Loss of Essential Service Water in LWRs (GI-153)

Scoping Study

Prepared by
W. R. (ramon D B. Mrathell $1 . L$ Yakio S P Millet

Sandia National Laboratories
Anetated hy
Sandia Corporation

Prepared for
U.S. Nuclear Rezulatory Commission
\square
\square

Loss of Essential Service Water in LWRs (GI-153)

Scoping Study

Manuscript Completed: August 1992
Date Published: August 1992

Prepared by

W. R. Cramond, D. B. Mitchell, J. L. Yakle*, S. P. Miller*

Sandia National Laboratories
Albuquerque, NM 87185

Prepared for
Division of Safety Issue Resolution
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, DC 20555
NRC FIN L1843
-Science Applications International Corporation
Aibuquerque, NM 87106

Abstract

The contribution of essential service water (ESW) systern failure to core damage frequency has long been a concern of the NRC. The objective of this study is to assess the safety significance of the loss of ESW systems in LWRs relative to core damage frequency (CDF) and perform a limited value/impact analysis of potential modifications to soive ESW vulnerabilities using a protstypical (pilot) plant. Previous studies indicate that service water systems contribute from $<1 \%$ to 65% of the tutal is.tornal CDF, For the pilot plant analyzed, common ESW vulnerabilities are failure of standby service water pumps to start, backflow through check valves for cross-tied pumps, and failure of normally closed isolation valves in diesel generator cooling loops to open on demand. For the potential modifications evaluated for the pilot plant, the results showed that they could reduce the CDF by as much as 33 percent. However, the dollars per person REM measures resulting from various groups of these modifications significantly exceeded the current criteria of $\$ 1000$. The results, since they only apply to the pilot plant, are not typical of all LWRs. Due to the importance of service water to CDF and the plant specific nature of ESW systems, there could be plants for which there would be cost-effective modifications. Additional analysis would be required to identify them.

Section
Page
1.0 INTRODUCTION AND METHODOLOGY 1-1
1.1 Historical Background 1-1 1-1 1-1 1-1

1.2 Safety Significance

1.2 Safety Significance
1.3 Objective 1-2 1-2
1.4 Specific Tasks 1-3
1.5 Methodology 1-3 1-3
1.6 Assumptions and Limitations 1-3 1-3
2.0 SUMMARY OF OPERATIONAL EXPERIENCE AND PRA RESULTS 2-1
2.1 Operational Experiences 2-1 2-1
2.2 Review of Plant-Specific Probabilistic Risk Assessment Studies 2-4 2-4
2.3 Service Water Contribution to Core Damage Frequency 2-8 2-8
2.4 Comparison of Plant-Specific Service Water Faults 2-23 2-23
2.4.1 BWR Service Water System Faults 2-23
2.4.2 PWR Service Water System Faults 2-24 2-24
3.0 SELECTION OF THE PILOT PLANT 3-1
4.0 PILOT PLANT ANALYSIS 4-1
4.1 Pilot Plant Cooling Water Systems 4-1 4-1
4.2 Pilot Plant Emergency Service Water System 4-1 4-1 4-5
4.3 External Events
4.3 External Events
4.4 Dominant ESW Faults Contributing to Core ")amage 4-8
4.5 Discussion of ESW Vulnerabilities and Proposed Modifications 4-10
4.6 Implementation of Proposed ESW Modifications
4.6 Implementation of Proposed ESW Modifications 4-16 4-16
4.7 Combinations of Proposed Modifications to be Implemented 4-19 4-19
4.7.1 Implementation of Alternatives 4-21 4-21
4.7.2 Modification Results 4-26 4-26
4.8 Sensitivity Analysis 4-26
5.0 INTEGRATED VALUE-IMPACT ANALYSIS 5-1
5.1 Methodology 5-1
5.1.1 Value and Impact Analysis Variables 5-1 5-1
5.1.2 Value Impact Analysis Measures 5-1 5-1
5.2 Results 5-6
6.0 SUMMARY AND CONCLUSIONS 6-1
7.0 REFERENCES/BIBLIOGP \backslash PHY 7-1

Contents (Continued)

Section Page
APPENDIX A NUCLEAR POWER PLANT SUMMARY TABLES A- 1
APPENDIX B REVIEW OF THE ACCIDENT SEQURNCE PRECURÊOR PROGRAM PUBLISHED REPORTS B-1
APPENDIX C SERVICE WATER SYSTEM DATA SHEETS C-1
APPENDIX D SERVICE WATER SYSTEM DEPENDENCY DIAGRAMS D-1
APPENDIX E SWS CONTRIBUTION TO CORE DAMAGE FREQUENCY: SUMMARY OF NRC SPONSORED PRA RESULTS E-1
APPENDIX F SCOPING STUDY BASE CASE DOMINANT ACCIDENT SEQUENCE CUT SETS F-1
APPENDIX G RISK CALCULATIONS G-1
APPENDIX H PILOT PLANT MODIFICATION COST ESTIMATES H-1
Figure Page
Figure 1.1 Probabilistic Risk Assessment Model $1-4$
Figure 1.2 Basic Service Water System Pilot Plant Analysis Flow Diagram 1-5 1-5
Figure 2.1 Four Service Water System Functional Flow Diagrams 2-6
Figure 2.2 Comparison of BWR T1 Accident Sequences Contribution to CDF 2-10
Figure 2.3 Comparison of BWR T2 Accident Sequences Contribution to CDF 2-10
Figure 2.4 Comparison of BWR T3 Accident Sequences Contribution to CDF 2-11
Figure 2.5 Comparison of BWR ATWS Acrident Sequences Contribution To CDF 2-11 2-11
Figure 2.6 Comparison of BWR TAC Accident Sequences Contribution to CDF 2-12
Fr me 2.7 Comparison of BWR TDC Accident Sequences Contribution to CDF
Fr me 2.7 Comparison of BWR TDC Accident Sequences Contribution to CDF 2.12 2.12
Figure 2.8 Comparison of BWR LOCA Accident Sequences Contribution to CDF 2-13 2-13Figure 2.9a Comparison of PWR T1 Accident Sequences Contribution to CDF
Figure 2.96 Comparison of PWR T1 Accident Sequences Contribution to CDF 2-14
Figure 2.10a Comparison of PWR T2 Accident Sequences Contribution to CDF 2-14
Figure 2.10b Comparison of PWR T2 Accident Sequences Contribution to CDF 2.15 $2 \cdot 15$
Figure 2.11a Comparison of PWR T3 Accident Sequences Contribution to CDF
Figure 2.11b Comparison of PWR T3 Accident Sequences Contribution to CDF 2.16
Figure $2 .{ }^{\wedge} \mathrm{b}$ Comparison of PWR TAC Accident Sequences Contribution to CDF 2.16 2.16 2-17
Figure 2.13a Comparison of PWR TDC Accident Sequences Contribution to CDF 2-17
Figume 2.isu Comparisen of PWR TDC Accident Sequences Contribution to CDF
Figure 2.14a Comparison of PWR LOCA Accident Sequences Contribution to CDF 2.18 2.18
Figure 2.14b Comparison of YWR LOCA Accident Sequences Contributios to CDF 2-19 2-19
Figure 2.15a Comparison of PWR ATWS Arcident Sequences Contribution to CDF 2-19 2-19
Figure 2.15b Comparison of PWR ATWS Accident Sequences Contribution to CDF 2-20 2-20
Figure 2.16 Peach Bottom Emergency Service Water \$yatem (Page 1 of 2) 2.21 2.21Eigure 4.1 Cooling Water Systems Functional Diagram for Peach BottomUnits 2 and 34.2
Figure 4.2 Pilot Plant Emergency Service Water System 4.3
Figure 4.3 Dominant ESW Farls Contributing to CDF 4-11
Figure 4.4 Addition of a Third ESW Pump
Figure 4.4 Addition of a Third ESW Pump 4-12 4-12
Figure 4.5 Proposed EHS Pump Logic 4.14 4.14
Figure 4.6 Current EHS Pump Logic 4-14 4-14
Figure 4.7 Addition of Second Pump Discharge Check Valve 4-15 4-15
Figure 4.8 Addition of a Check Valve in Series with EDG ESW Outiet $\mathrm{A} \curvearrowright=$ 4-17 4-17
Figure 1.9 Fault Tree for Insufficient Flow From ESW Pump C 4.25

List of Tables

Table Page
2.1 Precursors to Potential Severe Com Damage Accidents Involving Service Water Systems 2-2
2.2 Twelve Events From NUREG-1275 Resulting in Complete Loss of SW Function 2-3
2.3 Plant-Specific Probabilistic Risk Assessments Reviewed 2-5
2.4 Plant Service Water Systems Reviewed 2.7
2.5 Service Water Contribution to Core Damage Frequency 2.9
3.1 NRC Sponsored PRA Characteristics 3-2
3.2 Evaluation of Criteria 3-3
4.1 Pilot Plant Dominant Accident Sequences With Service Water Contributions 4-9
4.2 Internal Event Vulnerabilities and SWS Modifications 4-18
4.3 Corrected IRRAS Model Point Estimate Results 4-19
4.4 Base Case: IRRAS Model Point Estimate Results 4-20
4.5 Alternative 1 Affected Basic Events and Associated Unavailabilities 4-22
4.6 Alternative 2 Affected Basic Events and Associated Unavailabilities 4-22
4.7 Alternative 3 Affected Basic Events and Associated Unavailabilities 4-23
4.8 Alternative 4 Affected Basic Events and Associated Unavailabilities 4.23
4.9 Alternative 5 Diesel Gers sator Cross-Tie Recovery Action Data 4-27
4.10 ESW Alternative Modification Results 4-27
4.11 Sens ity Analysis Basic Event Unavailabilities 4-28
4.12 Sensitivity Analysis Results in Terms Of CDF 4-28
5.1 Value and Impact Analysis Input Variables 5-2
5.2 Inputs to Value/Impact Analysis 5.3
5.3 Summary of Impacts (Based Upon 5\% Discount) 5-7
5.4 a Summary of Values (Based on Population Dose to 50 Miles, 5% Discount Rate) 5-8
5.4b Summary of Values (Based on Population Dose to 50 Miles, 5\% Discount Rate) 5-9
5.5 Summary of Value-Impact Analysis (Based on Population Dose to 50 Miles, 5% Discount Rate) 5-10
5.6 Summary of Value-Impact Measures 5-11
6.1 Service Water Contribution By Reactor Type 6-2
6.2 Inputs To Value/Impact Analysis 6-4
6.3 Comparison of Dollars/Person PEM for TAP A-45 Plants and the Pilot Plant Selecte6
Alternatives (Offsite and Onsite Costs) 6-5

The reliability of essential service water (ESW) systems and related problems has been a concern of the Nuclear Reguitary Commission (NRC) and the nuelear thotestry for many years. Operational experience shows significan: frilures such as fouting mechanisms, single failures and other design deficiencies, flooding, multiple equipment failures, ind operator of procedural errors. The objectives of this study are to assess the safety significance of the loss of ES'N systems in light water reactors (LWRs) and the corresponding contributions to core damage froquencles (CDF), and to perform 8 limited value/impact study on a prototypical plant.

