
.

NUREG/CR-6421
UCRL-ID-122526 ,

i

A Proposed Acceptance
Process for ,

Commercial Off-the-Shelf (COTS 1>

Software in Reactor Aplications

|

. l' e shot, J. A. Scott

Lawrence Livermore National Laboratory

Prepared for
U.S. Nuclear Regulatory Commission

'
DR E

CR-6421 R PDR
C

. _ _ _ _ _ _ _ _ _ - __ _ - _ - . _-.

AVAILABluTY NOTICE

| Availability of Reference Materials Cded in NRC Pubhcations
t

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room. 2120 L Street. NW., Lower Level. Washington, DC 20555-0001

2. The Superintendent of Documents, U.S. Govemment Pnnting Office, P. O. Box 37082, Washington. DC
20402-9328

3. The National Technical Information Service, Springfield, VA 22161-0002

Although the listing that follows represent 3 the majority of documents cited in NRC pubhcations, it is not in-
tended to be exhaustive,

j Referenced documents available for inspection and copying for a fee from the NRC Public Document Room
include NRC correspondence and internal NRC memoranda: NRC bulletins, circulars, information notices, in-
spection and investigation notices; licensee event reports: vendor reports and correspondence: Commission
papers; and appilcant and licensee documents and correspondence.

|

The following documents in the NUREG series are available for purchase from the Govern,nent Printing Office:
formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement :

|

reports, grantee reports, and NRC booklets and brochures, Also available are regulatory guides, NRC regula-
tions In the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances. |

Documents available from the National Technical Information Service include NUREG-series reports and tech- .

nical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission,
forerunner agency to the Nuclear Regulatory Commission.)

e

Documents available from public and specialtechnicallibraries include all open hterature items, such as books, f
I

journal articles, and transactions. Federal Register notices, Federal and State legislation, and congressional
reports can usually be obtained from these libraries, f

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference pro-
ceedings are available for purchase from the organization sponsoring the publication cited. ;

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office
of Administration Distribution and Mall Services Section, U.S. Nuclear Regulatory Commission, Washington,
DC 20555-0001,

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are main-
tained at the NRC Ubrary, Two White Flint North,11545 Rockville Pike. Rockville. MD 20852-2738. for use by
the public. Codes and standards are usually Copyrighted and may be purchased from the onginating organiza-
tion or, if they are American National Standards. from the American National Standards Institute,1430 Broad. I

way, New York, NY 10018-3308.
'

|
1

|
.i
!

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Govemment.
,

'

Neitherthe United States Govemment nor any agency thereof, nor any of their employees, makes any warranty,

{
expressed or irnplied, or assumes any legal liability or responsibility for any third party's use, or the results of

.'such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use
|

by such third party would not infringe privately owned rights.;

!
!
i

!

. - . . - _ . _ _ _ .

. - -

NUREG/CR-6421
UCRL-ID-122526

|

|

_

| A Proposed Acceptance
| Process for
| Commercial Off-the-Shelf (COTS)

Software in Reactor Applicationsi

|

| Manuscript Completed: September 1995
Date Published: March 1996

Prepared by
G. G. Preckshot, J. A. Scott

Lawrence Livermore National Laboratory
Livermore, CA 94551

l

| J. Gallagher, NRC Technical Monitor

Prepared for

Division of Reactor Controls and Human Factors
Office of Nuclear Reactor Regulation
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001i

NRC Job Code L1857
.

.

1

|

|

ABSTRACT

This paper proposes a process for acceptance of commercial off-the-shelf (COTS) software products for use in
reactor systems important to safety. An initial set of four criteria establishes COTS software product identification

!
and its safety category. Based on safety category, three sets of additional criteria, graded in rigor, are applied to |
approve (or disapprove) the product. These criteria fall ioughly into three areas: product assurance, verification of !
safety function and safety impact, and examination of usage experience of the COTS product in circumstances
similar to the proposed application. A report addressing the testing of existing software is included as an appendix.

i

l

iii NUREGER-6421

_ _ _ _ _ _ _ - _ _ _ .__ _ . . _ _ _ _ _ _ _ _ - - _ - _ - - _ _ _ _ _ _ _ - _ .

- .- . - - . - -. . - - - , -- - - - - .- -.

h

t

t

| CONTENTS

Acknowledgmentvii.

| Executive Summaryix.

1.0 Introduction1. . . .

1.1 Scope.... I-

1.2 Purpose....1.

| 13 Definitions.......1.

| 1.4 Background.. .. . 2. - -

1.4.1 COTS Background and Feasibility . .. 2. -

1.4.1.1 Commercial-Off-the-Shelf Software andits Acceptability2.

1.4.1.2 FeasibilityIssues.- .. . 3. -

1.4.13 Perspectives on Acceptability Evaluations3.

| 1.4.2 Badground on the Proposed Accaptawa Process =5.

1.4.2.1 Classification5. . .

1.4.2.2 Basis for the Acepta-e Criteria.... 5. . . .

1.4.23 Acceptance Process, Criteria, and Conclusions = -6.

2.0 SafetyCategories-
...... 7..

.

! 2.1 IEC 1226 Categories.
..............7|-

2.2 CO'I3 Usage Categories.
. . . .

.7..

23 Special Note on Compilers, Linkers, and Operatmg Systems .7.

! 3.0 Overview of Standards Reviewed... =9..

3.1 IEEE 730 (Now 730.1) - ... - .. 9. _
3.2 IEEE 983 (P730.2, Draft 5)..- :9.

33 IFFE 828.. . ..
.............9. ~

(3.4 IEEE 1042.....
.

9.
.

i 3.5 ISO 9000 3.....9.
. - .

| 3.6 ANSI /ANS-10.4...
.

__9.

3.7 ANSI /TFFE 1012. = . 10.
.

3.8 IEC 880.- . .. 10 i.

3.9 IEC987..
... 10

. -

.

| 3.10 IEC 880, First Supplement to IEC 880 (Draft) .
.. 10.

3.11 IEEE-7-43.2-1993 - 10.
.

3.12 IEC 1226..... .
.11. . . .

4.0 Proposed Acceptance Process.13_. .

4.1 Commercial. Grade Dedication for Class-of. Service.13
4.2 Preliminary Phase of the Proposed Acceptance Process =,

... 14
| 4.2.1 Acceptance Criterion 1-Risk and Hazards Analyses.

.

14
4.2.2 Acceptance Criterion 2-Identification of Safety Functions .14.

4.23 Amapea-e Criterion 3-Configuration Management .. . 14..

4.2.4 Acceptance Criterion 4-Determination of Safety Category 15. -
43 Detailed Acceptance Criteria for Category A - . 15 !

.

43.1 Acceptance Criterion AS-Product Assurance
. 15

'

.

43.2 Acceptance Criterion A6-Product Documentation....
.. 16.

433 Acceptance Criterion A7-Product Safety Requirements..16! 43.4 Amap**-e Criterion A8-System Safety..
16

43.5 Amapra-e Criterion A9-Interface Requirements--
. . .

.17
43.6 Acceptance Criterion A10-Experience Database... . ..

.

;
_17. . .

I

|

v NUREG/CR-6421

_ _ _ _-

.. 174.3.7 Ac --/-=e Criterion All-Error Reporung Requirement.. =-. .

4.3.8 Accy== Criterion A12-Additinant V&V Requirement . 17.

4.4 Detailed Acc- ==e Criteria for Category B 17.

4.4.1 AWaaca Criterion B5-Product Assurance 17. . . -

4.4.2 Acwj-- e Criterion B6-ProductDocumentation. .. 17=

4.4.3 Accy-e Criterion B7-Product Safety Reqmrements - 17..

4.4.4 AWa= Criterion B&-System Safety -. 18

184.4.5 Acsj" e Criterion B9-Experience Databa.tc ,

4.4.6 Accya= Criterion B10-Error Reporting Requirement.... 18..
-

4.5 Detailed Ace?a= Criteria for Category C 18. . .

4.5.1 Ace?a= Criterion C5-Product Assurance.. 18.

4.5.2 Awa= Criterion C6-Product Documentation..... 18
.

4.53 Accyaare Criterion C7-Product Safety Requirements 18.
i

194.5.4 Acetaarc Criterion C8-System Safety

.... 194.5.5 Acetaare Criterion C9-Experience Database m

. .. 194.5.6 Ace?anca Criterion C10-Error Reporting Requirement =

m... 21 ,

5.0 Conclusions --

23
References

.-

- 25
Appandir A-Prehminary List of Factors m

- 35Appendix B-Testing Existing Software for Safety-Related Applications..

TABLES
.8

Table 1. Safety Categories ..-
.....:-

8Table 2. COTS Usage Categories -. -

.............-.......8Table 3. COTS Safety Category Criteria

13Table 4. Preliminary COTS Acceptance Criteria

15
Table 5. Category A COTS Ace?aare Criteria

.. 18Table 6. Category B COTS Ace?a= Criteria..

19
Table 7. Category C COTS Acceptance Criteria......

25
Table A-1. Failure Consequence Criteria....m - . . .

.

.... . 25
Table A-2. Plan Existence Cntena

.-
. . .

.26
Table A 3. SQA Criteria :

._ .. .
- 27

Table A-4. Software Configurauon Management Criteria

.........-..........28
Table A-5. Software V&V Criteria- .

29
Table A-6. Actions to Take When Data is Missing -

... 29
Table A-7. Minimum SQA Documentation......

. ..
.

. .. 29
Table A-8. Mininw.m Required SQA Reviews and Audits......

.. . . 30
Table A-9. SQA, SCM, and V&V for Other Software Suppliers

30
Table A 10. %ggested Additional Documentation_....

. . .. 30
Table A-1?.. Suggested Areas of Standardi7arion -

.
. ..

31
Table A-12. Minimum V&V Tasks

.

32
Table A-13. Minimum Documentation Needed for a Posteriori V&V.. .33
Table A-14. Typical Policies and Directives of a Configuration Management Operation .

vi
NUREG/CR-6421

._ _

,..
. .--. _. _ _ _ . . . - - . _ . - ~ . - -. ..

,

|

ACKNOWLEDGMENT
"Ihe authors thank and acknowledge the efforts of Nuclear Regulatory Commission staff members, Leo Beltracchi,
Robert Brill, John Gallagher, Joe Joyce, Joel Kramer, and James Stewart, who reviewed this work and provided their
insights and comments.

|

|
|

I

|

|
!

l
l

|

r

|
|
l
i

:

|

|

.

|

|
i

;

i
i ..

NUREG/CR-6421vu
1

!____-____ _ _ - _ _ __ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ - _ - - _ _ _ _ _ _ - _ _ _ _ _ _ _ - _

I
|

|

|

| EXECUTIVE SUMMARY
:

; The approval process for commercial off-the-shelf (COTS) software to be used in reactor safety systems (Class IE)
has been termed " commercial dedication," ahhough this term also implies defect reporting responsibilities (for the

,

| dedicator) under 10 CFR 21. Since this document addresses only the investigation of the acceptability of such
| software for use in systems important to safety, the term " acceptance process" is used. 'Ihe purpose of this work is to
'

review current and draft standards to create a set of " acceptance criteria" and incorporate them into a proposed
Ecy=a process. The resulting acceptance criteria are assessed with regard to NRC practices and regulatory
purview to arrive at an ordered set of criteria related to safety that comprises a proposed process for accepting COTS
software for use in reactor safety applications. Prior to discussing the acceptance process, summary information is
provided regardmg the nature of the problem of acceptance and the feasibility of using COTS software in reactor
safety applicauons. The latter describes some cost-related considerations, other than purchase price, that are
associated with using COTS software in systems important to safety,

In keeping with NRC practices, wherein reactor equipment is regulated primarily in proporuon to its importance to
reactor safety, it is pmposed that COTS products should be reviewed with a stringency proportional to the safety

t

functions they are intended to provide. An initial set of four criteria, comprising the preliminary phase of the
acceptance process, establishes COTS product identification and its safety category. Based on safety category, one
of three sets of additional criteria, graded in rigor, is applied to approve (or disappmve) the product. These criteria
fall roughly into three areas: product assurance, verification of safety function and safety impact, and examination of
usage experience of the COTS product in circumstances similar to the proposed application.

Several conclusions are drawn. First, it is feasible to design an acceptance process based on a classification of
software with respect to its importance to safety. Second, the rank order of acceptance criteria is dictated by data
dependencies. The exercise of satisfying first-ranked criteria produces data that are necessary for the remaining
criteria. 'Ihus, no basis for satisfying subsequent criteria exists if" upstream" criteria are not satisfied. Finally, no
single standard extant at this writing completely addresses the acceptance problem. Taken in combination, however,
a usable set of criteria for determining the acceptability of a COTS software item can be derived from IEC, IEEE,
and ISO standards. Based on the results,it appears that acceptable COTS software items can be produced by vendors
who aie generally aware of the risks associated with systems important to safety and who employ accepted software
engineering practice to produce high-integrity software.

|
|

j

i

,

|

,

e

|

f ix NUREG/CR-6421

,

! Section 1.11troduction

|

A PROPOSED ACCEPTANCE PROCESS
FOR COMMERCIAL OFF-THE-SHELF (COTS)

SOFTWARE IN REACTOR APPLICATIONS

1.0 INTRODUCTION
1.1 Scope commercial-grade dedication

This report addresses the use of commercial off-the. An acceptance process undertaken to provide
shelf (COTS) software in those nuclear power plant reasonable assurance that a commercial-grade item to
(NPP) systems that have some relationship to safety, be used as a basic component will perform its intended
'Ihe report proposes a process for determining the safety function and, in this respect, will be deemed
acceptability of COTS software using a clessification equivalent to an item designed and manufactured under
scheme based on the importance to safety of the system a 10 CFR Part 50, Appendix B, quality assurance
in which the COTS product will be used. Since program.2
software testing is related to the acceptance process,
the report, Testing Existing Softwarefor Safety-Related O'"I ##|'*"''
Applications, has been included as Appendix B of this

Software that is part of, or could affect, the safetyrepoA
function of a basic component or a commercial-grade

1.2 Purpose s ftware item that undergoes commercial-grade
dedication.

,

'Ihe purpose of this report is to present a proposed
acceptance process, based on a review of current and Important to safety

draft standards, for the use of COTS software items in A structure, system,or component:
NPP systems important to safety. The process is
centered on suitable " acceptance criteria" that are a whose failure could lead to a significant radiation
supported by inclusion in a majority of standards hazard,
publications or work-in-progress and that are
consistent with NRC practices and regulatory purview. b. hpeheiWedohem

from leading to accident conditions, or
1.3 Definitions

c. that is provided to mitigate consequences of failure
. . .

Key terms used in the report are defined below, of other structures, systems or components.

Class 1E This encompasses both safety axi safety-related
systems.

The safety classification of the electric equipment and
systems that are essential to emergency reactor SI''J-related
shutdown, containment isolation, reactor core cooling,
and containment and reactor heat removal, or are Pertaining to systems important to safety but that are

Otherwise essential in preventmg significant release of not safety systems.

radioactive material to the environment. Safety systems

Commercial-grade item
Those systems that are relied upon to remain ftmetional

A structure, system, or component, or part thereof that during and following design basis events to ensure (a)

is used in the design of a nuclear power plant and the integrity of the reactor coolant pressure boundary,,

which could affect the safety function of the plant, but (b) the capability to shut down the reactor and maintain

was not designed and manufactured as a basic it in a safe shutdown condition, or (c) the capability to

| component. prevent or mitigate the consequences of accidents that

2
Since this report is concerned with the specifics of gaining

I '!his definition is sufficient for this report; see 10 CFR Part 21 (inreasonable asmrance and not with the aspects of 10 CFR that will
apply following, the actual acceptance of a commercial-grade item.

the reymon process as of this writing) for the complete current the process of gaining assurance is called an " acceptance process"defirutm
rather than a "canmercial dedication process."

1 NUREG/CR-6421

_ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - -

1

Section 1. Ictroduction

could result in potential offsite exposures comparable product and assumption of 10 CFR 21 defect-reporting
to the 10 CFR Part 100 guidehnes. responsibilities. Since this report addresses only the

evaluatim and acceptance of COTS software in both
Statisdcolcertainty- safety related systems and m other systems important

to safety, the process is referred to herein as an ;

An assertion made within calculated confidence limits " acceptance pmcess."
supported by date. samples and an underlying
distribuuon theory. The acceptance process used to determine the

acceptability of a COTS softwcre item is currently the
Stadsdcolvalidity subject of much debate. This section of the report

An assertion is statistically valid if the attributes of the discusses key issues related to the feasibility of using

data supportmg the statistical certainty of the assertion COTS software in systems important to safety, a brief

are consistent with the inference to be made, discussion of the varying perspectives of typical
Participants, and background information regarding the

[the term, statistical validity, is used in several places development of the proposed acceptance process. The
m this report to refer to operating experience of a following sections of this report address the :

i
commercial-grade software item. The connotations of classification of software to be used in NPP systems, -

!

this usage are: discuss how various standards influenced the proposed

a*Ptance pmcess.,and descrh the pmposed ,

for each datum in the operating experience amptance pmcessitself.*

database, the version and release numbers of the '

involved software item are identified and match the 1A.1 COTS Background and Feasibility
target commercial-grade software item; and,

1.4.1.1 Commercial-Of-the-ShelfSoftware andits
for each datum, the operating environment, Acceptabilitya

configurauon, and usage are reported and match the
intended environment, configuration, and usage of COTS software has the potential to yield large cost i

savings if it can be used in safety systems and otherthe target commercial-grade software item; and,
systems important to safety in nuclear power plants.

all received reports and incident details are recorded ne COTS software of interest typically includes -

*

in the database, regardless of initial diagnosis; and, compilers, operating systems, software supplied in
Programmable Logic Controllers (PLCs), and software

3 ted numberof in commercial industrial digital control systems. Dean estimate is made of the exyith confidence
=

|umeported,uniqueincidents, w problem faced by the nuclear reactor industry is to
|lisnits; and, show that a particular COTS product, which may be

,

| useful in a nuclear reactor instrumentation and control
'

the number of reports in the database, the system, has sufficient reliability for the application.=

confidence interval, and the expected number of The best solution to the problem is that the software ;

uwusd severe errors are consistent with the engineering gmup that pmduced the product did its
'

intended use of the commercial-grade software work using the necessary processes for producing high.
item.) quality software, and that evidence of this (including i

tdocumentation, tests, inspections, quality
L4 Background assurance / control, verification and validation, and I

Considerable interest exists in the nuclear power various other quality-related activities) is available for |

community in the potential use of commercial off-the- inspection by the prospective buyer. Lacking this j

shelf software in nuclear power plant systems. For favorable situation, some minimum standards by which j

safety-related systems, it it necessary to evaluate the a COTS product is judged should be available. The |

acceptability of the COTS software for use in the
central issue in establishing these minimum standards

system and then to formally designate the COTS
is that the COTS product must be shown to have I

software as a" basic component" of a system essential sufficient quality for its intended application. A

to reactor safety. This is referred to as " dedication of a
fundamental concern for regulators in approving an

commercial-grade item" by 10 CFR Part 21, although acceptance process is that if the process is significantly
i

the term " commercial dedication" was sometimes also
less rigorous than normal regulatory review of software J

used to signify only the formal acceptance of the developed in-house, it may become a conduit for
escaping necessary scrutiny. |

I

'^" """'M' n[To date, this process has been rather informal.be n an n

Rrrently, a number of standards comminees have been
;g, ,, o, ,, g ,

dressing the pmblem of formaking h pmcess. |,o,,,,,

4A unique iarvlaar is one that, after root.cause analysis, has a Various techniques have been proposed for dealing
ditrerent root cause froen all prenously reported incidents.

|

2
NUREG/CR-6421

i
.

.

- - - - - - - - - . - - - . - . . - - . - . .- - - - - - ,-

|

:
|
'

Section 1. htroduction

i

| |

! with specific technical problems frequently Operational history provides supplementary |
encountered in applying acceptance processes; information that can complement testing. The draft |

| however, considerable controversy still surrounds supplement to IEC 880 states that "for safety critical
) manyof these. (Category A) systems, the feedback of experience
i should never prevent a careful analysis of the product
| 1.4.1.2 FeasibilityIssue#

itself, of its architecture, of how it has been developed

De pnmary motivation for considering the use of and of the validation of all the functionalities intended
i COTS software as an alternative to a new software i be used in the design. IEEE-7-4.3.2-1993, m its

development is to avoid unnecessary development discussion of qualification of existing commercialI

! costs. Although the cost savings appear obvious at first computers, states that exceptions to the development
; glance, there are imponant issues affecting costs that steps required by this standard or referenced
| require careful consideration. Many of these issues documents may be taken as long as there are other
'

relate to the fact that the potential COTS software compensadng factors that serve to provide equivalent
product must be demonstrated to be of sufficient results. For an information source to provide

quality for its intended application in a system equivalent results, the subject of the compensationr

! imponant to safety * must be tightly focused on a particular technical
question, and it must be shown how the compensatingi

One such issue is the existence, availability, and information is equivalent to the missing information.
I relevance ofinformation needed to demonstrate For safety-essential systems, the necessary
} _ quality. Discussions regarding the demonstration of demonstration of quality will require extensive
I confidence in COTS software products (Gallagher, information about the product aad a rigorous analysis 1

| 1994) indacate that there are basically three potential of that information. Options for (Lating with missing
! sources for pertment information: an examination of information are limited and require careful

the development process and the associated product consideration and documentation. The activities:
)A= - tation, testing of the COTS software product, equired for demonstratinh 'luality may be quite costly.
|and an examination of the operational history

associated with the product. De workshop panicipants Another consideration associated with demonstrating

speculate that information from these sources might be confidence in a COTS software product is the potential
used in varying mixtures depending on context; but Impact of functions contamed in the COTS software

they provide no details on how this might be done that are not required for its popu- application, such
while ensunng that the appropriate quality is as tindocumented functions or unused resident

, ;

demonstrated. There is a danger that such alternatives functions (called " unintended functions" and " unused
~

could be used to avoid the scrutiny attached to new functions" in this report) The commitment to use
software development efforts. COTS software requires that the potential impact of j

unintended functions and inadvenent actuation of
| Relevant standards indicate that information from all unused functions be assessed in the process of

3

three sources is needed and that possibilities are determining acceptability. The activities required to;

'
limited regarding recourse to one source when make this assessment can represent significant
informatbo is not available from another. The core additional costs.
inforrration is proiided by product documentation,
ree'els, and details of the development process applied In addition to the costs described above, the problems

to the product. Testing of a COTS software product associated with maintainmg and tracking COTS
,

can be used for several purposes, including software status should be considered carefully,
especially defect reporting as detailed in 10 CFR Part'

augmenting the testing effort conducted during 21. The downstream costs associated with effecting
*

development this maintenance and tracking capability may be
comparable to those associated with software

addressing requirements specific to the proposed developed directly for the NPP environment. His area
a

application of the COTS item in a system important includes configuration management and the vendor's
to safety

long-term role, obsolescence and the potential cost of

verifying of the intended functions of the product' systenueMgn, hg trang and reponing*

and commitments, and the irnplementation and -

,

requalification of bug fixes.
* assessing the quality of testing activities carried out

dunng development (see Appendix B of this repon 1.4.13 Perspectives on Acceptability Evaluations
3

i for information on testing with an emphasis on New software developed for the NPP environment can
{ COTS pmducts).

be controlled from inception to address a wide variety
; of assurance and safety considerations. This is not the

| case for COTS software, which has already been

3 NUREG/CR-6421

. _ _ _.

Section 1. Ictroduction

developed, and whose developers may be responsive to De effect of these perspectives can be demonstrated
a number of commercial objectives unrelated to NPP by considering various scenarios for the evaluation of a
safety. In parucular, the COTS product is unlikely to particular COTS product.
have been the result of development processes
specifically attuned to safety and hazards analyses og Scenario 1: A COTS software vendor wants to
ypps, dedicate a productfor specsfic uses.

His is acna==ically important because COTS in this case, the COTS software vendor would be

software products may supply ned J f.metions where directly concerned with regulator needs and user needs

it is impractical to implement those funcNns by dunng the acceptance process, implying a ennnarative

developing new software. For thh approact to be safe, COTS software vendor that probably has relatively

questions that need to answemiare mature software development processes. The vendor is
motivated by business advantage, possibly with respect

I. What assuruce and safety considerations should be to meeting similar standards in other fields (e.g.,
addressed? environmental), and takes responsibility for generic,

** *'I* 8"
2. Is the COTS item fully consistent with those

considerauons? Scenario 2: A COTS software user-for examle, a
' ! * ' "

De rigor of these questions is affected by the relative rea r
importance to safety of the proposed COTS software

'

item. De first issue to address in evaluating The COTS software vendor may not be strongly

acceptability is importance grading (classification) motivated, in which case a good reactor vendor

with respect to safety role. Given the proposed safety relationship with COTS software vendor would be
classification of an identified COTS item, the next instrumental in the acceptance process. De reactor

problem is verification of its properties and quality. vendor would be responsible for coordinating activities
with the COTS software vendor and with the regulator,

If the COTS item was produced by a vendor with and for specific safety analyses.
systemanc and well-controlled software processes,
many of the documentary products necessary to make Scenario Jt A COTS software user-for exayle, an

the product and process determinations will exist and owner / operator-dedicates a COTS itemfor use in a
be verifiable, and therefore determination of properties retrofit.
and quality would be fairly straightforward. If the

An owner / operator will have a long-standing
COTS item was produced in a less mature

relationship with the regulator, but perhaps not with
development environment, the issue is complicated by
the fact that quality assurance processes may not have

respect to software development issues. An
owner / operator is somewhat removed from the original

been employed, or may have been employed in an reactor vendor and may not have the same
inconsistent fashion. In this case, the COTS item

understanding of the design subtleties of reactor
performance ofits functions is suspect, and assurance systems important to safety. The owner / operator would
investigations to address this question are hampered by
the lack of-cr poor quality of-the associated pmbably use the reactor vendor's extsung

thermal / hydraulic safety analyses, but would be
matenals that would have been generated by a mature

responsible for determining the COTS product safety
softwee process, functions. An owner / operator may also be more

De problems of identification of safety role and removed from the COTS software vendor than the

verification of properues and quality are complicated reactor vendor.

by the fact that there are three perspectives on the Scenario 4: A regulatorpermits use ofa previouly
evaluation of acceptability; qualified COTS itemfor a certain class of service.

the producer of the COTS item,i.e., the COTS his scenario would be a generpination of ar. existing*

software vendor qualification of the COTS item by an applicant.De

the user (customer) of the COTS item, i.e., a reactor regulator would need to have high confidence in the
*

vendor or an owner / operator doing a retrofit COTS item. There would be possible standardization
benefits,but these would depend upon the acceptability

the regulator responsible for approving the use of to the regulator of safety analyses regarding class of*

the COTS item. The regulator has the legal service, as opposed to plant-specific analyses.
responsibility of certifying that the NPP in which Dedication for generic class of service would not

,

| the COTS item willbe usedis safe. absolve the designer using the COTS item from;
,

performing specific, use-related safety analyses.
>

I
4

NUREGER-6421
F

. _ - _ _ . .

Section 1. IItroduction

1.4.2 Background on the Proposed Acceptance ANSI /ANS-10.4," Guidelines for the Verification.

Process and Validation of Scientific and Engineering
"

1.4.2.1 Classification

While it is necessary to demonstrate that a COTS item ANSl/IEEE 1012. "IEEE Standard for Software.

Verification and Validation Plans"has sufficient reliability for its intended application, it
is also important that the demonstration be IEC 880," Software for Computers in the Safety.

commensurate with the importance to safety of the Systems of Nuclear Power Stations"
COTS item. Hat is, the acceptance process must
ensure sufficient quality but should not require IEC 987," Programmed Digital Computers.

unnecessary effort. Just as reactor subsystems and Important to Safety for Nuclear Power Stations"
equipment are regulated primarily in proportion to their
importance to reactor safety, COTS products should be An overview of the pertinent aspects of each of the

reviewed with a stringency proportional to the safety 1 sted standards is given in Section 3, and a detailed

function they are mtended to provide. This allows multi-tabular list of criteria abstracted from the

regulatory resources to be applied efficiently and does standards may be foundin Appendix A.

not burden reactor vendors with unnecessary New Standards Acrivity
requirements.

1.4.2.2 Basisfor the Acceptance Criteria New work is being performed on acceptance criteria
for COTS products by the EC, driven by the potential

Current Standeds economic advantage of being able to use existing
software products. A draft addition to EC 880 was

Standards for software quality assurance (SQA), used to review the criteria extracted from existing
software configuration management (SCM), software standards for completeness and applicability. His is
verification and validation (SVV), and software criteria discussed in overview in Section 3.10. EC 1226
for use in nuclear power plants were reviewed for provides a defacto safety categorization, which is
criteria appropnate to COTS products. In many cases, discussed in detail in Section 2.1. He following
no explicit provision is made for adapting existing emerging or new standards were reviewed:
software to a critical application; the standards assume
that such software will be developed as new software First Supplement to IEC 880 (Draft)," Software for.

products. There are provisions for qualifying software Computers in the Safety Systems of Nuclear Power
Stations''products for use in producing the final product, but in

most cases, these provisions amount to ensuring that IEC 1226,"The Classification ofInstrumentation.

the standard itself was employed by the software
subcontractor. ne following standards were reviewed and Control Systems Important to Safety for

Nuclear Power Plants."
to determine criteria either explicitly required for
COTS products or implicitly required because the Design factors
COTS product was required to conform to the
standard: Previous work on vendor assessment (Lawrence &

Preckshot,1994, Lawrence et al.,1994) was applied to
EEE 730 (Now 730.1),"EEE Standard for check the reasonableness of the COTS assessment

.

Software Quality Assurance Plans" criteria derived as described above. !t became clear that

IEEE 983 (P730.2, Draft 4), "IEEE Guide for the design factors primarily address product assurance.

Software Quality Assurance Planning" issues, which for COTS products is only part of the
problem. He vendor assessment work also provides

EEE 828,"EEE Standard for Software the approach and rationale for judging the COTS.

Configuration Management Plans" assessment criteria against NRC needs.

IEEE 1042,"IEEE Guide to Software # ##.

Configuration Management"
A preliminary version of this report was presented to

IEEE 7-4.3.2," Standard Criteria for Digital the NRC. The comments received at that meeting have.

Computers in Safety Systems of Nuclear Power been incorporated into this version of the report.
Generating Stations"

Expert Peer Review Meeting on High-Integrity
ISO 9000-3," Guidelines for the Application of ISO #I'###.

9000-1 to the Development, Supply, and
Maintenance of Software" This meeting was conducted by Mitre Corporation for

the NRC Office of Nuclear Regulatory Research, and

5 NUREG/CR-6421
4

. _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ - - - _ _ _ _

Section 1. Introduction

substantial discussions on COTS issues ensued. based on review of the criterialisted in Appendix A.
Material from the NRC was provided by an NRC The acceptance process is compatible with IEEE-7-

representative. Excerpts from these discussions were 43.2-1993, with detail supplied from other standards

analyzed and considered in completing this version of in places where IFFF.7 43.2 requires "engineermg
the report. judgment." This level of stringency is consistent with

the body of TFFF.7-43.2, which addresses software
1.4.2.3 Acceptance Process, Criteria, and Conclusions development in general. The systems-oriented

approsch of the IEC standards has had a significant
While it is not possible to completely elimmate influenm n the resuldng list of acceptance derna,
subjectivity and the consequent variability of results, adding a risk assessment step that the other standards
the maan=~ process presented in Section 4 has been lack. An mterestmg and possibly surprising conclusion
devekh to a sufficient level of detail to promote is that the rank order is the result of simple data
reasonable uniformity of results on each key element. dependencies. The achievement of a particular criterion
'Ibe process consists of preliminary activities that is @ndenit upon sadsfacdon d prece&g crida, so
apply regardless of safety category, followed by a set that from a practical vewpomt, the importance of
of activities tailomi to the particular safety category mdividual criteria cannot be decided in isolation.
established for the COTS item in its intended usage. A
set of ranked criteria is listed for three safety categories

1

:

6
| NUREG/CR-6421
|
,

. , _ - ~ _ n~..-- .. . _ - - ~ ~. - .-_.- - .- - - - - -_- -.- - . .,

!

