E-01	<1%

No milk cows reported to be within 5 miles so default cow pasture set at 5 miles.

Site: KEWAUNEE CARLTON, WI

Location:

N 44.3431°

W 87.5361°

Population Data

Total Population Within 2-to-80-km Region: 6.5E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Greenbay MSA	190,000	44 km NW
Appleton-Oshkosh-Neenah MSA	320,000	72 km W
Sheboygan MSA	100,000	65 km SSW
Manitowoc	33,000	29 km SSW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 97% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.2E+07 kilogram Milk: 1.2E+09 liter Meat: 1.0E+08 kilogram

Regional Productivity Factor: 0.5

Animal Grazing Factor: 0.5

1,300 meter Site Boundary: Residence: 1,600 meter

Garden: 1,600 meter Pasture: 1,600 meter W

Site-Specific Data - Waterborne Pathways via LAKE MICHIGAN

Average Effluent Flow from Site:

6.1E+11 L/y

Drinking Water Population:

260,000

	Po	pulation	Indivi	dual	
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	8.2E-03 1.0E-02	RG 1.1E+00	1.9E-02 1.0E+00	RG RG	
Shellfish		None		None	
Shoreline	***	***	1.0E+00	RG	

Population-weighted mixing ratio used for population drinking water.

Average individual fish consumption rates as given in FES, used in lieu of catch data.

Population fish mixing ratio reduced 1/10 that of FES, 1972, to account for lake mixing.

KEWAUNEE

	Popu	lation Dose	Commitment	ts (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	8.2E-04 9.2E-03 3.5E-03 3.0E-02	8.2E-04 9.9E-03 5.0E-03 4.3E-02	8.18 9.18 3.58 3.08	-03 -03	4.6E-06 8.2E-05 3.2E-05 2.3E-04	8.1E-04 9.1E-03 3.5E-03 3.0E-02
TOTAL	4.4E-02	5.9E-02	4.3E	-02	3.5E-04	4.3E-02
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	4.8E-05 7.4E-04 4.3E-04 2.3E-03	4.8E-05 7.4E-04 4.3E-04 2.3E-03	4.8E-05 7.4E-04 4.3E-04 2.3E-03	1.2E-06 1.3E-05 9.5E-06 5.8E-05	4.8E-05 7.4E-04 4.3E-04 2.3E-03	4.8E-05 7.4E-04 4.3E-04 2.3E-03
TOTAL	3.5E-03	3.5E-03	3.5E-03	8.1E-05	3.5E-03	3.5E-03

Production/Consumption factors:

Produce: 0.28 Milk: 6.9

Meat: 0.98

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Do: All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	1.9E-03 <1%		
Ingestion Dose to Any Organ (ADULT (GI-LLI)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	7.2E-04 4.8E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	4.9E-02 <1%	TOTAL	3.9E-04 <1%

Site: LACROSSE

GENOA, WI

Location:

N 43.5583°

W 91.2306°

Population Data

Total Population Within 2-to-80-km Region: 3.6E+05

Major Metropolitan Centers Within Region:

Center	Population	Location		
La Crosse MSA	98,000	27 km N		
Winona	25,000	64 km WNW		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.2E+07 kilogram Milk: 1.2E+09 liter Meat: 1.0E+08 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.5

Site Boundary: 340 meter ENE Residence: 600 meter ENE Garden: 600 meter ENE Pasture: 1,000 meter ENE

Site-Specific Data - Waterborne Pathways via MISSISSIPPI RIVER

Average Effluent Flow from Site: 4.0E+09 L/y

Average River Flow at Site:

2.5E+13 L/y (28,000 cfs)

Drinking Water Population:

None

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	1.6E-04	None RG	4.9E-02	None RG	
Shellfish		None		None	
Shoreline	***		4.9E-02	RG	

Notes:

Fifty percent of population assumed to obtain fish from river at average consumption rates.

LACROSSE

	Popu	lation Dose	Commitment	s (person-	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 3.2E-03 6.0E-03 6.6E-02	0. 2.4E-04 4.9E-04 4.1E-03	0. 8.5E 7.7E 6.1E	-08 -08	0. 2.2E-02 1.3E-02 7.5E-02	0. 2.1E-02 1.7E-02 1.0E-01
TOTAL	7.6E-02	4.8E-03	7.8E	-07	1.1E-01	1.4E-01
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	1.0E-06 1.3E-04 5.5E-05 2.5E-04	3.3E-07 1.3E-05 9.9E-06 4.9E-05	2.9E-07 6.6E-06 4.0E-06 2.2E-05	3.8E-06 5.0E-04 2.3E-04 1.0E-03	3.4E-07 7.2E-06 4.3E-06 2.3E-05	6.7E-07 1.2E-05 8.5E-06 3.8E-05
TOTAL	4.3E-04	7.2E-05	3.3E-05	1.8E-03	3.5E-05	5.9E-05

Production/Consumption factors:

Produce: 1.0

Milk: 25.0

Meat: 3.5

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gases to Air and Total Body		
Drinking Water Fish/Shellfish Shoreline Recreation	10000		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	None None None	<1% <1% <1%
TOTAL	4.8E-01	16%			
Ingestion Dose to Any Organ (TEEN LI	VER)		Iodine and Particulate Dose to Any Organ (CHILD BONE)		
Drinking Water Fish/Shellfish	None 7.5E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	5.1E-08 1.2E-04 1.0E-05	
TOTAL	7.5E-01	7%	TOTAL	1.3E-04	<1%

Site: LASALLE

SENECA, IL

Location:

N 41.2439°

W 88.6708°

Population Data

Total Population Within 2-to-80-km Region: 1.1E+06

Major Metropolitan Centers Within Region:

Center	Population	Location		
Joliet PMSA	390,000	59 km NNE		
Aurora-Elgin PMSA	360,000	65 km NNE		
Kankakee MSA	96,000	69 km ESE		
Dekalb	35,000	77 km N		
Naperville	85,000	73 km NE		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.1E+08 kilogram Milk: 1.8E+08 liter Meat: 1.9E+08 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.5

840 meter Site Boundary: ESE Residence: 1,100 meter SW Garden: 1,100 meter SW Pasture: 1,600 meter WNW

Site-Specific Data - Waterborne Pathways via ILLINOIS RIVER

Average Effluent Flow from Site: 1.9E+06 L/y

Average River Flow at Site:

1.2E+13 L/y

(13,700 cfs)

Drinking Water Population:

None

	Population		Individual	
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water	1.6E-07	None		None
Fish	1.6E-07	RG	***	None
Shellfish		None	***	None
Shoreline	***			RG

Notes:

Water use by population negligible, due to past history of river used for disposal of Chicago sewage.

LASALLE

	Popu	lation Dose	Commitment	s (person-r	em)		
Waterborne	Total Body	GI-LLI	Thyro	oid .	Bone	Liver	
Infant Child Teen Adult TOTAL	0. 0. 0. 0.	0. 0. 0. 0.	0. 0. 0.	0		0. 0. 0.	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	1.7E-04 2.2E-03 1.5E-03 8.6E-03	1.7E-04 2.2E-03 1.5E-03 9.0E-03	1.3E-03 1.1E-02 5.1E-03 2.2E-02	1.2E-04 1.4E-03 1.0E-03 6.0E-03	1.7E-04 2.2E-03 1.5E-03 8.6E-03	1.7E-04 2.2E-03 1.6E-03 8.9E-03	
TOTAL	1.2E-02	1.3E-02	4.0E-02	8.5E-03	1.2E-02	1.3E-02	

Production/Consumption factors:

Produce: 0.49

Milk: 1.1

Meat: 2.0

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and lotal Body	S
Drinking Water Fish/Shellfish Shoreline Recreation	9.3E-09	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.7E-05 <1%
TOTAL	7.7E-06 <1%		
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	1.9E-07 1.1E-05	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	1.1E-05 <1%	TOTAL	5.1E-03 <1%

Site: LIMERICK POTTSTOWN, PA

Location:

N 40.2242°

W 75.5875°

Population Data

Total Population Within 2-to-80-km Region: 6.8E+06

Major Metropolitan Centers Within Region:

Center	Population	Location		
Philadelphia PMSA	4,900,000	40 km ESE		
Allentown-Bethlehem-Easton PMSA Reading MSA	690,000 340,000	42 km ENE 34 km WNW		
Lancaster MSA Wilmington PMSA	420,000 580,000	68 km WSW 56 km S		
Trenton PMSA	330,000	71 km E		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 5.3E+07 kilogram Milk: 5.3E+08 liter Meat: 5.4E+07 kilogram

Site Boundary:

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.6

790 meter NE 970 meter ESE 970 meter ESE

Garden: Pasture:

Residence:

1,800 meter ESE

Site-Specific Data - Waterborne Pathways via SCHUYLKILL RIVER

Average Effluent Flow from Site: 1.3E+10 L/y

2.7E+12 L/y

(3,010 cfs)

Average River Flow at Site: Drinking Water Population: 3,000,000

	Po	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)		
Drinking Water	4.8E-03	RG	4.8E-03	RG		
Fish		None	1.3E-02	RG		
Shellfish		None	***	None		
Shoreline			1.3E-02	RG		

LIMERICK

	Popu	lation Dose	Commitment	s (person-	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	1.1E-02 1.3E-01 4.9E-02 4.2E-01	1.0E-02 1.2E-01 5.3E-02 4.7E-01	8.9E 9.9E 3.8E 3.2E	-02 -02	1.4E-02 1.5E-01 4.2E-02 2.9E-01	1.3E-02 1.3E-01 5.1E-02 4.1E-01
TOTAL	6.1E-01	6.5E-01	4.7E	-01	4.9E-01	6.1E-01
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	2.7E-03 3.0E-02 2.2E-02 1.3E-01	2.7E-03 3.0E-02 2.2E-02 1.3E-01	6.0E-03 4.9E-02 3.0E-02 1.6E-01	2.7E-03 3.0E-C2 2.2E-02 1.3E-01	2.7E-03 3.0E-02 2.2E-02 1.3E-01	2.9E-03 3.2E-02 2.5E-02 1.4E-01
TOTAL	1.9E-01	1.9E-01	2.5E-01	1.9E-01	1.9E-01	2.0E-01

Production/Consumption factors:

Produce: 0.036

Milk: 0.53

Meat: 0.089

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation	1.9E-04 3.3E-03 4.5E-06	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	3.5E-03 <1%		
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	1.4E-04 5.3E-03	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	3.4E-04 None 1.9E-02
TOTAL	5.4E-03 <1%	TOTAL	2.0E-02 <1%

Site: MAINE YANKEE

LINCOLN COUNTY, ME

Location:

N 43.9506°

W 69.6961°

Population Data

Total Population Within 2-to-80-km Region: 6.5E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Portland NECMA	240,000	56 km WSW
Lewiston-Auburn NECMA	110,000	45 km WNW
Augusta	21,000	41 km N
Biddeford	21,000	80 km SW
Waterville	17,000	67 km N

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 74% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.4E+08 kilogram Milk: 6.6E+07 liter Meat: 4.3E+06 kilogram

Regional Productivity Factor: 0.6

Animal Grazing Factor: 0.5

Site Boundary: Residence: Garden: Pasture:

670 meter ESE 700 meter SE 900 meter SSE 5,500 meter NE

Site-Specific Data - Waterborne Pathways via ATLANTIC OCEAN

Average Effluent Flow from Site: 6.8E+11 L/y

Drinking Water Population:

None

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water		None		None	
Fish	1.0E-03	RG	1.0E-01	RG	
Shellfish	2.0E-03	RG	1.0E-01	RG	
Shoreline			4.0E-02	RG	

Notes:

Average individual fish consumption rates as given in Table A-1 used in lieu of catch data.

MAINE YANKEE

	Popu	lation Dose	Commitment	s (person-	rea)		
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver	
Infant Child Teen Adult	0. 4.5E-04 2.9E-04 1.9E-03	0. 1.5E-03 3.2E-03 2.8E-02	0. 1.3E 9.3E 6.3E	-05	0. 1.8E-03 1.0E-03 6.0E-03	0. 1.1E-03 8.4E-04 4.9E-03	
TOTAL	2.6E-03	3.3E-02	8.5E	-04	8.8E-03	6.8E-03	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	1.2E-04 1.6E-03 1.1E-03 6.2E-03	1.2E-04 1.5E-03 1.1E-03 6.2E-03	1.2E-03 1.7E-02 7.0E-03 2.8E-02	1.3E-04 1.9E-03 1.1E-03 5.8E-03	1.4E-04 1.7E-03 1.1E-03 6.2E-03	1.3E-04 1.7E-03 1.2E-03 6.6E-03	
TOTAL	8.9F-03	8.9E-03	5.3E-02	8.9E-03	9.2E-03	9.6E-03	

Production/Consumption factors:

Produce: 1.1

Milk: 0.46

Meat: 0.05

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		<u>Airborne</u>	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	s
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	1.1E-03 <1%		
Ingestion Dose to Any Organ (ADULT G	I-LLI)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	None 1.8E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	4.3E-03 2.6E-02 5.5E-03
TOTAL	1.8E-02 <1%	TOTAL	3.6E-02 <1%

Site: McGUIRE

CORNELIUS, NC

Location:

N 35.4322°

W 80.9483°

Population Data

Total Population Within 2-to-80-km Region: 1.9E+06

Major Metropolitan Centers Within Region:

Center	Population	Location		
Charlotte-Gastonia-Rock Hill MSA	1,200,000	25 km S		
Kannapolis	30,000	30 km E		
Salisbury	23,000	51 km ENE		
Hickory	28,000	49 km NW		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 93% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.6E+07 kilogram Milk: 1.0E+08 liter Meat: 5.8E+07 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.7

Site Boundary: 810 meter NNE 810 meter Residence: ENE Garden: 1,400 meter SE Pasture: 2,100 meter ESE

Site-Specific Data - Waterborne Pathways via LAKE NORMAN ON CATAWBA RIVER

Average Effluent Flow from Site:

3.5E+12 L/y

Average River Flow at Site:

2.3E+12 L/y

(2,604 cfs)

Drinking Water Population: 630,000

	Por	oulation	Indivi	dua1
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kq/y)
Drinking Water Fish	3.3E-01 1.8E+00	RG 1.3E+05	2.4E+00 2.4E+00	RG RG
Shellfish		None		None
Shoreline		***	2.4E+00	RG

Notes:

Edible harvest of fish from downstream reservoirs derived from creel surveys obtained from James T. Thornton, Duke Power Company.

Mixing ratios greater than 1 account for low river flow in comparison to plant discharge; revised for population.

McGUIRE

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	4.6E-02 5.2E-01 2.1E-01 1.8E+00	4.7E-02 5.6E-01 2.8E-01 2.4E+00	6.4E 6.4E 2.4E 1.9E	-01 -01	1.3E-03 3.8E-02 3.8E-02 3.0E-01	4.7E-02 5.5E-01 2.2E-01 1.8E+00	
TOTAL	2.6E+00	3.3E+00	2.98	+00	1.62-01	2.6E+00	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	2.9E-03 3.7E-02 2.7E-02 1.6E-01	2.9E-03 3.7E-02 2.7E-02 1.6E-01	5.5E-03 5.4E-02 3.4E-02 1.9E-01	2.0E-03 2.2E-02 1.6E-02 9.6E-02	2.9E-03 3.8E-02 2.7E-02 1.6E-01	3.1E-03 3.9E-02 2.9E-02 1.7E-01	
TOTAL	2.3E-01	2.3E-01	2.8E-01	1.4E-01	2.3E-01	2.4E-01	

Production/Consumption factors:

Produce: 0.063

Milk: 0.38

Meat: 0.35

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne		
Ingestion and Direct Dr.s All Nuclides to Total Bo			Direct Dose from Noble Gase to Air and Total Body	S	
Drinking Water Fish/Shellfish Shoreline Recreation	2.3E-02 1.3E-02 6.7E-05		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence		1%
TOTAL	3.7E-02	1%			
Ingestion Dose to Any Organ (ADULT G	aI-LLI)		Iodine and Particulate Dose to Any Organ (INFANT THY		
Drinking Water Fish/Shellfish	2.6E-02 7.6E-02		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	1.0E-01	1%	TOTAL	2.7E-02	<1%

Notes:

mixing ratio for drinking water population based on letter from T.C. McMeekin, Duke Power, to US NRC 8/0

Site: MILLSTONE

WATERFORD, CT

Location: N 41.3086°

W 72.1681°

Population Data

Total Population Within 2-to-80-km Region: 2.7E+06

Major Metropolitan Centers Within Region:

Center	Population	Location		
Hartfd-New BritMiddletn-Bristol NECMA New Haven-Waterbury-Meriden NECMA	1,100,000	67 km NW 64 km W		
New London-Norwich NECMA Providence-Pawtucket-Woonsocket NECMA	250,000 920,000	8 km NNE 78 km NE		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-9 TO 31-DEC-9 95% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 3.2E+07 kilogram Milk: 4.4E+08 liter Meat: 2.0E+07 kilogram

Regional Productivity Factor: 0.6

Animal Grazing Factor: 0.6

Site Boundary: 570 meter NNE Residence: 1.800 meter ESE 2,100 meter ESE Garden: 3,200 meter ENE Pasture:

Site-Specific Data - Waterborne Pathways via NIANTIC BAY

Average Effluent Flow from Site: 2.9E+12 L/y

Drinking Water Population:

None

	Population		Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water		None		None
Fish	2.5E-02	1.2E+06	3.3E-01	RG
Shellfish	2.5E-02	8.9E+05	3.3E-01	RG
Shoreline		***	1.4E-01	RG

Notes:

Site-specific bioaccumulation factors for oysters used for silver and zinc.

Discharge recirculation factor of 1.025 used for all nuclides (RAB 4-3 1990, p.4).

