COMMONWEALTH EDISON COMPANY
 CALCULATION REVISION PAGE

REV:

STATUS:

QA SERIAL NO. OR CHRON NO.

DATE:

PREPARED BY:
DATE:
REVISION SUMMARY:

ELECTRONIC CALCULATION DATA FILES REVISED:
(Name ext/size/date/hour: min/verification method/remarks)

DO ANY ASSUMPTIONS IN THIS CALCULATION REQUIRE LATER VERIFICATION? YES NO
REVIEWED BY: DATE:
REVIEW METHOD:
COMMENTS (C OR NC):
APPROVED BY:
DATE:
 CALCULATION TABLE OF CONTENTS

CALCULATION NO. 9200 -E $\$$-S PROJECT NO. $9200-00$ (10004-002) | PAGE NO. 89.19

Purpose

Check functional status of Beam B4 in Quad Cities Unit 1 South-East (SE) corner room. See the background and methodology section for more detail.

References

1. AISC Manual 6th edition
2. S\&L Dwg. B-273 Rev G Quad Cities Unit 1
3. ComEd calc No. QDC-0020-S-0055 Rev 0
4. AISC Manual 9 the edition
5. AISC LRFD Manual 2nd edition
6. ComEd Calc No. QDC-0020-S-0055 Rev 0 p. 9 of 10
7. LMS Run ID SQ1SE Dated 8/26/91 16:42
8. LMS Run Dated 04/03/96 10:58:58
9. Report entitled "Sargent \& Lundy Structural Design Standard E5.0 Support for Increases in Allowable Stress Above Code Defined Limits", SDS E5.0 back up calculation

Background and Methodology

In Quad Cities Unit 1 (QC1) SE corner room LMS analysis (Ref 7) beam B4 has a maximum interaction coefficient (IC) of 2.09. Subsequent refined manual calculations (Ref. 3 p. 9 of 10) indicate that the beam IC can be reduced to 1.137 using plastic section modulus and by reducing the torsional warping stresses on the beam.

The original LMS analysis as well as the later nianual calculations conservatively ignore the presence of a wide flange column at $8^{\prime}-5^{\prime \prime}$ from the west end of the beam. This column will be included in the present assessment of the functional status of beam B4.

It will also be demonstrated, using Ref. 5, that the beam section can develop its plastic capacity.

```
CALCULATION NO.9200-E$-S |PROJECT NO. 9200-00 (10004-002) |PAGE NO. 89. 20
```


Calculations

24WF76 Properties From AISC 6 th edition Manual (Ref 1):

$$
\text { bf }=8.985 \cdot \mathrm{in} \quad \text { tf }=0.682 \cdot \mathrm{in}
$$

$\mathrm{d}=23.91 \cdot \mathrm{in}$
tw $=0.440 \cdot$ in
$A=22.37 \cdot \mathrm{in}^{2}$
$\mid x=2096.4 \cdot$ in 4 $S x=175.4 \cdot$ in 3
$\mathrm{ly}=76.5 \cdot \mathrm{in}^{4}$
$S y=17 \cdot \mathrm{in}^{3}$
$r y=1.85 \cdot$ in
Fy $=36 \cdot \mathrm{ksi} \quad$ Yield Stress
From Ref. 5
$Z x=200 \cdot \mathrm{in}^{3}$
Plastic Modulus
Note that major axis properties of beam has not changed significantly between AISC 6th edition manual and LRFD 2nd edition manual.

From p. 4-18, Ref. 5
$L r=23.4 \cdot \mathrm{ft} \quad L p=8 \cdot \mathrm{ft}$
$\mathrm{Mr}=\frac{343 \cdot \text { kip } \cdot \mathrm{ft}}{0.9} \quad$ Moment Resistance at unbraced length Lr
$M p=Z x \cdot F y \quad M p=600 \cdot$ kip $\cdot \mathrm{ft}$
$\mathrm{Lb}=13.19 \mathrm{ft} \quad$ Beam Unbraced Length (Ref 2)

From table 4-1 of Ref 5, for beam B4 with lateral brace at the major load point:

$$
\mathrm{Cb}=1.67
$$

Using equation F1-2 of the LRFD Specification (Ref 5):

$$
\begin{aligned}
& M n 1=C b \cdot\left[M p-(M p-M r) \cdot \frac{L b-L p}{(L r-L p)}\right] \\
& M n 1=878.81 \cdot \mathrm{kip} \cdot f t \\
& M n=600 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \left.M n=\min \binom{M n 1}{M p}\right)
\end{aligned}
$$

The above calculation demonstrates that beam B4 can develop full plastic capacity in major axis bending.