Secti:n 2. Safety Cctegories

| 2.0 SAFETY CATEGORIES
i

Safety categortzation fulfills its intended purpose if those COTS products that have potentials for
sufficient categories exist to enable efficient embedding errors in software that is essential or

,

applicanna of regulatory resources, but not so many important to safety, but are not themselves executing
{that efforts are fran==M De appropriate number when the error causes a challenge. Most standards are i

appears to be more than two (safety and non-safety) silent or say very little about qualifying such software,
and less than five. The categorization problem has because the dilemma is a difficult one to resolve. In
three parts. The first is to define categories, for which general, there is a trade-off; is it safer to use or not to
this paper has recourse to IEC 1226. The second is to use such a product? If the answer were a simple " don't j
deduce to which category a COTS product belongs, use it," .afety software would still be written in
which is discussed below. The third part is to decide machine language, an obvious absurdity. Even with the
what rigor c(acceptance process is appropriate to each success of modern software tools, however, trustmg
category, which is considered in Section 4. acceptance of such tools is not recommended. Tools

should be rated for safety impact as detailed in Tables ;2.1 IEC 1226 Categories 1-3, and assurance methods used for similar tools used

IEC 1226 proposes, by implication, four categories- '

A, B, C, and unclassified-which in this context means For example, the draft supplement to IEC 880 notes
"has no safety impact." Rather than repeat IEC 1226 that it can be quite difficult to demonstate that a
definitiorc, Table I shows by example some familiar compiler works correctly. The draft supplement states
reactor systems and where they would be placed in the that "Even validated compilers have been found to
IEC 1226 scheme (IEC 1226 2493, Annex A). IEC contain serious errors." His was illustrated by the
1226 category A is very similar to IEEE Class IE. An experience with Ada compilers; there was a
approximate equivalence to Regulatory Guide 1.97 considerable delay before qualified Ada compilers
signalcategoriesis also shown. became generally available. An "Ada qualification

2.2 COTS Usage Categories suite" of programs that an Ada compiler should,

successfully compile or detect errors in now has !
"" 8'" #8"" "Unfortunately, many COTS products do not fit neatly

into IEC 1226 categories. This is because COTS as compiler writers discover newer and subtler ways to

products, although there may be extant examples of introducebugsin Adacompilers.
!

category A, B, or C usage, are also used in supporting Because of the difficulties associated validating
roles that may affect software in categories A, B, or C. compilers, linkers, and operating systems, the
Table 2 below summarizes the possibilities. evaluation should be based on best available

Table 3 formalizes the decision process detailed above. information and should be continuous while the toolis
The operative principles are that if an error in COTS in use. Where qualification tests exist (such as the Ada

software can occur in operation important to safety or qualification suite), only products that pass such tests

can embed an error in other software important to should be accepted. In addition, extensive statistically

safety, then the COTS software takes on the category valid operational experience is important in these cases

of the software in which the error can occur. If the because the validation effort is beyond the skills of

COTS software can only challenge software important most unspecialized software developers. Sometimes

to safety,possibly exposing existing errors, then the this may mean using a product version that has a

COTS software takes on the next lower safety known bug list as opposed to the latest version on the

category. Smce category C has relatively low market. There may be less risk in using an older

reliability requirements, software that produces version and avoiding well-known bugs than in using

category C software may be of standard commercial the latest version with a high expected level of i

quality (unclassified). unreported, severe errors. These considerations also

apply, to a lesser extent, in the category B and category
2.3 Special Note on Compilers, Linkers, C processes described in Sections 4.3 and 4.4 below.

j and Operating Systems

. Compilers, linkers, operating systems used for
f development, and similar COTS software are among

'

I
.

!

|

7 NUREGER-6421

,

_ _ _ _ _ - . __ __ ._ . ____ _ _ _ _ _

- _ _ _ . . _ _ _ _ _ _ _ . _ . ___ . _ ._ _ _ _ _ _ _..- _ __ _ _ . .. _._ _ _ ._. _ _ _ _ _

Section 2. Safety Cctegories

Table 1. Safety Categories

IEC 1226 Example Systems RG 1.97
Category Equivalent *

Category

A Reactor Protection System (RPS)_ A,B
Engineered Safety Features Actuation System (ESFAS) A,B
Instrumentation essential for operator action A,B,C,D

B Reactor automatic controlsystem
Controlroom data processing system
Fire suppression system
Refueling system interlocks and circuits E

C Alarms, annunciators B,C,D,E
i

Radwaste and area monitoring C,E |
|Access controlsystem

Emergency communications system

Table 2. COTS Usage Categories

Usage Description Equivalent
Category IEC 1226

Direct Directly used in an A, B, or C application. A, B, or C

Induect Directly produces executable modules that are used in A, B, or C
applications (software tools such as compilers, linkers, automatic
configuration managers, or the like).

Produces A modules A or B5

Produces B modules B orc 6

Produces C modules unclassified

Support CASE systems, or other support systems that indirectly assist in unclassified

the production of A, B, or C applications, or software that runs
as an independent background surveillance system of A, B, or C
applications.

Unrelated Software that has no impact on A, B, or C applications, uxlassified

Table 3, COTS Safety Category Criteria

1 If the COTS product is used directly in a system important to safety, the COTS safety category
is determined by the criteria of IEC 1226.

2 If the COTS product directly produces or controls the configuration of an executable software
product that is used in a system important to safety, and no method exists to validate the output
of the COTS product, the COTS safety category is the same as that ofits output, except that
category C software may be produced by COTS products of the unclassified category. COTS
software that directly produces category A or B software that is validated by other means is
category B or C, respectively.

3 If the COTS product supports production of category A, B, or C software, but does not directly
produce or control the configuration of such software modules, it falls under the safety category
" unclassified."

If the COTS product has no impact on category A, B, or C software or systems,it falls under4
the safety category " unclassified."

h choice of A or B category depends upon whether the A module has diverse attematives or whether there is another software tool, uested as
category A,thatverifies the output of the subject tool
6'Ihe choice of B or C category depends upon whe'ther the B module has diverse ahematives or whether there is another software tool, treated as
category B,that verifies the output of the subject tool.

8
NUREGA'. 6421R

---- - - - - . - . - - . - - - . .-.- - - - - ... -

Section 3. Overviewgf Standards RGviewed

3.0 OVERVIEW OF STANDARDS REVIEWED
If there is a general philosophical difference between configuration management plans. Entry 8 in this table
standards,it may be the tendency to take a pro forma lists the crucial points with regard to configurabon
approach versus the tendency to be prescriptive, management maintained by a supplier. IEEE 828
Predominantly pro forma standards, such as IEEE and requires a description of how acquired software will be
ISO software standards, require developers to produce received, tested, and placed under SCM; how changes

*

documents and perform certain activities, but do not to the supplier's software are to be processed, and
prescribe many details or pass / fail criteria. Abstracting whether and how the supplier will participate in the
criteria from such sidsds requires judgment and project's change management process. IEEE 828 does ;
understanding of the underlying software production not address COTS software explicitly, or specify '

and validauon processes, an endeavor that may be criteria that software configuration management
subject to differing opinions. Standards that tend to be systems of a COTS software vendor should meet.
i,.M nive, of which the three IEC standards arei
examples, are more detailed and leave less to 3.4 IEEE 1942

!
professional judgment, although they de not climinate
the potential for differing viewpoints. A detailed IEEE 1042 provides guidance by example for applying
standard may lose current applicabili'.y. requiring IEEE 828. As a guidance standard, this document does <

professionaljudgment to apply its sttictures to not contradict or add to the requirements stipulated by
evolving technology, in the following, our estimate of IEEE 828.
the approach taken in each standard is mentioned.

3.5 ISO 9000-3
3.1 IEEE 730 (Now 730.1)

The ISO 9000 standards apply to quality assurance
IEEE 730.1 is a pro forma standard that describes the Programs in general, and are not limited to software.
activities and documentation required for software ISO 9000-3 interprets the general standards as applied
quality assurance (SQA) plans. By implication, this to software, and fulfills somewhat the same role as

standard addresses only two formal categories of IEEE 730.1; that is, it is e pro forma standard that acts,

software (critical and non-critical). Some or all of the in Part, as an umbrella standard, mentioning other
standard may be applied to non-critical software, but aspects of software quality such as SCM and SVV. The
the degree of application is optional. ne standard acts ISO standards are more contractually onented than the
as an umbrella standard in the sense that it requires IEEE standards, and somewhat more generally written
some sort of software configuration management as far as criteria for standani adherence are coim.cd.
(SCM) and some sort of software verification and Tables A-3,line 9, Table A-4,line 8,and Table A-9,

' validation (SVV). Other IEEE standards on SCM and line I reflect the ISO view of subcontracted or existing
,

SVV are referenced by this standard. Table A 3 lists s ftware products.7

the activities and documentation required, which are
3.6 ANSI /ANS-10.4presumed to extend to safety-critical COTS products

by Table A-3, entry 9 and Table A-9, entry 1. His standard regards verification and validation of

3.2 IEEE 983 (P730*2* Draft 5) s ientifi and engineering Programs for use in the
nuclear industry, and typical programs used for

his standard is a guidance standard for applying IEEE simulation or design of reactors or reactor subsystems.
730.1. As such,it does not supersede the requirements it is the only standard, of all reviewed, that considers

of that standard or impose additional requirements. It the question of verification and validation of existmg
provides clarification, as in Table A-3, entry 6, and all computer programs for which there is little or no
entries in Table A II. documentation. This probably reflects the actual

situation extant with this type of software; little or no
3.3 IEEE 828 formal software engineering method is applied during

software development, leaving a software product of
IEEE 828 presents pro forma requirements for unknown reliability. ANSI /ANS 10.4 suggested many
activities and documentation in software configuration of the entries in Tables A-6, A 12, and A-13,and was
management plans for all criticality levels of software; useful in expanding the functional requirements of
the standard makes no distinction between levels. ANSI /IEEE 1012.,

Table A-4 lists the detailed requirements for;

!

7
Tables marked with an A.may be found in Appendix A.

9 NUREGRR4421

_ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ . -_ _. -_ __ - - _ ___ _ _ _ _ _ _.

_ _ _ _ . _ _ .m _ _ _ __ _ .______ . _ _ _ _ _ _ _ _ . _ _ _ _ _ _

Section 3. Overview of StindIrds Reviewed

3.7 ANSI /IEEE 1012 3.10 IEC 880, First Supplement to IEC

Dis is a pm forma standard that describes the
activities and documentation required for verification IEC 880 provided a strong connection between risks or
and validation of critical software. An example of the safety and software (or system) requirements, and this
difference between the pro forma and prescriptive connection is continued and enhanced in the draft
approach can be seen in Table A-12, wherein supplement. His document places strong emphasis on
ANSI /ANS-10.4 is used to expand the minimum V&V determining the safety functions that a COTS product
tasks specified by IEEE 1012 with criteria for will perform before deciding on the rigor of the
performance. V&V tasks are construed to apply to acceptance process to be followed. His is combined
COTS products by virtue of the requirements in IEEE with a strict view of experience data; for important
730.1, as expressed in Table A-9. ANSI /IEEE 1012 is safety functions, COTS experience data must be
summarned in Table A-5 and auxiliary tables that relevant and statistically valid. He draft addition had a
expand detailed V&V requirements- significant effect on the review of candidate W =e

criteria compiled from the IEEE and ISO standards.
3.8 IEC 880 With the exception of entry 3, all other entries in Table

4, below, were motivated by the IEC 880 supplement.
IEC 880 is a prescriptive standard which offers Likewise, items 7-9 of Table 5, and items 7 and 8 of
detailed criteria that software under its purview must Tables 6 and 7 can be specifically attributed to IEC
satisfy. The relatively poor organization of this 880 s strong requirement for risk coverage. (Dese
standard may detract from its effectiveness, but it is tables may be found in Section 4.) ne IEC 880
consistently better than the IEEE standards in its supplement also had parucular,cn,teria for judging
" systems" approach. Risk-related requirements are experience databases, and Ws is rekted in endes 10
emphmiM as are interfaces with and relations to 1 f Table 5, and entries 9 and 10 of Tables 6
other systems and hardware, which differs significantly
from the IEEE and ISO standards. He following five-

*

point summation of Section 5 of IEC 880 illustrates the 3.11 IEEE 7-4.3.21993
risk-based approach:

While the proposed acceptance process presented in ,

Safety relevance of software parts should be this report draws heavily on IEC 880, it is also I=
'

detennined; generally consistent with IEEE-7-43.2 1993. nis -
standard addresses testing fcr COTS items as well as

More limiting recommendations apply to risky consideration of software development methods and=

perg,. operating experience.The standard has a subjective

High-safety-impact software modules should be nature, however, as evidenced by the following:
.

easily identifiable from system structure and data " Exceptions to the development steps required
layout. by this standard or referenced documents may

Available testing and validation procedures should be taken aslong as there are other
-

be considered when doing the design: compensating factors that serve to provide
equivalent results."

If difficulties arise, a retrospective change of style=

may be required. " Acceptance shallbe based upon an
engineering judgment that the available

"Self supervision" is required, meaning that the evidence provides adequate confidence that

software includes code to detect hardware errors and the existing commercial computer, including
errors committed by software. Self supervision is only hardware, software, firmware, and interfaces,

regarded in the literature as effective for detecting can perform its intended functions."
'

hardware errors; considerable controversy still exists

on whether effective means exist to detect software
While the general intent of these passages is clear,

,

there is room for a varying strictness of interpretation.
errors with more software.

In interpreting these passages with respect to the

3.9 IEC 987 acceptwe proce ss proposed in this report, it was
assumed that it rr.ust be explicitly and convincingly

IEC 987 is a systems and hardware prescripu,ve shown how information from a compensating factor
standard that defers to IEC 880 on specific software provides equiva'ent results and, when engineering.

issues. De " systems" slant of IEC 880 is discussed judgment is used, that it be applied to specific,4

i above. narrowly defined questions and that its basis be
convincing and documented. His standard was

r

;

10NUREG/CR-6421

- _ - _ _ - _ _ _ _ _ _ _ _ _ __ __. _
- - .. -

i
i

!
Section 3. Overview cf "*and:rds Reviewed'

reviewed in this context for possible omissions in the of safety cgegories. 'Ihis standard uses terms familiar
candidate list of COTS acceptance criteria. to those unvolved in nuclear power plant safety:

3.12 IEC 1226 redundancy, diversity, defense in-depth, and reliability.
While other choices of safety category could be made,

IEC 1226 provides the missing link that the other e ca g esin M sunM m MM M.

standards discussed herein lack: a consistent definition :

|
|
,

!

!
f

|

|
i

1

'
i

i

^

)

.

|
11 NUREGER-6421)

| |
\ \

_ - ~ _ _ _ _._ _ __ _ _ _____ _ _ _ _ . _ _ . _ _ > _ __ _

Section 4. PrIposed Acceptance Process

4.0 PROPOSED ACCEPTANCE PROCESS
The proposed wap*-> process is based on the taken to the Appendix for detailed requirements. His
classification scheme described in Section 2 and on a does not imply that these requirements are less
set of ~~'~* criteria derived from the standards important, but only that the level of detail may obscure !
described in Section 3. It is broken into two phases: a the instant discussion. i
preliminary qualification phase, and a detailed

i
qualification phase. De preliminary qualification 4.1 Commercial-Grade Dedication for
phase applies to all COTS peducts, regardless of the Class-of-Service
ultimate safety categonzation. His phase is concerned
with understandmg system safety requirements, When a COTS item is accepted for a generic class of
understandmg the COTS product's proposed role in a service, a distinction must be made between the
system important to safety, unambiguously identifying responsibilities of the dedicator and the designer who
the COTS product, and determining the rigor of applies the product to a specific safety applicatis ne

i
subsequent qualification procedures. He detailed dedicator is responsible for generic safety ismes, such I

qualificauon phase activities vary in rigor and content as defining the service class, the criteria for deciding if
depending upon the result of the preliminary phase. a particular application falls within that service class,
Successful completion of the appropriate detailed defect reporting responsibilities that must be assumed
phase qualifies (pending formal acceptance / dedication) by the prospective user, and the design verification
the COTS item for the specific intended use that was techniques that must be used by the designer applying

. analyzed and documented in the preliminary phase. the generic COTS item to a particular safety :
application. The commercial dedication process)

De proposed COTS acceptance criteria are presented verifies that the COTS item is of sufficient quality and i

in Table 4 in dependency order in tabular form. A shoit has the required functions to meet class-of. service
discussion of each criterion and the reason for functional requirements. Equally important, the
dependency on previous criteria or why subsequent dedicator's review of product software requirements
criteria are dependent follows. As with an earlier and software quality assurance provides confidence
assessment of software design factors (Lawrence & that unintended functions are unlikely and that reliable
Preckshot 1994), COTS acceptance criteria were means exist to prevent the activation of unused
reviewed for potential effect of each criterion, functions.
observability, and pertmence to NRC practices and
procedures. The product quality of greatest pertinence Commercial. grade dedication for a generic class-of-
to NilC concerns is the product's potential safety service cannot absolve the application designer of the
impact or safety category. For this reason, safety responsibility for making a safety case for specific
category determines differences in the rigor of the applications of the dedicated COTS item. In this
acceptance criteria. The criteria presented below are respect, COTS software is no different than a dedrated
organized into four tables, with the latter three commercial-grade hardware item, such as a relay; the
corresponding to acceptance process requirements product received must still be shown to be the product
specific to each of the three safety categories. The first specified, and the design using the item or the method
table conesponds to the preliminary phase of the of application must still be shown to be correct and
process and directs the reviewer to the applicable table consistent with the terms of the dedication under
of the lauer three. In a number of cases, recourse is design control and quality assurance measures required

by 10 CFR Part 50, Appendix B.

Table 4. Preliminary COTS Acceptance Criteria
i1 Risk and hazards analyses shall be used to identify system-level safety functions required.
|

2 The safety functions (if any) that the COTS product will perform shall be identified.
3 he COTS product shall be under configuration and change control. See Table A-4 for detailed

SCM criteria.
)4 De safety category of the COTS product shall be determined. Proceed to Table 5,6, or 7 1

depending upon category A, B, or C, respectively.

13 NUREG/CR-6421 l

. .-- - _ _ _ _ _ _ _ - _ _ _ _ _ - - __ _ _ - _ - _ - _ _ - _ _ _

. _ _ _ .. _ .- . _ _ . _ _ _ - _ _ _ ____ . - _ . _. .__ ___._

Sectico 4. Proposed Acceptanca Process

,

|
'

4.2 Preliminary Phase of the Proposed COTS it m that is being dedicated for generic class-of-

Acceptance Process service is acceptable only for service within the
functional and performance limits established in this

ne preliminary criteria should be applied to all COTS step.This does not relieve an engineer applying a .

products, r=== Mag that some of these criteria generic class-of-service COTS item of the

(criterion 1, for instance) will likely be reviewed for responsibility for making a safety case for the I
I

other reasons.De ranking of these criteria (developed particular functions the COTS item will perform; the '

below) is determined by data dependencies: Dat is, generic dedication only supplies an 9 +ph'c way of ,

satisfaction of earlier-ranked criteria (lower number performing those functions provided terms and

rank) produces information that is required to conditions of the dedication are met. !

!
determine if later-ranked criteria are satisfied. IEC 880 makes this process explicit as " identifying the ,

4.2.1 Acceptance Criterion 1--Risk and Hazards safety functions" of the software product, whether it is !

Analyses COTS or to-be-developed software. IEEE-7-4.3.2-1993 |
'

refers to this criterion as " identifying the safety
iSystem-level r:sk and hazard analyses must be functions the computer must perform."
|

complete, as they provide the basis for determining the
required system safety functions, some of which may Rationalefor ranking: !

l
be performed by the COTS item under review. For This step is not possible until the system-level risks ;

generic classef-service dedications, the system-level and hazards havebeen analyzed. ;
risk and hazard analyses must define the plant and

Isafety environment in which the generic COTS item is 4.2.3 Acceptance Criterion 3---Configuration
I

expected to function. Since tius analysis is the Management !
foundation upon which a safety determinauon is made
about COTS iterr' usage, an incomplete analysis or A mechanism for software configuration management

incomplete review of existing analyses may result in an must exist, and the COTS product under review must .

unreviewed safety question. Typically, such system- be clearly identified and under management control as j

level analyses are done for nuclear reactors as part of a configuration item. If a COTS product falls within :
r

the licensing process, but the analyses may require regulatory purview, regardless of potential safety

updating to accommodate plant modifications in categorization,it should be identified as a

existing plants. configuration item and be under configuracon |

.

management control, either by the COTS suppher, the :

By implication, all of the IEEE and ISO standards owne# operator, or the reactor system vendor. For |
assume that the risk category is already known. ne. COTS products in nuclear reactor systems essential or i

i. IEC standards make the requirernent for understanding important to safety, the rigor of configuration
,

!

risks explicit. management should be independent of safety category. {
He goal at this point in the process is to ensure that j'

Ramonalchrranking the COTS product in quesuon is a mature product that i

:
Risk and hazards analyses were taken as the criterion has been completely and clearly identified to all parues

required before any COTS product can be considered in the process. The configuration identification caanot |

because,if the system risks and hazards are unknown, be a " moving target." De configuration manegement

it is not possible to determine what risks and hazards - system will be important in later steps because of

are incurred by introduckg a COTS product. ancillary items such as documentation and testing ;

materials, status reporting mechanisms, problem :

4.2.2 Acceptance Criterion 2-Identification of reporting, change control, and release mechanisms. I
'

Safety Functions Rationalefor ranking: .

!
Once the system risks are known, determining how the

Configuration management is ranked third because not j
CO13 product will fit into a risk management scheme

only do most standards and the deQn factors mention j
is next. ne intended use of the COTS item should je

this as a crucial criteriod.awrence & Preckshot, j
completely described and documented, all the safety 1994), but because a paorly identified and isvuudled ;

functions of the COTS item should be fully described,
COTS pmduct does not meet the intent of Criterion j

and the intended relationship of the COTS item to
other systems essential or important to safety should be

VIII," Identification and Control of Materials, Parts, ;

and Components," of Appendix B," Quality Assurance
-

clearly stated. Any omitted usage, function, or
Criteria for Nuclear Power Plants and Fuel |

relationship is construed to be unintended, and may
Reprocessing Plants," of 10 CFR Part 50. De COTS

>

result in an unreviewed safety question. A COTS item
product that is installed must be the same COTS j

is acceptable only for usage and functions that are
documented during the acceptance evaluation. A product that was accepted. j

[
.

'
.

14 !

NUREGER-6421

P

-.- -___- w ,- - - - - - - ci+m -, -- i r- rm --w. m- v ----, . -- --t

_ _ _ _ _ _____ ____ ______ _-________-__-_________________ -.

Section 4. Proposed Acceptance Process

4.2.4 Acceptance Criterion 4-Determination of 4.3.1 Acceptance Criterion AS-Product Assurance
Safety Category

For this category, the applicable standards require
ne safety category of the COTS item in its intended COTS products to be developed to the same rigor that
use, as evaluated in Acceptance Criterion 2, should be would have been required were the product produced
determined according to IEC 1226 using the guidance as a new software development for the intended safety
given in Section 2. This determines the rigor of the application. A COTS product that was not developed
remaining criteria. under a plan that included software requirements, a

software design, coding to internal or external
Rationalefor ranking standards, testing V&V, and quality assurance audits

ne product cannot be placed in a safety category until would not be acceptable. An assessment of the COTS

the COTS product and its safety functions have been software vendor s development, validauon and

identified. verification, and quality assurance processes should be
,

made. ldeally, the COTS software vendor will make
4.3 Detailed Acceptance Criteria for available the internal documents that can prove this. At

Category A a minimum, for this software safety category, COTS
vendor development, testing, V&V, and quality

Detailed acceptance criteria for category A software is assurance policies and procedures should be

listed below in Table 5. documented and the documents should be available.
This is an appropriate place to apply the design factors
described in Lawrence & Preckshot 1994, as a validity
check on this assessment.

Table 5. Category A COTS Acceptance Criteria

AS The COTS product shall have been developed under a rigorous Software Quality Assurance
Plan as defined by IEEE 730.1, ISO 9000-3, or IEC 880. This shall include full V&V.

See Table A-3 for detailed SQ.\ criteria. See Table A-5 for detailed V&V criteria. See Table / -
12 for minimum required V&V tasks.

A6 Documen:ation shall be available for review that demonstrates both Criterion A5 and that good
software engineering practices were used, as detailed in Table A 7. Evidence shall be available
that the minimum required reviews of Table A-8 were conducted.

A7 11 shall be demonstrated that the COTS product meets the requirements identified in Criterion 2
(Table 4).

A8 It shall be demonstrated that the COTS product does not violate system safety requirements or
constraints.

A9 He interfaces between the COTS product and other systems or software shall be identified,
clearly defined, and under configuration management.

A10 The COTS product shall have significant (greater than 1 year) operating time,8 with severe-
error-free operating experience. At least two independent operating locations shall have used a
product of identical version, release, and operating platform encompassing the same or nearly
the same usage as the proposed usage. Any adverse reports, regardless of operating location,
shall be considered. The configuration of the products in the experience data base shall closely
match that of the proposed COTS product.9

Al1 All errors, severe or otherwise, shall be reported to and analyzed by the COTS supplier.
Procedures and incentives shall be in place to ensure a high level of demonstrated compliance,
or the COTS supplier shall demonstrate with statistical certainty 10 that the error reporting
system achieves this compliance. An error tracking, documentation, and resolution procedure
shall document each error from report to resolution.

A12 Ad tional validation and testing shall be performed if needed to compensate for a small
amount of missin; documentation or alterations in configuration.

8Measured as in-service execudon drne concunently at two or more customer sites.
9See the definidon c(stadstical validity in Secdon 1.3.
10See the definition of statisdcal certainty in Secdon 1.3.

15 NUREGER-6421

.
.. .

-

_
. . . ,

i
1

Section 4. Proposed Accepta:ce Process

!

Satisfaction of this acceptance criterion by a generic purpose. The user documentation should be testable;
class-of-service COTS item does not absolve the user that is, product operation should be described ;

of such an item of the responsibility for quality unambiguously so that testing could determine if the
'

assumnce measures in the application of the item. For product were defective. Additional testing to establish
example, a programmable logic controller (PLC) must confidence in the product may be necessary. ,

be programmed in a ladder logic or other programming Information on specific considerations for testing |

language. Users of such devices would still be COTS software can be found in Scott and Lawrence, ;

responsible for a 10 CFR Part 50, Appendix B quality 1995 (included a: Appendix B). /. product that does (
assurance program, or whatever quality assurance not match the perfomisnce specifications in product |
programs were required by their license basis, applied documentation is unr2ceptabic. !

to the design work the user does to incorporate the i

class of-service COTS item in basic components. Rationa!cfor ranking:

Rationalefor ranking: Product documentation goes hand-in-hand with I

product assurance and is a necessary item for the

Product assurance activities are ranked fifth in evaluation of product and system safety.)
importance because this is the first time that the rigor i

required, the system safety requirements, and the 433 Acceptance Criterion A7-Product Safety |

COTS product safety requirements are all known. Requirements

Assuming that product assurance and documentation4J.2 Acceptance Criterion A6-Product
give confidence in knowledge of the COTS product'sDocumentation
attributes, then it is appropriate to ask if these attributes

ne reality of COTS products is th cumentation is satisfy the safety funcdons expected of the product.

likely to be sparse and the OE ae dedicator
may have difficulty gaining acce , proprietary Rationalefor ranking:

I

information related to software development. Product safety requirements are ranked seventh
Nevertheless, sufficient documentation must exist to because product attributes cannot be known with
support the activities of following acceptance criteria, reasonable cenainty without product assurance and
i.e., the satisfactory performance of these activities sufficient detail without product documentation.
must not be prevented by missing documentation, such
as missing source code. At a minimum, product 43.4 Acceptance Criterion A8-System Safety .

|documentation should include quality assurance '

certification that the COTS productu has met the Other attributes or qualities of the COTS product

vendor's own critena identified in step AS-complete should not impair system safety. COTS products,

product user documentation that describes in detail because they must be commercially viable, often have

how to apply and use the product, known bug lists, and functions or options beyond those required to satisfy

error recovery procedures. Availability of source code the identified safety functions of the previous criterion.

is preferable; however, source code is not included in ney may also have undocumented functions, or

this minimum documentation unless questions " bugs." These are the unused and the unintended

associated with the other acceptance criteria can only function problems, respectively, and they may be more

be reasonably answered with approaches that include severe with COTS products because of extra functions

analyses or testing based on the source code. For or configurations these products may have.

example, questions about the adequacy of testing or For unintended or unused functions, the role of the
V&V procedures examined in step AS, or questions dedicator, whether for generic class-of-service usage or
raised based on the examination of operating use in a specific basic component, is the same.

,

experience and error reporting in steps A10 and All, Confidence that unintended functions are unlikely is
might indicate the need for additional static analyses or obtained through applying Cntena A5 and A6.It must
structural tests. The demonstration in step A8 to be possible for a designer to prevent inadvertent
confirm that unintended functions will not impair

activauon of unused functions so that unused functions
system safety or questions about interfaces raised in cannot be activated by unauthonzed personnel or
step A9 could also indicate a need for static analyses. foreseeable operator errors.

He product documentation should describe all of the Additional system-level requirements fall upon the.

attributes identified in step 2 as necessary for dedicator for class-of-service. Criteria for when
performance of the safety functions assigned to the defense-m. depth or diversity may be required must be
product. No undocumented feature can be used to established. Rese critena describe the allowable
perform a safety function, or is acceptable for this fraction or enumerations of safety functions that may

.

be entrusted to the generic class-of. service COTS item,
nIdentified by exact version and release des.ignanon.

.

16NUREG/CR-6421

. .

. .

Section 4. Proposed Acceptance Process
.

after which defense-in-depth and diversity Rationalefor ranking:
consideradons may require a different approach.

The error-reporting requirement follows experience
Ranonalefor ranking database in rank since future error reports may lead to

a retrospective re-evaluation of some reportsin the
Just as product assurance was a necessary prerequisite experience database,
for determining if a COTS product satisfies its required
safety functions,it is also a prerequisite for 4.3.8 Acceptance Criterion A12-Additional V&V
investigating whether other known attributes or options Requirement
could defeat system safety goals. His is also not
possible without detailed product information available If, after reviewing a COTS product with respect to the
in product documentation. Previous criteria, some questions remain unanswered,

additional validation may be required for the
4.3J Acceptance Criterion AS-Interface application in question.
Requirements

Rationalefor ranking:
Due to the requirement on category A subsystems for
single-failure robustness, the interfaces between ne additional V&V requirement is ranked last since
category A COTS products and other systems must be all previous criteria must have been satisfied to reach
known and investigated. this conclusion.

Radonalefor ranking: 4.4 Detailed Acceptance Criteria for
Category B

Inserface requirements are ninth in sequence and
importance, all previous criteria being prerequisites. Detailed acceptance criteria for category B software is

*4.3.6 Acceptance Criterion A10.-Experience
Database 4.4.1 Acceptance Criterion B5-Product Assurance

Category A products require the most rigorous and A subset of the rigorous category A product assurance
eaticically validt2 experience data. These data must activities is appropriate for category B COTS products,
be for the same version of the COTS product in the The COTS software vendor should have documented
same or nearly the same environment and usage. policies and procedures in place that meet the

requirements stated in Table 6, item B5. Interface
Ranonalefor ranking:

analysis of category A products or systems has already

If any of the previous criteria are violated, the COTS limited the extent to which category B products can

product is inappropnate for the application envisioned affect category A systems,

and encouraging reports of good performance are 4.4.2 Acceptance Criterion B6-Product
irrelevant. Consequently, product experience is ranked Documentation
tenth.

Provision of appropriate documentation will facilitate4.3.7 Acceptance Criterion All-Error Reporting
the appraisal process, but recourse to design factors isRequirement
acceptable to a greater extent than with category A

The choice of a COTS product only begins its odyssey Products. Note that this still requires justification.

as part of a system important to safety. In the 4.4.3 Acceptance Criterion B7-Product Safety
Operations & Maintenance phase of the software life Requirements
cycle, complete information on errors must be made
available so that evaluauons can be made and Category B safety requirements typically consist of an
appropriate subsequent actions taken. His information operator assistance function and automatic control that
must be maintained since the severity of past errors prevents excursions into operating regimes that require
may be determinable only in retrospect. While the safety functions provided by category A systems. In
CO'I3 software vendor is not responsible for error the U.S., the NRC also pennits category B systems to
reporting under 10 CFR Part 21, the existence of back up category A systems in the event of rare
vendor-supported defect databases is a positive factor. common-mode faihres of those systems. As with

category A COTS products, product assurance and
documentation are necessary before product funcuons
are known with sufficient certainty to determine if the
COTS product fulfills its expected safety functions.

12See the defmition of statinical validity.

17 NUREG/CR-6421

_-

- -. - - - - . . - . - - -. ~. --__- . - - - - - . - - - - _ -

Sectica 4. Proposed Acceptance Process

Table 6. Category B COTS Acceptance Criteria

B5 De COTS product shall have been developed under a quality assurance plan and a systematic
software development process. See Table A-3, entries 5 through 10 for SQA criteria. See Table
A 5, entries 3 through 7 for V&V criteria.

B6 Documentation shall demonstrate Criterion B5. See Table A-7 for minimum required
documentauon.

B7 It shall be demonstrated that the COTS product will fulfill its safety functions as identified in
Criterion 2 (Table 4), and that its reliability is sufficiently high that it does not present a high
frequency of challenges to category A systems.

B8 De COTS product shall be consistent with system safety requirements.

B9 De COTS product shall have operated satisfactorily in similar applications. The version and
release of reported experience may not be identical to the proposed COTS product, but a
consistent configuration management program and well-managed update program provide
traceability and change control.

B10 Error reporting, tracking, and resolution shall be consistent and correctly attributable to versica
and release, and procedures and incentives are in place that ensure demonstrated compliance
during the first year after a version is released. The version and release proposed have no major
unresolved problems. A current bug list shall be available to COTS purchasers as a support
opuon.

s

:
4.4.4 Acceptance Criterion B8-System Safety 4.5 Detailed Acceptance Criteria for

Category C |
Equipment and software of category B is allowed more
latin * so that it can achieve si mificantly greater Detailed acceptance criteria for category C software isl -

Ifunction. Consequently, the COTS product should be listed belowinTable 7* !consistent with system safety requirements. His means
i

that the product may not necessarily take a safe action 4.5.1 Acceptance Criterion C5-Product Assurance !

during a system excursion, but it should not cause a Product assurance activities are limited to determining |system excursion when operating as specified. Without
that good software engineering practices were followed

'

product assurance, this cannot be determined with
and that crucial V&V was performed. The term " good i

sufficient certainty.
software engineering practice" is used to mean that :

4.43 Acceptance Criterion B9-Experience standards for software development are used |

Database systematically, that configuration management is ;

effectively employed, and that software development
If the foregoing criteria are violated, the COTS product practices are defined, documented, and implemented. It
is w-wwpuse for the intended application and must encompass the documentation and V&V referred
operadonal experience is irrelevant. Provided that the to by Table 7, C5.

