

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

June 18, 1995

LICENSEE: Consumers Power Company

FACILITY: Palisades Nuclear Plant

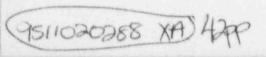
SUBJECT: PALISADES REACTOR VESSEL ANNEALING MEETING SUMMARY

A meeting was held at NRC Headquarters on June 6, 1995, between Consumers Power Company and the NRC to discuss the Palisades reactor vessel annealing. This was the first working level meeting between the staff and the Palisades Annealing Team. During the meeting, Palisades provided an overview of its annealing plan. In addition, the schedule and content of Palisades' application was discussed.

A list of attendees is provided as Attachment 1. Attachments 2 and 3 are the handout and slides presented at the meeting, respectively. Attachment 4 is a schedule of upcoming meetings related to the Palisades annealing and the Marble Hill demonstration project.

BACKGROUND

The staff issued a safety evaluation (SE) on April 12, 1995, for the Palisades plant which concluded that the margins of safety intended by the pressurized thermal shock (PTS) rule will be satisfied through the 14th refueling outage, scheduled for late 1999. In accordance with 10 CFR 50.61, 3 years prior to exceeding the screening criteria the licensee shall submit a plant-specific analysis to determine if operation beyond the screening criteria is acceptable. As stated in the April 12 SE, submission of an annealing plan will be an acceptable alternative to a plant-specific analysis.


PRESENTATION/DISCUSSION

Consumers Power began its presentation by reviewing the overall schedule of its annealing project. The contract to anneal the reactor vessel was awarded to Westinghouse. Consumers plans a four-phase project: Phase (I) conceptual design, Phase (II) detailed design, Phase (III) construction, and Phase (IM) implementation. The timeframes associated with the phases are provided in Attachment 3. Consumers plans on submitting an Application for Approval for Thermal Annealing (AFATA) at the end of Phase I, scheduled for October 1, 1995; select portions of the application may be submitted earlier as available. Consumers is requesting NRC approval of the AFATA by June 1, 1996, to support authorization for the construction phase scheduled to begin October 1996. Currently, Consumers has only been authorized by its senior management to proceed with Phase I. The staff questioned the existing schedule and the availability of the Marble Hill results prior to completion of NRC's review.

Consumers presented a technical overview of the annealing method. They used Draft Regulatory Guide-1027, "Format and Content of Application for Approval for Thermal Annealing of Reactor Pressure Vessels," to present an outline of

Contact: Marsha Gamberoni, NRR 415-3024

the Thermal-Annealing Operating Plan. The outline is provided in Attachment 2. Significant technical issues discussed during this portion of the meeting are presented below.

General Overview of Method/Expected Recovery

The vessel will be annealed using an indirect gas heating system. General sketches are provided in Attachment 3. Ductwork and exhaust ventilation will be routed through the equipment and/or escape hatch. Inside the reactor vessel, there will be five heating zones with two independent burners pervione. Palisades currently plans on a controlled thermal profile during heating with a 7-day soak at 850°f and a 25°f/hr cooldown. Temperature inside the rig at the source will be approximately 1400°f. The ductwork route will be walked down during this outage which began on May 22, 1995.

Consumers predicts approximately an 80% or greater recovery from the annealing; however, it estimates only 40% recovery is required to reach its target of 2011, which includes recapturing the construction period:

Demonstration Project/Plant Comparison

A demonstration project is scheduled for April 1996 at Marble Hill, a 4-loop Westinghouse plant. This demonstration project is being performed independent of the Palisades annealing program; however, it is expected to provide information useful to the Palisades project. Palisades is a Combustion Engineering plant with four inlet nozzles and two outlet nozzles. A sketch with dimensional comparisons of the Palisades and Marble Hill plants is provided in Attachment 3. Additional design comparisons are also provided in Attachment 3 tables. The Palisades reactor vessel is supported on two inlet nozzles and one outlet nozzle. The Marble Hill reactor vessel is supported on two inlet nozzles and two outlet nozzles.

A comparison of preliminary instrumentation locations between Palisades and Marble Hill is provided in Atta.hment 3.

Radiation Protection

Shielding of primary sources will include the reactor vessel, the upper guide structure, and the core support parrel. The upper guide structure will be air lifted with temporary shielding and will be placed in the core barrel. These components will be shielded by a wall with a top installed prior to draining. Shielding will be placed around the reactor vessel and the heating system will be installed during reactor cavity draindown. Dose rates are expected to be around 50 mrem/hr on the refueling deck (general area) and 500 mrem/hr in the cavity.

Total dose for the project is estimated at 215 person-rem. This is comparable to the annual dose for the plant. The most dose-intensive activity involves installation of instrumentation around the reactor. A summary of dose estimates/activity is provided in Attachment 3. The estimates provided will be confirmed during this outage.

Structural Issues

The bioshield temperature will be monitored during normal operation following the installation of instrumentation this outage. The temperature limit at the bioshield is approximately 200°F. The shield is cooled by embedded cooling coils. Options for additional cooling during the annealing include augmented air cooling of the area and chilled water circulating through the embedded cooling coils.

Mechanical Issues

An initial inservice inspection of components will be conducted as part of the efforts. Thermal stress analysis will be performed using the AMSYS computer code. The analysis will include the reactor vessel, nozzles, attached piping and other discontinuities.

Surveillance Capsules

During the refueling outage which began on May 22, 1995, Palisades will install two new capsules which will include specimens of weld wire heats W5214, 348009, and 27204, as well as standard reference material. These will be placed in accelerated locations which have a lead factor of 10. One capsule will be removed during the fall 1997 refueling outage. One group of the specimens from this capsule will be Charpy tested following removal. A second group will be Charpy tested following annealing, and a third group will be tested after being reembrittled. The second capsule will be removed in 1998.

SUMMARY

In preparation for the review of the AFATA, future meetings will include a trip to the Palisades plant by NRC staff during this outage and a trip to the Marble Hill site which is currently scheduled for late August. Individual meetings will be held between the staff and Palisades Annealing Team to discuss technical issues involving specific review disciplines. If there are any questions regarding this meeting summary, contact Marsha Gamberoni at (301) 415-3024.

Maishar Schen

Marsha Gamberoni, Project Manager Project Directorate III-1 Division of Reactor Projects - III/IV Office of Nuclear Reactor Regulation

Attachments: As stated (4)

cc w/att: See next page

cc:

Mr. Thomas J. Palmisano Plant General Manager Palisades Plant 27780 Blue Star Memorial Highway Covert, Michigan 49043

Mr. Robert A. Fenech Vice President, Nuclear Operations Palisades Plant 27780 Blue Star Memorial Highway Covert, Michigan 49043

M. I. Miller, Esquire Sidley & Austin 54th Floor One First National Plaza Chicago, Illinois 60603

Mr. Thomas A. McNish, Secretary Consumers Power Company 212 West Michigan Avenue Jackson, Michigan 49201

Judd L. Bacon, Esquire Consumers Power Company 212 West Michigan Avenue Jackson, Michigan 49201

Regional Administrator, Region III U.S. Nuclear Regulatory Commission 801 Warrenville Road Lisle, Illinois 60532-4351

Jerry Sarno Township Supervisor Covert Township 36197 M-140 Highway Covert, Michigan 49043

Office of the Governor Room 1 - Capitol Building Lansing, Michigan 48913

U.S. Nuclear Regulatory Commission Resident Inspector's Office Palisades Plant 27782 Blue Star Memorial Highway Covert, Michigan 49043

Palisades Plant

Nuclear Facilities and Environmental Monitoring Section Office Division of Radiological Health Department of Public Health 3423 N. Logan Street P. O. Box 30195 Lansing, Michigan 48909

Gerald Charnoff, Esquire Shaw, Pittman, Potts and Trowbridge 2300 N Street, N. W. Washington DC 20037

Michigan Department of Attorney General Special Litigation Division 630 Law Building P.O. Box 30212 Lansing, Michigan 48909

Mr. Dennis Harrison U.S. Department of Energy NE 451 Washington, DC 20585

Mr. Kurt M. Haas Plant Safety and Licensing Director Palisades Plant 27780 Blue Star Memorial Highway Covert, MI 49043

MEETING ATTENDEES

JUNE 6, 1995

NAME	AFFILIATION
Marsha Gamberoni	NRC
Jack Strosnider	~RC
Keith Wichman	NRC
Robert Hermann	NRC
Mike Parker	NRC
Kamal Manoly	NRC
Cynthia Carpenter	NRC
Ken Battige	NRC
Chen Tan	NRC
Robert Rothman	NRC
David Shum	NRC
Cayetano Santos, Jr.	NRC
Elinor Adensam	NRC
Glenn Kelly	NRC
Ed Hackett	NRC
John Jacobsen	NRC
Barry Elliot	NRC
Glenn Dentel	NRC
Carolyn Fairbanks	NRC
John Tsao	NRC
Andrea Wilford	NRC
Lawrence Kokajko	NRC
Gilbert Millman	NRC
Lambros Lois	NRC
Igbal Ahmed	NRC
Alfred Taboada	NRC
Micheal Vassilaros	NRC
Charles Hinson	NRC
Dick Smedley	CPCo
Jack Hanson	CPCo
Ken Powers	CPCo
John Kneeland	CPCo
George Goralski	CPCo
William Beckius	CPCo
William Doolittle	CPCo %
David Howell	Westinghouse
Rick Rishel	Westinghouse
Brad Maurer	Westinghouse
Glenn Campbell	Cooperheat
William Server	ATI Consulting
Jim Nakos	DOE
John Warren	DOE
Dennis Harrison	DOE
Lynn Connor	STS, Inc.
R. Borsum	BWNT
Bob Steele	MPR Associates
Nancy Chapman	Bechtel
	Declice