MILLSTONE

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 6.2E-01 4.3E-01 2.6E+00	0. 2.3E-01 4.9E-01 4.5E+00	0. 6.5E 4.6E 3.0E	-03	0. 4.5E-01 3.0E-01 2.0E+00	0. 1.0E+00 9.2E-01 5.7E+00
TOTAL	3.6E+00	5.2E+00	4.1E	-02	2.7E+00	7.6E+00
Airborne	Total Body	Gī-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	2.3E-03 2.6E-02 1.7E-02 9.0E-02	2.3E-03 2.5E-02 1.7E-02 9.0E-02	2.0E-02 1.1E-01 5.0E-02 2.0E-01	7.9E-04 8.6E-03 6.0E-03 3.6E-02	2.5E-03 2.6E-02 1.7E-02 9.0E-02	2.5E-03 2.7E-02 1.8E-02 9.2E-02
TOTAL	1.3E-01	1.3E-01	3.8E-01	5.0E-02	1.3E-01	1.4E-01

Production/Consumption factors:

Produce: 0.037

Milk: 0.75

Meat: 0.057

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne			
Ingestion and Direct Dose from All Nuclides to Total Body			Direct Dose from Noble Gases to Air and Total Body		
Drinking Water Fish/Shellfish Shoreline Recreation			Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence		
TOTAL	8.2E-02	3%			
Ingestion Dose to Any Organ (ADULT LIVER)		Iodine and Particulate Dose to Any Organ (INFANT THYROID)			
Drinking Water Fish/Shellfish	None 1.8E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	1.8E-01	2%	TOTAL	3.3E-02 <1%	

Site: MONTICELLO

MONTICELLO, MN

Location:

N 45.3333°

W 93.8483°

Population Data

Total Population Within 2-to-80-km Region: 2.4E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Minneapolis-St. Paul MSA	2,500,000	60 km SE
St. Cloud MSA	190,000	36 km NW
Bloomington	66,000	72 km SE
Edina	46,000	63 km SE
Richfield	36,000	67 km SE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-91 TO 31-DEC-91 90% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.2E+08 kilogram Milk: 4.0E+08 liter Meat: 1.1E+08 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.5

Site Boundary: 950 meter ESE Residence: 970 meter SW Garden: 1,100 meter SSW Pasture: 4,000 meter ESE

Site-Specific Data - Waterborne Pathways --- None

Average Effluent Flow from Site:

--- L/y

Drinking Water Population:

None

	Po	pulation	Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water		None		None	
Fish		None		None	
Shellfish		None	***	None	
Shoreline				None	

Notes:

No waterborne pathways.

MONTICELLO

	Popu	lation Dose	Commitment	s (person-	rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult		(No Li	quid Releas	es)		
TOTAL						
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child	1.7E-03 2.3E-02	1.7E-03 2.3E-02 1.4E-02	5.0E-02 3.5E-01 1.5E-01	7.6E-04 8.7E-03 5.3E-03	1.9E-03 2.3E-02 1.4E-02	1.6E-03 2.3E-02 1.5E-02
Teen Adult	1.4E-02 7.8E-02	7.8E-02	5.7E-01	2.9E-02	8.0E-02	7.9E-02

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Meat: 0.56

Milk: 1.3

Waterborne		Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S	
Drinking Water Fish/Shellfish Shoreline Recreation	None None None	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence		<1%
TOTAL	None			
Ingestion Dose to Any Organ (ADULT L	IVER)	Iodine and Particulate Dose to Any Organ (INFANT THY		
Drinking Water Fish/Shellfish	None None	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	None	TOTAL	1.7E-01	1%

Notes:

Production/Consumption factors:
Produce: 0.27

Site: NINE MILE POINT OSWEGO, NY

Location: N 43.5222°

W 76.4100°

Population Data

Total Population Within 2-to-80-km Region: 8.7E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Syracuse MSA	660,000	56 km SSE
Auburn	31,000	67 km NE
Watertown	29,000	64 km NE
Oswego	19,000	11 km SW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.6E+07 kilogram Milk: 7.0E+08 liter Meat: 3.3E+07 kilogram

Regional Productivity Factor: 0.7

Animal Grazing Factor: 0.5

Site Boundary: Residence:

Garden: Pasture: 1,400 meter SW

1,900 meter WSW 8,900 meter ESE

640 meter

ENE

Site-Specific Data - Waterborne Pathways via LAKE ONTARIO

Average Effluent Flow from Site: 4.9E+10 L/y

Drinking Water Population:

550,000

	Pot	pulation	Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	1.0E-02 3.3E-03	RG 7.3E+05	2.5E-02 1.0E+00	RG RG	
Shellfish		None		None	
Shoreline			8.3E-02	RG	

NINE MILE POINT

	Popu	lation Dose	Commitment	ts (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	2.7E-03 4.8E-02 2.1E-02 1.4E-01	3.0E-03 2.8E-02 2.7E-02 2.5E-01	7.78 8.78 3.38 2.88	-03 -03	6.3E-03 8.2E-02 2.8E-02 2.0E-01	3.1E-03 5.3E-02 3.3E-02 2.2E-01	
TOTAL	2.1E-01	3.1E-01	4.18	-02	3.2E-01	3.1E-01	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	1.8E-04 2.5E-03 1.4E-03 7.3E-03	2.1E-04 2.1E-03 1.4E-03 7.7E-03	1.4E-03 9.7E-03 4.1E-03 1.6E-02	1.1E-04 2.0E-03 9.9E-04 4.9E-03	2.6E-03	1.5E-04 2.1E-03 1.4E-03 7.2E-03	
TOTAL	1.2E-02	1.2E-02	3.1E-02	8.0E-03	1.2E-02	1.1E-02	

Production/Consumption factors:

Produce: 0.32 Milk: 4.3 Meat: 0.33

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	s	
Drinking Water Fish/Shellfish Shoreline Recreation TOTAL	3.1E-01	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.7E-04 <	<1%
Ingestion Dose to Any Organ (ADULT L	IVER)	Iodine and Particulate Dose to Any Organ (INFANT THY		
Drinking Water Fish/Shellfish	5.3E-04 6.9E-01	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	6.9E-01 7%	TOTAL	1.7E-03 <	1%

Site: NORTH ANNA

Location:

N 38.0608°

W 77.7906°

Population Data

LOUISA COUNTY, VA

Total Population Within 2-to-80-km Region: 1.2E+06

Major Metropolitan Centers Within Region:

Center	Population	Loc	cat	ion
Richmond-Petersburg MSA Charlottesville MSA Fredericksburg Culpeper Ashland	870,000 130,000 19,000 8,600 5,900	63 40 54	km km	NE NNW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 3.5E+07 kilogram Milk: 1.5E+08 liter Meat: 7.4E+07 kilogram

Animal Grazing Factor: 0.7 Regional Productivity Factor: 0.9

Site Boundary: 1,400 meter SE Residence: 2,200 meter SE 1,500 meter SSE Garden: SSW 9.000 meter Pasture:

Site-Specific Data - Waterborne Pathways via LAKE ANNA

Average Effluent Flow from Site: 2.5E+12 L/y

Drinking Water Population:

None

	Po	pulation	Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	1.0E-03	None 7.3E+00	6.8E-01 1.0E+00	RG RG	
Shellfish		None		None	
Shoreline			1.0E+00	RG	

Notes:

Average individual fish consumption rate as given in FES, 1973, used in lieu of catch data. Discharge recirculation factor of 16 used for Cs-137 and 10 for Cs-134 (ODCM Rev 2, p.53)

NORTH ANNA

	Popu	lation Dose	Commitment	ts (person	-)*er/)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	0. 7.1E-03 1.3E-02 1.4E-01	0. 2.7E-03 5.1E-03 4.4E-02	0. 8.78 7.08 5.28	-04	0. 3.8E-02 2.3E-02 1.3E-01	0. 4.1E-02 3.4E-02 2.0E-01	
TOTAL	1.6E-01	5.2E-02	6.78	E-03	1.9E-01	2.8E-01	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	1.9E-03 2.4E-02 1.6E-02 9.1E-02	1.9E-03 2.4E-02 1.6E-02 9.1E-02	2.3E-02 1.4E-01 6.7E-02 2.7E-01	9.8E-04 1.1E-02 7.6E-03 4.5E-02	1.6E-02	2.0E-03 2.4E-02 1.7E-02 9.4E-02	
TOTAL	1.3E-01	1.3E-01	5.0E-01	6.4E-02	1.3E-01	1.4E-01	

Production/Consumption factors:

Produce: 0.13 Milk: 0.85 Meat: 0.68

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gases to Air and Total Body
Drinking Water Fish/Shellfish Shoreline Recreation	1.5E-01 2.5E-01 4.5E-04	Air Gamma at SB (mrad) 2.3E-02 <1% Air Beta at SB (mrad) 4.7E-02 <1% Total Body at Residence 6.6E-03 <1%
TOTAL	4.0E-01 13	
Ingestion Dose to Any Organ (CHILD L	IVER)	Iodine and Particulate Dose to Any Organ (CHILD LUNG)
Drinking Hater Fish/Shellfish	2.0E-01 3.3E-01	Inhalation at Residence 1.1E-02 Veg/Prod. from Garden 3.4E-02 Milk/Meat from Pasture 6.7E-03
TOTAL	5.3E-01 5	TOTAL 5.2E-02 <1%

Site: OCONEE

OCONEE COUNTY, SC

Location:

N 34.7917°

W 82.8986°

Population Data

Total Population Within 2-to-80-km Region: 1.0E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Greenville-Spartenburg MSA	640,000	46 km E
Anderson	26,000	39 km SE
Easley	15,000	27 km E
Greer	10,000	64 km ENE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 97% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.5E+06 kilogram

Milk: 5.7E+07 liter Meat: 5.0E+07 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.7

Site Boundary: 5,600 meter S Residence: 5,600 meter S Garden: S 1,600 meter Pasture: 4,000 meter NNE

Site-Specific Data - Waterborne Pathways via HARTWELL RESERVOIR ON KEOWEE R

Average Effluent Flow from Site:

1.2E+12 L/y

Average River Flow at Site:

9.8E+11 L/y

(1,100 cfs) None

Drinking Water Population:

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	1.3E+00	RG RG	1.0E+00	None RG	
Shellfish		None		None	
Shoreline			1.0E+00	RG	

Notes:

Average individual fish consumption rates as given in Table A-1 used in lieu of catch data. Ten percent of population assumed to obtain 10% of fish harvested from Hartwell Reservoir according to FES, 1972.

OCONEE

	Popu	lation Dose	Commitment	s (person-	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 3.3E-02 6.2E-02 6.7E-01	0. 7.2E-02 1.5E-01 1.3E+00	0. 5.9E 4.4E 3.0E	-03	0. 1.6E-01 9.8E-02 5.7E-01	0. 1.8E-01 1.6E-01 9.3E-01
TOTAL	7.7E-01	1.5E+00	4.0E	-02	8.3E-01	1.3E+00
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	2.4E-03 2.8E-02 2.0E-02 1.2E-01	2.4E-03 2.8E-02 2.0E-02 1.2E-01	8.3E-03 6.2E-02 3.5E-02 1.7E-01	2.2E-03 2.5E-02 1.8E-02 1.1E-01	2.4E-03 2.8E-02 2.0E-02 1.2E-01	2.5E-03 2.9E-02 2.2E-02 1.3E-01
TOTAL	1.7E-01	1.7E-01	2.8E-01	1.5E-01	1.7E-01	1.8E-01

Production/Consumption factors:

Produce: 0.037 Milk: 0.43

Meat: 0.61

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gase to Air and Total Body	S	
Drinking Water Fish/Shellfish Shoreline Recreation			Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence		<1%
TOTAL	7.4E-02	2%			
Ingestion Dose to Any Organ (ADULT (GI-LLI)		Iodine and Particulate Dose to Any Organ (INFANT THY		
Drinking Water Fish/Shellfish	None 1.6E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	1.6E-01	2%	TOTAL	3.7E-02	<1%

Site: OYSTER CREEK

OYSTER CREEK, NJ

Location: N 38.8142°

W 74.2064°

Population Data

Total Population Within 2-to-80-km Region: 3.7E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
New Brunswick-Sayreville PMSA	630,000	77 km N
Long Branch-Asbury Park PMSA	510,000	57 km NNE
Trenton PMSA	320,000	66 km SSW
Atlantic City MSA	320,000	55 km SSW
Camden	87,000	79 km W

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.4E+07 kilogram Milk: 2.7E+08 liter Meat: 2.4E+07 kilogram

Regional Productivity Factor: 0.5

Animal Grazing Factor: 0.6

Site Boundary: Residence: Garden:

510 meter 970 meter NNE 510 meter SE

Pasture:

8,000 meter

Site-Specific Data - Waterborne Pathways via BARNEGAT BAY

Average Effluent Flow from Site: 0. L/y

Drinking Water Population:

None

	Population		Indivi	dua1
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water		None		None
Fish		None		None
Shellfish	***	None		None
Shoreline		***		RG

OYSTER CREEK

	Popu	lation Dose	Commitment	s (person-	rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult		(No Li	quid Releas	es)		
TOTAL						
Airborne						
ALT DOTTICE	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	8.3E-04 9.3E-03 6.7E-03 4.0E-02	8.0E-04 9.1E-03 6.8E-03 4.0E-02	7hyroid 2.6E-02 1.6E-01 6.7E-02 2.5E-01	8.9E-04 1.0E-02 6.8E-03 3.9E-02	8.7E-04 9.4E-03 6.8E-03 4.0E-02	8.6E-04 1.0E-02 7.6E-03 4.3E-02

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Meat: 0.041

Milk: 0.28

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation	None None None	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	3.4E-04 <1%
TOTAL	None <1%		
Ingestion Dose to Any Organ (ADULT G	I-LLI)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	None None	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	None <1%	TOTAL	3.1E-02 <1%

Notes:

Production/Consumption factors:
Produce: 0.051

No milk cows animals reported to be within 5 miles so default cow pasture set at 5 miles.

Site: PALISADES

COVERT TOWNSHIP, MI

Location:

N 42.3222°

W 86.3153°

Population Data

Total Population Within 2-to-80-km Region: 1.1E+06

Major Metropolitan Centers Within Region:

Population	Location
220,000	61 km E 76 km SSE
31,000	53 km NNE 25 km SSW
	220,000 160,000

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 6.8E+07 kilogram Milk: 2.9E+08 liter Meat: 4.5E+07 kilogram

Regional Productivity Factor: 0.6

Animal Grazing Factor: 0.5

Site Boundary: 770 meter SSE Residence: 810 meter S Garden: 810 meter S Pasture: 5,000 meter ESE

Site-Specific Data - Waterborne Pathways via LAKE MICHIGAN

Average Effluent Flow from Site: 1.2E+11 L/y

Drinking Water Population:

51,000

	Population		Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water Fish	3.5E-03 1.0E-03	RG 7.3E+00	1.0E-03 6.7E-02	RG RG
Shellfish		None		None
Shoreline			6.7E-02	RG

Notes:

Average individual fish consumption rate of 20 g/d as given in FES, 1974, used in lieu of catch data.

Population-weighted mixing ratio used for population drinking water.

PALISADES

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver	
Infant Child Teen Adult	9.1E-05 1.3E-03 8.5E-04 8.2E-03	9.1E-05 1.1E-03 4.6E-04 3.9E-03	9.1E 1.1E 4.3E 3.7E	-03 -04	1.7E-06 1.5E-03 8.7E-04 5.0E-03	9.3E-05 2.5E-03 1.6E-03 1.1E-02	
TOTAL	1.0E-02	5.5E-03	5.2E	-03	7.4E-03	1.5E-02	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	7.6E-05 9.4E-04 6.0E-04 3.3E-03	7.4E-05 9.3E-04 5.9E-04 3.2E-03	9.3E-04 5.9E-03 2.5E-03 9.2E-03	3.3E-05 3.9E-04 2.6E-04 1.5E-03	7.8E-05 9.4E-04 6.0E-04 3.3E-03	7.7E-05 9.6E-04 6.3E-04 3.4E-03	
TOTAL	4.9E-03	4.8E-03	1.9E-02	2.2E-03	4.9E-03	5.0E-03	

Production/Consumption factors:

Produce: 0.19

Milk: 1.2

Meat: 0.31

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	s
Drinking Water Fish/Shellfish Shoreline Recreation	5.1E-05 1.3E-03 8.9E-07	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	6.0E-03 <1%
TOTAL	1.3E-03 <1%		
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	3.6E-05 1.9E-03	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	9.4E-04 6.9E-03 1.6E-03
TOTAL	2.0E-03 <1%	TOTAL	9.4E-03 <1%

Site: PALO VERDE

WINTERSBURG, AZ

Location:

N 33,4200°

W112.8683°

Population Data

Total Population Within 2-to-80-km Region: 1.3E+06

Major Metropolitan Centers Within Region:

Center Population Location Phoenix MSA 2,100,000 64 km E Avondale 49 km E 16,200

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.2E+07 kilogram Milk: 2.3E+07 liter Meat: 2.1E+07 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.1

Site Boundary: Residence: Garden: Pasture:

2,400 meter 7,500 meter SSW 4,300 meter ENE 8,000 meter ENE

Site-Specific Data - Waterborne Pathways via NONE

Average Effluent Flow from Site: 0. L/y

Drinking Water Population:

None

	Population		Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water		None		None
Fish		None		None
Shellfish		None		None
Shoreline				RG

Notes:

Milk cows fed from dry lot 90% of time according to FES, 1975. No waterborne pathways.

PALO VERDE

	Popu	lation Dose	Commitment	ts (person-	rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult TOTAL		(No Li	quid Releas	ses)			
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	6.5E-03 1.1E-01 7.7E-02 4.6E-01	6.5E-03 1.1E-01 7.8E-02 4.6E-01	7.6E-03 1.2E-01 8.5E-02 4.9E-01	1.7E-03 1.9E-02 1.4E-02 8.5E-02	6.5E-03 1.1E-01 7.7E-02 4.6E-01	6.6E-03 1.1E-01 8.0E-02 4.6E-01	
TOTAL	6.5E-01	6.5E-01	7.1E-01	1.2E-01	6.5E-01	6.6E-01	

Production/Consumption factors:

Produce: 0.04

Milk: 0.12

Meat: 0.18

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation	None None None	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	None <1%		
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	None None	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	None <1%	TOTAL	2.1E-02 <1%

Site: PEACH BOTTOM

YORK COUNTY, PA

Location:

N 39.7589°

W 76.2692°

Population Data

Total Population Within 2-to-80-km Region: 4.3E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Baltimore MSA	2,400,000	60 km SSW
Harrisburg-Lebanon-Carlisle MSA	590,000	77 km NNW
Wilmington MSA	580,000	62 km E
Lancaster MSA	420,000	31 km N
York MSA	420,000	45 km NW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 90% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 5.3E+07 kilogram

Milk: 5.3E+08 liter Meat: 5.4E+07 kilogram

Regional Productivity Factor: 0.95

Animal Grazing Factor: 0.6

Site Boundary: Residence: Garden: Pasture:

1,100 meter SSE 1,100 meter SSE 1,100 meter SSE 2,100 meter SSW

Site-Specific Data - Waterborne Pathways via SUSQUEHANNA RIVER

Average Effluent Flow from Site:

8.5E+10 L/y

Average River Flow at Site:

3.2E+13 L/y

(36,000 cfs)

Drinking Water Population:

2,200,000

	Population		Individual	
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water Fish	2.6E-03 2.6E-03	RG RG	1.1E-01 5.6E-01	RG RG
Shellfish		None		None
Shoreline			1.8E-01	RG

Notes:

Average individual fish consumption rates as given in Table A-1 used in lieu of catch data. Ten percent of population assumed to obtain 10% of fish from downstream waters according to FES, 1973.