.

i
previous criteria are satisfied, relaxed statistical
validity requirements, such as variations in usage, 4.5.2 Acceptance Criterion C6-Product |
environment, configuration, and confidence limits, are Documentation j
acceptable. Dese relaxauons should be justified based De required documentation is limited, and missing j
on expectedincrease in risk. documentation may be reconstructed or compensated !

4.4.6 Acceptance Criterion B10-Error Reporting in part by design factor assessment. Product .

documentation, while not required to be complete, ;
Requirement

should be consistent with the intended application. De ,

De enor reporting requirements, which are relaxed product documentation should at least describe product
f
t

from category A, are appropnate for good-quality, features, and it may cover several versions of the
I

well-supported, commercial-grade software products, product.
Typically, such products experience a significant

4.5.3 Acceptance Criterion C7-Product Safety i
reduction in error reports after the initial period of free
software support service terminates. Requirements

The ability of the COTS product to perform its
.

(limited) safety functions should be demonstrated. In

18
NUREG/CR-6421 i

- - - . , - - .- .. - .- -. .. -- ,

Section 4. Proposed Acceptance Process

view of the possibly limited product documentation, 4.5.5 Acceptance Criterion C9-Experience
t

testing may be required to demonstrate this criterion. Database
Information on specific considerations for testing
COTS software can be found in Scott and Lawrence, Experience with product operation is irrelevant unless

! 1995 (included as Appendix B). the previous criteria are satisfied. Relaxed reliability '

i constraints allow reliable operation in the piupused
| 4.5.4 Acceptance Criterion C8-System Safety application to serve as an experience base, although

#* * *
The lack of adverse effect on and coordination with

*

other system safety functions should be demonstrated. 4.5.6 Acceptance Criterion CIS-Error Reporting
Since this demonstration depends upon knowing Requirement
product attributes, product assurance to the extent that
attributes are known is a prerequisite. Error reporting requirements, since they concern the ;

future, are ranked last as an acceptance criterion. An |

error reporting scheme managed by the dedicator and
,

covering only applications known to the dedicator is '

sufficient for this category.
|

|

Table 7. Category C COTS Acceptance Criteria

C5 The COTS product shall have been developed according to good software engineering
i practices. Minimum documentation, such as in Table A-13, shall be available or

reconstructable. Minimum V&V tasks, as in Table A-12, entries 2,4,8,9, and 19-22, shall
) have been performed.

C6 Minimum documentation described in Criterion C5, including V&V task documentation, shall
be available forinspection.

C7 The COTS product may enhance safety by improving surveillance, improving operators' grasp
of plant conditions, assisting in maintenance activities, reducing demands on category A or B
systems, monitoring or reducing the effects of radiation releases, or similar purposes. The
product's performance ofits intended effect shall be verified.

CE It shall be demonstrated that the COTS product cannot adversely affect the safety functions of
category A or B systems or software and that it will not seriously mislead operators.

C9 The COTS product must be shown to operate without serious malfunction in the instant
application.

C10 An error reporting scheme shall be planned or in place that tracks malfunctions of this COTS
product in applications controlled by this applicant. Documentation and records retention allow
error histories of 5 years or length of service, whichever is shorter.

i

|

|

|
| 4

I !

|

I

|)

19 NUREGKR-6421

_ _ - . _.. - ----. _-- - - - . . - - . . - __- . -- . _ _ .

Section 5. Conclusions

i

5.0 CONCLUSIONS
Based on guida= provided by IEC 1226, it is possible the acceptability of the product can be clearly
to classify software for use in nuclear power plants. established. Acceptability can be established through a
Using this classification and guidance from current combination of (1) examination of the product and
standards, an accef=- e process for COTS software records of its development indicating that a complete
items can be defined to a reasonable level of detail. and rigorous software engineering process was applied,

*

This process is based on a preliminary set sf criteria (2) sufficient evidence of satisfactory operataonal
applying to all classifications, coupled with a detailed experience and error reporting history, (3) additional
set of criteria that are relaxed as the importance to testing, and (4) vendor assessment as necessary. The
safety of the COTS software item decreases. development of such COTS software items will

A q==e criteria for COTS products are easily probably require developer knowledge that the product

ranked by the d-ada= of some criteria on the will be used in systems with medium to high risks, as

information produced by meetmg other criteria. COTS well as the use of software processes that have been

acceptance criteria fallinto rank order because of the designed to produce high-integrity software. Such

; data dependencies mentioned in earlier discussion. software developers will be generally aware of the,

types of hazards associated with the systems in which 1

*lhis rank ordenng is not necessarily the same as would their products will be used, and those hazards will have
be used by a software developer to select a COTS
product; rather, it represents an order in which a

been consideredin their designs.

regulatory agency would expect a safety basis to be If generic, class-of-service commercial-grade item,

| constructed, dedications are possible under the Commission's!

Review of standards from multiple sources reveals that regulations, the dedicator is responsible for resolving

IEC standards provide the risk-based approach and
generic acceptability questions, setting criteria for

extra detail on which the pro forma TFFF and ISO application of the dedicated item, resolving defect

standards are implicitly based, but never address reporting responsibilities, and defining acceptable
design and design verification methods for the

directly. Apparently, diversity is a useful concept even
application of the item to specific nuclear power plant

when applied to standards activities, as no single group
of standards was adequate to address the COTS safety problems. The designer applying such a class- 1

acceptability problem. of-service item is still responsible for resolving specific
safety questions, using the item within the terms and

Based on the analyses supporting this report, it appears conditions of the dedication, and performing such work
that the use of COTS software in the safety systems of under the requirements of 10 CFR Part 50, Appendix
nuclear power plants will be limited to well-defined B, or the applicable licensing basis. I

conditions and to COTS software prcducts for which

I
1

j

|

.

|

21 NUREGER-6421 j

___ _ ____- _ _ _ _ _ _ _ _ .-. .- . _ . - . - .

References

REFERENCES

Gallagher, John, (ed.)," Discussions Related to COTS Obtained from Expert Peer Review Meeting on High Integrity
Software for MPPs Conducted by MITRE for NRC Research." May 24-26,1994.

Lawrence, J. Dennis, Warren L. Persons, G. Gary Preckshot, and John Gallagher," Evaluating Software for Safety
Systems in Nuclear Power Plants." Submitted to 9th Annual Conference on Computer Assurance, Gaithersburg,
MD, June 27-30,1994. UCRL-JC-116038, Rev.1, Lawrence Livermore National I.aboratory,1994.

Lawrence, J. D., and G. G. Preckshot," Design Factors for Safety-Critical Software." Lawrence Livermore National
Laboratory, NUREGER-6294, December 1994

Scott,J. A., and J. D. lawrence," Testing Existing Software for Safety-Related Applications," lawrence Livermore
National Laboratory, UCRL-ID-117224, September 1995.

U.S. Nuclear Regulatory Commission," Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess
Plant and Enviions Conditions During and Following an Accident." In Regulatory Guide 1.97, Rev. 3. May
1983.

Other Applicable Documents:

" Guidelines for the Application of ISO 9000-1 to the Development, Supply, and Maintenance of Software."
Intemational Organization for Standardization (ISO), ISO 9000-3,1987.

" Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs for the Nuclear
Industry." ANSI /ANS-10.4, May 13,1987.

"EEE Standard for Software Quality A%urance Plans." IEEE 730 (Now 730.1), August 17,1989.

"EEE Guide for Software Quality Assurance Planning." IEEE 983 (Draft 730.2), Draft 4, October 1992.

"IEEE Standard for Software Configuration Management Plans." EEE 828, June 23,1983.

"IEEE Guide to Software Configuration Management." IEEE 1042, September 10,1987.

"IEEE Standard for Software Verification and Validation Plans." ANSI /IEEE 1012, September 18,1986.

"IEEE Standard Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Stations." IEEE-7-
4.3.2-1993.

" Programmed Digital Computers important to Safety for Nuclear Power Stations " IEC 987, First Edition,1989.

" Software for Computers in the Safety Systems of Nuclear Power Stations."IEC 880,13 First Edition,1986.

Softwarefor Computers in the Safety Systems ofNuclear Power Stations First Supplement to IEC 880 (Draft), Draft
supplied by member of SC45A.

"The Classification of Instrumentation and Control Systems Important to Safety for Nuclear Power Plants." IEC
1226, February 6,1993.

13
COTS produas are calted preetisting software pmducts (PESPs)in IEC publications.

!

23 NUREG/CR-6421
|

|

|

Appendix A

I

APPENDIX A-PRELIMINARY LIST OF FACTORS
A preliminary list of acceptance criteria for COTS products was identified from

IEEE 730(now 730.1)SQA Plans I
.

IEEE 983 (now 730.2 draft) SQA Plan Guidance.

IEEE 828 Software Configuration Management Plans.

IEEE 1042 SCM Plan Guidance.

! ISO 9000as applied to software..

Subsequently, the limited scope of these standards was widened by including

ANSI /ANS-10.4 1987-Guidelines for the verification and validation of scientific and engineering computer
.

programs for the NuclearIndustry

ANSI /IEEE 1012-1986-Software Verification & Validation Plans.
.

With the exception of ANSI /ANS 10.41987, none of these standards takes significant note of existing software.
Consequently, appropriate acceptance criteria an only be inferred from those requirements stated for software
developed under purview of the standards. A general requirement present in each standard-that software be
developed under the aegis of that particular standard-is impractical for most COTS products. It would be a happy {finding indeed to discover well-done documentation and complete records ready for review.

A set of potential COTS acceptance criteria, or at least subjects to investigate, are listed in the following tables. The
tables are organized from the genertl to the particular. The general table points to particular tables of additional
criteria to be investigated if the general criterion is true.

Table A 1. Failure Consequence Criteria

1 Are consequences of failure unacceptable? See Table A-2
j 2 Are consequences of failure acceptable? Terminate

Table A 2. Plan Existence Criteria
1 An SQA plan and documentation exist See Table A-3

-

2 A configuration management plan exists SeeTable A-4
,

>

3 A software V&V plan exists See Table A-5
| 4 Some of the above do not exist | SceTable A-6

|

l
|

9

6

25 NUREG/CR-6421 |

_ _ _ . __m _ _ . _ _ - - _ _ _ _ _ - -- _ - _ _ _ _ . . _ _ _ . . _
.

_ _ - . . -.

1

Appendix A

.

Table A 3. SQA Criteria

1 Does the SQA plan cover the minimum required subjects in the Format and subject matteris
required format? standard-dependent.Imi. most

standards sfsiri sanhar
approaches

See IEEE 730.1

2 Does the plan describe responsibilities, authority, and relations IEEE 730.1 ;

between SQA units and software development units?
'

3 Is minimum documentation available? See Table A-7 for reqidred
documentation.SeeTable A-10
for optional documentation.

4 Were the minimum SQA reviews and audits performed? See Table A-8 for minimum
required reviews and audits

5 Are standards, practices, conventions, and metrics that were used, See Table A-11 for suggested

da W hed? areas of standardization

6 Were procedures for problem reporting, tracking, and resolving IEEE 730.1

described?

Problem < documented & not forgotten IEEE P730.2
>

Problem reports validated IEEE P730.2

Feedback to developer & user IEEE P730.2

Data collected for metrics & SQA IEEE P730.2 :
1

7 Were configuration management practices followed? SeeTable A-4

8 Were V&V te performed? See Table A-5

9 Did other software suppliers contribute to the product? See Table A-9."Ihe supplier is
responsible for the validation of
subcontracted work."

ISO 9000-3

10 What secords were generated, maintained, and retained? IEEE 730.1

11 What methods or procedures were used to identify, assess, monitor, IEEE 730.1

and control risk during development of the COTS product?

l

I

!
l

|

!

26
NUREGER 6421

_ _ _ _ _ _ _ - _ _ -- - .

. _ - . . - - - ---. . - _ _ . - _
. _ - ,_

|

|
,

Appendix A

i

l

Table A 4. Software Configuration Management Criteria

1 Does the configuration management plan cover the minimum Format and subject matteris
required subjects in the required format? standard-dependent,but most

standards specify similar
approaches.

See IEEE 828 i

2 Does the plan describe responsibilities, authority, and relations IEEE 828
between configuration management units and software development

| units? |
|

'

! 3 At least one configuration control board (CCB) is required. Does the IEEE 828
plan describe the duties and responsibilities of the CCB and relations
between the CCB, SQA, and software developers? e.g.,

(Authority & responsibility
Role

| Personnel
How appointed

! Relation of developers & users

| 4 Does the configuration management operation provide the following IEEE 828
required functions? j

Configuration ID(baselines)
l Configuration control
| Configuration status accounting & reporting
| Configuration audits & reviews
|

| 5 Configuration management is founded upon the establishment of IEEE 828
i

" configuration baselines" for each version of each product Is each
product or version uniquely identified and "baselined"?

6 Is the level of authority required for change (i.e., charige control) IEEE 828
described? Appropriatesubjectsinclude: ,

!
Change approval routinglists !

Library control
Access control
R/w potection .

| Member protection
| Memberidentification
| Archive maintenance

Change history
Disasterrecovery
Authority of each CCB over listed configuration items

7 Does status accounting include IEEE 828
Data collection

1Identified reports
Problem investigation authority

,

1

Maintaining and reporting !

Status of specifications
Status of changes i

i
Status of product versions

-

Status of software updates,

Status of client furnished items
<

|

|

i27 NUREG/CR-6421 !

l

. . _ . _ _ _ _ . _ _ _ _ _ . _ _ _. . _ _ _ _ _ . _ . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ . _

Appendix A

Table A-4. Software Configuration Management Criteria (cont.)

8 Are suppliers of software products (e.g., COTS) under control? For IEEE 828 andIEEE 1042. ISO ,

each supplier. . . 9000-3

Is the SCM capability known?
Howis SCM pe formance monitored?

For each product...

Is the version in use archived?
Is the version ID'd & baselined?
Is the product under change control?
Are product interfaces under control?
Arc suppliers CM audits" visible"?
Is there valid problem tracking?

Regardmg supplier records. . . |
What records are kept?
Can reviewers obtain access to them? j

How good are they?
What security does the supplier have?

9 Are the records to be maintained 3dentified and are there retention IEEE 828

periods specified for each type of record?

10 What additional policies and directives govern the configuration See Table A 14 for alist of
management? typical policies and directives.

Table A 5. Software V&V Criteria

1 Does the VAV plan cover the minimum required subjects in the Format and subject matteris

required format? standard-dependent,but most
standards specify similar
approaches.

See IEEE 1012

2 Is the organizational structure of the V&V function described, IEEE 1012

including the independence (or lack thereof) of the V&V
organization from the software development organization?

:

3 Have the minimum required V&V tasks been accomplished? See Table A-12 for minimum
tasks

4 Does the V&V function detect errors as early in the development IEEE 1012

preass as pnuible?

5 Can software changes and their consequences be assessed quickly? IEEE 1012

6 Are V&V functions coordinated with the software development life IEEE 1012

; cycle?

! 7 Are significant portions of V&V data missing? See Table A-6

.

28
NUREG/CR-6421

._ _ _ . . .__

. _ . .- .. - - - . - . _ . -. - - - - - - .-

I
| Appendix A

Table A-6. Actions to Take When Data is Missing

1 Can missing data be reconstructed from other available data? Reconstruct data (see Table A-
13) and proceed to Table A-5.

ANSI /ANS 10.4
2 Can missing data be reverse-engineered from existing software Reverse-engineer data (see

products? Table A-13)and pmceed to
Table A-5.

ANSI /ANS-10.4
13 Is recovered data and/or usage experience and configuration control See Table A 13 for minimum '

insufficient to justify intended usage? data. If insufficient, terminate
,

with prejudice.t

ANSI /ANS-10.4 and IEEE 828
4 Is sufficient test data available to support intended usage? Reconstruct tests and proceed to

Table A-5.

ANSI /ANS-10.4

..

Table A 7. Minimum SQA Documentation
1 Software Quality Assurance Plan IEEE 730.1
2 Software Requirements Specification IEEE 730.1
3 Software Design Description IEEE 730.1
4 Software V&V Plan IEEE 730.1

i 5 Software V&V Report IEEE 730.1
6 User Documentation (Manuals) IEEE 730.1
7 Software Configuration Management Plan IEEE 730.1

Table A-8. Minimum Required SQA Reviews and Audits

1 Software Requirements Review IEEE 730.1
2 Preliminary Design Review IEEE 730.1
3 Conceptual Design Review IEEE 730.1
4 Software V&V Plan Review IEEE 730.1
5 Functional Audits (e.g., validations) IFFF 730.1
6 Physical Audits (e.g., physical deliverables) IFFF 730.1
7 In-Process Audits (e.g., life cycle stage verification audits) IEEE 730.1
8 Managerial Reviews

IEEE 730.1

29 NUREG/CR-6421

- . _ _ _ . _ _ _ _ . . - . . . __ __ - ____- . _ _ . - - _ _ _ . . _ _ _ _ _ _ _

Appendix A

Table A-9. SQA, SCM, and V&V for Other Software Suppliers

1 SQA for a purchased product shall meet the same requirements as if IEEE 730.1
it were developed in house. For to-be-developed COTS, the other
software supplier shall perform the requirements of IEEE 730.1. For
previously developed COTS, the " methods used to assure the

,

suitability of the product for (its intended) use" shall be described.)
" Software suppliers" shall select subcontractors on the basis of their ISO 9000-3

'

ability to meet subcontract requirements, including quality
requirements.

2 SCM for a purchased product shall meet the same requirements as if IEEE 828. See also Table A-4,
it were developed in-house. As a minimum, the other software line 8
supplier is required to implement the provisions of IEEE 828.

3 V&V for COTS is not addressed, except indirectly through IEEE See Table A-3,line 8,and Table
730.1 through its provision requiring IEEE 730.1 compliance of the A-6 j

software supplier, or through ANSI /ANS-10.4 through its provisions i

for reconstruction of missing data.

Table A-10. Suggested Additional Documentation

]1 Software Development Plan IEEE 730.1

f2 Standards & Procedures Manual IEEE 730.1

3 Software Project Management Plan IEEE 730.1

4 Software Maintenance Manual IEEE 730.1

5 User Requirements Specification IEEE 730.1

6 ExternalInterfaces Specification IEEE 730.1

7 InternalInterfaces Specification IEEE 730.1

8 Operations Manual IEEE 730.1

9 Installation Manual IEEE 730.1

10 Training Manual IEEE 730.1

11 Training Plan (for SQA personnel) IEEE 730.1

12 Software Metrics Plan IEEE 730.1

13 Software Security Plan IEEE 730.1

Table A 11. Suggested Areas of Standardization

IEEE P730.2
1 Dmentation Standards

IEEE P730.2
2 Engical Structure Standards

IEEE P730.2
3 Coding Standards

IEEE P730.2
4 Comment Standards

IEEE P730.2
5 Testing Standards

IEEE P730.2
6 SQA Product & Process Metrics

30NUREGER-6421

_ _ - _ _ _ - _ _ _ - - - - _ _ _ _ - .__ -- -- -.

Appendix A

Table A 12. Minimum V&V Tasks

1 SVVP EEE 730.1 and EEE 1012
2 Requirements (e.g., SRS) Analysis EEE 1012

Existence ANSVANS-10.4
Clarity ANSUANS 10.4
Consistency ANSVANS-10.4
Completeness ANSVANS-10.4

All functions included
Environment specified
inputs & outputs specified
Standards used specified

Cornetness ANSUANS-10.4
Feasibility ANSVANS-10.4
Testability ANSVANS 10.4

3 SRS Traceability Analysis EEE 1012 & ANSVANS-10.4
4 Interface Requirements Analysis EEE 1012 & ANSVANS-10.4
5 Test Plan Genemtion EEE 1012 & ANSUANS-10.4
6 Acceptance Test Plan Generation IEEE 1012
7 Design Analysis 1EEE 1012

Completeness ANSVANS-10.4
Correcmess ANSVANS-10.4
Consistency ANSVANS-10.4
Clearness ANSVANS-10.4
Feasibility ANSVANS 10.4

8 Design Traceability Analysis IEEE 1012 & ANSVANS 10.4
9 Interface Design Analysis EEE 1012
10 UnitTest Plan Generation EEE 1012 & ANSVANS-10.4
11 Integration Test Plan Generation IEEE 1012 & ANSUANS 10.4
12 Test Designs IEEE 1012 {Code test drivers ANSUANS-10.4 l
13 SourceCode Ant.!ysis IEEE 1012

Conformance to standards ANSVANS-10.4
Adequate comments ANSVANS 10.4
Clear and understandable ANSVANS 10.4
Consistent with design ANSVANS-10.4
Strong typing ANSVANS 10.4 ;
Error checking ANSVANS-10.4 l

14 Source Code Traceability EEE 1012 i

15 Interface Code Analysis IEEE 1012
Well-controlled software interfaces ANSVANS-10.4

16 Documentation Evaluation EEE 1012
17 Test Procedure Generation IEEE 1012 & ANSVANS 10.4

Unit Test
Integration Test
System Test
Acceptance Test

31 NUREGKR-6421

. _ _ _ _.._____. ._~ _ . . _ _ _ _ _ _ _ . _ . _ _ _ - _ _ _ _ . .

Appendix A

Table A-12. Minimum V&V Tasks (cont.)

18 Unit Test Execution EEE 1012

Unit test results ANSUANS 10.4

19 Integration Test Execution IEEE 1012

Size ANSVANS-10.4
Timing ANSVANS-10.4
Interface control ANSVANS-10.4
Interactions verified ANSVANS 10.4
Build controland documentation ANSUANS 10.4

20 System Test Execution EEE 1012

Each requirement tested? ANSVANS 10.4
Each requirement met? ANSVANS-10.4
All test cases executed and checked? ANSVANS-10.4

21 Acceptance Test Execution EEE 1012

22 Installation Configuration Audit EEE 1012

Deliverables identified ANSVANS 10.4
Can delivered program be rebuilt? ANSVANS-10.4
Do test cases still work? ANSVANS-10.4

23 V&V FinalReport EEE 1012

24 Baseline Change Assessment (as required) EEE 1012 <

25 Review Support-participation in software and management EEE 1012
>

reviews

Table A 13. Minimum Documentation Needed for a Posteriorf V&V

1 Problem statement ANSUANS-10.4

2 Requirements specification ANSVANS-10.4

ANSUANS-10.43 Design specification
ANSUANS 10.44 Test plan and test results

1

!

l

I

32NUREGRR-6421

,_ __ _ . _ . _m.. . . . _ . _ . _ _ . _ . , _ _ _ _ _ _ . _ _ ._ _ _ ._ - ._

Appendix A

Table A.14. Typical Policies and Directives of a Configuration Management Operation

1 Definition of software levels or classes IEEE 828

| 2 Naming conventions IEEE 828
l
'

3 VersionID conventions IEEE 828

4 ProductID policy IEEE 828
-

5 ids of specifications, test plans, manuals & documents IEEE 828

| 6 MediaID and file management IEEE 828

! 7 Documentation release process IEEE 828

8 Software release to generallibrary IEEE 828

9 Problem reports, change requests and orders IEEE 828

10 Structure & operation of CCBS IEEE 828
|

| 11 Acceptance or release of software products IEEE 828
12 Operating rules for the software library IEEE 828

13 Audit policy IEEE 828;

14 Methods for CCB assessment of change impact IEEE 828
15 Level of testing or assurance required before an item is accepted for IEEE 828

CM-may be related to software classes

16 Level of SQA or V&V required before an item is accepted for IEEE 828,

'

CM-may be related to software classes
i
i

!

l

l

i

;

|

|

|
i

|

l

I
i ,

I I

!

{ |

4

33 NUREGER-6421

|
|

. _ _ -

_ _ _ - . - _ - _

.
. . . - f . .- -- - ,.. _ e. . -

Appendix B: Testing Existing Software
for Safety-Related Applications

. _ - . - - . - . - . . . - - . - - . .-

Ptepared by
John A. Scott
J. Dennis LawTence

Lawrence Livermore National Laboratory
7000 East Avenue
Livermore,CA 94550

Prepared for
U.S. Nuclear Regulatory Commission

..

.

.

,

_. - . - . . _ .

i

Appendix B

|

ABSTRACT I
l

The increasing use of commercial off-the-shelf (COTS) software products in digital safety-critical applications is
,

raising concerns about the safety, reliability, and quality of these products. One of the factors involved in addressing '

these concerns is product testing. A tester's knowledge of the softwere product will vary, depending on the
information available from the product vendor. In some cases, complete source listings, program stmetures, and
other information from the software development may be available. In other cases, only the complete
hardware / software package may exist, with the tester having no knowledge of the internal structure of the software.

| - The type of testing that can be used will depend on the information available to the tester This repon describes six
'

'

different types of testing, which differ in the information used to create the tests, the results that may be obtained,
and the lirnitations of the test types. An Annex contains background information on types of faults encountered in
testing, and a Glossary of peninent terms is also included.

!

!
|

,

I

l

i

i

|

|
|

|

|
'

|
.

I
37 NUREG/CR-6421 |

|

_ . .

, 1

I i
I

f

|

!

Appendix B
,

I

|
:
I
I

|

CONTENTS l
!

1
|

1. Introduction _~.__....45
1.1. Purpose - 4 5. -

1.2. Scope, Assumptions and Limitations....__....................45.

1.3. Report Orgamzation. 45. _ .

1.4. Definitions. 46. -

1.5. General Comments on Testing.._. _. 46_

1.5.1. Testing Goals and Software Qualities .-. _ _ _ ... 46..

1.5.2. Softwan: Objects 46.

1.5.3. Testers _,..._.......................49
'

..

l.5.4. The Testing Life Cycle __......_........_.............49 l
1.6. Faults, Errors, Failures-.~...........51................._...........;

1.6.1 Definitions _ 51. . - - - _

1.6.2 Relationship of Faults, Errors, and Failures .. 51 I. _ _

1.7. Selection of Testing Strategies and Techniques
-__ 5 2

1.7.1. Context for Selecting Testing Strategies . .-.... - 52 1

4

.........: .
1

1.7.2. Considerations for Selecting Testing Strategies52. . .

2. Static Source Code Analysis- --_ 5 9.

2.1.~ Purpose of Static Source Code Analysis...... ...-.._.........59
2.2. Benefits and Limitations of Static Source Code Analysis _ 59

2.2.1. Benefits 59._

2.2.2. Limitations_. _ . ._... 59_

23. Information Required to Perform Static Source Code Analysis..... _ .60.

2.4. Methods of Performing Static Source Code Analysis... 60.

2.4.1. Static Analysis Planning and Requirements_.........60..

2.4.2. Analysis Design and Implementation ..
.... .. . 60. .

2.43. Execution and Evaluation of the Analyses.. . 61. .

2.5. Discussion of Static Source Code Analysis.61. ..

2.5.1. Inspection. =.......................61. _

2.5.2. Desk Checking_ 63.

2.53. Automated Structural Analysis64.. . _ . . .

2.5.4. Other Methods . .._64. - -

3. StructuralTesting.... 67- .

3.1. Purpose of Structural Testing.. - ___....................67
3.2. Benefits and Limitations of Structural Testing. _

3.2.1. Benefits . .m

- _67.

. _ ... 67. _ _

3.2.2. Limitations _ . 67.. _ .

33, information Required to Perform Structural Testing _.
. 67.

3.4. Methods of Performing Structural Testing _ . 67.

3.4.1. Test Planning and Test Requirements . . 67.

3.4.2. Test Design and Test Implementation _~. . .. 68.. .

3.43. Test Execution and Test Evaluation..... . 68.

3.5. Discussion of StructuralTesting. ..
__ _ . . . _ . _ 69

3.5.1. Control Flowgraphs _.. 69= . . .;..........

3.5.2. Control Flow (Path) Testing 70- _ - -

3.53. Loop Testing :_._...............71. _

3.5.4. DMa Flow Testing - .._.................71.

4. Functional Testing_..._......_........75.......m

j 4.1. Purpose of Functional Testing_.................75. . .

f

39 NUREGER-6421

_ _ - _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - ___

Appendix B -

4.2. Benefits and Limitations of Funetional Testing _ . .. _.. 75

4.2.1. Benefits ... _ 75

4.2.2. Limitations ...__.._. , _ 75
43. Informauon Required to Perform FunctionalTesting... __.. ._ 75

4.4. Methods of Performing Functional Testing 75

4.4.1. Test Planning and Test Requirements-..._. 75

4.4.2. Test Design and Test implementttion. 76

4.43. Test Execution and Test Evaluation. _ 76

4.5. Discussion of Functional Testing. . .. _ 77
4.5.1. Transaction Testing . _ 77

4.5.2. Domain Testing 78

4.53. Syntax Testing-. 79

4.5.4. Logic. Based Testing ... _. 80

4.5.5. State Testing__ 81

5. Statistical Testmg~.. _ 83. .

5.1. Purpose of StatisticalTesting z - 83

5.2. Benefits and Limitations of Statistical Testing_ . . . 83
5.2.1. Benefits . ._

. _ . . . 83
.

5.2.2. Limitations : _......._..........._............83-

53. Information Required to Perform Statistical Testing ;83
5.4. Methods of Performing Stadstical Testing_-. 84

5.4.1. Test Planning and Test Requirements-. 84

5.4.2. Test Design and Test Implementation -...............................84
5.43. Test Execution and Test Evaluation.. 86

5.5. Discussion of S tatistical Testing _ _ 86
,

... . _ . . 89.

.6. StreM Testmg . _

6.1. Purpose of Stress Testing_ ..._..._._ ... 89
<

6.2. Benefits and Limitations of Stress Testing 89
1

6.2.1. Benefits89 ,

'

6.2.2. Li mitations __.._.m 89
63. Information Required to Perform Stress Testing _ 89

5.4. Methods of Performing Stress Testing_.._90

6.4.1. Test Planning and Test Requirements .. .-.._...._...._....90
6.4.2. Test Design and Test Implementation. _.90

6.43. Test Execution and Test Evaluation.., _ 91

6.5. Discussion of Stress Testing__... .._. _ _. _.m. -_.____92
. ._.95

7. Regression Testing_.. _ . . . _ -

7.1. Purpose of Regression Testing.._95
7.2. Benefits and Limitations of Regression Testing . -......_...._......_......95

.... 95
7.2.1. Benefits _. -

......_............_...957.2.2. Limitations . _.. - _ _

73. Information Required to Perform Regression Testing_.95

7.4. Methods of Performing Regression Testing~...............95
7.4.1. Test Planning and Test Requirements_.95

..._ ... _.957.4.2. Test Design and Test implementation _ ._

7.43. Test Execution and Test Evaluation. _.. %

7.5. DiscussWn of Regression Testing .. .__._.... . . 96
<1

. _ .. 97
8. Re ferences _ _

....._....._..__.......99Annex-Taxonomy of Software Bugs....

G lossary_ _ _ . 109

.

I

|

* a

40NUREG/CR.6421

.

1

_ _ _ _ - - _ _ _ . . _._ _._ _ _ _ _ _- _ _ _._ ._ . _ _ _ _ . .

Appendix B

i

TABLES
:
,

Table 1-1. Safety Impact of Software Qualities from a Regulator Viewpoint...... ,
_ 4 7 !

Table 12. Testing Strategies Appropriate to Software Qualities 48
Table 1-3. Test Strategies Appropriate for Software Objects50
Table 14. Expected Pattern of Testers and Software Objects = ..50

Table 1 5. S trategies Used by Testers
... 50

Table 1-6. Sampie Prerequisites for and Extent of Testing.... ..-..
.-... 53

Table 1-7. Typical Testing Strategies for Investigating Software Qualities
... 55

Table 3-1. Data Flow Testing Symbois and Meanings .~....73
Table 5-1. Required Number of Test Cases to Achieve Stated Levels of Failure Rate and Confidence 85
Table 5 '2. Expected Test Duration as a Function of Test Case Duration

. 85

l
i

FIGURES

Figure 2-1. Conceptual Platform for Automatet.Stade Analysis
_. 62

Figure 2-2. Software Development Activities, Products, and Inspections,. 63
Figure 31. Typical Test Station Components for Structural Testing 69
Figure 3-2. Example of a Program -... 70
Figure 3-3. Flowgraph Corresponding to thc Module in Figure 3 271
Figure 3-4. Exampies of Loops in Flowgraphs --72_

Figure 3 5. Test Cases in Loop Testing
.. -. 72

Figure 3-6. Control Flowgraph Augmmted to Show Data Flow
.... 74

Figure 4-1. Typical Test Station Components for Functional Testing:-....77
Figure 4 2. Exampie of a Transaction Flowgraph.78.

Figure 4-3. Example of Domairi. _...............................79 !
Figure 4-4. Exampies of Two-Dimensional Domains with Examples of Test Values 80 !
Figure 4 5. Example of a Syntax Graph-...-........80
Figure 4-6. Example of a Decision Table ~

.. 81. -

Figure 4-7. Exampie of a State Transition Diagram 82
Figure 5-1. Typical Test Station Components for Statistical Testing 86
Figure 61. Typical Test Station Components - 91

41 NUREGER-6421 i

_ _ _ _ - - _

. .

Appendix B

ACKNOWLEDGMENT

ne authors thank and acknowledge Professor Richard Hamlet for reviewing this report and providing helpful
insights and comments.

)
,

>

.