CONSUMERS POWER/NRC VESSEL ANNEALING MEETING JUNE 6, 1995 Rockville, Maryland

AGENDA

	TOPIC	RESPONSIBLE	DURATION
1.	INTRODUCTION	Consumers	15 minutes
	Purpose of Meeting		
	Overall Schedule		
2.	TECHNICAL OVERVIEW	Consumers	15 minutes
	Annealing Method Summary		
	Recovery/Re-Embrittlement Summary		
3.	OPEN DISCUSSION ON AFATA CONTENT	NRC &	2 Hours
	Discuss Elements of the Attached AFATA Content Summary Which are of Particular Interest/Concern	consumers	
		100	
4.	CLOSURE	NRC & Consumers	30 Minutes
	Identification of NRC AFATA Reviewers		
	Timing of AFATA Submittal		
	Action Items		
	Future Meetings		

	THE	RMAL ANNEALING OPERATING PLAN	COMMENTS
1	Identif a. b. c. d. e. f.	ication of general considerations Identify reactor Provide reasons for annealing Provide expected remaining operating life after annealing Describe operating history of reactor (power-time- temperature history) Specify reactor vessel beltline temperatures during reactor operation Describe results of ongoing surveillance program (# of specimens, initial values for RT _{not} & USE, shifts of RT _{not} and USE, also pre-anneal RT _{not} and USE values	No deviations from the guidance of DG-1027 are proposed.
2.	Provide a. b. c.	Detailed description of the reactor vessel Detailed description of the reactor vessel Identify parts of vessel to be annealed Include all vessel data used for determining the Thermal Annealing Operating Plan, the proposed inspections and tests, and the programs for recovery and re-embrittlement. For each heat of material in the reactor vessel beltline region include: material compositions mechanical properties fabrication history and techniques NDE to results (in-shop) (ISI) Neutron fluence exposures if available, RT _{meto} (NB-2300), USE, (E185) material heats of base metal and weld metal to be used for measuring % recovery & subsequent surveillance purposes to be identified	No deviations from the guidance of DG-1027 are proposed.
	d	All vessel dimensions reported (diameter, wall thickness, cladding thickness, nozzle dimensions, flange dimensions, transition section dimensions, gaps between vessel & concrete structures, internal permanent structures & insulation)	*
	•	Identify/describe attachments to reactor that could be affected by annealing operations, and expected effects, such as changes in properties of vessel insulation, effects of thermal growth of reactor vessel sliding support structures, and overheating of instrumentation and attachments	

	THI	ERMAL ANNEALING OPERATING PLAN	COMMENTS
,		pment, components, and structures affected by thermal aling Description of all equipment, structures, and	No deviations from the guidance of DG-1027 are proposed.
		components that could be affected, either thermally or mechanically, by annealing operation and the expected effects (degradation of biological shield, effects of vessel growth, distortions on attached piping)	
	b.	Identify significant thermal and mechanical loadings projected for each item and actions proposed to avoid damage from these loadings	
	C.	Description of biological shield - dimensions - materials - irradiation exposures	
		 unique features cooling provisions properties design temperature eliminations 	
	d.	- justification for exceeding design temperatures Description of piping	
		- material types - dimensions - restraints - design requirements (temperature, bending stress or strain limitations) identified - NDE results (ISI)	
	е.	Physical descriptions of other equipment or instrumentation that could be affected by the thermal annealing	
	f.	Description of overall containment as it relates to core removal and storage as well as annealing - Special requirements should be described in detail (storage of core internals)	*
	Therr	mal annealing operating conditions	No deviations from the
	8.	Description of proposed annealing parameters (temperatures, times, HU and CD schedules)	guidance of DG-1027 are proposed.
	b.	Identify limitations and permitted variations in these conditions (axial, azimuthal, and through-wall gradients, permissible temperature profiles in the HU, CD, and steady state heating)	
	c.	Describe test and analyses used to establish these annealing parameters	

	THERMAL ANNEALING OPERATING PLAN	COMMENTS
	Description of annealing method, instrumentation, and procedures a. Describe method of heating vessel in detail b. Describe method of instrumentation in detail that permits on-line measurements of the temperatures at the locations needed to assess the entire temperature profile of the vessel, and adjacent structures and equipment; of the stress profiles including thermal gradients in the axial, azimuthal, and through thickness directions during all transient and steady-state conditions of the annealing operation c. Identify expected instrumentation accuracies, and reliability d. Describe in detail the operational steps to be taken during the annealing operation including QA measures - identify controls and how applied - installation and removal of heat treatment equipment - procedures to be used to control radioactive contamination - drainage and drying of vessel prior to annealing - precautions to preclude cooling water leakage into vessel during annealing	
	Proposed annealing equipment a. Description of equipment - heating apparatus - general plant layous - controls and instrumentation including redundancy controls - equipment for measuring and recording the temperatures and temperature profiles - support equipment - ALARA provisions - protection of instruments and equipment from temperature effects during annealing	No deviations from the DG-1027 guidelines are proposed
7.	Thermal and stress analyses a. Detailed thermal and structural analyses to establish appropriate time and temperature profiles b. Specify the limiting parameters established by analyses, including the highest temperature, highest stress, and limiting HU and CD rates	No deviations from the DG-1027 guidelines are proposed

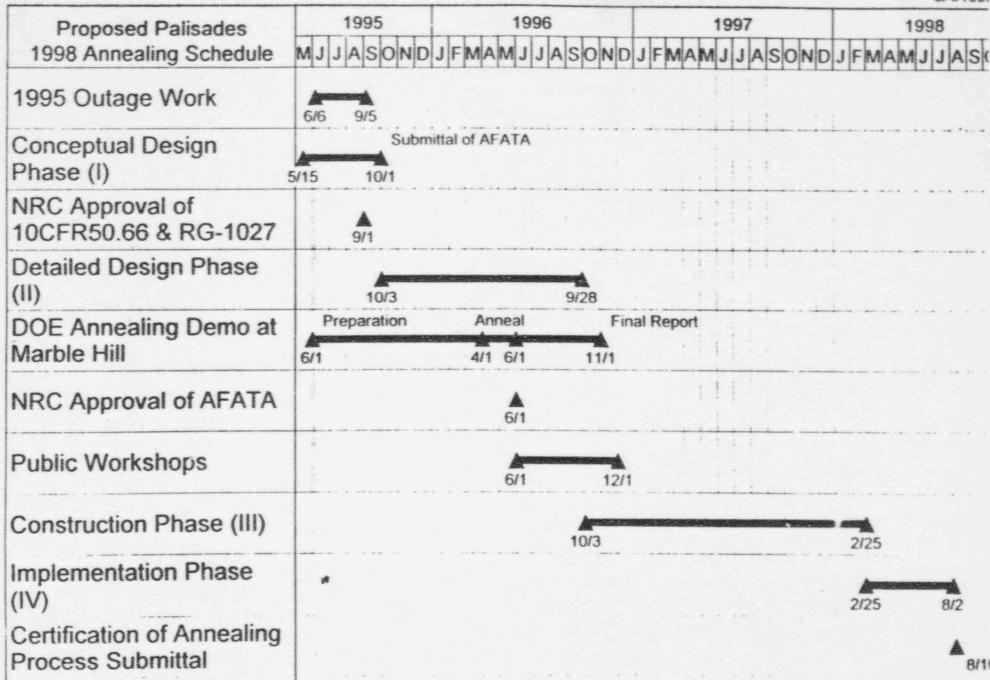
	THERMAL ANNEALING OPERATING	PLAN COMMENTS
8.	Proposed annealing conditions; identify proposed conditions (time, temperature, HU and CD rastresses and strains)	
9.	ALARA Considerations a. Description of steps to minimize occur exposure b. Description of equipment and proced monitoring and control of airborne rai particles c. Identification of precautions to avoid exposure from radiation streaming w internals are being removed and store reactor coolant is removed from that when the heating equipment is being out of the vessel d. Description of steps to minimize export radioactive waste processing, radioactive waste processing, radioactive waste	excessive hen the reactor ed, when the reactor, and moved into and osure due to ctive materials
10.	Summary of the Thermal Annealing Operation	No deviations from the DG-1027 guidelines are proposed.

RE	QUALIFICATION INSPECTION AND TEST PROGRAM	COMMENTS
1.	Identification of the measurements and locations that will be used to monitor the annealing process and to verify that the conditions of the Operating Plan are not exceeded; describe measurement type, the number of measurements to be made for each component, measurement sensitivity, measurement frequency, and recording method	Due to ALARA concerns and physical access constraints, measurements will be optimized such that the proposed annealing conditions evaluated in the AFATA are not exceeded and the annealing process can be adequately monitored. The intent of DG-1027 will be achieved.
2.	Description of the inspection program to affirm that the annealing operation has not damaged the reactor vessel or related equipment, components, or structures; describe the type and number of examinations, the locations of the examinations, the acceptance criteria, qualification requirements, and reporting requirements	No deviations from the DG-1027 quidelines are proposed.
3.	Description of the test program to demonstrate the effectiveness of the annealing operation, and to assure that the reactor vessel, attached piping and appurtenances, and adjacent concrete have not been degraded; describe the type and number of tests, the locations/components of the tests, the purpose of the tests, the acceptance criteria, qualification requirements, and reporting requirements	No deviations from the DG-1027 guidelines are proposed.

