November 2, 1992

Our Ref: QCG-9081

Document Control Desk
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
Subject: Fuel Nozzle Tip 10 CFR Part 21 Final Report
Dear Sir:
The following is a report of activities and corrective action associated with the subject 10CFR21 which have taken place since our initial report of April 5, 1991. We believe that these have provided sufficient information to warrant closure of this issue.

On April 6, 1991, the NRC was notified in writing of a failure involving a standby diesel generator at Houston Light and Power Company's South Texas Project Electric Generating Station. Subsequent investigation revealed that a cracked fuel nozzle tip purchased from Bendix, (a supplier of Cooper-Bessemer), Lot 150006, caused the failure. Affected utilities were notified and a parts recall was initiated.

Subsequent interim reports to the NRC dated July 23, 1991, September 20, 1991, and October 31, 1991 detail the distribution of fuel nozzle tips to the affected utilities and actions taken during this time period.

Since then, additional testing of fuel nozzle tips performed by the Materials Technology Division (MTD) of Houston Light and Power in conjunction with Cooper-Bessemer, the Cooper- Bessemer Owners Group and MPR Associates has been completed, reviewed and recommendations to prevent further failures made. Samples of production lots from utility inventories were submitted to MTD for examination which included visual examination, wet fluorescent magnetic examination (WFMT), intemal ligament thickntos, effective nitrided case depth, visual nitriàd case depth, thickness of the $\mathrm{Fe}_{\mathrm{x}} \mathrm{N}$ compound layer, and core hardness. Each spray tip sample was visually examined for clogging. Secondly, the sample was transversely cut immediately below the ligament tip for subsequent sectioning by EDM. EDM conical sectioning through the three passage holes allowed WFMT on the fuel hole surfaces. Additional purposes of the EDM sectioning were to ensure precision measurements of the ligament thicknesses between the fuel passage holes and the center bore to make precise metallographic sections through the ligaments. A metallographic section was produced for each lot examined. This section is a radial axial plane that passes through the thinnest part of the ligament between the fuel passage hole and the center bore. The nitrided case depth was determined for each sample by determining the distance from the surface to a depth at which the Knoop hardness equivalent to Rockwell "C" scale 55 was reached.

The effective depth of the case was determined for each metallographic sample at the surface of the fuel passage hole and at the surface of the center bore. In addition to measuring the effective case depth of the nitrided case, the metallographic section was also used to determine the visual case depth, the presence and thickness of the white $\mathrm{Fe}_{\mathrm{x}} \mathrm{N}$ compound layer, and core hardness.

The results of the metallurgical and dimensional examinations can be found on Table 1 (MTD Report MT-3309 dated July 16, 1991) and Table 1 (MTD Report MT-3822 dated May 4, 1992). A brief summary of the results is as follows:

1. The inner ligament thickness measurements ranged from a low value of .039 inch on lot 150004 to a high value of .063 inch on lot LC001090. The spray tip from Lot 150004 which had falled the Haynes Go-NoGo gage test contained the smallest ligament dimension, had a deep nitride case, and contained cracks on the surface of two of the three fuel passage holes at the ligament between the fuel passage hole and the center hole.
2. The effective nitride case depth in all spray tips examined was lower than the visual nitride case depth.
3. Other than the tin submitted from Lot 150004, none of the remaining lots contained any cracking as determined by visual and WFMT examination.
4. All samples were visually examined for the presence of clogging of the spray holes. The tips of the samples were clean and free of cloyging in the as-received condition.

The roo: cause of this failure of the fuel nozzle tip has been determiner to be insufficient ligament thickness (less than 0.048 insh) along with improper nitriding resulting in a too deep case depth (over 45\% ratio of case depth to core size).

Revised technical specifications require an effective case depth of .008-011" and a ratio of visual case depth to core size of 45% maximum measured $1 / 32^{\prime \prime}$ from the ligament tip. This will be verified by destructive examination at the heat treat vendor and again by the Haynes Corporation. Ligament thickness and location of fuel delivery holes will be verified by use of Haynes gauge \#44-703039.

Process controls as outlined in our letter to the NRC (our reference QCG-8434 dated 9/20/91) have been revised and are current practice with above stated specifications. Agreement between Cooper-Bessemer and the Cooper-Bessemer Owners Group at ihe May 1992 meeting and subsequent discussions have resulted in the classification of all fuel nozzle lots as either acceptable or reject.

Acceptable Lots are those with no known failures or found to meet technical requirerrents. These lots are identified as ne early unnumbered or unrecorded lots (most before 1979), 001110, LC001059, LC001090, LC001091, 20 " 40, 150001, 150002, 150003, 150005, 150010, 150013, LCH1, LCH19, and all later LCH series which are now confirmed with Quality Assurance efforta at Haynes Corporation and Cooper-Bessemer.