CALCULATION NO. 9200-EQ-S |PROJECT NO. 9200-00 (10004-002) |PAGE NO. 89.22
REVISION NO.
PREPARED BY: SJChhabradATE: $4 / 3 / 96$ | REVIEWED BY: \square lautato DATE: $4210=$

To account for the presence of the column $8^{\prime}-5^{\prime \prime}$ from west end of the beam, the column was included in the LMS model as column C1. A run was made with only the tank load of 94.8 kips (Ref. 8). No other loads were applied. The column reaction in this run is 35 kips.

Note that this column was added with the heat exchanger tank drained of 1620 gallons of water (Ref. 2) and will be effective in resisting this water weight as well as the seismic excitation loads of the tank. Therefore, the lower bound for the column reaction under SSE can be calculated as:

CALCULATION NO. 9200-E¢-S	\| PROJECT NO. 9200-00 (10004-002)	\| PAGENO. 89.23
REVISION NO.	1	
PREPARED BY: S J Chabra DATE: $4 / 3196 \mid$ REVIEWED BY: Clauniodate: 413170		

The major axis moment diagram for beam B4 from the LMS analysis without the column C1 is derived below (Ref 7) (critical load case WESTSSE). These stresses are at 21 equidistant points along the beam span:

CALCULATION NO. 9200-E¢-S	\| PROJECT NO. 9200-00 (10004-002)	\| PAGE NO.	89.24
REVISION NO. \|	1		
PREPARED BY: 5 J Chhabra DATE: $4 / 3 / 96$ \|REVIEWED BY: Laivodate: $4 / 3 / 4$			

$z=0 . f t, 0.001$ L.. L Left to Right (E to W)

B4 Moment Mx Diagram without Column C1

Find the moment diagram of beam B4 due to column reaction:

$$
\begin{aligned}
& L_{R}=8 \cdot \mathrm{ft}+5 \text { in } \quad L_{L}=L-L_{R} \quad \text { Load location; left and right } \\
& P=R y _C 1
\end{aligned}
$$

Reactions at left and right ends

$$
\begin{aligned}
& R_{L}=P \cdot \frac{L_{R}}{L} R_{R}=P \cdot \frac{L_{L}}{L} \\
& R_{L}=3.68 \cdot \mathrm{kips} R_{R}=6.91 \cdot k \mathrm{kjps} \\
& M x_{-} C 1(z)=\text { if }\left\{z=L_{L},-R_{L} \cdot(z),-R_{R} \cdot(L-z)\right]
\end{aligned}
$$

CALCULATION NO. 9200-E6-S	\| PROJECT NO. 9200-00 (10004-002)	\|PAGE NO. 89.25
REVISION NO. I	1	
PREPARED BY: \qquad	E: $4 / 3 / 96$ \| Reviewed by:	重 DATE: 4

B4 Moment Mx Diagram due to Column C1 Reaction

The superimposed moment diagram for beam B4 with column C1 in place:

$$
\operatorname{Mxs}(z)=M x(z)+M x _C 1(z)
$$

B4 Moment Mx Diagram with Column C1
$M_{\max }=\operatorname{Mxs}(11 \cdot \mathrm{ft}+0.75 \cdot \mathrm{in})$
$M_{\max }=525.59 \cdot \mathrm{kip} \cdot \mathrm{ft}$

Max moment is at load location (where B8 frames into B4)

Revise the beam interaction calculation on p. 9 of 10 of Ref. 3 using the reduced major axis bending moment calculated (also add the direct axial load component from Ref. 7 result):

$$
\begin{aligned}
& \text { WSSEFIC }=\frac{\frac{M \max }{2 \mathrm{x}}}{34.2 \cdot \overline{\mathrm{ksi}}}+\frac{(0.54 \cdot 11.7 \cdot \mathrm{ksi}+0.8 \cdot \mathrm{ksi}) \cdot \frac{18.4}{1.5 \cdot 18.4}}{34.2 \cdot \mathrm{ksi}}+\frac{0.4 \cdot \mathrm{ksi}}{23.47 \cdot \mathrm{ksi}} \\
& \text { WSSEFIC }=1.08
\end{aligned}
$$

The conservatism in the calculation above are:

1. Use of 50 psf live load in LMS analysis
2. Loads based on a de-coupled seismic model of the heat exchanger tank and the piping.
3. Allowable stresses limited to 0.95Fy for bending and axial stresses
4. Specified minimum yield strength of the member is used.

