

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

SOUTH CAROLINA ELECTRIC & GAS COMPANY

SOUTH CAROLINA PUBLIC SERVICE AUTHORITY

DOCKET NO. 50-395

VIRGIL C. SUMMER NUCLEAR STATION, UNIT NO. 1

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 28 License No. NPF-12

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment to the Virgil C. Summer Nuclear Station, Unit No. 1 (the facility) Facility Operating License No. NPF-12 filed by the South Carolina Electric & Gas Company acting for itself and South Carolina Public Service Authority (the licensees), dated July 22, 1983, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's regulations's set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, as amended, the provisions of the Act, and the regulations of the Commission;
 - C. There is reasonable assurance: (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations set forth in 10 CFR Chapter I;
 - D. The issuance of this license amendment will not be inimical to the common defense and security or to the health and safety of the public;
 - E. The issuance of this license amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
- 2. Accordingly, the license is hereby amended by page changes to the Technical Specifications as indicated in the attachments to this license amendment and paragraph 2.C(2) of Facility Operating License No. NPF-12 is hereby amended to read as follows:

(2) <u>Technical Specifications</u>

The Technical Specifications contained in Appendix A, as revised through Amendment No. 28, are hereby incorporated into this license. South Carolina Electric & Gas Company shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

8410240164 841012 PDR ADDCK 05000395 PDR 3. This license amendment is effective as of its date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Elinor G. Adensam, Chief Licensing Branch No. 4 Division of Licensing

Enclosure:

Technical Specification Changes

Date of Issuance: October 12, 1984

ATTACHMENT TO LICENSE AMENDMENT NO. 28

FACILITY OPERATING LICENSE NO. NPF-12

DOCKET NO. 50-395

Replace the following pages of the Appendix "A" Technical Specifications with the enclosed pages. The revised pages are identified by Amendment number and contain vertical lines indicating the areas of change. To maintain document completeness, the corresponding overleaf pages are also provided.

Amended	Overleaf		
Page	Page		
2 - 8	2 - 7		
2 - 9			
2 - 10			

Delete page 2 - 11

TABLE 2.2-1 (continued)

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

Fu	nctional Unit	Total Allowance (TA)	<u>z</u>	<u>s</u>	Trip Setpoint	Allowable Value
18	. Safety Injection Input from ESF	NA	NA	NA	NA	NA
19	. Reactor Trip System Interlocks					
	A. Intermediate Range Neutron Flux, P-6	NA	NA	NA	≥1 x 10-10 amps	≥6 x 10-11 amps
	B. Low Power Reactor Trips Block, P-7					-10 09 of DTD
	a. P-10 input	7.5	4.56	0	≤10% of RTP	≤12.2% of RTP
	b. P-13 input	7.5	4.56	0	<10% turbine impulse pressure equivalent	<12.2% of turbine impulse pressure equivalent
	C. Power Range Neutron Flux P-8	7.5	4.56	0	<38% of RTP	≤40.2% of RTP
	D. Low Setpoint Power Range Neutron Flux, P-1	7.5	4.56	0	≥10% of RTP	≥7.8% of RTP
	E. Turbine Impulse Chamber Pressure, P-13	7.5	4.56	0	<10% turbine impulse pressure equivalent	<12.2% turbine pressure equivalent
2	20. Reactor Trip Breakers	NA	NA	NA	NA	NA
	21. Automatic Actuation Logic	NA	NA	NA	NA	NA

TABLE 2.2-1 (Continued)

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

NOTATION

NOTE 1: OVERTEMPERATURE AT

$$\Delta T \leq \Delta T_{_{\rm O}} \left\{ K_1 - K_2 \, \frac{\left(1 + \tau_1 S\right)}{\left(1 + \tau_2 S\right)} \, \left[T - T'\right] + K_3 (P - P') - f_1 (\Delta I) \right\}$$

= Measured ΔT by RTD Manifold Instrumentation Where:

= Indicated ΔT at RATED THERMAL POWER

= 1.090

= 0.01450

= The function generated by the lead-lag controller for T_{avg}

 τ_1 , & τ_2 = Time constants utilized in the lead-lag controller for τ_{avg} , τ_1 = 33 secs., τ_2 = 4 secs.

= Average temperature of

587.4°F Reference T_{avg} at RATED THERMAL POWER

= .0006728 K_3

= Pressurizer pressure, psig

= 2235 psig, Nominal RCS operating pressure

= Laplace transform operator, sec-1. 5

TABLE 2.2-1 (Continued)

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

NOTATION (Continued)

NOTE 1: (Continued)

and $f_1(\Delta I)$ is a function of the indicated difference between top and bottom detectors of the power-range nuclear ion chambers; with gains to be selected based on measured instrument response during plant startup tests such that:

- (i) for q_t q_b between 34 percent and + 8 percent $f_1(\Delta I)$ = 0 where q_t and q_b are percent RATED THERMAL POWER in the top and bottom halves of the core respectively, and q_t + q_b is total THERMAL POWER in percent of RATED THERMAL POWER.
- (ii) for each percent that the magnitude of q_t q_b exceeds -34 percent, the ΔT trip setpoint shall be automatically reduced by 1.67 percent of its value at RATED THERMAL POWER.
- (iii) for each percent that the magnitude of q_t q_b exceeds +8 percent, the ΔT trip setpoint shall be automatically reduced by 1.11 percent of its value at RATED THERMAL POWER.
- NOTE 2: The channel's maximum trip setpoint shall not exceed its computed trip point by more than 3.6 percent ΔT span.

NOTE 3: OVERPOWER AT

$$\Delta T \leq \Delta T_0 \{K_4 - K_5 \left(\frac{\tau_3 S}{1 + \tau_3 S}\right) T - K_6 [T - T"] \}$$

Where: ΔT = as defined in Note 1

 ΔT_{α} = as defined in Note 1

K₄ - 1.091

K₅ = 0.02/°F for increasing average temperature and 0 for decreasing average temperature

 $\frac{\tau_3 S}{1 + \tau_3 S}$ = The function generated by the rate-lag controller for T_{avg} dynamic compensation

TABLE 2.2-1 (Continued)

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

NOTATION (Continued)

NOTE 3: (Continued)

 τ_3 = Time constant utilized in the rate-lag controller for T_{avg} , τ_3 = 10 secs.

 K_6 = 0.001190/°F for T > T" and K_6 = 0 for T \leq T"

T = as defined in Note 1

T" < 587.4°F Reference Tavg at RATED THERMAL POWER

S = as defined in Note 1

NOTE 4: The channel's maximum trip setpoint shall not exceed its computed trip point by more than 2.7 percent ΔT span.