DRAFTS OF REPORTS AND INTERVIEWS

D-1 Draft of discussion on interview with Hugh McGovern.
D-2 Draft of interview with John Blessing by Christopher.
D-3 Draft of interview with John Blessing by Christopher and Martin.
D-4 Draft of interview with Raymond Booher by Cummings, Martin and Christopher.
D-5 Draft of interview with Raymond Booher by Christopher.
D-6 Draft of interview with Raymond Booher by Christopher and Martin.
D-7 Draft of interview with Joseph Congton by Sinclair.
D-8 Earlier Draft of interview with Joseph Congdon by Sinclair.
D-9 Prospective list of interviewees.
D-10 F.arly draft of Table 9 from investigation feeder report by Kirkpatrick.
D-11 1980 draft of investigation feeder report on Leak Rate Review by kirkpatrick.
D-12 Draft feeder report on allegation concerning estimated critical position
written by J. W. Chung.

I assisted in interviewing three TMI Unit 2 Control Room Operators (CRO's), Hugh McGovern, Earl Hemmila and Mark Coleman, on April 10, 1980, at the NRC trailers at the site. Also participating in the interview was Dave David if Gamb le of the Office of Inspector, Auditors. As part of the interview, I asked each of the operators a series of questions. The substance of these questions and the operator's answers derived from my memory and sparse notes, $i \rightarrow$ the altos led heath are briefly listed below. Each operator was asked to sign a written statement which Mr. McGovern and Mr. Hemmila did. Mr. Coleman participated in the formulation and editing of a statement, but decided not to sign it. Where the answer to a question appears in the statement it is not included below.
Donald c.k-kpatich

2 ansuted in internieming three TMI Unit 2 Contral Room Operatara (CROR), Hugh Me Govern, Eare Hemmila and Mark Coleman, on Afril10, 1980 at the HRC trailers at the site. Alo participating in the interniu was Dare camble of the Office of Insfector Anditorr. As cart of the internien, 2 asked each of the oferators a series of quichons. The inbstance of ther questions and the cperataic ansmers. derivied from my memouy ard -iparce noto, a beveifly listed below. Each operotar was asked to Lign a witten stotement which Mr McGowern ond Mr Hemmila did. Mr Colemon paticipates in the fermilation and editing of a statemen but decided not tiv sign it. Where the arsmer tor a gevestion offecars in the tatemens it is nat uncluded below.

Operator－ Hugh Me Govern
Q What is your underetionating of te prepare of the lead rate
A To prevent the releore on minimise

Q Hance yow every recieved treeing on the connection between the unidentified leak rate and a crack in th reactor pressure boundary ar discussed in the SAR？
$A-h / \sigma$
Q－Describe th leak rate ten unchnding all of the elements stat yo into the calculation of the leak rate．
A．Cane a Anouledgeable desinraron of tent incholing，the ehongerin the PCs density，Pruanuiges levee，Makeup tank and $\mathrm{f}^{\prime} \mathrm{C}$ drain tong．Discussed the addition of water during the test and却 necusity for entering thin un the computer．

Q Did yen -ever hane deflenenty githing good leak rati tent resulti and what whe ete main reacono for the difficulty? A-Yes and H_{0} The main conve of inaccurrcy was the mariation in theindenticis livel in the nopeup tank (frele bine cleinge) This cunounted to a wieh ore for which worlel cave a naviation of abut 30 gallen.

Q'Here yeur awave of froblema with the Leak Rate lest computer proyiam and the inaccuracier in the flogeom?
A-yes. Did knour that there wor a change in the campinter fragion hetween December 1978 and Jommary 1979
Q What wox nomally done with a cimputer tort record that gane unacustable resutit 7. It wex divicumaled.

Q In what wayz can the leak riate tent renule be changed by operaton actiona?
A. Lee statement

Q Did you ever wose any of ettene mettodid to effect the reande of a leak rate teat?
sue statement
(Aubxequentery M/M Mogeremen ivas hhown choumentation shoming that watir howl been cilobed deving the perfoumence. of oni of his teate hutt cut intury ints. the computer. This is chscrasal in the statiment

Q Did your Enow of any one else who used there methods tr effect the leak rate test results?
A - Le statement

Q Did any of your superiors ever tell gan to do anything to change tar result e of a leak rate test?

- Le Statement

REPORT OF IHTझRVISW WITH JOHN BKBSNCN FS RGCORDFO BY RKEFTH CHRSTOPHFR, INVESTISNFR

 11cintial poonoprator for the Mrebropolitan sdusan canpay was, enterueured commenayats. the intenveu was conductid ar the uviean Requlatery commisuer. Offeroat thine mele lieand Nveber Powen stateon Buy. Rkeid Chritoph an thames T. maith fren Nre Rigea I and prs. fin cummingo, oy to offue of Inspeito and dudita, NRC hean uaotero. Alio prent was
 the filecfucter bof leakeratere regading the lescta Cestant hnventey Surveillarae Fecta farturi-2. neri Pase)
Wot When adede if the aformentions atteny us presens at horignt W.Blessyenduadid the peverdey Mm Glosppupel wao descied

Blessuy demed, knawery-t- anyspecfer untanne unmbech the liaksate recorde were tir timalf folsifiei, Heachnowledsed that it wascomimen practre of a lange. pove=x othe Contral kom operaloo, to add Aydraym to stemakup tank, whis runnif the bak ecurnellard tests, an arden to assestin gettinitegord leakrato resulto (1E result that mith theicil spoafiation requemen \bar{b}). at tho lime, Blessuy didnat speafyoredemifty undivichaple whohad astualy adodel harjen to the matuaptank, batresterated that it wancommon Praclive and well bewown to pervinul at lesstap to che shofoformandenve of mangjement. Beissergevao also asitud Torelate wape chat he was persannelf Auare for folsefyng berkrate test result Merespand polation anderatim addelin to codeny hodrogens an curnaideladd wale to the makup' tan" hertant theth Tomproto ealiclation on the Peader eqdiat Smmetey arhelicald.
cause the bakerto to foll wurki-the tochmial sperfuation requermento. Blessuy, sand he wrao not. avare of any unstanse whewabiuvao untinhainy added tocds makeup tonk wathat telling the computer for parposes of falsifying beakrate test usalt. Hecentinued wore the stolements there wasno managenentenctucatain that It wara for hiddem practues to add lodigen to the makeup tonk who the da RC. enventoy Lavillaid pest wasbungran

The second areang grustion
concened the disturctum of terte conters omventey Aurvellemce tist reeads. elat dithe faled os muet the betnveal Spoufenton reguermats oy one qallon poin mona ar CGPM facunden titurb leaknge. furcy tuebony slesseng acknowboght that hevartine Netrageo leak ratitest recordo whech were ird (Ir pio mots mut)
treknual specfication requement) and seknowbelyed tho was a cammenpiactia among the contial koom operatoro. Blesseny uas ashed -- --. more ouleso passed down thiough the ranka. He ceted what he ithoughts was the ariqinative of tho poley urhen, on ene vecassion Cdate enkioin) a lord leakiate calcalaten uas lifer Geng out inthe contial Roon plessenysands hatyafts that he overkead two formen Cwhon be ceuld not/wend mato edentyf) talkuy, in tho contral Rearn. He rad, that to the besteof hio reeollectery be heand them soy that thy Cthe formensididn Tuont the lad bak rate recordelaywy
 whe not shat down. He agiamo estatudedsinthe shipe

ATAhis time Blesseng veroo gustoened reqanding the addetion of hydragin to the makiup tank en ondu to get oood hal sate resultfor the forvedlames test. He agoun stated isurullauls
Chave hnaun alowx the dil of them showld.
Belessing vas then Mushened about
Sno understandury of the tiehneeab sperferatera that gene her thice dere (72 hus) u wherb to geta.good leal uate culculatex ferinth Reactor covecont insuentor Suwsellance test. the stated That it uras ho undestand eing = that he on ly harl to hane. a guod leakrate result once eveir 72 honn, uregand less ap tho froctctat he mighogit subsegrent Unstplaied "bad anes" darryehe pereod liefrestate mixt satupacloy bakratio vesult. He sandthe bad leak rater
Le Ho aisd stated that
he felt the iomputer Reogramucas.uvany Vercurothe camputir uvaild show ange
lave. amoent of bloge inthe pacter covent hiventay and yet the samp Pamps whishedelect thi bakage fion the vavease peacter coselan to Apster Inchanuma wowldn T come on, wo that et was he opinein that the was nor veypehat much water ccald be baking from the reastor coselant sypter. He scuat thise eweezte premay wearana. -woved fewl on a anveraye 14 -to fue thio pesshoft andichat all of vhase test result would have to hesthover away.
Changer. fimech eurchouts frovehur

Whimaperfienly custer enheo formentwe Avere of tho Aphagmasb-utur he stalid ho was cenfident ithect sul H oye, he
 hochogm additm dernpte linkiat list u hu asted aleont ito othe Shossformen-ar-soperveca, in thi plaw he evatatifurs hes opemenetrarbecaus inewas sach ecom, harwheng all of ths Fonemin should hawe hwown alorex th, Procter. An refereng to aniopera time dipt Rernmil rosta he and wis F. Scheumen, wT. Conowey, E.A. ademo, A, ll. muler milh an $c z_{\text {. Se ththere who }}$ heots unet Fo shop foremen, Blassmy dev...t peard any -mperthe infermato to as=lasiof tho assusetr.
interview of Mr. John BLLSSS/N 6

The following gives the results of an interview with Mr. John Recusing, a Control Room Operator employed by the Metropolitan Edison Company. This interview was conducted on $4 / 10 / 80$ at 0810 in Trailer No. 2 at the Nuclear Regulatory Commission alike , Three Mile Island Nuclear Power Station. This interview was conducted by Mr, \hat{A} Christopher Mr. T. T. Martin of the Region I Office, Nuclear Regulatory Commission and Mr. Nim cumaines of the Office of Inspectiólé and Auditor.凡A representative for Metropolitan Edison Company, Attorney at
 presence of Mr. \qquad GLASEP.6S5.65 wAs

BCASS AC W4S quISTIONBO th es the reactor COOSANT for TMI BLUSY NLC DSNIED the reactor come system for TMI-2. knowing any specific instances in which LEAK RATIS records WRRE intentionally falsify. He acknowledged that it was common practice, byAlarge portion of the control room operator ${ }_{R}^{5}$, to add hydrogen to the makeup tore, while running the test, in order to assist in getting good
 individuals who had added hydrogen, but reiterated that it was common practice and well known to individuals tit AT LGAST UP TOTHAF FORJNAN LOLSL. to thew fret that Murat.

yeer-1skeally
was also asked to Relate any ways that he was personally aware of for falsifying leak \rightarrow te tests. He responded by stating/besides adding. hydrogen, that you $\angle \sigma L \angle D$ the computer. He stated he was not aware of any Inctumsas where water was knowingly added without telling the computer FoR purports of leak rates. He continued with the statement that he did not feel the addition of hydrogen was a falsification of the leak rate records because 1+ "Didn't do anything to the makeup tank level". He did acknowledge that on numerous occasions he had in fact added hydrogen to the makeup tank while running leak rates, passed onto the tron ether operators

 indication that it was a forbidden practice.