A review of the contribution to CDF of ESW system failures for internal events only, in 20 PRAs shows that the everage contribution is:

PWRs "old"	12%	BWRs "old"	36%	
PWRs 'new"	7%	BW\%	"new"	15%

There were wide variations in the conicibution made by service water for the eleven plant PRAs considered in this study. The variation was from < 1% to 65%, indicating that the impact of service whier sydems on plant risk is plant-specific. The reasons for the broad range found are the degree of dependency s plant has on service water, Its relinbility of the service watct systems themselves, and, to some extent, the differences in the NRCsponsored PRAs in terms of modeling assumptions and scope of each PRA progrem.

The service water system dominant failure modes found from the review of the eleven NRC-sponsored PRAs tend to hi. . some commonality between the plants even though the service water system configurstion for each plant reviewed is unique. Two common service water faults found were the dependency of the service water system on motor-operated or air-operated isolation valves to open on demand to supply cooling water to safoty related loads and failure of the standby service w/ater pumps to start. Two subtle failure modes identified in the NUREG/CR4550 program were found to be dominant failure modes for three of the plants reviewed. Trese subtle failures are (1) the failure to isolate nonessential cooling water loads; and (2) pump discharge check valve back flow failing cross-tied pumps.

The prototypical or pilot plant was selected relative to ser aral criteria including the following:

1. One of the NRC sponsored PRAs with relatively current methods and fault trees in a computer formai, e.g., TRRAS.
2. The PRA resuits indicate ESW 5 stems are a significant contributor to CDF
3. The plant represents a large group of units.
4. The ESW system is representative of a large group of ESW sysiems and the analysis includes common frilures found at other plants.

The plant selected was a BWR 4 MK I analyzed in NUREG-1150 and described in detail in NUREG/CR. 4550.

The pilot plant study has several limitations and assumytions. External events are discussed but not included in the quantilative anatysis. The service witer system analyzed is reforred to as the Emergency Service Water (ESW) system. Failure of this system as an initiating evealt was not important at the pilot plant due to the dominatice of loss of offsite power and was therefore not included in the quantitative analysis. However, such an initiator could be important at other plants. The ESW and Energency Heat Sink (EHS) are dominant contributors to the blackout sequences at the pilot plant due to the dependence of other systems, such as the emergency diesel generators and room cooling, on these systems. The mapping from plant damage states to consequences was taken from NUREG/CR-4551 without detailed reantlysis, and the conts of the modifications proposed were extrapolated from TAP A-45 (Decay Heat Removal) without contact with the utility or detailed drawings. Costs were increased from the TAP A-45 estimales using the consumer prlee index (CPI) from 1985 to 1992 but the value/impact analysis still uses the $\$ 1000 /$ person-REM.

The pitot plant anatysis was accomplished by identifying ESW vulnerabilities and developing modifications to address them. The effects of one or more of these modifications were then inerrporated into the service water faut trees by changing the appropriate event frequencies. As a result, only requantification was required. This procedure was carried out using the dominunt cut sets from the NUREG/CR-4550 results as included in the available IRRAS model. There were three dominant accident sequences including service water that were significant as shown in the following tabie:

Executive Summary

Accident Sequence	Sequence $\begin{gathered} \text { CDF } \\ (/ R X y r) \end{gathered}$	$\begin{gathered} \text { Sequence } \\ \text { \& of } \\ \text { Total CDF } \end{gathered}$	ESW Contribution	ESW \% of Total CDF
T1-BNU11	$1.64 \mathrm{E}-06$	36.4	8.39E-07	19
T1-PIBNU11	1.31E-07	2.9	7.34E-08	,
TI-BU11NU21	$1.25 \mathrm{E}-07$	2.7	5.88E-08	
${ }^{1}$ Mean values				

These are all station tlackout sequences to which the service water systems contribute as described earlior. In iddtition, these sequences include almost all the cut sets considered in the entire internal analysis. All thase sequences fell into the same plant damage state.

Five service water vulnerabilities were identified from these accident sequences as shown below.

The inputs to the value impact analysis and the results for the $\$$ person REM mensure are shown on the next page.

Winile the \$/persoa REM are high relative to the surrently used criterie of $\$ 1000$ /person REM, the results from TAP A-45 were also generally high. The pilot plent may be better than many other plants in the US nuclear industry relative io service water vulnerabilities. Furthermore, if external events were included in the quantitative analysis the value/impact measure could bocome more favorable.

Vulnerability	Description	\& Contribution to Total CDF
1	Operator fails to operate the emergency heat sink (EHS).	14
2	Failure to restore ESW compon- ents after maintenance.	
3	Pump discharge check valve fail- ures fail cross-tied ESW pumps.	4
4	ESW pump hardware faults.	<1
5	Failure of ESW to cool the EDGs due to AOV failures.	2

There were seven modifications developed to address these vuinerabilities. One consisted of additional operator training, revised procedures, and additional alarms. Another was increased testing frequency. The remainder were various hardware ar aitions or modifications.

These modifications can address one or more vuinerabilities so they were grouped into five alternatives for the system analysis and value/impact analysis.

In any case, the methods were demonstraied and the ESW systems were assessed to be significant contributors to CDF; 8.g., 22 percent at the pilot plant.

In summary, although this study looked at only one plant in any detail, it verified the concern relating to the reliability of ESW. The study also showed that the impact of service water on plant risk is plant specific.

Alternative	$\triangle C D F$	Percent Improvement is CDF	Risk (\triangle Dose) Person REM/ R yr.	Results for Offsite and Onsite costs \$/Person REM
1	$4.80 \mathrm{E}-07$	10.3	1.07	134 K
2	5.80E-07	12.4	1.29	158 K
3	1.54E-06	33.0	3.44	45K
4	$1.46 E-06$	31.3	3.26	283K
5	$1.06 \mathrm{E}-06$	22.7	2.36	529 K

For the plant considered, modifications to reduce the vulnerabilities were develuped. However, the cost of implementing the modifications was found to be high in terms of the benefit provided. Other plants would need to be analyzed to determine if this is a generic conclusion.

1.0 Introduction and Methodology

1.1 Historical Background

The reliability of the essential service water (ESW) system and related problems have been a concern of the NRC and the nuclear industry for years. The NRC concerns have been expressed in research reports, ${ }^{1,2}$ bulletins, ${ }^{3 / 4}$ generic letters, ${ }^{3}$ and generic issues. ${ }^{678}$ A comprehensive review and evaluation of operating experience related to service water systems" conducted by the NRC further indicate the safoty significance of the ESW system. The study (NUREG-1275) identified a total of 980 operational events in which the service water syitem was livolved, with twelve of these operationat events representing a complets loss of the ESW system. The causes of failures and degradations include various fouling mechanisms (sediuwst deposition, biofouling, corrosion and erosion, foreigh material and debris intrusion); single fuilures and other design deficiencies; flooding: multiple equipment failures; and opertor or procedural errors.

Recently, another ESW related study, Generic Issue 130, "Essential Service Wate Pump Failures at Multi-Plant Sites, "was completed. Prelimirary results of this study' indicate that the problems associated with the ESW system would be a significant contributor to the frequency of core damage in the seven multi-plant sites identified in the scope of the study. The generic safety insights gained from this study indicated that the issue of ESW adequacy should be expanded to ir slude all US LWRs. This issue will include all potential causes for the ESW system unavailability except those which hive been considered to be resolved by implementing the resolutions stated in Generic letter No. 89-13' (such as biofouling).

1.2 Safety Significance

The ESW system at a nuclear power plant supplies cooling water to transfer heat from various safety-related and non-safety related systems and equipment to the ultimate heat sink of the plant. It is an opee-cycle system which takes suction from the uttimate heat sink, e.g., ocean, bay, river, lake, pond or cooling towers, removes heat via heat exchangers from the various structures, systems and components it serves, and discharges the water back to the ultimate heat sink. The ESW system is known by different names at various light water reactor plants. In pressurized water reactor (PWR) plants, it may be referred to as the essential service water (ESW) system, the emergency equipment cooling water (EECW) system, the essential raw cooling water (ERCW) system, the salt water cooling (SWC) system, the nuclear service
water (NSW) systems, or others. In boiling water reactor (BWR) plants, it may be referred to as the emergency cooling water (ECW) system, the standby service water (SSW) system, the plant service water (PSW) system, the residual heat removal service water (RHRSW) system, or others.

The ESW system, which is a support system like electrical power, is needed in every phase of plant operations. Under accident conditions, the ESW system supplies cooling water to systems and components that are important to safe plant shutdown or to mitigating the consequences of the accident. Under nornal operating cond'tions the ESW system provides componient and room cooling (mainly via the component cooling water system). During a subsequent shutdown period, it also ensures that residual heat is removed from the reacter core. The ESW systenin may atso supply makeup water to the fire protection system, cooling towers and water treatment systerns at the plant.

The design and operational characteristics of the ESW system are different for PWRs and BWRs. In addition, the design and oporational characteristics differ significantly from plant-to-plent within each of these reactor types. The succoss criteria associated with the functions of an ESW system are also plant-specific. A compleie loss of the ESW system could potentially lead to a core-melt accident, posing a significant risk to the public.

Safety concerns include: partial or complete loss of ESW system functions resulting from common causes, degradation of the F3W system, design deficiencies, and procedural or maintenance errors. The ESW system can combiae normal and emergency service W ater functions. In plants where the ESW performs this dual function, loss of ESW results in shutdown and a challenge to the safety system with failure or degradation of a critical support system. In other plants there are separate normal and emergency service water systems so that an ESW failure initiating event is not a concern untess there is some potential common cause failure between these "independent" service water systems.

1.3 Objective

The objective of this study is to assess the safecy significance of the loss of ESW systems in LWRs and the corresponding contributions to core damage frequency (CDF), and to perform limited value/impact and sensitivity studies on a selected prototypical (pilot) plant. A second phase to the program may use the pilot plant
analysis as an example to extend the analysis to cover all plant types in the US LWR industry.

1.4 Specific Tasks

There were two technical tasks identified in this study:

Task 1- Evaluate the lonportance of Servise Water System Failures te Core Danage. Frequency

The objective of this task is to evaluate the safety importance of service waler using core damage frequency (CDF) contribution as a messure, and NRC-sponsored PRAs as the benchmark. Dominant accident sequences involving service water failares will bo identified and examined for specific componeat faults or related failures, 5.g., human errors or test and maintersance unavailability lsading to core damage. Several candidate plants will be identified from IREP (Interim Relisbility Evaluation Program), TAP A-45, NUREG-1150, and the LaSalle PRA. These PRAs cover 15 different plants and all NSSS vendors including older and newer vintages. ASEP (Accident Sequence Evaluation Program) service water models will be reviewed to evaluate potential groups in terms of types of vulnerabilities. In addition, various sources will be reviewed to evaluate operational experience of service water systems.

