NUCLEAR ENERGY BUSINESS OPERATIONS . GENERAL ELECTRIC COMPANY SAN JOSE, CALIFORNIA 95125



| T. I. E. NO. | 84NED042               |
|--------------|------------------------|
| TITLE CO     | re Spray Sparger Crack |
| Analysis     | for Edwin I. Hatch     |
| Nuclear      | Power Station, Unit 1  |

~ ..

## ERRATA And ADDENDA SHEET

NO \_\_\_\_\_ December 1984

DATE

NOTE: Correct all copies of the applicable publication as specified below.

REFERENCES INSTRUCTIONS (SECTION, PAGE PARAGRAPH, LINE) ITEM (CORRECTIONS AND ADDITIONS) 1 Page 4-8 Replace page 4-8 with new page 4-8 (Change bar in right-hand margin indicates area where report has been revised.) 8502200295 850212 PDR ADOCK 05000321 ŝ PDR

1 100

## Table 4-1

## KEY PHENOMENA RELATED TO CORE SPRAY COOLING PERFORMANCE

| Phenomena                                            | Analytical Assumptions Used in the Current Reload Analysis                                       | Realistic Assumptions                                                                                                                                     |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upper Plenum<br>Inventory                            | Conservatively assumed to not<br>interact or contribute to core<br>reflood during LOCA transient | Pool of water present<br>throughout transient<br>assures coolant delivery<br>to all fuel bundles<br>(supported by Large Scale<br>Tests)                   |
| Counter Current<br>Flow Limiting<br>No CCFL breakdow | Saturated water in upper plenum above core                                                       | Some subcooling and less<br>CCFL occurs. A residual<br>pool of water remains<br>during and after core<br>reflooding. (supported by<br>Large Scale Tests)  |
|                                                      | No CCFL breakdown                                                                                | Breakdown of CCFL shortly<br>after spray initiation<br>causes rapid reflooding<br>(supported by Large Scale<br>Tests)                                     |
| Core heat<br>transfer                                | Limited spray cooling after<br>blowdown (Appendix K credit<br>only)                              | Steam cooling contribution<br>as much as 10 times greater<br>than Appendix K spray<br>cooling                                                             |
| Decay Heat                                           | 1971 ANS + 20% specified by<br>Appendix K                                                        | 1979 ANS (GE has submitted<br>a technical basis as a<br>part of the Standard Plant<br>docket which is based on<br>the 1979 ANS decay heat<br>correlation) |

NEDO-30825

.





Figure 4-1. Hatch Unit 1 DBA (Limiting LOCA) Analysis