The next area of questioning involved the destruction of leak rate test RJCOROS which did not meet the one gallon per minute specification FOR UNIOBNTIF, SO LANAKAGE. BLESSING during questioning/acknowledged that he routinely destroyed leak rate tests which were bad and acknowledged this was a common practice among BLESSING WAS ASKISD IF HA WAS OIRSKINO the control room operators.
 calculations and he responded by stating that the throwing away of leak rate y was "filtered down from the management people shift foreman's." BLSSSINCN SAT ID
he was unable to specifically identify any one foreman or supervisor who specifically told him to destroy the bad leak rate calculations, and reiterated that it was more or less passed down through ranks.

He cited what he thought was the origination of this policy when on one occasion (date unknown) a bad leak rate was left out in the control room. Blessing said that shortly after that he overheard 广cuo FoRd MON talking in the control room. He said to the best of his recollection he heard them say that they didn't want the bad leak rate records laying out where the NRC would see them and would ask why they were not shutdown. He again stated that he could not specifically identify any one particular management individual who directed HiN... to throw away the leak rates shat that it was just something he learned on the shift. At this time $B<B S 5$ in K_{λ} question regarding the addition of hydrogen to the makeup tank in order to get good leak rate records. He/lstated that he has in the past added hydrogen to the makeup tank and sTATED that adding this was something he would do as a last resort to get a good leak rate. He again stated he picked up this suggestiońto add hydrogen from other operators, but could not specify any particular individual. He emphasized that it was no secret that hydrogen was being added to the makeup tank during the running of the leak rate tests and it was a totally common practice. He said it His opiw,ow nit and foramen well aware of this practice. He again reiterated that 9 out of 10 times the hydrogen addition did not work and therefore was not pertinent to the issue. When specifically asked what foreman were aware of the hydrogen additions, he stated that he was confident that Dick Hoyt his shift foreman was well aware of the hydrogen additions during the leak rate tests. When asked about the other shift foreman and supervisors in the plant, he again stated that it was his opinion that because it was such common knowledge all of them should have known about the practice.

In fur the questioning John $\beta<\Delta \mathbb{S} / \times 6$ was then questioned about his understanding of the technical specifications that gave him three day, (72 hour period) in which to get a good leak rate. He stated that if WAS NFACTH/S Understanding that he only had to have a good leak rate every 72 hours irregardless of the fact that he hast ,

leak rates were largely disregarded because he and the other operators felt $1+8$ sind the computer was not accurate. \triangle Particularly in the later stages just prior to the accident, it became harder and harder to get good leak rates because the computer program errors made it difficult to get acceptable leak rates.
 He also stated that he felt that the computer program was wrong because the computer would show a large amount of leakage and yet the sump pump wouldn't rAT
come on so that it was his opinionhthere was no way there could be that much water leaking. He said these were the primary reasons why the disregarded the bad leak rate data. He also stated that along with the lean_compura rates, he mia many hand calculations and that he got "better ones" then the computer. He also stated/and Hal Hartman had made quite a few of these hand calculated leak rates. He continued that AS THE approach to the accident drew nearer it was more difficult to get good leak rates and there was increasing pressure to get them, al though he did not specify management pARSON< pratsurg was . He said he felt the computer was not picking up the increased leakage in the vaive/to the RC drain tank and for this reason it was causing bad calculations. He said it was also his opinion that leak rate tests would fail on an average of 4 to 5 times per shift and that all those would have to thrown away.

Blessing also related at this the that it was his personal knowledge that leal liartman had, HF KI added hydrogen to the makeup tanks during this period to get good leak rates. WHEN question/fregarding the other operator ON HIS SHIFT, RAY BCOHER, operator or not BoOKER hat in fact added hydrogen or water or in any other way falsified leak rates.

BLESSING WAS THEY qUUSTIONWO
regarding management pressure that was being exerted in order to yet Gog ot leak rates. He stilted that he did not feel there was any direct upper management pressure but there was a strong desire to keep the plant on the ofysly $\boldsymbol{B}^{\text {and }}$ that no one wanted to be the shift that was responsible for the plant coming down. $\sqrt{\text { Again he } s t a t e d ~ t h a t ~ h e ~}$ did not feel the hydrogen was a falsification of leak rates because it MOST OF THE TIME. did not work 1 This time he acknowledged that adding water to the tank BUT
would be a falsification, metaled that he would not knowingly add waler without telling the computer. He theindicat that this could for one,
happen FGR_ several reasons; THS OPGRATGR wave just forget to add $1 t_{1}^{\text {TO }}$ He $A<50$. explainfthat the operator doing the leak rate was rut responsible for inputting the water additions to the computer IN THE DIAくOEUS and that compurar. PRoGrdin not know the water was added. At this time, Mr. Martin showed Jun Blessing a leak rate calculation fur $2 / 2 / 79$, at which time durian? the period of reflected that dur wine the leak rate test water was added to l the makeup tank. It was no led by Blessing that the LeGGNTRY WAS MADAS BUY RAY and he also acknowledged that he had in fac assigned the computer calculations FOR THB lac rate tests. He denied intentionally adding water to the makeup Lank in order to get a youd leak rate.

He stated that he probably did not know that Ray forfar had added water and for that reason he punched 0 into the computer calculation for operator /NO V<EO \angle AdNGG. He sapid that normally he would tell the panel operator not to add water when the leak rate tests would be run, but thembone

Whrtiont tho own apeactior error
0 that resulted in water being added Λ conipuler being told. He again denied that he intentionally Nocidersio To THE WATER ADOSTOA leak rates AL this time, BLEsses was shown another leak rate calculation detest $1-13-79$, which also indicated an addition of water during, the la ak rote test. He againsteted that hid only explanation for the water addition uncekoat tellingythe computes wax operator error. Hecencladed by denying that he intentionally folcefuid any leak sate calculators by the addition of water or sid any other mien peeseng war then as ted to provide a puritan sworn statement regarding the details of the entervievi; however 1 seossun declined to Provide a suvarn statement and the entiview was terminated at 0945 .

RIK ChnISTO PHIFR
TH. MARTIN

KAY MoND BOOHER CRO
JOHN CODY－UNON RSD lBSW HARRY GLAASS PIGGBL－ATJNMY MSTGLQ． J．CVルバルモ TノP MARTIN
R．K CHRIS YOPHE？
sayp be can＇t remember the lict
incillint．Nas nat inshucted to fuafe ay $S C D$ ．Brean mehler and Hal Hoitrow hat w waky pelation slup puoden．

RCS bak Nate test had peralimo getty bat rate Cpord ones）
secalled ene day getty quodsinn andche next the noo jetsy the o－How coald liak iato be funge－ 13．eacef coald Pat douma wray number．uned to lote numburf）de makeuk tank spayeo Is puels oat the mellevit riaduy．

R-ふу BOOH\&R
Urap to fucdse. (other)
recenty heandalrant Hg addelicio

- not cuvare of the f'oct that Hg oddetr ward cavel a roe un the tant.
(2) run inacceptribe leakiater
(1) mot sure seyp hi can Tremenber - daen ' T rememben the poby of what to do wut leak rate tisto (ide unacaplatele raty)
once thy yot cuccepleta lerkrate
- foshy geta-bad-one wuhra few bro. ofter a good one- (A) saypit us ho underslanday that helad 72 her to get a qaet bat rate fren th tind of Whe last one.
who cuTSRPROTND KSCH SDSES -ATHFwas SOP - shift suforwon is nomalf respansbleefre interprety toch speess $0 \supset 40$ - Unwonvep lequest emeety vod Mookn.
$0 ク 42$ returned

Re BOOHKR
$4-10.80$
ruiterate - he doen T remenherwhat hecherend lrad leakintotects supersuses/Foremans - in jeneral tedt idennto gobach as get gordkch sater
FORTVON/ suprensor. - HoyT/SMITH Butbedoen Tromenbina speafo inater of thise mpensavo betty, him to get the leakiatio when coaldn '/ get geod leat rats - gapo es arcalite evcll pootran anderter
H_{2} anortions
laknata - $10.20 \cdot 78$. odlarthy stelerturosnat hus intatiofflefy
1-13-79 - wati cudbo nal entred m the computa

- state thio erhwo hamdurclopen thos loz
presine. to giteato y add, water sajo ledousn' Tresses remembur if Hal asled hin to frodyebkiato -ucRD's add uath whin neussay. state he can romenbur Henthin ever so caded him to dudso bet iato yoddy, tiotio

R1300452
os-23.79- 1才才 150 . loggon
y Borku-achnorobgesetis boshandent! m loeth ee log.

Booker-on pencel sap he doen it neassony hroun if. soneareke is Parchy out leakrats
Atinues any knowlede of entenbici \Rightarrow folsifieater /or even of actuody Felofy, leakrate
states he hav no fulyyfor Pressure fromethe management. intervis vemplets at 080 G .