	FRACTURE TOUGHNESS RECOVERY AND RE- EMBRITTLEMENT ASSURANCE PROGRAM	COMMENTS
1.	Description of the methods to be used for quantifying the percent recovery of the RT _{net} and Charpy USE values	No deviations from the guidance of DG-1027 are proposed.
2.	Description of the methods to be used for estimating the re- embrittlement rate of the RT _{net} and Charpy USE	No deviations from the guidance of DG-1027 are proposed.
3.	Description of the methods to be used for monitoring the re- embrittlement rate of the RT _m and Charpy USE during subsequent plant operation	No deviations from the guidance of DG-1027 are proposed.

	CERTIFICATION OF ANNEALING PROCESS AND RECOVERY ESTIMATE	COMMENTS
1	Description of Overall Process	AFATA will describe methodology that will be used for certification
2.	Evaluation of Inspection and Tests	AFATA will describe methodology that will be used for certification
3.	Determination of Percent Recovery	AFATA will describe methodology that will be used for certification
4.	Determination of Re-embrittlement Rate	AFATA will describe methodology that will be used for certification
5.	Description of Modified Surveillance Plan	AFATA will describe methodology that will be used for certification
6.	Allowable Operating Period	AFATA will describe methodology that will be used for certification

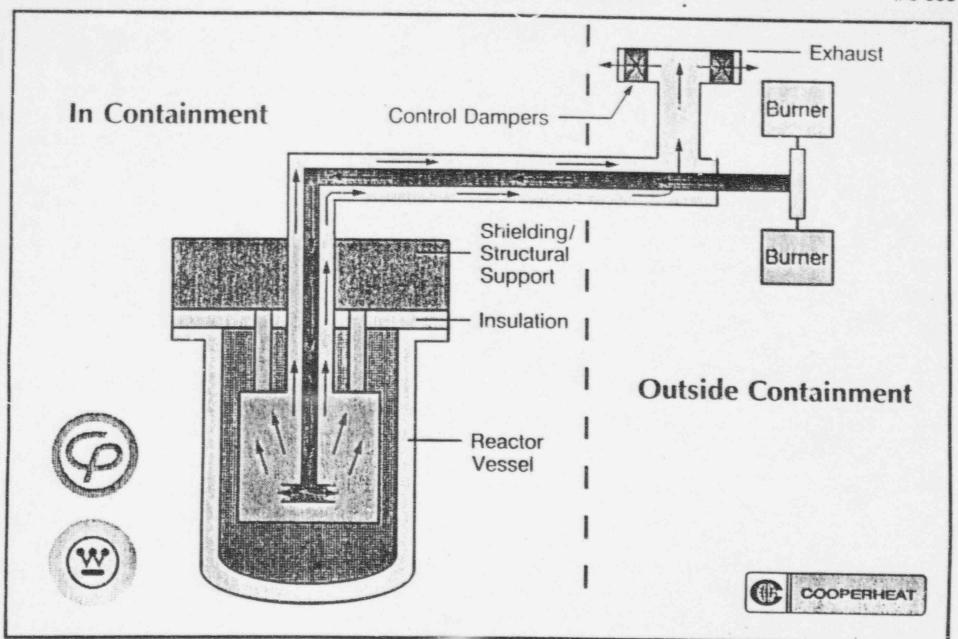
CONSUMERS POWER/NRC VESSEL ANNEALING MEETING JUNE 6, 1995 Rockville, Maryland

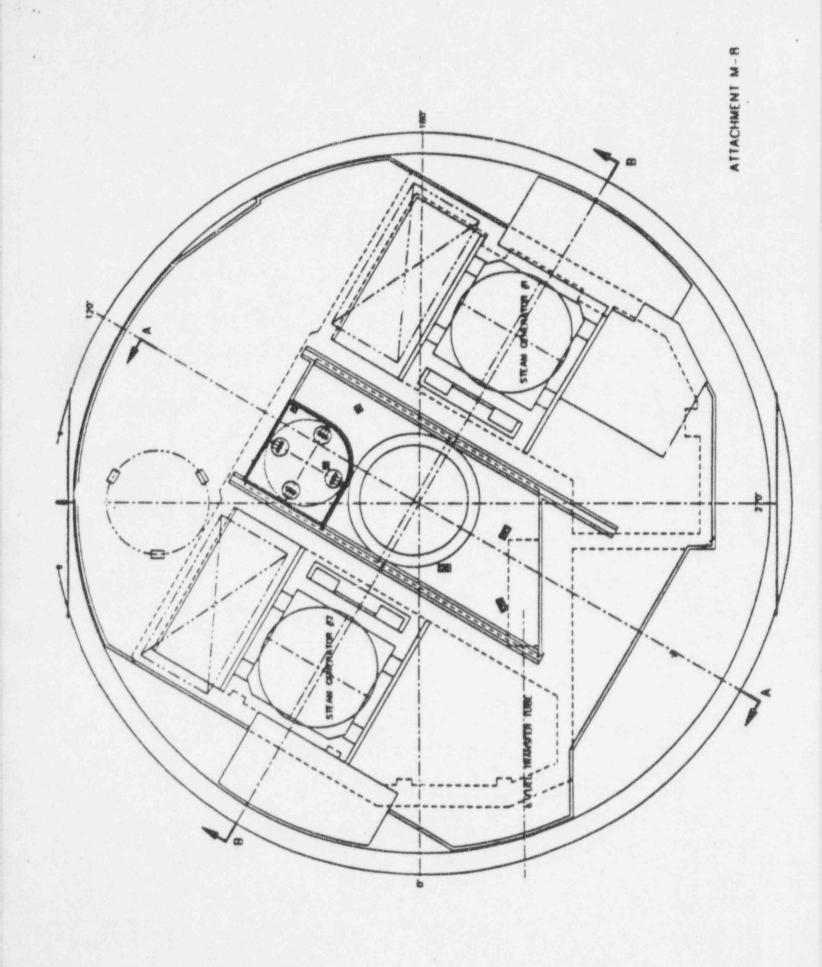

PURPOSE

- To obtain a common understanding of the Palisades vessel annealing project's status by Consumers Power providing an:
 - Overview of the Annealing Process
 - Overview of the Annealing Project's Schedule.
- To begin Application for Approval for Thermal Annealing (AFATA) open communications between Consumers Power and the NRC.
- To provide an opportunity for discussion to obtain an understanding of any issues which the NRC believes are critical to the overall approval of the AFATA.

CONSUMERS POWER/NRC VESSEL ANNEALING MEETING JUNE 6, 1995 Rockville, Maryland

AGENDA


	TOPIC	RESPONSIBLE	DURATION
1.	INTRODUCTION	Consumers	15 minutes
	Purpose of Meeting		
	Overall Schedule		
2.	TECHNICAL OVERVIEW	Consumers	15 minutes
	Annealing Method Summary		
	Recovery/Re-Embrittlement Summary		
3.	OPEN DISCUSSION ON AFATA CONTENT	NRC & Consumers	2 Hours
	Discuss Elements of the Attached AFATA Content Summary Which are of Particular Interest/Concern	consumers	
4.	CLOSURE	NRC & Consumers	30 ³ Minutes
	Identification of NRC AFATA Reviewers	consumers	
	Timing of AFATA Submittal		
	Action Items		
	Future Meetings		



NIDO Destart II America

TECHNICAL OVERVIEW ANNEALING METHOD SUMMARY

- HEATING METHODS AND CONTROLS
- INSTRUMENTATION
- · SHIELDING

TECHNICAL OVERVIEW RECOVERY/RE-EMBRITTLEMENT SUMMARY

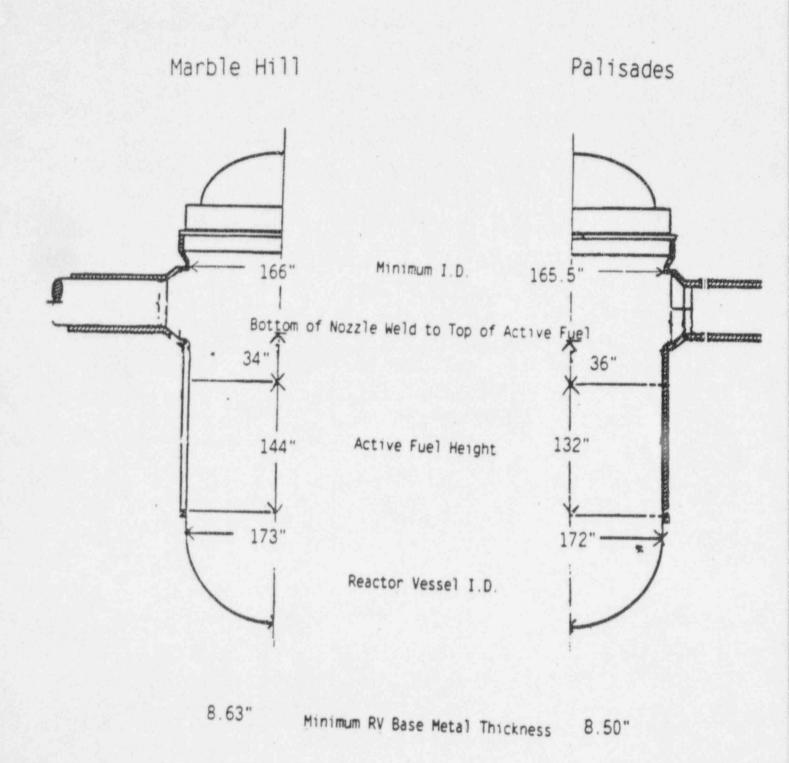
- EQUATION
- EXISTING SURVEILLANCE MATERIAL
- SUPPLEMENTAL SURVEILLANCE PROGRAM

- THERMAL ANNEALING OPERATING PLAN
- REQUALIFICATION INSPECTION AND TEST PROGRAM
- FRACTURE TOUGHNESS RECOVERY AND RE-EMBRITTLEMENT ASSURANCE PROGRAM
- CERTIFICATION OF ANNEALING PROCESS AND RECOVERY ESTIMATE

