UNITED STATES

NUCLEAR REGULATORY COMMISSION
WASHINGTON, D. C. 20555
OCT 151984

Docket Nos.: STN 50-454

and STN 50-455

MEMORANDUM FOR: The Atomic Safety and Licensing Board for Byron:

$$
\text { Ivan } W \text {. Smith }
$$

Dr. Dixon Callihan
Dr. Richard F. Cole
The Atomic Safety and Licensing Appeal Board for Byron:
Alan S. Rosenthal
Dr. Reginald L. Gotchy
Howard A. Wilber
FROM: Thomas M. Novak, Assistant Director for Licensing
Division of Licensing
SUBJECT: AMENDMENT TO BYRON FUEL STORAGE LICENSE (BOARD NOTIFICATION 84-168)

In accordance with the present NRC procedures for Board Notific:ations, the following information is being provided:

1. Letter from T. R. Tramp (Commonwealth Edison) to John G. Davis (NRC) dated September 13, 1984.
2. Letter from R. G. Page (NRC) to T. R. Pram (Commorive:alth Edisoni) date I October 1, 1984.

The September 13, 1984 letter is an application for amendment of the Byron fuel storage license, SNM-1917. The October 1, 1984 letter grants, in part, that amendment.


```
Erciosures:
faceted
```

CE: EDO

Parties to the Procescinc
site next page

```
Byron Units 182
Docket No. 50-454,455
Dr. A. Dixun Callihan
Doug Cassel, Esq.
Ms. Diane Chavez
Dr. Richard F. Cole
Joseph Gallo, Esq.
Or. Reginald L. Gotchy
Mrs. Phillip B. Johnson
Michael Miller, Esq.
Ms. Pat Morrison
Alan S. Rosenthal, Esq.
Ivan W. Smith, Esq.
John Streeter, Reg. III
Dr. Bruce von Zellen
Howard A. Wilber, Esq.
Steven P. Zimmerman, Esq.
Mr. Dennis L. Farrar
Mr. Hilliam Kortier
Atomic Safety and Licensing
    Board Panel
Atomic Safety and Licensing
    Appeal Panel
Docketing and Service Section
Document Management Branch
Mr. Edward R. Crass
Mr. Julian Hinds
Mr. James G. Keppler
David C. Thomas. Esq.
Ms. Lorraine Crcek
```

Mr．John G．Davis
Director of Nuclear Material Safety and Safeguards
U．S．Nuclear Regulatory Commission
Washington，D．C． 20555

Subject：Byron Generating Station Units 1 and 2 Special Nuclear Materials License Number SNM－1917
NRC Docket Nos．50－454 and 50－455
References（a）：October 6， 1982 letter from T．R．Tram to J．G．Davis．
－ 84 S：－ 17 P？：06
（b）：February 28， 1983 letter from T．R．Tram to J．G．Davis．

Dear Mr．Davis：
This is to request amendment of the Byron fuel storage license， Sim－1917．Revision of certain existing license conditions is necessary to permit placement of the startup sources in fuel assemblies prior to the commencement of core loading．It is also necessary at this time to amend certain information provided in reference（b）in support of our application for the license．These revisions are necessary to minimize the number of times that each new fuel assembly must be handled on the core load critical path and will diminish the possibility of accidental damage to the fuel．

Attachment A to this letter contains the proposed changes to SNy－1917 and the basis for each change．Attachment B contains the amended responses to questions 4．b and 4．c which were originally provided in Attachment B of reference（b）．

Expedited consideration of this amendment is requested．We anticipate receiving a fuel loading license for Byron 1 in October， 1984. The revision to 1 license $5 \times \mathrm{V}-1917$ is needed p pion to the issuance of the Part 50 license to permit transfer of the californium neutron sources in advance of the commencement of core loading and finalization of the core loading procedures．It appears that issuance of the amencrent fy october 1 －11．provide acecuate lead time．

According to 10 CFR 170．11，no fee is required or this license がきいでent．
DupE f410120405

As you know, the request in reference (a) for authorization to receive fuel for Byron 2 is still pending. For your information, the shipment of Unit 2 fuel is presently scheduled to begin in May, 1985.