RAY BOOHER
BCDInCIOAUT - 4 - 23.80
Fuocus

$$
\begin{aligned}
& \text { 10-20.78 lid tiot } \text {, } \mathrm{H}_{2} \\
& \text { 1.13.79 leygerm } U(H)_{1} 0 \\
& \begin{array}{lll}
2.2 .79 & \text { g.opged. } \\
\text { g. } 2.79 & \text {-loggemm }
\end{array} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

REDORT OF INTIFRUIEW WITH RNYMOND Bouhse ts RECOEDSD BY R.KBITH CHRISTOPAFR, INVIESTILATVR, CSMUCLIFAR REGuLATONy Commissiod
on 4-10-80 PNo. Paymand zowher Operator for the Ineliopoleles F disen Complany veraa entervewed commenciry at othis. The intervieir was Conducter at the nvelean vegulatएy commana Offer at the thie Rokle hich Chrstopher and Ihomso t. Prartun fiem NRE Requed I and Mr. fin Cumming of the offere of Prspectorand Auditor, NRC Headgevarters Also present At therequest fof Booker
related essental the follorvery unformation

Booker was asked torrelate uny enformation he had sigardery an allegatien mude if Huwed iscu-baindat daving a unit ${ }^{\text {F }}$ asturtup, the reactor unen creteal below the allowabbeland Froand the calealated is ishnated Inlual

Position ($F<P$), the neactor was not shatdoum as, requedy. puredure for che event. yan that a neur se 0 was Gudyed scoher acknew lesed confumecrdim, that thio encedent
sookerwas then questond, wad regando toshe reacter covelant liventey Lurvullana test and lecenfurmed that there hal buenprobberns en jecty gord leakiateresultilis nesulte that met technieal specfucater requement. He underated the bukrate result rugho wiry, while on obher dayathy (tho opinton) cowld not getan acaptable one. Booke war aq ked haw leathrationbuld be
 Sake a rombe off the reacta coola is dicur tank qaugeo, and allepaperata hed to Do vios entaculasangriading. Boakurad he had no preveral knewede of any endervelua² dong the andemul whathe

$$
\begin{aligned}
& \text { Ite sovel survesthe unceptin -. } \\
& \text { kept orref thy whe }
\end{aligned}
$$

Barahencreasthen cpoushanie as to his -underalandy of the tachnowe Sperpueation reguements' ofleak ation en chereactor Hedant Imuentory Awvellavi torto. He-scud, tievar hna enterputalo What one thy (the apretor) yyat in acceptato leakerate et uraor:2 livarolefare thy nueded anrets one to meet the tichnueal specifieation requenent, He sadel iccaoks enterpratales
centó yor got ane (ancacuptobe bak lats calculatera)
pimsh uot soofructorn
Qhanzes.

\section*{BOOHER

Results of Interview with Raymond

govern

govern

Dovish 2

Raymond control room operator for the Metropolitan Edison Company, was interviewed on $4 / 10 / 80$ commencing at 0715 . Hhs .interview was conducted at the Nuclear Regulatory Commission offices, Three Mile Island *) The interview was conducted by R. K. christopher and T. T. Martin form NRL: Region I and Mr. Jim Cummings of the Office of Inspection and Auditor, NRC headquarters. Also. present at the request of Bede was Mr. John Cody his union representative from the International Brotherhood of Electrical CLASSDIS6t. Workers and Mr. Hurry andernerey attorney representing Metropolitan BoHR [dison company. When interviewed fore related essentially the following information.

Bootise

lease was asked to relate key/infornation he had regarding an allegation made by Harold Hartman du

 worked with Harold Hartman and recalled that on several occasions we worker in a shift in which Brian Mahler was the shift supervisor.
 question and Meter did
insect (1)
thit dunj \sim aplit stets, the wioter vert sifted kelou- ite allonble tond avond the caludit, ECP, the reactor $\cdots \cdots$ selthom ever rquined as seredure the the eve to an tot a new EDP iven folyed.
not recall being any supervisor to fudge calculation. He also noted that Harold Hartman and mahberhad a personality conflict that impaired their ability to work on the same shift. IN... conclusion, he was unable to confirm or deny that this taken place.

Booker sad
Bouts

$$
\operatorname{Con} \angle A N T
$$

sac was then questioned regarding the reactor canter system leak rate Lusts and he confirmed that there had been problems in getting good leak
 RESULTS RIGHT AWAY WHILE
mew n thrywould get good leak rater, and

 fudged
 lake a number off the sumer gauges ; enter a crow reading. lie said he he d no personal knowledge of any individual doing this and denied that he ever did it. He saidses reading the inception of this investigation(that addition of hydrogen to the makeup tank was a way of getting good leak rates. He said he wasn't aware of this fact until recently that he did not understand how hydrogen addition could cause a rise in the tank. was then questioned regarding the D, sposiffof leak rate tests which had

 z way remember what the policy was and could not remember if he threw bad leak rate tests or if kept

He／then questioned／he his understanding fof＾technical specification for the taking or leak rates．He said that it was his understanding and interpretation that once they got an acceptable leak rate it was 72 SAID hours before they needed another inc．Hepit was his interpretation that unacceptable
If they had subsequent leak rates，after a good one，it did not matter as lung as 11 was within the 12 hour time period．He suet finis inter－
 predation never－peletadomecifiandin tin
never related specifically to him in training or by any y supervisor； ，
 he could not recall this particular area being discussed by anyone．

Mr．Cody，union representative then with Bochspe．Trey SuBSEquENTly reiterated that he did nut remember what was done with a bad leak rate test recorD．至 then questioned regarding the bating of board rates，he，said that supervisory foremen，and other operators would，in general，tel each ocher
 management pressure．He also stated that he did not remember any specific incident where either his supervisor Dick Holt or Bernie Sinith specifically ordered him to get a leak rale at any cost． routine was that if you could not get a good leak rate，you kept running it hourly until you got one．

BOSHAR
At this time Mr. Martin showed a leak rate calculation dated conraia Rosin
$10 / 20 / 78$, which according to theNoperator's \log indicated hdyrogen LSAKRATs BoOHER WNS had been added to the makeup tank during the 1 lest. at a lass to explain the hydrogen addition, or i.ts effect, Anf denied that he had any intention to falsify the records.

Now

 \qquad

BOOHEL
intere was also shown a lcak rate calculation daled $1 / 13 / 79$ in which water was added to the makeup lank and not entered Booher intn the computer. of the cuntrol room \log sheet pertaining to this incident. He confirmed the
that it was his handwriting in the \log recording entry, but had no explanation for it not beiny added to the computer. At this time, Bera that it was sTATAOAN net his intention that leak rates be falsified and that he fcit no management pressure to do these type of things to get good leak rates. Bocher acknowledged betng a good friend uf Harold Harman and s tated that he could not recall if Harold llartman had neer asked him to specifically help him fudge leak ratus. He specifically slated that he could neither confiminor deny if Hartman ever asked him to fudye the laak rates by adding Bowher
water. Ras again shown another leak rate calculation dated $2 / 23 / 19$ which rufiected that detracturer was added during the stme of the leak ratethot.

BOUH15 2

Bose reviewed the leak rato and the uperatur＇s log and confirmed that it was his handwriting entering the water into satay．Beet contimulb to ap lam that on the panel he unesn＇t necessarily know if someone else is compuerlut a cOST leak rate／during 体＿time and may not necessarily know that he should not add water if there was No dialogue between the operators．He denied intentionally AGMNatad falsifying the records and $\lambda=$ that he was at a loss to explain how the water was added and not recorded except for opera tor error．He concluded by stating
 leak rates．He stated that everyone wanted to keep the plant on line，if possible．At this time，BQEASR added nothing impontore to the interview and $1 T$ un terminated at 0806．

K．Chris topher

T．MarLin

REPORT OF INTERVIEW WITH JOSEPH CONGDON
AS RECORDED BY JOHN R. SINCLAIR, INVESTIGATOR U.S. NUCLEAR REGULATORY COMMISSION

On April 10, 1980 Joseph Raymond Congdon, Control Room Operator, Unit 2, Three Mile Island nuclear power facility was interviewed at the Three Mile Island site by NRC personnel concerning his knowledge of alterations of "leak rate tests" pertaining to the reactor coolant system inventory surveillance. Congdon began by explaining that he was not certain that the addition of hydrogen would effect the leak rate test results, however, he was aware that it did effect the level in the makeup tank (MUT). Despite this he (Congdon) stated that one "would not necessarily want to do $\mathrm{it}^{\prime \prime}$. He also indicated that the MUT level was one of the critical parameters in the leak rate calculations and if hydrogen was added dur: ing the test it would have an effect on the leak rate. Congdon also explained that al though he could not recall specific conversations with other operators on his shift, or with supervisors, he believed that Cooper and Adams had the "depth of knowledge" to know that hydrogen would have an effect. Congdon did not remember any specific conversations relating to the addition of hydrogen.

When questioned about the discarding of leak rate test data which was considered unacceptable Congdon replied that it was "common practice to throw away leak rate tests" that were unacceptable. Congdon explained that procedurally he would show the test results to the shift foreman if they were acceptable. He continued by explaining that if he (Congdon) believed he had made a procedural error, or there was a logical reason for invalidating the results, he would personally make the decision to throw the test results away and rerun the test. Congdon stater, however, that he never threw one away that was done properly, and did not recall if he had run any tests, excluding mistakes, that were not acceptable.

According to Congdon his shift ran the tests at least once a shift to comply with the 72 hour requirement. Congdon then explained that he did not recall how many tests were run and then conceded that there nay have been as many as two or three tests conducted per shift. After additional queries, Congdon also stated that there may have been one entire shift completed where operators did not get an acceptable leak rate. In response to a question about whether there was a policy or established practice to discard unacceptable leak rates Congdon replied that the only requirement was that they "were required to take a test every 72 hours".

Congdon continued by stating if there was a situation where they got two "bad" (unacceptable) ones then someone should have had to go and identify the problem. In the event that an "Action Statement" was required, Congdon stated that initiation of Action Statements "was not on his shoulders". Congdon added that he believed that "we had discussions about the leak rate and it was an area getting proper attention".

Congdon replied to a question about difficulty in obtaining acceptable leak rates, as time progressed toward the accident date (March 28, 1979), by stating that they had a lot of leakages in the drain tank but did not recall any specific problems with leak rate tests. Congdon then stated that there was pressure as "we got into a position that you had to go into an Action Statement" "company knows you have to shut down so general feeling was do what was necessary" within interpretations. As Congdon proceeded he stated that generally, "yes there was pressure to obtain a "good" leak rat. The supervisors would say "we need a good leak rate, we're approaching 72 hours". Following this statement Congdon did state, however, that nobody directed him to falsify records. Congden also explained that some of the pressure was to keep running the tests as often as necessary to see what the actual leak condition was.