1
1

!

|

|

4 NUREGER4421

- __ _-2 -_a - +_ - --- -m -- - . - ----__ _._ - - - . _ - _ _ _ . _ - _ . _ _ . _ _ _ _ _

. _ _ - - _-

AppGndix B

TESTING EXISTING SOFTWARE FOR
SAFETY-RELATED APPLICATIONS

1. INTRODUCTION-

1.1. Purpose applying testing strategies discussed in this report will,
therefore, be used in combination with data from the

De increasing use of commercial off-the-shelf other information sources used in the +x "' - e
(COTS) software products in digital safety-critical process.
applications is raising concerns about the safety,
reliability, and quality of these products. One of the This report provides an overview of key testing
factors involved in addressing these concerns is techniques and their relationship to COTS software.
product testing. A tester's knowledge of the software ne quoted references should be consulted for more
product will vary, depending on the information detail. In panicular, Beizer (1990) and Marick (1995)
avadable from the product vendor. In some cases, provide detailed, practical information on carrying out
complete source listings, program structures, and other testing activities.
information from the software development may be
available. In other cases, only the complete 1.3. Report Orgam.zat. ion
hardware / software package may exist, with the tester
having no knowledge of the mternal structure of the De body of the report consists of six sections

numbered 2-7, which describe six different testinga tware.
strategies. Within each testing strategy, a number

De type of testing that can be used will depend on the specific testing techniques are described. The testing

information available to the tester. This report strategies are:

describes six different types of testing, which differ in
the mforman,on used to create the tests, the results that Static Source Code Analysis*

may be obtained, and the limitations of the test types. StructuralTesting.

An annex contains background information on types of
faults encountered in testing, and a Glossary of Functional Testing*

pertinent terms is alsoincluded.
StatisticalTesting*

1.2. Scope, Assumptions and Limitations
Stress Testing-

his report specifically addresses testing of existing,
Regression Testing..

commercial off-the-shelf software for safety-related
applications and, therefore, makes no assumptions as to Each of these sections is organized in a similar fashion:
the adequacy of the software process under which the
software was developed or of the capabilities of the Purpose of the testing strategy*

software developer. These and other questions must be
.

considered by whatever process determines the Benefits and limitauons of the testing strategy*

acceptability of the CO,TS software product for a Information required to perform the tests.

particular use. Testing is only one aspect of an
acceptance process for a COTS software product. Methods of performing the tests.

Other aspects include a system design that carefully
Discussion of the test techniques belonging to theallocates responsibilities to the computer system, a *

hazard analysis of the system (including computer tesung strategy.
hardware and software), an investigation of the
capabiliues of the software developer, a mature ne sections are meant to be read independently, so

development process, and favorable experience data. some repetiu.on of material occurs throughout sections

Dese aspects are discussed in the main report in this *

NUREG/CR, and related information is found in
An Annex has been included to provide additional

lawrence (1993), Lawrence and Preckshot (1994), and information regarding the types of faults discovered
Preckshot and Scott (1995). Results obtained from

,

I

45 NUREGER 6421

_

- - - - -
-

_

-. . - _ - - - . - . - . - . - - - . - - . _ _ - - _ . .

F

Appendix B

I
during testing, as well as a Glossary of software quality 1.5.1. Testing Goals and Sonware Qualities
terms.

To be effective, testing should be directed at measurmg

1.4. Definitions some quality of the software. The various testing
strategies address different sets of software qualities.

Several terms used in this report are defined here. 'Ihe For this reason, a comprehensive testing program will
Glossary provides a more complete listing of incorporate as many strategies as possible in an attempt
applicable terminology. to assess the overall emadam of the software. Within

'

j

this context, special emphasis can be placed on those
Commercial Of.the-Shelf (COTS) sofrware. strategies that are related to quality attributes of*

COTS software is developed for general particularconcem.
commercial use and, as such,is usually developed
without knowledge of the unique requirements of Hetzel (1984) divides software qualities into three sets:
particular applications. "Ihe term COTS, as used external, internal,and future.Extemalqualities ,
here, does not denote an acceptance process nor describe the functionality of the software;intemal
does it have any connotations regarding the qualities describe the engineering aspects of the
availability of source code or development process software; and future qualities describe the adaptability

records. of the software. Many possible software qualities have -
bern described in the software engmeering literature. A

i. OperadonalProfile. 'Ihe operational profile of a list of qualities collected by Hetzel (1984) and by*

iprogram is the statistical distribution function of Charette (1989) has been arranged by the likely impact
the inputs which will be encountered by the of the qualities on safety in Table 1-1. Definitions of t

program under actual operating conditions. these qualities are given in the Glossary.
'

Oracle. Any (often automated) means ofjudging .Ihe six different testing strategies are not equally*

the correctness of a testexecuuon. suited to all of the software qualities. Table 1-2
suggests which strategies to use for the qualities that

Sofrwere Object. The software module, package, are of pn, mary and secondary mterest m safety related*

program, subsystem, or system which is being reactor applicauons. The table provides a cross
tested. reference between software qualities and strategies

used to test for these qualities. These hnkages can be
Tesdag. "(1)The process of operating a system or useful to both developers and evaluators of COTS

*

component under specified conditions, observing
software. Regression testing attempts to ensure that

or recording the results, and making an evaluation
of some aspect of the system or component. (2)

changes made to the software, either during

The process of analyzing a software item to detect
development or after installation, do not affe-t a
software object in unplanned areas. It consists of re-

the differences between existing and required
execution of previous testing and, therefore, addresses

conditions (that is, bugs) and to evaluate the
the qualities previously demonstrated with other forms

features of the software items." (IEEE 610.12
1990) In this report, the word " testing" is used in

oftesting.

"8 1.5.2. Software Objects

1.5. General Comments on Testing Software objects subj.ect to testing range from
programming language statements to complete

"Ihis section contains brief comments on software systems, and the type and amount of testing will
testing that apply generally to the remainder of the generally vary across this range. To provide some
report. Note that the tables of Section I should not be consistency within this report, five classes of objects
read as absolutes, but as general guidance. In particular are defined. In particular instances, some classes may
cases, some connections indicated in the tables may not coalesce. For example,in the simplest case of a system
be relevant, and some connections that are not consisting of a single module, all five classes are
indicated in the tables may be important. Nevertheless, compressed into one. Most classes will be distinct in
in most cases, the tables provide general guidance for safety-cntical systems.
testing safety-related COTS software,

Software object terminology is defm' ed for
conventional third-generation programming languages
such as Ada, C, C++, Pascal, and FOR' IRAN,

!A more restnctive definition is siven by Beizer (1990) who states. Extensions to fourth-generation languages and visual
"An oracle is any program, process, or body of data that speci6es the

prograrnming environments should be straightforward.ap-i omeome of a se of iests as applied to a iesied object. . .
The most common oracle is an input / outcome oracle-an oracle that
specafios the espected outcome for a specified input."'Ihis is more
difficuk to csesse and is not necessary to this report.

I

46NUREGER-6421

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ . _ _ _ _ __ _ . _ . _ _ _ _ _ _ _ _ _ . __

_- _ .__ . -__-_- -- - - _ . .-

1

Appendix B
:

Table 1 I. Safety Impact of Software Qualities from a Regulator Viewpoint 2

Impact on Operational Safety
_

Primary Impact SecondaryImpact LittleImpact
External (Functional) Accuracy User Friendliness
Qualities Acceptability

*
Availability
Completeness
Correctness
Interface Consistency
Performance
(Efficiency, Timing)

Preciseness
Reliability
Robustness
Security j
Usability '

Internal (Engineering) Integrity Clarity Accountability
Qualities InternalConsistency Interoperability Adaptability

Testability Simplicity Generality
Validity Understandability Inexpensiveness

Manageability
Modularity |

Self-Descriptiveness
Structuredness
Uniformity

Future Qualities Accessibility
Augmentability
Convertibility
Extendibility

.

Maintainability I
Modifiability
Portability
Reparability

!
Reusability
Serviceability

2
Note that qualities associated with modifications that might be made in the operations phase have been tisted in the "Little Impact" category

because an assumption is made here that, in typical safety-related reactor appticaticris, changes will be infrequent. To the extent that such
software might be used in an environment with regularly changing requirements, these qualities assume more importance. It should also be noted
that,in some cases, listed qualities have essentiaDy the same meaning but may have slightly different interpretations depending on the context.
Since they all appest in the literature, no attranpt has been made to group them. They are, however, categorized consistently.

47 NUREG/CR-6421

m__--_____ _ _ _ _ .- _ _ _ - _ _ _ _ _ . _ _ . _ _ . _ _ - ___- - - _ _ _ _ _ _ _ _ _ _ r_ _ _ . _ _ _ __ _ _ _m__. _ _____ _ __ - - - _ _ _ _ _ _ _ - _ _ _

.- . . - - _ - ._.

|

Appendix B

|

Table 12. Testing Strategies Appropriate to Software Qualities

Software 5uality Static Structural Functional Statistical Stress Testing
Analysis Testing Testing Testing

Acceptability X O

Accuracy O X X

Availability X X

Clarity X

Completeness X X O

| Correctness X X X X

| Integrity O X X

! Interface Consistency X X

i InternalConsistency X X O

Interoperability X X

Performance (efficiency O X X

& timing)

Preciseness O X X

XReliability

l Robustness O X X
.

Security O X X

Simplicity X

Testability X

| Understandability X

Usability X X

User Friendliness X

Validity X X

Regression Testing O X O X

X = Strategy should be used for the specified quality
O = Strategy may be used for the specified quality

|
A module is a named collection of programming Programs are created by means of a linker or* 3
language statements. Alternate names are loader and can be stored in a file or PROM for

subroutine, procedure,or unit. future use.

A subsystem consists of one or more modules,A package is a collection of one or more modules .
.

which relate to a common topic. Packages are a packages and programs which are devoted to one

key feature of object oriented programming or more related functions, or which must execute

languages such as Ada and C++. For example, a together to achieve a desired task, or which

set of modules that processes dates could be execute concurrently on the same processor,

combined into a calendar package. A set of Examples include a set of programs which

modules that manages sensor information (read, performs various kinds of report production, and ac

check status, conven data) could be combined into set of programs which reads and processes xasor
,

a sensor device-driver package.
>

A program is a set of one or more packages and 3Pmgrammaa readely memmy.
*

modules which can be executed on a computer.

48NUREGER-6421

Appendix B

I
data on one computer and sends the results to be During development, the software engineer who
displayed on another computer, develops code may be involved in some of the testing.

Some independence can be achieved by using other
A syssem is the entire set of subsystems which

software engineers from the developing organirahnet.
*

manages a complete application.
Greater independence can be achieved if the customer

Table 1 3 shows a different perspective. It matches or an IV&V organization performs testing activities. In
different test strategies to different classes of software mese cases, tesdng coidd be subcontracted. For

objects. ne checked entries show which testing example, the customer might h, ire a company to carry
strategies are pnmarily recommended for each class of out testing on its behalf or a,t might do the testing itself.

object. Note that any strategy could apply to any class When COTS software is to be tested by the customer,
of object under specific circumstances. The table it is unikely that parties frotn he developing
merely provides general guidance, organization will be mvolved in the testing effort, so

mdependence would generally be assured. In any case,
Objects are classified here according to structure, and note that it is essential that the testers be well-qualified
this classification is used throughout the report. and knowledgeable of the application.
Another method of classification relates to structural
complexity. This might yield a series such as batch Table 1-4 shows which categories of tester are most

processing, interactive time-sharing, transaction likely to carry out testing on the different types of
processing, real-time process control, and real time software objects. As with the previous tables,

,

vehicle control. However, this report is limited to real exceptions do occur. For example, a programmer could
time process control systems, carry out all testing strategies.

A further classification dimension involves the Table 1-5 similarly shows which categories of testers
interaction of processes and ranges from single process are laely to use me dWerent testing strategies. Again,
systems to multiple-process shared-memory concurrent these are recommendations, not absolutes,

systems. This dimension affects primarily the amount
of testing required and the difficulty of creating and

1.5.4. The Testing Life Cycle

judging the tests. In particular, stress testing is very Software testing has a life cycle of its own that is
important as the amount of interaction increases. similar to the software development life cycle. Testing

1.53. Testers life cycle phases generally include planning,
requirements, design, implementation, and operation

Testing is frequently carned out by different categories (execution). Note that V&V activities apply to testing
of personnel. A primary concern when safety is an life cycle prodiacts Geviews of test plans & designs,
issueisi _ of testing from development.4 etc.) in addition to software development life cycle

-
products.

If testing is carried out by or on behalf of the4
1ndependet Vav is med when it is necessary to have an impanial,

objemive analysis and ten enducted of the softwarthystem, he development organization, the testing life cycle phases
notion is that difficuh-so<liscover errors whidi may reside in the should occur Concu.rrently with the development life
schwam due to assenpaans or technical biam inadvenently cycle phases. This is not likely to be possible with

. .

inueduced by the L , t team would have a higher probability . customer testing of COTS software. However, the
of being desassed by an impartial, objective V&V team who would testing life cycle should still exist and be Carried out.
apply a fresh viewpoint to the softwave. IVAV is used for high.
craicality schware, which demands the integrity of critical functions Testing life cycle activities are described in detail indue in ute t ; conseq=nces of failure, unrecoverable
musman completion (e.g., space probes), safety or security IEEE Software Engineering Standards 829 and 1074
campeomisa, financial loss, or unaccepiable social consequences. and are not discussed here. The following list provides

.

', 3 is defmed by three pommmers: technical, managerial, a brief synopsis of the activities based on these
=d fir-' he desse dindependence of the V&V effon is

standards, assuming that the testing will be camed out
dennad by the mient that each of the three independence parameters

. by (or on behalf of) the customer.as vesend in the VAV organization. He ideal IV&V contains all
ihme'

. - parameters.Technicalindependence requires that
"

Test planning activities.

the IV&V team (organiantion or group) utilize personnel who are not
involved in the development of the software. An effective IV&V - Prepare test plan

i
team has personnel who have some knowledge about the system or
whose related exponence and engineering background gives them Test requirements activities.

the abihty no quickly leem the system. In allinstances, the IV&V - Determine the software qualities for which
Isaan must formulate its own understanding of the problem and how testing is requiredthe proposed system is sciving the problem. his technical

, (" fresh viewpoint")is crucial to the IV&V team's - Determine the software objects to be tested
' .

abihey to desect the subtle errors that escape detection by
L' sassins and quality assurance reviewers. (Personal - Obtain needed resources: budget, time, and
comspa===aw=i on work being done on the update ofIEEE 1012). assignment of personnel

.

49 NUREGER-6421

- _ _ _ _ _ - _ _ - _ _ _ _ _ _ .

Appendix B

Table 13. Test Strategies Appropriate for Software Objects

Module Package Program Subsystem System

Source Code
Analysis X

Structural X O O

Functional O X X X X

Statistical X X X

Stress O X X X

Regression X X X X X

X = Test strategy should be used on specified software object
O = Test strategy may be used on specified software object

Table 1-4. Expected Pattern of Testers and Software Objects

| Module Package Program Subsystem System

Software
Engineer X X O

Development
Organization O X X O O

Customer X X

Independent
Tester O O X X X

X = Tester is likely to test specified software object
O = Tester may test specified software object

|

Table 1-5. Strategies Used by Testers

Software Development Independent
Engineer Organization Customer Tester

Source Code
Analysis X O O

Structural X X O

Functional X X X X

Statistical O X X

Stress O X X X
,

I Regression X X X X

X = Test strategy should be used on specified software object
O = Test strategy may be used on specified software object

NUREGER-6421 50

. _ - _ _ _

..

Appendix B

Test design activities 6Dynamic testing consists of pe aing the software=

Prepare test design specifications object with a sequence of inputs I and obserymg-

Prepare test procedures failures. His amounts to searching for sequences I -+-

B E F. Other sequences are possible.For- Prepare test case specifications
,

Design test station-

I alone (that is. no fault is encoumesed),
Testimplementation activities.

Prepare testcases 1 -+ B (but no error occurs).-

-- Prepare u data
and I -+ B -+ E (but no failure occurs).

' Create test station-

None of these sequences can be observed from system
Test execution activities output, ahhough two of them do contam faults.-

- Execute test cases
As an example, suppose a program contains the

Analyze test results-

statement
Prepare testreports-

x11 - (a + b) / (c + d)
1.6. Faults, Errors, Failures

nis st is used lawin one of two ways,
One purpose of testing is to identify and correct depending on the value of a flag variable which is
program faults, which is done by examining program almost always true:
failures.

if (flag) then y = xil- 4
14.1 Definitions

else y = x11 + 3
Afault is a deviation of the behavior of a computer

,

system from the authoritative specification ofits here is a fault here, since the last statement contains a

behavior. A software fault is a mistake (also called a typographical enor- x11 ('ex-one-one')is used
bug)in the code. instead of x11 ('ex-one-el'). Most of the time, this

does not matter, since the faulty statement is rarely
An error is an incorrect state of hardware, software, or executed. However, if it is executed, then variable 'y'
data resulting from a faulL An error is, therefore, that will have an incorrect value, which is an error
part of the computer system state that is liable to lead (incorrect state). As long as 'y' is not used, no
to failure. Upon occurrence, a fault creates a latent obsen able harm occurs. Once 'y' is used later in a
error, which becomes effective when it is activated, calculation, however, the program may perform an
leading to a failure. If never activated, the latent error incorrect action, or simply fail, his action (or the
never becomes effective and no failure occurs. program's failure) is the failure F mentioned above.

Afailure is the external manifestation of an error. That Ahhough the cause of the failure runs fault-error-
is, a failure is the extemal effect of the error, as seen by failure, the diagnosis usually takes place in the other
a user (human or physical device), or by another order; failure-enor-fault. Specifically, from failure F,
Program. the activity of debugging attempts to infer the error

14.2 Relationship of Faults, Errors,and Failures which caused the failure; this may or may not be done
correctly. ne fault B must itself be inferred from the

Assume that the software object under test contains a inferred error; again, this may or may not be done

fault B. Depending on the circumstances, execution of correctly. If the causal analyses of either of the

the code containing fault B may or may not cause a sequences, F -+ E or E -+ B, is done incorrectly, fault
change of state which creates an error E. Again, B is not likely to be corrected. Worse, a correct piece

depending on circumstances, E may or may not cause a of code may be inappropnately " fixed," resulting in a

failure F to occur.5 Note that neither fault B nor error E new fault in the software object.

is observable; only failure F is observable.
An implication of this is that any estimate of the
effectiveness of a testing activity is inaccurate by an
unknown (and almost certainly unknowable) amount.
In particular, any estimate of the number of faults

5 considerable time delays may ocar between these events. B could
pnennauy cause more than one type of error, and each such error
could posenuaUy cause more than one type of failure, depending on btatic analysis, discussed in Sctim 2.is an enempt to discover
the actual execution circumstances of the code, faults directly by examining the source code.

51 NUREGfR-6421

_ _ _ _ _ _ _ . . _ _ _ _ _

.. .
.

-

Appendix B
1

l
'

testing is imprecise by an unknown amount. His appropriate (depending on the specifics of the
should not be surprising--similar effects can be acceptance process) to rely to a larger degree on after-
observed in science anytime inductive reasoning is the-fact testing, and a more comprehensive testing
used. effon might be appropriate. Regardless of the scope of

any potential testing effort, it will be useful to obtain
it is widely believed by software engineers that a information about past and current faults as well as
properly designed test program can reduce the configuration and operating parameters, reliability and
uncenainties m testing effectiveness sufficiently that availability, and comments about other qualities based

,

they can be acceptably ignored. ne operative words on the experience of users of the COTS software item.
are " properly" and " believed." The first word is itself
ill-defined, while " belief" lacks the confidence that in addition to augmenting the testing effort conducted
comes with scientific or mathematical proof. A final during software development, there might also be new

point is that extending a general belief (that applies requirements specific to the intended use of the COTS

generally to testing) to a specific software object under software item that should be addressed with testing.

test adds an additional inference of unknowable These might be related to particular safety functions to

uncertainty. be performed, special performance constraints,
adaptation to new hardware platforms, panicular

Rese observations apply to all dynamic testing standards adopted for the application, or a need for
strategies discussed below except statistical testing- demonstrating high confidence in panicular software
ne latter is inherently interested in failures rather than qualities, in these cases, the appmpriate strategies must
faults, so the argument does not apply. This argument be selected to address the areas of concern. His testing
helps explain, however, why testing can never be effon could be quite extensive. For example, functional
perfect. testing might be used to verify that cenain functions

are handled correctly, stress testing might be used to
1.7. Select. ion of Testing Strategies and examine performance in the target environment, and

.

Techniques statistical testing could be applied to assess reliability.

His section discusses the context and goals associated 1.7.2. Considerations for Selecting Testing
with the testing of COTS software and provides Strategies
guidelines for applying the various testing strategies

This subsection provides assistance in selecting testingdiscussed in the following sections.
strategies and techniques to meet the needs defined by

1.7.1. Context for Selecting Testing Strategies a COTS acceptance process. Since there may be
multiple techniques that will address a particular

ne testing of a COTS software item is normally done testing que tion, and since it is not possible to
within the context of a larger process whose goal is to anticipate all types of questions that might arise in
determine the acceptability or non-acceptability of the various situations, the information provided must be
COTS software for use in a panicular application. considered as guidance rather than as a prescriptive
Consequently, th.is report does not address the issue of formula. It should also be noted that this section refers
determining acceptance criteria for the use of a COTS to traditional third generation languages (e.g., Ada, C,
software item in a particular application. It is assumed C++, Fortran, and Pascal) and does not necessarily
that the acceptance process wdl identify specific needs apply specialized or developing technologies such as
to be addressed with testing, that this report will serve artificialintelligence systems.

,

'

as a reference for planning and conducting the
necessary testing, and that the results will be evaluated, The process of selecting testing strategies for a COTS
with other information, within the context of the software item is constrained by the information

available. Table 1-6 presents a summary of theacceptance process,
* "" """ " I*9

A COTS software item mi ht be tested in order to 8ain strategies. Representative information is also provided8
additional information about the product itself or to regarding the extent of testing to be applied when using
examine the behavior of the product in the planned a particular testing strategy; refer to the appropriate
application. In general, the more important a COTS section for more detail. Table 1-6 provides a first-order
software item is to safety, the less one would expect to estimate of the prerequisites and scope of a testing

need after-the , fact COTS software testing to augment effort. Each situation is unique and the reviewer should
other information in order to demonstrate acceptability. refer to the text and other references to make
In other words, the COTS software item should already determinations regarding the nature and extent a
be demonstrably well-qualified for its intended role. In specific testing effort. The terminology used in Table
this case, testing activities will probably be narrowly 1-6 is explained in later sections of this repon.

,

focused on particular qualities or attributes of the
software. For items less important to safety, it may be

.

52NUREGER-6421

_- _-

.. . . __

Appendix B

Table 1-7 presents a set of questions about software taxonomy of faults presented in the Annex is also
qualities that can be addressed by selected testing helpful in selecting testing strategies. The ierminology
strategies, The table is not exhaustive. However, it used in Table 1-7 is explained in later sections of this
provides useful examples for selecting testing report.
strategies to meet specific testing requirements. The

Table 16. Sample Prerequisites for and Extent of Testing

Strategy: Minimum Information Suggested Extent of
Technique Goal Required Testing / Analysis

Static:

Inspection Examine architectural design Software requirements; One or more inspections. Group
00) with requirements as reference architecturaldesign decision on re-inspection based on

inspection results.
Inspection Examine detailed design with Architectural & One or moreinspections. Group
01) architecturaldesign as detailed design decision on re-inspection based on

referer.cc inspection results.
Inspection Examine sourre code with Source code & detailed One or moreinspections. Group
02) detailed de.cien as reference design decision on re-inspection based on

inspection results.
Inspection Check code for specific Source code One or moreinspecuons. Group
(other) qualities, properties, or decision on re-inspection based on

standards adherence (can be inspection results.
part of12)

Inspection Verify allocation of software System requirements & One or moreinspecuons. Group
(other) requirements software requirements decision on re-inspection based on

inspection results.
Inspection Check application-specific System & software One or more inspections. Group
(other) safety requirements safety requirements; decision on re-inspection based on

hazard / risk analyses inspection results.
Desk Verify key algorithms & Source code One pass per revision; continue
checking constructs until no new faults are found.
Automated Produce general / descriptive Source code One pass per revision
structural information; compute metrics
analysis values

| Automated Fault detection Source code One pass per revision; continue
! structural until no new faults are found.
| analysis

| Automated Standards violations Source code One pass per revision; continue
: structural until no new faults are found.
| analysis

53 NUREG/CR-6421

-

_ _ _ _ _

.- . - - -. - .- - - ~ - -. --. .. .

,

i

Appendix 5
/
:

Table 16. Sample Prerequisites for and Extent of Testing (cont.)

Strategy: Minimum Suggested Extent of
Technique Goal Information Required Testing / Analysis i

Structural: .

;

Path Verify internalcontrol flow Source code; module Branch coverage
design specification

imp Verify internalloop controls Source code; module Focus onloop tomdanes
design specification

Data flow Verify data usage Source code; module All ' definition-usagespairs
design specification .

Domam Verify internal Source code; module Focus on boundaries

(structural) controls / computations over design specification ,

input domains

Logic Verifyinternallogic Source code; module Allcombinauons of conditions

(structural) (implementation mechanisms) design specification

Functional:

Transaction Verify implemantation of Executable, software All transactions
application functions requirements ,

'

Domam Verify functional Executable, software Representative domain values

controls /computationt over requirements including boundary andillegal
inputdomains values

'

Syntax Verify userinterface and Executable, software Allinput/ message constructs
message /signalconstructs requirements ;

logic Verifyimplementation of the Executable, software Allcombinahons of real-world
logic of the real-world requirements conditions ;

application |
!

State Verify implementation of Executable, software Allstates/ transitions

states associated with the real. requirements
world application

Statistical Estimate reliability Executable, software Predetermined reliabilir f target

requirements,
operationalprofiles

Stress Examine robustness; Executable, software One pass per resource per revision

characterize degradation with requirements per operating mode; sampling of

increasing loads on resources combinations of resourceloads

Stress Find breaking points; check Executable, software Continue testing a resource until'

recovery mechanisms requirements failure & recovery modes are well
understood

Regression Verify that changes have not Various input needed Continue untilno new failures are

impacted the software in depending on test detected

unexpected ways strategies used in the
regression test suite

!

l
|
l

i

NUREG/CR-6421 54

-___ - ___.

.

_ _ _ _ - _ - - - - _ - - ~ - = - . . - - ---- ~- .

|

,

Appendix B
i

Table 17. Typical Testing Strategies for Investigating Software Qualities

Software . Applicable Testing
Quality Also see: Question to be Answered Strategies

Acceptability Validity Are real-world events handled properly? Functional (T,D,L,Sc) |

How does the product perform in realistic, Stress ;

heavyload situations?
)

Accuracy Preciseness Are internal calculations accurate? Structural (DF)
Are results accurate? Functional (T)
Is there confidence that important calculations Static analysis 0,DC)
are accurate?

Availability Reliability Will the software be unavailable due to poor Statistical
reliability?

Will functions be available during heavy load Stmss
situations?

Clarity. Understand- Is the implementation sufficiently clear to a Static analysis (I,DC)
ability knowledgeable reviewer?

Completeness Are all requirements expressed in the design? Static analysis (I)

Are all design elements implemented in the Static analysis (I)
code?

i
Are internals complete? (no missing logic, Static analysis (ASA,I)
undefined variables, etc.)

Are all aspects of real-world transactions Functional (T)
implemented?

Are boundary values and all combinations of Functional (D L,Sc)
conditions accounted for?

Are recovery mechanisms implemented? Stmss

Correctness Does the product have statically detectable Static analysis (All)
faults?

Is the implementation / modification structurally Structural (All)
correct?

Is the implementation / modification functionally Functional (All)
correct? 1

Does the product perform correctly in heavy Stress
,

!
load situations?

1

Have modifications had unintended effects on Regression
the behavior of the software?

| Integrity Security Are access control schemes appropriate? Static analysis (I)

Are access controls and internal protections Structural (All)
correctlyimplemented?

Is end-user access management correct? Functional (T)
Are access-related boundary values, logic, Functional (D,Sx,L,Sc)
states, & syntax correctly implemented?

|

5
'

IAgend:
ASA Automated Structural Analysis I Inspection Se State Testing

j D DomamTesting L logicTesting SK SyntaxTesting
: Ir Desk Checking Lp LoopTesting T TransactionTesting
i 1:F Data FlowTesting P PathTesting|

55 NUREG/CR-6421

_ -_ __ _ _ _ __ _ _ _ _ _ _ _ _ _ - _ - _ .

. - - -. - -.
,

1

'

Appendix B

Table 17. Typical Testing Strategies for Investigating Software Qualities (coat.)

Software Applicable Testing
Quality Also see: Question to be Answered Strategies

Interface Internal Have interface standards & style been followed? Static analysis (ASA,1)
0 = =- y Consistency

Is parameter & variable usage consistent across Static analysis (ASA,I)
interfaces?

Is transaction data handled consistently among Functional (T)
modules?

Are boundary conditions treated consistently? Functional (D)

Is message syntax consistent? Functional (Sx) i

Is decision logic consistent among modules? Functional (L)

Are system states consistently treated among Functional (Sc) |

modules?

Internal Interface Have standards & style been followed? Static analysis (ASA,I)
Consistency Consistency

Is parameter & variable usage consistent? Static analysis (ASA,I)

Are conditions handled consistently with respect Structural (P, Lp,D,L)
to control flows?

Are there inconsistencies in data handling? Structural (DF)
(typing, mixed mode, I/O compatibilities, etc.)

Are real-world events and logic handled Functional (L. Sc)
consistently?

Inter- Does the architecture facilitate interoperability? Static analysis (I)

operability
Do modules used in transactions exchange & Functional (T,D.Sc)

useinformadon properly?

Performance Is intra-module timing within specification? Structural (P Lp)

Are transactions performed within required Functional (T)
times?

Are timing requirements met when boundary Functional (D)
values are input?

Is system performance adequate under heavy Stress

load conditions?

Preciseness Accuracy Will internal representations yield required Static analysis (DC)

precision?
Are internal calculations sufficiently exact? Structural (DF)

Are real-world transaction results sufficiently Functional (T)

exact?

Reliability Availability What is the probability of running without Statistical
I

failure for a given amount of time?

Legend:
ASA Automated Structural Analysis I Inspection Se StateTesting

D DomasaTesting L logicTesting Sn Syntax Testing

DC Desk Oncking lp loopTesting T TransactionTesting

IF Data FlowTesting P Path Testing

56NUREGER-6421

__ _.

__ __ _. m _. _ _ _ _ _ . . _ __ .__ . _ _ _ _ _ . _ . _ __.

i

Appenulix B
,

Table 17. Typical Testing Strategies for Investigating Software Qualities (coat.)

Software Applicable Testing
Quality Also see: Question to be Answered Strategies

Robustness Has.yympuste recovery logic been Static analysis (I)
implemented? i

Are poorly specified/ invalid transactions Functional (T.Sx) f
handled correctly?

Are marginal / illegal inputs handled correctly? Functional (D,Sx) |

Are unexpected combinations of Functional (L,Sc)
conditions / states handled correctly?

Can the system continue operating outside of Stress
normaloperating parameters?

Security Integrity Are access controls properly Static analysis (I)
designed / implemented?

Arc access controls consistent with the operatmg Static analysis (I)
environment?

Are the structural aspects of access control Structural (All)
'

mechanisms correct?

Security Do access management functions work Functional (T)
(continued) correctly?

Do access management functions work correctly Functional (D,Sx,L,Sc)
in the presence of marginal or illegal values and
constructs?

Simplicity Are implementation solutions overly complex? Static analysis (I)

Are complexity-related metric values reasonable Static analysis (ASA.I)
for a given situation?

Testability How can aspects of the software be tested? Static analysis (DC.I)
Understand. Clarity Is the designer /implementer intent clear? Static analysis (DC,I),

ability

Does information characterizing the software Static analysis (ASA,I)
;

make sense? '

Usability User Can the user correctly form, conduct, & Functional (T,D,Sx)
; friendliness interpret results of transactions?

Does the user interface design support Static analysis (I) |
operational procedures? '

User Usability Is the user comfortable in forming, conducting, Functional (T,Sx)
friendliness and interpreting results of transactions?

Validity Acceptability Are requirements traceable? Static analysis (I) i

Are implementation solutions appropriate? Static analysis (DC,I)

Is the real world appropriately represented? Functional (All)
Is the implementation / modification structurally Structural (All)
correct?

Is the implementation / modification functionally Functional (All)
correct?

Legend:
ASA Automated Structural Analysis I Inspection Se State Testing
D DomamTesting L LogieTesting & Syntax Testing
IX' Desk Checkmg Lp LoopTesting T TransactionTesting
IF Data Flow Testing P PathTesting

57 NUREGfR-6421

.- - .

i

Appendix B

2. STATIC SOURCE CODE ANALYSIS

| 2.1. Purpose of Static Source Code project-specific standards adopted for the application ;
Analysis of a COTS item to a panicular use. Automated;

I
structural analyzers can perform large numbers of J

| - Static source code analysis is the examination of code static checks that could not be performed manually,
i by means other than execution, either manual or and may detect structural faults that might go
l

automated, with the intent of (1) producing general, undetected in dynamic testing since all possible paths
. metric-related, or statieval information about a cannot be covered by test cases. Static analysis

software object,(2) detecting specific types of faults in techniques that provide general information about
; a software object, (3) detecting violations of standards, software objects can produce informauon that will be

3

| or (4) verifying the correctness of a software object. valuable in developing test cases for dynamic testing. |'

Static analysis pertains to certain categories of faults
and should be considered complementary to dynamic Regarding the assessment of software qualities, static |

,

testing in the overall testing effort. The qualities analysis techniques are effective in examming software |
addressed by static analysis, summarized in Table 1-2, f r possible faults related to completeness, consistency, 1
are discussed below, and validity. For example, information about the !