Task 2-Perform a Best-Estimste Scoping Sty/y of Plant Risk Due to Service. Wster Vulnerabilitiose Iocluding Yalue/lmpact and Sensitivity Studies ra e Selected Prototypical Plant

A prototypical (pilot) plant will be selected on the basis of the resulte from Task 1, the availability of useful PRA information, and the contribution of service water failures to CDF, A best-estimate calculation of CDF due to service water will then be performed on this plant, using generic input where appropriate. Service water failures found in Task 1 will be correlated with service water (SW) events in the dominant accident sequences of the selected plant PRA. Both internal and external events will be included. Sensitivity studies will be performed to determine the effect of important SW related events. Alternatives to improve or eliminate these events will be proposed considering reduoing dependencies, increasing reliability and availability, improving redundancy, and decreasing aupport system requirements. The effect on CDF and cost to implement each proposed alternative will be estimated leading to a corresponding value/impact measure for each atternative. Consequence calculations will be made using the accident sequence release category mapping and value/impact methods used in the TAP A-45
study or wther compatible methodologies such as NUREG/CR-1150. This subtask will be accomplished by matnpulating the dominant cut sets, i.e., changes will not modify the basic models directly. Uncortainty will be addressed in the final results whenever possible.

The two tasks can be condensed into the specific tasks given below:

Task 1

1. Evaluate Safety Importance of SW

Basis CDF Messure NRC-Sponsored PRA as Basis Internal Fivests
a. Identify Deminant Accident Sequeaces Involving SWS
b. Identify Specific Contributing Components or Related Failures
c. Identify Candidate Piants for Pilot Plant Analysis
2. Review ASEP SW Models
3. Review Operational Experience of SWS

Task 2

1. Select Pilot Plant
2. Perform Best Estirnate Calculation of CDF Due to SWS Failure
3. Correlate Pilot Plant SWS Failure to Failures Found in Task 1, Items 1 and 3
4. Discuss Contribution of External Events
5. Perform Ensitivity Studies on SW Related Events
6. Identify SWS Vulnerabilities
7. Propose Modifications to Address These Vulnerabilities
8. Combine Modifications into Groups Called Alternatives
9. Perform Value/Impact Analysis on Each Alternative

Introduction

Basis Extrapolate costs from TAP A-45
Use NUREG-1150 PDS to Risk
Mupping

Manipulate Dominant Cut Sets
8. Evaluate $\triangle \mathrm{CDF}$
b. Estimate Costs
c. Determine Δ Risk Measure
d. Calculate value/impact measures

The tasks presented in condensed form above essentially provide an orderly procedure. Tasks 1-1a, 1-1b, 1-2, and $1-3$ are discussed in Section 2.0. Tasks 1-Ic and 2.1 are covered in Section 3.0. Tasks 2.2 through 2.8 are covered in Section 4.0. Finally, Task 2.9 is described in Section 5.0 .

1.5 Methodology

A typical PRA systems ank ${ }^{+}$ysis model is depicted simplistically in Figure 1.1. The purpose of this flow diagram is to suggest that any specific system, $\theta . g_{0}$, the service water systewa, can be addressed individually, and with any desired changes reinserted into the systems analysis model. The systems model is then reevaluated and requantified resulting in a new core damage frequency (CDF) and possibly in new accident sequences or different cut sets. In this study, the effects of modifications were examined by changing event frequencies in the service water fault trees. The model was then requantified to determine the effect of the modifications (see Section 4.0). This provided results which were consistent with the requirements of tiv study and eliminated the effort required to generate and analyze new accident sequences or cul sets which would have provided additional information of limited value.

The service water system or essential service water system can encompass several related systems depending on the plant. As an example, suppose a plant were configured as ahown below:

1. Normal Service Water Systam (NSWS) . supplies cooling water '.aring normal operation.
2. Turbine Building Cooling Water (TBCW) System - Supplies Cooling Water to the power conversion system during normal operation.
3. Reactor Building Cooling Water (RBCW) System - Supplies cooling water to some loads that are required in both normal and emergency conditions.
4. High Pressure Service Water (HPSW) System Supplies cooling water to KHK heat exchanges in normal and emergetacy conditions.
5. Emergency Service Water System (ESWS) Provides room cooling and pump cooling for safety systems during an emergency.

All of these systems can be categorized as part of the total service water system. Systems such as the NSWS and TBCW may not feed engineered safety systems, but do feed systems that are analyzed in PRAs because they do provide some benefit under cortain circumstances toward preventing core damage. This is only an example. Some plants may only have one all purpose service water system. In such cases, failure of that systein not only causes shutdown, but also severely degrades the safeiy system responding to the shuldown. There are other plants with combinations of servise water systems between these extremes.

In this study, the analysis proceeded as shown in Figure 1.2. This is based upon the specified program tasks, typical NRC type PRA methods, e.g. NUREO-1150, and the value/impact methods used in TAP A-45. Additional methodology details are available in the Appendix L of NUREG/CR-4767. ${ }^{13}$

1.6 Assumptions and Limitations

Every study must limit the areas to be covered and by necessity assumptions are made in order to accomplish the work without addressing issues and details that really do not bear significantly upon the results desired. These limitations and assumptions are tabulated below.

Limitations

1. External events are dissussed but not included in the quaatitative analysis. Certain external events are clearly very important and have service water sontributions, but resources did not permit a detailed analysis.
2. Service water failure initiating events can be important at some plants. The pilot plant selected was not susceptible to this special initiator since the emergency service water system is essentially independent of the normal service water system. Therefore, it did not make sense to artificially introduce \& SW initiator into the analysis.

Figur 1.2 Basic Service Water System Pilot Plant Analysis Flow Diagram

Introduction

Assumptions

1. Sensitivity analyses performed starting with the base case pilot plant model did not account for cut sets that were truncated out of the analysis that might have reappeared when certain event frequencies were increased This assumet that the $\triangle C D F$ (btained is representative of the effect of chatges in event frequencies. Effort well beyond the scope of this project would have been required to verify this assumption. However, the assuraption is considered reasonabie based on previous anslyses.
2. The plant damage athte to consequence mapping fuctors were derived from the NUREG/CR. 4551 numbers. These facturs could have been more accurately computed by rerunning parts of the back-end analysis. Due to the effort required to do this and the limited objectives of the study, the simpler, less accurate, approach was adopted. The results or more detailed requirements might justify a more accurate analysis.
3. The costs of the modifications were oblained by comparing the modification proposed here with simillar ones from TAT A-45. There could be differences such as labor costs, structural changes needed to accommodate the modifications, the length and size of pipe or conduit needed, and the capacity of pumps. The cost estimates in TAP A-45 were done very accurately by an experienced architect engineer with complete plant drawings and plant site visits. This level of effort was clearly not feasible in this study. Nevertheless, we feel our estimates are representative enough to provide meaningful results.
4. Modification costs were increased based on the increase in the consumer price index (CPI) for the seven years from $1 / 1985$ to $1 / 1992$. We assumed that construction costs followed the CPI during that period.

2.0 SUMMARY OF OPERATIONAL EXPERIENCE AND PRA RESULTS

As part of the scoping study a review of operational experiences was performed to establish typical service witer By stem vulthentbllities that should be reprecented in a pilot plant analysis. The domitant accident sequances for eleven NKC sponsored PRAs were then reviewed to determine the service water contribution to core damage frequency (CDF) and theo to grin ineighte into the dominant service water failure modes.

2.1 Operational Experiences

Several studies have addressed the operational experience related to service water system failures. The work is not repeated here, but the results from these studies are briefly summarized. It she uld be noted that these studies were done by differeat people for different purposes. Therefore, it should not be expected that the resuits are completely consistent.

Precarsor Reports

The Accident Sequence Precursor Program at Oak Ridge National Laboratory reviews Licensee Event Reports (LERs) of operational events that have occurred at LWRs to identify and categorize precursors : potential severe core-darniage accidentw. Aceldent sequences considered in this program are those associated with inadequate core cooling. As a result of this work, a reries of status reports have been published that describe those events that have occurred as reported in LERs. ${ }^{2331}$ These publishes reports were reviewed for service water related events. This review turned up 24 events directly related to this scoping study. Appendix B documents those findings and Table 2.1 lists the events found and provides a description of each. Some of the events we.e significant. However, most were not. As a group, the events represeat a variety of causes.

Operational Experience Eeedback Reports NUREG-1275

This report is a comprehensive study of service water related operational events. There were 980 events identifiod with 276 considered to have potential generic safety significance. The results were categorized and are summarized as follows:

1.	Fouling	58.3%
2.	Single Failures	6.5%
3.	Multiple Failures	3.6%
4.	Personnel Errors	16.7%
5.	Flooding	4.4%
6.	Seismie	10.5%

We did not tubulate specifie component and operalor errors that could be easily related to PRA models and results. However, the failures and errors which comprise items 2,3 , and 4 above are typically included in a PRA internat events matlysts. Thet is, the date did net indicate any obvious patiern of failures and errors not covered by PRA methods.

Thiere were twitve events reported as complete loss of service water events. These are repented briefly in Table 2.2 with simplified descriptions that demonstrate the diversity of the failures. In a sense all the events listed are covered implicitly in PRA, however, fuult tree events do not normally specify the root cause of the failure (e.g., pump fails to run dw: to broken shaft).

Only two of the events in Table 2.2 appear in Table 2.1. The exact reasons for this would require detailed study to determine. Such a study was beyond the scope of the work done for this report. However, the following general conclusions can be drawn:

1. The evente extrent A from the precursor reports were judged to be precursors to potential a. are core damage accidents and did not necessarily involve complete loss of service water, either potentially or operationally. Therefuie, oríy tlimited overlap with the restults of NUREG/CR1275 should be expected.
2. As pointed out previously, the precursor reports and NUREG/CR-1275 were done by different people for different purposes. Therefore; different conclusions about the same events are to be expected.
3. The events extrected from NUREG/CR-1275 were judged by the authors to be complete loss of service water events. However, two of the events were loss of service water events which

Table 2.1
Precursors to Potential Severe Core Damage Accidents Involving Service Water Systecas