Lot 150003 will have dimensional inspections imposed as fuel nozzle assemblies are reconditioned as one sample did nct pass inspectior, with the new Haynes hole angle gauge, but in the direction of greater ligament thickness.

Reject Lots are those wlith known failures or failing to meet technical criteria of ligament thickness and nitride case depth as a result of destructive examination at MTD. The previously recalled lots in 1988 and 1991 as a result of 10CFR Part 21 notification to the NRC are 1124 (includes 1135), 150006, and 150008. In addivon, Cooper-Bessemer is adding to this recall list lots 150004, 150009, and D870061. These fuel nozzie tips should be replaced at the next schoduled plant refueling outage and tips in warehouse stores should not be installed in a diesel engine.

The attached listing shows the serial numbers, lot numbers, quantity and location of all reject lot fuel nozzle tips.

In conclusion, Cooper-Bessemer, in agreenent with the Cooper-Bessemer Owners Group, and MPR Associates believe that the corrective actions taken by Hayıes Corporation (current manufacturer of nozzie tips), Cooper-Bessemer and the utilities are sufficient to preclude this failure from recurring and that this incident should be closed. If you have any questions, please contact J. R. Schneider, Quality Assurance Manager, or J. M. Home, Manager of Nuclear Engineering at 412-458-8000.

Vice President and
General Manager
HAL/kil
cc: D. T. Blizzard - CES/GC
J. M. Hurne - CES/GC
J. S. Baron - CES/GC
W. O. Ferguson - CES/MV
A. D. Gillette - CES/GC
B. R. Sedelmyer- CES/GC
cc: Mr. Walter Haass - NRC
One White Flint North
Mailstop 9D4
Washington, DC 20555
Mr. Arthur G. Kiltinger
MPR Associates, Inc.
1050 Connecticu' ivenue, N.W.
Washington, DC 20036

Page 4

QCG-9081

November 2, 1992
cc: Mr. Ted Fryat
Houston Lighting and Power
South Texas Project
Wadsworth, TX 77483
Mr. Matthew Heidom
Pennsylvania Power and Light
Two North Ninth Street
Allentown, PA 18101
Mr. Elmer Hernandez
Commonweath Edison Co.
Byron Nuclear Power Station
445 North German Church Rd.
Byron, IL 61010
Mr. Michael Kneble
EnTergy Associates
Louisiana Power and Lizht
Waterford 3 SES
Highway 18
Taf' LA 70006
Mr. Dwain Lambert
Commonwealth Edison Co.
Braidwood Nuclear Power Station
Route 1, Box 81
Braceville, IL 60407
Mr. Doug Mullen
Nebraska Public Power District
Cooper Nuclear Station
P. O. Box 98
Brownville, Nebraska 68321
Mr. Terry O'Brien
Commonwealth Edison Co
1400 Opus Place
Downers Grove, IL 60515
Mr. Lenny Schiavone - SM-3
Niagara Mohawk Power Corp.
301 Plainfield Road
North Syracuse, NY 13212

Page 5
QCG-9081
November 2, 1992
cc: Mr. Nell ThibodauxArizona Public ServicePalo Verde Nuclear Generating StationP. O. Box 52034Phoeniz, A2 85072-2034Mr. Terry VandevzortCommonwealth Edison
Zion Generating Station
101 Shiloh Blvd.
Zion, IL 60099

W1	6.97	SERVICE HCuNS	
3259-8	150010	357	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
3309-1	150006	382	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
3309-2	150010	357	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
3309-3	161091	217	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
3309-4	150006	324	1 2 3
3309-5	150006	432	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
3309-6	150010	wo	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
3309-7	-50010	357	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
3309-8	(CH19	WEW	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
3309-9	LCH19	WEW	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
3309-10	150009	\$00	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
3509-11	150006	324	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
3509-12	1.CH1	MEX	$\begin{aligned} & 1 \\ & 2 \\ & z \end{aligned}$