,

! completeness of a software item can be gamed from !ne section is primarily focused on static source code automated structural analyses that discover nussmg I

analysis; hos.ever, some techniques, such as logic, unreachable logic, or unused variables,
iv% have broader applicability. Some of these Inspections can provide information about thej

'

extensions are discussed below, traceability of requirements. Both inspections and

2.2. Benefits and Limitations of Static
automated structural analyses provide a means for
evaluating the consistency of applicanon of standards

Source Code Analysis and style guidelines, as well as for checkmg parameter
and variable usage from a static perspective. Desk

Static analysis is code examination without code i

checking can provide information about the accuracy
'

execution. This approach provides a different way of and precision of algorithm implementauons.
| thinking about fault detection and, therefore, static
!- analysis techniques are best applied as part of an Static analyses also provide information about other
! overall testing (or verification and validation) program software qualities that may be important to the
| that also includes extensive dynamic testing. The intended use of a COTS software item, including
1 advent of automated, interactive software testability, usability, interoperability, clarity, |

envuonments and testing tools is blurring the understandability, robustness, and simplicity. These 1

. distinction between dynamic testing and static analysis tend to be areas where judgment is required, makmg
| somewhat. In some of these tools, results are available the manual techniques particularly effective. ne

from static examinauons carned out in support of qualities are addressed with the manual techniques by
'

dynamic, structural testing. The use of interpreters as including the appropriate considerauons in inspection
code is being examined can automate the desk checklists or desk-checking tasks. For example, the
checkmg technique of stepping through lines of code number of questions about intent raised during an
and, therefore, can produce information about run-time inspection is an indicator of understandability. In
states (although this information may also be related to addition, automated structural analyses can provide
the use of the interpreter). metrics and structural information that is useful in

assessing these software qualities.

2.2.2. Limitations
Dere are a number of features of static analysis

-

techniques that make them an effective complement to Static analysis techniques,in general, do not provide
dynamic techniques. The inspection or review-oriented much information about run-time conditions. In
techniques have the advantage of combining the addition, many of these techniques are labor-intensive
different perspectives of the participants and can and, therefore, can be quite expensive to carry out. In j

| produce fault information that may be overlooked by a cases where there are project-specific considerations !j single examiner. Inspections have been found to be that need examination by an automated tool, automated
very effective in detecting the types of faults that can analyzers must be developed, which is also a costly

i be found with static techniques, in addition, manual - endeavor.
|

| static analysis techniques can easily incorporate
|'
4

59 NUREG/CR-6421

|

|

._ _. _ -.

1

Appendix B

2.3. Information Required to Perform validity. Other qualities, that may be of interest,

Static Source Code Analysis depending on the intended role of the COTS
software item, can be assessed with static analysis.

As a minimum, the source code must be available. For Rese include testability, usability,
most static analysis techniques to be effective, it is also interoperability, clarity, understandability, and
necessary to have information on the context (intended simplicity.
usage), requiremen:s, and design of the software object

2. Determm.e which static analys. techniques will beisbeing examined. To select effective approaches for
static analysis, it is useful to know what static analysis required. Code mspecuons and automated

capabilities were applied in the development stmetural analyzers are recommended as a
immmum.environment. In particular, most compilers perform

various types of automatic static checking. In many 3. Determine what resources will be required in order
cases, this checking is limited to those checks that to carry out the analyses. Resources include i
support the compiler's primary goal of detecting budget, schedule, personnel, equipment, analysis
syntactic faults before translating statements to object tools, and the platform for automated structural |

!code. Compiler results such as syntactic correctness, analyses
uninitialized variables, cross reference listings and 1

similar matters are a very useful part of static analysis, 4. Determine the criteria to be used to decide how
but should be considered as the first step in static much static analysis will be required. His is a
analysis, not the totality. Information on the compiler stopping criterion-how much analysis is enough?
checks performed is useful in determining the relative
emphasis to place on the various other techniques that 5. Determine the software objects to be examined.

might be applied. 2.4.2. Analysis Design and Implementation

Since one goal of static source code analysis is to ne following actions are required to design and
detect violations of standards, it is necessary to have

imp ement static analyses.l
information regarding the standards applied during the
development effort. His information may be difficult 1. Create procedures for canying out the analyses.
to obtain for COTS software; however, some For techniques such as code inspection, this
mformanon, such as language standards or the nvolves tailoring the technique to the particular
compiler used, should be available. Perhaps a more project environment. For other static source code
important application of standards checking is the, analyses, the procedures will specify analyses to
development (by the testing or customer organization) be applied.
of required standards regarding what is acceptable for
the parucn!r COTS software application. For 2. Prepare for the orderly and controlled application

example, if certain language constructs are permitted of the individual analyses. De following

by the language standard but are known to be information should be prepared for each analysis: |
troublesome in past practice, a safety-critical Analysis identifcation. Each analysis must

.

a
application might require a local practice standard that have a uniqueidentifier.
pmhibits their use.

b. Purpose. Each analysis must have a specific2.4. Methods of Performing Static Source reas n f rexisting.Examplesinclude the
Code Analysis application of an automated standards auditor

!

to a block of code or the examination of a
De static analysis of source code for a software object block of code to determine whether a
must be planned, designed, created, executed, Particular error-prone construct has been
evaluated, and documented. used.

> 2.4.1. Static Analysis Planning and Requirements Input data. The precise data,if any, requiredc.
in order to initiate the analysis must be

The following actions are required to plan and generate
requirements for static analysis of software objects, specified. This should include any parameter

values needed by automated analyzers (this

1. Determine the software qualities to be evaluated information may also be appropriate as part of

with staue techmques. Qualiues typically the procedures).
examined in static source code analysis are shown

Initial state. In order to reproduce an analysis,
in Table 1-2. For the static analysis of safety. d.

related COTS software, the primary quality of
the initial state of the automated analyzer may

interest is correctness, particularly as it is related need to be specified.

to the qualities of completeness, consistency, and

60NUREG/CR4421

_. _ _ _ _ _ _ _ _ _ _ _ _ - _

Appendix B

Results. He expected results of the analysis on safety. lf more than one fault exists, the cumulativec.

must be known and specified. This could effect of all the faults on safety must also be
include the absence of a detection of the fault determined.
being targeted or the specific value range of a
metric. The nature of the faults encountered must also be

considered. De discovered faults might be related to
3. Create the platform to support the automated new requirements or standards arising from the

structural analyses. This is a mechanism for specific, intended application of the COTS product,
selecting, executing, evaluating, and recording the ney might also be minor faults that might have
results of analyses carried out by automated static escaped detection during product development. In
analyzers on the software object.7 An automated these cases, the significance of the faults should be
structural analyzer might perform a pre- evaluated and the options for obtaining corrections
programmed set of checks or might require input might be pursued. However, if one or more serious
to select specific checks (as with an interactive faults pertaining to the product itself are discovered,
tool). Platform components, illustrated in Figure 2- confidence decreases rapidly regarding the suitability
1, include: of the product for use in a safety-related application.

Analysis case selection. A means of selecting 2.5. Discussion of Static Source Codea
analysis cases (checks) to be executed is Analysis
required. This information may be kept in a
file or database, and the selection may simply Static source code analyses, whether done totally
consist of"get next analysis case." manually or supported by automated techniques, are

b. Analyzer program. A means of setting the typically manpower-intensive processes. Manual

analyzer s imtial state (if necessary), processes such as inspections require team efforts.

providing input to the analyzer, and recording Many of the computer-aided methodologies require the

the output from the analyzer is required. nvolvement of the development team, the
development of project-specific tools, or on-line use of

Results database. A means of recording the interactive tools.c.

results for future analysis and evaluation is
needed. Typical data to be captured include it should be noted that, although these techniques

the analysis identifier, date, version of involve high manpower costs, static analysis,

module, analysis output, and an indication of techniques are effective in detecting faults. One

the acceptabih,ty of the results, controlled experiment (Basili and Selby,1987) found I
that code reading detected more software faults and

2.4.3. Execution and Evaluation of the Analyses had a higher fault detection rate than did functional or
structural testing. Since static analysis and dynamic

,

ne procedures must be carded out and analyzed. If a testing detect different classes of faults, a
fault is indicated in the software object and the comprehensive effort should employ as many static
development organization is performing the analysis, and dynamic techniques as are practical for the specific
the software engineer is expected to correct the fault. Project. The remainder of this section discusses various

|De pattern of test-fix-test-fix continues until all static analysis techniques. '

discrepancies have been resolved.
2.S.I. Inspect. ion

In the case of COTS, obtaining corrections may be
very difficult. Suppose the analysis is being performed Among the manual techniques, code inspection, peer

.

by (or on behalf of) the customer. If the software was reviews, and walkthroughs are effective methods for
developed for the customer under contract, there statically examining code. He techniques are
should be considerable leverage for obtaining essendally similar in that teams of programmers

,

corrections. lf the software is a consumer product (for Perform m, -depth examinations of the source code; i

example, a library accompanying a compiler used for however, code inspections a-e distmguished by the use I

development), experience shr'ws that many developers of checklists and highly srmetured teams. One of the
have little interest in expensi ve repairs that satisfy a important benefits common to these techmques is that

| limited marketplace. In this cese, the options of the the different perspectives and backgrounds of the
; customer may be simply to reject the software or to Parucipants help uncover promems that the onginal
'

evaluate cach fault detected and determine its effects software engmeer overlooked. All three techniques
benefit from the parucipation of development team

17
1he process of selecting and initiaung analyses and evaluating the members and probably lose some effectiveness if these

1

results might be a manual activity; in this can the platfonn described
is targely conceptuat, although the databases should exist and be
conuelled.

I
i -

61 NUREG/CR-6421

.______ __ _ .____ ____-___ --_______

. Appendix B

Input Output

Selection 5 Analyzer
Program

i
I l Software

Object

I f

f 3 r 3

Analysis ResultsRepertoire -

Database-

Y J k)

Figure 21. Conceptual Platform for Automated Static Analysis

members are not present, which is likely to be the case inspections. Depending on the information avalable
with COTS software. However, careful auention to the about a COTS software product, any of the inspections

development and tailoring of checklists for a particular described can be an effective technique for exammmg

COTS application, along with the high degree of the product. In evaluating a COTS software product for
stmeture provided by the inspection process, should use in a safety-related application, the inspection

make source code inspections a valuable static analysis technique is useful in examining the allocation of

technique for COTS software. Peer reviews and system requirements to software and in comparing

walkthroughs are not discussed further here; these software requirements to the capabilities of the
~

information on how to perform structured COTS product. -

walkthroughs can be found in Yourdon (1989).
All, spections follow a specific pecess contauungm

Fagan (1976) provides the definitive work on planning, overview, pre-iamiaa preparation,
ia==*iaan, a technique that can apply to a wide range inspection, neworir, and follow-up phases. De follow-

of products. Inspections are defined for three points, up phase might consist of a complete :e-inspection if
labeled 10, II, and 12, in the programming process. significant tework is required. Specific roles must be

Fagan iamaaaians that inspect against the software defined for an inspection; a typical team might include

requirements are called 10 inspections. Dese the designer, coder, tester, and a tramed moderator.

inspecuons would typically be performed as part of the Additional perspectives of value are those of a code

. software design activities, as described in NUREG/CR- maintainer, user, standards representative, and

6101 (Lawrence,1993).11 inspections are typically application expert. The actual inspections require

performed as part of the software design activities and intense concentration and, therefore, are usually

inspect against high-level software architectural performed on small amounts of matenal during short

design.12 inspections are performed during software (b to 2-hour) inspection sessions. Published

! implementation and inspect implemented code. Figure experience (Dyer 1992) indicates that 50 to 70 percent

2-2 shows the relationship between software activity, of faults ::an be removed by the inspection pmcess

psoduct, and inspection type. (i.e., employing 10, II, and 12 inspections).

10 inspections typically examine the set of unit and I io st discussions of source code inspections focus on

program designs, and their interactions to determine
the use of the technique during the development

whether the functional content is consistent with the process. For COTS software, a source code inspection
would be performed well after development and wouldspecified software requirements. Of particular interest
involve teams of programmers not involved in thefor this inspection are data flows among system

components and potential processing deadlocks. I1 original development. Therefore, particular suention

inspections target design structure, logic, and data
should be given to the tasks of developing an effective

representation based on the previously inspected high-
checklist and establishing a set of standards specific to

level design.12 inspections focus on the translation of the particular application of the COTS software. Any

the detailed design into code and compliance with standards and checklists that were applied during

standards, and are commonly referred to as source code development are a good starting point. Myers (1979)

NUREG/CR-6421 62

. _ _ _ _ _ _

Appendix B

|
1

Software Activity Product Inspection Type 1

|

| Software
S are

Requirements Requirements |
!

Specification

Software Design 10 inspection
Description

i

Software (Architecture) |

Design

Software Design -- 11 inspection
Description
(Detailed)

Implementation Code 12 inspection j

|

I

Figure 2-2. Software Development Activities, Products,and Inspections

|

gives a set of typical checxlist items grouped by data may be useful to start with a typical set of standards for
reference faults, data declaration faults, computation the computer language in question and then to augment
faults, comparison faults, control flow faults, interface this set with additional standards based on what is
faults, and input / output faults. 'Ihis serves as a starting known about the application in which the COTS item
point; the list should then be enhanced by specific will be used. For example, a code unit might have been
knowledge about the product and application in produced according to an established language
question. . standard. It might also be known that certain legitimate

The purposes of performing after-the-development constructs are prone to errors. For the purposes of the

source code inspections on COTS software are to COTS inspection, taking into account the intended use

detect previously undetected faults, to ensure that of the item, a requirement preventing the use of the

dangerous practices have not been used, to discover construct might be ad led to the set of coding

whether undocumented features are present, and to standards. In this case, the particular COTS item might

focus on anything special pertaining to the use of the be found unsuitable for the particular intended use. As

COTS application in a specific environment In an alternative, the discovery of the usage of the

planning for static analysis, strategies should be construct might trigger separate static analyses or
dynamic tests focused on that area.

developed for applying techniques efficiently given
project resources and constraints (subject to the 2.5.2. Desk Checking
requirements of the commercial dedication process).
'Ihe entire COTS item should be inspected if possible. Desk checking is a proven, prirnarily manual, static
If not, the focus should be directed toward key analysis technique. It typically mvolves one
functional areas with some additional random pmgrammer examining code listings for faults (code
inspections. A powerful practice with any testing or reading), checking computations by independent
evaluation technique is to attempt to classify detected means, and stepping through lines of code. To the
faults or observed failures (such as might have been extent possible, desk checking should not consist of
seen in other uses of the COTS item) and then to re. manually performed activities that could be automated.
examine the code, searching specifically for other For example, an automated standards checker could be
instances of the fault class. run and desk checking could be used to confirm or

justify violations. Desk checking tends to concentrate
Establishing standards for a source code inspection of a on special problems or considerations posed by the
COTS item is particularly important. Depending on the application and involves techniques appropriate to
criticality of the particular use of the COTS item,it those problems or considerations. This process can be

.

63 NUREG/CR-6421

_ _ _ _ _ __ _ _ _ _ _ -____.

- - - _ _ - - . . - . -. .- ..- --..-.- -- - - - _ ..

!,
Appendix B .

I

ISyntax and semantic analyzersaided with the use of interactive debuggers, interactive .

analysis tools, or interactive analysis features of
Complexity measurementanalyzers.software ini-st environments. Regardless of .

which tools are used to aid the process, strategy and An approach for performing automated structural
'

procedures must be developed for the systematic analysis on COTS software would be as follows:
evaluation of the code. In addition to the discovery of
specific faults, the results obtained in desk checking Determine which software qualities are to be.

should also be used to help tailor the standards and investigated.
checklists used in future source code inspections.

Determine, if possible, what static analysis.

2.5.3. Automated Structural Analysis capabilities were applied in the development of the .

*'I'' *" #
Automated structural analysis is the use of an
automated checker to examine source code for faults Determine what COTS structural analysis scols are.

occurring in dass and logic structures. An automated available for the language used (and particular r

structural analyzer can be focused to detect specific language standard if more than one exists) by the ;

faults in the code, or can produce general information target COTS software. 3
'

about the code, such as cross-reference maps of
Select and apply the appropriate language-specific ;identifiers, calling sequences, and various software .

quality metrics. Information in the general category is tools.
,

useful as reference data in the inspection and desk Determine whether there are project-specific.

checking analyses discussed above. An automated considerations that should be checked using an
'

i

structural analyzer looks for faults such as those listed d m&@n -

,

below(Glass 1992):
;

Develop and apply the project-specific analyzer (it.

Undeclared or improperly declared variables (e.g., may be possible to structure the use of the
* :

variable typing discrepancies) capabiliues of an interactive analysis tool to get at

Reference anomalies (e.g., uninitialized or theseissues). i.

initimbred but unused variables) 2.5.4. Other Methods 1

Violauons of standards (language and project Various other methods for static source code analysis.

standards) have been researched. Some are mentioned briefly ime
but are not felt to be pracucal for the static analysis ofComplex or error-prone constructs
COTS software at this time, either because the methods

.

Expression fauhs (e.g., division by zero) are integrated into the development process or because*

extensive development work would be required to
Argument checking on module invocations imp rna eme d..

(number of arguments, mismatched types,
uninit nhved inputs, etc.) Proof of correctness is a process of applying theorem-i

Proving concepts to a code unit to demonstrate
Inconsistent handling of global data consistency with its specification. The code is broken*

into segments, assertions are made about the inputs and
Unreachable or missing logic.

outputs for each segment, and it is demonstrated that, if
.

Automated structural analyzers are typically language. the input assertions are true, the code will cause the

specific and possibly project specific. Discussions of output assertions to be true. Glass (1992) states that the

some of the techniques used by structural analyzers are methodology is not yet developed enough to be of

contained in Section 3.4 of this report. Price (1992) practical use, estimating that practical value for

provides information on static analysis tools. Typical significant programs is about 10 years away,

automated tools include:
Advantages,if the method is practical, include the use
of a formal process, documentation of dependencies,

Code auditors (standards and portability) - and documentation of state assumptions made during*
design and coding. Proof of correctness is a complex

Control structure analyzers (calling graphs, branch Process that could require more effort than the*

and # Wis) development itself.

Cross-reference generators Symbolic evaluation is a technique that allows.

variables to take on symbolic values as well as numeric
Data flow analyzers (variable usage).

Interface checkers.

64NUREGER-6421

___ _ ._. _

.. ._ . _ ~ . _ . _ _ _ _ . . _ . _ _

Appendix B

values (Howden 1981). Code is symbolically executed Automated structural analyzers are usually based on
through a program execution system that supports pre-defined sequences of operations. An extension to
symbolic evaluation of expressions. Passing symbolic automated structure analyzer capabilities would be to
informat on through statements and operating develop mechanisms whereby user-specifiable
symbolically on the information provides insights into sequences could be defined for subsequent analysis.
what a unit is actu ally doing. This technique requires a Olender (1990) discusses work to define a sequencing
program executior system that includes symbolic constraint language for automatic static analysis and
evaluation of expressions and path selection. One predicts its value when embedded in a flexible,
application of this technique would be an attempt to adaptable software environment.
determine if a formula or algorithm was correctly
implemented.

,

65 NUREG/CR-6421

.- . - - . . _ _ _ - - _ - - - . - - - - - - - - - .

Appendix B !

3. STRUCTURAL TESTING

3.1. Purpose of Structural Testing file 1/0, and construction of expressions. Some
information, such as algorithm timing, can be gamed

Structural testing (also known as " white box" or " glass regarding software performance. Finally, emphasis on
box" testing) is conducted to evaluate the internal testing proper referencing and data handling as well as
structure of a software object. The primary concerns of on the implementation of access controls provides
structural testing are control flow, data flow, and the information about integrity and security. '

detailed correctness of individual calculations.
Structural testing is traditionally applied only to 3.2.2. Limitations
modules, although extensions to subsystems and
systems are conceivable. lt is generally carried out by Structural testing is impossible if the source code is not

the software engineer who created the module, or by available. The modules must be well understood for
2s to WiM ud for conut msulMesome other person wuhin the development

organization. For COTS software, personnel from the test cases to be pre 5ctable. Even moderately large

development orgamzauon will probably not be collections of well-designed modules benefit from the

available; however, structural tesung can be carried out assistance of reverse engineering tools, te.st generators,
' by an independent test group. The qualities addressed and test coverage analysis tools. Generstmg an -

by structural testing, summarized in Table 1 2, are adequate set of stmcuiral test cases is Hkely to be gaite
discussed below. time-consuming and expensive.

3.2. Benefits and Limitations of Structural Structural testing is almost always restricted to testing

Testing modules. Given further research,it might be possible
,

to extend structural testing to subsystems and systems,

Both the benefits and the limaations of structural which would be useful for a distributed control system. .

testing are effects of the concentration on in:emal (DCS). Here, the analogy to the flow of control among

module structure. Structural tesung is the only rnethod the statements of a module is the flow of control that

capable of ensuring that all branches, and loops m the
takes place as messages are passed among the

module have been tested. There are important classes processes making up the DCS. When concurmat

of faults that are unlikely to be discovered if structural communicating processes are executing on a network

testing is omu, ted, so no combination of the other test of different computers, subtle errors involving timing
methods can replace structural testing. can occur, and structural testing might be extended to

help detect these.
3'*'I' 8'"'"''

3.3. Information Required to Perform
Beizer (1990) states that path testing can detect about Structural Testing
one-third of the faults in a module. Many of the fauhs
detected by path testing are unlikely to be detected by Structural testing requires detailed knowledge of the
other methods. Thus path testing is a necessary but not purpose and internal structure of the module: module
sufficient component of structural testing. A specification (including inputs, outputs and function),
combinahon of path and loop testing can uncover 50 to module design, and the sourca code.
60% of the intra-modular faults. Adding data flow
testing results, on average, in finding nearly 90% of A test stau.on is recommended. 'Ihis station would have

.

intra-module faults. (It is assumed here that a thorough the ability to select pre-defined test cases, apply tha
testing effort is performed with respect to each test cases to the module, and evaluate the results of the
technique.) Some modules, of course, are worse than test against pre-defined criteria.

average, and the remaining faults are likely to be
particularly subtle. 3.4. Methods of Performing Structural

Testy
Structural testing is focused on examining the
correctness of the intemals of a module,i.e., on faults The structural test must be planned, designed, created,
relating to the manner in which the module was executed, evaluated, and documented.

implemented. This includes faults related to accuracy,,

! precision, and internal consistency. Control flow faults 3.4.1. Test Planning and Test Requirements

based on inconsistent handling of conditions can be
'Ihe following actions are required to plan and generate

found, as well as data inconsistencies related to typing, requirements for structural testing.
?

67 NUREG/CR-6421

l
,

_ _

Appendix B -

1, Determine the software qualities that are being e. Test results. The expected results of the test
evaluated. For the structural testing of safety- must be known and specified.Dese can
related COTS software, the primary quality of include values of data objects external to the
interest is correctness, particularly in the sense of module (such as actuator values and database
accuracy, precision, robustness, and intemal values) and values of output parameters
cc.,d.i,..cy. returned through the module calling interface.

2. ' Determine which structural testing techniques will f Finalstate. In some cases, the final state of
be required. Control flow (path) and data flow the module must be specified as part of the
testing are the minimum requirements. Additional test case information. His can occur, for

techniques may be required in some cases. example, if the final state after a call is used
to modify the execution of the module the

3. Determine what resources will be required in order next time it is called.
to carry out the testing. Resources include budget,
schedule, personnel, equipment, test tools, test 3. Create the test station. His is a mechanism for
stauon, and test data, selecting, executing, evaluatmg, and recording the

results of tests carried out on the module. Test
4. Determme the en.teria to t,s used to decide how station components, illustrated in Figure 3-1,

.

much testmg will be required. This is a stopping include'-
criterion--how much testing is enough? For

Test case selecdon. A means of,selectag testa
example,"95% of all paths in the module shall be cases to be executed. Test case infonnation is
covered by control flow testing." typically kept m a file or datsNse, and the

5. Determine which modules will be tested. ' selection may simply consist oi get next test"

case."
3.4.2. Test Design and Test Implementation

b. Testprogram. A means of seeing the
The following actions are required to design and module's initial state (if necessary), providag
implement structural testing. input to the module, recording the output

from the module and (if twmary) ecordmg
1. Create procedures for executing the structural test the final state of the module. 1

'

cases. His is typically done within the context
created by test plan and test design documents c Test oracle. A means of deermining the
(IEEE 829). Additional guidance for the testing correemess of the actual output and module

process for modules is given in IEEE 1008. state.

2. Create individual test cases. Each test case should d. Results database. A means of recordmg the
contain the following mformation: nest results for future analysis and evalustaan.

a Test identification. Each test case must have a Typical data are: test identifier, date, version
uniqueidentifier. of module being tested, test output and state,

*n and adon dconectness or Mme d
b. Purpose. Each test case should have a specific ,

reason for existing. Exarnples include
executing a specific path through the module, 3.4.3. Test Execution and Test Evaluation
manipulating a specific data object, or
checkmg for a specific type of fault. For the The test procedures must be carried out and the results

lauer,see headings 3 and 4 of the Bug analyzed. If discrepancies between the actual and

Taxonomyin the Annex. expected results occur, there are two possibilities:
. either the test case has a fault or the module has a fault.

Input data. He precise data required in order In the first case, the test case should be corrected andc
to initiate the test must be specified. the entire test procedure rerun.

d. Initial state. In order to reproduce a test case, If the module has a fault and the development
the mitial state of the module (before the test organization is performing the test, the programmer is
begms)may need to be specified.His expected to correct the fault. The pattem of test-fix-
mformation is not necesary if the module is test-fix continues until all discrepancies have been

,

miended to execute correctly and idenucally resolved.
in allinitial states. For example, a square root
module should retum the square root of the
input value no matter what has gone before.

68
NUREG/CR.6421

. - . . - . ._ __

Appendix B
i

Source Test Case input Output
Code Selection -

Program

O

SoftwareT$ Object
Case

u r ,
,

Test Case Test Casem

Generator Database Test
"

m

Oracle- '

j

Correctness

l f i

r 3

O Results
= Database

L J

Figure 31. Typical Test Station Components for Structural Testing

in the case of COTS, obtaining corrections may be 3.5. Discussion of Structural Testing
very difficult. Suppose the test is being performed by
(or on behalf of) the customer. If the software was A brief summary of several structural testing methods
developed for the customer under contract, there is given here. The material in this section is based i

,

should be considerable leverage for obtaining largely on Beizer 1990; see that reference for detailed
corrections. If the software is a consumer product (for tutorials. Note also that domain testing and logic
example, a library accompanying a compiler used for testing (discussed in Section 4) are structural testing
development), experience shows that many developers techniques if applied to a software object's
have little interest in expensive repairs that satisfy a implementation instead of to its specifications.
limited marketplace. In this case, the options of the
customer may be simply to reject the software or to 3.5.1. Control Flowgraphs
evaluate each fault detected by the testing and
determme its effects on safety. If more than one fault Structural testing methods generally make use of a

extsts, the cumulative effect of all the faults on safety
control flowgraph of the module being tested. This is

must also be determined. an abstraction of the module in the form of a directed
graph which captures only the properues of the module

"Ihe nature of the faults encountered mt;st also be which are being tested. Control flowgraphs are defined
considered. The discovered faults might Ic related to (informally)as follows:
new requirements arising from the specific, intended

A block of statements which do not involve.

application of the COTS product. They might also be
minor faults that might reasonably have escaped control transfer in or out except from one to the

detection dunng product development. In these cases, next are replaced by a simple node of the control

the significance of the faults should be evaluated and graph-

the options for obtaining corrections might bc pursued.
However,if one or more serious faults pertaining to the
product itself are discovered, confidence decreases >b >
rapidly regarding the suitability of the product for use
in a safety-related application.

69 NUREG/CR4421

__ . _ _ _ _ _ _ _ . _ ._ - . _ _ _ _ _ _ _ _ . _ .

!

Appendix B
,

t

!

A branch statement (IF statement) is replaced by a a large number of paths (a path with one iteraten of a |
*

*-

rode representing the branch predicate with one loop is distinct from the same path but with two loop
edge for each outgoing branch: iterations).

,

3.5.2. Control Flow (Path) Testing |

5 Path testing is aimed at discovering software faults !
existing in the flow of control within a module; it does {
not address calculations within the module except for i

those calculations that affect the flow of control. It is
assumed in this discussion that the module is wrisen inA junction is represented by a node with two*

incoming edges: a third-generation programming language (such as C,
Pascal, or Ada), has a single entry point, and has a ,

h single exit point.8See Beizer 1990 for extensions to |

assembly language modules.-

/ Execution of a module consists of the execution of a
'

path within the module. Different inputs to the module
may cause different paths to be executed. In the

A loop statement (DO, WHILE, FOR) is replaced languages being considered, statements fall into several
.

,
*

by its component initializauon-increment-test sets: arithmetic, branches, and loops. Branches usually
pens. - consist of IF, CASE, GOTO and RETURN statements.9 ;

Figure 3-2 shows a (nonsensical) sample module. I40Ps usually consist of DO (or FOR) and WHILE

Figure 3 3 is the conspoiiding flowgraph. Each node - statements, plus GOTOs that return control to a

is numbered; the numbers are repeated in the program Previously executed statement. Any path that contains
the same statement more than once has a loop.

listing in Figure 3-2. (They are for annotation only, not

' Pan he Me.) The completeness of control flow testing is referred to
as test cwerage. Two criteria for ceage ,

Begin module 1 measurements are statement coverage and branch

L2: x=x+1 2 coverage. Statement coverage requires that every ,,

statement in the module be executed at least once (also |y=7 called node coverage). In Figure 3-3,100% node . ,

13 if z < 4 3 coverage is achieved if all nodes are executed at least |
i

then x = 2*x 4 once. Since it is possible to cover all nodes without
covering all links (for example,in Figure 3 3 a set of

else x = x- 1 5
paths can be established to cover all nodes without

if z = 0 then go to L2 6 traversing links such as 10-2 and 7-3), statement

if y = x - z then go to L3 7 coverage is a very weak criterion that is never
sufficient in safety-related applicatwm.

if z = 2*z 8

then y = y - 1 9 Therefore statement coverage will not be discussed
further. Branch coverage requires that the set of test |

w = 2*x cases cause every statement, every alternative of every i

!
else if z < 2 then go toL2 10 branch, and every loop statement to be executed.

end module 11 Methods (mostly heuristic) exist to create a reasonable
number of test cases that include all statements and all

Figure 3-2. Example of a Program branches (Beizer 1990). These are beyond the scope of
this report. The module may need to be instrumented

A link is defined to be an edge of the flowgraph-it (modified by inserting code) so that evidence can be
represents transfer of control from one block of code to obtamed to ensure that each test case performs as
another. A segment is a sequence of nodes and links-
for example, in Figure 3-3, the progression through
nodes 2,3,4,6, and 7 is a segment. A path is any
segment from the initial node of the module to the
terminal node. The path contains a loop if any node is

8 Note that muhiple RETtJRN susements within the module do not
repeated.The length of the path is the number oflinks * n5ti"* **Puste exit points. sina day .an is wh mahfad to
on the path. The manber ofpaths is the number of sinsk fonna: exit poinu without change in conamu.
distinct paths.For all but the simplest module, there are 9 Syntax varies among languages-<he forms used here are typical.

70NUREG/CR-6421

. . . . _ _ _ - _ _ __ _ . _ _ . _ _ _ _ -_ . _ . _ _ _ _ _ _ . _ _ . .

Appendix B
,

4L ENTRY EXIT
| T

rh1 2 3 6 >j
' b

5
.

U

| .8
|

Figure 3 3. Flowgraph Corresponding to the Module in Figure 3 2

:

predicted. The internal state of the module (values of Nested loops generally require all combinations of
local variables) may also need to be examined to verify these choices for each nested loop. One loop has eight,

| test case results. cases; two nested loops,64; three nested loops,512.'

Beizer suggests methods to reduce this number
3.5.3. Loop Testing

considerably, but such reductions should be subjected
,

. A loop occurs whenever a node is repeated in a path. to a mormgh analysis and used with great caution in

his includes both well-suuctured and ill-structured safety-related applicau,ons.

loops; examples of both are shown in Figure 3-4. Intertwining loops such as those shown in the bottom

laop testing assumptions are similar to path testing of Figure 3-4 require much more care and ingenuity to l

assumptions. It is assumed that faults exist only in the test adequately. It is far preferable to forbid the use of

flow of control around loops-there are no calculation theseloops if sat option exists.

faults or branch faults. It is assumed that the module 3.5.4. Data Flow Testingspecifications are correct and achievable. It is assumed
that data used in the module is correctly defined and Data flow testing is directed toward finding errors in
accessed, the manipulation of data. His includes all types of -

data--program variables, sensor and actuator data,(Faults in loops tend to occur around the minimum and
database data, and file data. Databases and files can be Imaximum number of iterations that are possible. considered to be data, as well as the records in them.

Consider theloop statement ;

for n = 1 to k do { }
Beizer defines four ways data can be manipulatM De
exact meaning varies among the types of data. Symbols

where I s kmin s k 5 kmax < ", and meanings are shown in Table 3-1.

kmin and kmax fixed Data flow is analyzed by examining the way each data
!