PEACH BOTTOM

	Popu	lation Dose	Commitment	s (person-	rem)		
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver	
Infant Child Teen Adult	3.3E-03 4.7E-02 1.7E-02 1.3E-01	1.1E-03 1.3E-02 5.8E-03 4.9E-02	9.7E 1.1E 4.0E 3.4E	-02 -03	9.3E-03 1.4E-01 5.1E-02 4.0E-01	9.9E-04 1.1E-02 4.2E-03 3.5E-02	
TOTAL	2.0E-01	6.9E-02	5.0E	-02	6.0E-01	5.2E-02	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	5.9E-03 6.7E-02 4.8E-02 2.8E-01	5.9E-03 6.5E-02 4.7E-02 2.8E-01	6.9E-02 3.9E-01 1.7E-01 6.7E-01	5.5E-03 6.0E-02 4.3E-02 2.6E-01	6.1E-03 6.7E-02 4.8E-02 2.8E-01	6.1E-03 6.9E-02 5.1E-02 2.9E-01	
TOTAL	4.0E-01	4.0E-01	1.3E+00	3.6E-01	4.0E-01	4.2E-01	

Production/Consumption factors:

Produce: 0.06

Milk: 0.88

Meat: 0.15

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.0E-03 <1%
TOTAL	2.0E-02 <1%		
Ingestion Dose to Any Organ (ADULT B	ONE)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	1.0E-02 5.0E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	None
TOTAL	6.0E-02 <1%	TOTAL	5.3E-02 <1%

Site: PERRY

NORTH PERRY, OH

Location:

N 41.8008°

W 81.1433°

Population Data

Total Population Within 2-to-80-km Region: 2.4E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Cleveland PMSA	1,800,000	53 km SW
Akron PMSA	660,000	80 km SSW
Warren	51,000	70 km SE
Ashtabula	22,000	35 km NE
Painesville	16,000	11 km SW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 99% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 6.9E+07 kilogram Milk: 3.7E+06 liter Meat: 1.2E+08 kilogram

Regional Productivity Factor: 0.45

Animal Grazing Factor: 0.5

NE

WSW

Site Boundary: 640 meter Residence: 1,100 meter Garden: 1,100 meter WSW 1.800 meter ESE Pasture:

Site-Specific Data - Waterborne Pathways via LAKE ERIE

Average Effluent Flow from Site: 6.0E+10 L/y

Drinking Water Population: 1,700,000

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	3.2E-03 1.3E-02	RG RG	3.1E-02 9.2E-02	RG RG	
Shellfish		None	***	None	
Shoreline			6.9E-02	RG	

PERRY

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	8.5F-04 1.1E-01 9.7E-02 7.4E-01	9.2E-04 4.3E-02 7.8E-02 7.1E-01	2.8E 2.9E 1.2E 8.7E	-02 -02	9.8E-04 1.5E-01 9.3E-02 5.7E-01	9.7E-04 2.4E-01 2.1E-01 1.3E+00
TOTAL	9.5E-01	8.3E-01	1.3E	-01	8.2E-01	1.8E+00
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	6.9E-04 8.1E-03 5.8E-03 3.4E-02	6.8E-04 7.6E-03 5.6E-03 3.4E-02	1.9E-02 3.7E-01 1.9E-01 9.2E-01	7.2E-04 8.8E-03 6.0E-03 3.5E-02	7.3E-04 8.6E-03 6.1E-03 3.6E-02	7.0E-04 7.8E-03 5.9E-03 3.5E-02
TOTAL	4.9E-02	4.8E-02	1.5E+00	5.1E-02	5.1E-02	4.9E-02

Production/Consumption factors:

Produce: 0.066

Milk: 0.005 Meat: 0.27

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	9.6E-03 <1%		
Ingestion Dose to Any Organ (ADULT L	IVER)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	4.9E-04 1.6E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	2.5E-01 None 5.0E+00
TOTAL	1.7E-02 <1%	TOTAL	5.3E+00 359

Site: PILGRIM PLYMOUTH. MA

Location: N 41.9444° W 70.5794°

Population Data

Total Population Within 2-to-80-km Region: 4.5E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Bos-Lawrence-Salem-Lowell-Brcktn NECMA Providence-Pawtucket-Woonsocket NECMA	3,800,000	61 km NW 70 km W
New Bedford-Fall River-Attleboro NECMA	510,000	45 km SSW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 91% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.0E+07 kilogram Milk: 2.6E+08 liter Meat: 1.6E+07 kilogram

Regional Productivity Factor: 0.3

Animal Grazing Factor: 0.6

Site Boundary: Residence: Garden: Pasture:

360 meter ESE 800 meter ESE 820 meter SE 4.000 meter WSW

Site-Specific Data - Waterborne Pathways via CAPE COD BAY

Average Effluent Flow from Site: 2.6E+09 L/y

Drinking Water Population:

None

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water	***	None		None	
Fish	1.0E-03	2.6E+04	2.0E-01	RG	
Shellfish	2.0E-03	3.1E+04	2.0E-01	RG	
Shoreline			1.0E+00	RG	

PILGRIM

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	0. 7.1E-05 4.8E-05 3.0E-04	0. 9.8E-05 2.0E-04 1.7E-03	0. 2.1E 1.5E 9.7E	-06	0. 1.5E-04 8.4E-05 5.1E-04	0. 9.3E-05 7.2E-05 4.3E-04	
TOTAL	4.2E-04	2.0E-03	1.3E	-05	7.4E-04	5.9E-04	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	1.9E-03 2.2E-02 1.6E-02 9.3E-02	1.9E-03 2.2E-02 1.6E-02 9.4E-02	2.4E-02 1.6E-01 8.2E-02 3.5E-01	1.7E-03 1.9E-02 1.3E-02 7.6E-02	1.6E-02	2.0E-03 2.3E-02 1.7E-02 9.9E-02	
TOTAL	1.3E-01	1.3E-01	6.2E-01	1.1E-01	1.3E-01	1.4E-01	

Production/Consumption factors:

Produce: 0.007

Milk: 0.13

Meat: 0.014

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S	
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gam.na at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.5E-01	<1%
TOTAL	1.2E-02 <1%			
Ingestion Dose to Any Organ (ADULT 6	GI-LLI)	Iodine and Particulate Dose to Any Organ (INFANT THY		
Drinking Water Fish/Shellfish	None 5.1E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	1.1E-01	
TOTAL	5.1E-02 <1%	TOTAL	2.5E-01	2%

Site: POINT BEACH

MANITOWOC CNTY, WI

Location:

N 44.2808°

W 87.5361°

Population Data

Total Population Within 2-to-80-km Region: 6.5E+05

Major Metropolitan Centers Within Region:

Center	Population	Lo	cat	ion	
Greenbay Appleton-Oshkosh-Neenah MSA Sheboygan Manitowoc	96,000 320,000 50,000 33,000	60	km km	NW W SSW SSW	

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.2E+07 kilogram Milk: 1.2E+09 liter Meat: 1.0E+08 kilogram

Regional Productivity Factor: 0.5

Animal Grazing Factor: 0.5

Site Boundary: Residence: Garden: Pasture:

1,300 meter 1,300 meter WNW 1.300 meter WNW 1.300 meter S

Site-Specific Data - Waterborne Pathways via LAKE MICHIGAN

Average Effluent Flow from Site: 6.1E+11 L/y

Drinking Water Population:

260,000

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	2.6E-03 1.3E-02	RG 6.7E+04	1.0E-02 2.0E-01	RG RG	
Shellfish		None		None	
Shoreline	***		2.0E-01	RG	

Notes:

Population-weighted mixing ratio used for population drinking water. Edible fish harvest for population includes both commercial and sport.

POINT BEACH

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver	
Infant Child Teen Adult	4.0E-04 6.6E-03 5.6E-03 5.7E-02	3.8E-04 4.3E-03 1.8E-03 1.5E-02	1.3E 1.0E 3.4E 2.6E	-02 -03	2.5E-04 1.1E-02 5.7E-03 3.4E-02	6.9E-04 1.7E-02 1.1E-02 7.2E-02	
TOTAL	6.9E-02	2.2E-02	4.1E	-02	5.1E-02	1.0E-01	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	2.3E-04 3.6E-03 2.3E-03 1.3E-02	2.1E-04 3.2E-03 1.9E-03 1.1E-02	8.3E-04 7.2E-03 3.5E-03 1.6E-02	2.1E-04 2.0E-03 7.1E-04 2.6E-03	4.8E-04 5.4E-03 2.9E-03 1.4E-02	2.4E-04 3.4E-03 2.1E-03 1.1E-02	
TOTAL	1.9E-02	1.6E-02	2.7E-02	5.5E-03	2.2E-02	1.7E-02	

Production/Consumption factors:

Produce: 0.28 Milk: 6.8

Meat: 0.98

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			<u>Airborne</u>		
Ingestion and Direct Do All Nuclides to Total B			Direct Dose from Noble Gase to Air and Total Body	S	
Drinking Water Fish/Shellfish Shoreline Recreation			Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	2.2E-04 3.4E-04 4.8E-05	<1%
TOTAL	1.1E-01	4%			
Ingestion Dose to Any Organ (TEEN L	IVER)		Iodine and Particulate Dose to Any Organ (INFANT THY		
Drinking Water Fish/Shellfish	3.1E-04 1.5E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	1.8E-04 None 2.6E-02	
TOTAL	1.5E-01	2%	TOTAL	2.6E-02	<1%

Site: PRAIRIE ISLAND RED WING, MN

Location:

N 44.6219°

W 92,6331°

Population Data

Total Population Within 2-to-80-km Region: 2.4E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Minneapolis-St. Paul MSA Rochester MSA Owatonna Faribault	2,200,000 98,000 19,000 16,000	63 km NW 68 km SSE 77 km SW 63 km SW
Red Wing	14,000	10

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-91 TO 31-DEC-91 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.2E+08 kilogram Milk: 4.0E+08 liter Meat: 1.1E+08 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.5

580 meter Site Boundary: WNW Residence: 970 meter WNW 970 meter SSE Garden: Pasture: 3.700 meter S

Site-Specific Data - Waterborne Pathways via MISSISSIPPI RIVER

Average Effluent Flow from Site: 6.0E+11 L/y

Average River Flow at Site:

Drinking Water Population:

None

1.3E+13 L/y (15,000 cfs)

	Population		Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water	4.5E-02	None		None
Fish	4.5E-02	6.8E+05	3.0E-01	RG
Shellfish		None		None
Shoreline	AR 60 PM		3.0E-01	RG

PRAIRIE ISLAND

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 1.1E-03 1.2E-03 1.1E-02	0. 1.6E-03 2.9E-03 2.5E-02	0. 7.1E 5.6E 4.0E	-04	0. 3.0E-03 1.7E-03 1.0E-02	0. 3.2E-03 2.7E-03 1.6E-02
TOTAL	1.4E-02	3.0E-02	5.3E	-03	1.5E-02	2.2E-02
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	3.3E-03 4.8E-02 3.0E-02 1.6E-01	3.3E-03 4.8E-02 3.0E-02 1.6E-01	3.8E-03 5.2E-02 3.1E-02 1.6E-01	1.1E-04 1.3E-03 8.9E-04 5.2E-03	3.3E-03 4.9E-02 3.0E-02 1.6E-01	3.3E-03 4.9E-02 3.0E-02 1.6E-01
TOTAL	2.4E-01	2.4E-01	2.5E-01	7.5E-03	2.4E-01	2.4E-01

Production/Consumption factors:

Produce: 0.26

Milk: 1.3

Meat: 0.55

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	1.4E-03 <1%		
Ingestion Dose to Any Organ (ADULT G	I-LLI)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	None 3.4E-03	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	3.4E-03 <1%	TOTAL	2.2E-02 <1%

Site: QUAD CITIES ROCK ISLAND, IL

Location:

N 41.7261°

W 90.3100°

Population Data

Total Population Within 2-to-80-km Region: 7.3E+05

Major Metropolitan Centers Within Region:

Center	Population	Location		
Davenport-Rock Island-Moline MSA	350,000	30 km SW		
Muscatine	23,000	70 km WSW		
Sterling	15,000	52 km E		
Dixon	15,000	70 km E		
Kewanee	13,000	62 km SSE		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.1E+08 kilogram Milk: 1.8E+08 liter Meat: 1.9E+08 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.5

(47,000 cfs)

Site Boundary:	710	meter	W
Residence:	970	meter	N
Garden:	970	meter	N
Pasture:	2,400	meter	S

Site-Specific Data - Waterborne Pathways via MISSISSIPPI RIVER

Average Effluent Flow from Site:

1.3E+12 L/y

Average River Flow at Site:

Drinking Water Population:

4.2E+13 L/y

350,000

	Po	pulation	Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	3.1E-02 3.1E-02	RG 2.1E+06	3.1E-02 3.8E-01	RG RG	
Shellfish		None		None	
Shoreline			3.8E-01	RG	

Total population of Davenport-Rock Island-Moline MSA assumed to drink river water.

QUAD CITIES

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	1.0E-04 2.3E-03 2.5E-03 2.6E-02	9.2E-05 1.2E-03 8.1E-04 7.1E-03	8.0E 9.0E 3.5E 3.0E	-04 -04	1.4E-04 8.6E-03 4.6E-03 2.7E-02	1.8E-04 8.5E-03 6.2E-03 3.8E-02	
TOTAL	3.1E-02	9.3E-03	4.3E	-03	4.0E-02	5.3E-02	
Airborne	Total Body	GI-LLI	Thyroid	<u>Bone</u>	Liver	Lung	
Infant Child Teen Adult	3.8E-04 6.2E-03 4.0E-03 2.3E-02	3.8E-04 6.5E-03 4.8E-03 2.8E-02	8.8E-04 1.0E-02 5.4E-03 2.6E-02	3.1E-04 4.5E-03 2.5E-03 1.3E-02	4.5E-04 6.6E-03 4.1E-03 2.3E-02	5.1E-04 8.0E-03 5.8E-03 3.0E-02	
TOTAL	3.2E-02	4.0E-02	4.3E-02	2.1E-02	3.3E-02	4.5E-02	

Production/Consumption factors:

Produce: 0.79 Milk: 1.8

Meat: 3.2

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		<u>Airborne</u>	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	es.
Drinking Water Fish/Shellfish Shoreline Recreation TOTAL		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose	
Drinking Water Fish/Shellfish	1.5E-05 5.0E-03	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	1.1E-04 2.1E-03 2.1E-03
TOTAL	5.0E-03 <1%	TOTAL	4.3E-03 <1%

Site: RANCHO SECO

SACRAMENTO CNTY, CA

Location:

N 38.3444°

W121.1200°

Population Data

Total Population Within 2-to-80-km Region: 1.8E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Sacramento MSA	1,500,000	42 km NW
Stockton MSA	480,000	45 km SSW
Modesto MSA	370,000	79 km S
Antioch	62,000	71 km WSW
Davis	46,000	58 km WNW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-90 TO 31-DEC-90 93% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 4.8E+C7 kilogram

Milk: 2.3E+08 liter Meat: 5.0E+07 kilogram

640 meter

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.9

N

ENE

Site Boundary: Residence: Garden:

1,300 meter 800 meter Pasture: 970 meter WSW

Site-Specific Data - Waterborne Pathways via COSUMNES AND MOKELUMNE RIVERS

Average Effluent Flow from Site: 1.8E+10 L/y

Drinking Water Population:

None

	Population		Individual	
	Mixing Ratio H	Usage or arvest (kg/y)	Mixing Ratio	Usage (kg/y)
Irrigated Foods		None	1.0E+00	RG
Fish	4.8E-03	7.3E+00	1.0E+00	RG
Shellfish		None	1.0E+00	RG
Shoreline	***		1.0E+00	RG

Notes:

One percent of population assumed to obtain fish from river.

Average individual fish consumption rate of 7.3 kg/y as given in FES, 1973 used in lieu of catch data. Irrigated food products pathway used in lieu of drinking water for individual.

RANCHO SECO

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 8.0E-05 1.5E-04 1.6E-03	0. 1.0E-05 1.2E-05 9.7E-05	0. 7.2E 6.5E 5.1E	-06	0. 4.8E-04 2.9E-04 1.6E-03	0. 4.8E-04 4.0E-04 2.4E-03
TOTAL	1.8E-03	1.2E-04	6.5E	-05	2.4E-03	3.3E-03
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	4.7E-04 6.4E-03 4.1E-03 2.2E-02	4.7E-04 6.4E-03 4.1E-03 2.2E-02	4.7E-04 6.4E-03 4.1E-03 2.2E-02	7.4E-09 8.3E-08 6.0E-08 3.7E-07	4.7E-04 6.4E-03 4.1E-03 2.2E-02	4.7E-04 6.4E-03 4.1E-03 2.2E-02
TOTAL	3.3E-02	3.3E-02	3.3E-02	5.2E-07	3.3E-02	3.3E-02

Production/Consumption factors:

Produce: 0.14 Milk: 1.0

Meat: 0.35

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gases to Air and Total Body		
Irrigated Foods Fish/Shellfish Shoreline Recreation	9.1E-02		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.7E-05	<1%
TOTAL	2.5E-01	8%			
Ingestion Dose to Any Organ (CHILD L	.IVER)		Iodine and Particulate Dose to Any Organ (CHILD LUNG)		
Irrigated Foods Fish/Shellfish	3.4E-01 1.3E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	6.4E-03	
TOTAL	4.7E-01	5%	TOTAL	1.1E-02	<1%

Site: RIVER BEND

ST. FRANCISVILLE, L

Location:

N 30.7572°

W 91.3317°

Population Data

Total Population Within 2-to-80-km Region: 7.4E+05

Major Metropolitan Centers Within Region:

Center	Population	Location		
Baton Rouge MSA	530,000	38 km SSE		
Denham Springs	8,400	39 km SE		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 97% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.8E+06 kilogram Milk: 7.8E+07 liter Meat: 6.1E+07 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.75

Site Boundary: 990 meter WNW NW Residence: 1,300 meter Garden: 1,300 meter NW 7,000 meter NNW Pasture:

Site-Specific Data - Waterborne Pathways via MISSISSIPPI RIVER

Average Effluent Flow from Site:

4.1E+09 L/y

Average River Flow at Site:

3.7E+14 L/y (419,000 cfs)

Drinking Water Population:

None

	Po	pulation	Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water		None		None	
Fish	1.1E-05	4.6E+00	1.3E-02	RG	
Shellfish	1.1E-05	4.6E+00	1.3E-02	RG	
Shoreline			1.3E-02	RG	

Notes:

Average individual fish and shellfish consumption rates as given in FES used in lieu of catch data.