Plant	LER Number	Desrription
Hatch 1	LER 321/80-103	Inlet stre ames partialiy clegred.
San Onofre 1	LER 206/80-006	Three salr water cooling trkins failed.
St. Lacie 1	LER 335/80-729	RCP seal cooling lost due to inndvervent vaive elosure.
Calvert Cliffs 1	LKR 317/80-027	Two service water pramps fisi dae to leas of compressed air.
Phlgrim 1	LER 293/80-070	Corponent cooling water lort dine to mainienance and breaker trip.
Salem 1	LFR 2i2/80-060	Lost SW to DC due to valve indiceting open when acturlly closed.
Kewzunce	LFR 30</81-033	Operator error - two component cooling water trains unsveilable.
San Onofre 3	LER 262/84-035	Operator error - outside liruiting condition for operation.
Surry 1	1FR 280/84-011	Operstor ermor - safery injection pump CCW supply found isolsted.
Salem 2	LER 311/85-918	Operator error - maintorance and closed vaive cowld not be opened.
Lasalle 1	LER 373/85-945	Loss of non-safety service water due to expansion joint failure.
Susquehanna 3	LER 388/85-014, 015	Emergency service water failed during testing.
Surry 1	LER 280/86-029	Service water subsystem prump liost due to air binding.
MoGure 2	LER 370/87-E16, 017	Trip with service water train ott for cleaning.
Pulisades	LER 255/83-021	Incorrectly set relays could have reenlited in loss of service water.
Zion 1	LER 295/88-019	Potential component cooling water failure due to design deficieney.
Devis Besse	LER 346/88-007 FI	Porsibie prolonged loas of instrument air would cause SW to isolate.
San Onofre	1ER 361/88-010 R1	Emergency cooling water unavailabie due to low freon in chillers
Farley 1 and 2	LER 348/38-018 R1	Postulated loss of service water due to fine.
Peach Bottom 2	LFR 277/89-002	Unacceptable emvergency service wster performance due to W (\&C problems.
Caivert Cliffs I	LER 317/89-023 R1	Potential pipe rupture couid fail both service water pumps.
Davis Besse 1	LER 346/89-004	Potential pipe rupture coutd fail both service water pumps.
Nine Mile Point 2	LER 410/89-002	Potential service water and ECCS puap tailuse due to flooding
River Bend	LER 458/89-020	Service water flooded aukiliary building imptiring electric power snd control

Table 2.2
Twelve Events From NUREG-1275 Resulting in Complete Loss of SW Function

Plant	LER Number	Description
Oeonee I	LER 269/85-11	Inedequate siphon flow to service water sumps.
Susçuchanna 1	LER 387/86-21	All service water pumps failed due to operation beiow design flow.
Oyster Creek	LER 219/85-18	Heat exclangers plugged by cosl tar enamel
Branswick 1	1ER 325/84-01	Entrapped sir in suction beader piping.
Palisades	LER 255/84-01	Loss of power to service water pumps due to operator error.
Salem 2	LER 311/83-32	Service water bay flooded due to frilod piping gasket.
Salem 1	1FR 272/82-15	Loss of vital bus when 1 train of strvice water out for matiot-nance.
Brunswick 2	LER 324/82-05	All pumps failed to start due to low sactiok pressticy and sediment in sensing lines
Hatch 1	LEK 321/30-103	Iriet strainers partinlly eloggod.
Sen Onofre 1	LER 206/80-06	One pump shaft sheared and valve in other trsin finilod.
Calvert Clifts 2	LER 318/82-34	Failure of commor valve in discharge keader.
Catawhe 1	IER 413/85-68	Train A input valve friled to open and train B discharge valve failed to oper:

Where ctiticed ty LOSP and three others occurred during shutdown. As a result, a comparison with the results of the precursar reports would be expected to produce apparent inconsistencies.

Anelysis of ESWS at Mult-Unit Site NLREGCR-5526

Results of this study indicate that the dominant failures causing partial or complete loss of the ESWS are traveling screen and common intake structure fulures, failure of the ESW pumps, loss of electele power to the ESWS, and operator error relating to the ESW pumps. Degradation of the ESWS results from sodiment, oorrosion, and thuchanical and electrical probiems associated with the ESW pumps. As in the case with other roports reviewed there are no special failure modes that would change the busic approach to be used to analyze the pilot plant in this study.

2.2 Review of Plant-Specific Probabilistic Risk Assessment Studies

This study uzed eleven NRC-sponsored probabilistic risk assessments (PRAs) to evaluate the importance of servicwater (SW) using core damage frequency (CDF) contribution as a metric. Note that in this study the term "service water" implies any cooling water system, both open and closed loop systems, that provides onoling to safety related equipment and therefore must funetion following an accident. The eleven plant-specific PRAs reviewed are given in Table 2.3.

SAlC System Sourge Books ${ }^{\text {T}}$

The NRC contracted with Science Applications International Corporation (SAIC) to accumulate a set of plant information on selected U.S. commercial nuclear power plants. One piece of information contained in these notebooks is a service water functional flow diagram. It is well known that service water system configurations vary significantly from plant to plant. An example of that variation is shown in Figure 2.1 for four PWR plants. The Westinghouse (W) plant examined has emergency loads (L) direcily on the primary SWS (S) and indirectly through the component cooling water system (C). The Babcock and Wilcox (B\&W) plant examined has all its emergency loads fed directly off the SWS. In the Combustion Eingineering (CE) plants examined, plant A feeds all emergency cooling loads directly through a secondary cooling water system (C). The CE plant B has three ways to cool its emergency loads. Clearly there are
numerous variations just within the flow path configuration. When the number of pump trains, alternate byiterms hint the issociaition with normat service water are considered it is easy to see why every plant SWS could be unique. There will be some plants with similer SWSs but of the approximately 120 commercial nuclear plants, there could be numsrous unique SW configurations.

Table 2.4 lists for each plant the service water systems modeled in each of the PRAs reviewed and found to be significant coniributors to CDF. Appendix C describes each of the systems listed in terms of ite configuration, suocess criteria, cross-tiex, vuinerabilities, and poteatial recovery actions as considered in the applicable PRA.

Dependency diagrams in terms of the ssfety functions that are served by each of the systems listed in Table 2.4 are provided in Appendix D. A revlew of the information found in Appendices C and D ieads to the conclusion that service water system configurations are highly plantspecific. This observation is consistent with the work of the Accident Sequence Evaluation Program (ASEP) which concluded that where servies water was poncerned each plant is unique. ${ }^{31}$ However, though the SW configurations may be unique, the plant safety functions that are served by the SW system(s) tend to be similar as seen in the dependency diagrams provided in Appendix D.

To determine the contribution to CDF made by the service water system(s) in each of the eleven PRAs, the cutsets of the dominant accident sequences were reviewed. This review revealed three importa.t pieces of information significant to this study: (1) the CDF contribution made by service water; (2) the accident types and conditions where the plant is most vuinerable to service water faslts; and (3) a ranking of the specific service water faults in terms of their contribution to CDF,

It should be noted that when reviewing the dominant accident sequences for service water contributions to CDF, station blackout sequences were not considered where station blackout leads to loss of servive water. This approach was taken because these sequences represent only one problem which results from the loss of all electrical power. Also, systems which depend on service water will be unavailable following a station blackout regardiess of the availability of service water. Service water contributions were accounted for in those cutsets in which loss of service water leads to loss of power. For those cutsets where a portion of the service water system is lost due to a partial loss of ocsite power and an independent service water system favit occurs, the contribution was counted.

Table 2.3
Plant-Specific Probabilistic Risk Assessments Reviewed

Plast	Type	NSSS Vendor	PRA Program	Total luternal CDF (mean)
Calvert Cliffs 1	PWR	CE	IREP	1.3E-04
Point Beach 1	PWR	w	TAP A-45	$1.4 \mathrm{E}-04$
Turkey Point 3	PWR	W	TAP' A-45	7.1E-05
St. Lacie 1	PWR	CE	TAP A-45	$1.4 \mathrm{E}-05$
ANO-1	PWR	B\&W	TAP A-45	8.8E-05
Quad Cities 1	BWR	GE	TAP A-45	$9.9 \mathrm{E}-05$
Cooper	BWR	GE	TAP A-45	$2.9 \mathrm{E}-04$
Surry 1	PWR	W	NUREG-1150	4.0E-05
Sequoyah 1	PWR	w	NUREG-1150	S.7E.05
Peach Bottom 2	BWR	GE	NUREG-1150	4.5E-06
Grand Gulf	BWR	GE	NUREG-1150	4.1E-06

Combustion Engineering - Plant "A"

[^0]

Babcock and そillcox

Combustion Engireering - Plant " 8 "

Figure 2.1 Four Service Water System Functional Flow Diagrams

Table 2.4
Plant Service Water Systems Reviewed

Plant	Cooling Water system Reviewed
Cooper Nuclear Station	Service Water Systern Reactor Building Closed Cooling Water System
Quad Cities	R-sidual Heat Removal Service Water System Diesel Generator Cooling Water zystom
Peach Bottom	Emergency Service Water system High Pressure Service Water System
Grand Gulf	Standby Service Water System
St. Lucie	Component Cooling Water System Intake Cooling Water System
Calvert Cliff	Salt Water System Component Cooling Water System Service Water System
ANO-1	Service Water System
Point Beach	Service Water System Component Cooling Water System
Turkey Point	Service Water System Component Cooling Water Systen
Surry	Service Water System Component Cooling Water System
Sequoyah	Service Water System Component Cooling Water Sysicm

Thic following sections discuss the results of the review of the eleven PRAs.

2.3 Service Water Contribution to Core Damage Frequency

As noted above, the contribution to CDF made by the service water system(s) in each of the eleven PRAs was determined by reviewing the cutsets of each of the PRA dominant necident sequences. All of the dominant accident sequences reported is NUREG/CR-4550 were cousidered. In the case of the TAP A-45 study, the reports do not inciude a complete listing of the dominant sequence cutsets and in many caser less than fifty percent of the cutsets contributing to the sequencs CDF are given As a result, a complete review of the TAP A-45 cutsets was not possible.

For the NUREG-1150 PRAs the service water contributions to CDF for Surry 1, Sequoyah 1, and Grand Gulf were determined directly from the TEMAC computer code output. This will overestimate the contribution to CDF for those cutsets which contain more than one sorvice water basic event because the code sets the probability of each basic event to zero and sums the results over all of the cu . If two basic events are present in one cutset, the contribution to CDF of the cutset is thus counted twice. For Peach Bottom, the pilot plant, the cutsets which contained more than one service water basic event were evaluated to determine the contribution of each service water basic event. The contribution for a given basic event in a inultiple event cutset was calculated by multiplying the cutset frequency by the sum of the basic event probabilities of the other basic events in the cutset and dividing by the sum of the probabilities of all of the basic events in the cutset. The effect on the pilot plant, for the sequences considered, was to reduce the service water contribution calculated using TEMAC by 10 percent. Due to the time required to complete the calculations, the service water contributions to the other NUREG-1150 plants were not reevaluated.