Please address any questions you may have regarding this matter to this office.

> Very truly yours,

T. R. Tramm

Nuclear Licensing Administrator
1 m

Attachments

9154 N

ATTACHVENT A

PROPOSED CHANGED TO SNM-1917

Present Wording:

18.b The fuel assemblies shall be stored in a cher kerboard pattern.

20 Fuel assemblies shall be stored in such a manner that water would drain freely from the assemblies in the evet of flooding and subsequent draining of the fuel storage area.

Proposed Wording:
18.b The fuel assemblies shall be stored in a checkerboard pattern in the Spent Fuel Racks. Two fuel assemblies may be placed in two damaged fuel storage containers for Primary Neutron Source installation and shielded storage provided the center-to-center spacing of these assemblies and all other adjacent fuel assemblies exceecis 20 inches.

20 Fuel assemblies shall be stored in such a manner that water would drain freely from the assemblies in the event of flooding and subsequent draining of the fuel storage area. However, two fuel assemblies may be placed in two water filled damaged fuel storage containers for Primary Neutron Source installation and shielded storage provided that the water used is at greater than 2000 ppm boron concentration.

Reason for Changes:

Due to ALARA considerations it is desirable to install the two californium primary neutron sources into two new fuel assemblias in the spent fuel pit. Two damaged fuel storage contakiners filied with borated water will be used for radiation shielding. The containers will be locaZed in the failed fuel container rack shown in FSAR figures 9.1-2 anc 9.1-4 (enclosed). This rack is designed to maintain the center-to-center spacing at greater than 20 inches. The installation operation will be performed shortly before the start of nore loajing and the two new fuel assemplies with installed neutron sources will be temporarily stored in these containers until transferred to the reactor.

Basis for Changes:

The two fuel assenblies to receive primary sources will be installed in failed fuel containers located in twi nonad jacent failed fuel container rack locations 44 inches apart. The failed fuel container has the cylindrical dimension of a 13 inch schedule 10 pipte and contains a stainless steel angle framework centered in the container to support the fuel assembly. This framework is nominally 9 inches square. Between the two loaded failed fuel containers will be a third, borated water filled failed fuel container to-be ussed as a shielded temporary storage location for the primary source rod. When we unload the new fuel vault into the spent fuel pit, the c:losest a new fuel assembly would be stored with respect to a source bearing assembly would be $203 / 8^{\prime \prime}$ inches.

Thenty inches is greater than the minimum checkerboard center-tocenter spacing. This arrangement has been analyzed by NUS corporation the original rack criticality analyst, and founo to have nio adverse affect on the original results.

The total amount of water used will not exceed 250 gallons: Even if this borated water were to completely leak into the surrounding Spent Fuel Pit, it would be less than $1 / 4$ inch in depth, still mante than 18 inches below the active fuel in storage.

```
Normal station radiation procedures will te used to supporet the
-vement of primary neutron sources. Heaith Fhysics persronnel will
unhtor personnel area dose rates, conduct arda surveys and contamina-
Zion swipe surveys, and appropriately post any radiation areas.
fezsonnel dosimetry will inciude bauges specificellv desizgned for
Gutron exposure. Expeoted dose rates fo: source loading loth with
zol witnout borated water snielding are as folions for selccted areas:
```