		IMEER	WCOINAL	EFFELTIVE	YISUAL	\pm	WHITE	
		LIGAMENT	LIGAKEMT	CASE	CASE	visual.	LAYER	cors
EDDY CURRENT		ThICKNESS	AREA	OEPIE	D-PTM	CASE	DEPTM	HARDWESS
TES:ING	WFAI	[IUCMES)	(50. $1 \mathrm{~N}_{2}$)	(1NCHES)	(1NCNES)	DEPTH	(INCHES)	$\text { [} M R C \text { ? }$
N0	ACC	2.048	0.224	$0.0+2$	0.016	52	WOWE	61
	2E. ${ }^{\text {P }}$	0.052	0.221					
	REJ	0.049	0.212					
2EJ	REJ	0.011	0.157	0.015	0.036	100	0.0007	40.5
	REJ	0.013	0.159					
	REJ	0.012	0.153					
ACC	ACC	0.056	0.265	0.018	0.020	54	0.001	42.5
	ACC	0.051	0.243					
	acc	0.049	0.241					
$A C C$	$A C C$	0.052	0.233	0.013	0.012	32	NONE	48
	ACC	0.045	0.233					
	ACC	0.040	0.228					
*き ${ }^{\text {a }}$	REJ	0.012	0.174	we	N0	M0	WD	\%
	REJ	0.013	0.175					
	ACC	0.013	0.175					
REJ	$2 C C$	0.012	0.174	0.011	0.017	100	0.0005	45.5
	REJ	0.017	0.173					
	REJ 3	0.018	0.174					
$A C C$	ACC	0.055	0.261	w	w 0	w	W0	W0
	ACC	0.054	0.252					
	ACC	0.056	0.252					
ACC	ACC,	9.055	0.244	0.011	0.016	50	0.0005	42.0
	ACC	0.055	0.250					
	ACC	0.051	0.266					
ACC	ACC	0.05	0.225	0.008	0.006	30	0.001	41.5
	4 CC	0.05	9.228					
	ACC	0.053	0.228					
ACC	ACC	0.052	0.231	N0	W0	ND	WD	M0
	ACE	0.053	0.230					
	ACC	0.051	0.238					
ACC	REJ ${ }^{\text {d }}$	0.047	0.215	0.012	0.619	63	0.0005	41.0
	REJ	0.047	0.215					
	REJ	0.046	0.215					
ACC	REJ	0.019	0.17 s	0.013	0.018	100	0.0005	42.0
	RES	0.021	0.182					
	REJ	0.021	0.181					
ACC	$A C C$	0.056	0.238	0.010	0.016	23	WCWE	41.5
	ACE	0.056	0.238					
	ACC	0.056	0.234					

TABLE 1. SUMMARY OF HI\&P EXAMINATIONS OF DIESEL. FUEI. INJECTOR SPRAY TIPS

Sample Dessoription					Dimersions \& Metailurgical Etaluation					
Sample Identification Ifamber	Lot	Ueility	Howe	WFMT Resules	Inner Ligament Thickn:3s (inwties)	Effective Case Dequh (isedies)	Visual Case In, 4h (unches)	* Visual Case Depeh	Care ftaminers (1HRC)	White layer Doth (inctres)
3822.1	10001059	PPP1.	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$A C X$ $A C X$. $A C E$.	$\begin{aligned} & 0.056 \\ & 0.353 \\ & 0.048 \end{aligned}$	0.007	0.013	4C. 4	42.7	None
3822-2	10001090	APS	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	ACC: AOC : $A C C$	0.0 .42 0.044 0.063	0.008	0012	47.1	452	None
3822-3	001110	PP\&1.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	ACC ACC $A C X$	$\begin{aligned} & 0.041 \\ & 0041 \\ & 0050 \end{aligned}$	0.007	0.011	50.2	43.3	None
3822.4	$\begin{gathered} 150004 \\ (T a g \\ 4 E 1616) \end{gathered}$	PPEL	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	ACC ACC ACC .	$\begin{aligned} & 0.045 \\ & 0.047 \\ & 0.051 \end{aligned}$	0.008	0.015	64.6	45.2	0.0002
3822.5	$\begin{gathered} 150004 \\ \text { (Tag } \\ 4 \mathrm{~F} 1607 \end{gathered}$	PPBL.	1 2 3	RE REJ ACC:	$\begin{aligned} & 0.040 \\ & 0.041 \\ & 0.039 \end{aligned}$	0.010	0.618	776	45.5	0.0002
3822-6	150013	AI'S	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	ACC. ACC: ACE	$\begin{aligned} & 0.055 \\ & 0.057 \\ & 0.059 \end{aligned}$	0.008	0.012	45.5	45.8	0.0006
3822 -7	200440	$P \cdots \mathrm{~L}$ L	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	HOC ACC AOC	0.042 0.043 0.044	0.007	0.610	38.6	45.7	None
3822-9,	087001	APS	1 2 3	ACC ACX: $\mathrm{AC}:$	$\begin{aligned} & 0.043 \\ & 0041 \\ & 0.042 \end{aligned}$	0.012	0.016	72.5	44.7	Nome