THERMAL ANNEALING OPERATING PLAN

- 1. Identification of general considerations
- 2. Provide description of the reactor vessel
- Equipment, components, and structures affected by thermal annealing
- Thermal annealing operating conditions
- Description of annealing method, instrumentation, and procedures
- 6. Proposed annealing equipment
- 7. Thermal and stress analyses
- 8. Proposed annealing conditions
- 9. ALARA Considerations
- 10. Summary of the Thermal Annealing Operating Plan

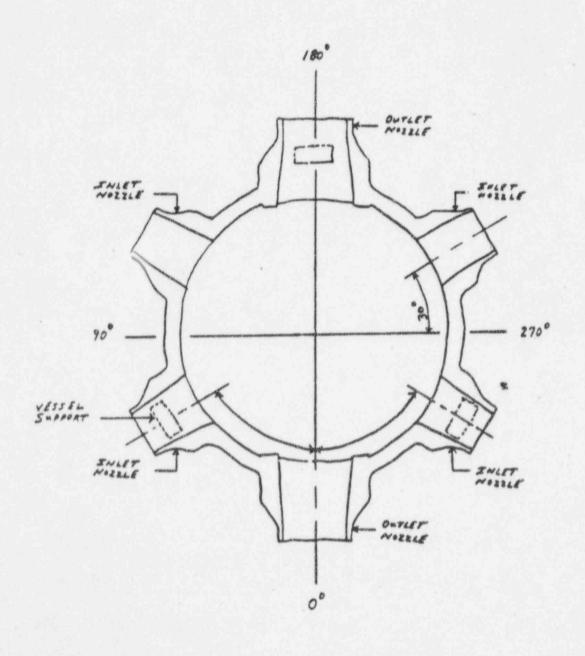
REQUALIFICATION INSPECTION AND TEST PROGRAM

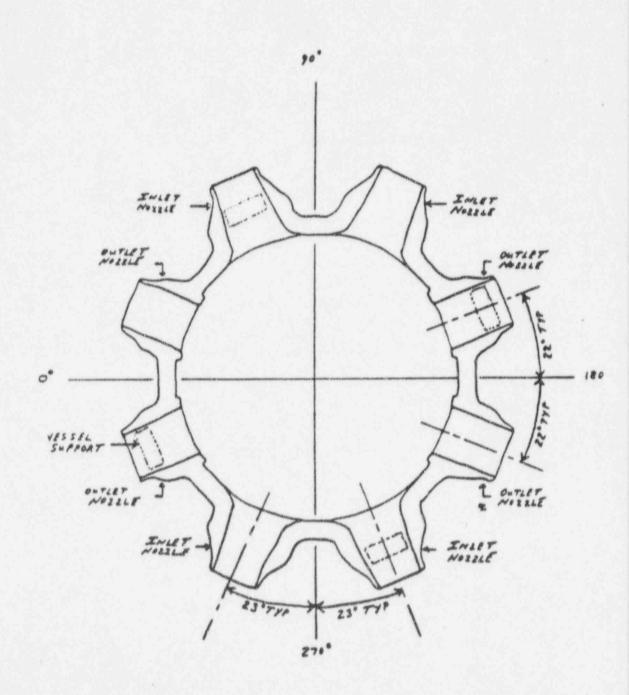

- 1. Identification of the measurements and locations
- 2. Description of the inspection program
- 3. Description of the test program

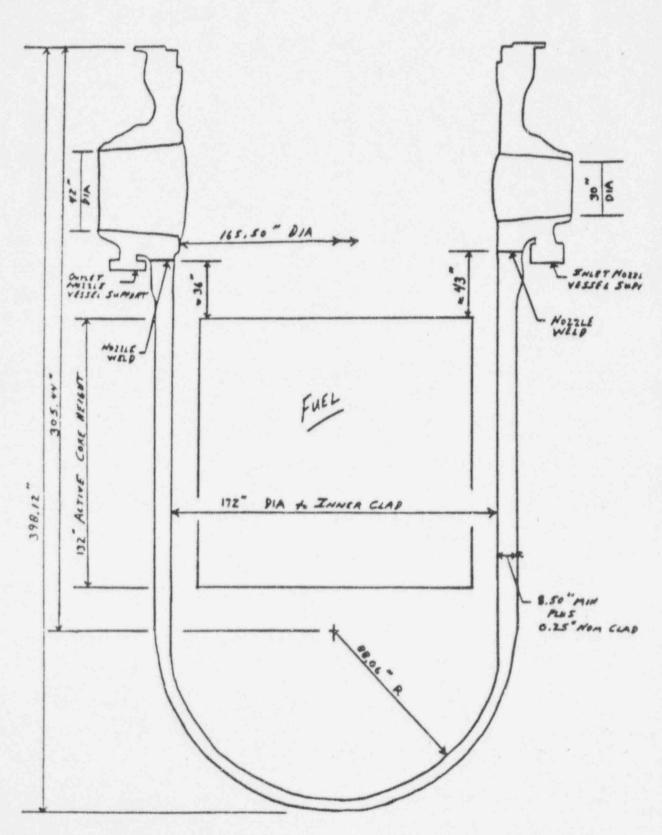
FRACTURE TOUGHNESS RECOVERY AND RE-EMBRITTLEMENT ASSURANCE PROGRAM

- Description of the methods for quantifying the percent recovery
- Description of the methods for estimating the reembrittlement rate
- Description of the methods for monitoring the reembrittlement rate

CERTIFICATION OF ANNEALING PROCESS AND RECOVERY ESTIMATE

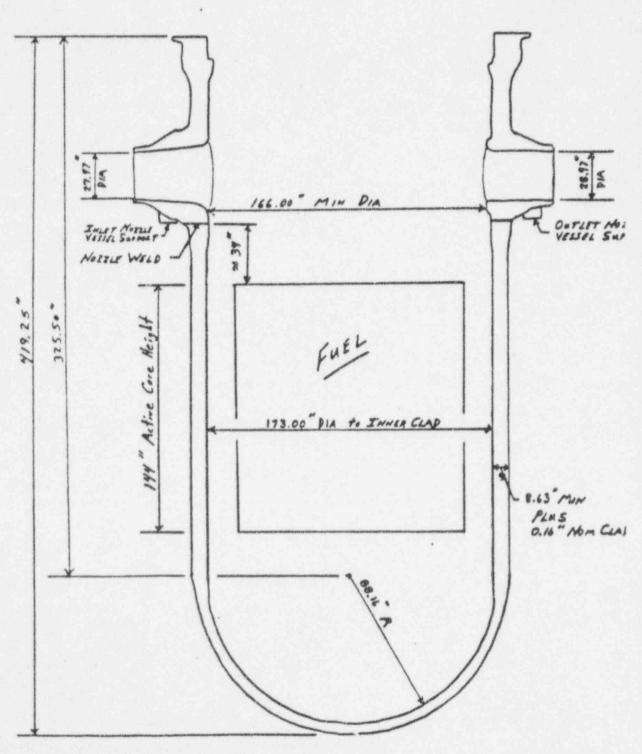

- 1. Description of Overall Process
- 2. Evaluation of Inspection and Tests
- 3. Determination of Percent Recovery
- 4. Determination of Re-embrittlement Rate
- 5. Description of Modified Surveillance Plan
- 6. Allowable Operating Period




PALISADES AND MARBLE HILL VESSEL DESIGN COMPARISONS

Dimension (inches)	Marble Hill	Palisades
Vessel Clad I.D. at Beltline	173	172
Minimum Vessel Base Metal Beltline Thickness	8.63	8.50
Nominal Cladding Thickness	0.16	0.25
Active Fuel Height	144	132
Bottom of Nozzle Weld to Top of Active Fuel	≈34	≈ 36
Minimum Vessel I.D.	166	=165

Other Design Comparisons		
Design Feature	Marble Hill	Palisades
Number of Hot and Cold Leg Nozzles	8	6
Thermal Expansion Accommodated by Movement of PCS Equipment	Yes	Yes
Type of Vessel Support	Nozzle Supported 2 Inlets 2 Outlets	Nozzle Supported 2 Inlets 1 Outlet
Cladding Material, Weld Deposited	308/309 \$.\$.	304 S.S.
Original Vessel Heat Treatment	1100 - 1150°F	1100 - 1175℉
Exterior Vessel Beltline Insulation	Metal Reflective	Metal Reflective



Reference CE Digs MIBA Sh 273, 1752, 114

Sketch 6.3.95 GHG

Reference CE Dag 11673-171-004

Sketch 6.3.95

COMPARISON OF INSTRUMENTATION LOCATIONS - PALISADES AND MARBLE HILL (PRELIMINARY)

Zone Description	Surface	Instrument	Palisades	Marble Hill
Bottom of Reactor Vessel	OD of RV	Thermocouple Displacement Strain Gauge	1 1 0	1
Coincident with Core Support Lugs	OD of RV	Thermocouple	3	7
Vessel Beltime, Mid-Region	OD of RV	Thermocouple Displacement	3 3	7 4
Vessel Top of Beltune into Transition	OD of RV	Thermocouple	3	7
RV Nozzle. Bottom Side	OD of RV	Thermocouple Strain Gauge	0	8 8
RV Nozzle, Upper Side	OD of RV	Thermocouple	0	7
RV Between Nozzie and Flange	OD of RV	Thermocouple	0	7
RV Flange	OD of RV	Thermocouple	0	7
Nozzle to Pipe Weld. Lower Side	OD of RV	Thermocouple Strain Gauge	0	8 8
Nozzle to Pipe Weld. Upper Side	OD of RV	Thermocoupie Strain Gauge	0	8 8
Nozzie Support	On support	Thermocouple	2	4
Reactor Cavity Liner. Beltline Region	On liner	Thermocoupie	2	4
Each Loop Located Midway Between S/G or Pump & Vessel Dutside of Bioshield Wall	On piping	Displacement	6	8
Nozzie to Pipe Weld. Bottom	ID of RV	Thermocouple	6	8
Nozzle to Pipe Weld. Upper lide	ID of RV	Thermocouple	6	8
essel Beltline, Heating Zone	ID of RV	Thermocouple	42	42
V Shell Above RV Nozzles	ID of RV	Thermacouple	12	12
OTAL LOCATIONS	OD of RV	Thermocouple Displacement Strain Gauge	14 10	75 13 25
OTAL LOCATIONS	ID of RV	Thermocouple	66	70

AFATA THERMAL AND STRESS EVALUATIONS

AFATA will include a complete evaluation for the following components based on the conceptual design of the annealing equipment which will be defined in the AFATA.