(kmin and kmax are the minimum and maximum element in the module is used along each path in the.

| Possible values of k.)
control flowgraph. Sequences of the leuers d, k, and u
are used to record the ways the data is used. For

140p testing consists of attempting to create test cases example, consider data element x in the example of

that force the numbers ofiterations executed to take on Figure 3-2. He variable x is manipulated in some way-

| values"near" both kmin and kmax,i.e., to create test in each of the nodes,2,4,5,7 and 9. In Figure 3-6, the
! cases that force the loop to execute typically one usage M vMe x is shown on h mM deach
|

, , ,

iteration more and less than either the lower limit, node in which x is used in some way. Consider the

usage of data element x on path 12-3-4 6-7,8-9-11 in
,

kmin, or the upper limit, kma,x. In the example above, Figure 3-6. The progression of usages of variable x ontest cases should force "zero, iterations of the loop and
compare actual results to the expected behavior of the this path is represented by the string 'ududuu.' Note

software object (see Figure 3-5).In many cases, not all that if x is a local variable, an anomaly is indicated by

of these choices are possible. If the minimum number the first 'ud' in that x is used before the first definition.

of iterauons is zero (k min = 0), one can hardly force h s is shown in the second line of the example
program in Fig. 3-2.

kmin- 1 = -1 iterations. If there is no hard upper
'

bound on kmax, the cases involving kmax are not
!- possible. .

71 NUREG/CR-6421

_ __ _ _ . _ -~ - - - - - - - - - - - -

. _. - - - .~.

.

I

Appendix B

1Mf

"

Nested Loops

U

h h

C=
Intermingled Loops

Figure 3-4. Examples of Loops in Flowgraphs

Legitimate Number of iterations
Expected During Execution |

,

I I |
!

Kmin Kmax

l

I

i

-1 +1 +2 -1 +1

'
1

'

Number of iterations Attempted in Testing

Figure 3-5. Test Cases in Loop Testing

NUREGKR-6421 72

__ __~ _ _ . . . _ _ _ _ _ . _ _ _ _ _ _ . _ _ _ _ -_ _ .
,

i
i

!

Appendix B

|

Table 31. Data Flow Testing Symbols and Meanings I
Symbol Meaning Definition ,

d Defined A program variable is defined when it is initialized in a declamtion
statement or is given a value in an assignmerit stseement. A f.ile is !

defined by being opened. A record is defined oy brMW
k Killed A local variable is killed in block safuctured programmir.g languages !

'

when the containing procedure is exited. A file is killed when it is ;

closed. A record in a file is killed when it is deleted. A record in a
'

memory buffer is killed when the buffer is cleared.

c Computation A program variable is used in a computation ifit appears on the right-
use hand side of an assignment statement or as part of a pointer

calculation.

p Predicate use A program variable is used in a predicate if it appears in the predicate
portion of an IF, CASE, or WHILE statement.

|u Used A variable is can be described as "used" if it is used in a computation ' j
(c) or in a predicate (p). !

>

Analysis of data flow consists of examining the for safety critical software. The recommended form is
h

'

possible ways in which data may be used. called the 'all-uses' strategy, and can be stated very '

Consideration is given to anomalous situations related simply: i
to single usages of data items or to pairs of usages of a
data item. Notation for single data item usages is of the "There must be at least one test case for at
form: -d, -u,-k. d , u , or k , where the ' ' means that least one path from every defhunon of every
nothing of interest regarding the data item is occurring variable to every use of that definition."

!

,

on the path before or after the indicated usage type.
Pairs of usages of a data item are indicated by a two- Starting from the test cases already defined for branch |

character string such as du or dk. and loop testing, consider the variables = ' '--s by |

the module one at a time. For each variable x, find all
Fifteen combinapons of single or paired usage are definitions of x and all uses ('c' or 'p') of x. For each
possible, and can be classified as follows:10 definition, locate all 'c' and 'p' uses of that definition.

De following combinations are considered For each such use, find a path on the control flowgrapha

normal:-<i(the first definition on the path), k , du, from that definition to the use which does not include
kd, ud, uk, and uti, new definitions or kills. In many cases, an existing test

case will be sufficient, since branch tv ases and
De following combinations are suspicious, and previous data flow test cases are likel melude the

a

should be investigated to be sure the usage is new data flow case.
intended and is correct:-k,-u, d , u , dd, dk,
and kk. In Figure 3-6, for variable 'x,' definitions occur in

De following combination is always a. fault: ku- nodes 2,4, and 5. The definition in node 2 is used in.*

both nodes 4 and 5, while each of the definitions in
Data flow testing requires the creation of test cases that nodes 4 and 5 are used in nodes 7 and 9. De latter two
cover these potential manipulations of data (i.e., that Paths are included in the former, so only two paths are
test the various calculations and variable usages). They required here to cover all definitions / usage pairs: 1-2- ;

,

are based on the module's control flowgraph, and 3-4-6-7-8-9-11 and 1-2-3-5-6 7-8-9-11. In most cases,
should be considered as tests added to branch and loop of course, many more paths would be required, ,

tests. A number of such tests suites have been including some which were not included in the control '

described in the literature, but are generally insufficient flow Pa'hs.

|
i

I

|

Racall that nCr = nt/[r!(nwr)!], so it can be shown that the I10

followins numberof combeauans is possible: 3 g + 3C = 5 + 10 =C 2
15 ways.

i

73 NUREGER-6421

1
_. - . . - - --- --.

.- - - - . _ - . . . - . _ _ - - -

Appendix B

.

ud
1I ,

ud u
1 2 3 6 7 8 9

h n
5 ud u

1I 1f

Figure 3-6. Control Flowgraph Augmented to Show Data Flow

74
NUREG/CR-6421

Appendix B

4. FUNCTIONAL TESTING

4.1. Purpose of Functional Testing interoperability are addressed by examining the
mteracuons among modules as transacuons are

Functional testing (also known as " black box" testing) processed. Performance is rAdressed via test cases
consists of testing the functions to be performed by a focused on timing requirements for real-world
software element as defined in requirements, design transactions. Regarding the correctness of a software
specifications and user documentation. It is focused on item in the sense ofits being complete, acceptable, and
comparing actual and specified behavior, independent valid, test cases can focus on missing or partially
of the structural characteristics of the software. The implemented transactions, improper handling of real-
pnmary concerns are functional and timing wo'id conditions and states, and incorrect
requirements. Programs, subsystems and systems are representations of user needs and the real-world
tested la large part with functional tests, however, environment. Functional test cases can also be
functional tests also apply to packages and modules. designed to test security and integrity mechanisms,
Although, structural testing and static analyses are the user interfaces, and robustness in the presence of
dominant testing strategies for at these levels, the invalid inputs.
design specifications for packages and modules should
contain information on which to base functional tests. 4.2.2. Limitations
This is particularly true for software elements such as
communications packages, device dnvers, and Functional testing usually does not detect

rnathematical subroutines. For COTS software' undocumented features or functions such as

funcuonal testmg is likely to be applied to programs, development aids left in the software. Since testers

subsystems and systems, and will normally be carned have no visibility into internals, functional subtleties

out by or on behalf of the customer. The qualiues may be overlooked, particularly if structural testing has

addressed by functional testing, summarized in Table not been performed'

l-2, are discussed below.
4.3. Information Required to Perform

4.2. Benefits and Limitations of Functional Functional Testing
Testing

Functional testing requires a software requirements

Both the benefits and limitations of functional testing specification, user instructions, detailed knowledge of

are a result of the fact that the execution of functions is extemal interfaces (to sensors, actuators, operators, and

examined rather than the intemal structure of the other software), and the software object being tested.

software object. The focus is on verifying that
requirements and user needs have been met. Functional A test station is recommended for testing by customers.

This includes the ability to select pre-defined test
testing can be applied at any level but is usually

cases, apply the test cases to the software object, and
associated with programs, subsystems, and systems.

evaluate the results of the test against pre-defined
4.2.1. Benefits criteria. The ability to reproduce functional testing will

generally be necessary, and a test station is the most
Since the focus is not on internal software structure, it effective tool to accomplish this.
is easier for functional testing to be performed by
mdependent parties. Test cases may originate with the 4.4. Methods of PerforminE Functional
customer, user, or regulator. For COTS software, test Test.ing
cases might also originate from information gathered
from the experience of other users of the item. Finally, The functional testing must be planned, designed,

.

functional testing techniques do not require the created, executed, evaluated, and documented.

availability of source code, which, for COTS software,
may not be available. 4.4.1, Test Planning and Test Requirements

Functional testing techniques can address a wide range The following actions are required to plan and generate.

of software qualities. Test cases for functional testing requirements for functional testing.

techniques address technical correctness by allowing 1. Determine the software qualities that are being
verification of the accuracy and precision of results as evaluated. For safety-related COTS software, the
well as verification of the consistency,interoperability, primary quality of interest is correctness. In a
and performance of the software item. Consistency and technical sense, this encompasses accuracy,

.

75 NUREG/CR-6421

_ _ _ _ . _ _ - _ _ _ . ._ _- . ._ _ -_. _ . _ _ _ _ _ _ _ _

i

|

Appendix B ,

;

precision, consistency, interoperability, and values of data objects external to the software-

performance. From a product perspective, object under test (such as actuator values,
correctness includes acceptability, completeness, display screen values, and databa2 vaices).
and validity. Other qualities that can be addressed .

I Finalstate. In some cases, the firol state of t

are integrity, security, robusmess, usability, and
user friendiness. the object must be specified as pan M tne test

case information. i

2. Determine which functional testing techniques
will be required. Transaction testing and domain 3. Create the test station. His is a mechanism for
testing are minimal requirements. Additional selecting, executing, evaluating, and recording the

techniques should be employed if the goal of the results of tests carried out on the object. Test

technique is applicable to the software object. station components, illustrated in Figure 4-1,
include:

3. Determine what resources will be required in order a Test case selection. A means of selecting test
to carry out the tesung. Resources include budget, cases to be executed. Test case information is
schedule, personnel, equipment, test tools, test typically kept in a file or database, and the
staten, and test data, selection may simply consist of"get next test :

case?
4. Determine the criteria to be used to decide how

much testing will be required. This is a stopping b. Testprogram. A means of seumg the object's
criterion-how much testing is enough? initial state (if necessary), providing input to

Ih* object, recor&ng the matput fran the ;
5. Determine which software objects will be tested.

obj.ect, and (if necessary) recording the fmal

4.4.2. Test Design and Test Implementation state of the object.
:

The following actions are required to design and c. Test oracle. A means of determining the

implement functionaltesting. correctness of the actual test output and object
state.

1. Create procedures for executing the functional test -
d. Results database. A means of recording the

cases.-
test results for future analysis and evaluation.

2. Create individual test cases. Each test case should Typical data include the test identifier, date,
contain the following information: version of object being tested, test output and

a Test ident#ication. Each test case must have a
state, and an indication of correctness or . ;

'

uniqueidentifier. failure of the test.

b. Purpose. Each test case should have a specific 4.4.3. Test Execution and Test Evaluation
reason for existing. Examples include
verifying that a particular timing constraint De test procedures must be carried out and the results i

can be met, that a particular function is analyzed. If discrepancies between actual and expected

- performed correctly, or checking for a
results occur, there are two possibilities: either the test
case has a fault or the object has a fault, In the first

specific type of failure. For the latter, see
case, the test case should be corrected and the entireheadings 1 and 2 of the Bug Taxonomy in the

Annex. test procedure rerun.

Input data. The precise data required in order If the object has a fault and the development
c.

to initiate the test must be specified; organization is performing the test, the programmer i:
expected to correct the fault. The pattem of test-fix-

d. Initial state. In order to reproduce a test case, test-fix continues until all discrepancies have been
the mitial state of the software object (before resolved.
the test begins) may need to be specified. This In the case of COTS software, obtaining correctionsinformation is not necessary if the object is
intended to execute correctly and identically may be very difficult. Suppose the test is being

in all initial states. For example, a transaction performed by (or on behalf of) the customer. If the
software was developed for the customer under

processing program should correctly handle contract, there may be considerable leverage for
any transaction no matter what has gone

obtaining corrections. If the software is a consumerbefore,
'

Test results. De expected results of the testc. ;

must be known and specified. These are the

76
NUREG/CR-6421

- _ _ _ _ _ - - - _ _ _ _ _ _ _ _ _ _ _ - _ _ - _ _ _ - _ - . _ ____

-

Appendix B

Software Object Test Case input
Test-

Requirements Selection '

Program

n

SoftwareT st Object
Case

u e ,

Test Case Test Case-

Generator Database Test
"

m

Oracle- '

j

Correctness

l f

= Results
Database

L J

Figure 4-1. Typical Test Station Components for Functional Testing

compiler used for development), experience shows that 4.5.1. Transaction Testing
many developers have little interest in expensive
repairs that satisfy a limited marketplace. In this case, A transaction is a complete unit of work as seen by the
the options of the customer may be simply to reject the operators of the computer system. An example is
software or to evaluate each fault detected by the changing the value of a set poinL The operator
testing and determine its effects on safety. If more than normally views this as a simple action-entering a
one fault exists, the cumulative effect of all the faults value on a display screen causes the value to change,
on safety must also be determined. resulting in a change to some other peruon of the

screen. In fact, many processes may be invoked on
The nature of the faults encountered must also be multiple computers to carry out the action, but none of
considered. The discovered faults might be related to the details are ofinterest to the operator.
new requirements arising from the specific, intended
application of the COTS product. They might also be Transaction testing is similar to control flow testing
minor faults that might reasonably have escaped (Section 3.4.2) in that it is based on a flowgraph. It
detection during product development. In these cases, differs from control flow testing in that the flows in

! the significance of the faults should be evaluated and transaction testing are derived from the requirements

the options for obtaining corrections might be pursued. specification, while the flows in control flow testing
However,if one or more serious faults pertaining to the are derived from the program internal structure,
product itself are discovered, confidence decreases Transaction testing is carried out at the program,

rapidly regarding the suitability of the product for use subsystem, or syste:m level instead of the module level.

in a safety-related application. Nodes on the flowgraph represent processes that act on
the transaction, while the links on the graph represent

4.5. Discussion of Functional Testing the movement of transaction data from one process to
another. Note that a transaction flowgraph does not

'Ihere are a number of techniques for developing necessarily match program control flow. An example is
functional tests. A summary of several of these is given shown in Figure 4-2.
below and is based largely on Belzer (1990); see that
reference and Howden (1987) for detailed information.

77 NUREG/CR-6421

_ _ _ _ _

..

.

. . . _ - _ _ _ .

. .
.. .__

Appendix B

|

r 3
h pt Rpt ValidateEntry for

Executive .-4>- _,,-

Report Parameters Parameters-

k J

Run
Report

f 3y
Executive Executive Re

L J
Queue
Report

.

Figure 4-2. Example of a Transaction Flowgraph

Transactions typically are bom (created) as a result of An example of a specification for a control function
some anggenng action, exist for some period of time, based on a single variable, temperature, might take the
and then die. Each transaction can be modeled by a following form (the errors are deliberately included for
transaction flowgraph, and there is a separate graph for illustrative purposes):
each transacuan. Some computer systems involve
hundreds of transactions,resulting in a large supply of if temp < 0 error

graphs. Alternative flows on the graph may exist to if 0 < temp < 50 turn on heater
handle errors and peculiar conditions. Transactions
may " spawn" additional traasactions, and multiple if 50 s temp < 80 turn off both heater and owner

transactions may collapse into a single one. The if 75 < temp < 150 turn on cooler (thisis assumed
resulting flow can be quite complex. to be a specification error,i.e.,

assume the requaements call
Transaction testing assumes that the processing within for shutdown at 120) Ieach node of the flowgraph is correct, but that there .

.

may be errors in routing transactions from one node to if 150 < temp emergency shutdown,(this is
assumed to be a specificanon

another. A test must be created for every path from errw 14, assume the
transecuon birth to transaction death. Particular requirernents call foduitdown
attention must be devoted to paths caused by errors,

at 120)anomalous data or timing, or other strange events.

43.2. Domain Testing In this example (illuurated in Figure 4-3), there are
. .

five domains, with loundanes at 0,50,80, and 120.
A program can frequer.tly be viewed as a function De boundt. ries are typically points in the input space
transforming input values to output values. Programs at which a new rule applies. The calculations are
generally operate on more than one input variable, and assumed to be correct for all values in each set, and
each adds a denension to the input space. The faults are sought at or near the boundanes of the
co weat of allinput variables determines a vector, domain. Several errors are shown in the example:n
known as the input vector. An example might be

It is not known how the program should respond
.

.

(temperature, pressure, neutron flux, on/off switch, for temp = 0 and temp = 150.
valve posanon)

Here are inconsistent requirements for 75 < temp.

whese the first three are assumed to be read from < 80 since the domains overlap.
sensors and the last two read from an operator console.

The problem statement requires (it is assumedDomam testing divides the input vector values into .

sets, called domains, where the program behaves the here) emergency shutdown at 120, not 150.
same for allvaluesin the set

.

NUREGER-6421 78

-
_ _ _ _ _ _ _

. . . _ __ ___ . _ . _ _ - - . . _ . _ . _ - _ _ _ _ _ . _ . _ _ _ . . . _ _ _ _ . _ _ _ .,

i

Appendix B

l
.

|
1Temperature '

I
I

O 50 75 80 120 150

-4--) Domain 1: Error
i

| () Domain 2: Turn on heater

() Domain 3: Turnoff heater ,

& cooler |
| Domain 4: () {
! Tum on cooler J
'

Domain 5: (O
| Emergency shutdown
L

Figure 4 3. Example of Domains

Domains can be drawn and analyzed manually for one specifications, it is also necessary to examine the
or two vanables. Real-time control system software software object for implicit, undeclared languages.
generally requires more than two sensors and operator These may be found in areas such as user and operator
signals, so the application of domain testing can be command sets, decision logic relating to transaction
impractical unless automated tools can be found.ll flows, and communications protocols. Sources for this

Test cases for domain testing are concentrated at or
information include requirements and design
documentation, manuals, help screens, and developer

very near the boundaries of each domain. Figure 4-4
shows hypothetical two-dunensional input spaces,

interviews. Items relating to hidden languages should
be included on code inspection ciwirtiere (see Secuan

where the shaded areas represent anticipated input 2). For defined or hidden languages, the syntax must be
values. The astensks show a few of the possible test
input values. If test cases are based on code defined with a tool such as BNF and a set of syntax

graphs must be created on which to base test cases forS-f =tationratherthan specifications, domain
various syntactic constructions. Figure 4-5 shows a

testing is considered to be a structural technique. trivial example of a syntax graph. A sentence would be

Howden (1981) points out that techniques for formed based on the syntax graph by following a path

examuung classes of mput data can also be applied t indicated by the arrows, making legitimate i

the examinauon of classes of outpnt data. In cases substitutions when rectangles are encountered, and

where classes of output data are related to classes of nserting literally the contents of the circles. Thus,

input data, selecung input data to produce output at the PAUSE; and PAUSE { 5); would be legitimate

boundaries of the output classes can yield useful constructions'

results. In addition, it is also useful to consider invalid
Testing consists of supplying a combination of valid

output data and to suempt to generate this output with and invalid constructions as inputs. Types of faults
selected inputs. This approach is closely related to the discovered with syntax testing relate to cases where
use of fault tree analysis.

valid constructions are not accepted, invalid

43.3. Syntax Testing constructions are accepted, or where the handhng
mechanisms for valid or invalid inputs break down.

The syntax of external inputs, such as operator or Beizer (1990) notes that the invalid constructions lead
sensor inputs, and internal inputs, such as data crossing to the biggest payoffs in this type of testing. Fairly
interfaces between subsystems, must be validated. In simple syntax rules can lead to very large numbers of
addition to the well-documented input syntax that may Possible test cases, so automated means must be used
be described in the requirements and design to accomplish the tesu,ng.

II
A seviewer passed out that he was unaware of the use of domain

instms in real-tirne systems.

79 NUREG/CR-6421

_ _ _ _ _ _ - . .- _ - - . _ . .- - .- -_. -- _ - _ _ _ _ _ _ - -_-

Appendix B

> , , -,

'*
* - ' ' ' ', ,,

.,
_, h t ~ , ''<5 ,

' ' '

A A: h @ s!
?

%|4y + M %Q,- C V' |
**

* ,;,,,i< , ,

- > <> ,,.-

, , ~ '
*/ k ,

a

Figure 4 4. Examples of Two-Dimensional Domains with Examples of Test Values

--I> Identifier =;

{ Expression }

Figure 4 5. Example of a Syntax Graph

4.5.4. Logic Based Testing table format; an example is provided in Pressman i

!
(1987)* i

Some applications or implementations must deal with
situations in which the values of a number of An example of a limited entry (conditions and actions
conditions must be evaluated and appropriate actions are binary valued) decision table is shown in Figure 4- |

taken depending on the particular mix of condition 6. A detailed discussion of decision tables can be found
J

values. If these situations are derived from system in Hurley (1983). A rule consists of the actions to be

requirements, they are functional issues; if they are the followed when the specified conditions hold. Note that

result of the design approach, they are structural issues. the rule corresponding to conditions (Y Y Y) is

Functionallogic-based testing consists of testing the missing, possibly corresponding to an impossible

software system's logic for handling these mixes of physical situation. The dash in rule 4 means that the

conditions. In addition to the correctness of the logic, value of condition 3 is immaterial for this rule (i.e.,

software quality factors of completeness and internal rule 4 represents two cases, N,Y,Y and N.Y,N).

consistency are also addressed. Testing based on this decision table should begin w. hit

Decision tables can be an effective means for
a verifying the completeness and consistency of the

designing test cases to examine software logic. This table (see Hurley,1983). Then test cases should be
developed to ensure that the software performs thelogic might be explicitly documented using techniques
correct actions for the specified rules. It should besuch as decision tables or decision trees, or might be

implicit in the software requirements or design verified, by attempting to design a test case, that a

specifications. In the latter case, the sources for (Y,Y,Y) situation is indeed impossible, and both

obtalatQ information are the same as for syntax options for rule 4 should be tested to ensure that the

testing.'The cause-effect graphing technique can be same action is taken.

applied to transform this information into decision

80NUREG/CR-6421

_

_ - _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _

Appendix B

RULES

1 2 3 4 5 6

Condition 1 Y Y Y N N N
Condition 2 Y N N Y N N
Condition 3 N Y N - Y N

Action 1 X
Action 2 X X X
Action 3 X X
Action 4 X X X X

Figure 4-6. Example of a Decision Table

The use of a decision table model for designing tests is Faults can be associated with an incorrect stmeture for
appropriate when the following requirements hold a state-transition model or with a structurally correct
(Beizer 1990): model that does not accurately represent the modeled

phenomena. In the former category, faults can be
The specification consists of, or is amenable to, a related to condidons such as states that cannot be

.

decision table. reached or exited or the failure to specify exactly one

De order of condition evaluadon does not affect transidon for each input. These types of faults can be.

rule interpretation or resuldng actions. detected from a structural analysis of the model. In the
latter category, faults can be related to conditions such

The order of rule evaluation does not affect as states missing from the model, errors in the.

resulting actions. specification of triggering events, or incorrect
transidons. Detection of these errors involves the

Once a rule is satisfied, no other rule need be analysis of, or testing against, specifications. Missing.

considered. states can arise from incorrect developer assumptions
about possible system states or real world events.

If multiple actions can result from a given rule, the Errors in modeling triggering events or associated
.

order in which the actions are executed does not outputs can easily arise from ambiguities contained in
rnatter. system or software requirements. For embedded COTS

4.5.5. State Testing software, states of the software itself or states related to
the interface of the software to the larger system may

Testing based on state-transidon models is effective in need to be modeled as a basis for analysis and testing.
examining a number of areas including communication
protocols, failure and recovery sequences, and To perform state testing, it is first rsh y to develop
concurrent processing. Figure 4-7 ilhistrates a state correct state-transition diagrams for the phenomena

transition diagram with three states indicated by boxes being investigated. An analysts should be made to

and three transitions indicated by arrows. The trigger verify that the state-transition model is consistent with

for the state change (input or event) is shown in the top the design and t'iat the model to be used is stmeturally

part of the transition label and the action or output correct. Design errors might bc indicated by this

associated with the transition is shown in the bottom analysis. Fol'owing this analysis, a set of test cases

part of the label (Note that state-transition models can should be developed that, as a minimum, covers all

be depicted with other notation, such as state tables.) nodes and links of the diagrams. Test cases should

For each input to a state, there must be exactly one specify input sequences, transitions and next states, and
,

transition specified; if the state doesn't change, a output sequences.

transition is shown to and from the same state.

81 NUREGER.6421

__

.. .

..

..

-

-.
.. .

. . _ _ _ _ __. _ __- _ . _ _ _. . ._.

Appendtx B

Temp > 150 Temp > 200

Alert Shutdown

System OK > System Hot & System Of

h

Temp < 150

ClearAlert

Figure 4 7. Example of a State Transition Diagram

Where system resource utilization is ofinterestState testing is recommended in the following .

situations (see Beizer 1990): Where functions have been implemented with.-

Where an output is based on the occurrence of state-transition tables.

sequences of events
Where system behavior is dependent upon stored.

Where protocols are involved state..

Where device drivers are used.

Where transactions can stay in the system.

indefinitely

I

l
1

l

l

l
1
l

1

)

l

!NUREG,CR-6421 82

_ _ _ _ _ _ _ _ - _ _ _ _
- -

!

|

Appendix B c

|

5. STATISTICAL TESTING

5.1. Purpose of Statistical Testing Statistical testing addresses the reliability quality by
estimating probabilities based on large numbers of

Statistical testing is conducted to measure the tests. Reliability information also provides information'

reliability of a software object or to predict its regarding potential availability, although it does not
probability of failure, rather than to discover software address extemal factors, such as system loads or
faults. It consists of randomly choosing a sample of administrative procedures, that may affect accessibility
input values for the software object and then when a particular capability is needed.,

! determining the correemess of the outputs generated
| from those inputs. Obtaining a statistically valid 5.2.2. Limitations
! reliability measure using this testing strategy requires

that the following assumpuons hold: A number of practical issues with statistical testing
limit its usefulness in some instances. De first set of I

| 1. De test runs are independent. issues relates to the test planning and 'est stauon (see
below). The most difficult of these issues are2. For each input, the chance of failure is constant. frequently the construction and verification of the test

That is, the pmbability of failure is independent of oracle. Determining the operational profile may be
the order in which samples are presented to the nearly as difficult.
software object, and of the number of samples that
precede the specific input. He second set of issues involves the length of time,

i necessary for testing. Testing to the level of reliability3. De number of test runsislarge. required for a typical safety-critical process control
'

4. All failures during testing are detected. system should be feasible, but testing to much higher
levels of reliability is not. (See the discussion of

j 5. De distribution of the inputs under real operating expected test duration in section 5.4.2.)

| conditions is known.
He third set of issues concems the relationship

De qualities addressed by statistical testing are between safety and reliability. Statistical testing
availability and reliability. provides a reliability number, not a safety number.

.

Since inputs with safety implications should be a very i
! It is possible to use statistical testing for the goal of small percentage of all possible inputs,it is not likely'

finding failures (random testing). That is, one runs that random testing will include many safety-critical
j randomly selected tests in the hopes of finding failures, input cases. In such cases, it may be possible to carry
! Dis is likely to be less efficient than the other, more out two series of tests: one based on all possible input

directed, forms of testing. Of course,if failures do cases, and one based only on safety-critical input cases.
happen during statistical testing, the faults should be This would result in two numbers-an overall
found and corrected. See Hamlet (1994) for a reliability figure and a safety-related reliability figure,
discussion of random testing. The latter could be reasonably termed a safety

5.2. Benefits and Limitations of Statistical
reliability number. This approach does, however,
require that the set of safety-criticalinput events bc

Testing completely understood so that the safety-critical input)
i

5.2.1. Benefits
space can be completely and accurately characterized.

1
This may be difficult to accomplish. !

Statistical testing does not rely on any knowledge of
the intemal composition of the software object, so it

5.3. Information Required to Perform
can be carried out whether or not such knowledge Statistical Testing

| exists. It is the only way to provide assurance that a
Statistical testing requires no knowledge of the internal

!| specified reliability level has been achieved. Statistical
| testing (as discussed here)is less prone to human bias composition or structure of the software object being

i errors than other forms of testing. It is a practical
tested. It does require a good understanding of the

rnethod in many cases when moderate-to-high
statistical distribution of inputs which can be expected>

to appear during actual operating conditions (the
; reliability (in the range of 104 to 10 5 failures per

operational profile). A test platform is required, whichJ demand)is required.
includes the ability to generate random tests using the;

operational profile, the ability to carry out each test on
;

the software object, and the ability to evaluate the
|

83 NUREG/CR-6421

!
- - _ - - - - - . . - - - - - - . - - - - - - - . - - - - - _ - _ _ _ -

-- - - - -

._ _ _ . _ _ . _ _ _ _ _ _ _ _ _ _ . _ __ _ _ _ _ _ _ __ _

|
!

Appendix B

results for conectness. Since many thousands of tests 5. Determine which softwa e objects will be tested.
are required in order to obtain a valid reliability
number, the test platform must be automated. 5.4.2. Test Design and Test Implementation

5.4. Methods of Performing Statistical The following actions are required to design and
implement statistical testmg.gg
1. Calculate the number of test cases which must be

"Ihe statistical test must be planned, designed, carried out without failure to achieve the specified
implemented, executed, evaluated, and documented. reliability with the specified confidence level.
The following steps (or their equivalent) must be
carned out. 'Ihe number of test cases, n,is given by the following

fonnula, where f is tMailure rate and c is the
5.4.1. Test Planning and Test Requirements

confidence level (Poore, Mills, and Mutchler 1993):

The following actions are required to plan and generate
. log (1-c).requirements for statistical testing. Statistical testing n=focuses on the reliability quality of software. For IOE(I~[)safety-related COTS software, the goal of statistical

testing is to provide a measure of the item's reliability
Table 51 shows approximate values of n for various

given its anticipated operational profile (i.e., given the ,

specific role that the COTS item will play in the safety. values of C and f. In this table,'M' stands for i

related system). De software qualities of interest for 'million.' This table shows that increasing the required !
'

statistical testing are reliability and availability. level of confidence in the test results can be obtained
with relatively little extra effort. However increasmg

1. Determine thelevel of reliabih.ty to be ach.ieved. the required level of reliability (decreasing the failure
his is generally given in terms of the maximum rate) that must be demonstrated requires considerably I

acceptable failure rate-for example, that the more test cases to be executed and consequently !
'

failure rate cannot exceed 10-5 per demand. increases test time.

2. Determine if failures will be tolerated. A statistical Given a required number of test cases and an
test will be carned out for some period of time, assumption about the average number of test cases that
recording all failures. At some point, the number can be carried out per unit time, estimates can be made

'

of failures may be so large that the test will be of the total time that will be required for test execution.
stopped and the software object rejected. If the test Table 5-2 shows the approximate amount of execution

is to be, statistically valid, this point must be time required to achieve specified failure rates at the
determined dunng test planning. For reactor .99 confidence level under two assumptions of the rate i

Iprotection systems, the objective should be to of testing: one test per second and one test per minute. J

carry out the test without failure. In this case, any In the first case, testing is impractical for failure rates
'

failure wd, l cause the test to stop, the fault to be under 104; in the latter, under 10-5. Note that this table
corrected, and the test to be completely rerun. assumes that tests are carried out 24 hours per day, |

'
When a statisucal test is re-run,it is crucial that seven days per week, and that no failures are

I
the random numbers selected be mdependent of encountered during the test. Determining the expected

;
sequencespreviously used. amount of calendar (elapsed) time for the test will be

longer if the assumptions are not valid. 'Ihe times |
3. Determine the degree of statistical confidence given m the table are examples; if test cases require |

,

which will be required in the test resufts. This will more (or less) time, then the table can be adjusted. For ;

be given as a percentage-for example, .99. example,if a test case requires five minutes to execute,
-

4. Determine what resources will be required in order then nearly six years will be required for a failure rate

to cany out the testing. Resources include budget, of105-

schedule, personnel, equipment, test tools, test
station, and test data.

>

'

84
NUREG/CR-6421

---

..- . ._

Appendix B

Table 51. Required Number of Test Cases to Achieve
Stated Levels of Failure Rate and Confidence

f c=.9 c=.99 c=.999

10-1 22 44 66

10-2 230 460 690

10-3 2,300 4,600 6,900

104 23,000 46,000 69,000

10-5 230,000 460,000 690,000

104 2,300,000 4,600,000 6,900,000

10-7 23M 46M 69M

10-8 230M 460M 690M

10-9 2,300M 4,600M 6,900M

10-10 23,000M 46,000M 69,000M

10-11 230,000M 460,000M 690,000M

Table 5-2. Expected Test Duration as a Function of Test Case Duration

Failure rate Numberof testcases 1 test per second 1 test per minute

10-1 44 44 seconds 45 minutes

10-2 459 7.5 minutes 7.6 hours

10-3 4600 1.25 hours 3 days

104 46,000 13 hours 1 month

10-5 460,000 5.5 days 11 months

104 4,600,000' l.75 months 9 years

10-7 46M 1.5 years 90 years

10-s 450M 15 years 900 years

104 4,600M 150 years 9.000 years

10-10 46,000M 1,500 years 90,000 years

1011 460,000M 15,000 years 900,000 years

2. Obtain the operational profile. For example, suppose that a software object has only
three input values: low, medium, and high. An analysis

An operational profile is a statistical distribution of the expected frequency of these three values shows
function which gives, for every point p in the input that ' low' will occur 70% of the time; ' medium,' 20%;
space, the probability that p will be selected at any and 'high,' 10%. His is an operational profile for this
arbitrary point in time. More formally, suppose the example.
inputs presented to the software object during actual
operation are v 1, v2, ., v . Then the operational 3. Determine the test oracle.n
profile gives, for each point p, the obability that vk =
P or each k, I s k 5 n (Musa 1992) . ggg gja;p g%f

object under test and the results of running the test, will
determine whether the actual test result obtained is

12 some addidmdsdcat assumpdens discussed in the nremnce c rrect. Ee test oracle rnust be able to make this
== nai listed hen. determmation with very high confidence.

, ,

85 NUREGKR.6421

.

..
.

.