Appendix E documents the review of the PRA results by listing the service water events found to contribute to the dominant accident sequences in each PRA. The contribution to CDF made by each event found is also given. Also included in Appendix E is a brief discussion of each dominant accident sequence in which service water events are dominant contributors to CDF along with the service water events that contribute to the sequence CDF,

Table 2.5 lists for each PRA the service water contribution to CDF in terms of an absolute value and a percentage. As can be seen from Table 2.5, the contribution tuade by service water to the total CDF varies from $<1 \%$ to 65%. The reasons for the large differences for the most part have to do with the degree of dependency a plant has on SW, the reliability of the systems themselves, and, to some extent, the differences in the PRAs in terms of modeling assumptions (e.g., IREP did not consider common mode failures where all the other PRAs did), and scope of each PRA program (c.g. TAP A-45 studies did not consider enticipated transients without scram (ATWS) or latge and intermediate LOCAs),

As noted above, Appeadix E inclades a brief discussi of the dominant accident sequences for each FRA in which service water is a dominant contributor. Included in the discussions is a listing of the service water events contributing to the sequence and the contribution made by the service water event to the sequence. These rosults are illustrated in Figures 2.2 through 2.15 in terms of reactor type and show for each class of accident (e.g., loss of offsite power (TI), large LOCA (A), etc.) the

> \% TCDF \% SWS Contribution - $\begin{aligned} & \text { \% of the total core } \\ & \text { damage frequency } \\ & \text { contributed by the } \\ & \text { accident type. }\end{aligned}$ \% contribution SW makes to the fotal CDF for the accident type

The accident abbreviations used it the figures are:
T1 - Loss of nffsite power
T2 - Transients with loss of power conversion system
T3 - Transients with power conversion system initially available
ATWS - Anticipated transients without scram
TAC = Loss of AC bus
TDC - Loss of DC bus
LOCA - Loss of cooling accident
Looking at the comparison of BWR T1 accident sequences, Figure 2.2, for Grand Gulf, TI sequences

Table 2.5
Service Water Contribution to Core Damage Frequency

Plant	Type	Total Internal CDF(mean)	SW CDF Contribution	SW \% Contribution
Calvert Cliffs 1	PWR	1.3E-04	1.4E-05	11
Point Beach 1	PWR	1.4E-04	$2.6 E 95$	19
Turkey Point 3	PWR	7.1E-05	3.4E-36	5
St. Lacie 1	PWR	1.4E-05	1.8 E 06	13
ANO-1	PWR	8.8E-05	1.1E-95	12
Quad Cities 1	BWR	9.9E-05	3.0E-05	30
Cooper	BWR	$2.9 \mathrm{E}-04$	$1.9 \mathrm{E}-04$	65
Surry 1	PWR	4.0E-95	$15 \mathrm{SE}-08$	<1
Sequoyah 1	PWR	5.7E-05	$2.4 \mathrm{E}-07$	<1
Peach Bottom 2	BWR	4.5E-06	$1.4 \mathrm{E}-06$	22
Grand Gulf	BWR	4.1E-96	S.6E-97	14

Figure 2.2 Comparison of BWR T1 Accident Sequences Contrit ution to CDF

Figure 2.3 Comparison of BWR T2 Accident Sequences Contribution to CDF

Coz Quad Cities Cooper Peach Bottom Grand Guli

Figure 2.4 Comparison of BWR T3 Accident Sequences Contribution to CDF

Figure 2.5 Comparison of BWR ATWS Accident Sequences Contribution To CDF

Figure 2.6 Comparison of BWR TAC Accident Sequences Contribution to CDF

Figure 2.7 Comparison of BWR TDC Accident Sequences Contribution to CDF

Figure 2.8 Comparison of BWR LOCA Accident Sequences Contribution to CDF

Figure 2.9a Comparison of PWR T1 Accident Sequences Contribution to CDF

Figure 2.90 Comparison of PWR T1 Accident Sequences Contribution to CDF

Figure 2.10a Comparison of PWR T2 Accident Sequences Contribution to CDF

Figure 2.10. of iparison of PWR T2 Accident Sequences Contribution to CDF

Figure 2.11a Comparison of PWR T3 Accident Sequences Contribution to CDF

Figure 2.11b Comparison of PWR T3 Accident Sequences Contribution to CDF

Figure 2.12a Comparison of PWR TAC Accident Sequences Contribution to CDF

Figure 2.12b Comparison of PWR TAC Accident Sequences Contribution to CDF

Figure 2.13a Comparison of PWR TDC Accident Sequences Contribution to CDF

Figure 2.13b Comparison of PWR TDC accident Sequences Contributior

Figure 2.14a Comparison of PWR LOCA Accident Sequence Cnntribution to CDF

Figure 2.14b Comparise of PWR LOCA Accident Sequences Contribution to CDF

Figure 2.15a Comparison of PWR ATWS Accident Sequences Contribution to CDF

Figure 2.15b Comparison of PWR ATWS Accident Sequences Contribution to CDF

Figure 2.16 Peach Bottom Emergency Service Water System (Page 1 of 2)

Figure 2.16 Peach Bottom Emengency Service Water System (Page 2 of 2)
contribute 97% of the total CDF as found in the NUREG4550 results. The service water contribution to the total CDF through TI sequences is 13π, which 8 :counts for 94% of the total service water contribution to the total CDF at Grand Gulf.

As can be sean from Figures 2.2 through 2.8, for BWRs T1 (i.e., loss of offsite power initiator) sequences tend to dominate the plant CDF. For PWRs LOCA sequences tend to dominate, as shown in Figures 2.9 through 2.15 . When considering the SW contribution, SW tends to also dominate in these classes of sequences. However for BWRs it can be seen that for Cooper and Quad Cities, the SW contribution to CDF is predominate in TAC (i.e.. loss of an $A C$ Bus initiator) sequences, where SW fails to provide cooling to the Residual Heat Removal system in the suppression pool cooling mode. For Peach Bottom and Grand Gulf, on the other hand, SW is dominate in T1 sequences where SW fails to provide cooling to the emergency diesel generators.

For the PWRs, SW contribution is a predominate contributor to CDF in LOCA sequences, where SW fails to providing cooling to the high and low pressure injection systems either in the injection phase or in the recirculation phase of operation. That is, SW fails to provide cooling to the injection system pumps or pump room soolers, thereby causing loss of injection, for those plants requiring pump cooling; or $S W$ fails to providing cooling to the RHR beat exchangers thereby failing low pressure recirculation.

These results are not unexpected since, as noted above, the service water systems for each plant, though unique, tend to have very similar functions.

2.4 Comparison of Plant-Specific Service Water Faults

As described above and documented in Appendix E, the dominate accident sequences for the eleven NRC sponsored PRAs were reviewed to identify SW faults and to determine the SW contribution to CDF. The purpose of this section is to provide insights into the types of vulnerabilities affecting SW system reliability based on the results of the eleven PRAs reviewed.

2.4.1 BWR Service Water System Faults

The dominant service water component failures and unavailabilities found in the four BWR PRAs reviewed are summarized in the following paragraptis. The percentages in parenthesis are the contribution of the given failure mode to the total CDF for each plant. Credit for recovery prior to core damage is included as contained in the source documents, i.e. the TAP A-45 of NUREG/CR-4550 analyses. Since recovery actions are accident sequence and cut set dependent, recovery actions specific to service water may, or may not, be given credit.

Cooper (see Appendix C. Figures C. 1 and C.2)

one of the two SW toops unavaltatie due to maintenance (5%) one of two Resolor Building Closed Cooling Water (RBCCW) loops unavailable due to maintenance (7%) failure of the $S \nabla$ son-critical header isolation valve (motor-operated valve) to isolate nonsafety loads (3\%) failure of the RBCW non-critical header isolation valve (motor-operated valve) to isolate nonsafety loads (31\%)
failure of RBCCW isolation valve (motor-operated valves) to safety loads to open (18\%)

Quad Citios (see Appendix C, Figures C. 3 and C.4)
one of two Residual Heat Removal Service Water (RSW) System loops unavailable due to maintenance (19%) local faults of Diesel Generator Service Water (DSW) pumps (4\%)
common mode failure of the RSW pumps (3%)
common mode failure of the DSW pumps (2\%)

Peach Bottom (see Figure 2.15)

human error, failure to operate the emergency heat sink (14%) Emergency Service Water (ESW) pump discharge check valves fail due to back leakage (4%)
air operated valves in service water lines from the diesel generators fail to open on demand (2%)
failure to restore ESW components following maintenance (1\%)
ESW pumps fail to start ($<1 \%$)

Grand Gulf (see Appendix C. Figure C. 7)

common mode failure of the Standby Sevice Water (SSW) pumps (4%)
SSW pumps fail to start (3\%)
normally closed motor-operated valves in the SSW distribution lines to safety ioads and return lines from safety loads fail to open on demand (7\%)

As can be seen from the above referenced figures, the SW system configurations for each of the BWRs is unique. However there are common dominant failure modes between the plants. These common failure modes are:

Is-lation value to safety loads fail to open on demand: This failure is common to Cooper (18\%), Peach Bottom (4\%), and Grand Gulf (7\%).

Standby service water pumps fail to start: This failure mode is common to those plants that have standby emergency service water systems iike Quad Cities (9\%), Peach Bottom (2%), and Grand Gulf (7\%).

Unavailabilities due to maintenance anú siuc to the failure to restore system components also contribute siguificantly to the SW contribution to CDF for most of the BWR plants.

Two important subtle failures are also dominant in the BWR results. These are failure to isolate nonessential cooling water loads (Cooper) and discharge check valve failures for cross-tied pumps (Peach Bottom). The failure to isolate the nonessential cooling water headers contributes 34% of the total TAP A-45 CDF at Cooper. Unlike the other BWRs, Cooper does not have a strndby emergency service water system. Therefore, it is dependent on the noncritical header isolation valves to close. Failure to isolate the noncritical headers results in inadequate cooling of the essential loads. This coupled with the dependency on RBCW to align to safety loads (i.e., normally closed isolation valves have to open on
demand) contributes over 50% of the total TAP A-45 CDF .

At Peach Bottom, the failure (stuck open) of an ESW pump discherge check valve, defeats the ESW system. As shown on the first page of Figure 2.16, the Peach Bottom ESW systems consists of two eross-tied pumps (OAP57 and OBP57). Both pumps automatically start when demanded, however the operatur will secure one of the pumps once system pressure is achieved. If the pump discharge check valve (CV515A or CV515B) of the idle pump sticks open, the flow from the operating pump is assumed to recirculate back through the idle pump resulting in functional failure of the system.

2.4.2 PWR Service Water System Faults

The dominant service water component failures and unavailabilities found in the four PWR PRAs reviewed are summarized as follows:

St. Lucie (see Appendix C, Figures C. 8 and C.9)
 common mode failure of the Component Cooling Water system pumps (10%) common mode failure of the Intake Cooling Water system pumps (3\%)

Calvert Cliffs (see Appendix C, Figures C. 10, C. 11, and C. 12)
failure of Salt Water System (SWS) and Component Cooling Water (CCW) normally closed air-operated valves to safety related louds to open (6\%) failure of SWS normally open airoperated valves to stay open (1\%)
failure of CCW manual valve due to plugging resulting in common mode failure of luw pressure and high pressure safety injections pumps seal cooling (1\%)

ANO-1 (see Appendix C., Figure C. 13)
common mode failure of Service Water System (SWS) motor-operated valves to safaty related loads to open (11%)

- common mode failure of SWS pumps (1\%)

Point Beach (see Appendix C, Figures C. 14 and C. 15)
unavailability of Component Cooling Water (CCW) manual return valve froin RHR pump coolers due to maintenance (9\%)
common mode failure of CCW pumps (5\%)
CCW manual retum valve from RHR pumps coolers fails closed due to plugging (2%)
common mode failure of Service Water (SWS) pumps (2\%)

Tuikey Point (see Appendix C. Figures C. 16 and C. 17)
common mode failure of Component Cooling Water (CCW) pumps (2%) failure of the Service Water (SWS) noncritical beader isolation valve (airoperated valve) to isolate nonsafety loads (2\%)
common mode failure of SWS pumps (2\%)

Surry (see Appendix C, Figures C. 18 and C.19)
common mode failure of Service Water (SWS) isolation motor-operated valves to open ($<1 \%$)

Sequoyah (see Appendix C. Figures C. 20 and C.21)
Component Cooling Water motoroperated valves fail to open ($<1 \%$)

- Service Water (SWS) manual valves and strainers fail due to plugging ($<1 \%$)

Note: Percentages given in parenthesis represent the contribution made by the given failure mode to the total CDF for each plant.