Following questioning about whether he (Congdon) either intentionally altered leak rates or was instructed to falsify leak rate tests, Congdon stated that he never intentionally altered a leak rate test or received directions to falsify leak rate tests. Congdon stated that when a leak rate test was conducted properly and still exceeded limits it would be kept to watch for adverse trends until they got a good one and then the old test was discarded. Congdon also stated that he belfeved that in instances where leak rates appeared to be procedurally correct but were still outside the limits (technical specifications) the results were forwarded to supervisors.

Congdon was shown leak rate test records for the dates November 5, 1978, November 9, 1978 and February 15, 1979 containing information implying hydrogen was added during a leak rate test conducted on Congdon's shift ("C" shift). Congdon observed the stipulated documents and confirmed that they disclosed the addition of hydrogen during the test procedures. Congdon then replied to a question regarding what effect the addition of hydrogen would have on the leak rate test by stating "it would look like less leakage".

In addition, Congdon was provided the opportunfty to review a Makeup Tank Level chart for the leak rate test on February 15, 1979. Specifically, he was questioned on a notation on the chart "Pressurized MUT" during the period of the leak rate test. He stated it was not his handwriting and he didn't recognize it.

Congdon was apprised that a record review of leak rate tests for the period of April 1978 through March 1979 disclosed that hydrogen was added during the periomance of 8 tests, were attributed to "C" shift. Congdon responded that he had no explanation of why the majority of these tests identified his shift. When asked if it was the intent to alter leak rate tests Congdon stated that he did not know what his intent was, however, he was not trying to cover up unsafe conditions or cover up leakage. Congdon, added, he probably was attempting to "get a good leak rate". Congdon reiterated that it "was not done to hide a safety issue but was done to comply with administrative requirements. According to Congdon the addition of hydrogen "probably was to satisfy the surveillance requirement and not jeopardize the safety of the plant". He then stated that he would not have done it if it was to jeopardize the safety of the plant.

Congdon subsequently indicated hydrogen was added for the purpose of effecting the leak rate calculation. According to Congdon the entire shift including the shift foreman knew the hydrogen effected the leak rate and that it was his belief it was a group decision to satisfy surveillance requirements. Congdon then stated that there was no intention to falsify records.

One reason that hydrogen additions were utflized, according to Congdon, was that the operators did not have faith in the leak rate test program. As Congdon continued he explained that they did not believe that they should be going through problems to satisfy a surveillance. Congdon further explained that the nature of the problems were brought up to people, but CRO's were not getting information or responses to correct the problem. As Congdon recalls the problem was brought to the attention of Bill Fells in Programming, Brian Mehler, Shift Supervisor and Chuck Adams, Shift Foreman. The extent that each individual was informed of the leak rate problem, Congdon could not be certain. Congdon explained that a possible program deficiency was brought to Fells' attention but he could not say if Fell was aware that hydrogen additions were made to attempt to obtain acceptable leak rates.

Condgon concluded by stating that he had no personal knowledge of water being added to the make up tank during test procedurc..

REPORT OF INTERVIEW WITH JOSEPH CONGDEN
 AS RECOKDED BY JOHN R. SINCLAIR, INVESTIGATOR
 U. S. NUCLEAR REGULATORY COMMISSION

On April 10, 1980 Joseph Raymond Congdén, Control Room Operator, Unit 2, Three Mile Island nuclear power facility was interviewed at the Three Mile Island site by NRC personnel concerning his knowledge of alterations of "leak rate tests" pertaining to the reactor coolant system inventory surveillance. Congden began by explaining that he was not certain that the addition of hydrogen would effect the leak rate test results, however, he was aware that it did effect the level in the makeup tank (MUT). Despite this he (Congdén) stated that one "would not necessarily want to do it". He also indicated that the MUT level was one of the critical parameters in the leak rate calculations and if hydrogen was added during the test it would have an effect on the leak rate. Congden also explained that although he could not recall specific conversations with other operators on his shift, or with supervisors, he believed that Cooper and Adams had the "depth of knowledge" to know that hydrogen would have an effect. Congdén did not remember any specific conversations relating to the addition of hydrogen.

When questioned about the discarding of leak rate test data which was considered unacceptable Congdén replied that it was "cormmon prac*". to throw away leak rate tests" that were unacceptable. Congd exp.cined that procedurally he would show the test results to the shift foreman if they were acceptable. He continued by explaining that if he (Congdén) believed he had made a procedural errort, he would personally make the decision to TINT ROSUE: throw the test results away and rerun the test. Congdon stated, however,

Joseph Congdén
that he never threw one away that was done properly, and did not recall if he had run any tests, excluding mistakes, that were not acceptable.

According to Congdén his shift ran the tests at least unce a shift to comply with the 72 hour requirement. Congden then explained that he did not recall how many tests were run and then conceded that there may have been as many as two or three tests conducted per shift. After additional queries, Congdén also stated that there may have been one entire shift completed where operators did not get an acceptable leak rate. In response to a question about whether there was a policy or established practice to discard unacceptable leak rates Congdén replied that the only requirement was that they "were required to take a test every 72 hours".

Congden continued by stating if there was a situation where they got two "bad" (unacceptable) ones then someone should have had to go and identify the problem. In the event that an "Action Statement" was required, congden stated that initiation of Action Statements "was not on his shoulders". congden added that he believed that "we had discussions about the leak rate and it was an area getting proper attention". rates, as time progressed toward the accident date (March 28, 1979), by stating that they had a lot of leakages in the drain tank but did not recall any specific problems with leak rate tests. Congden then stated that there was pressure as "we got into a position that you had to go into an Action Statement" - "company knows you have to shut down so general feeling was

Joseph Congdén
do what was necessary" within interpretations. As Congden proceeded he stated that generally, "yes there was pressure to obtain, a "good" leak rate". The supervisors would say "we need a good leak rate, we're approaching 72 hours". Following this statement Congden did state, however, that nobody directed him to falsify records. Congden also explained that some of the pressure was to keep running the tests as often as necessary to see what the actual leak condition was.

Following questioning about whether he (Congdén) either intentionally altered leak rates or was instructed to falsify leak rate tests, Conger stated that he never intentionally altered a leak rate test or received directions to falsify leak rate tests. Congdenn stated that when a leak rate test was for ares conducted properly and still exceeded limits it would be kept until they got a good one and then the old test was discarded. Congden also stated that he believed that in instances where leak rates appeared to be procedurally correct but were still outside the limits (technical specifications) the results were forwarded to supervisors.

Congden was shown leak rate record Con was shown leak rate test dates November 5, 1978,
 conducted on Congden's shift ("C" shift). Congden observed the stipulated documents and confirmed that they disclosed the addition of hydrogen during the test procedures. Congden ${ }^{0}$ then replied to a question regarding what effect the addition of hydrogen would have on the leak rate Hyonosen test by stating "it would look like less leakage".

In adition, Condon men purnide tio proctimits to seview a malay Tale Zwi' chat fo the leade eate tat - Fehnary 15, 1979 . Smifingl,
be was quationed a the artion "Promined mur"
Pramind dentidaning the period of the lade utt hat tor He stal a it was oof hio haduritig and he dilnit reognije it. tests identified his shift. When asked if it was the intent to alter leak rate tests Congdén stated that he did not know what his intent was, however, he was not trying to cover up unsafe conditions or cover up leakage. Congdén, added, he probably was attempting to "get a good leak rate". Congdén ${ }^{\circ}$ reiterated that it "was not done to hide a safety issue but was done to comply with administrative requirements. According to Congden the addition of hydrogen "probably was to satisfy the surveillance requirement and not jeopardize the safety of the plant". He then stated that he would not have done it if it was to jeopardize the safety of the plant. hydrogen effected the leak rate and that it was ane to satisfy surveillance requirements \boldsymbol{K}_{0} congdén then stated that there was no intention to falsify records.

One reason that hydrogen additions were utilized, according to Congdén, was that the operators did not have faith in the leak rate test program. As Congden continued he explained that they did not believe that they should be going through problems to satisfy a surveillance. Congden further explained that the nature of the problems were brought up to people, but CRO's were not getting information or responses to correct the problem. As Congdén recalls the problem was brought to the attention of Bill Fells in Programming, Brian Mahler, Shift Supervisor and Chuck Adams, Shift Foreman. The extent that each individual was informed of the leak rate problem, congdén could not be
certain. Congden explained that a possible program deficiency was brought to Fells' attention but he could not say if Fell was aware that hydrogen additions were made to attempt to obtain acceptable leak rates.

Condgen concluded by stating that he had no personal knowledge of water being added to the make up tank during test procedures.

METROPUKITON B.D.5 CN CO. COMTHCTS

(5) Thertrovitues - Sinifl. Fiesman
e - Controer roor opgestur
(5) + MUSA NGGOUGRN.