RIVER BEND

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyro	oid	Bone	Liver
Infant Child Teen Adult	0. 7.9E-04 5.5E-04 3.3E-03	0. 1.9E-03 4.3E-03 4.0E-02	0. 5.6E- 4.1E- 2.7E-	-06	0. 2.7E-04 1.8E-04 1.1E-03	0. 2.3E-03 2.1E-03 1.3E-02
TOTAL	4.7E-03	4.6E-02	3.7E-	-05	1.6E-03	1.8E-02
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lurg
Infant Child Teen Adult	9.3E-04 1.0E-02 7.5E-03 4.5E-02	9.2E-04 1.0E-02 7.5E-03 4.5E-02	7.3E-03 4.5E-02 2.1E-02 9.2E-02	9.3E-04 1.0E-02 7.4E-03 4.5E-02	9.4E-04 1.0E-02 7.5E-03 4.5E-02	9.4E-04 1.1E-02 7.9E-03 4.7E-02
TOTAL	6.3E-02	6.3E-02	1.7E-01	6.3E-02	6.4E-02	6.7E-02

Production/Consumption factors:

Produce: 0.011 Milk: 0.73 Meat: 0.93

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	7.6E-02 <1%
TOTAL	3.7E-01 12%		
Ingestion Dose to Any Organ (ADULT 6	GI-LLI)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	4.7E-06 4.6E+00	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL.	4.6E+00 46%	TOTAL	6.0E-02 <1%

Site: H. B. ROBINSON

HARTSVILLE, SC

Location:

N 34.4858°

W 80.1586°

Population Data

Total Population Within 2-to-80-km Region: 7.6E+05

Major Metropolitan Centers Within Region:

Center		Population	Location
Florence	MSA	110,000	42 km ESE 56 km SSW
Monroe Lancaster		16,000 8,900	74 km NNW 66 km WNW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.5E+06 kilogram Milk: 5.7E+07 liter Meat: 5.0E+07 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.8

Site Boundary: Residence: Garden: Pasture:

480 meter 480 meter

420 meter

2,900 meter NNE

S

SSE

SE

Site-Specific Data - Waterborne Pathways via LAKE ROBINSON

Average Effluent Flow from Site: 8.3E+11 L/y

Drinking Water Population:

None

	Por	oulation	Indivi	dual
	Mixing	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water Fish	2.0E-01	None 1.8E+00	1.0E+00	None RG
Shellfish Shoreline		None	1.0E+00	None RG

Average individual fish consumption rates as given in FES, 1975, used in lieu of catch data. Ten percent of population obtain fish taken from downstream waters diluted by a factor of 0.2 according to FES, 1974.

H. B. ROBINSON

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 5.3E-04 7.4E-04 7.3E-03	0. 1.5E-03 2.9E-03 2.5E-02	0. 1.4E 1.3E 1.0E	-04	0. 2.0E-03 1.2E-03 6.7E-03	0. 2.1E-03 1.7E-03 1.0E-02
TOTAL	8.6E-03	2.9E-02	1.3E	-03	9.9E-03	1.4E-02
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	2.0E-05 3.0E-04 2.0E-04 1.2E-03	2.0E-05 3.0E-04 2.1E-04 1.2E-03	2.0E-05 3.0E-04 2.1E-04 1.2E-03	9.9E-07 1.1E-05 7.9E-06 4.8E-05	2.0E-05 3.0E-04 2.0E-04 1.2E-03	2.1E-05 3.1E-04 2.2E-04 1.3E-03
TOTAL	1.7E-03	1.7E-03	1.7E-03	6.7E-05	1.7E-03	1.8E-03

Production/Consumption factors:

Produce: 0.05 Milk: 0.58 Meat: 0.82

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.8E-05 <1%
TOTAL	6.9E-03 <1%		
Ingestion Dose to Any Organ (ADULT G	I-LLI)	Iodine and Particulate Dose to Any Organ (CHILD GI-L	
Drinking Water Fish/Shellfish	None 2.5E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	2.5E-02 <1%	TOTAL	1.1E-04 <1%

Site: SAINT LUCIE

FORT PIERCE, FL

Location: N 27.3486°

W 80.2464°

Population Data

Total Population Within 2-to-80-km Region: 7.8E+05

Major Metropolitan Centers Within Region:

Center	Population	Location	
West Palm Beach	68,000	73 km SSI	E
Ft. Pierce MSA	250,000	14 km NW	
Riviera Beach	28,000	65 km SSI	Ε
Vero Beach	34,000	36 km NNV	W
Palm Beach	10,000	72 km SSI	E

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.8E+07 kilogram Milk: 1.1E+08 liter Meat: 7.2E+07 kilogram

Regional Productivity Factor: 0.5

Animal Grazing Factor: 1.0

Site Boundary: 1,600 meter N Residence: 1,600 meter N 1,600 meter N Garden: 6,800 meter W Pasture:

Site-Specific Data - Waterborne Pathways via ATLANTIC OCEAN

Average Effluent Flow from Site: 3.7E+12 L/y

Drinking Water Population:

None

Po	pulation	Individual		
Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
	None	***	None	
5.0E-03	2.6E+05	1.0E+00	RG	
5.0E-03	2.7E+04	1.0E+00	RG	
		1.0E+00	RG	
	Mixing Ratio 5.0E-03 5.0E-03	Ratio Harvest (kg/y) None 5.0E-03 2.6E+05 5.0E-03 2.7E+04	Mixing Usage or Mixing Ratio Harvest (kg/y) Ratio None 5.0E-03 2.6E+05 1.0E+00 5.0E-03 2.7E+04 1.0E+00	

Notes:

Population mixing ratios taken from FES, 1973.

SAINT LUCIE

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 8.8E-05 6.9E-05 5.3E-04	0. 1.5E-04 2.9E-04 2.4E-03	0. 1.9E 1.4E 9.8E	-05	0. 4.3E-04 2.4E-04 1.4E-03	0. 2.8E-04 2.2E-04 1.3E-03
TOTAL	6.9E-04	2.8E-03	1.3E	-04	2.1E-03	1.8E-03
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	1.2E-03 1.5E-02 1.1E-02 6.4E-02	1.2E-03 1.5E-02 1.1E-02 6.4E-02	7.0E-03 4.9E-02 2.5E-02 1.2E-01	8.8E-04 9.8E-03 7.1E-03 4.3E-02	1.2E-03 1.5E-02 1.1E-02 6.4E-02	1.2E-03 1.6E-02 1.2E-02 6.7E-02
TOTAL	9.1E-02	9.1E-02	2.0E-01	6.1E-02	9.1E-02	9.6E-02

Production/Consumption factors:

Produce: 0.092 Milk: 0.55

Meat: 0.58

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
		Direct Dose from Noble Gase to Air and Total Body	S
		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.1E-02 <1%
TOTAL	6.7E-03 <1%		
Ingestion Dose to Any Organ (ADULT G	I-LLI)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	None 3.0E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	2.0E-03 None 2.1E-02
TOTAL	3.0E-02 <1%	TOTAL	2.3E-02 <1%
	Ingestion and Direct Dos All Nuclides to Total Bo Drinking Water Fish/Shellfish Shoreline Recreation TOTAL Ingestion Dose to Any Organ (ADULT G Drinking Water Fish/Shellfish	Ingestion and Direct Dose from All Nuclides to Total Body Drinking Water None Fish/Shellfish 6.6E-03 Shoreline Recreation 6.8E-05 TOTAL 6.7E-03 <1% Ingestion Dose to Any Organ (ADULT GI-LLI) Drinking Water None Fish/Shellfish 3.0E-02	Ingestion and Direct Dose from All Nuclides to Total Body Drinking Water Fish/Shellfish Shoreline Recreation TOTAL Ingestion Dose to Any Organ Direct Dose from Noble Gase to Air and Total Body Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence Total Body at Residence Indine and Particulate Dose to Any Organ (INFANT THY Drinking Water Fish/Shellfish 3.0E-02 Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture

Site: SALEM SALEM, NJ

Location:

N 39.4628°

W 75.5358°

Population Data

Total Population Within 2-to-80-km Region: 4.9E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Philadelphia PMSA Wilmington PMSA	4,900,000 580,000	63 km NNE 32 km NNW
Vineland-Millville-Bridgeton PMSA	140,000	48 km E

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 99% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.4E+07 kilogram Milk: 2.7E+08 liter Meat: 2.4E+07 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.6

Site Boundary:	1,300 mete	er N
Residence:	7,900 mete	er W
Garden:	7,900 mete	er W
Pasture:	7,900 mete	er l

Site-Specific Data - Waterborne Pathways via DELAWARE RIVER ESTUARY

Average Effluent Flow from Site:

2.6E+12 L/y

Average River Flow at Site:

1.5E+13 L/y (16,500 cfs)

Drinking Water Population:

None

	Pop	ulation	Indivi	dual
	Mixing	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water Fish Shellfish Shoreline	1.8E-01 1.8E-01 1.8E-01	None 3.6E+05 1.6E+05	1.0E+00 1.0E+00 1.0E+00	None RG RG RG

SALEM

	Popu	lation Dose	Commitment	s (person-	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 4.0E-02 3.1E-02 2.2E-01	0. 6.9E-02 1.4E-01 1.3E+00	0. 1.1E 8.1E 5.3E	-03	0. 5.4E-02 3.1E-02 1.8E-01	0. 5.4E-02 4.5E-02 2.7E-01
TOTAL	2.9E-01	1.5E+00	7.3E	-02	2.7E-01	3.7E-01
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	9.6E-03 1.3E-01 9.2E-02 5.2E-01	9.6E-03 1.3E-01 9.2E-02 5.2E-01	1.1E-02 1.4E-01 9.4E-02 5.3E-01	3.4E~03 3.8E-02 2.8E-02 1.7E~01	9.6E-03 1.3E-01 9.2E-02 5.2E-01	9.8E-03 1.3E-01 9.6E-02 5.4E-01
TOTAL	7.5E-01	7.5E-01	7.7E-01	2.4E-01	7.5E-01	7.8E-01

Production/Consumption factors:

Produce: 0.069 Milk: 0.37 Meat: 0.055

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne Ingestion and Direct Dose from All Nuclides to Total Body			Airborne Direct Dose from Noble Gases to Air and Total Body	
TOTAL	3.3E-02	1%		
Ingestion Dose to Any Organ (ADULT GI-LLI)		Iodine and Particulate Dose to Any Organ (CHILD THYROID)		
Drinking Water Fish/Shellfish	None 1.8E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	1.8E-01	2%	TOTAL	2.5E-03 <1%

Site: SAN ONOFRE

CAMP PENDLETON, CA

Location:

N 33.3703°

W117.5569°

Population Data

Total Population Within 2-to-80-km Region: 6.0E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
San Diego PMSA	2,500,000	68 km SSE
Anaheim-Santa Ana PMSA	2,400,000	62 km NW
Long Beach	430,000	75 km NW
Huntington Beach	180,000	61 km N
Riverside	230,000	68 km N
Pomona	130,000	79 km NNW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 4.8E+07 kilogram Milk: 2.3E+08 liter Meat: 5.0E+07 kilogram

Regional Productivity Factor: 0.6

Animal Grazing Factor: 1.0

Site Boundary: Residence: Garden: Pasture:

320 meter WNW 1,500 meter NW 3,100 meter NW 320 meter N

Site-Specific Data - Waterborne Pathways via PACIFIC OCEAN

Average Effluent Flow from Site:

3.3E+12 L/y

Drinking Water Population:

None

	Population		Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water		None		None
Fish	1.0E+00	2.9E+04	1.0E+00	RG
Shellfish	1.0E+00	2.9E+03	1.0E+00	RG
Shoreline			1.0E+00	RG

Notes:

Seafood for population caught in undiluted effluent according to FES, 1973.

No milk animals reported to be within 5 miles so default cow pasture set at 5 miles.

SAN ONOFRE

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	0. 1.1E-03 1.1E-03 9.5E-03	0. 1.7E-03 3.0E-03 2.6E-02	0. 2.8E 2.0E 1.4E	-03	0. 3.2E-03 1.8E-03 1.1E-02	0. 2.9E-03 2.4E-03 1.5E-02	
TOTAL	1.2E-02	3.1E-02	1.98	-02	1.6E-02	2.0E-02	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	1.5E-02 1.7E-01 1.3E-01 7.6E-01	1.5E-02 1.7E-01 1.3E-01 7.5E-01	1.1E-01 6.9E-01 3.4E-01 1.5E+00	1.4E-02 1.5E-01 1.1E-01 6.6E-01	1.5E-02 1.8E-01 1.3E-01 7.6E-01	1.6E-02 1.9E-01 1.4E-01 8.1E-01	
TOTAL	1.1E+00	1.1E+00	2.6E+00	9.4E-01	1.1E+00	1.2E+00	

Production/Consumption factors:

Produce: 0.025 Milk: 0.18

Meat: 0.062

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S	
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	3.4E-01	2%
TOTAL	3.3E-03 <1%			
Ingestion Dose to Any Organ (ADULT G	I-LLI)	Iodine and Particulate Dose to Any Organ (INFANT THY		
Drinking Water Fish/Shellfish	None 9.2E-03	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	9.2E-03 <1%	TOTAL	9.5E+00	63%

Site: SEABROOK

SEABROOK, NH

Location:

N 42.8983°

W 70.8483°

Population Data

Total Population Within 2-to-80-km Region: 4.3E+06

Major Metropolitan Centers Within Region:

Center	Population	Location		
Boston-Lawrence-Salem-Lowell-Brockton_				
NECMA	3,800,000	64 km SSW		
Portsmouth-Dover-Rochester NECMA	350,000	22 km NNE		
Manchester-Nashua NECMA	340,000	51 km W		
Concord	36,000	66 km WNW		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 99% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.7E+06 kilogram Milk: 1.3E+08 liter Meat: 7.9E+06 kilogram

Regional Productivity Factor: 0.4

Animal Grazing Factor: 0.5

Site Boundary: 910 meter SW Residence: 970 meter SW Garden: 970 meter SW Pasture: 5,200 meter SW

Site-Specific Data - Waterborne Pathways via ATLANTIC OCEAN

Average Effluent Flow from Site: 7.3E+11 L/y

Drinking Water Population:

None

	Population		Indivi	dual	
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	2.9E-01	None 5.7E+04	2.5E-02	None RG	
Shellfish		None	2.5E-02	RG	
Shoreline		***	2.5E-02	RG	

Notes:

Population mixing ratio taken from FES, 1974.

SEABROOK

	Popu	lation Dose	Commitment	s (person-	rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 8.3E-04 5.2E-04 3.2E-03	0. 6.5E-04 1.1E-03 8.5E-03	0. 1.5E 1.3E 1.0E	-04 -04	0. 4.0E-03 2.3E-03 1.3E-02	0. 2.3E-03 1.8E-03 1.0E-02
TOTAL	4.6E-03	1.0E-02	1.3E		2.0E-02	1.5E-02
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	1.3E-05 1.8E-04 1.3E-04 7.9E-04	1.3E-05 1.8E-04 1.4E-04 8.1E-04	1.4E-05 1.8E-04 1.4E-04 8.0E-04	7.8E-06 8.7E-05 6.4E-05 3.9E-04	1.3E-05 1.8E-04 1.3E-04 7.9E-04	1.6E-05 2.2E-04 1.7E-04 9.6E-04
TOTAL	1.1E-03	1.1E-03	1.1E-03	5.4E-04	1.1E-03	1.4E-03

Production/Consumption factors:

Produce: 0.001 Milk: 0.091

Meat: 0.009

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	2.8E-04 <1%		
Ingestion Dose to Any Organ (CHILD B	ONE)	Iodine and Particulate Dose to Any Organ (TEEN GI-LL	
Drinking Water Fish/Shellfish	None 1.9E-03	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	8.5E-06 6.4E-05 3.2E-06
TOTAL	1.9E-03 <1%	TOTAL	7.6E-05 <1%

Site: SEOUOYAH

HAMILTON COUNTY, TN

Location:

N 35,2233°

W 85.0878°

Population Data

Total Population Within 2-to-80-km Region: 9.0E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Chattanooga MSA	430,000	28 km SW
Cleveland	30,000	21 km SE
East Ridge	21,000	27 km SSW
Dalton	22,000	50 km S
Athens	12,000	53 km ENE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.1E+07 kilogram Milk: 1.6E+08 liter Meat: 1.2E+08 kilogram

Regional Productivity Factor: 0.25

Animal Grazing Factor: 0.7

Site Boundary: 950 meter Residence: 2,000 meter SSW Garden: 2,700 meter SSW Pasture: 2.100 meter NW

Site-Specific Data - Waterborne Pathways via TENNESSEE RIVER

Average Effluent Flow from Site:

5.0E+09 L/y

Average River Flow at Site:

3.1E+13 L/y

(35,000 cfs)

Drinking Water Population:

235,000

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usag∈ (kg/y)	
Drinking Water Fish	1.6E-04 1.6E-04	RG 3.8E+04	2.0E-04 2.0E-04	RG RG	
Shellfish		None		None	
Shoreline			2.0E-04	RG	

Notes:

Population fish catch data taken from FES, 1974.

Site-specific bioaccumulation factors used for cesium, antimony, and strontium (ODCM 1991, p.130).