As can be seen from Figures C. 8 through C. 21 of Appendix C, the SW systern configurations for each of the PWRs is unique. However, as with the BWRs two common service water system faults exist between most of the plants. These are the dependency of the service
water system on motor-operated or air-operated isolation valves to open on demand to supply cooling to the safety related toads and failure of standby pumps to start.

At Turkey Point, as at Cooper, the dependence of the service water system on isolation of a noncritical header shows up as a dominant failure mode. Failure of the noncritical header to isolate diverts water away from the safety related loads resulting in functional failure of the service water system.

3.0 SELECTION OF THE PILOT PLANT

The pilot plant was selected to be the basis for one example of the type of analysis that can be performed to show the effect of improvements to an ESW system to address its vulrerabilities. The selectio was based on the six criteria given below in a general order of priority

1. One of the twelve NRC sponsored PRAs accessible to SNL with relatively current methods and fault trees in a computer format.
2. A PRA that has current, good quality, and useable models and preferably entered into IRRAS
3. A PRA where the ESW sysiem is a relatively high contributor to CDF both in frequency and percent of total CDF, i.e., approximately:
1.0E-06 to 3.0E-05, and
15% to 35% of the total CDF.
4. A plant representative of a large group of units within a vendor t, pe and/or subtype (see Appendix A).
5. An ESW system representative of a large group of ESW systems.
6. A PRA with oxternal events results which can be used in the current analysis.

There have been 23 NRC sponsored PRAs. Twelve of these were considered suitable candidates for this program. The 11 PRAs excluded are given below with reasons why they were eliminated.

	Plant	Program	Reasons
1.	Surry	WASH-1400	Superseded by NUREG-1150
2.	Peach Bottom	WASH-1400	Superseded by NUREG-1150
3.	Sequoyah	RSSMAP	Superseded by NUREG-1150
4.	Calvert Cliffs	RSSMAP	Superseded by IREP
5.	Crystal River	RSSMAP	Old Method - No Models
6.	Grand Gulf	RSSMAP	Superseded by NUREG-1150
7.	Oconee	RSSMAP	Old Method - No Models

8.	Millstone	IREP	Models Not Available
9.	Browns Ferry	IREP	Models Not Available
10.	ANO-1	IREP	Auperseded by TAP A-45
11.	Zion	NUREG-1150	Different Methodology

The twelve candidate plants are given in Table 3.1 whth various characteristics of the plant and the associated PRA that relate to the six criteria. The results of evaluating the plants against the criteria are given in Table 3.2. Every plant PRA has one or more marginal or no answers to the criteria except for Peach Bottom. Actually, the criteria were weighted toward the highest priority criteria. For example, they all meet criteria \#1, which is absolutely essential or the PRA would not be usable. Criteria $\# 2$ was also very essential in that the useability of the model and, in particular its accessibility on IRRAS, were considered important to success of the program. Applying criteria \#3 then leads to Peach Bottom as the best choice. The only shortcoming of the Peach Bottom PRA ${ }^{27}$ is that the absolute SW contribution to core damage frequency is slightly below the low end of the "acceptable" range. In fact, one can fault every one of these PRAs or perhaps any non-NRC sponsored PRA for sonee reason relative to its use in this service water analysis. So there being no perfect example, the Peach Bottom NUREG/CR - 4550 PRA 3 was a reasonable choice.

Table 3.1 NRC Sponsored PRA Characteristics

Phass	Promen	Lemel	Year FKA Conpl	$\begin{aligned} & \text { Inita! } \\ & \text { Opres Yes } \\ & \text { Type } \end{aligned}$	$\stackrel{N 6}{4}$	$\begin{aligned} & \text { Towi } \\ & \text { CDIF } \\ & \text { Cluteromil } \end{aligned}$	$\begin{aligned} & \text { Esw } \\ & \text { CDW } \\ & \text { Contr } \end{aligned}$	$\begin{gathered} \text { Esw } \\ x \\ \text { Conor } \end{gathered}$	$\begin{aligned} & \text { Ext }{ }^{3} \\ & \text { Eventr } \\ & \text { E'iodelot } \end{aligned}$	$\begin{aligned} & \text { Mobe } \\ & \text { Anaible } \\ & \text { Kewiling } \end{aligned}$	System: Strarioe Book	$\begin{aligned} & \text { NREP } \\ & \text { Pluse } \end{aligned}$	Spocial
Cxhen criss	ERET	1	19804	7403	2	13804	1. ${ }^{\text {E M }}$	11	14	Yeerbod	No	Yox	
Pien Shen	TAP A-SS	1	1986	Tow2	2	1.abes	2 CEES	19	SFLO	Yotiair	*	No	The wilue impot ansionix. Limive IE
Turbey Pisis	TAP ATS	t	1980	72w3	t	7.15005	3 ama	5	\$10	Ye Fixr	No	\%	Heer whe inged menlyvic. Limiteo 1E.
a. 100	TAPATS	1	196\%	7SCE	2	1.4E.as	1 EEA6	13	SFLO	Yobeinir	Yoo	Yo	Hes mito inper asolvic. Lieribec IE
ANGO-1	TAPATS	1	1 1\%	74kw	1	8.8 ecs	1.15-25	12	SFLO	Yeofeir	No	No	
zead Cxime	TAPA-	1	*es	news	2	s.enes	3 OE -ar	*	SFLO	Yo Fsir	Ver	Yo	
Cosper	TAPA-TS	t	1586	74BWR 4	1	2FEA4	1.58	6	SFLO	Yo-Fair	Yo	Yo	Hen valur ieped aselysic. Lumber IE
Lesple	RMIFP	3	130	s2BWR	2	4.45-6	306er	7	5 Fr .	IRRASExa.	No	Yor	
Samy	Nurbo-ese	3	198	31/w3	2	caemes	$1.5 E 08$	<1	8	IRRASExa	N	Yom	
Soquyalt	NUKES-ass	3	198	30W4	2	5.7.05	2 4en	<1	N	TRASExa.	No	Ya	
	Nuren-iss	3	198	73/日Wes	2	4.5EAK	14 BEO	n	©	TRPASE*	Yo	Yo	
Grene Cuat	Nureil-4iso	3	1934	*SVWW6.	1	4.1806	S.AE-E7	14	No	IRRASEma.	Yeo	Yow	Sturdown Suaty

is $=$ Sciestal, F $=$ Fim, $\mathrm{L}=$ Fhod, $0=$ Otber

Table 3.2 Evaluation of Criteria

Plant	I	2	3	4	5	6
Calvert Cliff	Y	M	M	Y	M	N
Point Beach	Y	M	Y	M	Y	Y
Turkey Point	Y	M	N	Y	Y	Y
St. Lucie	Y	M	M	Y	M	Y
ANO-1	Y	M	Y	Y	M	Y
Quad Cities	Y	M	Y	M	U	Y
Cooper	Y	M	Y	Y	U	Y
LaSalle	Y	M	N	Y	U	Y
Surry	Y	Y	N	Y	Y	Y
Sequoyah	Y	Y	N	Y	Y	N
Peach Bottom	Y	Y	Y	Y	U	Y
Grand Gulf	Y	Y	N	Y	U	N

4.0 Pilot Plant Analysis

4.1 Pilot Plant Essential Services Water Systems

Six systems are available to perform the required cooling functions at the BWR Pilot Plant:

1. Service Water System,
2. Turbine Building Cooling Water System,
3. Reactor Building Cooling Water System,
4. High Pressure Service Water System,
5. Emergency Service Water System, and
6. Emergency Heat Sink.

The acronyms used to refer to these Pilot Plant systems in this chapter are defined as they are used. Note that the acronyms may not use the same words used previously. For example, ESW in this chapter refers to Emergency Service Water. Earlier, ESW referred to Essential Service Water.

The first three systems above are balance of plant (BOP) cooling systems. The Service Water System (SWS) is an open loop system and supplies screened and chlorinated cooling water to the plant during normal plant operation and shutdown periods only. The SWS consists of three one-half capacity purups, three horizontal fuel pool service water booster pumps, and associated valves and piping. The SWS fails on loss of normal AC power."

The Turbine Building Cooling Water (TBCW) system is a slosed loop system and supplies cooling water to auxiliary plant equipment associated with the power conversion system. The system consists of two fullcapacity pumps and heat exchangers, one head tank, and associated valves and piping. The SWS provides the heat sink for the TBCW. In the event of loss of offsite power, the TBCW system is not operated."

The Reactor Building Cooling Water (RBCCW) system is a closed loop system whuse function is to p ovide cooling to auxiliary plant equipment associnted with the muclear steam supply system. During normal operation the SWS provides the heat sink for the RBCCW system. Under emergency conditions (e.g., loss of offsite power), the RBCCW heat exchangers are manually connected and served by the Emergency Service Water (ESW) system. The RBCCW system consists of two full-capacity pumps, two full capacity heat exchangers, one head tank, and associated valves and piping."

The High-Pressure Service Water (HPSW) system is a standby system dedicated to the Residual Heat Removal
(RHR) system. The HPSW system consists of two crosstied pump trains. Each train is made up of two pumps and associated valves and piping. The system is designed to supply cooling water from the ultimate heat sink to the RHR heat exchangers under post accident conditions."

The ESW system is a standby system designed to provide adequate cooling to the emergency equipment coolers and compariment air cooters during a loss of offsite power. The system consists of two full capucity pumps installed in parallel. The ESW system is common to both Units 2 and 3 ." The ESW system is described further below.
The Emergency Heat Sink (EHS) provides onsite heat removal capabilities for Units 2 and 3 in the event the normal heat sink becomes unavailable. The EHS consists of an induced-draft cooling tower, one full capacity Emergency Cooling Water (ECW) pump, and associated valves and piping. The EHS can be operated in either a closed loop mede or an open mode." The EHS is described further below.

Figure 4.1, taken from Reference 48, shows the functional relationship between the SWS, RBCCW, EHS, and ESW systems.

As described in Section 2.2, the NUREG/CR-4550 dominant accident sequences were reviewed to determine the service water contribution to CDF. This review is documented in Appendix E. As can be seen from the results of this review, for the Pilot Plant the dominant service water faults are associated with the ESW system and EHS. Therefore, in this analysis, only these two systers were reviewed to determine system vulnerabilities and to determine possible modifications to enhance system reliability. The following describes the ESW and EHS vulnerabilities and associated modifications.

4.2 Pilot Plant Emergency Service Water System

As described above, the ESW system is common to both Units 2 and 3. The system consists of two full-capacity pumps instatled in parallel. The normal suction source for the pumps is a pond. The pump discharge piping consists of two headers with service loops to supply the diesel-engine coolers and selected equipment coolers. A common discharge header router the system effluent back to the pond. Figure 4.2 illustrates the ESW system.