SHIFT FORETANY
(6) Cetre - CONTROL ROOM GPSRLRR.
(2) Comthereps room opfentor
(8) X MiVR COLSITAN - COHTROK RQWM OPARATOR
(9) CONTROL ROONT OPARATOR

(1) SHIFT FORCNMン
(12) CONTROC RONT JPNRATCR
(23) SOWARD FRFOFRLLK - SONTROK EUOM GP:RATOR CTRNMING)

(13 L TOSEPA CONCDON. CONTRA ROUM OPARATOR

(17) • RAWVOND BOOHAR CONTROL ROOM UPSRATKR

(19) SHIFT SUPIRNTSOR

- SHIAT F゙SNOMANA

NRC PISRSONNS
（1）LiRRy VANDISNBARG OMPA
（3）ROBART MARSH
$1 E$
（1）Disuns ค．$A \lll 10 x$
SEPB
（G）OWBM 5 H゙メニKLBTON IE

TO．DT1UN人 HFT 50
GFGRLS KUMOSR
MIKE Brinsoul

Peporet

1. Pexsons Courtereo
2. Intreouvetron
3. EFW Suev

Acemanton
Finainas
4. ECP

Alcounton
Investration
Finornss
5. Temmination

Amesmon
Finaines
6. Srmoerr Cowcorns

Fino,ess
(Cweistopmere)
(Mmertin)
(Mmerin)
(PExiro
(Macrin)
(Mancin)
(Mterin)
(Cunistonem)
(Chenstomex)
(Cunisromax)
(Mmañ)
7. PCS INVENTORY

Alcemation
(A) VPocenover
(2) Vo Compurate pleganam
(3) H+No Cneweation
(4) 4 Prosnocr Chec Expour

Operemiar Concenens
Stuerss to Frisimy

PORC ACTIONS
H_{2} Aopinows Effecer Ha Aoormon i Opmose ilount
(5) NV H2O tooinow Eemeer
(6) $V \mathrm{H}_{2} \mathrm{O}$ ADointon Puenase i Msmay Preares Fiesimicitrons
(7) Açun Tountive Lenxhe

 ADOITIONS OUTBIDE WInDow Conceusion
(Cmperstapnox)
(Kipmentrick)
(Il,PNDATHICR)
(HIANPHTCICN)
(Kipwentrpick)
(Mastia)
(Mastin)
(Maserin)
(Manerias)
(Hmespicatar)
(Manetin)
(Mmerin)
(Ninamenticicr)
(Kinemonex)
(Mment)
(Mipkentricir)
(MAverin)
(Maneria)
(Cunistomex) (Mmatin)
8. Uuir 1 PCS Invourany (Cmistomex)
9. $5 / 0$ Pequist
(Hincexicturs - Cmeistrapher.
10. Safery Coucerens Avuramion Finoines
(Cumestomer)
(Mmerin)
11. Unresouven Irems
(Marern)
12. Entrince/Exit
(Mnerin)

Enccosurees
(Cmersromene)
Texnscierers
Sworn 5 miverauts
Reporer of Eurcrevievs

Table 2

EXPECTED VARIATION LEAK RATE CALCULATION DUE TO NORMAL VARIATION IN MEASUREMENT

- Table 1

Effect of Compenter Program Errors on Leak Rate Determination

Procedure

(Artacmandit 1)
The TMI Unit 2 RCS inventory procedure, 2301-3 D1, is intended to ensure compliance with technical specification 3.4 .6 .2 which limits identified leakage to 10 GPM and unidentified leakage to 1 GPM , (as well as other 1 limits). The technical specifications required the procedure to be performed at least once per 72 hours during steady state operation.

The procedure accounts for water inventory changes in the RCS (from expansion and contraction), the pressurizer and the makeup tank, to determine gross leakage. Water additions by the operators are also accounted for by the procedure in the determination of gross leakage. The data used in the gross leakage determination are initial and final RCS temperatures, pressurizer levels and make-up tank levels, as well as the water addition totalizer changes. Identified leakage is determined by level changes in the reactor coolant drain tank (RCDT), which collects primary water from various sources in the containment. Identified and measured primary water leakage that is not normally collected in the RCDT, quantified steam generator leaks and operator changes to the RCDT are also included in the identified leakage calculation. Unidentified leakage is defined as the difference between gross leakage and identified leakage.

The precautions in the procedure include a warning to avoid the addition and removal of water from the reactor coolant and makeup systems during the test. The procedures also contain the warning that, for the most accurate leak rate determination, the initial and final power, RCS temperature, pressure and pressurizer level should be identical. The procedure required the test to be run for for a period from one hour to eight hours.
The test results were reviewed for the period from $12 / 20 / 78$ to $3 / 5 / 79$. Despite the precautions identified above, water was added frequently during the test (and sometimes not included in the calculation.) This was particularly true after $2 / 14 / 80$, when water was added during almost every test. The initial and final RCS temperature, pressure and pressurizer levels were seldom equal. The pressure sometimes oscillated continually over a wide range (as much as 80 psi). None of the tests reviewed were conducted for a period exceeding one hour. As shown below these practices added significantly to the probable calculational error in the leak rate determinations.

The procedure provides a set of steps to be taken if the RCS leakage is excessive.

Abstract

The first step is to perform another leak rate determination. The second is to check for operator actions affecting the inventory and, finally, to initiate action to determine the source of the leakage. Partly as a result of the large variations discussed below, the test results frequently indicated an excessive unidentified leak rate. According to operator testimony (see transcripts of operator statements) the operators made a practice of attempting a leak rate test once each shift. Those test records that showed unacceptable results were systematically discarded.

Computer Program (ettreiment 2)
The RCS inventory procedure instructs the operator to use the computer to run the leak rate test if this is available (Item 6.1 of procedure). In fact, all of the tests conducted during the period reviewed were done using the computer. All that is required of the operator is to type the program code letters, "RC", into computer and press a start key ("Return" key). The computer then prompts the operator to enter the test interval, (1-8 hours) operator water changes (both to the primary system and to the RCDT), identified uncollected leakage and steam generator leakage.

The computer then automatically gathers all of the initial and final readings described above, makes all of the necessary calculations and prints out the three leak rates (gross, identified and unidentified).
(See-sample computer-sheetattaehment 1).

The computer program was reviewed in detail. The program gathers three data sets, at one minute intervals, for the initial conditions and three similar sets for the final conditions. The three values for each parameter are averaged to provide the initial and final values that go into the calculations. These data sets are not read directly from the measuring instruments, but are gathered from values already entered into the data logging locations of the computer memory. Since these values are up-dated at varying frequencies, the data in a given set are measured at different times. As shown in Table 2, this can cause significant variations in the leak rate results because some of the values in the calculation were continually ocsillating. Several errors in the computer calculations that cause significant errors in the leak rate results were identified. These errors and their effect on the leak rate are listed in Table 1 and described as follows:

1. The use of inconsistent densities to convert mass of water to gallons of leakage. The gross leakage from the RCS is determined by summing the mass changes, calculated in pounds, in the various primary spaces and multiplying by a gallons-per poun factor, based on the water density at RCS temperatures ($5.86 \# /$ gallon at $582^{\circ} \mathrm{F}$). The identified leakage, however, was derived from the leakage collection tank level change converted to gallons by use of a table in the computer. The calibration for this level measurement was based on cold water density ($8.29 \# /$ gallon at $70^{\circ} \mathrm{F}$). Since the unidentified leakage is defined as gross leakage less identified leakage, this inconsistency leads to an erronerous increase in the unidentified leak rate of about 40\% of the identified leak rate.
2. The similar failure to correct the volume of water added by the operators to the RCS for expansion to reactor density. This omission results in an erroneous decrease in the unidentified leak rate of the same magnitude.
3. The tables in the program used to convert temperature to density, terminate at $582^{\circ} \mathrm{F}$. When the RCS temperature exceeds this value, the density corresponding to $582^{\circ} \mathrm{F}$ is selected. Twenty two of the tests reviewad had temperatures above $582^{\circ} \mathrm{F}$ and resulting errors as high as one gpm .
4. Lack of a correction for pressure changes in the RCS during the test. The pressure affects the leak rate determination in two ways, by reducing the pressurizer density (as the saturation temperature increases) and by increasing the RCS density. Although these are opposing affects, the net result can cause a significant change in the measured leak rate.
5. An incorrect RCS volume used in the calculation of the mass change in the RCS. The computer uses a value of $10,673 \mathrm{ft}$., whereas the SAR gives a value of $10,346 \mathrm{ft}$.
6. The table in the computer memory used to convert RC drain tank levels to gallons of water differed from the equivalent table used by the operators in the control room. As an example for an RCDT level of 76 inches, the table in the computer memory gave a value of 6,605 gallons, whereas, the valve use in the hand calculation was 6,411 gallons.
7. The computer value for make-up tank mass change with level change, differed slightly from a value based on the tank drawings and level calibration procedures.

The computer program had originally been written for TMI-1 by R. S. Sheng who was no longer employed at TMI. This program had been adapted for use on TMI-2 by Bill Felds, the current computer programmer employed by Metropolitan Edison at TMI. Felds said that the RCDT level versus volume table used in the hand calculation had been revised since the computer prngram was written and was believed to be correct. The revised values in the table, however, had never entered into the computer program.

Hand Calculation

Hartman alleged that hand calculations were done to achieve acceptable leak rate results when the computer results were out of limits. The procedure provides for a hand calculation to be used when the computer is unavailable. However, the hand calculation had most of the same errors as the computer and produced almost the same recults. Also, during the period covered by the investigation, almost no hand calculations were performed.

It is likely that Hartman was referring to hand corrections that were made to the computer program beginning March 16, 1979. This was done to correct the first computer error identified above, which overstated the unidentified leakage by not correcting the density of the identified leakage back to reactor conditions. The procedure change was accompanied by a written evaluation signed by the unit superintendent. Copies of the hand written calculation sheets were provided to the operators. This correction amounted to multiplying the computer derived identified leak rate by the ratio of the RCDT water density to the RCS water density. The corrected idenitified leak rate was then subtracted from the computer derived gross leak rate to provide a corrected unidentified leak rate. This procedure did provide a more accurate identified leak rate. However, the corresponding correction needed to adjust the water added to the RCS by the operators for expansion in the reactor was not made. During time period, in which the hand corrections were made, water was being added to the RCS during every test in amounts that were roughly equal to the identified leak rate. Therefore, the computer errors in the identified leakage and the computer errors in the water added, roughly cancelled each other. The new procedure, by correcting the identified leakage, but not the water added, had the effect of understating the more important unidentified leak rate.

In addition to the computer errors already described, a significant variation in the one hour leak rate test results can be expected due to the uncertainty in the data. The expected uncertainty in the various types of data used and its effect on the results is detailed in Table 2. Uncertainty is caused by the periodic oscillation of some of the parameters as well as the expected instrument uncertainty. The oscillation is significant because a beginning or end data set is gathered over a time span that is comparable to the period of oscillations. For the Table 2 parameters, the oscillation was chosen as the basis for the expected measurement uncertainty when its magnitude was large compared to the instrument uncertainty. The expected error, caused by these uncertainites ranged from 0.18 gpm for the temperature measurement to C 73 gpm for the make up tank levels. The RMS combination of these errors results in a total expected measurement error of about one gpm.