Area	Without Water	With Water
Welding Work Area (9 ft . above source)	$158 \mathrm{mrem} / \mathrm{hr}$	$0.00326 \mathrm{mrem} / \mathrm{hr}$
426^{\prime} elevation at North end of pit	$4.16 \mathrm{mrem} / \mathrm{hr}$	0.079 mrem/hr
South SFP wall at source level	$688 \mathrm{mrem} / \mathrm{hr}$	$50.8 \mathrm{mrem} / \mathrm{hr}$
426^{\prime} elevation at South end of pit	$9.51 \mathrm{mrem} / \mathrm{hr}$	$5.9 \mathrm{E}-6 \mathrm{mrem} / \mathrm{hr}$

9154N

BYRON/BRAIDWOOD STATIONS
FINAL SAFETY ANALYSIS REPORT
FIGURE 9.1-2

BYRON / ERAIDWOOD STATIONS FINAL SAFETY ANALYSIS REPORT

> F:Gu:E 9.1-4

ATTACHMENT B

AMENDED RESPONSES TO NRC QUESTIONS
(Responses originally provided in Attachment B to letter dated February 28,1983 from TR Tramm to JG Davis)

Question 4.c:

Describe the administrative controls to assure that the fuel will be stored and maintained in a checkerboard pattern.

Original Answer:

When transporting a new fuel assembly, the loaded area of the spent fuel racks will be approached from the unloaded side, never allowing a fuel assembly to pass over a storage cell that is immediately adjacent to a cell already containing a fuel assembly. Two independent persons will verify placement of the new fuel assemblies in the spent fuel pit storage rack locations to ensure the checkerboard pattern is maintained. During unloading, fuel assemblies nearest the unloaded side will be moved first ensuring that assemblies are not moved across from each other.

Anended Ariswer:

A new fuel assembly in transport will not be allowed to pass over a storage cell that is immediately adjacent to a cell that already contains a fuel assernbly. Two andependent persons will verify placement of the new fuel assemblies in the spent fuel pool storage rack locations to ensure the checkerboard pattern is maintained.

Reason for Change:

The previous controls prevented loading the whole core directly from the spent fuel pool. The revised controls reduce the number of fuel moves and diminish the possibility of fuel damage, yet they escablish reasonable and satisfactory precautions to avoid accioentel
criticality.
sucint

OT 01 : 84

FCUP: NK
70-2973
Sili-1917, Amendment ko. 2
Conmonwealth Edison
ATTK: Mr. T. R. Tramm
Nuclear Licensing Administrator
P.0. Box 767

Chicago, IL 60690
Gentlemen:
In accordance with your application dated September 13, 1984, and pursuant to Title 10, Code of Federal Regulations, Part 70, Materials License No. SNM-1917 is hereby amended to allow the storage of new fuel as semblies in the Failed Fuel Container Rack. Accordingly, Conditions 18.b, and 20 are amended to read:

Condition 18.b. The fuel assemblies in the Spent Fuel St orage Racks shail be stored in a checkerboard pattern. However, one fuel assembly may be placed in each of two storage locations of the Fafled Fuel Contafner Rack provided they are no closer than 20 inches (center-to-center) from the nearest fuel assembly in the Splent Fuel Storage Racks and no closer than 44 inches (cent:er-to-center) from each other.

Condition 20. Fuel assemblies shall be stored in such a manner that weter would drain freely from the assemblifes in the event of flooding and subsequent drainimg of the fuel storage area. However, one fuel assembly may be placed in each of two water-filled fuel assembliy storage locations (44 inches center-to-center) in the Fafled Fuel Container Rack.

All other conditions of the license shall remain the same.
The above 1 icense conditions were discussed with Mr. T. .. Tram of Comonwealth Edison and Mr. Noman Ketzlach of my staff on September 17,1984 . It should be noted that your amended answer to NRC Comment No. 4.c. in you r February 28 , 1983 submittal (Tom Tramm to John G. Davis) is acceptable.

2

(町 01 154

```
Comonwealth Edison - 2 -
```

Enclosed is a copy of our Safety Evaluation Report in support of this amendment.