Therefore, based on Ref 9 , up to 10\% increase in the allowable stress is permissible. Thus the 8\% overstress calculated above is acceptable.

Conclusion

Beam B4 in Quad Cities Unit 1 South-East (SE) corner room is functional.
\square
REVISION NO. | | |

B10R Cheek Plate Connection

Purpose:

Determine stress interaction levels in cheek plate connection at right end of beam B10 using functional allowables. Use torsion at the connection based on the current hanger and gallery attachment loads. Connection ICs that are critical in LMS analysis will be addressed.

References:

1 LMS RUNID SQ2SE Dated 8/22/91 for Loads
2. Calc 8868-19-Q1-SE Rev 0 for derivation of lateral and torsional load capacity of the cheek plate.
3. AISC Manual 6th edition for beam properties
4. Vectra letter COE-348-001 Dated Dec 8, 1993 from Robert G. Carr to C. N. Petropoulos (ROL for Hanger M-1811-18)
5. Calc 8868-19-Q2-SE Rev 0 for gallery attachment loads.
6. Walkdown Info. on gallery attchements dated 4/1/96
7. Report entitled "Sargent \& Lundy Structural Design Standard E5.0 Support for Increases in Allowable Stress Above Code Defined Limits", SDS E5.0 back up calculation

Methodology

Ref 2 SSE allowable equations modified to use the plastic section modulus will be used to generate the functional capacities. Torsional loads on the beam will be based upon the current data on hanger and gallery attachment loads.

Solution

Fy $=36 \cdot \mathrm{ksi} \quad$ Yield Stress
$\mathrm{Fb}=0.95 \cdot \mathrm{Fy} \quad$ Allowable Bending stress
$L=6.5$ in \quad Cheek plate Length (Ref 2)
$D=17$ in \quad Cheek plate Depth (Ref 2)
$t=0.375$ in \quad Cheek plate Thickness (Ref 2)
$\mathrm{L} 1=\mathrm{L}-0.875$ in $\mathrm{L} 1=5.62 \cdot \mathrm{in} \quad$ Cheek plate length less beam setback
Functional Allowables based on 0.95 Mp (Mp refers to the plastic moment) by modifying old caic (see derivation in Ref 2):

Cheek Plate Functional Allowables:

Axes: $x=$ WF major axis; $y=$ WF minor axis; $z=$ WF axial axis

$$
\begin{array}{ll}
\text { Rxop }=\frac{\mathrm{Fb} \cdot \mathrm{D} \cdot \mathrm{t}^{2}}{6 \cdot(\mathrm{~L}-0.5 \cdot \mathrm{~L})} \cdot 1.5 & \text { Rxop }=5.54 \cdot \mathrm{kips} \\
\text { Mzop }=\frac{\mathrm{Fb} \cdot \mathrm{D}^{2} \cdot \mathrm{t}^{2}}{24 \cdot(\mathrm{~L}-0.5 \cdot \mathrm{~L} 1)} \cdot 1.5 & \text { Mzop }=1.96 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

$$
\text { Ryop }=\frac{2 \cdot F b \cdot D^{2} \cdot t}{6 \cdot(\mathrm{~L}-0.5 \cdot \mathrm{~L} 1)} \cdot 1.5 \quad \begin{aligned}
& \text { Simila: to Rxop; based on max stress location at the } \\
& \text { same point as for } R x \& M z \text {; use two times as both plates } \\
& \text { are effecti,e }
\end{aligned}
$$

$$
\text { Ryop }=502.57 \cdot \mathrm{kips}
$$

COMMONWEALTH EDISON COMPANY

CALCULATION NO. $9200-\mathrm{E}_{\phi}-\mathrm{S}$ | PROJECT NO. $9200-00$ (10004-002) | PAGE NO. 89.29
REVISION NO.