Both pumps start automatically whenever standby dieselgenerators are started. One of the ESW pumps is manually shut off if both pumpe are running.

ESWS - Emergency Service Water Systen?
HPSWS - High Pressure Service Waser Sysimen
RBCCWS - Reackor Buiding Closed Cooling Water S.rstem

Figure 4.1 Cooling Water Systems Functional Diagram for Pilot Plant Units 2 and 3

Figure 4.2 Pilot Plant Emergency Service Water System (2 of 2)

Should the ESW pumps fail, the ESW may be uperated in oonjunction with the emergency heat sink in a closed or open loop fastion. In the closed loop mode, two ESW booster pumps take return water frotn various coolers, boost pressure, and deliver the water to the emergency cooling tower. The ECW p.inp then takes suction from the cooling tower and discharges through a motoroperated valve to the ESW loads. The booster pumps are noi required in this mode since it has been demonstrated by lest that booster pump failure would tot fail the cooling function of the ECW pump. In the open loop mode, the ECW p.mip delivers water from the cooling tower structure, through the ESW loads, and back to the bay. There is sufficient water supply in the cooling tower to last for days; hence the open loop mode is considered a success path. The NUREG/CR-4550 analysis only considered the open loop mode of operation in their model development.

Upon system automatic initiation, the operator checks discharge pressure for the two primary ESW pumps. If discharge pressure appears normal, the operator will secure one ESW pump at his discretion. He also secures the ECW pump which automatically starts on an emergency diesel auto-start signal (after a 22 second time delay). The ECW pump discharge motor-operated valve will open on ESW low system pressure and an emergency diesel auto-start signal (after a 45 second time delay). The E 'W pump will trip if ESW pressure is not low and an emergency diesel auto-start siznal is present (after a 45 second time delay). At some later time, if the operating ESW pump trips and the standby ESW fails to operate, the operator must manually start the ECW pump. In the closed loop mode, the cooling tower fans must also be manually started.

4.3 External Events

External events were not considered explicitly in the pilot plant analysis described in the other portions of this section and Section 5.0 because of resource limitations. Nevertheless, external events are almost always important in PRA and usually involve essential service water. A brief summary of the external events analysis for the pilot plant and the corresponding contribution to CDF of essential service water are provided in this section. The ESW faults contributing in core damage are discussed in the following section.

An external event analysis starts with a screening process to determine which potential external events should be studied in more detail. An extract from NUREG/CR4550 Vol. 4, Rev. 1, Part 3 is given below.

*3.4 Summary

The scoping quantification study considered all possible external events at the site except for seismic and fire events, since thess two events were included in a detailed cxlomal events analysis. The PRA Procedures Guide, suitably augmented with other available information, was used as a guideline for idetiification of all possible exter al events at the Peach Bottom site. Next, an initial screening process was carried out to eliminate events not applicable to Peach Bottom from the list. For this purpose, a set of screening criteria was developed and than each external event was examined for possible elimination based on these criteria. After the initial screening process was completed, the fcillowing events were found to be poiential contributors to the plant risk.

Aircraft Impact
b. Extreme Winds and Tornadoes
c. External Flooding
d. Industrial or Military Facility Accident
e. Release of Chemicals from Onsite Storage
f. Turbine Generated Missiles
g. Transportation Accidents
h. Internal Flooding

The degree of sophistication in the bounding analysis for each event depended on whether the event could be eliminated based on only a hazard analysis or a complete analysis including hazard analysis, fragility evaluation and plant response analysis. The detailed plant response analysis was conservatively neglected in evaluating the impact of these external events.

The risk due to an aircraft striking the plant structures and causing unacceptable radiological consequences was screened out on the basis of the probability of strike and the design of different structures.

Evaluation for the potential for flooding as a result of the most conservative combination of Probable Maximum Flood (computed from conservative estimates of probable maximum precipitation), failure of Holtwood Dam and wind-generated waves showed that the essential structures in the plant are located much above the probable maximum surge level and the risk of flooding is negligibly small.

Pilot Plant Analysis

Tornadoes and tornado missile impacts were eliminated on the basis of a detailed computation of tornado strike probability of 9 x $10^{7 / y e a r}$ and other feaiures of piant structures and components designed to withstand the effects of a Design Basis Tornado.

The information a'silable from Philadelphia Electric Company on the frequency of turbine disk inspection was used as the basis to assume the safety of essential plant structures from damage due to turbine missiles.

Finally, explosions due to transportation accidents and both on-site and off-site chemical releases have a low probability of affecting the site.

Thus, all external hazards except fire and seismic events were found to be negligible
contribs 's to the risk of core damage at the Peach Bottons, pant. Detailed evaluations of fire and seismic evonts contained in the remainder of this report."

Thus only seismic and fire events were considered further. Most of the following information was taken directly from the above reference.

Seismic

The seismic risk was found to be dominated by relatively few accident sequences. The dominant accident sequences primarily involve station blackout situations which resulted from loss of cooling water to the emergency diesel generators. A variety of different component failures were identified which led to this situation, with failures of the emergency service water and emergency heat sink systems being the most important. This is demonstrated in the table given below for both the hazard analyses performed.

Dominant Component Contributions to Mean Core Damage Frequency Ranked by Risk Reduction Potential

Component	Percent Reduction if Not Failed	
	LLNL Hazard	EPRI Hazard
Ceramic Insulators		
ESW/ECW Pumps	48%	52%
Diesel Generator	31%	34%
Turbine Building	24%	26%
4 kV Busses	14%	16%
Radwaste/Turbine Building	12%	13%
RV Recirculation Pumps Supports	8%	8%
RV Skirt Support	7%	7%

All other components and structures less than I's

The total seismic CDF was $7.66 \mathrm{E}-15$ for the LLNL hazard curves and $3.09 \mathrm{E}-06$ for the EPRI hazard curves.

Typical service water related events are:

```
EMER-COOL-TOWER
ESW-MDP-FS-MDPA&B
ESW-CCF-PF-MDPS
ESW-MDP-FS-ECW
ESW-TNK-LL-PS13
```

The ESW-TNK and COOL-TOWER are direct seismic events outside the system analysis. Failure of the two ESW pumps, the ECW pump, and common cause failure of the ESW pumps are covered in the internal events analysis. Additional credit for improving the ESWS given the seismic environment is unclear since any modifications would have t consider seismic qualification in addition to the basic costs of the changes.

Eite

There were three fire areas with potentially signific unt core darnage frequencies; the control room, the cable spreading room, and the emergency switchgear rooms. Only the emergency switchgear rooms directly involve service water. These can be divided into three groups.

GROUP I Emergency Switchgear Rooms 2A, 2D, $3 \mathrm{~A}, 3 \mathrm{~B}$, and 3 C

For all five of these fire areas a similar scenario occurred. This sequence (T1BU1) was a station blackout caused by a fi.e-induced loss of offsite power and a random loss of the emergency service water system. This random (failun not related to the fire itself loss of emergency service water caused a station blackout because emergency service water provides cooling for ell four diesel generators. Thus, emergency onsit. power failed. Emergency service water also provides room cooling for the HPCi system. The HPCI system will fa'? in approximately 10 to 12 hours due to either loss of room cooling or battery depletion caused $5 /$, the station blackout. These areas are all similar in that the primary source of fire is electrical switchgear within the fire area. The fire accident sequence involves several terms.

The term that represeats random failure of the emergency service water system $Q_{\text {Rsw }}$ can be represented by the following equation:

$$
\begin{aligned}
Q_{\text {Esw }}= & \text { ACP-DGN-FR-EDGB * } \\
& \text { ACP-DGN-FR-EDGC * } \\
& \text { DGHWNRIGHR * } \\
& \text { ESW-XHE-FO-EHS + } \\
& \text { ESW-CCF-LF-AOVS }
\end{aligned}
$$

These random failure events were developed as part of the internal events analysis of the $\mathrm{Pil}-$ Plant and are identical except for the postulated mission time of the emergency diesel generators.

GROUP II Emergency Switchgear Rooms 3D and 2B

The identical scenario to that described above for GROUP I occurs; however, some fire-related failures of the ESW also occur. For emergency switchgear room 3D the fire fails power to the ECW pump, while for room 2B power is failed to ESW pump A. These fire-related failures coupled with additional random failures lead to a loss of ESW system, and consequently, station blackout.

Therefore, the $Q_{\text {Esw }}$ term for emergency switchgear room 3D is:

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{ESW}}= & \text { ACP-DGN-FR-EDGB * } \\
& \text { ACP-DGN-FR-EDGC * } \\
& \text { DGHWNR16HR }+ \\
& \text { ESW-CCF-LF-AOVS }
\end{aligned}
$$

while for emergency switchgear room 2B:

$$
\begin{aligned}
\mathrm{Q}_{\text {ESW }}= & \text { ESW-CKV-C515A }+ \\
& \text { ESW-CCF-LF-AOVS }+ \\
& \text { ACP-DGN-FR-EDGC * } \\
& \text { ACP-DGN-FR-EDGD * } \\
& \text { DGHWNR16HR }
\end{aligned}
$$

GROU: III Emergency Switchgear Roomi 2C
Three scenarios survived screening for emergency switchgear room 2 C . The first was the station bisckout scenario described above the GRCYP II with fire-related failure of offsite power and ESW pump B. The other two sequences were T1BU1W1X2W23U4V23Y and T1BUIWIX2W23U4V2Y. For these last two cases station blackout does not occur and other random failures lead to long-term core damage scenarios. The core damage equation for all three scenarios is identical except $Q_{\text {Isw }}$ is replaced with $Q_{\text {random }}$ for the latter two long-term sequences to reflect different random failures necessary for core damage. Thus only Scenario 1 is related to the service water system.

The only difference for Sconario 1 for room 2C is the $\mathrm{Q}_{\text {Bsw }}$ term is changed due to a slightly different fireinduced damage.

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{ESW}}= & \text { ESW-CKV-C515A + } \\
& \text { ESW-CCF-LF-AOVS + } \\
& \text { ACP-DGN-FR-EDGB * } \\
& \text { ACP-DGN-FR-EDGD * } \\
& \text { DGHWNI 16HR. }
\end{aligned}
$$

Typical service water system related events for these fire areas are:

> ESW-XHE-FO-EHS
> ESW-CCF-LF-AOVS
> ESW-CKV-C515A
> ESW-CKV-C515B

These events are addressed in the internal events analysis but credit for modifications that might result from changes in the fire core damage frequency were not included. New core damage frequencie ver reactor year for the pilot plant fire areas were:

Fire Area	Mean	Group
Emergency Switchgear Room 2A	7.4E-08	1
Emergency Switchgear Room 2B	$3.6 \mathrm{E}-06$	II
Emergency Switchgear Room 2C	4.7E-06	III
Emergency Switchgear Room 2D	$7.4 \mathrm{E}-07$	1
Emergency Switchgear Room 3A	7.4E-07	I
Emergency Switchgear Room 3B	7.4E-07	1
Emergency Switchgear Room 3C	7.4E-07	I
Emergency Switchgear Room 3D	8.1E-07	II
Control Room	6.2E-06	
Cable Spreading Room	6.7E-07	
TOTAL CONTRIB!JIION	1.95E-05	

The overall fire-induced core damage frequency for Unit 2 of the Pilot Piant was 1.95E-05 per year. The dominant contributing plant areas are the (a) control room, (b) emergency switchgear room 2 C , and (c) emergency switchgear room 28 . Thes: three areas comprise 75% of the total fire risk. The total ESW related fire CDF contribution is $1.28 \mathrm{E}-05$. This is 66% of the CDF.