Enclosure: Safety Evaluation Report DISTIRBUTION: DOCKET FILE 70-2973 50-454
PDR
SHO
NMSS R/F
FCU: R/F
NKetzlach (2)
VZTharfe
WBrown, SGFF
DWeiss, LFMB
GBennington, SC,MT
LCobb, te
JHinds, Res. Inspec.
JStreeter, RIII-
BSMarlett, RIII
SHLewis, ELD
RLFonner, ELD
IWSmith, ASLB
RFCole, ASLB
ADCallinan, ASLE
LOI shan, -NRR
SHLewis, ELD

FOR THE U.S. NUCLEAR REGULATGRY COMMISSIGN

$$
\begin{aligned}
& \text { Qiginal signee by } \\
& \text { Ralph G. Page }
\end{aligned}
$$

R. G. Page, Chief Uranium Fuel Licensing Eranch Division of Fuel Cycle and Material Safety, NMSS

DOCKET ND.: $\quad 70-2973$
LICENSE NO.: SNM-1917
LICENSEE: Commonwealth Edison
FACILITY: Byron Unit 1
SUBJECT: SAFETY EVALUATION REPORT - REVIEW LICENSE AMENDMENT APPLICATION DATED SEPTEMBER 13,1984

Background

$3 y$ application dated September 13, 1984, Commonwealth Edison (CE) requested authorization to store two new fuel assemblies in the Failed Fuel Container Rack and to install Californium (principally (f-252) startup sources in them. The possession and handing of the Californium sources is authorized under Material License No. 12-05650-18.

Discussion

A. Nuclear Criticality Safety

In the New Fuel Storage Vault there may be three groups of fuel assemblies with each group having 2 rows of 22 assemblies each. The fuel assemblies within a group are spaced on 21 inches center-to-center. There are two $50-$ inch aisles between the 3 groups. The staff had determined the minimum $k_{\text {eff }}$ for the array to be <0.89 independent of the degree of water moderation within and between assemblies or the degree of concrete reflection surrounding the array.

The fuel assemblies in the spent fuel rack are spaced on $14-1$ inch centers. Authorization had been given (Amendment No. 1, issued August 9, 1983) for storing fuel assemblies in the Spent Fuel Storage Pool in a checkerboardpattern. Under these conditions, the k_{∞} of an infinite array in the racks would be <0.90 at optimum water mist density within and between fuel assemblies.

The Failed Fuel Container Rack is located in the Spent Fuel Pool at the southwest corner of the array of the spent fuel racks. It provides storage for 10 failed fuel assemblies spaced on $\hat{2}$-inch centers. CE requests the storage of only two fuel assemblies in this rack spaced on 4 finch centers (the steel pipe in the in-between position to be filled with berated water to be used as a neutron shielded temporary storage location for the startup source rod prior to assembly into one of the two fuel assemblies). The shortest distance between two adjacent assemblies in

$$
\text { - DiP } 841015^{-0114}
$$

the Spent Fuel Storage Pool Racks is 19.3 inches center-to-center. Since the spacing between the two fuel assemblies in the Failed Fuel Contafner Rack is greater than those between assemblies in the New Fuel Vault and the Spent Fuel Storage Pool Racks, the combined arrays are safe independent of the degree of water moderation within and between assemblies. Therefore, it is recomended Condition 18.6 be modified as follows:

Condition $18 . b$. The fuel assemblies in the Spent Fuel Storage Racks shall be stored in a checkerboard pattern. However, one fuel assembly may be placed in each of two storage locations of tha Fafled Fuel Container Rack provided they are no closer than 20 inches (center-to-center) from the nearest fuel assembly in the Spent Fuel Storage Racks and no closer than 44 inches (center-to-center) from each other.