SEQUOYAH

	Popu	lation Dose	Commitmen	ts (person	-rem)	
Waterborne	Total Body	GI-LLI	Thy	roid	Bone	Liver
Infant Child Teen Adult	9.2E-03 1.0E-01 4.1E-02 3.6E-01	9.2E-03 1.1E-01 4.5E-02 3.9E-01	1.08 1.18 4.08 3.48	-02	8.6E-04 1.2E-02 4.2E-03 2.6E-02	9.9E-03 1.1E-01 4.4E-02 3.6E-01
TOTAL	5.1E-01	5.5E-01	5.08	-01	4.4E-02	5.3E-01
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	1.1E-03 1.6E-02 1.2E-02 7.1E-02	1.1E-03 1.6E-02 1.2E-02 7.1E-02	1.1E-03 1.6E-02 1.2E-02 7.1E-02	4.3E-04 4.8E-03 3.5E-03 2.1E-02	1.1E-03 1.6E-02 1.2E-02 7.1E-02	1.1E-03 1.6E-02 1.2E-02 7.3E-02
TOTAL	1.0E-01	1.0E-01	1.0E-01	3.0E-02	1.0E-01	1.0E-01

Production/Consumption factors:

Produce: 0.016 Milk: 0.35

Meat: 0.41

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gases to Air and Total Body		
Drinking Water Fish/Shellfish Shoreline Recreation TOTAL		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence		<1%
Ingestion Dose to Any Organ (CHILD L	.IVER)	Iodine and Particulate Dose to Any Organ (CHILD LUNG)		
Drinking Water Fish/Shellfish	2.6E-03 4.8E-03	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	3.3E-03 7.4E-03 6.6E-04	
TOTAL	7.4E-03 <1%	TOTAL	1.1E-02	<1%

Notes:

Discharge recirculation factor 1.7 used to account for reduced river flow (ODCM 1991, p. 58).

Site: SOUTH TEXAS

PALACIOS, TX

Location: N 28.7000°

W 96.2133°

Population Data

Total Population Within 2-to-80-km Region: 2.9E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Bay City Lake Jackson Freeport	18,000 23,000 11,000	19 km NNE 67 km ENE 72 km ENE
Angleton	17,000	74 km NE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.3E+07 kilogram

Milk: 4.3E+07 liter

Meat: 1.1E+08 kilogram

)

Regional Productivity Factor: 0.4

Animal Grazing Factor: 0.9

Site Boundary:	1,500 meter	NNW
Residence:	4,000 meter	WSW
Garden:	4,000 meter	WSW
Pasture:	4,000 meter	WSW

Site-Specific Data - Waterborne Pathways via COLORADO RIVER

Average Effluent Flow from Site:

5.4E+11 L/y

Average River Flow at Site: Drinking Water Population:

5.4E+11 L/y (600 cfs

None

	Population	Individual
	Mixing Usage or Ratio Harvest (kg/y)	Mixing Usage Ratio (kg/y)
Drinking Water Fish	None 1.0E+00 (Riv) 1.1E+05	None 3.3E+01 RG
Shellfish	6.1E-03 (Bay) 8.9E+06	3.3E+01 RG
Shoreline		3.3E+01 RG

Nuclide-dependent recirculation factors taken from ODCM, Rev. 6.

Population mixing ratios and average consumption rates for seafood harvested from river and bay taken from ODCM, Rev. 6.

Individual liquid doses derived from fish caught in Little Robins area (LRA) with mixing ratio at 33 times river flow.

SOUTH TEXAS

	Popu	lation Dose	Commitment	ts (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 1.0E-03 7.7E-04 5.4E-03	0. 2.5E-03 4.7E-03 3.9E-02	0. 2.5E 2.3E 1.8E	-04	0. 3.5E-03 2.0E-03 1.1E-02	0. 2.1E-03 1.7E-03 1.0E-02
TOTAL	7.2E-03	4.6E-02	2.3E	-03	1.7E-02	1.4E-02
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	2.9E-04 4.4E-03 2.9E-03 1.7E-02	2.9E-04 4.4E-03 2.9E-03 1.7E-02	8.7E-04 8.0E-03 4.3E-03 2.2E-02	1.3E-04 1.4E-03 1.0E-03 6.2E-03	2.9E-04 4.4E-03 2.9E-03 1.7E-02	3.0E-04 4.5E-03 3.1E-03 1.8E-02
TOTAL	2.5E-02	2.5E-02	3.5E-02	8.8E-03	2.5E-02	2.6E-02

Production/Consumption factors:

Produce: 0.17 Milk: 0.46 Meat: 1.9

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Do All Nuclides to Total B		Direct Dose from Noble Gase to Air and Total Body	?S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	2.1E-02 <1%
TOTAL	5.4E-03 <1%		
Ingestion Dose to Any Organ (ADULT	GI-LLI)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	None 1.4E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	1.4E-02 <1%	TOTAL	1.7E-02 <1%

Notes:

No milk animals reported to be within 5 miles so milk cows located at beef cattle pasture.

Site: SUMMER

JENKINSVILLE, SC

Location:

N 34.2958°

W 81.3203°

Population Data

Total Population Within 2-to-80-km Region: 9.4E+05

Major Metropolitan Centers Within Region:

Center	Population	Location
Columbia MSA	450,000	42 km SE
Rock Hill	42,000	75 km NNE
Greenwood	21,000	78 km W
Union	9,800	54 km NNW
Laurens	9,700	68 km WNW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 94% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 7.5E+06 kilogram

Milk: 5.7E+07 liter

Meat: 5.0E+07 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.7

Site Boundary: 1,600 meter ENE Residence: 1,800 meter E Garden: 1,800 meter E Pasture: 1,600 meter ENE

Site-Specific Data - Waterborne Pathways via PARR RESERVOIR AND BROAD RIVER

Average Effluent Flow from Site:

1.5E+12 L/y

Average River Flow at Site:

Drinking Water Population:

5.4E+12 L/y 120,000

(6,000 cfs)

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	2.9E-01 2.9E-01	RG 2.2E+00	1.0E+00 1.0E+00	RG RG	
Shellfish Shoreline		None	1.0E+00	None RG	

Notes:

Average individual fish consumption rate of 2.2 kg/y as given in FES, 1973, used in lieu of catch data.

SUMMER

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	1.2E-02 1.7E-01 1.2E-01 1.2E+00	1.2E-02 1.6E-01 9.7E-02 8.3E-01	3.1E 2.9E 1.1E 8.4E	-01 -01	5.0E-04 1.8E-01 1.1E-01 6.3E-01	1.2E-02 3.4E-01 2.3E-01 1.5E+00
TOTAL	1.5E+00	1.1E+00	1.38	+00	9.2E-01	2.1E+00
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	2.6E-04 2.9E-03 2.2E-03 1.3E-02	2.6E-04 2.9E-03 2.2E-03 1.3E-02	4.0E-04 3.7E-03 2.5E-03 1.4E-02	2.6E-04 2.9E-03 2.1E-03 1.3E-02	2.6E-04 2.9E-03 2.2E-03 1.3E-02	2.8E-04 3.2E-03 2.5E-03 1.4E-02
TOTAL	1.8E-02	1.8E-02	2.1E-02	1.8E-02	1.8E-02	2.0E-02

Production/Consumption factors:

Produce: 0.037 Milk: 0.42 Meat: 0.6

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation	3.1E-02 3.2E-02 4.2E-05		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	6.3E-02	2%		
Ingestion Dose to Any Organ (INFANT	THYROID)		Iodine and Particulate Dose to Any Organ (INFANT THY	ROID)
Drinking Water Fish/Shellfish	1.0E-01 None		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	1.0E-01	1%	TOTAL	1.6E-02 <1%

Site: SURRY

SURRY COUNTY, VA

Location:

N 37.1656°

W 76.6983°

Population Data

Total Population Within 2-to-80-km Region: 2.0E+06

Major Metropolitan Centers Within Region:

Center		Population	Location
Norfolk-Virginia Beach-Newport	News MSA	1,400,000	50 km SE
Richmond-Petersburg MSA		870,000	77 km WNW
Williamsburg		12,000	12 km N

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 3.5E+07 kilogram Milk: 1.5E+08 liter Meat: 7.4E+07 kilogram

Usage

(kg/y)

None RG

RG

RG

Regional Productivity Factor: 0.8

Animal Grazing Factor: 0.7

Site Boundary: Residence: Garden:

500 meter N 2,900 meter 3,000 meter SSW 5,900 meter NNW

Pasture:

Site-Specific Data - Waterborne Pathways via JAMES RIVER ESTUARY

Average Effluent Flow from Site:

2.4E+12 L/y

Average River Flow at Site: Drinking Water Population:

2.2E+13 L/y (25,000 cfs) None

Population Individual Mixing Usage or Mixing Ratio Harvest (kg/y) Ratio Drinking Water None Fish 1.1E-01 6.0E+05 2.0E-01 Shellfish 1.1E-01 1.1E+06 2.0E-01 Shoreline 2.0E-01

Flow includes river and saline "mixing flow" of estuary as given in FES, 1972.

SURRY

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	0. 2.0E-03 2.1E-03 1.8E-02	0. 2.2E-03 3.5E-03 3.1E-02	0. 8.5E 7.5E 6.0E	-04	0. 3.1E-03 1.8E-03 1.0E-02	0. 4.1E-03 3.4E-03 2.2E-02	
TOTAL	2.2E-02	3.6E-02	7.6E	-03	1.5E-02	2.9E-02	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	1.1E-03 1.7E-02 1.2E-02 6.8E-02	1.1E-03 1.7E-02 1.2E-02 6.8E-02	2.0E-03 2.3E-02 1.5E-02 7.9E-02	7.0E-05 7.2E-04 4.2E-04 2.2E-03	1.2E-03 1.8E-02 1.2E-02 6.8E-02	1.2E-03 1.8E-02 1.2E-02 6.8E-02	
TOTAL	9.9E-02	9.9E-02	1.2E-01	3.5E-03	1.0E-01	1.0E-01	

Production/Consumption factors:

Produce: 0.072 Milk: 0.46

Meat: 0.37

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gases to Air and Total Body	5
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	3.2E-04 <1%		
Ingestion Dose to Any Organ (ADULT L	IVER)	Iodine and Particulate Dose to Any Organ (TEEN LUNG)	
Drinking Water Fish/Shellfish	None 4.0E-04	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	9.6E-04 1.6E-03 7.3E-04
TOTAL	4.0E-04 <1%	TOTAL	3.2E-03 <1%

Site: SUSQUEHANNA

BERWICK, PA

Location:

N 41.1000°

W 76.1500°

Population Data

Total Population Within 2-to-80-km Region: 1.5E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Williamsport MSA Allentown-Bethlehem MSA	120,000	73 km WNW 79 km SE
Scranton-Wilkes-Barre MSA	730,000	35 km NE
Hazleton	25,000	21 km SE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 5.3E+07 kilogram Milk: 5.3E+08 liter Meat: 5.4E+07 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.6

Site Boundary:	1,100 meter	WSW
Residence:	1,900 meter	WSW
Garden:	1,900 meter	WSW
Pasture:	2,700 meter	WSW

Site-Specific Data - Waterborne Pathways via SUSQUEHANNA RIVER

Average Effluent Flow from Site:

1.4E+10 L/y

Average River Flow at Site: Drinking Water Population:

1.2E+13 L/y

100,000

(13,300 cfs)

	Po	pulation	Indivi	dual
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water Fish	3.3E-03 3.3E-03	RG 4.3E+04	3.1E-03 3.1E-03	RG RG
Shellfish	3.36-03	None		None
Shoreline			3.1E-03	RG

Notes:

Mixing ratios and population fish harvest data taken from letter from Bruce Carson, PP&L Company, January 28, 1992.

SUSQUEHANNA

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	1.4E-03 1.6E-02 6.1E-03 5.2E-02	1.4E-03 1.6E-02 6.4E-03 5.5E-02	1.4E 1.6E 6.0E 5.1E	-02 -03	1.9E-05 2.8E-04 8.4E-05 5.3E-04	1.4E-03 1.6E-02 6.2E-03 5.3E-02	
TOTAL	7.5E-02	7.9E-02	7.4E	-02	9.2E-04	7.6E-02	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	1.5E-03 2.1E-02 1.4E-02 7.6E-02	1.6E-03 2.1E-02 1.4E-02 7.7E-02	1.5E-03 2.1E-02 1.4E-02 7.6E-(/2	2.0E-04 2.2E-03 1.5E-03 9.1E-03	1.6E-03 2.1E-02 1.4E-02 7.6E-02	1.6E-03 2.2E-02 1.5E-02 8.0E-02	
TOTAL	1.1E-01	1.1E-01	1.1E-01	1.3E-02	1.1E-01	1.2E-01	

Production/Consumption factors:

Produce: 0.16 Milk: 2.4

Meat: 0.41

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.1E-02 <
TOTAL	7.4E-04 <1%		
Ingestion Dose to Any Organ (CHILD L	IVER)	Iodine and Particulate Dose to Any Organ (CHILD LIVE	
Drinking Water Fish/Shellfish	9.1E-04 1.2E-04	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	1.0E-03 <1%	TOTAL	2.5E-02 <

Site: THREE MILE ISLAND

THREE MILE ISLAND,

Location:

N 40.1531°

W 76.7250°

Population Data

Total Population Within 2-to-80-km Region: 2.1E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Harrisburg-Lebanon-Carlisle MSA Reading MSA	590,000 340,000	18 km NW 71 km ENE
Lancaster MSA	420,000	38 km ESE
York MSA	420,000	21 km S

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 5.3E+07 kilogram Milk: 5.3E+08 liter Meat: 5.4E+07 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.5

Site Boundary: Residence: Garden: Pasture:

600 meter SE 700 meter 720 meter 1.800 meter E

Site-Specific Data - Waterborne Pathways via SUSQUEHANNA RIVER

Average Effluent Flow from Site:

9.6E+10 L/y

Average River Flow at Site:

3.0E+13 L/y

(34,000 cfs)

Drinking Water Population:

230,000

	Po	pulation	Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	3.2E-03 3.2E-03	RG RG	3.2E-03 2.0E-01	RG RG	
Shellfish		None	***	None	
Shoreline		***	2.0E-01	RG	

Notes:

No fish harvest data given in FES, 1972 so generic consumption rates used (Table A-1). Ten percent of population obtain 25% of their fish from river according to FES, 1972. Nearest full-time real resident is at 700 m east of site.

THREE MILE ISLAND

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	3.3E-03 3.7E-02 1.5E-02 1.3E-01	3.2E-03 3.6E-02 1.4E-02 1.2E-01	3.8E 4.0E 1.5E 1.3E	-02 -02	9.8E-05 3.6E-03 1.8E-03 1.1E-02	3.3E-03 4.0E-02 1.6E-02 1.3E-01	
TOTAL	1.8E-01	1.7E-01	1.9E	-01	1.6E-02	1.9E-01	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	8.7E-03 1.1E-01 7.8E-02 4.4E-01	8.7E-03 1.1E-01 7.8E-02 4.4E-01	2.2E-02 2.0E-01 1.2E-01 6.0E-01	3.1E-03 3.5E-02 2.5E-02 1.5E-01	8.7E-03 1.1E-01 7.8E-02 4.4E-01	8.9E-03 1.2E-01 8.2E-02 4.5E-01	
TOTAL	6.4E-01	6.4E-01	9.5E-01	2.2E-01	6.4E-01	6.6E-01	

Production/Consumption factors:

Produce: 0.13 Milk: 1.9

Meat: 0.32

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S	
Drinking Water Fish/Shellfish Shoreline Recreation TOTAL	2.5E-02	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.2E-01	<1%
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (CHILD THYR		Laur Compa
Drinking Water Fish/Shellfish	5.1E-04 3.5E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	3.6E-02 <1%	TOTAL	1.6E-01	1%

Site: TROJAN

PRESCOTT, OR

Location:

N 46.0408°

W122.8844°

Population Data

Total Population Within 2-to-80-km Region: 1.6E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Portland-Vancouver MSA	1,500,000	60 km SSE
Longview	31,000	12 km NNW
Astoria	10,000	72 km WNW
Forest Grove	14,000	58 km SSW
Centralia	12,000	75 km N

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 6.4E+07 kilogram

Milk: 3.7E+07 liter Meat: 2.6E+07 kilogram

Regional Productivity Factor: 0.9

Animal Grazing Factor: 0.75

Site Boundary: Residence:

Garden: Pasture:

660 meter 1.000 meter NNW 1,000 meter NINW 1,600 meter SSW

Site-Specific Data - Waterborne Pathways via COLUMBIA RIVER

Average Effluent Flow from Site:

6.4E+10 L/y

Average River Flow at Site:

2.1E+14 L/y

(230,000 cfs)

Drinking Water Population:

0,530

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water	3.1E-04	RG	3.0E-04	RG	
Fish Shellfish	3.1E-04	1.0E+06 None	5.2E-02	RG None	
Shoreline		None	5.2E-02	RG	

Notes:

Drinking water population assumed 1/4 of Rainier population, since residents only there part of year. No milk animals located within 5 miles so milk cows located at beef cattle pasture.

TROJAN

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	4.4E-07 8.6E-05 1.3E-04 1.3E-03	4.5E-07 1.7E- 3.2E-04 2.8E-03	4.7E 2.2E 1.6E 1.2E	-05 -05	1.1E-07 4.1E-04 2.5E-04 1.5E-03	4.4E-07 3.7E-04 3.1E-04 1.8E-03
TOTAL	1.6E-03	3.3E-03	1.68	-04	2.1E-03	2.5E-03
Airborne	Total Body	GI-LLI	Thyroid	<u>bา 1e</u>	Liver	Lung
Infant Child Teen Adult	7.2E-04 1.0E-02 7.5E-03 4.4E-02	7.2E-04 1.0E-02 7.5E-03 4.4E-02	8.6E-04 1.2E-02 8.0E-03 4.6E-02	1.1E-04 4.6E-03 3.4E-03 2.0E-02	7.2E-04 1.0E-02 7.5E-03 4.4E-02	7.4E-04 1.1E-02 7.9E-03 4.5E-02
TOTAL	6.2E-02	6.2E-02	6.7E-02	2.9E-02	6.2E-02	6.5E-02

Production/Consumption factors:

Produce: 0.19

Milk: 0.16

Meat: 0.18

Individual Dase Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	s
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	1.1E-01 <1%
TOTAL	5.7E-03 <1%		
Ingestion Dose to Any Organ (ADULT G	I-LLI)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	8.6E-05 1.3E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	1.3E-02 <1%	TOTAL	4.0E-02 <1%

Site: TURKEY POINT DADE COUNTY, FL

Location:

N 25.4350°

W 80.3314°

Population Data

Total Population Within 2-to-80-km Region: 3.2E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Miami-Hialeah PMSA Fort Lauderdale-Hollywood-	1,900,000	41 km NNE
Pompano Beach PMSA Homestead Key Largo	1,300,000 29,000 11,000	79 km NNE 16 km W 42 km S

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.8E+07 kilogram Milk: 1.1E+08 liter Meat: 7.2E+07 kilogram

Regional Productivity Factor: 0.4

Animal Grazing Factor: 1.0

Site Boundary: 2,000 meter SSE 3.400 meter N Residence: 3,400 meter N Garden: 7,200 meter W Pasture:

Site-Specific Data - Waterborne Pathways via BISCAYNE BAY

Average Effluent Flow from Site:

1.9E+11 L/y

Drinking Water Population:

None

	Population		Individual	
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water		None		None
Fish	1.0E-03	None	***	None
Shellfish	2.0E-03	None	***	None
Shoreline		***	1.0E+00	RG

Notes:

Closed cycle cooling so no waterborne population or individual exposures except individual shoreline pathway.