The leak rate errors caused by the computer program could not be combined in any meaningful way due to their partially systematic nature. (See Table 1). The largest of these were the erreos caused by the failures to account for the density changes in the water and the temperature changes above $582^{\circ} \mathrm{F}$. The \&ormission of RCDT density adjustments caused an error of about 34\% of the leakage to the drain tank. Prior to the March 16 procedure correction, actual leakages to the drain tank (see discussion below) ranged up to about 5 gpm causing an error of 1.7 gpm . The similar omission in the water added to the RCS also caused an error of 34% of the added water. The largest water addition, recorded for a retained test record, was 300 gallons which also causec an error of one gpm. The largest temperature change recorded above $582^{\circ} \mathrm{F}$ was about $0.5^{\circ} \mathrm{F}$ resulting in an error of 1.1 gpm .

With these various errors and uncertainties it is estimated that the results of the one hour leak rate tests, done according to the procedure, will vary from the actual leak rates by several gpm.

Effect of Water Additions

Water was added by the operators to the makeup tank in batches of up to 1000 gallons. The average addition was about 200 gallons. When this was done
 during a test it always caused an apparent reduction in the measured leak rate. As previously indicated the procedure provided for the entry of the water additions into the computer. However, due to the fallure of the computer program to account for the expansion of the water as it heated uD in the RCS, even a correctly entered
addition caused an error. For example, a 200 gallon water entry is inventoried as 200 gallons by the computer, but expands to : '- gallons in the RCS. The result is a 1.1 gpm reduction in the calculated. ss and unidentified leak rates for the usual 60 minute test. If (as discussed below) the operator fails to enter the 200 gallon addition into the computer, the full 268 gallon RCS increase is uncounted, resulting an an erroneous decrease of 4.5 gpm in the leak rates.

Purpose and History of the Water Additions

Hartman alleged chat operators had added water to the RCS during leak rate tests, without entering the addition into the computer, in order to affect the leak rate test results. Operator actions, such as addition to the RCS are required to be entered in the Control Room Operators Log. This \log was reviewed for the test period of each leak rate test conducted between $12 / 20 / 78$ and $3 / 28 / 79$. Six test periods were identified during which water addition had been logged, but had not been entered into the computer computation (copies of the computer test print outs and concurrent CRO \log sheets are ${ }^{2}$. These are listed in Table 3, together with the effect of discrepency on the computer calculated unidentified leak rate. As shown by the table, each of the corrected leak rates are in excess of the technical specification limit of one gpm for unidentified leakage. Some cases of water addition could be verified by the examination of the make up tank recorder chart, which showed an upward shift in level when the water was added.

Actual Leakage

Due to the large scatter in the leak rate test results combined with the licensee's practice of discarding leak rate test records that showed unacceptable results, the actual gross leak rates could not be determined from the licensee's leak rate test records. Over the long run, however, the gross leak rate must equal the amount of water added to the RCS by the operators.

The total amount of fluid added to the RCS could be derived by summing the water and boric acid additions recorded in the control operator's log. This was done for each day covered by the period of the investigation. The average daily gross leak rates were then calculated and the results were listed in Table 4. The variation from one day to the next is of the order of one gpm. The scatter is believed to be caused by the batch nature of the water additions which were as high as 1000 gallons. The data were smoothed further by calculating running 3 -day
averages. These are plotted on Figure 2. The highest leak rates occured during the week prior to the accident when they were running 7 to 8 gpm . At this time, water additions were being made approximately every hour. The identified leak rate calculation could be based entirely on the RCDT level change since no significant identified leakage was recorded during the time covered by the investigation. The measurement uncertainty in RCDT levels results in orly about a 0.26 gpm variation in the one hour leakage calculation. (See Table 2). Therefore, reasonably accurate determinations of the identified leak rates could be calculated using the RCDT levels from the computer for all of the computer data sets. They are included in Table 4 and plotted on Figure 2. The results indicate that the identified leakage reached about 6 gpm during the period of March 24 to March 26, 1979.

The actual unidentified leakage could be estimated by drawing a smooth line through the two sets of data points on Figure 2, and measuring the distance between
 that the unidentified leak rate may have exceeded the allowable limit of one gpm prior to the shutdown on January 15. After the startup on January 29, the unidentified leak rate appears to have remained below or near the limit until around March 17. After this it increased to about 1.5 gpm prior to the accident.

Table 1

EFFECT OF COMPUTER PROGRAM ERRORS ON LEAK RATE DETERMINATION

Table 2
Expected Variation leak rote calculation due to normal variations in measurements.

Notes on Tables 1 and 2
(1) The ratio of the ambient water density to the RCS water density $=\left(62.31 \# / f t^{3}\right)\left(46.4 \# / f t^{3}\right)=1.343$.
(2) Effect of temperature change in RCS

(3) RCDT error $=$ level change by correct table less level change by computer table $\begin{array}{rlrl}= & (6558 \mathrm{gal}-6256 \mathrm{gal})- & (6755 \mathrm{gal}-6465 \mathrm{gal}) \\ & \left(\text { for } 78^{\prime \prime}\right) \quad\left(\text { for } 74^{\prime \prime}\right) \quad & \left(\text { for } 78^{\prime \prime}\right) \quad\left(\text { for } 74^{\prime \prime}\right) \\ = & 12 \mathrm{gal}\end{array}$
(4) \leftarrow Conversion from lbs to gallons $=\left(7.4805 \mathrm{gal} / \mathrm{ft}^{3}\right) /\left(46.4 \# / \mathrm{ft}^{3}\right)$ $=.1612 \mathrm{gal} / \#)$
(5) Each measurement is taken 3 times at one minute intervals
(6) The RCS average temperature is derived from the hot leg and cold leg temperatures in each of the two loops. Each temperature measurement represents one fourth of the RCS volume of 10346 cu ft , or $2587 \mathrm{ft}^{3}$. This results in a total of eight temperature values that are used in the leak rate calculation, four for the beginning data set and four for the end data set.

Table 3

Leak Rate Tests during which water was added to the RCS without correct entry into the computer and the effect of the descrepency on the unidentified leak rate.

DATE TIME					
	WATER	COMPUTER ENTRY *EFFECT ON LEAK	ORGINAL *CORRECTED		
		ADD (Gal)	(gal)		RATE (GPM)

$12 / 29 / 78$	$20: 48$	200	0	3.33	.0451	3.38
$1 / 13 / 79$	$9: 37$	117	0	1.95	.2639	2.21
$2 / 2 / 79$	0.55	300	0	5.0	.7513	5.75
$2 / 11 / 79$	$18: 08$	300	0	5.0	-.0603	4.94
$2 / 23 / 79$	$11: 07$	150	0	2.5	.3217	2.82
$3 / 19 / 79$	$0: 58$	400	200	3.33	.1851	3.52

* As it would have been calculated by the computer, without accounting for expansion in the RCS.

T2:64

Unidentified Leakage at TMI - 2
Baved on defference between rumning threeday andrages of woter adbled te leveh furm computer irput data.

Figure $\frac{\text { Nones } 1 \text { is a plot of the } 1}{}$ licensees leak rate tent, cerulte corrected for the known crores. The blue points are evicted for computer evora only. The red points include the correction for known leak rate falsifications. Each red point has the same point plotter (in green), which represent a the leak rate test result coversted for the computer ewers, but not the folcificstan

motes an Ley Leak rates calculated by investigators based on a 24 be period:
Crass- Sum of all water added between midnight and midnight in gallons expanded to reactor tempenatwer volume (sro; and derided by minutes per day (1440) $G . L R .=\sum$ gal $\times(62.27 / 44.64) / 1440$
Un I.D. Unidentifieio Leak Rate $=$ water pumped from containment rump over a three day period derided by minute in 3 days (4320)

TO: TIM MARTIN KI FROM DCK LE H
\because THy LEAK RATE CALCUIATIC.

TABLE OF CONTENTS

PAGE
1.0 ALLEGATION 1
2.0 INVESTIGATION 1
2.1 Identifications of the Reacter Startup in Question 1
2.1.1 Hartman Statements 1
2.1.2 Booher Statement 2
2.1.3 Hoyt Statement 2
2.1.4 Mehler Statement 2
2.1.5 Document Review 2
2.1.6 Summary 3
2.2 Sequence of Event 3
2.2.1 Background 3
2.2.2 Summary of Hartman's Allegation 5
2.2.3 ECP Event Documentation 6
2.2.4 Evaluation 7
3.0 Conclusion 11
4.0 References 12

INDEPENDENT EVALUATION OF HARTMAN'S ALLEGATION CONCERNING ESTIMATED CRITICAL POSITION DURING A REACTOR STARTUP AT TMI UNIT 2 ON APRIL 23, 1978

J. W. CHUNG

1.0 ALLEGATION

Document, transcriptions and statements were reviewed independently to evaluate the allegation made by former TMI Unit 2 Control Room Operator, Harold W. Hartman, Jr. The essence of the allegation seems to be that during a reactor startup on April 23, 1978, the actual critical positions of the reactor control rods were outside of the tolerance band $(\pm 0.5$ percent K / K) of the Estimated Critical Position (ECP), and that after the critical position was established, a new ECP was calculated by "fudging the numbers" to conform the measured ECP under the direction of alleger's supervisor, Brian Mehler, in violation of the startup procedural steps.

2.0 INVESTIGATION

Based on the transcripts of interviews and statements made by alleger, Hartman, and others, and available plant records and data files, three separate sequences of the event were constructed; one from the allegation, second from the plant records, and third, an expected sequence from independent calculations and procedural requirements under the given plant conditions during the startup in question.

Each line item was compared with the documented records and files to establish the credibility of the allegation, in that consistency and discrepancy were identified. This investigative report thus includes following:
a. Identification of the reactor startup in question.
b. Sequence of Events.
c. Independent Evaluation.

2.1 IDENTIFITATION OF THE REACTOR STARTUP IN QUESTION

2.1.1 HARTMAN STATEMENTS
a. In two separate interviews (references 1 and 2), Hartman stated that the alleged startup took place at midshift (page 47 of reference 1; page 3 of reference $2)$.
b. However, Hartman made conflicting statements on the startup date: April or May of 1978 (page 48, reference 1); between October and November of 1978 (page 2 of reference 2).
c. Hartman stated that the shift supervisor during the alleged startup was Brian Mehler (page 44 and 46 of reference 1; page 4 of reference 2). Even though Mehler was not his normal shift supervisor (page 48 of reference 1). He also identified one of the other control room operators as Ray Booher (page 4 of reference 2) and the shift foreman was Dick Hoyi (page 5 of reference 2).
d. Hartman testified that the original ECP was 52% withdrawn position on group 6-7 with lower and upper 1 imits of 32% and 52% withdrawn positions respectively for $\pm 0.5 \%$ delta K band from ECP (page 3, reference 2). He also stated that he continued pulling group 5 rods to 100% withdrawn position with group 6-7 at 25% (page 4, reference 2), and that the reactor went critical with group 6 and 7, at 28\% withdrawn positions which was below the ECP lower limit of 32% withdrawn position on group 6/7 (reference 3).