..

_ _ . . ._ _ __ __ _ __ . _ _ _ _ . . . __ _ - - _ . _ _ _ . _ _ _ _ _.__._

Appendix B

4. Create the test station. d. TestDatabase. A means of recording the test
input, test output, and correctness for future

A test station is a mechanism for creating, executing, analysis and evaluation.
evaluating, and recording tests performed on the r

software object and the results of the tests. It must be 5.4.3. Test Execution and Test Evaluation |

periods of time. Typical test station components are The following actions are required to execute and ",able to run with minimal supervision for very long

evaluate statistical testmg.shown in Figure 5-1.
.

1. Execute the tests. Carry out the test procedure untilA brief description of each component of a test station
the predetermined number of test cases have been 1

follows:
executed without failure.The number of test cases

a hput Generator. A means of generating input test which will be required can be determined from
cases in such a way that the probability Table 5-1.
distribution function of the test cases is equivalent

2. Assess the tests. Evaluate the results to be sure thatto the probability distribution function determined the test was successfully executed, and provide
by the operauonalprofile. assurance of this fact. This may require a formal

b. Test Program. A means by which the software certification.
object can be executed using the generated test 5.5. Discussion of Statistical Testing
cases as input to produce test results as output As
a general rule, the object must be placed in the Statisu. l tesung is the primary way to calculate aca

.

same initial state before each test is carried out. failure rate for a software object. When the conditions

c. Test Oracle. A means of determining the discussed above can be met, statistical testing can be

correctness of the output produced by the software very effective. It can be used for nearly any type of

object under test. software object.

Input input Output
>Test '

-

Generator Program
'

Software
Object |

:
1

Test mm

Oracle
'-

Correctness

U
r 3 |

? Results
? Database

()

Figure 51. Typical Test Station Components for Statistical Testing

i

86
NUREG/CR-6421

i

- _ _ _ _ _ . _ _--m__.

Appmdix B

For example, suppose it is necessary to provide a 3. Hence, it will require (46,000)/(10,080) or
reliability number for a square root routine. It would be approximately 4.5 calendar weeks to execute the
reasonable to assume that the operational profile required test cases to establish this statistical
function is the uniform distribution function, so that all failure rate at the specified confidence level.
random numbers are equally likely to be used.
Generating a sequence of random numbers for this Similarly, it can be shown that attaining a failure rate
distribution is easy, so the input generator is simply a of 10-5 will reqtiire nearly a year of testing.
random-number generator. The test program merely
calls the square root routme. The oracle is simple- An accurate operational profile may be difficult to

check for a positive number, square the answer and obtain. One possible approach is to partition the input

compare to the mput number using previously space into subsets of inputs that occur in different

established error bounds. It should be possible to carry modes of operation, and test each of these individually,

out one test every millisecond or so, dependmg on the assuming a uniform distribution function. For exampe,

speed of the computer being used. If the goal is a one mode of operation could be "all operating

failure rate of10 with .99 confidence, Table 5-1 parameters well within bounds;" another could be
"some operating parameter is near a limit " and so on.

shows that about,460,000,000 test cases will be
required-this will take about 53 days. If these operational modes can,in tum, be specified

accurately, statistical testing can be carried out for each
Statistical testing will be much more difficult for a mode. (See Whittaker 1994 for an alternative
software system such as a reactor protection system. approach.)
Here, the input points may consist of a series of values

from simulated sensors which occur over a period o{
There are some advantages to this approach. It is

several minutes--and the timing may be critical. This presumably more important to know the reliability of

would mean that carrymg out a sequence of tests will the software under off-normal and emergency

require a considerable amount of time. Assuming one conditions than under normal operating conditions.

test per minute (on average), attaming a failure rate of One might be willing to test for 104 failure rate under

10 at .99 confidence will require about a month of normal conditions, but require 10-5 under near-4

testing. This is estimated as follows: emergency and emergency conditions. If the latter,

nput space is sufficiently small, increased confidence
1. Table 5-1 states that approximately 46,000 test in the software could be obtained at reasonable cost.

cases are required to achieve a failure rate of 104
at.99 confidence level. However, constructing the test oracle and guaranteeing

2. The assumption of one test case executing per its correctness becomes a serious problem. It is not

minute (on averao ,) means that sixty test cases can p ss carry out large numb of tests and
be executed in an' hour. Assuming that the tests are evaluate the results using human labor because of die

ti constraints and human error rates for this type ofautomated and run continuously 24 hours a day,
seven days a week,it follows that 10,080 test
cases can be executed in a calendar week.

|

|

87 NUREG/CR-6421

_ _ . _ . _ _ . .,

Appendix B

6. STRESS TESTING

6.1. Purpose of Stress Testing item, in establishing system monitoring routines, and in
tuning the system for installed operations.

Stress testing is a process of subjecting a system to
abnormal loads on resources in order to discover Stress testing provides information about robustness
whether the system can function outside anticipated and performance by creating scenanos in which normal
normal ranges, to determine the usage limits beyond operating ranges are exceeded and examining how
which the system will fail as a result of the overloaded Performance degrades. Stress testing at the boundaries
resource, and to gain information that will help to of these ranges also allows one to confirm that
chiurune the behavior of a system when it is Performance requirements have been met. The actual
operaung near its usage limits. The process of failures encountered in stress testing may lead to the
discovering " breaking points" also provides the discovery of softwait faults and provide opportunities
uwui-mity to examine recovery mechanisms and to examine the completeness of the recovery
procedures. mechanisms incorporated into the software.

If a system can function adequately with loads outside 6.2.2. Limitations
the anticipated real-life application domain levels, the
assumption is that it will perform properly with normal 3. tress testing must be performed m.an actualor

loads (Perry 1988). Background testing (testing in the simulated installed environment and requires complete

presence ofloads within normal ranges) should be informadon aW operating and user Wwes.
infuimed to help validate this assumption. A Stress tesung can be expensive because of manpower

background test verifies that the system will perform costs or because of the need to deve4 ainoniated
adequately within the normal mix of loads and elements of the test stadonJn amon, specine
resources and provides the basis with which to internal states can be difficult to reproduce, and root

compare suess test resuks. causes of failures can be difficult to find.

< T testing | particularlyimportant for COTS 6.3. Information Required to Perform
26ftware items since those items may not have been Stress Testmg
developed with the particular safety-related application
In mind.This type of testing provides an opportunity to Stress testing must be performed m.an actualor

examine the COTS software performance with respect simulated production (installed) environment.

to the intended application. Therefore, complete information about this
environment must be available, including an

'Ihe qualities addressed by stress testing, summarized understanding of operating and user procedures. Since
in Table 1-2, are discussed below. stress testing must provide abnormal loads, there must

be a definition of the types ofloads to be placed on the
6.2. Benefits and Limitations of Stress system as well as an understanding of what the normal
Testing operating ranges will be for each load. Typical load

types of interest are as follows (the first four being of
6.2.1. Benefits particular interest for reactor protection systems):

Stress testing forces a system to operate in unusual High volumes and arrival rates of transactions.

circumstances not typically created in other forms of
testing and, therefore, is complementary to other Saturation of communications and processor-

elements of the overall testing effort. It is particularly capacities
important for safety-related software since it is a
testing strategy that creates high-stress, off-normal Situations stressing internal table sizes-

scenarios in which the software is likely to fail. For Situations stressing intemal sequencing or.

reactor protection systems, these scenarios might be scheduling operations
related to sensor input streams of interrupt-type or
buffer loading signals or to output streams generated in Heavy use of disk storage space and swapping*

emergency situations. S'ress testing uncovers capability
information about software faults and provides an

Operating with a very large database sizeunderstandmg oflimits on system resources. The latter *

is useful in validating the intended use of the COTS
Many simultaneous users.,

t

89 NUREG/CR-6421

..
.

.

..
_ _

- ~ . . -- . - . . - . . = = _. ._ _. . . - . - __ .. _- -

2

Appendix B

Finally,if available, design information is valuable in simulated production environment should be as close
order to understand how to design specific stress tests as possible to the actual production environment.
that willfocus on internals.

2. Create procedures for executing the stress tests.
6.4. Methods of Performing Stress Testing

Since this testmg will take place m. an actualor
. .

De stress tests must be planned, designed, created, simulated production environment, the test pmcedures

coordmated, executed, evaluated, and documented. should make use of system operating procedures and
usage procedures or user gu des. De stress test

6.4.1. Test Planning and Test Requirements procedures specify how the system loads will be
generated, the roles of all participants, the sequences of

De following actions am required to plan and generate operations (scripts) each participant will perform, the
requirements for stress testing. test cases to be performed, and how the test results will

1. Determine the software qualities to be addressed be logged.

with stress testing. De primary quality of interest 3. Create individual test cases.
for safety-related COTS software is robustness in
the intended role; however, availability, Each test case should contain the following
completeness, correemess, and performance are information-
also addressed.

a Test ident(ication. Each test case must have a
2. Determine the load situations under which the unique identifier.

.

software system is to be tested. For safety-related
COTS software, these will be determined based on b. Purpose. Each test case should have a specific

knowledge of the role that the COTS product will reason for existing. Examples include verifying

play in the system and vendor-supplied the proper operation of a system functior ,

information regarding product functions and verifying response times, and verifying the

performance. Information derived from the usage handling of exception conditions during situations

experience of other users of the COTS software of high system loads.

item or from fault tree analyses of the system is
[nput data. The precise data required in order to

.

c.
also valuablein this process. smuate the test case must be specified.

3. Determine whether the stress testing environment .

d. Inidalstate. He imdal state for the test case is
..

will be an actual or simulated production essentially specified in the test procedures and
environment. scripts; however, there may be initial state

4. Determine the resources required to carry out the information specific to a given test case,

testing. Resources include budget, schedule, Test ruults. He expected results of the test nuiste.
personnel, equipment, test tools, test station, and be known and specified. Expected performance
test data. statistics, counts of operations, etc., should be

5. Determine the criteria to be used to decide how
determined from the planned load and test case

much testing will be required. This is a stopping input data.

criterion-how much testing is enough? For C Enal state. In some cam, Manal state is
.

example," stress testing of a particular software important and must be specified as part of the test
resource might continue until adequate case information.
information has been gathered regarding all three
goals of stress testing." 4. Create the test station.

6.4.2. Test Design and Test Implementation The test station is a mechanism for specifying and
generating loads as weH as selecting, execunng,

De following actions are required to design and evaluating, and recording the results of other tests
implement stress testing. canied out on the software. Note that, depending on

1. Establish the testing environment for the stress the goal of a particular stress (or background) test,
input may consist solely of transactions in the input

tests. load or may be augmented by test cases from other

In most cases, a simulated production environment will types of testing. Test station components (pattemed

be required. Since the results of stress testing will after Beizer 1984) are illustrated in Figure 6-1 and

reflect the performance of the software in the test include:
environment rather than the real-life environment, the

.

NUREG/CR-6421 90

1

Appendix B

Loading Input Load input Output
Specifications Generation 4

i SoftwareN
| Object
3

Load
Data Test Case

Selection

h
U r 3

Test Test
Load Data Load Case ->- #OracleGenerator Scenarios

k > (3 Correctness

Test Case U
Database

() D Data
Logger

U
r 3

Results
Database

()

Figure 61. Typical Test Station Components

Ioad data generator. A means of acceptinga e. Data Logger. A means oflogging pertinent
specifications for the loading of resources and information about system perfonnance during the
generating scenarios needed for the input load stress test.
generator to produce the required load during the
stress test run. I Test evaluation. A means of analyzing the results

of the stress test, including specific test case
b. Test case selection. A means of selecting, if results as well as scanning software system output

appropriate, additional test cases to be executed. for anomalies created during the stress test.
Test case information is typically kept in a file or
database, and the selection may simply consist of g. Results database. A means of recording the test
"get next test case.- results for future analysis and evaluation.

'
Input load generation. A means of accepting input 6.4.3. Test Execution and Test Evaluation|

c.

data for loading and generating the desired system
;

loads with the desired statistical characteristics.
The test procedures niust be carried out and the test

| results must be analyzed. The logged system outputs,
d. Test Oracle. A means of determining the Produced in response to the input load or any

correctness of the output (of the optional test additional test cases, must be examined to verifyr
'

cases) produced by the software object under test. correct operation of the system. This is done by
comparing inputs and outputs relating to specific test
cases or transactions to determine if information was

|

91 NUREG/CR-6421
,

+____ _ ___ _ _ _ .- __ _ _ _ - - _ _ _ _ _ _ _ _ _

!

Appendix B
|

lost or improperly processed. In addition, the logged (see Section 2) could have, as one of its goals, a focus |
output must be analyzed to determine if timing, on identifying structural properties that should be stress i

sequencmg, counts, error recovery, etc. match what tested. Information can also be gathered from other 1

|was input to the system by the load generator and test users of the COTS software item regardmg usage
case selector. If appropriate, database integrity experience and load ranges his information might
checkmg routines should be run. If a particular load suggest suspect areas or provide additional confidence)
causes the system to fail, the logged information is that some areas are robust. Finally, if fault tree analysis i

used to search for the circumstances of the failure and techniques are applied to the overall system, any root
'

to quantify the load level at which the failure occurred. causes possibly relating to the COTS software role ,

Dese evaluauons can be quite difficult to perform must be examined to see ifload-related failures might '

since they can require the careful examination of be possible.
voluminous data.

With respect to the task of diagnosing software faults
ne results of stress testing may indicate that the based on stress test results,it should be noted that the

system performs acceptably within the planned load exact reproduction of internal states resulting from
ranges of the tested resources. In this case, the stress stress test scenarios is difficult, if not impossible. This

testing results provide operating information about is because the simultaneous activities of test
resource limits that can then be embedded into system participants and the various internal timing and
monitoring routines or used for system tuning scheduling situations are usually not exactly

purposes. repeatable. Therefore, the process of identifying
software faults based on stress test results is not as

ne performance profile and the nature of faults deterministic as it is for other types of test results
encountered must also be considered. The performance analysis. However, if the goal is to examine general
informahon must be verified against the requirements behavior at various load levels, the stored scenarios can
and constramts of the system in which the COTS be re-run as needed. Discovered software failures that
software will operate. The significance of the faults are reproducible without active system loads can be
discovered should be evaluated and, if appropriate, the further investigated with other test techniques. It is
opnons for obtaining corrections might be pursued. If more difficult to diagnose software failures that occur
the performance of the software is not within the only under high system loads or that cannot be
requirements of the application or if one or more reproduced in subsequent stress tests. For this reason, it
serious faults are discovered, confidence decreases is important to have full knowledge of test inputs and
rapidly regarding the suitability of the product for use to log as much information as possible during the stress
in a safety-related application. test execution for subsequent analysis. For COTS

software items, knowledge of the experience of other
6.5. Discussion of Stress Test.ing users and a characterization of their normal operstmg

loads is useful ancillary information for analysis of test
Stress testing is a process of subjecting a system to

results.abnormalloads with the intention of breaking the
system. By investiganng why the system breaks and at Creating mechanisms for generating the required loads,
what load level the system breaks, information is logging test data, and analyz ng results is a difficulti

gamed about possible software faults, operating load task. For small systems with minimal real-time
limits, system behavior near the load limits, and error requirements or in cases in which only general
recovery behavior. Typical software faults discovered information such as user response time is desired,it is
are faults associated with sequencing, contenuon for possible to do the data generation manually and to
resources, scheduling priorities, error or time-out create the system load via interactive user inputs
recovery paths, and simultaneous activities. These augmented by other system functions such as running
faults tend to be subtle and frequently indicate des.ign reports and performing intense data searches. Data
problems rather than simple coding mistakes (Beizer logging would be done manually or automatically
1984). using existing logging features, and test results analysis

would be manual. Even though there might not be a i

For COTS software, there are a number of approaches need for developing automated load generators in these |
to identifying specific load situations to test. De role cases, there will still be a significant effort to use and

'

of COTS software m the overall system must be cc ;rdinate manpower and system nesources for stress !

charactenzed with respect to funcuons provided, testing.
performance requirements, and interfaces to other
elementsof thesystem-essentiallyablack-box For most situations, it is necessary to develop

' characterizauon. Additionalinformation can be added automated means for generating the input loads,
based on any available vendor data regarding product logging data, and analyzing results. See Beizer 1984
specification and target performance levels. If source for a detailed discussion of load generation techniques.
code is available, the source code inspecuon process

NUREG/CR-6421 92
,

._- - -,-..n, -- -, - - - - , - - ~ . . - .. - , , . , - _ _ - - . -

Appendix B

De load generation process comprises two parts, in real time during the test must be created. logging -
which can be combined or separated depending on the facilities might already exist in the system platform; if
demands of the stress tesdng operadons. First, the not, they have to be created. Finally, the analysis of
information characterizing a pardcular load is used to results will require specialized routines to organize and
generate typical test data according to stadstical summarize the data, scan the results for possible
distributions of desired input parameters. Second, an anomalies, and compare system performance statistics
automated means for using this data to generate loads with those anticipated from the input load statistics.

I

,

93 NUREG/CR-6421

_ - - - _ - - - _ - - _ _ _ - _ - _ - _ - _ - - _ - _ _ _ .

i

Appsndix B

7. REGRESSION TESTING

7.1. Purpose of Regression Testing 7.3. Information Required to Perform !

Regression testing consists of re running a standard set Regression Testing
of test cases following the implementation of a set of

Since regression testing is a re-use of existing test
one or more changes to previously tested software. Its cases,13 the information required to perform this
purpose is to provide confidence that modifications

testing depends upon the specific types of test cases to)
I

have not had unintended effects on the behavior of the be re-run. His information is described in the sections
software. It is assumed that the appropriate testing of this report dealing with the test types of interest. It is
techniques (see the other sections of this report) have essential that configuration control be maintained on
been applied to test whether the modified software

all test documentation and related test materials to
elements perform as specified in the change

permit regression testing to be performed effectively
documentation. In addition to regression testing itself, and efficiently,
it is nec:ssary to verify that all system documentation,
such as requirements, design, and operating 7.4. Methods of Performing Regression

,

iprocedurcs. have been updated to reflect the software Testing
.modifications. kegression testing addresses the quality
!of software correctness and, indirectly, the qualities ne regression tests must be planned, designed,

associated with the test strategies that are being re- coordinated, executed, evaluated, and documented.
applied. .

i7.4.1. Test Planning and Test Requirements >

7.2. Benefits and Limitations of Regression
g; The following actions are required to plan and generate !

requirements for regression testing.
7.2.1, Benefits

1. Establish and maintain the standard set of tests
'

In addition to the direct testing of software (test cases, data, and procedures) to be repeated as
modifications, regression testing is required to provide regression tests. For COTS software used in a
assurance that, except for the modified portion, the safety-related context, it is recommended that the

software performs in the same way that it did prior to full set of funcuonal and stress tesung imtially
, ,

the changes. Since the regression testing process conducted be repeated.
i repeats previous testing, no additional" start-up" costs

2. Determine what resources will be required in orderare associated with establishing test mechanisms. In
addition, since the regression testing effort is largely to carry out the testing. Resources include budget,

,

the same for each software change, there is benefit in schedule, personnel, equipment, test tools, test I

combming changes mto one release. For COTS station (s), and test data. The test tools, test

software, this is equivalent to determming when t station (s), and test data should already be in place
| upgrade to a new release. from previous testing activity, and should be

,

l
directly usable provided that configuration

,

The primary software quality ofinterest in regression management procedures have been continueusly l

testing is correctness since the goal is to verify that applied to these items.

new faults have not been inadvertently introduced into
3. Determine the criteria to be used to decide howthe software. Since regression testing consists of re-

running test cases from appropnate test techniques, the much testing will be required. This is a stopping

qualities associated with those techniques are also r* criterion-how much testing is enough? For

examined during regression tesung. example,"the regression testing process will l
continue until the entire standard set of test cases '

i 7.2.2. Limitations runs without incident."
l

! *Ihere are significant maintenance costs for 7.4.2. Test Design and Test Implementation
t configuration management of the test ca

and test procedures as well as for keepm, ses, test data,The following actions are required to des gn andi
g the testmg

environment (s) current. Regression testing will mvolve mplement regression testing,

re-running large numbers of test cases in a variety of
types of testing and will, therefox, be expensive to 13
perform. As a system evolves,the suite of test cases used for regression

testing must also evolve.

t

|

!

95 NUREG/CR-M21

|
|

. _ _

Appendix B

1. Ensure that the testing environments used in undocumented assumptions made by the development
previous testing have been maintained and are team are not carried over into the maintenance phase

ready forregression testing. (Hetzel 1984). For these reasons, it is recommended
that the full complement of functional and stic ,4

2. Ensure that the modified software elements have testing activities originally performed be repeated to
been tested according to the same tesung plans test the modified safety-related software system. (It is
used on the originalsoftware, assumed that appropriate tests and analyses will

already have been run on the modified code.)
3. Review the standard set of regression test cases, Depending on the role of the modified software

data, and procedures to discover whether any have element and the enticality ofits function (and of the
been invalidated as a result of the desired overall software system),it may be possible to justify a
modifications. Update the test cases and reduced set of test cases for regression testing based on
g,,,, ,, ,g,,

a change impact assessment and knowledge of

7.4J. Test Execution and Test Evaluation Potential fault consequences derived from a software
risk assessment. This requires a careful assessment of

he test procedures must be carried out and the test the modified software element and its interfaces
results analyzed. Since the modified software elements (logical and data) to other parts of the system, as well
have already been tested to verify correct operation, the as a complete understanding of the likelihood and
regressen test results should indicate that the areas of magnitudes of potentialloss.
the COTS software thought to have been unaffected by
the modifications are indeed unaffected by the De methods used for regression testing are the same

changes. ne results should exactly match the results methods used for the various types of testing carried

of previous, successful tests. out previously. Test plans, test cases, and test
procedures, as well as test stations and automated test

7.5. Discussion of Regression Testing support mechanisms, already exist, and it is assumed
that they have been maintained under configuration

De primary focus of regression testing is to provide control for future use in regression testing. Whenever
assurance that implemented changes do not, in some modifications are made to the software object, it is
subtle way, ripple through the system and cause necessary to review the standard set of test cases (as
unintended effects. In addition to software function and well as test data and test procedures) to ensure that
performance, there must be a verification that none have been invalidated by the modifications and to ;

conventions, standards, access rules, etc., were adhered update the set based on the specifications for the newly
to in the change implementation. One source of modified object.
problems occurring in software maintenance is that

I
J

4

I

NUREG/CR-6421 96

_ _ _ _ _ _ _ .

Appmdix B

8. REFERENCES

Basili, Victor R. and Richard W. Selby," Comparing the Effectiveness of Software Testing Strategies,"IEEE
Transactions on Software Engineering Vol.12, No.12 (December 1987),1278-12%.

Beizer, Boris, Software System Testing and Quality Assurance , Van Nostrand Reinhold (1984).

Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold (1990).

Charette, Robert N., Software Engineering Risk Analysis and Management, McGraw-Hill (1989).

Dyct, Michael, The Cleanroom Approach to Quality Software Development, John Wiley & Sons (l992).

Fagan, M. E., " Design and Code Inspections to Reduce Errors in Program Development," IBM Systems Journal,
Vol.15, No. 3,1976,182-211.

Glass, Robert L., Building Quality Software, Prentice-Hall (1992).

Hamlet, Richard," Random Testing," in Encyclopedia ofSoftware Engineering, John Wiley & Sons,1994.

Hetzel, William, The Complete Guide to Software Testing, QED Information Sciences, Inc. (1984).

Howden, William E.. "A Survey of Static Analysis Methods,"in Tutorialt Software Testing & Validation
Techniques, Institute of Electrical and Electronics Engineers,1981.

Howden, William E.,"A Survey of Dynamic Analysis Methods,"in Tutorialt Software Testing & Validation
Techniques,1nstitute of Electrical and Electronics Engineers,1981.

Howden, William E., Functional Program Testing and Analysis; McGraw-Hill (1987).

Hurley, Richard B., Decision Tables in Software Engineering, Van Nostrand Reinhold,(1983).
;

IEEE 610.12. IEEE Standard Glossary ofSoftware Engineering Terminology, Institute of Electrical and Electronics
Engineers,1991.

IEEE 829. IEEE Standardfor Software Test Documentation, Institute of Electrical and Electronics Engineers,1983.

IEEE 1008.lEEE Standardfor Software Unit Testing, Institute of Electrical and Electronics Engineers,1986.
IEEE 1074. lEEE Standardfor Developing Software Life Cycle Processes, Institute of Electrical and Electronics

Engineers,1992.

Lawrence, J. Dennis, Software Reliability and Safetyin Nuclear Reactor Protection Systems NUREGICR-6101,
Lawrence Livermore National Laboratory, Livermore, CA (1993).

IAwrence, J. Dennis and Preckshot, G. G., Design Factorsfor Safety-Critical Software, NUREG/CR-6294,
12wrence Livermore National Laboratory, Livermore, CA (1994).

Marick, Brian, The Craft ofSoftware Testing; Prentice-Hall (1995). '

Miller, Edward and William E. Howden, Tutorialt Software Testing and Validation Techniques, Second Edition, !
IEEE Computer Society Prest (1981).

'

McCall, Jim A. et al.," Factors in Software Quality," Concept and Definitions ofSoftware Quality, General Electric
{
i

Company,1977.

Musa, John D.,"The Operational Profile in Software Reliability Engineering: An Overview," Third Int'l Symp. on
Soft. Rel. Eng. (October 1992),140-154.

Olender, Kurt M. and Leon J. Osterweil," Cecil: A Sequencing Constraint Language for Automatic Static Analysis
|Generation," IEEE Transactions on Software Engineering , Vol.16, No. 3, March 1990,268-280.
;

Perry, William E., A Structured Approach to Systems Testing, QED Information Sciences (1988). !
Pressman, Roger S., Software Engineering, A Practitioner's Approach, McGraw-Hill,(1987).

Price, Source Code Static Analysis Tools Report, Software Technology Support Center,1992.

Poore, J. H., Harlan D. Mills, and David Mutchter, " Planning and Certifying Software System Reliability," IEEE
Software 10, I (January 1993),88-99.

Preckshot, G. G. and Scott, J. A., Vendor Assessment and Software Plans, UCRL-ID-122243, Lawrence Livermore
National Laboratory, Livermore, CA (1995).

Whittaker, James A., and Michael G. Thomason, "A Markov chain model for statistical software testing," IEEE |

Transactions on Software Engineering, Vol. 20, No.10 (October 1994),812-824.
|

Yourdon, Edward, Structured Walkthroughs, Prentice. Hall (1989).
I

97 NUREG/CR-6421

1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ - _ _ . - . - _ _ - - - _ _ _ _ _ _

Appendix B

ANNEX: TAXONOMY OF SOFTWARE BUGS

'Ihis Annex * provides a taxonomy for program faults (bugs). Faults are categorized by a four-digit number, perhaps
with sub-numbers using the point system: e.g.. "1234.5.6." The "x" that appears is a place holder for possible future
filling in of numbers as the taxonomy is expanded. For example,

3xxx-structural bugs in the implemented software

32xx-processing bugs
322x--expression evaluation

3222-arithmetic expressions
3222.1-wrong operator

1xxx: FUNCTIONAL BUGS: REQUIREMENTS AND FEATURES: Bugs having to do with requirements as
specified or as implemented.

11xx: REQUIREMENTS INCORRECT: the requirement or a part ofit is incorrect.
111x: Incorrect: requirement is wrong.
112x: Undesirable: requirement is correct as stated but it is not desirable.
113x: Not needed: requirement is not needed.

12xx: LOGIC: the requirement is illogical or unreasonable.

121x: Illogical: illogical, usually because of a self-contradiction which can be exposed by a logical analysis
ofcases.

122x: Unreasonable: logical and consistent but unreasonable with respect to the environment and/or
budgetary and time constraints.

123x: Unachievable: requirement fundstnentally impossible or cannot be achieved under existing
constraints.

124x: Inconsistent, incompatible: requirement is inconsistent with other requirements or with the
environment.

1242: Internal: the inconsistency is evident within the specified component
1244: External: the inconsistency is with external (to the component) components or the environment.
1248: Configuration sensitivity: the incompatibility is with one or more configurations (hardware,

software, operating system) in which the component is expected to work.

13xx: COMPLETENESS: the requirement as specified is either ambiguous, incomplete, or overly specified.
131x: Incomplete: the specification is incomplete; cases, features, variations or attributes are not

specified and therefore not implemented.

132x: Missing, unspecified: the entire requirement is missing.

133x: Duplicated, overlapped: specified requirement totally or partially overlaps another requirement
either already implemented or sycified elsewhere.

134x: Overly generalized: requirement as specified is correct and consistent but is overly generahzed
(e.g., too powerful) for the application.

137x: Not downward compatible: requirement as specified will mean that objects created or
manipulated by prior versions can either not be processed by this version or will be incornetly
processed.

138x: Insufficiently extendible: requirement as specified cannot be expanded in ways that are likely
to be needed-important hooks are left out of specification.

* ' mis Annex is based on " Bug Taxonomy and Statistics," Appendix, Software Testing Techniques, second edition. by Boris Beizer. Copyright 0
1990 by Boris Beizer. Reprinted with pennission of Van Nostrand Reinhold,New York.

.

99 NUREGER-6421

.
.

. ..

- '

. .- - _ . ..

Appendix B

14xx: VERIFIABILITY: specification bugs having to do with verifying that the requirement was correctly or
incorrectly implemented.

141x: Unverifiable: the requirement, if implemented, can.not be verified by any means or within
available time and budget. For example, it is possib!c to design a test, but the outcome of the test
cannot be verified as correct or incorrect.

142x: Untestable: it is not possible to design and/or execute tests that will verify the requirement.
Untestable is stronger than unverifiable.

15xx: PRESENTATION: bugs in the presentation or documentation of requirements. The requirements are
presumed to be correct, but the form in which they are presented is not. This can be important for test
design automation systems, which demand specific formats.

152x: Presentation, documentation: general presentation, documentation, format, media, etc.

153x: Standards: presentation violates standards for requirements.

16xx: REQUIREMENT CHANGES: requirements, whether or not correct, have been changed between the
time programming started and testing ended.
162x Features: requirement changes concerned with features.

1621: Feature added: a new feature has been added.
1632: Feature deleted: previously required feature deleted.
1633: Feature changed: significant changes to feature, other than changes in cases.

163x: Cases: cases within a feature have been changed. Feature itselfis not significantly modified except
for cases.

1631: Cases added.

1632: Cases deleted.
1633: Cases changed: processing or treatment of specific case (s) changed.

164x: Domain changes: input data domain modified: e.g., boundary changes, closure, treatment.
165x: User messages and diagnostics: changes in text, content, or conditions under which user prompts,

warning, error messages, etc. are produced. ;

166x: Internal interfaces: direct interfaces (e.g., via data structures) have been changed. |

167x: External interfaces: external interfaces, such as device drivers, protocols, etc. have been changed. |
168x: Performance and timing: changes to performance requirements (e.g., throughput) and/or timings. |

I

2xxx: FUNCTIONALITY AS IMPLEMENTED: requirement known or assumed to be correct, implementable,
and testable, but implement is wrong.

21xx: CORRECTNESS: having to do with the correctness of the implementation.
211x: Feature misunderstood, wrong: feature as implemented is not correct-not as specified. ,

|218x: Feature interactions: feature is correctly implemented by itself, but has incorrect interactions with
|other features, or specified or implied interaction is incorrectly handled.

22xx: COMPLETENESS, FEATURES: having to do with the completeness with which features are

implemented.
221x: Missing feature: an entire feature is missing.
222x: Unspecified feature: a feature not specified has been implemented. j

223x: Duplicated, overlapped feature: feature as implemented supplicates or overlaps features
implemented by other parts of the software. |

23xx: COMPLETENESS, C ASES: having to do with the completeness of cases within features.

231x: Missing case.

232x: Extra case: cases that should not have been handled are handled.
233x: Duplicated, overlapped case: duplicated handling of cases or partial overlap with other cases.
234x: Extraneous output data: data not required are output

24xx: DOMAINS: processing case or feature depends on a combination ofinput values. A domain bug exists if
the wrong processing is executed for the selected input-value combination.

NUREGRR-6421 100

- _ _ _ _ - _ _ _ _ - - _ _ _ _ _ _ _ _ _

_-

Appendix B

241x: Domain misunderstood, wrong: misunderstanding of the size, shape, boundaries, or other
characteristics of the specified input domain for the feature or case. Most bugs related to handling
extreme cases are domain bugs.

242x: Boundary locations: the values or expressions that define a domain boundary are wrong: e.g.,
"X>=6" instead of "X>=3."

243x: Boundary closures: end points and boundaries of the domain are incorrectly associated with an
adjacent domain: e.g., "X>=0" instead of "X>0".

244x: Boundary intersections: domain boundaries are defined by a relation between domain control
vanables. 'Ihat relation, as implemented, is incorrect: e.g., "IF X>0 AND Y>0 ." instead of"lF X>0
OR Y>0 .".

25xx: USER MESSAGES AND DIAGNOSTICS: user prompt or printout or the form of commumcanon is
incorrect. Processing is assumed to be correct: e.g., false waming, failure to wam, wrong message, spelling,
formats.

26xx: EXCEITION CONDITIONS MISH ANDLED: exception conditions such as illogical, resource
problems, failure modes, which require special handling, are not correctly handled or the wrong excephon-
handling mechanisms are used.

3xxx: STUCTURAL BUGS: bugs related to the component's structure: i.e., the code.

Sixx: CONTROL FLOW AND SEQUENCING: bugs specifically related to the control flow of the program
or the order and extent to which things are done, as distinct from what is done.