TURKEY POINT

	Popu	lation Dose	Commitment	s (person-	rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 0. 0.	0. 0. 0.	0. 0. 0.	().).).	0. 0. 0.
TOTAL	0.	0.	0.).	0.
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	8.7E-05 9.7E-04 7.1E-04 4.3E-03	8.7E-05 9.7E-04 7.1E-04 4.3E-03	2.0E-04 1.6E-03 9.9E-04 5.3E-03	8.8E-05 9.7E-04 7.1E-04 4.3E-03	8.8E-05 9.7E-04 7.1E-04 4.3E-03	9.3E-05 1.1E-03 8.1E-04 4.6E-03
TOTAL	6.1E-03	6.1E-03	8.1E-03	6.1E-03	6.1E-03	6.6E-03

Individual	Dose	Commi	tments	(mrem) on a	per-unit	basis	and
Per	rcenta	age of	Append	iix I	Design	Objectiv	es	

Meat: 0.11

Waterborne			Airborne				
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gases to Air and Total Body				
Drinking Water Fish/Shellfish Shoreline Recreation	None None 7.7E-04		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence		<1%		
TOTAL	7.7E-04	<1%					
Ingestion Dose to Any Organ ()			Iodine and Particulate Dose to Any Organ (INFANT THYROID)				
Drinking Water Fish/Shellfish	None None		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	2.4E-06 None 6.7E-04			
TOTAL	None	<1%	TOTAL	6.7E-04	<1%		

Notes:

Production/Consumption factors:

Produce: 0.018 Milk: 0.11

Site: VERMONT YANKEE

VERNON. VT

Location:

N 42.7803°

W 72.5158°

Population Data

Total Population Within 2-to-80-km Region: 1.5E+06

Major Metropolitan Centers Within Region:

Center	Population	Location		
Springfield NECMA	600,000	70 km S		
Worcester-Fitchburg-Leominster NECMA	710,000	80 km SE		
Pittsfield NECMA	140,000	71 km SW		
Keene	22,000	26 km NE		
Brattleboro	12,000	10 km NNW		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 97% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 4.4E+06 kilogram Milk: 7.3E+08 liter Meat: 2.7E+07 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.4

Site Boundary: Residence: Garden: Pasture:

400 meter S 2,100 meter NNW 2,100 meter NNW 4,700 meter NW

Site-Specific Data - Waterborne Pathways via CONNECTICUT RIVER AT VERNON PO

Average Effluent Flow from Site:

7.0E+06 L/y

Average River Flow at Site:

8.9E+12 L/y (10,000 cfs)

Drinking Water Population:

None

	Population		Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	7.8E-07 7.8E-07	None RG	3.6E-02 3.6E-02	RG RG	
Shellfish		None		None	
Shoreline			3.6E-02	RG	

VERMONT YANKEE

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 9.3E-09 7.0E-09 4.4E-08	0. 8.9E-08 1.6E-07 1.2E-06	0. 4.7E 3.4E 2.2E	-06	0. 2.3E-08 1.4E-08 7.9E-08	0. 1.5E-08 1.2E-08 7.0E-08
TOTAL	6.0E-08	1.4E-06	3.1E	-05	1.2E-07	9.7E-08
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lunq
Infant Child Teen Adult	2.0E-03 2.2E-02 1.5E-02 8.6E-02	1.9E-03 2.2E-02 1.5E-02 8.8E-02	3.9E-02 2.4E-01 1.1E-01 4.3E-01	1.6E-03 1.7E-02 1.2E-02 6.7E-02	2.0E-03 2.2E-02 1.5E-02 8.7E-02	2.0E-03 2.3E-02 1.7E-02 9.3E-02
TOTAL	1.3E-01	1.3E-01	8.3E-01	9.8E-02	1.3E-01	1.3E-01

Production/Consumption factors:

Produce: 0.015

Milk: 3.7

Meat: 0.23

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		<u>Airborne</u>	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	9.3E-05 <1%		
Ingestion Dose to Any Organ (INFANT	THYROID)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water Fish/Shellfish	9.1E-02 None	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	9.1E-02 <1%	TOTAL	1.1E-01 <1

Notes:

No waterborne pathways

Site: VOGTLE

WAYNESBORO, GA

Location:

N 33.1419°

W 81.7647°

Population Data

Total Population Within 2-to-80-km Region: 6.6E+05

Major Metropolitan Centers Within Region:

Center	Population	Location			
Augusta MSA	400,000	40	km	NNW	
Fort Gordon	9,100	48	km	NW	
Aiken	20,000	45	km	N	
Statesboro	16,000	76	km	S	

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 8.8E+06 kilogram

Milk: 7.0E+07 liter Meat: 8.1E+07 kilogram

Regional Productivity Factor: 0.8

Animal Grazing Factor: 0.75

Site Boundary: Residence:

Pasture:

Garden:

1,100 meter NE 1,900 meter WSW

5,000 meter WSW 16,000meter SE

Site-Specific Data - Waterborne Pathways via SAVANNA RIVER

Average Effluent Flow from Site:

3.2E+09 L/y

Average River Flow at Site:

9.1E+12 L/y

(10,150 cfs)

None Drinking Water Population:

	Pop	ulation	Indivi	dual
	Mixing	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water Fish	3.6E-04	None 1.8F+00	4.0E-04 8.3E-02	RG RG
Shellfish		None		None
Shoreline		***	8.3E-02	RG

Nutes:

Ten percent of population assumed to obtain fish from river.

Average individual fish consumption rate of 5 g/d as given in FES, 1974, used in lieu of catch data.

VOGTLE

	Popu	lation Dose	Commitment	s (person-	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	0. 2.7E-04 2.4E-04 2.0E-03	0. 1.1E-03 2.0E-03 1.8E-02	0. 2.3E 2.1E 1.6E	-04 -04	0. 1.2E-04 7.3E-05 4.2E-04	0. 3.5E-04 3.0E-04 2.2E-03
TOTAL	2.5E-03	2.1E-02	2.1E	-03	6.2E-04	2.9E-03
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
in the second						
Infant Child Teen Adult	5.1E-04 7.5E-03 5.0E-03 2.9E-02	5.1E-04 7.5E-03 5.0E-03 2.9E-02	9.7E-04 1.0E-02 6.0E-03 3.3E-02	2.9E-05 3.2E-04 2.3E-04 1.4E-03	5.1E-04 7.5E-03 5.0E-03 2.9E-02	5.2E-04 7.5E-03 5.1E-03 2.9E-02
TOTAL	4.2E-02	4.2E-02	4.9E-02	2.0E-03	4.2E-02	4.3E-02
**************************************	-					

Production/Consumption factors:

Produce: 0.055 Milk: 0.65

Meat: 1.2

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gase to Air and Total Body	S	
Drinking Water Fish/Shellfish Shoreline Recreation			Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	7.3E-04 <	1%
TOTAL	5.4E-02	2%			
Ingestion Dose to Anv Organ (ADULT G	I-LLI)		Iodine and Particulate Dose to Any Organ (CHILD THYR		
Drinking Water Fish/Shellfish	6.3E-03 4.7E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	4.7E-01	5%	TOTAL	2.3E-03 <	1%

Site: WATERFORD

TAFT, LA

Location:

N 29.9953°

W 90.4728°

Population Data

Total Population Within 2-to-80-km Region: 1.8E+06

Major Metropolitan Centers Within Region:

Center	Population	Location		ion
New Orleans MSA	1,200,000		km	
Metairie	150,000	26	km	E
Kenner	72,000	16	km	E
Marrero	37,000	32	km	ESE
Houma	30,000	51	km	SSW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 99% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.8E+06 kilogram Milk: 7.8E+07 liter Meat: 6.1E+07 kilogram

Regional Productivity Factor: 0.6

Animal Grazing Factor: 1.0

Site Boundary: 970 meter NNE Residence: 1,400 meter N Garden: 1,400 meter N Pasture: 7.900 meter NW

Site-Specific Data - Waterborne Pathways via MISSISSIPPI RIVER AND GULF

Average Effluent Flow from Site:

1.2E+12 L/y

Average River Flow at Site:

4.4E+14 L/y (493,000 cfs)

Drinking Water Population:

1,000,000

	Population		Individual	
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Drinking Water Fish	2.8E-03 2.8E-03	RG 4.5E+03	4.5E-03 1.0E+00	RG RG
Shellfish		None		None
Shoreline			1.0E+00	RG

Notes:

Complete river mixing ratio used for both river and gulf seafood harvests.

WATERFORD

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver	
Infant Child Teen Adult	9.2E-04 1.0E-02 4.1E-03 3.5E-02	9.4E-04 1.1E-02 5.0E-03 4.3E-02	8.7E 6.5E 2.0E 1.5E	-02 -02	1.7E-04 1.8E-03 4.5E-04 2.8E-03	1.1E-03 1.2E-02 4.4E-03 3.6E-02	
TOTAL	5.0E-02	6.0E-02	2.4E	-01	5.2E-03	5.3E-02	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	9.0E-03 1.4E-01 1.1E-01 6.4E-01	9.0E-03 1.4E-01 1.1E-01 6.4E-01	9.0E-03 1.4E-01 1.1E-01 6.4E-01	3.0E-03 3.4E-02 2.5E-02 1.5E-01	9.0E-03 1.4E-01 1.1E-01 6.4E-01	9.2E-03 1.4E-01 1.1E-01 6.5E-01	
TOTAL	8.9E-01	8.9E-01	8.9E-01	2.1E-01	8.9E-01	9.0E-01	

Production/Consumption factors:

Produce: 0.003

Milk: 0.2

Meat: 0.26

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gases to Air and Total Body		
Drinking Water Fish/Shellfish Shoreline Recreation			Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence		1%
TOTAL	1.4E-01	5%			
Ingestion Dose to Any Organ (ADULT G	I-LLI)		Iodine and Particulate Dose to Any Organ (CHILD LUNG)		
Drinking Water Fish/Shellfish	1.9E-04 5.6E-01		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture		
TOTAL	5.6E-01	6%	TOTAL	1.3E-01	<1%

Site: WNP-2

RICHLAND, WA

Location:

N 46.2833°

W119.2916°

Population Data

Total Population Within 2-to-80-km Region: 3.0E+05

Major Metropolitan Centers Within Region:

Center	Population	Location		
Richland-Kennewick-Pasco MSA	150,000	20 km SSE		
Moses Lake	11,000	73 km N		

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 100% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.1E+08 kilogram

Milk: 1.2E+08 liter Meat: 3.2E+07 kilogram

Regional Productivity Factor: 0.8

Animal Grazing Factor: 0.7

Site Boundary: Residence: Garden: Pasture:

1.900 meter ESE 6,800 meter ESE 6,800 meter ESE 10,000meter SE

Site-Specific Data - Waterborne Pathways via COLUMBIA RIVER

Average Effluent Flow from Site:

3.6E+09 L/y

Average River Flow at Site:

1.0E+14 L/y 67,000

(115,000 cfs)

Drinking Water Population:

	Population		Individual		
	Mixing	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Irrigated Foods Fish	2.0E-05 3.5E-05	RG None 7.5E+03	2.0E-05 2.0E-03	None RG RG	
Shellfish Shoreline		None	5.0E-04	None RG	

Desert sigmas used to estimate air dilution for both population and individual doses.

WNP-2

	Popu	lation Dose	Commitments	(person	-rem)	
Waterborne	Total Body	GI-LLI	Thyro	oid	Bone	Liver
Infant Child Teen Adult	5.8E-06 7.5E-05 3.7E-05 3.3E-04	5.7E-06 6.6E-05 4.0E-05 3.6E-04	6.6E- 6.2E- 2.2E- 1.8E-	-05 -05	5.3E-06 8.0E-05 2.8E-05 1.8E-04	1.1E-05 1.3E-04 6.0E-05 4.1E-04
TOTAL	4.5E-04	4.7E-04	2.7E-	-04	2.9E-04	6.1E-04
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	2.4E-03 4.8E-02 3.0E-02 1.6E-01	2.4E-03 4.9E-02 3.1E-02 1.8E-01	8.3E-03 1.1E-01 6.2E-02 3.0E-01	7.3E-04 1.3E-02 7.1E-03 3.8E-02	2.4E-03 4.8E-02 3.0E-02 1.6E-01	2.8E-03 5.3E-02 3.4E-02 1.8E-01
TOTAL	2.5E-01	2.5E-01	4.8E-01	5.8E-02	2.5E-01	2.7E-01

Production/Consumption factors:

Produce: 2.9

Milk: 2.5

Meat: 1.0

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct Dos All Nuclides to Total Bo		Direct Dose from Noble Gase to Air and Total Body	S
Drinking Water & IFP. Fish/Shellfish Shoreline Recreation	1.7E-02	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	4.8E-02 <1%
TOTAL	1.7E-02 <1%		
Ingestion Dose to Any Organ (TEEN LI	VER)	Iodine and Particulate Dose to Any Organ (INFANT THY	
Drinking Water & IFP Fish/Shellfish	8.6E-05 2.6E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	2.6E-02 <1%	TOTAL	3.2E-02 <1%

Notes:

Irrigated food products (IFP) pathway not significant compared to fish for individual doses.

Site: WOLF CREEK

BURLINGTON, KS

Location:

N 39.0267° W 84.7233°

Population Data

Total Population Within 2-to-80-km Region: 1.9E+05

Major Metropolitan Centers Within Region:

Center	Population	Loc	cat	ion
Chanute	9,500	62	km	SSE
Emporia	26,000	42	km	WNW
Ottawa	11,000	58	km	NW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 93% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.4E+08 kilogram Milk: 6.5E+07 liter Meat: 1.6E+08 kilogram

Regional Productivity Factor: 0.95

Animal Grazing Factor: 0.5

1,200 meter N Site Boundary: Residence: 2,300 meter N 2,300 meter N Garden: 2,300 meter N Pasture:

Site-Specific Data - Waterborne Pathways via NEOSHO RIVER

Average Effluent Flow from Site: 1.3E+12 L/y

Average River Flow at Site:

1.2E+12 L/y

(1,335 cfs)

Drinking Water Population:

None

	Po	pulation	Individual		
	Mixing Ratio	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)	
Drinking Water Fish	1.7E-02	None 1.8E+00	1.0E+00 1.0E+00	RG RG	
Shellfish		None		None	
Shoreline			1.0E+00	RG	

Notes:

Average individual fish consumption rate of 5 g/d as given in FES, 1982, used in lieu of catch data. No milk animals located within 5 miles so milk cows located at beef cattle pasture.

WOLF CREEK

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver
Infant Child Teen Adult	0. 3.4E-02 6.3E-02 6.7E-01	0. 2.0E-02 4.0E-02 3.4E-01	0. 1.6E 1.4E 1.1E	-03	0. 1.4E-01 8.6E-02 5.0E-01	0. 1.7E-01 1.5E-01 9.0E-01
TOTAL	7.7E-01	4.0E-01	1.4E	-02	7.3E-01	1.2E+00
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	4.3E-05 7.9E-04 4.8E-04 2.7E-03	4.3E-05 7.9E-04 4.8E-04 2.7E-03	4.6E-05 8.2E-04 5.0E-04 2.7E-03	1.9E-05 2.1E-04 1.5E-04 9.2E-04	4.3E-05 7.9E-04 4.8E-04 2.7E-03	4.6E-05 8.4E-04 5.5E-04 2.9E-03
TOTAL	4.0E-03	4.0E-03	4.1E-03	1.3E-03	4.0E-03	4.3E-03

Production/Consumption factors:

Produce: 6.2

Milk: 2.5

Meat: 10.0

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		Airborne	
Ingestion and Direct D		Direct Dose from Noble Gase to Air and Total Body	25
Drinking Water Fish/Shellfish Shoreline Recreation	4.5E-02	Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	2.7E-02 <1%
TOTAL	7.3E-02 2%		
Ingestion Dose to Any Organ (CHILD	LIVER)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	3.9E-02 5.4E-02	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	
TOTAL	9.3E-02 <1%	TOTAL	2.8E-03 <1%

Site: YANKEE ROWE ROWE, MA

Location:

N 42.7281°

W 72.9289°

Population Data

Total Population Within 2-to-80-km Region: 1.7E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Springfield NECMA	600,000	74 km SSE
Albany-Schenectady-Troy MSA	870,000	68 km W
Pittsfield NECMA	140,000	41 km W
Amherst	35,000	51 km SE

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-92 TO 31-DEC-92 98% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 2.0E+07 kilogram Milk: 2.6E+08 liter Meat: 1.6E+07 kilogram

Regional Productivity Factor: 1.0

Animal Grazing Factor: 0.5

Site Boundary:	800 meter	S
Residence:	1,300 meter	SW
Garden:	1,300 meter	SW
Pasture:	3,200 meter	SE

Site-Specific Data - Waterborne Pathways via DEERFIELD RIVER

Average Effluent Flow from Site:

4.3E+09 L/y

Average River Flow at Site:

3.3E+11 L/y (370 cfs)

Drinking Water Population: None

	Population		Indivi	dual
	Mixing	Usage or Harvest (kg/y)	Mixing Ratio	Usage (kg/y)
Irrigated Foods	1.3E-02	None RG	1.3E-02 1.3E-02	RG RG
Shellfish		None		None
Shoreline		***	1.3E-02	RG

Ten percent of population obtain 25% of their fish from river.

Irrigated food products pathway used in lieu of drinking water for individual.