Reactor Vessel

Nozzles

PCS Piping, Restraints, and Supports

Biological Shielding

Reactor Vessel Insulation

Flow Skirt

Cladding

Capsule Holders

Reactor Vessel Flange

Instrumentation

Other Components as Determined during the Conceptual Review Effort

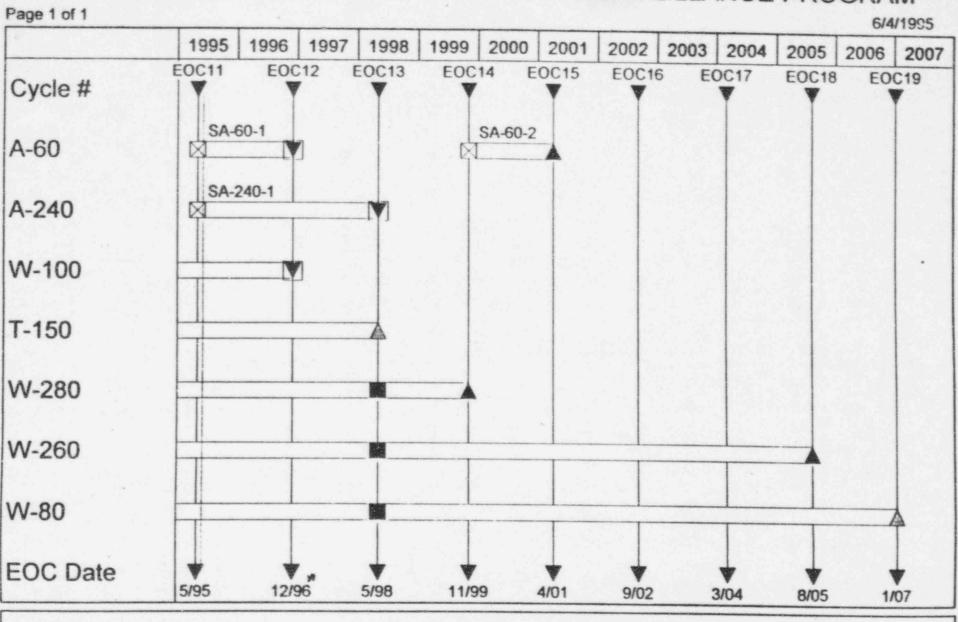
PALISADES THERMAL ANNEALING PROGRAM PLAN TO ACHIEVE ALARA GOALS

 Thermal Annealing to be performed utilizing indirect gas heating system, can be installed during Reactor Cavity draindown.

 Upper guide structure would be stored dry inside the core support barrel behind temporary shielding during the thermal anneal.

 As many activities as practical are performed with the reactor cavity flooded utilizing long handle tools.

4. Appropriate instrumentation will be installed on the Palisades Reactor Vessel taking advantage of the experience at Marble Hill, to minimize dose for installation at Palisades.


ATTACHMENT H-2

PALISADES THERMAL ANNEAL PROGRAM - DOSE ASSESSMENTS ALTERNATIVE CASE

1995 PROGRAM

	1995 PROGRAM					
				AVERAGE		
				DOSE		TOTAL
			DURATION	RATE	CREW	DOSE
m		LOCATION	[hr]	[mr/hr]	SIZE	[Man-Rem
1	Complete Containment Valkdown	DECK	100	. 5	4	2
2	Install Instrumentation Around Vessel	SUMP	2.5	4000	1	10
	TOTAL DOSE ASSESSMENT - 1995 PROGRAM					12
	1997/1998 PROGRAM .					
3	Install temperature resistant RV stud hole plugs if required	DECK	12	6		
4	Move equipment into containment	DECK	80	5		1
5	EQUIPMENT SETUP					
- 6	Assemble furnace in preparation for test	DECK	144		4	2
7	Install/setup support equioment	DECK	276		4	5
8	Complete furnace ducting	DECK	24	2	4	0
9	Install instrumentation around RX	SUMP	40	4000	1	160
10	Place UGS into temporary storage stand	DECK	6	10	4	0.:
11	Remove CSB and place into temporary storage stand	DECK		30	4	1.1
12	Place temporary shield at EL 649 around cavity/move UGS to CSB	DECK	8	60	4	1.5
		DECK	3	20	4	0
13	install temporary shielding around internals and top cap	DECK	12	60	4	2.1
		DECK	8	30	46	1.6
14	Perform reactor vessel/internals pre anneal measurements	DECK	24	30	4	2!
15	PERFORM PRE ANNEAL ISI - BY OTHERS					
16		DECK	48	10	4	1.5
17		DECK	12	30	4	1.
18		DECK	18	60	4	4.
19		DECK	12	60	4	2.
20	Cavity decon/Ventilation hookun/RV purpe/Cavity seal ring removed	CAVITY	9	500	2	9.0
21	Lower furnace into RX/drain RV/system walkdown	CAVITY	0.5		1	0.:
	active to the active at all the active at all the active at a second				3	0.
22	System heatin to remove the				1	0.
23						2.1
24			5.00			2:
25						4.(
20	Pull formaceris reactor ressen and cavity					0.4
26	Demonstrate shielding them 1100 to terms stand		-	10.00		1.4
27		100 mm m 100 mm				2.9
28		DECK	24	30		2.
		DECK				
29		DECK	24	5	4	0.5
31						
31	FUEL, INSTALL UGS, INSTALL HEAD, HEASSEMBLY, STARTUP			%		
	TOTAL DOSE ASSESSMENT . 1997/1998 PROGRAM					21!
	Perform the RV DECK 12 30 4 15 1 12 15 1 15 1 15 1 15 1 15 1 15 1	21:				

PLANNED PALISADES REACTOR VESSEL SURVEILLANCE PROGRAM

Remove/Analyze Capsule

Remove/Analyze/Reconstitute/Anneal/Analyze

A Remove Capsule

Install Capsule

Remove/Anneal/Install Capsule

PALISADES REACTOR VESSEL ANNEAL AND REEMBRITTLEMENT RATE ASSURANCE PROGRAM

SUPPLEMENTAL CAPSULES SA-60-1 AND SA-240-1

MATERIAL	18 MM CHARPY	L-T CHARPY
W5214 *	36	
348009 *	36	
27204 +	36	
HSST02		12

- * STEAM GENERATOR WELDS HEAT TREATED @1160°F FOR 2 HOURS. COOLED @ 100°F
- + LINDE 1092 VS 124

LEAD FACTOR > 10

RECONSTITUTE AND TEST % OF IRRADIATED SPECIMENS

ANNEAL, RECONSTITUTE AND TEST % OF IRRADIATED SPECIMENS

ANNEAL AND INSTALL % OF IRRADIATED SPECIMENS IN SA-60-2

CAPSULE	W-100	MATERIAL	CHARPY
BASE	METAL	(L-T)	12
BASE	METAL	(T-L)	12
	3277		12

TEST IRRADIATED SPECIMENS

ANNEAL, RECONSTITUTE AND TEST ½ OF IRRADIATED SPECIMENS

ANNEAL AND INSTALL ½ OF IRRADIATED SPECIMENS IN SA-60-2

PALISADES REACTOR VESSEL ANNEALING RECOVERY PROGRAM

AVAILABLE IRRADIATED TESTED CHARPY SPECIMENS

MATERIAL	W-290	W-110	A-240
BASE METAL (L-T)	12	12	12
BASE METAL (T-L)	12		12
HSST01		12	
3277	12	12	12

SURVEILLANCE CAPSULE REMOVAL

CAPSULE	END OF CYCLE	FLUENCE (1019 N/CM2)
A-240	2 (1978)	4.60
W-290	5 (1983)	1.09
W-110	10 (1993)	1.78

VESSEL FLUENCE (1019 N/CM2)

END OF CYCLE	60.	016°	630°	
13 (1998)	1.37 1.92		1.43	

FUTURE MEETINGS

DATE

June 28-30, 1995

Mid-July 1995

August 24 & 25, 1995

LOCATION

NRC staff tour of Palisades

Proof of principal test of heater (Piscataway, New Jersey)

Marble Hill plant tour

FAX COVER SHEET

From FAX No. 505-844-8734

Date:

6/19/95

To:

Mike Mayfield, NRC

FAX Number:

301-415-5074

Telephone Number: 301-415-6690

This message consists of 17 pages

From: Jim Nakos, DOE's LWR Technology Center @ Sandia

(505) 844-4495

Mike: Enclosed please find a preliminary ADP Instrumentation Plan in three (3) parts:

1) MPR Team proposal instrumentation plan

2) ASME Team proposal instrumentation plan

3) DOE/SNL's enhanced instrumentation plan proposal

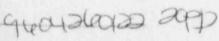
The DOE/SNL proposal is preliminary and has not fully incorporated the information from the CPCo/NRC meeting on June 6, 1995.