The two fuel assemblies in the Failed Fuel Container Rack are to be submerged in water. Since it has been shown that two assentblies separated from each other by 12 inches cannot be made critical independent of the degree of water moderation within and between assemblies, they cannot be made critical whether the assemblies are submerged or not. Since Condftion 20 does not allow the storage of fuel assemblifes unless water would drain freely from the assemblies in the event of flooding and subsequent draining (e.g., no water between assemblies but water within assemblifes). it is recommende, Condition 20 be modified to allow the two assemblies to be submerged in water.

Condtion 20. Fuel assemblies shall be stored in such a manner that water would drain freely from the assembles in the event of flooding and subsequent draining of the fuel storage area. However, one fuel assembly may be placed in each of two water-filled fuel assembly storage locations (44 inches center-to-center) in the Falled Fuel Container Rack.

Attachment B to the license amendment application dated September 13, 1 : 34 revised the 1 icensee's response to MRC Comment No, 4.c. (letter from T. R. Tramn to john G. Davis dated February 28,1983) regarding the admintstrative controls to assure that the fuel will be stored and mafrained in a checkerboard pattern. The revised response does not affect nuclear critfcality safety and meets the intent of a response solfcited by the NRC. Therefore, it is acceptable.
B. Dactation Safety

Storage of two fuel assemblies under water in the Fafled Fuel Container Reck does not change the radiation safety of the activities authorized by this 11 cense.

C. Environmental Effects

There is no requested change to the environmental protection requirements of the facilities. None are required since the activities authorized by this license (either under normal or postulated accident conditions) remain unchanged. In accordance with 10 CPR $51.22(\mathrm{c})(11)$, an environmental assessment or an environmental impact statement is not necessary for this proposed action.

General

The amendment application dated September 13, 1984, was discussed with Mr. K. A. Connaughton, Byron Resident Inspector, on September 18, 1984. He foresaw no safety or environmental problem with the requested io CFR Part 70 authorization and stated he would contact Region III regarding any action necessary for the installation of Californium startup sources in the two fuel assemblies.

Conclusion

On the basis of the above, the staff recommends issuance of a license amendment with the revision of Condition 18.b to allow storage of two fuel assemblies in the Failed Fuel Container Rack and Condition 20 to allow submerging of the two fuel assemblies under water.

Condition 18.b. The fuel assemblies in the Spent Fuel Storage Racks shall be stored in a checkerboard pattern. However, one fuel assembly may be placed in each of two storage locations of the Failed Fuel Container Rack provided they are no closer than 20 inches (center-to-center) from the nearest fuel assembly in the Spent Fuel Storage Racks and no closer than 44 inches (center-to-center) from each other.

Condition 20. Fuel assemblies shall be stored in such a manner that water would drain freely from the assemblies in the event of flooding and subsequent draining of the fuel storage area. However, one fuel assembly may be placed in each of two water-filled fuel assembly storage locations (44 inches center-to-center) in the Failed Fuel Container Rack.

Norman Ketzlach

Uranium Process Licensing Section
Uranium Fuel Licensing Branch
Division of Fuel Cycle and Material Safety, NMSS

OCT 011384

FCUP:IK

Abstract

DOCKET NO: $70-2973$ APPLICANT: Commonwealth Edison (LE) Byron Nuclear Generating Station, Unit 1 Chicago, Illinois

SUBJECT: CATEGORICAL EXCLUSION FOR LICENSE AMENDYE NT REQUEST DATED SEPTEMBER 13, 1984

By Letter dated September 13, 1984, CE requested amendment of License No. SNM-1917 to allow the storage of new fuel assemblies under water in the Failed Fuel Container Rack. Such a change is procedural in nature. Therefore, in accordance with 10 CFR 51.22(c)(11), ian Environmental Assessment of an Environmental Impact Statement is no :t warranted for this proposed action.

FOR THE U.S. NUCLEAR REGULATORY COMMISSION

Original Signed by
Ralph G. Page
R. G. Page, Chief

Uranium Fuel Licensing l Branch Division of Fuel Cycle: and Material Safety, 淮SS

Du8年84t0150:21