YANKEE ROWE

	Popu	lation Dose	Commitment	s (person	-rem)		
Waterborne	Total Body	GI-LLI	Thyr	roid	Bone	Liver	
Infant Child Teen Adult	0. 6.2E-03 8.8E-03 8.8E-02	0. 2.7E-03 2.0E-03 1.3E-02	0. 2.5E 1.6E 1.0E	-03	0. 3.0E-02 1.8E-02 1.0E-01	0. 2.5E-02 2.0E-02 1.2E-01	
TOTAL	1.0E-01	1.8E-02	1.48	-02	1.5E-01	1.7E-01	
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung	
Infant Child Teen Adult	9.0E-05 8.4E-04 4.6E-04 2.1E-03	9.0E-05 8.4E-04 4.6E-04 2.1E-03	9.0E-05 8.4E-04 4.6E-04 2.1E-03	1.2E-07 1.0E-06 5.3E-07 2.7E-06	9.0E-05 8.4E-04 4.6E-04 2.1E-03	9.0E-05 8.5E-04 4.6E-04 2.1E-03	
TOTAL	3.5E-03	3.5E-03	3.5E-03	4.4E-06	3.5E-03	3.5E-03	

Production/Consumption factors:

Produce: 0.061

Milk: 1.2

Meat: 0.12

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne			Airborne		
Ingestion and Direct Dos All Nuclides to Total Bo			Direct Dose from Noble Gases to Air and Total Body		
Irrigated Foods Fish/Shellfish Shoreline Recreation	9.0E-03		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	None None None	<1% <1% <1%
TOTAL	5.8E-02	2%			
Ingestion Dose to Any Organ (CHILD E	BONE)		Iodine and Particulate Dose to Any Organ (CHILD LUNG)		
Irrigated Foods Fish/Shellfish	5.5E-01 1.4E-02		Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	2.5E-05 8.9E-05 3.2E-05	
TOTAL	5.6E-01	6%	TOTAL	1.5E-04	<1%

Site: ZION

ZION, IL

Location:

N 42.4456°

W 87.8022°

Population Data

Total Population Within 2-to-80-km Region: 7.3E+06

Major Metropolitan Centers Within Region:

Center	Population	Location
Chicago PMSA	6,100,000	66 km S
Milwaukee-Racine MSA	1,600,000	65 km N
Kenosha	130,000	14 km N
Waukesha	57,000	71 km NNW

Site-Specific Data - Airborne Pathways

Meteorology Period of Record: 01-JAN-91 TO 31-DEC-91 97% Data recovery

Average Annual State Production of food products in 80-km radius circle:

Veg: 1.1E+08 kilogram

Milk: 1.8E+08 liter Meat: 1.9E+08 kilogram

Regional Productivity Factor: 0.5

Animal Grazing Factor: 0.5

Site Boundary: Residence: Garden: Pasture:

470 meter 1.500 meter 1,500 meter 8,000 meter

Site-Specific Data - Waterborne Pathways via LAKE MICHIGAN

Average Effluent Flow from Site:

1.1E+12 L/y

Average River Flow at Site: Drinking Water Population:

3.6E+14 L/y 6.800.000

(400,000 cfs)

er charling mase.				
	Popula	ation	Indivi	dual
		Usage or	Mixing	Us
	Ratio Har	rvest (kg/y)	Ratio	(kc

	Mixing Ratio	Usage or Harvest (kg/y)	Ratio	(kg/y)
Drinking Water Fish	1.7E-02 3.1E-03	RG 5.0E+06	1.7E-02 3.1E-03	RG RG
Shellfish		None		None
Shoreline			3.1E-03	RG

Notes:

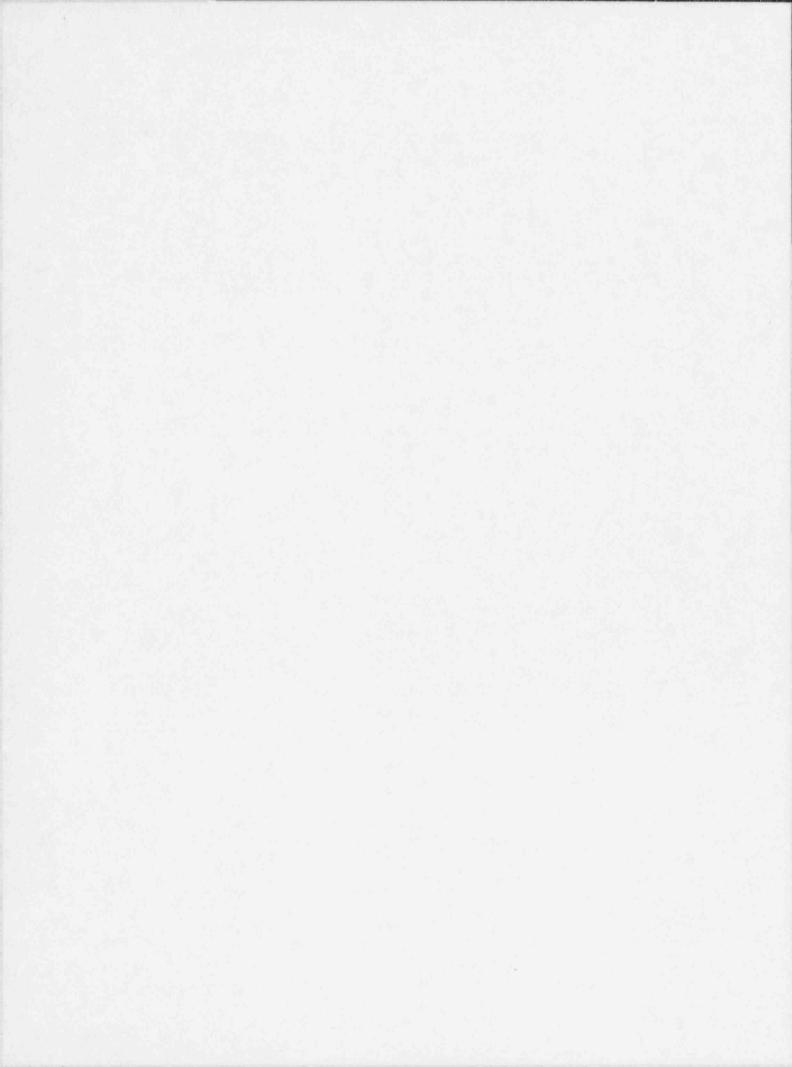
Fish mixing ratio derived using hypothetical river model (flow of 4E5 cfs) from ODCM, 1989. No milk cows reported to be within 5 miles so default cow pasture set at 5 miles.

ZION

	Popu	lation Dose	Commitment	s (person	-rem)	
Waterborne	Total Body	GI-LLI	Thyr	oid	Bone	Liver
Infant Child Teen Adult	4.6E-02 5.3E-01 2.3E-01 2.0E+00	4.9E-02 6.1E-01 3.2E-01 2.8E+00	1.6E 1.3E 4.3E 3.3E	+00 -01	1.5E-02 2.1E-01 6.9E-02 4.2E-01	5.9E-02 6.7E-01 2.8E-01 2.1E+00
TOTAL	2.8E+00	3.8E+00	5.2E	+00	7.1E-01	3.1E+00
Airborne	Total Body	GI-LLI	Thyroid	Bone	Liver	Lung
Infant Child Teen Adult	6.3E-03 1.0E-01 7.8E-02 4.7E-01	6.2E-03 1.0E-01 7.8E-02 4.7E-01	4.6E-02 4.5E-01 2.5E-01 1.2E+00	1.9E-03 2.1E-02 1.5E-02 9.3E-02	6.4E-03 1.1E-01 7.9E-02 4.7E-01	6.4E-03 1.1E-01 8.3E-02 4.9E-01
TOTAL	6.5E-01	6.5E-01	1.9E+00	1.3E-01	6.6E-01	6.8E-01

Production/Consumption factors:

Produce: 0.04


Milk: 0.092 Meat: 0.16

Individual Dose Commitments (mrem) on a per-unit basis and Percentage of Appendix I Design Objectives

Waterborne		<u>Airborne</u>	
Ingestion and Direct D All Nuclides to Total		Direct Dose from Noble Gase to Air and Total Body	s
Drinking Water Fish/Shellfish Shoreline Recreation		Air Gamma at SB (mrad) Air Beta at SB (mrad) Total Body at Residence	
TOTAL	8.88-04 <1%		
Ingestion Dose to Any Organ (INFAN	T THYROID)	Iodine and Particulate Dose to Any Organ (CHILD THYR	
Drinking Water Fish/Shellfish	1.6E-03 None	Inhalation at Residence Veg/Prod. from Garden Milk/Meat from Pasture	3.2E-03 3.1E-02 8.1E-03
TOTAL	1.6E-03 <1%	TOTAL	4.2E-02 <1%

3.0 REFERENCES

- Tichler, J., K. Doty, and J. Congemi. 1995. <u>Radioactive Materials Released from Nuclear Power Plants, Annual Report 1991</u>. NUREG/CR-2907, BNL-NUREG-51581, Vol. 13, U.S. Nuclear Regulatory Commission, Washington, D.C.
- U.S. Atomic Energy Commission (AEC). 1973. Final Environmental Statement Concerning Proposed Rule-Making Action: Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criterion "As Low As Practicable" for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents. 1973. WASH-1258, Vol. 1, Directorate of Regulatory Standards, U.S. Atomic Energy Commission, Washington, D.C.
- U.S. Bureau of the Census. 1991. <u>State and Metropolitan Area Data Book</u>, 1991. U.S. Government Printing Office, Washington, D.C.
- U.S. Nuclear Regulatory Commission (NRC). 1977. <u>Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1. Regulatory Guide 1.109, Washington, D.C.</u>

APPENDIX

A.1 MODELS AND GENERIC PARAMETERS

The calculational models used were primarily those given in the Nuclear Regulatory Commission's Regulatory Guide 1.109, Rev. 1 (NRC 1977a). Computer programs were written to use these models to generate population dose commitments for four age groups. The percentages of the population comprising the four age groups were 1.44%, infant (0 to 1 yr); 15.0%, child (1 to 11 yr); 11.7%, teenager (11 to 17 yr); and 70.9%, adult (17 yr and older) (U. S. Bureau of the Census 1975). Where possible, the site-dependent parameters were taken from the environmental statements (ES) and offsite dose calculation manuals (ODCM) issued for each reactor (see Table 1.3). The generic parameters used for this study such as consumption rates, occupancy factors, and holdup times, are given in Tables A.1. A.2, and A.3 below. It should be noted that generic consumption rates for aquatic foods and inhalation rates are taken from Regulatory Guide 1.109 (NRC 1977a); bioaccumulation factors and terrestrial ford transfer factors were taken from the same source. Dose commitment factors for the four age groups were taken from Hoenes and Soldat (1977). Noble-gas dose factors were taken from NRC (1977a).

TABLE A.1. Generic Consumption Rates and Occupancy Factors Used for the Average Member of the Population (a)

Pathway	Infant	Child	Teenager	Adult
Fruits, vegetables and grain (kg/yr)	0	200	240	190
Milk (L/yr)	170	170	200	110
Meat and poultry (kg/yr)	0	37	59	95
Fish (kg/yr)(b)	0	2.2	5.2	6.9
Invertebrates (kg/yr)	0	0.33	0.75	1.0
Drinking water (L/yr)	170 (c)	260	260	370
Inhalation (m³/yr)	1400 (d)	3700	8000	8000
Air submersion and ground irradiation occupancy factor	0.5	0.5	0.5	0.5

⁽a) Regulatory Guide 1.109 (NRC 1977a).

⁽b) Both fresh and salt water.

⁽c) Assumed to be equal to milk consumption.(d) Same as for maximally exposed individual.

TABLE A.2. Generic Consumption Rates and Occupancy Factors Used for the Maximally Exposed Individual(a)

Pathway	Infant	Child	Teenager	Adult
Fruits, vegetables, and grain (kg/yr)	0	520	630	520
Leafy vegetables	26	42	64	
Milk (L/yr)	330	330	400	310
Meat and poultry (kg/yr)	0	41	65	110
Fish (kg/yr)(b)	0	6.9	16	21
Invertebrates (kg/yr)	0	1.7	3.8	5
Drinking water (L/yr)	330	510	510	730
Shoreline recreation (hr/yr)	0	14	67	12
Inhalation (m³/yr)	1400	3700	8000	8000
Air submersion and ground irradiation occupancy factor	0.5	0.5	0.5	0.5

⁽a) Regulatory Guide 1.109 (NRC 1977a).(b) Both fresh and salt water.

TABLE A.3. Holdup Times Between Harvest and Consumption of Foods (a)

	Holdup Time (days)		
Food	Population		
Leafy vegetables		1	
Fruits, grains and vegetables	14	60	
Milk(b)	4	2	
Meat ^(b)	20	20	
Aquatic foods (fish and invertebrates)	7	1	
Drinking Water	1	0.5	

Regulatory Guide 1.109 (NRC 1977a).

⁽a) (b) Value given is time after milking or slaughter. For the portion of the time animals were fed stored feed, an additional 90 days was added to the holdup time.

A.2 SOURCE TERMS

The doses were estimated using the measured releases as reported by the site licensees for 1992 (Tichler et al. 1995). (a) These releases include all radionuclides specified by the NRC to be measured and reported by the operators of all commercial nuclear power plants. Radionuclides given as a combination of parent-daughter isotopes, such as Y/Sr-90, Zr/Nb-95, Ba/La-140, I/Xe-133, and Pr/Ce-144, were divided evenly between the parent and daughter.

The radionuclides used in this study, along with their decay constants, are given in Table A.4. Note that the "+D" after some of the nuclides indicates that the decay energy of the daughter is included with the parent. Thus, whenever a parent nuclide release is specified, the result of the dose calculation is as though an additional equilibrium amount of the daughter nuclide is specified. The daughter nuclide itself is included separately if it can be released independently of the parent and/or if it has a relatively long half-life.

For airborne releases, three types of release were used as specified by the licensee or determined from information from the licensee: ground, elevated, and mixed mode. The definitions of these release types are found in Regulatory Guide 1.111 (NRC 1977b). For releases above the adjacent building height by a factor of 2 or more, an elevated release was used at the stack height. For releases below the building height, a release height of zero was used. All other releases were assumed to be a mixed mode release.

A.3 METEOROLOGY AND AIRBORNE DOSES

Meteorological (joint frequency) data for 1992 were generated from information submitted by the licensees for ground, elevated, and mixed-mode releases for a site. In some cases, more than one joint frequency distribution was used depending on the height of release and availability. When 1992 data were not available for a site, the previous year's joint frequency data were used.

For population doses, atmospheric transport factors were calculated for 16 compass points and for 10 radii from 2 to 80 km (see Table A.5) using the NRC computer program XOQDOQ (Sagendorf et al. 1982). For individual 10 CFR 50, Appendix I doses, semi-infinite plume transport factors were estimated at locations of site boundary, closest residence, closest garden, and closest pasture. Here "closest" is the location of maximum dose as stipulated by the licensee. Ingestion doses from leafy vegetables and other vegetables were calculated for the garden location; ingestion doses from milk (cow or goat) and meat were calculated for the pasture location. If no milk pathway was designated by the licensee, a default pasture location 5 miles from the site was used.

⁽a) Very short-lived isotopes (such as Kr-90, -91, -93, -94, Xe-139, -140, -141, -143, and Rb-88M), those not likely to be produced, and those that were daughters whose decay energies were accounted for in the dose factor for the parent were not included in the dose.

TABLE A.4. Radionuclides Considered in This Study

No.	Nuclide	Decay Constant (1/sec)	No.	Nuclide	Decay Constant (1/sec)
1	H-3	1.78E-09	43	Nb-97	1.57E-04
2	Be-10	1.37E-14	44	Mo-99+D	2.92E-06
3	C-14 ^(a)	3.83E-12	45	Tc-99M	3.19E-05
4	N-13	1.16E-03	46	Ru-103+D	2.02E-07
5	F-18	1.05E-04	47	Ru-106+D	2.17E-08
6 7 8 9	Na-22 Na-24 Ar-41 Sc-46 Cr-51	8.44E-09 1.28E-05 1.05E-04 9.58E-08 2.89E-07	48 49 50 51 52	Ag-110M+D Cd-115M Cd-115 Sn-125+D Sb-124	3.19E-08 1.80E-07 3.60E-06 8.31E-07 1.33E-07
11	Mn-54	2.57E-08	53	Sb-125+D	8.06E-09
12	Mn-56	7.47E-05	54	Te-132+D	2.47E-06
13	Fe-55	8.14E-09	55	Te-133M+D	2.09E-04
14	Fe-59	1.80E-07	56	I-131+D	9.97E-07
15	Co-57	2.97E-08	57	I-132	8.42E-05
16	Co-58	1.12E-07	58	I-133+D	9.25E-06
17	Co-60	4.17E-09	59	I-134	2.20E-04
18	Ni-57	5.35E-06	60	I-135+D	2.92E-05
19	Ni-63	2.20E-10	61	Xe-131M	6.69E-07
20	Ni-65	7.64E-05	62	Xe-133M	3.61E-06
21	Cu-64	1.52E-05	63	Xe-133	1.52E-06
22	Zn-65	3.31E-08	64	Xe-135M	7.56E-04
23	Zn-69M+D	1.39E-05	65	Xe-135	2.10E-05
24	As-76	7.32E-06	66	Xe-137	3.01E-03
25	Br-82	5.44E-06	67	Xe-138+D	8.14E-04
26	Kr-83M	1.04E-04	68	Cs-134	1.07E-08
27	Kr-85M	4.31E-05	69	Cs-136	6.17E-07
28	Kr-85	2.05E-09	70	Cs-137+D	7.31E-10
29	Kr-87	1.52E-04	71	Cs-138	3.58E-04
30	Kr-88+D	6.89E-05	72	Cs-139+D	1.24E-03
31	Kr-89	3.64E-03	73	Ba-139	1.39E-04
32	Rb-88	6.53E-04	74	Ba-140+D	6.28E-07
33	Rb-89+D	7.61E-04	75	La-140	4.78E-06
34	Sr-89+D	1.59E-07	76	La-141	4.97E-05
35	Sr-90+D	7.58E-10	77	Ce-141	2.47E-07
36	Sr-91+D	2.03E-05	78	Ce-144+D	2.83E-08
37	Sr-92+D	7.11E-05	79	Eu-152	1.69E-09
38	Y-90	3.01E-06	80	Eu-154	2.55E-09
39	Y-91M+D	2.32E-04	81	W-187	8.06E-06
40	Zr-95+D	1.22E-07	82	Th-232+D	1.57E-18
41 42	Zr-97+D Nb-95	1.14E-05 2.29E-07	83	Np-239	3.42E-06

⁽a) Carbon-14 is not reported by most licensees.