We look forward to discussing this with you at your convenience.

Thanks for your help.

Copy to:

DOE-HQ


Dennis Harrison

DOE-HQ

John Warren

6471

Gary Rochau

Preliminary ADP Instrumentation Plan

DOE's LWR Technology Center @ Sandia proposes an enhanced instrumentation set to more fully characteristic the overall system response and to make redundant measurements in critical areas. The basis for this proposal is from the following sources:

> MPR Team proposal 1)

ASME Team proposal and Palisades proposal of June 6, 1995 2)

NUREG/CR-4212, "In-Place Annealing of Nuclear Reactor Pressure Vessels," 3) by W.L. Server, April 1985.

Sandia field test experience (Jim Nakos, Gary Rochau) 41

Finite-element models developed under the "RPV Thermal Response and 5) Temperature Measurement" project at Sandia.

We offer this proposal as a starting point to communicate what each of the contractors has proposed, and suggest a more enhanced set of instrumentation for consideration by both DOE and NRC.

After discussions with DOE and NRC, a more refined list can be defined and this plan modified. Also, each of the contractors should be consulted to discuss the enhanced instrumentation plan. At that time a more detailed set of drawings (e.g., similar to the enclosed isometric for the 2-loop B&W plant) can be generated to more clearly show where all of the instrumentation is located. Drawings are not available at this time.

Note: This plan is preliminary and should be thought of as a starting point for discussions. Information from the Palisades presentation of 6/6/95 has not yet been fully incorporated into the plan for the "enhanced" instrumentation package.

A) MPR Team Proposal:

The amount and location of instrumentation proposed by the MPR Team is as follows:

1) Thermocouples (TCs) = 49 on RPV, RCS piping, cavity concrete, etc. [Note: there are 42 retractable TCs mounted on heater to measure temperature on inside of RPV.]

2) Strain gages (SGs) = 4 total

3) Displacement gages (DGs) = 10 total

1) Thermocouples: 49 total

a) Primary nozzles (24 total)

1. 4 spaced 90° apart on one hot leg nozzle @ RPV outer wall (4)

2. 4 spaced 90° apart on one cold leg nozzle @ RPV outer wall (4)

- 4 spaced 90° apart at a distance from RPV wall on cold leg piping (4) (same pipe as item 2)
- 4. 4 spaced 90° apart at a distance from RPV wall on hot leg piping (4) (same pipe as item 1)

5. 2 @ 90° and 180° on other hot leg nozzle (2)

- 6. 2@ 90° and 180° on other 3 cold leg nozzles (6)
- b) RPV beltline (12 total): 2 azimuthal locations, both between hot and cold legs:

One azimuthal location - 8 TCs above and below nozzles (8)

Second azimuthal location - 4 TCs above and below nozzles (4)

c) RPV cavity wall: (12 total)

· Locations that match both RPV beltline region azimuthal locations (12)

d) RPV bottom: (1 total)

· One TC located at the center bottom (1)

2) Displacement gages: 10 total

a) Primary piping: (6 total)

- One hot leg, 3 locations (3)
- · One cold leg, 3 locations (3)

b) Core flood tank: (2 total)

- One to measure radial movement (1)
- · One to measure vertical movement (1)

c) Hot and cold leg piping: (2 total) (away from RPV)

- · One to measure vertical movement on hot leg piping (1)
- · One to measure vertical movement on cold leg piping (1)

3) Strain gages: 4 total

a) 4 spaced 90° apart on one cold leg pipe nozzle (4) (same as TC primary nozzle item 2)

Preliminary ADP Instrumentation Plan

ASME Team Proposal:

The amount and location of instrumentation proposed by the ASME Team is as follows:

- 1) Thermocouples (TCs) = 70 on RPV, RCS piping, cavity concrete, etc. [Note: there will be 42 retractable TCs mounted on heater to measure temperature on inside of RPV.]
- 2) Strain gages (GGs) = 25 total
- 3) Displacement gages (DGs) = 13 total

Exact locations not yet defined, but overall locations were shown in the following table provided during the CPCo/NRC meeting on June 6, 1995:

COMPARISON OF INSTRUMENTATION LOCATIONS - PALISADES AND MARBLE HILL (PRELIMINARY)

Zone Description	Surface	Instrument	Palisadas	Marole Hill					
Bottom of Reactor Vossel	OD of RV	Thermocrapie Displacement Strain Gauge	1 1	1					
Colnyident with Core Support	OD of RV	Thermocouple	3	7	П			2994	
Vessel Beltilne, Mid-Region	OD of RV	Thermocouple Displacement	3 3	7 4		Los		-44	
resset Top of Beltine into	OD of RV	Thermocouple	3	7	# of pages >	Nak	dia	3	
RV Nozzle, Bottom Side	OD of RV	Thermocouple Strain Gauge	0	8 8	7671 10	J.Im	San	Sos	
RV Nozzie, Upper Sids	00 of 3V	Thermoosuple	0	7	0.00	E '	0.	2	
RV Between Nozzle and Plange	OD of RV	Thermocouple	0	7	memo	grew	8	ď.	Fax
RV Plange	OD of RV	Thermocouple	0	7	Test.	10			
Nozzie to Pipe Weld, Lower	OD of RV	Thermocouple Strain Gauge	0	8 8	ansmi	Fiel			
Nozzie to Pipe Weld, Upper Side	OD of RV	Thermocouple Strain Geoge	0	8 8	taxtt	May			1
Nozzle Support	On support	Thormocouple	2	.4	rand	Z	a		
Reactor Cavity Liner, Boldina Region	On User	Thermocouple	2	14	Post-13" brand fax transmittal	17	2		-
Each Loop Located Midway Between 8/G or Pump & Vessel Outside of Bioshield Wall	On piping	Displacement	6		Po d	1/5	8	18	
Nozzie to Pipe Weld, Bottom Side	ID of RV	Thermocouplo	6	8	-				
Nozzle to Pipe Weld, Upper Side	ID of RV	Thermocouple	6	8					
Vessel Beitifne, Heating Zone	ID of RV	Thermocouple	42	,42					
RV Shell Above RV Nozzles	ID of RV	Thomsocouple	12	12	074				
TOTAL LOCATIONS	OB of RV	Theresecuapts Dispissessess Strain Gauge	14 10 0	75 13 25					
TOTAL LOCATIONS	to of RV	Тоек изоница	66	70					

C) DOE's LWR Technology Center @ Sandia Proposal:

I. For the MPR Team/Midland RPV: See Figure 1

1) Thermocouples (TCs) = 96 on RPV, RCS piping, cavity concrete, etc. + 42 retractable TCs mounted on heater to measure temperature on inside of RPV

2) Strain gages (SGs) = 36 total

- 3) Displacement gages (DGs) = 17
- 4) Temperature "labels" = unknown number based on predicted temperatures

Note: "Temperature labels" are inexpensive glue-on devices that have colored "dots" that change color when a certain temperature is reached. The labels have multiple dots per label; each dot having a different temperature value when it changes color. These can be used to estimate temperatures post-test by viewing the colored dots that have changed.

1) Thermocouples: 96 total

a) Primary nozzles (40 total)

- 1. 4 spaced 90° apart on one hot leg nozzle @ RPV outer wall (4)
- 2. 4 spaced 90° apart on one cold leg nozzle @ RPV outer wall (4)
- 4 spaced 90° apart at a distance from RPV wall on cold leg piping (4) (same pipe as item 2)
- 4. 4 spaced 90° apart at a distance from RPV wall on hot leg piping (4) (same pipe as item 1)
- 4 spaced 90° apart at nozzle-safe end joint on cold leg piping (4) (same pipe as item
 2)
- 4 spaced 90° apart at nozzle-safe end joint on hot leg piping (4) (same pipe as item
- 4 spaced 90° apart on 1 other hot leg nozzle @ RPV outer wall (4) (redundant measurement)
- 4 spaced 90° apart on 1 other cold leg nozzle @ RPV outer wall (4) (redundant measurement)
- 4 spaced 90° apart at nozzle-safe end joint on 1 other cold leg pipe (4) (same pipe as item 8) (redundant measurement)
- 4 spaced 90° apart at nozzle-safe end joint on 1 other hot leg pipe (4) (same pipe as item 7) (redundant measurement)
- b) Core Flood tank nozzles (4 total)

 2 @ 90° and 180° on each core flood nozzle @ nozzle-safe end joint (4)
- c) RPV beltline (12 total): 2 azimuthal locations, 1 oth between hot and cold legs, on outside of RPV:
 - One azimuthal location 6 TCs above and below nozzles (6)
 - Second azimuthal location 6 TCs above and below nozzles (6)

Figuriary ADE monumentation i am

Note that 2 of the adjacent axial locations on the outside of the APV are on the nozzles so are not counted twice. Bottom most TC is located at APV-skirt support junction.

- d) RPV beltline (16 total): 2 azimuthal locations, both between hot and cold legs, on inside of RPV:
 - One azimuthal location 8 TCs above and below nozzles (8)
 - · Second azimuthal location 8 TCs above and below nozzles (8)

Note that TCs on inside of the RPV will be tack welded to the RPV and will serve as a check on the accuracy of the retractable TC RPV temperature measurement scheme. Axial and azimuthal locations to match locations of retractable TCs.