311x: General structure: general bugs related to component structure.
3112: Unachievable path: a functionally meaningful processing path in the code for which there is no

combination of input values that will force the path to be executed. Do not confuse with
unreachable code. The code in question might be reached by some other path.

3114: Unreachable code: code for which there is no combination of input values that will cause that
code to be executed.

3116: Dead-end code: code segments that once entered cannot be exited, even though it was intended
that an exit be possible.

312x: Control logic and predicates: the path taken through a program is directed by control flow
predicates (e.g., Boolean expressions). This category addresses the implementation of such predicates.

3122: Duplicated logic: control logic that should appear only once is inadvertently duplicated in
whole or in part.

3124: Don't care: improper handling of cases for which what is to be done does not matter either
because the case is impossible or because it really does not maner: e.g., incorrectly assuming that
the case is a don't-care case, failure to do case validation, not invoking the correct excepuon
handler, improper logic simplification to take advantage of such cases.

3126: Illogicals: improper identification of, or processing of, illogical or impossible conditions. An
illogical is stronger than a don't care. Illogicals usually mean that something bad has hapf d
and that recovery is needed. Examples of bugs include: illogical not really so, failure to recogmze
illogical, invoking wrohg handler, improper simplification of control logic to take advantage of the
case.

3128: Other control-flow predicate bugs: control-flow problems that can be directly attributed to the
incorrect formulation of a control flow predicate: e.g.,"IF A>B THEN ..."instead of"IF A<B
THEN .".

313x: Case selection bug: simple bugs in case selections, such as improperly formulated case selection
expression. GOTO list, or bug in assigned GOTO.

314x: Loops and iteration: bugs having to do with the control ofloops.
3141: Initial value: iteration value wrong: e.g. "FOR 13 TO 17. "instead of"FOR 1=8 'IO 17."
3142: Terminal value or condition: value, variable, or expression used to control loop termination is

incorrect: e.g.,"FOR I = 1 TO 7 . ." instead of"FOR 1 = 1 TO 8."

3143: Increment value: value, variable, or expression used to control loop increment value is
inconect e.g.,"FOR I = 1 TO 7 STEP 2. ." instead of"FOR 1 = 1 TO 7 STEP 5 . ".

.

101 NUREGER-6421

"

.____ -

_ -. _ _. _ _ _ __

t

Appendix D

.

3144: Iteration variable processing: where end points and/or increments are controlled by values
calculated within the loop's scope, a bug in such calculations.

3148: Exception exit condition: where specified values or conditions or relations between variables
force an abnormal exit to the loop, either incorrect processing of such conditions or incorrect exit .

mechanisminvoked. ;

315x: Control initialization and/or state: bugs having to do with how the program's control flow is
initishzed and changes of state that affect the control flow: e.g., switches.
3152: Control initialization: initializing to the wrong state or failure to initinhw
3154: Control state: for state-detennined control flows, incorrect transition to a new state from the

current state: e.g., input condition X requires a transition to state B given that the program is in
state A; instead, the transidon is to state C. Most incorrect GOTOs are included in this category. ;

316x: Incorrect exception handling: any incorrect invocation of a control. flow excepdon handler not
previously categorized.

'

32xx: PROCESSING: bug related to processing under the assumption that the control flow is correct.
321x: Algorithmic, fundamental: inappropnate or incorrect algorithm selected, but implemented ,

correctly: e.g., using an incorrect approximation, using a shortcut string search algorithm that assumes
strir.g characteristics that may not apply.

322x: Expression evaluation: bugs having to do with the way arithmetic, Boolean, string, and other
expressions are evaluated.)
3222: Arithmetic: bugs related to evaluated of arithmetic expression.

;

3222.1: Operator: wrong arithmetic operator or function used.
3222.2: Parentheses: syntactically correct bug in placement of parentheses or other

arithmetic delimiters.
32223: Sign: bug in use of sign.

3224: Iagical or Boolean, not control: bug in the manipulation or evaluation of Boolean expresnon j

that are not (directly) part of control. flow predicates: e.g., using wrong mask, AND instead of OR,
incorrect simplification of Boolean funcdon.

3226: String manipulation: bug in string manipulation.
3226.1: Beheading: the beginning of a string is cut off when it should not have been, or

not cut off when it should have been.
3226.2: Curtailing: as for beheading but for string end.
32263: Concatenation order: strings are concatenated in wrong order or concatenated

,

when they should not be.
33263.1: Append instead of precede.
32263.2: Precede instead of append.

3226.4: Inserting: having to do with the insertion of one string into another.
!

3226.5: Converting case: case conversion (upper to lower, say) is incorrect.
3226.6: Code conversion: string is converted to another code incorrectly or not

converted when it should be.
3226.7: Packing, unpacking: strings are incorrectly packed or unpacked.

3228: Symbolic, algebraic: bugs in symbolic processing of algebraic expressions. |
i

323x: Initialization: bugs in initialization of variables, expressions, functions, etc. used in processing,
excluding initialization bugs associated with declarations and data statements and loop initialization

j

324x: Cleanup: incorrect handling of cleanup of temporary data areas, registers, states, etc. associated with |
1

processing.
325x: Precision, accuracy: insufficient or excessive precision, insufficient accuracy, and other bugs i

related to number representation system used. |
'

326x: Execution time: excessive (usually) execution time for processing component.

4xxx: DATA: bugs in the definition, structure, or use of data.

.

NUREGER-6421 102

_ -_ __ _ ~_. _. _ _ _ _,

_ _ . . _ _ _ _ . __. _ _ ._ __

|
|

Appendix B

|
41xx: DATA DEFINITION, STRUCTURE, DECLARATION: bugs in this definition, structure, and

initiahzation of data: e.g., in DATA statements. This category applies whether the object is declared
mariemlly in source code or created dynamically.

411x: Type: the data object type, as declared, is incorrect: e.g., integer instead of floating, short instead of
long, pointer instead of integer, array instead of scalar, incorrect user-defined type.

412x: Dimension: for arrays and other objects that have a dimension (e.g., arrays, records, files) by which
component objects can be indexed, a bug in the dimension, in the minimum or maximum dimensions,
orin redimensioning statements.

413x: Initial, default values: bugs in the assigned initial values of the object (e.g.,in DATA statements),
selection of incorrect default values, or failure to supply a default value if needed,

414x: Duplication and aliases: bugs related to the incorrect duplication or failure to create a duplicated
object.

4142: Duplicated: duplicated definition of an object where allowed by the sryntax.
4144: Aliases: object is known by one or more aliases but specified alias is incorrect: object not

aliased when it should have been.

415x: Scope: the scope, partition, or components to which the object applies is incorrectly specified.

4152: Local should be global: a locally defined object (e.g., within the scope of a specific component)
should have been specified more globally (e.g.,in COMMON)

4154: Global should be local: the scope of an object is too global: it should have been declared more
locally.

4156: Global / local inconsistency or conflict: a syntactically acceptable conflict between a local
and/or global declaration of an object (e.g., incorrect COMMON).

416x: Static / dynamic resources: related to the declaration of static and dynamically allocated resources.
4162: Should be static resource: resource is defined as a dynamically allocated object but should

1
have been static (e.g., permanent).

4164: Should be dynamic resource: resource is defined as static but should have been declared as
dynamic.

4166: hsufficient resources, space: number of specified resources is insufficient or there is
insufficient space (e.g., main memory, cache, registers, disc) to hold the declared resources.

4168: Data overlay bug: data objects are to be overlaid but there is a bug in the specification of the
overlay areas.

42xx: DATA ACCESS AND HANDLING: having to do with access and manipulation of data objects that are
presumed to be correctly defined.

421x: Type: bugs having to do with the object type.

4212: Wrong type: object type is incorrect for required processing: e.g., mukiplying two strings.

4314: Type transformation: object undergoes incorrect type transformation: e.g., integer to floating,
pointer to integer, specified type transformation is not allowed, required type transformation not

,

done. Note: type transformation bugs can exist in any language, whether or not it is strongly typed, 1

whether or not there are user-defined types.

4216: Scaling, units: scaling or units (semantic) associated with objects is incorrect, incorrectly
transformed or not transformed: e.g., FOOT-POUNDS to STONE-FURLONGS.

422x: Dimension: for dynamically variable dimensions of a dimensioned object, a bug in the dimension:
e.g., dynamic redimension of arrays, exceeding maximum file hngth, removing one or more than the
minimum number of records.

423x: Value: having to do with the value of data objects or parts thereof.
4232: Initialization: initialization or default value of object is incorrect. Not to be confused with

initialization and default bugs in declarations. This is a dynamic initialization bug.
4234: Constant value: incorrect constant value for an object: e.g., a constant in an expression.

424x: Duplication and aliases: bugs in dynamic (run time) duplication and aliasing of objects,
4242: Object already exists: Attempt to create an object that already exists.
4244: No such object: attempted reference to an object that does not exist.

103 NUREGER-6421 j

_

|

|
Appendix B

426x: Resources: having to do with dynamically allocated resources and resource pools,in whatever
memory media they exist: main, cache, disc, bulk RAM. Included are queue blocks, control blocks,
buffer blocks, heaps, files.
4262: No such resource: reference resource does not exist.
4264: Wrong resource type: wrong resource type reference.

428x: Access: having to do with access of objects as distinct from the manipulation of objects. In this
context, accesses include read, write, modify, and (in some instances) create and destroy.
4281: Wrong object accessed: incorrect object accessed: e.g.,"X:=ABC33" instead of"X:=ABD33".
4282: Access rights violation: access rights are controlled by attributes associated with the caller and

the object. For example, some callers can only read the object, others can read and modify.
Violations of object access rights are included in this category whether or not a formal access
rights mechanism exits: that is, access rights could be specified by programming conventions
rather than by software.

4283: Data flow anomaly: data-flow anomalies involve the sequence of accesses to an object: e.g.,
reading or initializing an object before it has been created, or creating and than not using.

4284: Interlock bug: where objects are in simultaneous use by more than one caller, interlocks and
synchronization mechanisms may be used to ensure that all data are current and changed by only
one c aller at a time. These are not bugs in the interlock or synchronization mechanism but in the
use of that mechanism.

4285: Saving or protecting bug: application requires that the object be saved or otherwise protected
in different program states or, attematively, not protected. These bugs are related to the incorrect
usage of such protection mechanisms or procedures.

4286: Restoration bug: application requires that a previously saved object be restored prior to
processing: e.g., POP the stack, restore registers after interrupt. This category includes bugs in the
incorrect restoration of data objects and not bugs in the implementation of the restoration of data
objects and not bugs in the implementation of the restoration mechanism.

4287: Access mode, direct / indirect: object is accessed by wrong means: e.g., direct access of an
object for which indirect access is required: call by value instead of name, or vice versa: indexed
instead of sequential, or vice versa.

4288: Object boundary or structure: access to object is partly correct, but the object structure and its
boundaries are handled incorrectly: e.g., fetching 8 characters of a string instead of 7, mishandling
word boundaries, getting too much or too little of an object.

5xxx: IMPLEMENTATION: bugs having to do with the implementation of the software. Some of these, such as
standards and documentation, may not affect the actual workings of the software. They are included in the bug
taxonomy because of their impact on maintenance.

Sixx: CODING AND TYPOGRAPHICAL: bugs that can be clearly attributed to simple coding, as well as
typographical bugs. Classification of a bug into this category is subjective. If a programmer believed that
the correct variable, say, was "ABCD" instead of "ABCE", than it would be classified as a 4281 bug
(wrong object accessed). Conversely, if E was changed to D because of a typewriting bug, then it belongs
here.

511x: Coding wild card, typographical: all bugs that can be reasonably attributed to typing and other
typographical bugs.

512x: Instruction, construct misunderstood: all bugs that can be reasonably attributed to a
misunderstanding of an instruction's operation or HOL statement's action.

52xx: STANDARDS VIOLATION: bugs having to do with violating or misunderstanding the applicable
programming standards and conventions. The software is assumed to work prop:rly.
521x: Structure violations: violations concerning control-flow structure, organization of the software, etc.

5212: Control flow: violations of control-flow structure conventions: e.g., excessive IF-THEN-ELSE
nesting, not using CASE statements where required, not following dictated pmcessing order,
jumping into or out of loops, jumping into or out of decisions.

5214: Complexity: violation of maximum (usually) or minimum (rare) complexity guidelines as
measured by some specified complexity metric: e.g., too many lines of code in module, cyclomatic
complexity greater than 200, excessive Halstead length, too many tokens.

NUREGNR-6421 104

._ _

Appendix B

5215: Call nesting depth: violations of component (e.g., subroutine, subprogram, function) maximum
nesting depth, or insufficient depth where dictated.

5216: Modularity and partition: Modularity and partition rules not followed: e.g., minimum and
maximum size, object scope, functionally dictated partitions.

5217: Call nesting depth: violations of component (e.g., subroutine, subprogram, function) maximum
nesting depth, or insufficient depth where dictated.

522x: Data definition, declarations: the form and/or location of data object declaranon is not according to
standards.

523x: Data access: violations of conventions governing how data objects of different kinds are to be
accessed, wrong kind of object used: e.g., not using field-access macros, direct access instead of
indirect, absolute reference instead of symbolic, access via register, etc.

524x: Calling and invoking: bugs in the manner in which other processing components are called,
invoked, or communicated with: e.g., a direct subroutine call that should be indisect, violation of call.

and return sequence conventions.

526x: Mnemonics, label conventions: violations of the rules by which names are assigned to objects: e.g.,
program labels, subroutine and program names, data object names, file names.

527x: Format: violations of conventions governing the overall format and appearance of the source code:
indentation rules, pagination, headers, ID block, special markers.

528x: Comments: violations of conventions goveming the use, placement, density, and format of
comments. 'Ihe content of comments is covered by 53xx, documentation.

53xx: DOCUMENTATION: bugs in the documentation associated with the code or the content of comments
'

contamed in the code.

531x: Incorrect: documentation statement is wrong.

532x: Inconsistent: documentation statement is inconsistent with itself or with other statements.
533x: Incomprehensible: documentation cannot be understood by a qualified reader.
534x: Incomplete: documentation is correct but important facts are missing.
535x: Missing: major parts of documentation are missing.

6xxx: 1NTEGRATION: bugs having to do with the integration of, and interfaces between, components. The
components themselves are assumed to be correct.

61xx: INTERNAL INTERFACES: bugs related to the interfaces between communicating components with
the program under test. 'Ihe components are assumed to have passed their component level tests. In this
context, direct or indirect transfer of data or control information via a memory object such as tables,
dynamically allocated resources, or files, constitute an internal interface.

611x: Component invocation: bugs having to do with how software components are invoked. In this
sense, a " component" can be a subroutine, function, macro, program, program segment, or any other
sensible processing component Note the use of" invoke" rather than " call" because there may be no
actual call as such: e.g., a task order placed on a processing queue is an invocation in our sense, though
(typically)not a call.
6111: No such component: invoked component does not exist.
6112: Wrong component: incorrect component invoked.

612x: Interface parameter, invocation: having to do with the parameter of the invocation, their number,
order, type, location, values, etc.

6121: Wrong parameter: parameter of the invocation are incorrectly specified.
6122: Parameter type: incorrect invocation parameter type used.
6124: Parameter structure: structural details of parameter type used.
6125: Parameter value: value (numerical, Boolean, string) of the parameter is wrong.
6126: Parameter sequence: parameters of the invocation sequence in the wrong order, too many

parameters, too few parameters.

613x: Component invocation return: having to do with the interpretation of parameters provided by the
invoked component on return to the invoking component or on release of control to some other
component. In this context, a record, a subroutine return sequence, or a file can qualify for this

105 NUREG/CR.6421

.. .-

-
-

-

-- - -
- -

__

.. - - - . - .-

Appendix B

,

category of bug. Note that the bugs included here are not bugs in the component that created the retum
data but in the receiving component's subsequent manipulation and interpretation of that data.

6131: Parameter identity: wrong return parameter accessed.
6132: Parameter type: wrong retum parameter type used: that is, the component using the return data

interprets a retum parameter incorrectly as to type.
6134: Parameter structure: return parameter structure misinterpreted.
6136: Return sequence: sequence assumed for return parameter is incorrect.

614x: Initialization, state: invoked component not initialized or initialized to the wrong state or with
incorrect data.

615x: Invocation in wrong place: the place or state in the invoking component at which the invoked
component was invoked is wTong.

616x: Duplicate or spurious invocation: component should not have been invoked or has been invoked
more often than necessary. i

62xx: EXTERNAL INTERFACES AND TIMING: having to do with extemal interfaces, such as 1/0 devices
arcl/ar drivers, or other software not operating under the same control structure. Data passage by files or
messages qualify for this bug category.
621x: Interrupts: bugs related to incorrect interrupt handling or setting up for interrupts: e.g., wrong

handler invoked, failure to block or unblock interrupts.
622x: Devices and drivers: incorrect interface with devices or device drivers or incorrect interpretation of

return status data.
6222: Device, driver, initialization or state: incorrect initialization of device or driver, failure to |

initialize, setting device to the wTong state.
6224: Device, driver, command bug: bug in the command issued to a device or driver.
6226: Device, driver, return / status misinterpretation: retum status data from device or driver

misinterpreted orignored.
623x: I/O timing or throughput: bugs having to do with timing and data rates for external devices such

as: not meeting specified timing requirements (too long or too short), forcing too much throughput, not
accepting incoming data rates.

7xxx: SYSTEM AND SOFTWARE ARCHITECTURE: bugs that are not attributable to a component or to the
interface between components but affect the entire software system or stem from architectural errors in the

system.

71xx: OS bug: bugs related to the use of operating system facilities. Not to be confused with bugs in the
operating system itself.
711x: Invocation, command: erroneous command given to operating system or OS facility incorrectly

invoked.
712x: Return data, status misinterpretation: data retumed from operating system or status information

ignored or misinterpreted.
714x: Space: required memory (cache, disc, RAM) resource not available or requested in the wrong way.

72xx: Software architecture: architecture problems not elsewhere defined.
721x: Interlocks and semaphores: bugs in the use of interlock mechanisms and interprocess

communication facilities. Not to be confused with bugs in these mechanisms themselves: e.g., failure
to lock, failure to unlock, failure to set or reset semaphore, duplicate locking.

722x: Priority: bugs related to task priority: e.g., priority too low or too high, priority selected not allowed,
priority conflicts.

723x: Transaction-flow control: where the path taken by a transaction through the system is controlled by
an implicit or explicit transaction flow-control mechanism, these are bugs related to the definition of
such flows. Note that all components and their interfaces could be correct but this kind of bug could

still exist.
724x: Resource management and control: bugs related to the management of dynamically allocated

shared resource objects: e.g., not retuming a buffer block after use, not getting an object, failure to
clean up an object after use, getting wrong kind of object, retuming object to wrong pool

106NUREGER-6421

_ _ _ _ _ _ ___ ___ _ _ _ _ _ _______ __ _ _

|

Appendix B

725x: Recursive calls: bugs in the use of recursive invocation of software components or incorrect
recursiveinvocation.

726x: Reentrance: bugs related to reentrance of program components: e.g., a reentrant component that
should not be, a reentrant call that should be nonreentrant.

73xx: RECOVERY ACCOUNTABILITY: bugs related to the recovery of objects after the failure and to the
accountability for objects despite failures.

74xx: PERFORMANCE: bugs related to the throughput-delay behavior of software under the assumption that
all other aspects are correct.

741x: Throughput inadequate.
742x: Response time, delay: response time to incoming events too long at specified load or too short -

(rare), delay between outgoing events too long or too short.
743x: Insufficient u<ers: maximum specified riumber of simultaneous users or task cannot be

accommodated at specified transaction delays.

748x: Performance parasites: any bug whose primary or only symptom is a performance degradation:
e.g., the harmless but needless repetition of operations, fetching and returning more dynamic resources
than needed.

75xx: INCORRECT DIAGNOSTIC, EXCEI' TION: diagnostic or error message incorrect or misleading.
Exception handler invoked is wrong.

76xx: PARTITIONS AND OVERLAYS: memory or virtual memory is incorrectly partitioned, overlay to
wrong area, overlay or partition conflicts.

77xx: SYSGEN OR ENVIRONMENT: wrong operating system version, incorrect system generation, or other
host environment problem.

8xxx: TEST DEFINTION OR EXCUTION BUGS: bugs in the definition, design, execution of tests or the data
used in tests. 'Ihese are as important as "real" bugs.

81xx: DESIGN BUGS: bugs in the design of tests.
811x: Requirements misunderstood: test and component are mismatched because test designer did not

understand requirements.
812x: Incorrect outcome predicted: predicted outcome of test does not match required or actual outcome.
813x: Incorrect path predicted: outcome is correct but was achieved by the wrong predicted path. The

testis only coincidentally correct
814x: Test initialization: specified initial conditions for test are wrong.
815x: Test data structure or value: data objects used in tests or their values are wrong.
816x: Sequencing bug: the sequence in which tests are to be executed, relative to other tests or to test

initialization,is wrong.
817x: Configuration: the hardware and/or software configuration and/or environment specified for the test

is wrong.
818x: Verification method criteria: the method by which the outcome will be verified is incorrect or

impossible.

82xx: EXECUTION BUGS: bugs in the execution of tests as contrasted with bugs in their design.
821x: Initialization: tested component not initialized to the right state or values.
822x: Keystroke or command: simple keystroke or button hit error.
823x: Database: database used to support the test was wTong.
824x: Configuration: configuration and/or environment specified for the test was not used during the run.
828x: Verification act: the act of verifying the outcome was incorrectly executed.

83xx: TEST DOCUMENTATION: documentation of test case or verification criteria is incorrect or
misleading.

84xx: TEST CASE COM PLETENESS: cases required to achieve specified coverage criteria are missing.

-

107 NUREG/CR-6421

.
.

.. . . .

-

..

- - -
-

-

,
_ - _ _ . . --- ----. - - - - - - . _ - .

1

i Appendix B
s :

GLOSSARY
.

j Definitions for many of the technical terms used in the report are given below. An abbreviated indication tw the
! reference from which the definition was taken is provided in square brackets.

610 IEEE 610-12 ~
4
'

882C MIL-STD-882C

_

1028 IEEE 1028
.I

j 1058 IEEE 1058

j 1074 IEEE 1074

] RADC RADC 1977

4 Acceptability-A measure of how closely the computer program meets the true needs of the user [RADC).
i Accessibility-the extent that software facilitates the selective use of its components (RADC].
'

Augnc: ability-the extent that software easily accommodates expansions in data storage requirements or
j component computational functions [RADC].
! Accountability-the extent that code usage can be measured [RADC].
j AccuracyHl) A qualitative assessment of correctness, or freedom from error [610] (2) A quantitative measure of
j the magnitude of error [610]. (3) A measure of the quality of freedom from error, degree of exactness possessed
j by an approximation or measurement [RADC).

! Activity-(l) A group of related tasks [IEEE 1074]. (2) A major unit of work to be completed in achieving the
2

objectives of a software project. An activity has precise starting and ending dates, incorporates a set of tasks to
be completed, consumes resources and results in work products [1058].

4 Adaptability-ne case with which a system or component can be modified for use in applicauons or environments
other than those for which it was specifically designed [610).1

: Availability--{l) ne degree to which a system or component is operational and accessible when required for use i

|

j; . [610). (2)Re fraction of total time during which the system can support critical functions [RADC]. (3) ne '

probability that a system is operating satisfactorily at any point in time, when used under stated conditions
; [RADC).

Clarity-(1) The case with which the program (and its documentation) can be understood by humans [RADC]. (2)
He extent to which a document contains enough information for a reader to determine its objectives,.

'

assumptions, constraints, inputs, outputs, components, and status [RADC].

Completeness-(t) The attributes of software that provide full implementation of the functions required [RADC].
.

(2)he extent to which software fulfills overall mission satisfaction [RADC). (3) he extent that all of the |
, software's parts are present and each of its parts are fully developed [RADC).
j Consistency-The degree of uniformity, standardization, and freedom from contradiction among the documents or
i parts of a system or component [610].

:
Convertibility-The degree of success enticipated in readying people, machines, and procedures to suppoit the

] system [RADC]. {
.

Cost-Includes not only development cost, but also the costs of maintenance, training, documentation, etc., on the
entire life cycle of the program [RADC]. ,

; Correctness-(l) he degree to which a system or component is free from faults in its specification, design and
1 implementation [610]. (2) ne degree to which software, documentation, or other items meet specified

requirements [610]. (3) The degree to which software, documentation or other items meet user needs and
| expectations, whether specified or not (610].

Extendibility-The case with which a system or component can be modified to increase its storage or functional
.

capacity [610].

|

4

; 109 NUREGER-6421
4

:
_ _ _ _ _ . _ _ -

. AppendixB

Generality-e measure of the scope of the functions that a program performs (RADC].

Inexpensiveness-see Cost.

Integrity-(l) De degree to which a system or component prevents unauthorized access to, or modificauon of,
computer programs or data [610]. (2) A measure of the degree of protection the computer program offers i

against unauthonzed access and loss due to controllable events (RADC). (3) De ability of software to prevent |

purposeful or accidantal damage to the data or software [RADC).
'

Interfaco-(1) A shared boundary across which information is passed [610]. (2) A hardware or software component
,

that connects two or more components for the purpose of passing infonnation from one to the other [610].

Interoperability-how quickly and easily one scftware system can be coupled to another [RADC).
f

Maintainability-(l) De case with which a soft ware system or component can be modified to correct faults, '

improve performance or other auributes, or sdapt to a changed enviionment [610]. (2) The probability that a'

failed system will be restored to operable co aditions within a specified time tRADC].
.

,

Manageability-4he degree to which a system lends itself to efficient administration ofits components [RADC). |

Modifiability-(1) A measure of the cost of changing or extending a program [RADC). (2) The extent to which a
program facilitates the incorporation of changes, once the nature of the desired change has been determined

[RADC).
Modularity-(1) De degree to which a system or computer program is composed of discrete components such that a

change to one component has minimal impact on other components (610]. (2) De ability to combine arbitrary
program modules into larger modules without knowledge of the construction of the modules [RADC]. (3) A '

formal way of dividing a program into a number of sub-units each having a well dermed function and
relanonship to the rest of the program [RADC). |

Non-complexity-see Simplicity.
Performance-(1) The degree to which a system or component accomplishes its designated functions within given

constraints, such as speed, accuracy, or memory usage [610]. (2) The effectiveness with which resources of the i

host system are utilized toward meeting the objective of the software system [RADC].
i

Portabdity-De case with which a system or component can be transferred from one hardware or software -
environment to another [610].

Precision-(l) De degree of exactness or discrimination with which a quantity is stated [610]. (2) The degree to
which calculated results reflect theoretical values (RADC].

Reliability-41) The ability of a system or component to perform its required functions under stated conditions for a
specified penod of time {610]. (2) The probability that a software system will operate without failme for at least
a given penod of time when used under stated conditions [RADC). (3) De probability that a software fault does (
not occur during a specified time interval (or specified number of software operational cycles) which causes)
deviauon from required output by more than specified tolerances, in a specific environment [RADC].

<

Reparability-The probability that a failed system will be restored to operable condition within a specified active
repair time when maintenance is done under specified conditions [RADC]. i

I
Requirement-(1) A condition or capability needed by a user to solve a problem or achieve an objective [610). (2) A

condnuon or capability that must be met or possessed by a system or system component to satisfy a contract, |

standard, specification or other formally imposed documents [610]. |

Reusability-The degree to which a software module or other work product can be used in more than one computer |
!program or software system (610].

Review-An evaluation of software elements or project status to ascertain discrepancies from planned results and to j
;

recommendimprovement [1028]. '

Robustness-(1) The degree to which a system or component can function correctly in the presence of invalid inputs
or stressful environmental conditions [610]. (2) The quality of a program that determines its ability to continue
to perform despite some violation of the assumptions in its specification [RADC).

Safety-Freedom from those conditions that can cause death, injury, occupational illness or damage to or loss of
*

equipment or property, or damage to the environment [882C].

Security-(l) A measure of the probability that one system user can accidentally or intentionally reference or |
destroy data that is the property of another user or interfere with the operation of the system [RADC]. (2) The
extent to which access to software, data and facilities can be controlled [RADC].

'
110NUREGER-6421

- -- _______ ____ _ _. .. . = - . - .

_ _ -

1

Appendix B

Self-Descriptiveness-The degree to which a system or component contains enough information to explain its
objectives and properties (610]. !

Serviceability-The degree of ease or difficuhy with which a system can be repaired [RADC).

Simplicity-The degree to which a system or component has a design and implementation that is straightforward ;

and easy to understand [610]. |
Software products-(1) The complete set of computer programs, procedures and possibly associated documentation I

and data designated for delivery to a user [610]. (2) Any of the individual items in (1) [610].

StructurednessH1) ne ability to combine arbitrary program modules into larger modules without knowledge of
the construction of the modules (RADC]. (2) ne extent to which a system possesses a definite pattern of
organarWi ofits independent parts [RADC). (3) A formal way of dividing a program into a number of sub-
units each having a well defined function and relationship to the rest of the program [RADC].

Task-De smallest unit of work subject to management accountability. A task is a well-defined work assignment j
for one or more project members. [1074] '

Testability-(1) De degree to which a requirement is stated in terms that permit establishment of test criteria and
| perfosmance of tests to determine whether those criteria have been met [610). (2) ne degree to which a system :

or component facilitates the establishment of test criteria and the performance of tests to determine whether |
| those criteria have been met (610).

Understandability-(l) ne extent to which the purpose of the product is clear to the evaluator [RADC] (2) The
'

case with which an implementation can be understood [RADC).

Uniformity-a module should be useble uniformly (RADC].
j

Usability-(1) The case with which a user can learn to operate, prepare inputs for, and interpret outputs of a system
or component [610]. (2) The case of operation from the human viewpoint, covering both human engineering and
case of transition from current operation [RADC).

User Friendliness-the degree of ease of use of a computer system, device, program, or document. See User
Friendly in [610].

Validauon-The process of evaluating a system or component during or at the end of the development process to
determine whether it satisfies specified requirements [610].

Validity-ne degree to which software implements the user's specifications [RADC).

Vedfication-De process of evaluating a system or component to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase (610].

Verification and Validation-The process of determining whether the requirements for a system or component aret

complete and correct, the products of each development phase fulfill the requirements or conditions imposed by
the previous phase, and the final system or component complies with specified requirements [610].

i

Ill NUREG/CR-6421

_ _._

- .-_. ._ -. . --- -- - -. -- - - . .

.

CT'C FORM 336 U.S. NUCLEAR REGULATORtf CoMMIS$10N 1.GEPoRT NUMBER
1 L'c*4 nom. L^,", W*"'",Cg';;';,,8,"j* ""-,

22ci,na BIBUOGRAPHIC DATA SHEET
'

is.,i=riuctio= en the rearn; NUREG/CR-6421
3. TITLE AND SUBTITLE

A Proposed Acceptance Process for Commercial Off-the-Shelf >

.

(C0TS) Software in Reactor Applications 3. DATE REPORT PUBLISHED
MONTH

| YEAR
-

March
'

1996
i

4. FIN oR GRANT NUMBER

L1857
5. AUTHOR (S)

'

6. TYPE of REPDRT
<

G. G. Preckshot, J. A. Scott

7. PERIOD COVER ED teacius w oeres/
,

7

8. P F R NIZATIoN - NAM E AND ADDR ESS In Nnc. provkar onrosen, OHice or nepoon, v.s. Nucose norukrary commasoon, sno metsmo ecoross. H contracror, proster

Lawrence Livermore National Laboratory
P.O. Box 808, L-632
Livermore, CA 94551

0, SPONSOR
RGANIZATION - NAM E AND ADO R ESS In Nac, rype 'some as ano.,"> # sonersesor, provia, NAc o,reen, onze or Aspen, u.s. Nuemar assuerary comm,suon.

Division of Reactor Controls and Human Factors
O'ffice of Nuclear Reacto'rlRegulation

~

U.-S. Ruclear Regula, tory Commission
Washington, D. C. 20555-0001

~

10. SUPPLEMENTARY No1 ES

J. Gallagher, NRC Project Manager
11. ABSTRACT (200 morar er ess>

This paper proposes a process for acceptance of commercial off-the-shelf- (COTS) software
products for use in reactor systems important to safety. An initial set of four criteria establishes
COTS software product identification and its safety category. Based on safety category, three
sets of additional criteria, graded in rigor, are applied to approve (or disapprove) the product.
These criteria fall roughly into three areas: product assurance, verification of safety function and
safety impact, and examination of usage experience of the COTS product in circumstances
similar to the proposed application. A report addressing the testing of existing software is
included as an appendix.

13, GE Y WoRDS/DESCR:PToRS tcht more orporaer snar w#r assar researvaers e ecerme rne resore #
i3. AVAILA81UTY $T ATEMENT

Commercial Software Unlimited
Reactor Systems i4. secuRiT v cLAssmcriioN
Software Safety trou es,e,

COTS Acceptance Unclassified
(The Report >

Unclassified
16. NUMBER of PAGES

16. PRICE

esRC FORM 338 (249)

-_

.

Printed
on recycled

paper

1

Federal Recycling Program

--

,

_ _ _ _

''

NUREGICR-6421 A PROPOSED ACCEPTANCE PROCESS FOR COMMERCIAL OFT-THE-SHEIS (COTS) MARCH 1996'
SOI*nVARE IN REACTOR APPilCAT10NS

UNITED STATES SPECIAL FOURTH-CLASS Matt
POSTAGE AND FEES PALDNUCLEAR REGULATORY COMMISSION USNRC

WASHINGTON, DC 20555 0001 PERMIT NO. G-67

1 55513 531 1 1 NOFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, $300 NR OECM7g ggg713s SVCS

TDS-PDR-NU9E6
aur"-6E7 DC r?555
h t. S H I N G T 0 f4