TABLE A.5. Radius Intervals and Midpoints for Airborne Dose Calculations (km)

In	te	rva1	Midpoint
2		3	2.5
3	*	4	3.5
4	100.	6	5
6	-	9	7.5
9	**	14	11.5
14	**	20	17
20	-	30	25
30	*	40	35
40	-	60	50
60	-	80	70

The XOQDOQ program generates four sets of atmospheric transport factors:

- average annual atmospheric dilution factors that are not corrected for cloud depletion or radioactive decay
- dilution factors that are only corrected for decay assuming a 2.26-day half-life
- dilution factors that are corrected for depletion and for decay assuming an 8-day half-life
- relative deposition per unit area.

These factors were used to estimate the dose from semi-infinite airborne releases using methods similar to the NRC GASPAR program (Eckerman et al. 1980; Strenge et al. 1987). The assumptions used in the calculation of these transport factors were as follows:

- release heights used depended on type of release: ground, elevated, or mixed mode
- release heights corrected for plume rise or building wake effects where applicable
- semi-infinite cloud model with sector-average, Gaussian-plume dispersion
- no correction for terrain height variation or recirculation.

For sites with elevated releases, the site-boundary gamma and residential total-body doses from direct irradiation from noble gases contained in the plume were also estimated using the finite-plume model described in Regulatory Guide 1.109, p. 5 and Appendix F (NRC 1977a). For the final dose estimate, the maximum dose was selected from the two methods of calculation.

A.4 POPULATION

The population distribution within 2 to 80 km around each site was determined from information supplied by the NRC from an updated reduction of 1980 census data (Sinisgalli 1982). Also, the NRC supplied updated estimates of the number of people residing in major metropolitan centers within the 80-km region around each site (U.S. Bureau of the Census 1991 Brauner 1982, and D. P. Cleary^(a)). Population variations between 1980 and 1992 were derived from census data (U.S. Bureau of the Census 1993).

A.5 FOOD PRODUCTION VERSUS FOOD CONSUMPTION

The total food production for the region within 80 km around each site was the product of the NRC state-wide productivity figure for each state and a site productivity factor. At some sites, this total production may be more or less than the total consumption, i.e., population times average individual consumption (see Table A.1 for generic consumption rates). When production was more than consumption for a site, it was assumed that all persons in the 2-to-80-km region ate contaminated food; when production was less than consumption, it was assumed that dilution would occur because uncontaminated food would be shipped into the area from outside. Thus, the calculated doses for a particular food type were reduced in proportion to the ratio of production divided by consumption (production/consumption less than 1).

The dose to persons outside the 80-km limit from food shipped out of the region, in the case of production being greater than consumption, is not included in this report because we are concerned only with the dose within the 80-km radius. These production/consumption factors are given for reference as footnotes to the tables showing airborne dose commitment in the Site Summaries section (Section 2.0).

A.6 DRINKING WATER

The population between 2-km and 80-km distance from each plant site exposed to drinking water contaminated with released radionuclides was generally obtained from the environmental statement (ES) for the plant. For all sites located on salt water, it was assumed that no dose was received from drinking water. The generic consumption rates used for drinking water are given in Tables A.1 for population doses and A.2 for individual doses.

The radionuclide concentration in the drinking water consumed by a population downstream from a site was usually estimated by assuming 100% mixing of the plant effluent with the river. For lakes, an overall dilution factor was estimated from dilution factors given in the licensee ES or ODCM for each population center along the shore (within 80 km) that consumes the contaminated lake water. These individual factors were weighted by population

⁽a) Letter from D. P. Cleary, U.S. Nuclear Regulatory Commission, to D.A. Baker, Pacific Northwest Laboratory, June 1987.

and averaged to obtain an effective dilution factor for the total population exposed to contaminated drinking water. For individual doses, the mixing ratio (reciprocal of the dilution factor) taken from the ODCM was used.

A.7 AQUATIC FOOD

Wherever possible, the fish-catch data from the licensee ES or ODCM were used to estimate aquatic food consumption rates for the population living within the region. When these data were not found in the ES or ODCM, the generic values of Table A.1 were used. For the individual 10 CFR 50, Appendix I dose estimates, the generic values of Table A.2 were used for all sites.

For population dose estimates, the average radionuclide concentration of the waters in which this food was harvested was estimated by assuming an additional dilution over the effluent flow from the reactor. For rivers, it was assumed that the fish were caught in waters in which the plant effluent was completely diluted. For lakes, an additional factor as given in the ES was used; when none was given in the ES or ODCM, a generic value of 0.01 was used. For ocean and bay sites, generic values of 0.001 and 0.002 were used for fish and invertebrates, respectively, if the ES or ODCM yielded no values for these parameters. Any exceptions to these general guidelines are explained in notes at the bottom of the page.

For individual dose estimates, the mixing ratio designated by the licensee ODCM for the site was used to determine typical water concentrations for the fish and shellfish (invertebrate) pathway.

A.8 IRRIGATED FOOD PRODUCTS

Only a few sites reported the irrigation pathway. This pathway was evaluated for the individual only. Assumptions of Regulatory Guide 1.109 (NRC 1977a) were used. Site-specific values for irrigation rate, mixing ratio, and growing period were taken from the licensee ODCM when available.

A.9 SHORELINE RECREATION

The shoreline recreation pathway dose was not estimated for populations, because it is trivial compared with the drinking water and aquatic food pathways. However, for individual dose estimates, the shoreline path was included, even though it was not reported for many sites by the licensees. The mixing ratio for this path was assumed to be the same as for fish when no licensee value was reported. Occupancy factors used for this path are listed in Table A.2 (taken from NRC 1977a). As expected, for all sites, this pathway proved insignificant, assuming only a 1-year buildup of concentration in the shoreline sediments and NRC occupancy factors.

A.10 REFERENCES

- Brauner, A. 1982. <u>Population Estimates, Nuclear Power Plant Nearby Population Concentrations</u>. U.S. Nuclear Regulatory Commission, Washington, D.C.
- Eckerman, K. F., F. J. Congel, A. K. Roecklein, and W. J. Pasciak. 1980. <u>Users Guide to GASPAR Code</u>. NUREG-0597, U.S. Nuclear Regulatory Commission. Washington, D.C.
- Hoenes, G. R., and J. K. Soldat. 1977. <u>Age-Specific Radiation Dose Commitment Factors for a One-Year Chronic Intake</u>. NUREG-0172, U.S. Nuclear Regulatory Commission, Washington, D.C.
- Sagendorf, J. F., J. T. Goll, and W. F. Sandusky. 1982. XOQDOQ: Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations. NUREG/CR-2919, PNL-4380, U.S. Nuclear Regulatory Commission, Washington, D.C.
- Sinisgalli, A. 1982. <u>1980 Residential Population Estimates, 0-80 Kilometers for Nuclear Power Plants</u>. U. S. Nuclear Regulatory Commission, Washington, D.C.
- Strenge, D. L., T. J. Bander, and J. K. Soldat. 1987. GASPAR II Technical Reference and User Guide. NUREG/CR-4653, PNL-5907, U.S. Nuclear Regulatory Commission, Washington, D.C.
- Tichler, J., K. Doty, and J. Congemi. 1995. <u>Radioactive Materials Released from Nuclear Power Plants</u>, Annual Report 1992. NUREG-CR-2907, BNL-NUREG-51581, Vol. 13, U.S. Nuclear Regulatory Commission, Washington, D.C.
- U.S. Bureau of the Census. 1975. <u>Population Estimates and Projections.</u> <u>Current Population Reports</u>. Series P-25, No. 541, U.S. Government Printing Office, Washington, D.C.
- U.S. Bureau of the Census. 1991. <u>State and Metropolitan Area Data Book</u>, 1991. U.S. Government Printing Office, Washington, D.C.
- U.S. Bureau of the Census. 1993. <u>Statistical Abstract of the United States:</u> 1993. The National Data <u>look</u>. U.S. Government Printing Office, Washington, D.C.
- U.S. Nuclear Regulatory Commission (NRC). 1977a. <u>Calculation of Annual Doses</u> to Man from Routine Releases of Reactor Effluents for the Purpose of <u>Evaluating Compliance with 10 CFR Part 50, Appendix I</u>, Revision 1. Regulatory Guide 1.109, NRC, Washington, D.C.
- U.S. Nuclear Regulatory Commission (NRC). 1977b. <u>Methods for Estimating Atmospheric transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors</u>, Revision 1. Regulatory Guide 1.111, NRC, Washington, D.C.

DISTRIBUTION

No. of Copies

OFFSITE

U.S. Nuclear Regulatory Commission Division of Freedom of Information and Publication Services Washington, D.C. 20555

Steve Baker ICF Kaiser Engineers 601 Williams Richland, WA 99352

Cathy Behling 263 Old Limekiln Road Chalsont, PA 18914

Deborah Beres 50 Wisteria St. Edison, NJ 08817

W. E. Bolch University of Florida Department of Environmental Engineering Sciences AP Black Hall Gainesville, FL 32611

F. J. Borst Fort St. Vrain Nuclear Generating Station 16805 Weld County Road 19 1/2 Platteville, CO 80651

K. R. BräutigamKernsforschungszentrumKarlsruhe7514 Eggenstein - LeopoldshafenKarlsruheFederal Republic of Germany

H. D. Brenk Zentralabteilung Strahlenschutz der Kernforschungsanlage Jülich GmbH Postfach 1913 - 5170 Jülich 1 Federal Republic of Germany No. of Copies

> J. T. Brennen, M.D. Radiation Management Corp. 3508 Market Street Philadelphia, PA 19104

A. J. Colli
Office of Air and
Radiation
U.S. Environmental Protection
Agency
Washington, DC 20460

R. M. DeNulman
Instituto Nacional De
Investigaciones Nucleares
Benjamin Franklin 161
MEXICO 11, D. F.

T. Dipierro Building 475 Brookhaven National Laboratory Upton, NY 11973

P. J. Dostie State of Maine Department of Human Services Augusta, ME 04333

D. E. Dunning, Jr. Evaluation Research Corporation 800 Oak Ridge Turnpike Suite 501 Oak Ridge, TN 37830

K. F. Eckerman Oak Ridge National Laboratory P.O. Box X Oak Ridge, TN 37830

Ecological Sciences Information Center Oak Ridge National Laboratory Oak Ridge, TN 37830

T. H. Essig
Office of Nuclear Reactor
Regulation
U.S. Nuclear Regulatory
Commission
Washington, DC 20555

R. J. Feinberg Knolls Atomic Power Laboratory General Electric Company Box 1072 Schenectady, NY 12301

B. Feldman Energy Systems Research Group 120 Milk Street Boston, MA 02107

3. W. Ferman
Division of Water Quality
Minnesota Pollution Control
Agency
1935 West County Road B-2
Roseville, MN 55113

Greg Gowdy Nuclear Training Center P.O. Box 88 workinsville, SC 29065

J. r Green:
Mecklenburg County Department
of Environmental Health
1200 Blythe Boulevard
Charlotte, NC 28203

D. Hahn
Division of Radiation Health
Bureau of Environmental Health
Michigan Department of Public
Health
3500 North Logan
Lansing, MI 48906

William Hallenbeck
U. of Illinois at Chicago
School of Public Health
Box 6998
Chicago, IL 60680

E. Hewitt FMC Corporation Box 41111 Pocatello, ID 83202

F. O. Hoffman Senes Oak Ridge, Inc. 677 Emory Valley Road, Suite C Oak Ridge, TN 37830 Mark Howard Congressional Info. Service 4520 EW Highway Suite 800 Bethesda, MD 20814-3389

L. Huebner Hazleton Environmental Sciences 1500 Frontage Road Northbrook, IL 60062

A. P. Hull Brookhaven National Laboratory Upton, NY 11973

J. Iacovino
Nuclear Safety and Licensing
Westinghouse Electric
Corporation
Box 355
Pittsburgh, PA 15230

M. L. Joshi Government of India Department of Atomic Energy Rajasthan Atomic Power Project Nuclear Training Centre INDIA

B. Kahn Environmental Resources Center Georgia Institute of Technology Atlanta, FA 30332

20 S. P. Klemeniowicz
Office of Nuclear Reactor
Regulation
U.S. Nuclear Regulatory
Commission
Washington, DC 20555

M. Laraia C.N.E.N., Disp/Centr 00198 Roma Viale Regina Margherita, 125 ITALY

L. Lewis
Duke Power Company
422 S. Church Street
Charlotte, NC 28242

S. Mattsson Lunds Universitet Radiofysiska Institutionen Lasarettet, S-221 85 Lund SWEDEN

H. R. Meyer Oak Ridge National Laboratory Oak Ridge, TN 37830

Sara Miller Congressional Information Service 4520 East West Highway Washington, DC 20014

S. Morris Building 475 Brookhaven National Laboratory Upton, NY 11973

J. Nagy Building 475 Brookhaven National Laboratory Upton, NY 11973

L. Namestek, Ing. Prager Gasse 11/5 A-3002 Purkersdorf AUSTRIA

K. K. Narayanan Bhabha Atomic Research Centre Bombay - 400 085 INDIA

W. Ogg PSD CRBRP P.O. Box U Oak Ridge, TN 37830

G. V. Oldfield WPPSS Mail Drop 1020 P. O. Box 968 Richland, WA 99352

K. C. Pillai Health Physics Division Bhabha Atomic Research Centre Bombay - 400 085 INDIA C. Pomroy Health and Welfare Canada Health Protection Branch Radiation Protection Bureau Ottawa, KIA 1C1 CANADA

G. Poretti Radiuminstitut Inselspital P. O. Box 9 CH-3010 BERNE SWITZERLAND

J. W. Poston School of Nuclear Engineering Georgia Institute of Technology Atlanta, GA 30332

R. R. Roselius Consumers Power Company Midland Plant Operations P.O. Box 1593 Midland, MI 48640

V. Sailor Building 701 Brookhaven National Laboratory Upton, NY 11973

Leland Schneider American Nuclear Insurers The Exchange, Suite 245 270 Farmington Avenue Farmington, CT 06032

J. Tadmor Advisory Committee for Nuclear Safety Soreq Nuclear Research Centre Yavne ISRAEL

T. Thomas National Institutes of Health Landow Building, Room 3C16 9000 Rockville Pike Bethesda, MD 20014

J. Tichler Building 51 Brookhaven National Laboratory Upton, NY 11973 A. N. Tshaeche Winco, MS 5209 Box 4000 Idaho Falls, ID 83403

F. Valerio Universita Di Genova Instituto Di Oncologia 16132 Genova Viale Benedetto XV N.10 ITALY

P. Vasudev Environment Canada Place Vincent Massey 45th Floor Ottawa, KIA 1C8 CANADA

G. H. Whipple 3301 Rutland Loop Tallahassee, FL 32312

E. I. White 9139 S. Bentham Avenue Sandy, UT 84093

C. A. Willis
Office of Nuclear Reactor
Regulation
U.S. Nuclear Regulatory
Commission
Washington, DC 20555

F. E. Yost Utility Data Institute, Inc. 2011 I Street, NW, Suite 700 Washington, DC 20006

ONSITE

2 Westinghouse Hanford Company

H. R. Brager H0-36 P. R. Prevo N1-73

50 Pacific Northwest Laboratory

R. L. Aaberg (40) K3-54
M. E. Cunningham K8-43
K. L. Soldat K3-53
R. A. Walters K1-50
Information Release (7)

NRC FORM 335 (2-89) NROM 1102		U.S. NUCLEAR REGULATORY COMMISSION	1. REPORT NUMBER : (Assigned by NRC. Add Vol., Supp., Rev., and Addendum Numbers, If any.)		
3201, 3202	BIBLIOGRAPHIC DATA				
2. TITLE AND SUBTITLE	(See instructions on the reverse		NUREG/CR-2850 PNL-4221		
			Vol. 14		
Dose Commitment Plant Sites in		eases from Nuclear Power	3. DATE REPORT PUBLISHED		
Plant Sites in	1992		MONTH YEAR		
			March 1996		
			J2138		
5. AUTHOR(S)	The second secon	Among typer production recording to the visual leads a state of the visit of the control of the	6. TYPE OF REPORT		
Aaberg, R.L., D	.A. Baker				
			7. PERIOD COVERED (Inclusive Dates)		
			1002		
		des consenses que consense activa el consei e en meno como pres consensos set sono, sen o consensos que consenses que ser conse	1992		
B. PERFORMING ORGANIZATI name and mailing address.	ON - NAME AND ADDRESS (If NRC. provide	Division, Office or Region, U.S. Nuclear Regulatory Com	enission, and mailing address: If contractor, provide		
Pacific Northwes	st National Laboratory				
Richland, WA !!	352				
9. SPONSORING ORGANIZATIO	ON - NAME AND ADDRESS (III NRC. type "Se	me as above"; if contractor, provide MRC Division, Offic.	er Region, U.S. Hucker Regulatory Commission,		
and mound operas.	ation Safety and Safegu				
Office of Nuclea	ar Reactor Regulation	arus			
	gulatory Commission				
Washington, DC	20555-0001				
10. SUPPLEMENTARY NOTES	z. NRC Project Manager				
11. ABSTRACT (200 words or mail	Z, Into Project Handger				
		e commitments have been es			
radionuclide re	eases from commercial p	ower reactors operating du	uring 1992. Fifty-year		
		e from both liquid and atmups (infant, child, teenag			
between 2 and 8	im from each of 72 rea	ctor sites. This report	tabulates the results		
of these calcula	cions, showing the dose	commitments for both water	er and airborne		
pathways for each age group and organ. Also included for each of the sites is an					
estimate of individual doses that are compared with 10 CFR Part 50, Appendix I design					
nathways) for ea	objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 3.7 person-rem to a low of 0.0015 person-				
rem for the site	s with plants in operat	ion and producing power du	ring the year. The		
arithmetic mean	was 0.66 person-rem. T	he total population dose i	for all sites was		
estimated at 47	person-rem for the 130 i	million people considered	at risk. The		
objectives.	commitments estimated for	or all sites were below th	e Appendix I design		
objectives.					
12. KEY WORDS/DESCRIPTORS	(List words or phreses that will resist researchers in i	locating the report,)	13. AVAILABILITY STATEMENT		
Population dose			Unlimited 14. SECURITY CLASSIFICATION		
Radionuclide rel			(This Page)		
Liquid and atmos	pheric releases		Unclassified		

Unclassified
15. NUMBER OF PAGES

16. PRICE

Federal Recycling Program

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

120555139531 1 1AN1RHIRR11S
US NRC-04DM
DIV FOIA & PUBLICATIONS SVCS
TPS-PDR-NURES
PWFN-6E7
WASHINGTON DC 20555

SPECIAL FOURTH CLASS MAIL POSTAGE AND FEES PAID USNRC PERMIT NO. G-67