- e) RPV cavity wall: (18 total)
 - · Axial locations to match RPV beltline region locations @ both azimuthal locations (14)
 - · Two locations @ two RCS piping penetrations through RPV cavity wall (4)
- f) RPV bottom head: (6 total)
 - . One TC located at the center bottom on inside (1)
 - · One TC located at the center bottom on outside (1)
 - . Two TCs located 1/2 way up head on inside (2)
 - · Two TCs located 1/2 way up head on outside (2)
- 2) Displacement sensors: 17 total
 - a) Primary piping: (6 total) (near RPV)
 - · One hot leg, 3 locations (vertical, horizontal and axial movement) (3)
 - · One cold leg, 3 locations (vertical, horizontal and axial movement) (3)
 - b) Core flood tank: (5 total)
 - · One to measure radial tank movement (1)
 - · One to measure vertical tank movement (1)
 - · Three to measure vertical, horizontal and axial movement of one core flood pipe (3)
 - c) Hot and cold leg piping far from RPV: (2 total)
 - · One to measure axial growth of hot leg piping (i)
 - · One to measure axial growth or cold leg piping (1)
 - d) RPV: (4 total)(outside of RPV)
 - · One at each azimuthal location @ beltline to measure radial growth (2)
 - One at each azimuthal location @ top of RPV to measure axial growth (2)

3) Strain gages: 36 total (mounted on outside of RPV).

Note: Due to the temperature sensitivity of stain gage output in a varying temperature environment, a TC should be placed next to each SG to gather data for a temperature correction when the data are reduced.

- a) RCS primary nozzles: (32 total)
 - 1. 4 spaced 90° apart on one hot leg nozzle @ RPV outer wall (4)
 - 2. 4 spaced 90° apart on one cold leg nozzle @ RPV outer wall (4)
 - 3. 4 space d 90° apart at nozzle-safe end joint on cold leg piping (4) (same pipe as item 2)
 - 4. 4 spaced 90° apart at nozzle-safe end joint on hot leg piping (4) (same pipe as item
 - 5. 4 spaced 90° apart on 1 other hot leg nozzle @ RPV outer wall (4) (redundant measurement)
 - 6. 4 spaced 90° apart on 1 other cold leg nozzle @ RPV outer wall (4) (redundant measurement)
 - 7. 4 spaced 90° apart at nozzle-safe end joint on 1 other cold leg pipe (4) (same pipe as item 8) (redundant measurement)
 - 4 spaced 90° apart at nozzle-safe end joint on 1 other hot leg pipe (4) (same pipe as item 7) (redundant measurement)
- b) RPV beltline and below: (4 total)
 - One @ each azimuthal location in beltline region (2)
 - · One @ each azimuthal location at junction of bottom head near skirt (2)

4) Temperature labels: unknown number

These can be placed at numerous locations away from the RPV:

- Steam generators
- · RC pumps
- Pressurizer
- · RCS piping far from the RPV
- On RPV at un-instrumented locations
- · Other locations

II. For the ASME Team/Marble Hill RPV: See Figure 2

 Thermocouples (TCs) = 100 on RPV, RCS piping, cavity concrete, etc. + 42 retractable TCs mounted on heater to measure temperature on inside of RPV

2) Strain gages (SGs) = 36 total

- 3) Displacement gages (DGs) = 12 total
- 4) Temperature "labels" = unknown number

1) Thermocouples: 100 total

a) Primary nozzles (40 total) (all on outer wall)

- 1. 4 spaced 90° apart on one hot leg nozzle @ RPV outer wall (4)
- 2. 4 spaced 90° apart on one cold leg nozzle @ RPV outer wall (4)
- 4 spaced 90° apart at a distance from RPV wall on cold leg piping (4) (same pipe at item 2)
- 4 spaced 90° apart at a distance from RPV wall on hot leg piping (4) (same pipe at item 1)
- 4 spaced 90° apart at nozzle-safe end joint on cold leg piping (4) (same pipe at item
 2)
- 4 spaced 90° apart at nozzle-safe end joint on hot leg piping (4) (same pipe at item
- 4 spaced 90° apart on 1 other hot leg nozzle @ RPV outer wall (4) (redundant for item 1)
- 8. 4 spaced 90° apart on 1 other cold leg nozzle @ RPV outer wall (4) (redundant for item 2)
- 4 spaced 90° apart at nozzle-safe end joint on 1 other cold leg pipe (4) (same pipe at item 8) (redundant for item 5)
- 4 spaced 90° apart at nozzle-safe end joint on 1 other hot leg pipe (4) (same pipe at item 7) (redundant for item 6)
- b) RPV axial locations (12 total): 2 azimuthal locations (180° apart for redundancy), both between hot and cold legs, on outside of RPV:
 - · One azimuthal location 6 TCs above and below nozzles (6)
 - · Second azimuthal location 6 TCs above and below nozzles (6)

Note that 2 of the adjacent axial locations on the outside of the RPV are on the nozzles so are not counted twice.

- c) RPV axial locations (16 total): 2 azimuthal locations, both between hot and cold legs, on inside of RPV (purpose; to check RPV temperature measurement accuracy);
 - One azimuthal location 8 TCs above and below nozzles (8)
 - · Second azimuthal location 8 TCs above and below nozzles (8)

Note that TCs on inside of the RPV will be firmly mounted on the RPV and will serve as a check on the accuracy of the retractable RPV temperature measurement scheme. Axial and

DOE's LWR Technology Center @ Sandia

Page 7 of 9 June 19, 1995

File: ADPINSTP.PLN

azimuthal locations to match locations of retractable TCs.

- d) RPV cavity wall: (18 total)
 - · Axial locations to match RPV beltiine region locations @ both azimuthal locations (14)
 - · Two locations @ two RCS piping penetrations through RPV cavity wall (4)
- f) RPV bottom head: (6 total)
 - · One TC located at the center bottom on inside (1)
 - One TC located at the center bottom on outside (1)
 - Two TCs located 1/2 way up head on inside (2)
 - Two TCs located 1/2 way up head on outside (2)
- g) RCS supports: (8 total)
 - Two TCs on two hot leg supports (4)
 - Two TCs on two cold leg supports (4)
- 2) Displacement sensors: 12 total
- a) Primary piping: (6 total) (may only need axial gages since nozzle supported)
 - · One hot leg, 3 locations (vertical, horizontal and axial movement) (3)
 - · One cold leg, 3 locations (vertical, horizontal and axial movement) (3)
- b) Hot and cold leg piping far from RPV: (2 total)
 - Two to measure axial movement on hot leg piping (1)
 - Two to measure axial movement on cold leg piping (1)
- c) RPV: (4 total)(mounted on outside of RPV)
 - · One at each azimuthal location @ beltline to measure radial growth (2)
 - · One at each azimuthal location @ bottom of RPV to measure axial growth (2)
- Strain gages: 36 total (mounted on outside of RPV).
 - a) RCS primary nozzles: (32 total)
 - 1. 4 spaced 90° apart on one hot leg nozzle @ RPV outer wall (4)
 - 2. 4 spaced 90° apart on one cold leg nozzle @ RPV outer wall (4)
 - 4 spaced 90° apart at nozzle-safe end joint on cold leg piping (4) (same pipe as item
 2)
 - 4. 4 spaced 90° apart at nozzle-safe end joint on hot leg piping (4) (same pipe as item 1)

Note: the next 4 items (5-8) are redundant measurements for 1-4;

- 5. 4 spaced 90° apart on 1 other hot leg nozzle @ RPV outer wall (4)
- 6. 4 spaced 90° apart on 1 other cold leg nozzle @ RPV outer wall (4)
- 7. 4 spaced 90° apart at nozzle-safe end joint on 1 other cold leg pipe (4) (same pipe as item 8)
- 8. 4 spaced 90° apart at nozzle-safe end joint on 1 other hot leg pipe (4) (same pipe as

item 7)

- b) RPV beltline and below: (4 total)
 - · One @ each azimuthal location in beltline region (2)
 - · One @ each azimuthal location at junction of bottom head (2)
- 4) Temperature labels: unknown number

These can be placed at numerous locations away from the RPV:

- · Steam generators
- · RC pumps
- Pressurizer
- RCS piping far from the RPV
- On RPV at un-instrumented locations
- · Other locations