Under WESTSSE (critical load comb from LMS) the right reactions are:

$$
\begin{array}{lll}
R x=2.8 \cdot \mathrm{kips} & \mathrm{Ry}=40 \cdot \mathrm{kips} & \mathrm{Rz}=.0016 \cdot \mathrm{kips} \\
M x=0 \cdot \mathrm{kip} \cdot \mathrm{ft} & M y=0 \cdot \mathrm{kip} \cdot \mathrm{ft} & \mathrm{Mz}=2.0 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

LMS data (ref 1) p. 46 indicates that a Ry load of 4.20 kip is applied on this beam from hanger $\mathrm{M}-1811-18$. The revised haıiger load data (refs 4) shows a max Ry load of 3.35 kips . Thus the Ry reaction at right support can be reduced by:

$$
\begin{aligned}
& \delta \mathrm{Ry}=\frac{(4.20-3.35) \cdot \mathrm{kips}}{13.69 \cdot \mathrm{ft}} \cdot 8.81 \cdot \mathrm{ft} \\
& \mathrm{Ry}=\mathrm{Ry}-\delta \mathrm{Ry} \quad \delta \mathrm{Ry}=0.55 \cdot \mathrm{kips} \\
& \text { Fvop }=\frac{0.95 \cdot \mathrm{Fy}}{\sqrt{3}}
\end{aligned}
$$

Determine Reduced Torsion (use Ref 1 loads, except take M1811-18 loads from Ref 4)

Torsional Loads on the Beam:

$$
\begin{array}{ll}
\text { Vertical Ry reaction } & \text { Eccentricity of gallery } \\
\text { from gallery } & \text { load wrt flange center } \\
\text { attchernnets (Ref 5) } & \text { line (Ref 6) }
\end{array}
$$

CALCULATION NO. 9200-E¢-S	\| PROJECT NO. 9200-00 (10004-002)	IPAGE NO. 89.30
REVISION NO. \|	1	

	Torsion	LMS ID	Location of load from Left end		
Mza $=$	$\mathrm{Ryg}_{1} \cdot$ ecc $_{1}$ $\mathrm{Ryg}_{2} \cdot \mathrm{ecc}_{2}$ $\mathrm{Ryg}_{3} \cdot \mathrm{ecc}_{3}$ 0.063 kip. ft	M-GALL1 M-GALL2 M-GALL4 M1811-18	Lc $=$	$\begin{aligned} & 4.98 \\ & 6.33 \\ & 8.83 \\ & 8.81 \end{aligned}$	ft

Torsional reaction at the right end of the beam:

$$
\mathrm{Mzr}=\sum_{\mathrm{i}=1}^{3} \mathrm{Mza}_{1} \cdot \frac{\mathrm{Lc}_{\mathrm{i}}}{13.69 \cdot \mathrm{ft}}+\left|\mathrm{Mza}_{4} \cdot \frac{\mathrm{Lc}_{4}}{13.69 \cdot \mathrm{ft}}\right| \quad \mathrm{Mzr}=0.11 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Compute Cheek plate ICs.

$I C_{-} \mathrm{CHK}_{-} \mathrm{BNDO}=\frac{R x}{R x o p}+\frac{\mathrm{Mzr}}{\mathrm{Mzop}}+\frac{R y}{R y o p}$
IC_CHK_BNDO $=0.64$
Fvop $=\frac{0.95 \cdot \mathrm{Fy}}{\sqrt{3}}$
に_CHK_SHRO $=\frac{R x}{\text { Fvop } \cdot \bar{D} \cdot \mathrm{t}}+\frac{\text { Mzr }}{\left(\frac{\text { Fvop } \cdot D^{2} \cdot t}{4}\right)}+\frac{R y}{\text { Fvop } \cdot \bar{D} \cdot \overline{2}} \quad$ IC_CHK_SHRO $=0.18$

CALCULATION NO. 9200-Ed-S
| PROJECT NO. 9200-00 (10004-002) | PAGE NO.
89.31

REVISION NO. | | |
PREPARED BY: S J Chhatria DATE: $4 / 3 / 96 /$ REVIEWED BY: $/ 4 / 2 / 90$

Web Functional Allowables:

21WF55 properties from AISC 6th edition

$$
\begin{aligned}
& \text { tw }=0.375 \text { in } \quad k=1.0625 \text { in } \\
& d=20.80 \cdot \text { in } \quad t f=0.522 \cdot \text { in } \quad L 1=5.62 \cdot \text { in }
\end{aligned}
$$