REJECT LOTS$2-50 F-003-023$FUEL :NJECTOR TIP				
DATE	CES S/N	LOT ${ }^{\text {s }}$	QTY	CUSTOMER
1/23/89	9A2401-16	150009	16	
	9A2401-04			CECO/BYRON
				CECO/BRAIDWOOD
	9A2405-08			CECO/BYRON
	9A2409, 11, 16,16			
	9A2412, 13			APS
9/26/79	9K2001-02	001124	2	
	$9 \% 2002$			N1-MO
1/10/86	681001-29	D37001	29	
	6B1001, 02, 05, 07,09, 15, 21, 24, 29			HLEP
	681003, 06, 10-13, 17-13, 23			APS
	$6 \mathrm{~B} 1008,14,16,20,22,25-28$			CECO/BYRON
10/26/86	6L.1701-12	150004	12	
10/31/86	6L1901-29	150004	29	
	61.1901-06, 08-13, 15, 29			HL\&P
	6L 1507, 14, 18, 19, 21, 25, 27, 28			PP\&L
	6L $1920,23,26$			APS
	6L1020, 23, 26			HL\&P
	6L1916			HLAP
10/28/88	9A0401-0\%	150009	2	
	9A0401			CECO/BRAIDWOOD

	REJECT LOTS $2-50 F-003-023$ FUEL INJECTOR TIP			
DATE	UES S/N	LOT \#	QTY	CUSTOMEA
	9A0402			
11/11/85	5L2001-11	D87001	11	
	5L2001, 08, 11			APS
	512007			CECO/BYRON
	51.2010			CECO/BYRON
	512002-06,09			CECO/BYRON
11/11/85	5L2701-07	D87001	7	APS
11/11/85	5M1301-15	D87001	15	APS
4/12/88	8D1301-24	150009	24	
	8D1301, 03, 04, 06, 09, ${ }^{1} 1,15, \cdots, 18,21$			CECO/BRADWOOD
	8D1302, 05, 07, 12, 13, 17			HL\&P
	8D1308, 10, 14, 22			CECO/BRAIDWOOD
1/28/88	8A2801-20	150008	20	
	3A2801. 02, 04, 06-08, 10-13, 15			APS
	8A2819, 20			CECO
3/3/88	7M1801-47	150008	47	
	7M1801-27			HLap
	7M1828-47			APS

REJECT LOTS 2-50F-003-023 FUEL IN.JECTOR TIP				
DATE	CES S/N	LOT *	QTY	CUSTOMER
7/22/87	7H0701-14	150006	14	
	7H0701-07, 09-14			HL\&P
	7H0708			APS
7/20/87	7G2901-06	150006	6	HLsP
6/29/79	9G2301-04	001124	4	
	9G2304			HLSP
9/26/79	9K1701-14	001124	14	
	9 K 1701			CECO/BRAILWOOD
	9K1706, 09			APS
4/10/89	9F2601-07	150009	7	APS

REJECT LOTSKSY-13-2AA4FUEL INJECTOR ASSEMBLY					
DATE	CES S/N	LOT \#		QTY	C:ISTOMER
$12 / 11 / 86$	6M1718-20	150004 (T)	J50004 (A)	3	Ni-MO
12/11/86	6M1701-17	150004 (T)	j00005 (A)	17	
	6M1701-05, 11-14, 16				CECO/BYMON
	6M1706, 08				APS
	6M1707				LP\&L
31/88 DFO 967	7H0167, 7J1501-03, 7D2003, 7D2006, 2C3286, 1D1416, 8K0902	150008 (T)	$J 50008$ (A)	9	CECO/ZION
6/3/92 DRO 704	5 L 2604, 5L2608, 6C1201, 6M1707	$\begin{aligned} & 150004 \text { (1) } \\ & \text { D87001 (3) } \end{aligned}$		26	LPixi
4/1/92 DRO 717	6M:103, 6M11C4, 6M1720	150004 (3)		11	NI-MO
6/13/92 RCM 1482		150009		6	CECO/BRAIDWOR ?
E/23/91 RCM 1493		150008		1	CECO/BRAIDWOOD

REJECT LOTS KSV-13-2A*6 FUEL INJECTOR TIP					
DATE	CES S/N	LOT \#		QTY	CL STOMER
5/19/92 DRO 695	2E1503, 2E1504	150004	7		CECO/ZION
-		-			cecozion
		LOTS 5A\#1 TION TIP			
DATE	CES S/N	LOT \#		QTY	CUSTOMER
8/21/92 DRO 780	9206046	D87001 (1)		40	MLAP
9/15/92 DRO 313	9208020, 21, 26, 27, 30, 42, 43	150004 (7)		50	CECO/BYRON
	9208025, 28	087001 (2)			
	9208037,38	150009 (2)			
	9208024, 29, 35, 39, 40	00112. (5)			