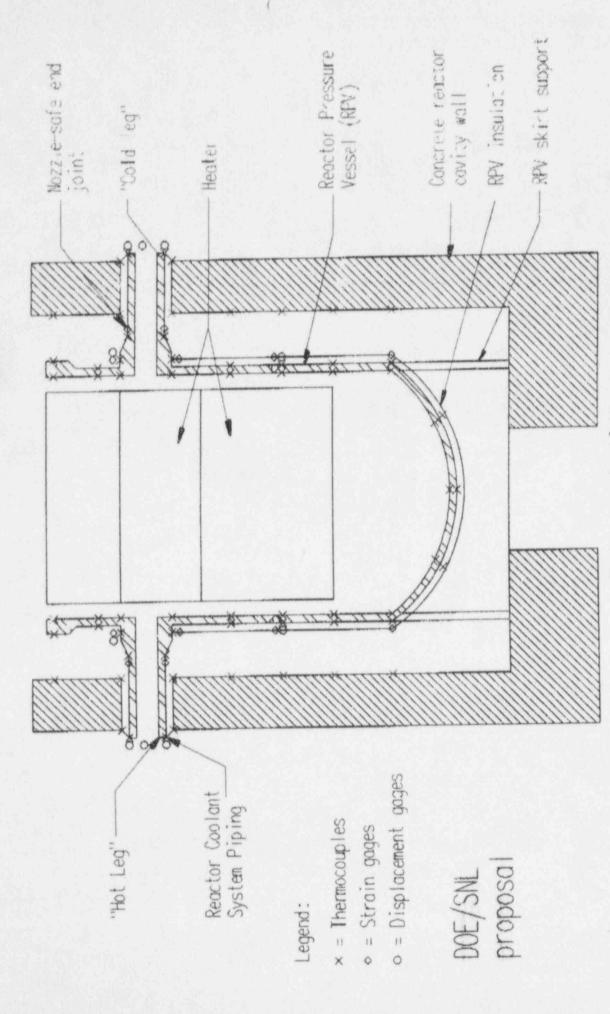


Figure 1: Schematic of Enhanced Midland Instrumentation

CE /ET /90

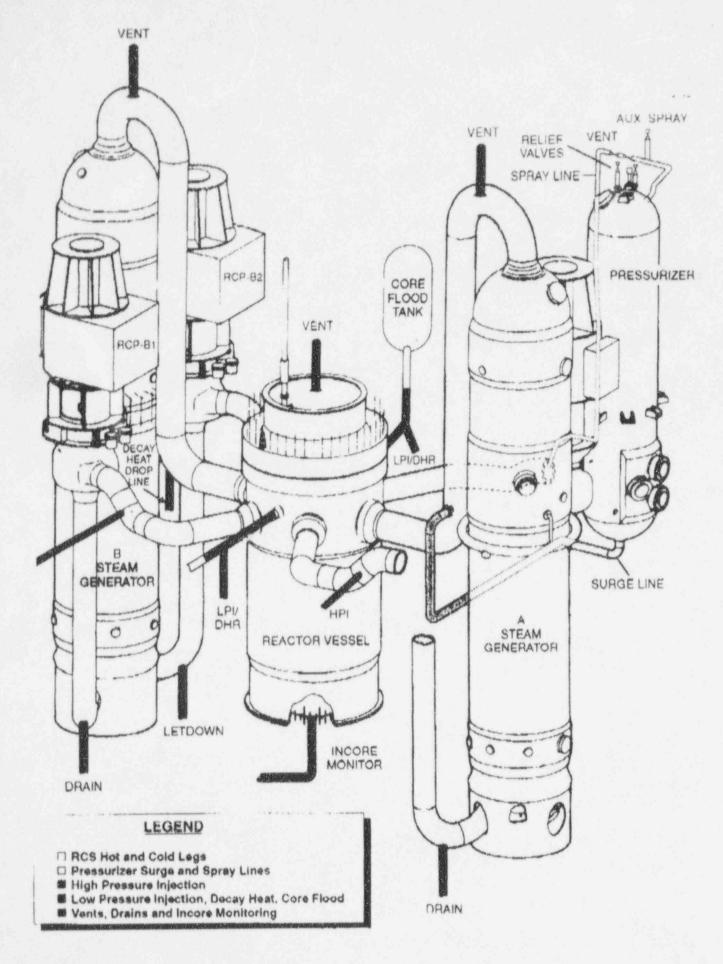
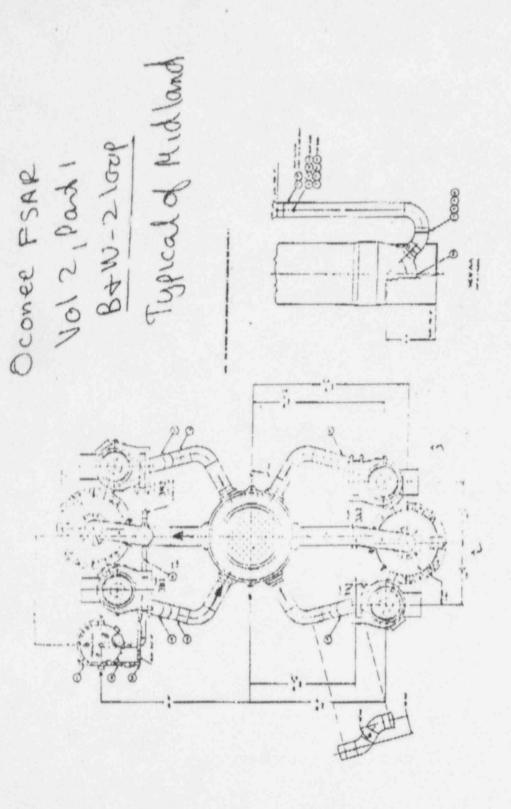
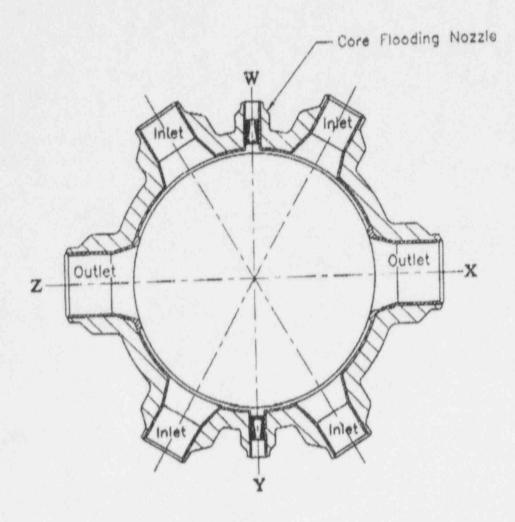
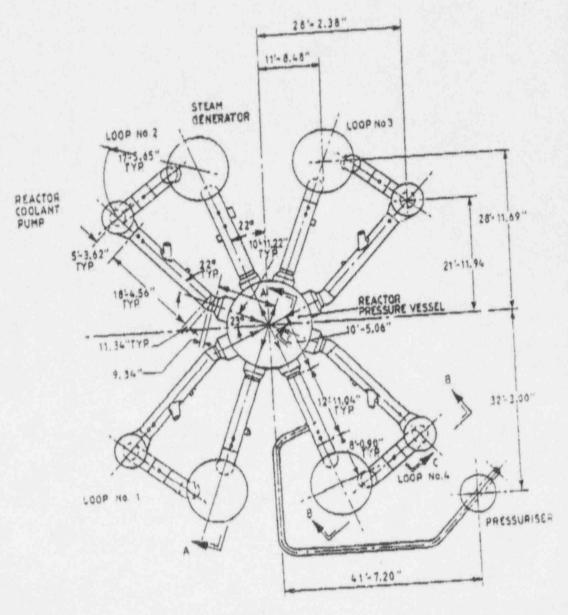




Figure 2: Schematic of Enhanced Warble Hill Instrumentation



REACTOR COOLANT SYSTEM ARRANGEMENT - PLAN

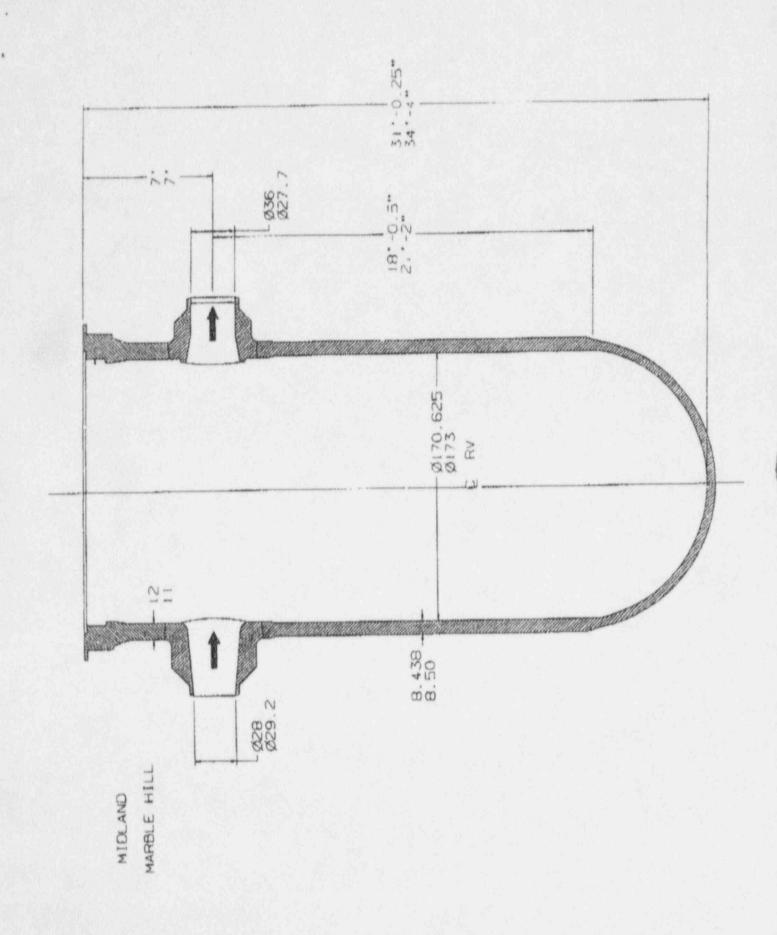
CONEE NUCLEAR STATION
Figure 4 - 3 3
Rev. 9 8111/70
Rev. 21. 7/26/72



Plan View

Figure 4. Hot And Cold Leg Primary Coolant Nozzles, Midland Reactor Vessel

MPD F- 003-001-01


- 4-100p W plant Typical of Marble Hill

REACTOR COOLANT PIPEWORK - PLAN

FIG. Na 5.9/1

C.LT