2.1.2 BOOHER STATEMENT (REFERENCE 5)

Booher acknowledged that he worked some shifts with Harold Hartman, and on several occasions on the same shifts with Brian Mehler. However, he did neither recall being asked to recalculate an ECP after a startup nor the incident in question.

2.1.3 HOYT STATEMENT (REFERENCE 6)

He did not recall the incident in question but acknowledged that he worked with Brian Mehler.

2.1.4 MEHLER STATEMENT (REFERENCE 7)

He did not know the specific incident in question.

2.1.5 DOCUMENT REVIEW

a. Reactivity calculation sheet (reference 10) was signed by Hoyt (0045 hour, April 23, 1978) and Mehler (0100 hour, April 23, 1978), and the ECP in the work sheet was 25% withdrawn on group 6/7. The reactivity calculation was performed by Hoyt.
b. Shift turnover sheet was signed by Hoyt at 2300 hour on April 22, 1978, and the reactor went critical at 0158 hour, April 23, 1978, at which intermediate range detector reading was 10^{-8} Amps, with RCS boron concentration of 1262 ppm , T average of $533^{\circ} \mathrm{F}$, and group 6/7 at 26\% withdrawn position (reference 12).

2.1.6 SUMMARY

Even though there was discrepancy in Hartman's recollections of the date at which the alleged startup took place, the findings and observations indicated that the stactup date in question appeared to be April 23, 1978 during mid-shift. The reactor went critical on group $6 / 7$ with 26\% withdrawn and the ECP was calculated by Hoyt with group $6 / 7$ at 25% withdrawn position. The measured critical position, 26% withdrawn on group $6 / 7$, was below 32% of the original ECP lower limit, as alleged by Hartman. He also claimed that actual criticality occurred at approximately 28% withdrawn position on group $6 / 7$. In general, Hartman's statements were consistent with the documented findings, except the approximately date in one of his two statements (page 2 of reference 2).

2.2 SEQUENCE OF EVENT

2.2.1 BACKGROUND

The reactor contains a total of 69 control rods to regulate the neutron population in the core and consequently to control the reactor power output. These control rods are divided into 8 groups, and each group consists of 4 to 12 symmetrical control rods. The groups $1-4$ are safety groups to provide the reactor shutdown margin and therefore are in fullout position during normal operation and startup periods. Groups 5, 6 and 7 are regulating groups to control the reactor power. However, it is required to withdraw the regulating group in sequence, starting from group 5 with a minimum of 25% overlap. Group 8 rods are axial power shaping rods (APSRs) to control the axial neutron flux distribution, and contain neutron absorbers in the bottom $36^{\prime \prime}$ of the rods. Therefore, the APSR group 8 are normally positioned in the core at its most reactive position, normally at 32% withdrawn or to a position determined by the nuclear engineer (paragraph 4.6 , page 6.0 of reference 13).

Technical Specification 4.1 .1 .1 .2 requires that the ECP must be within ± 1 percent $\Delta K / K$ of a measured reactivity balance. However, the TMI Unit 2 procedure (reference 8) imposed more conservative limits on the ECP, in that a measured control rod position in percent of the control rod group withdrawn were required to be within ± 0.5 percent delta K of ECP. Therefore, it was required to determine the ECP prior to criticality. Also, plant operating procedure (CAUTION, pages $6.0-7.0$, reference 13) specified that when criticality was achieved outside the ECP window (± 0.5 percent $\Delta K / K$) rod insertion was required to achieve a 1 percent $\Delta K / K$ shutdown position.

During a startup operation, approach-to-criticality procedure (reference 13) required to limit a reactivity addition rate (by control rod withdrawal) to equal or less than 1 decade per minute (DPM) startup rate (SUR), and to employ " $1 /$ M' plot (paragraph 4.13 , page 6.0 of reference 13).

SUR of 1 DPM and 3 DPM implied the rates of reactivity addition into a core, such that the neutron populations in the core would be increased by 10 and 1000 times in every 60 seconds, respectively, or "e" times (approximately 2.7) in every 26 and 8.67 (26/3) seconds respectively. In other words, a high SUR was an indicative of high probability of achieving or exceeding a criticality. However, it is also possible that a high SUR could be caused by a rapid addition of reactivity even at a subcritical state. Thus, 1DPM SUR limit was imposed to monitor the reactivity addition rate into a core, and, consequently, to prevent excessive and rapid addition of the reactivity during a startup.

As an additional precautionary step, " $1 / \mathrm{M}^{\mathrm{H}}$ plot was employed to monitor the reactor core state during a reactor startup. The objective of using " $1 / \mathrm{M}^{\text {" }}$ plot was to estimate a criticality during an approach to criticality. However, " $1 / \mathrm{M}^{\prime \prime}$ plot would be precisely valid only if the reactor is critical in a steady state and if the contribution of delayed neutrons is neglected.

When the control rods were withdrawn continuously in a subcritica? reactor, " $1 / \mathrm{M}^{\prime \prime}$ plot would not be valid, until the reactor was in its critical state and steady state.

Because of its mathematical limitation, " $1 / \mathrm{M}$ " plot would not give a straight line correlation but would result in a concaved curve, which would approach a critical point asymptotically. Thus, " $1 / \mathrm{M}^{\prime}$ plot during a startup operation always tends to under-predict its critical point.

2.2.2 SUMMARY OF HARTMAN'S ALLEGATION

Summarizing the sequence of event as stated by Hartman:

1. On the mid-shift from 2300 hours, April 22, 1978 to 0700 hours, April 23, 1978, the shift crew members were: control room operators - Hartman, Booher and other (unknown)

Shift Supervisor: Mehler
Foreman: Hoyt
2. When he took ever the mid-shift as a control room operator, the group 5-7 were full-in position. Hart.man commenced the startup by pulling out group 5 rods. The group 5 rods were at 100% withdrawn position when group 6 and 7 were at 25% (pages $3-4$ of reference 2).
3. The original ECP was calculated by Booher (page 172 of reference 11) which might or might not be approved. During the approach-to-criticality, Hartman used the Booher's ECP, which projected that:

ECP: Group 1-5 - 100\% withdrawn
Group 6-8 - 52\% withdrawn
Intermediate Range Detector Reading: $10 \mathbf{-}^{-8} \mathrm{amp}$.
ECP Window: Lower limit of group 6/7-32\% withdrawn (-0.5 percent $\Delta K / K$); Upper limit of group 6/7-100\% withdrawn (0.35 percent $\Delta K / K)$.
4. While withdrawing group 5 rods, Hartman saw the " $1 / \mathrm{M}^{\prime}$ being plotted.
5. Hartman observed a control rod (withdrawal) inhibit alarm when group $6 / 7$ was withdrawn to approximately 28\% position, with group 5 fully (100\%) withdrawn. He also observed that source range detector reading (SUR) was 3-3.5 DPM and constant, and intermediate range detector reading was $6 \times 10^{-11} \mathrm{amps}$. At this point Hartman thought that the reactor was at least critical.
6. Since 28% withdrawn position of group $6 / 7$ was below the lower limit of the Booher's ECP window (32\% withdrawn, group 6/7), Hartman felt that all rod groups had to be inserted all the way except the safety group 1-4, in accordance with the station procedure (Reference 13), and thus to achieve 1 percent $\Delta K / K$ shutdown position.

Consequently, he proceeded to insert the rods unti? shift supervisor, Mehler, stopped him from inserting the rod. At this point, the group $6 / 7$ rods were at 15-18 percent withdrawn position.
7. Mehler instructed him to proceed startup, and Hartman started rod withdrawal again, establishing criticality and 1 DPM SUR with the intermediate range detector reading of $10^{-8} \mathrm{amp}$.

8. Even though Hartman did not witnessed the actual recalculation, Hoyt calculated a new ECP after the criticality, in order that the actual critical position was within the ECP window. He also alleged that the old Booher ECP was discarded invo a waste basket.

	Group 6: 1\% WD		
	Group 7: 0\% WD		
	Group 8: 29\% WD		
4/23/78	0135	12, 14, 15	Reactor mode: 2
			Group 6/7: 18\% WD
			Tave: $532{ }^{\circ} \mathrm{F}$
4/23/78	0158	$11,12,14,15$	Reactor: Critical
			Intermediate Range Detector: $10^{-8} \mathrm{amp}$
			Boron: 1262 ppm
			Tone: $533^{\circ} \mathrm{F}$
			Group 1-5: 95\% WD
			Group 6/7: 26\% WD
			Group 8: 29\% WD
2.2 .4	EVALUATION		

1. The plant records and data files indicated that when Hartman assumed the mid-shift on April 22, 1978, the shift personnel on the shift was consistent with the statements made by Hartman. In fact, Booher's statement (Reference 5) conformed the above.
2. Plant Computer printouts (Reference 5) at 0100 hour on April 23, 1978, supported the plant status described by Hartman. Even though the computer inputs for the control rod positions were from the pulse counting "relative position indication", there were no objective evidence that the absolute position indications were different than these of the pulse counter.
3. The essence of Hartman's allegation was existence of another ECP, originally calculated by Booher during the startup. Hartman stated that the official ECP calculated by Hoyt was second one, recalculated after the criticality. The records clearly indicated that the ECP was obtained prior to the criticality. Comparing those two separaie ECPs:

Time	Alleged Booher's ECP	Hoyt's ECP
Hartman's Allegation	n before criticality	after criticality
Plant record	none existence	before criticality
ECP	group 6/7, 52\% WD	Group 6/7, 25\% WD
ECP Window Upper limit	group $\left(\begin{array}{l}\text { 6/7, } \\ 0.35 \% ~\end{array}\right.$ (00\% WO	Group 6/7, 38\% WD ($0.5 \% \Delta K / K$)
Lower Limit	$\begin{gathered} \text { group 6/7, 32\% WD } \\ (-0.5 \% \Delta K / K) \end{gathered}$	Group 6/7, 17\% WD (- 0.5\% $\Delta K / K)$
	It was quite interesting to note that plant startup procedure 2103-1.9 (Reference 8), second "NOTE" in paragraph 4.3.11 of page 14.0 , provided a guideline for ECP calculation. In that, for a Xenon free core the desired critical position would be between 30% and 40% withdrawn on group 6/7. Therefore, both Booher's and Hoyt's ECPs were all outside of the recommended range. However, let us recontruct the process of calculating the ECP as given in the following ssquence:	
	Procedure 2103-1.9, page 14.0	
	Paragraph 4.3.11, for Xenon free core (Reference 8)	$\begin{aligned} & 30 \% \text { WD - } 40 \% \text { WD } \\ & \text { Group } 6 / 7 \end{aligned}$
b.	Logical selection would be a midpoint of the range in item (a)	$\frac{30+40}{2}=35 \% \mathrm{WO}$ Group 6/7
c.	Xenon Reactivity	-0.46\% $\Delta K / K$
	(item 6, page 23.0 of of reference 10)	
	(Independent calculation confo -0.508\% $\Delta K / K$)	this number:
d.	Item (b) in reactivity \% $\Delta K / K$ for 35% W/D, group 6/7 (from figure 2 B , procedure 2103-1.9; reference 8)	-0.7\% $\Delta K / K$
e.	$\begin{aligned} & \text { Core with Xenon } \\ & =(\text { Xenon free core })+\text { (Xenon) } \\ & =\text { item }(c)+\text { Item (d) } \end{aligned}$	$\begin{aligned} & -0.46+(-0.70) \\ & =-1.16 \% \Delta \mathrm{~K} / \mathrm{K} \end{aligned}$

f. Item (e), $-1.16 \% \Delta K / K$, in \% W/D for group 6/7 (figure 2B, 2103-1.9)

26\% WD group 6/7

The above 26% withdrawn on group $6 / 7$ would be a logical choice value for the ECP, and was very close to 25\% WD - group 6/7, the value choosen by Hoyt. Otherhand, the alleged Booher's ECP, 52% WD $=$ group $6 / 7$, was not only 12% above the upper bound of the procedural recommendation ($30-40 \%$ WD group 6/7), but also beyond the normal comprehension.

Hartman clafmed that the Hoyt's ECP was calculated after the criticality, which occurred at 0158 hour, April 23, 1978. A record (reference 12) indicated that the reactor entered mode 2 (startup) from mode 3 (Hot standby) at 0135 hours, on April 23, 1978, 23 minutes before the criticality. The fact was that the reactor entered mode 2 with group 6/7 18\% withdrawn, at which by definition (reference 9) the multiplication factor (Keff) become equal or greater than 0.99 . Now, reconstructing the sequence;
a. At 0135 hour, on April 23, 1978, Reactor was in mode 2 with the rod worth of $-1.75 \% \Delta K / K$, group $6 / 7,18 \%$ withdrawn (reference 8 , figure 28). At this point, the reactor reactivity should be at 1.C\% $\Delta K / K$ (keff ≤ 0.99) less than the critical point. This would give the critical point at or less than $-0.75(-1.75+1.0) \% \Delta K / K$, group $6 / 7$ worth, which was equivalent to less than or equal to 34% withdrawn position for group 6/7.
b. Since alleged Booher's and recorded Hoyt's ECPs were 52% and 25% withdrawn positions on group $6 / 7$ respectively, the decision to enter the mode 2 had to be based on the Hoyt's ECP. Consequently, the Hoyt's ECP existed 23 minutes before the criticality.
c. Let's assume that the alleged Booher's ECP existed when Hartman took the mid-shift at 2300 hour on April 22, 1978. Furthermore, assume that during the approach-to-criticality the Booher's ECP was initially used and " $1 / \mathrm{M}$ " curve also was plotted. Since " $1 / \mathrm{M}^{\prime \prime}$ always gave the critical point before the actual critical point, " $1 / \mathrm{M}^{\prime \prime}$ prediction of the criticality could have been less than the actual critical value of 26% withdrawn position of group $6 / 7$.

With this information (ECP of less than 26% withdrawn on group 6/7) from " $1 / \mathrm{M}^{\prime \prime}$ plot available and assuming the Booher's ECP (52% W'D, group $6 / 7$) was used at that point, Mehler could have realized an error in the Booher's ECP and could have asked recalculation of a new ECP. Now, with the above information and knowing plant status at this point, recalculation of a new ECP could take less than 15 minutes. In fact, a mere correction of the Booher's ECP could have been done within 10 minutes, just in time to enter the reactor mode into 2 at 0135 hour on Apri1 23, 1978.

However, assume that " $1 / M^{\prime \prime}$ plot was used to decide the entry into mode 2 without a new ECP. Mehler should have known already that the Booher's ECP was wrong, and subsequently made a decision to use " $1 / \mathrm{M}^{\prime}$ result. At this point he had 23 minutes to recalculate a new ECP, prior to criticality. Even this synopsis indicated that Hoyt's ECP could have existed prior to the criticality.
4. Hartman stated that he observed a control rod inhibit alarm when the group $6 / 7$ was withdrawn to approximately 28% position with a SUR of 3-3.5 DPM. Since plant record (reference 12) indicated that the reactor during the startup in question went critical with 26% withdrawn position of same rod group, the reactor was in super-critical state by an equivalent reactivity of 2% rod worth on group $6 / 7$. From figure $2 B$, Procedure 2103-1.9 (reference 8);

Rod Worth \% $\Delta K / K$

28\% WD, group 6/7
-1.075
26\% WD, group 6/7
-1.125
Difference (2\%)
At this point, Hartman obviously added a reactivity, equivalent to $0.05 \% \Delta K / K$, into a critical reactor. If $0.05 \% \Delta K / K$ reactivity was added rapidly by withdrawing group $6 / 7$ rods to 28% position, 2% above the criticality, one would expect to see less than one-tenth of the SUR (greater than 2 DPM) which Hartman observed. To observe such large SUR (over 2 DPM), either he had to pull therods out to give 0.5% $\Delta K / K$ reactivity over the criticality or he was approaching and passing the criticality by pulling out the rods rapidly and continuously.

To give $0.5 \% \Delta K / K$ excess reactivity (again, using figure 28 , procedure 2103-1.9), he had to withdraw the group $6 / 7$ rods to 32% position, at which the group rod worth was - $0.625 \% \Delta K / K$.

Assuming that either he observed high SUR, caused by rapid withdrawal or 32% withdrawal position of group $6 / 7$, or he was alarmed By the inhibit alarm, it was possible for an experienced operator that a natural reflex of his training could have caused the stated (by Hartman) reaction, i.e., insertion of control rods.
5. Hartman testified that shift supervisor, Mehler, interrupted Hartman from inserting the control rods fully at $15-18 \%$ withdrawal position of group $6 / 7$, contrary to station procedure 2101-1.2, when the criticality was achieved outside $\pm 0.5 \% \Delta K / K$ ECP windown. Station procedure 2102-1.2, pages 6.0-7.0, "CAUTION", clearly stated that only one percent $\Delta K / K$ worth of the control rod was required to be inserted from the critical point. Since Hoyt's ECP was 25\% withdrawal position of group $6 / 7,1$ parcent $\Delta K / K$ equivalent rod position would be 18% withdrawal position of group $6 / 7$ or -1.75 percent $\Delta K / K$ rod worth position in figure 2B, procedure 2103-1.9 (reference 8). Therefore, not only Mehler's instruction (according to Hartman's statements) was correct but also, it clearly indicated that Mehler was using the Hoyt's ECP.

3.0 CONCLUSION

1. Hartman's statements were appeared to be, in general, consistent with the station documented records, except existence of erroneous ECP, which was calculated by Booher, as alleged by Hartman.
2. Evaluation of plant records and data files indicated that Hoyt's ECP appeared to be used prior to criticality.
3. Even though no objective documentation or records were found, the alleged post-critical instruction (preventing to insert the rods fully when the measured critical point was outside the ECP window) by Mehler to Hartman was consistent with the plant procedure. Hartman apparently misunderstood the procedural specifications given in "CAUTION", pages 6.0-7.0, procedure 2102-1.2 (reference 13).
4. Hoyt's ECP was consistent with the procedural requirements (references 8 and 13), and no objective evidence or need to "fudge the ECP" was found.
5. Records of " $1 / \mathrm{M}^{\text {" }}$ plot were not available.

4.0 REFERENCES

1. Transcript of NRC Inspection and Enforcement Branch Interview of Harold W. Hartman, Jr., May 22, 1979, pages 43-48.
2. Transcript of NRC Inspection and Enforcement Branch Interview of Harold W. Hartman, Jr., May 26, 1980, pages 1-12.
3. Sworn statement by Harold W. Hartman, Jr., March 26, 1980.
4. Transcript of NRC Inspection and Enforcement Branch Interview of Jim Floyd, March 27, 1980, pages 12-15.
5. Transcript of NRC Inspection and Enforcement Branch Interview of Raymond Booker, March 27, 1980.
6. Transcript of NRC Inspection and Enforcement Branch Interview of Kenneth Hoyt, March 27, 1980, Pages 11-14.
7. Transcript of NRC Inspection and Enforcement Branch Interview of Brian Mehler, March 27, 1980, Pages 3-4.
8. TMI Unit 2 Operating Procedure 2103-1.9, Reactivity Balance; Temporary Change Notice 2-78-410, April 19, 1978.
9. TMI Unit 2 Technical Specifications.
10. Reactivity calculation sheets, performed Apri1 23, 19780045 hour, enclosure 1, TMI Unit 2 Operating procedure 2103-1.9.
11. Investigative Report, Chapter IX, Analysis of Hartman's Allegations concerning estimated critical position during a reactor startup at TMI unit 2 on April 23, 1978.
12. Control Room \log books, mid-shift, April 22, 1978 (2300 hour Apri) 22,1978 to 0700 hour, April 23, 1973).
13. TMI Unit 2 Operating procedure 2102-1.2, Approach to criticality.
14. Compieted procedure 2102-1.2, performed on Apri1 22, 23, 1978.
15. TMI unit process computer printouts, 0003 hour, 0100 hour, 0200 hour, April 23, 1978.