Mzwebop $=2 \cdot(\mathrm{~L} 1+6 \cdot \mathrm{tw}) \cdot \frac{\mathrm{tw}^{2}}{6} \cdot \mathrm{Fb} \cdot 1.5 \quad$ Mzwebop $=1.58 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Rxwebop $=\frac{\text { Fb } \cdot(L 1+6 \cdot t w) \cdot \frac{t w^{2}}{6}}{\left(\frac{d-2 \cdot k}{4}-\frac{D}{8}\right)} \cdot 1.5 \quad$ Rxwebop $=3.72 \cdot k i p s \quad \begin{aligned} & \text { Note: Web bending span } \\ & \text { reduced from } d-2 t f \text { to } d-2 k .\end{aligned}$
Assume that a web width of $D+2 * w$ Size can be mobilized to resist Ry.
See sketch. Use Ry lever arm of $L+w S i z e$:

REVISION NO.
wSize $=\frac{5}{16}$. in
$D e=0+2 \cdot$ wsize $L e=L+$ wSize

Rywebop $=\frac{\left(\frac{D e^{2} \cdot t w}{6}\right) \cdot \mathrm{Fb}}{\text { Le }} \cdot 1.5$
Rywebop $=146.2 \cdot$ kips

Fvop $=\frac{0.95 \cdot \text { Fy }^{2}}{\sqrt{3}}$

Compute Web ICs
$\frac{R x}{\text { Rxwebop }}=0.75$
$\frac{\text { Ry }}{\text { Rywebop }}=0.27$

IC_WEB_BNDO $=\frac{\mathrm{Rx}}{\mathrm{Rxwebop}}+\frac{\mathrm{MzT}}{\text { Mzwebop }}+\frac{\mathrm{Ry}}{\text { Rywebop }} \quad \quad$ IC_WEB_BNDO $=1.09$
Fvop $=\frac{0.95 \cdot \text { Fy }}{\sqrt{3}} \quad \frac{R x}{R x w e b o p}=0.75$
Approx...

$$
\text { IC_WEB_SHRO }=\frac{R}{2 \cdot L 1} \cdot \frac{R x}{\text { Fvop } \cdot t w}+\frac{M z r}{\left(F v o p \cdot(d-2 \cdot k) \cdot \overline{L 1} \cdot \frac{t w)}{}+\frac{R y}{\text { Fvop } \cdot D \cdot \overline{t w}} \quad \text { IC_WEB_SHRO }=0.35\right.}
$$

Quad Cities Nuclear Power Station CombEd
22710 206th Avenue North Cordova, IL 61242

Fax Number 309-654-2650

Date: $4-1$

To: S. CHAABR.A

Extension: 6322
Location: 25

From: R.Scovi/le
Subject: \qquad
\qquad
\qquad

CALCULATION NO. 9200 -E ϕ-S \quad PROJECT NO. $9200-00$ (10004-002) | \quad PAGE NO. 89.33
REVISION NO. | | |
PREPARED BY: 5 J Chhabra DATE: $4 / 3 / 961$ REVIEWED BY: $/ 2 \operatorname{loL} \mathrm{~L}$ DATE: $4 \geq 196$

Conclusion

Following are the connection ICs for the two conditions investigated:
IC_CHK_BNDO $=0.64$
IC_CHK_SHRO $=0.18$
IC_WEB_BNDO $=1.09$
IC_WEB_SHRO $=0.35$

The conservatism in the calculation above are:

1. Use of 50 psf live load in LMS analysis
2. Loads based on a de-coupled seismic model of the heat exchanger tank and the piping.
3. Allowable stresses limited to 0.95Fy for bending and axial stresses
4. Specified minimum yield strength of the member is used

Theretore, based on Ref $\%$, up to 10% increase in aliowables is permissible. Thus the 9% overstress shown above is acceptable.

5420 Otd Orchard Road, Skokie. illinois 60077-1030

Titie \qquad U-Z "B"RHR (SOUTHEAS-)

Project Initiaks Checkec \qquad Shegt \qquad

GALLEKY ATAAGY FRON LEFT ENK a $410^{\prime \prime} 44 l^{3 / 4} 4^{\prime 2} E$
 eator 840 - W $\xi^{\prime} M=1811-18$

VERIFY ECLENTEICITIES

GALLAKY 5BO $\mathrm{Minll} / \mathrm{M}$
(M)