In the case of the control room, a general transient occurs with smoke-induced abandonment of the area. Failure to control the plant from the remote shutdown panel results in core damage.

For the emergency switchgear rooms, a fire-induced loss of offsite power and failure of one train of the ESW occurs. Random failure of the other ESW train and the ECW pump results in station blackout and core damage.

4.4 Dominant ESW Faults Contributing to Core Damage

As described in Section 2.2, the NUREG/CR-4550 resuits for the Pilot Plant were examined to determine the dominant ESW faults contributing to the total CDF. Emergency Service Water events show up as dominant in four dominant accident sequences (i.e., station blackout sequences). These four accident sequences are listed in Table 4.1.

These four sequences account for 43.9 percent of the total CDF. It is noted that of the 1393 domitunt cut sets considered in the NUREG/CR-4550 analysis, these four sequences account for 1330 cut sets. Each of these four sequences are described subsequently.

Accident Sequence T1-BNU11

This accident sequence is initiated by a loss of offsite power (T1), the safety relief valves properly control reactor pressure, but failure of all emergency diesels occurs (B) due to loss of service water which results in a station blackout. High Pressure Coolant Injection (HPCI) in initially successful (NU11) but fails in the long term due to either harsh environment (e.g., loss of room cooling effects) or subsequent battery depletion, resulting in late core darnage in a vulnerable containment.

Accident Sequence T1-P1BNU11

This accident sequence is initiated by a loss of offsite power (T1), followed by one stuck open safety relief valve (P1), subsequent failure of all emergency diesels occurs (B) due to loss of service water which results in a station blackout. High Pressure Coolant Injection (HPCI) in initially successful (NU11) but fails in the long term due to either harsh environment (e.g., loss of room cooling effects) or subsequent battery depletion, resulting in core damage in 10 to 13 3 ars.

Accident Sequence Ti-BU11NU21

This seque is initiated by a loss of offsite power (T1), followed by a loss of emergency diesels (E) due to loss of service water whict results in a station blackout. HPCl then fails, followed i, itim battery depletion or RCIC injection failure due to the harsh environment. Core damage occurs late in a vulnerable containment.

Table 4.1
Pilot Pant Dominant Accident Sequences With Service Water Contributions

Accident Sequence	Sequence Frequency $($ (R yr)	Sequence \% of CDF	SW Contribution	SW \% of CDF	Plant Damage State
T1-BNU11	$1.64 \mathrm{E}-06$	36.4	$8.39 \mathrm{E}-07$	19	5
T1-P18NU11	$1.31 \mathrm{E}-07$	2.9	$7.34 \mathrm{E}-08$	2	5
T1-BU11NU21	$1.25 \mathrm{E}-07$	2.7	$5.88 \mathrm{E}-08$	1	5
T1-P2V234NU11B	$8.73 \mathrm{E}-08$	1.9	$5.50 \mathrm{E}-09$	<1	$2 \& 3$

Accident Sequence T1-P2V234NU1113

T is sequence is initiated by a loss of offsite power (T1). High pressure injection initially operates (NU11), but two relief valves fail to close (P2). This caused the equivalent of an intermediate LOCA. The low pressure system fails on demand (V/234), resulting in core damage.

The ESW and ECW are dominant contributors to the first three sequences due to the dependency of the emergency diesel generators on these systems. Failure of both ESW and ECW results in loss of all emergency diesel generators. The ESW is a dominant contributor in the fourth sequence due to the dependency of the low pressure systems dependency on ESW for room cooling. Loss of room cooling fails the low pressure system pumps.

It should be noted that the SWS was not considered to be a special initiator in the NUREG/CR-4550 analysis for the pilot plant. The NUREG/CR-4550 analysis did consider special initiators and screened out all that wouid not affect the analysis. An excerpt from the NUREG/CR-4550 report ${ }^{21}$ follows:
"A search for other special initiators was also performed and included three major categories: loss of any service water system, loss of instrument air, and loss of heating and ventilation equipment. The NSW system, Reactor Building Cooling Water (RBCCW) system, ESW system, and HPSW system were reviewed as possible sources for special initiators. Possible pipe breaks, the potential for causing a plant trip, and effects on safety systems such as loss of cooling or flooding were considered during the review. While detailed analyses were not possible because of resources available for the study, no special initiators were worthy of examination involving
these systems were identified. This is based in part on the generally sharp separation between safety and non-safety cooling water systems; NSW and TBCW are normally running non-safety systems and, thus, the unlikely possibility of both a plant trip and degrading safety systems at the same time. Possibilities of flooding seem small based on the low pressure operation of these systems and their locations with respect to most other safety systems."

Thus the loss of service water initiating event was screened out because of redundancy of system equipment, functional and spatial separation of normally operating versus standby systems, probability of occurrence of failure, and the potential t - isolate where required. In those plants where normal service water and emergency service water share the same components this initiating event can be very important.

The dominant ESW events in the Pilot Plant analysis are grouped below for further analysis.

Operator Errors

Basic Event

Contribution to CDF

ESW-XHE-FO-EHS
ESW-PTR-RE-DGC
6.20E-07

ESW-PTR-RE-DGB
7.38E-09
7.88E-09

ESW-PTF-RE-MDPA
4.62E-09

ESW-PFITF-RE-MDPB
4. $62 \mathrm{E}-09$

TOTAL CONTRIBUTION $6.45 \mathrm{E}-07(14 \%)$

Pump Train Hardware Resulte

Basic Event

ESW-CKV-CB-C515A

Contribution to CDF

ESW-CKV-CB-C515B
9.84E-08
9.84E-08

ESW-MDP-FS-MDPA	$8.29 \mathrm{E}-09$
ESW-MDP-FS-MDPB	$8.29 \mathrm{E}-09$
ESW-MDP-FS-CCF	$2.06 \mathrm{E}-09$
ESW-MDP-FS-ECW	$5.51 \mathrm{E}-10$
ESW-MDP-FR-MDPA	$9.17 \mathrm{E}-10$
ESW-MDP-FR-MDPB	$9.17 \mathrm{E}-10$
ESW-CKV-HW-C515A	$1.11 \mathrm{E}-11$
ESW-CKV-HW-C515B	$\frac{1.11 \mathrm{E}-11}{2.18 \mathrm{E}-07}(5 \%)$

ESW Faults Failing the Diesel Generators

Basic Event	Contribution to CDF
ISW AOV-CC-CCF	$9.75 \mathrm{E}-08$
ESW-AOV-CC-0241B	1.26E-09
ESW-AOV-CC 0241 C	1.26E-09
ESW AOV-MA-0241B	$3.56 \mathrm{E}-11$
ESW-AOV-MA-0241C	$3.56 \mathrm{E}-11$
TOTAL CONTRIBUTION	N 1.00E-07 (2\%)

Pump Train Maintenance Unavailabilities

Basic Event	Contribution $\ddagger 0$ CDF
ESW-MDP-MA-MDPA	$4.39 \mathrm{E}-09$
ESW-MDP-MA-MDPB	$4.34 \mathrm{E}-09$
ESW-MDP-MA-ECW	$2.50 \mathrm{E}-10$
TOTAL CONTRIBUTION	$9.03 \mathrm{E}-09(<1 \%)$

Other SWS Faults

Basic Event	Contribution to CDE
ESW-CKV-HW-CV513	$4.25 \mathrm{E}-09$
ESW-XVM-PG-XV502	$1.58 \mathrm{E}-09$
NSW-SYS-FO-NSW-1	$3.00 \mathrm{E}-10$
ESW-XVM-PG-XV505B	$1.41 \mathrm{E}-11$
ESW-XVM-PG-XV505C	$1.41 \mathrm{E}-11$
ESW-XVM-PG-XV510	$1.01 \mathrm{E}-12$
ESW-NVM-PG-XV509	$1.01 \mathrm{E}-12$
ESW-XVM-PG-XV507A	$1.01 \mathrm{E}-12$
ESW-XVM-PG-XV507B	1.01E-12
TOTAL CONTRIBUTION	$6.16 \mathrm{E}-09(<1 \%)$

The percent given in parenthesis is the percent contribution to the total CDF. Figure 4.3 gives a graphical representation of the above faults.

4.5 Discussion of ESW Vuinerabilities and Proposed Modifications

The vulnerabilities identified above were reviewed to determine what possible modifications might decrease the calculated ESW contribution to CDF. This section
describes proposed modifications and the general vulnerabilities thay address. It should be understood that the modifications described are buod on limited plant design information (i.e., information available in the plant Updated Final Safety Analysis Report) and are no being proposed for implementation at the Pilot Plant.

The modifications are discussed below in accordance with the vulnerability they address.

Vulnerability 1: Operator Fails to Operate the ECW Pump

This failure is domingat in loss of offsite power accident sequences and accounts for approximately 14% of the Pilot Piant total CDF,

The emergency heat sink acts as a backup to the emergency ser rice vater (ESW) system during a loss of offsite power. The emergeacy heat sink (Emergency Cooling Water System) has a single pump supplied by an emergency diesel generator when offsite power is lost.

Following a loss of offsite power, the ECW pump automatically starts after a 22 second time delay following an emergency diesel generator auto start. If the discharge pressure for the emergency service water pumps appear normal, the operator will shutdown the ECW pump. If, later in the accident, the operating ESW pump trips and the standby ESW pump fails to start (receives an auto start signal en low system pressure) or nun, the operator must manually restart the DCV' pump. This vulnarability addresses the operator failure to reciut the ECW pump fuliowing a delayed failure of the ESW pumps.

Modification 1: Addition of a Third ESW Pump
The addition of a third ESW pump that would aato start on diesel auto start and/er low ESW system pressure would increase the reliability of ESW and thereby reduce dependance on operator actions to initiate the emergency heat sink and add flexibility in response to a loss of offisite power accident. The new ESW pump would be sized for 100\% ESW flow capacity and would operate in the same manner previously described for the existing ESW pumps. That is, all three pumps would start automatically when the standby diesel generators start. Two of the pumps would be manually shut off if all three are running. Figure 4.4 illustrates this proposed modification. In order for this modification to have a positive effect, the third ESW pump would require emergency power from emergency diesel D instead of emergency diesels B and C which power ESW pumps A and B.

016s-d./5Gd
Figure 4.3 Dominant ESW Faults Contributing to CDF

Figure 4.4 A ition of a Third ESW Rump

The ECW pump would still act as a backup to the ESW system and auto-actuate on diesel start.

Modification 2: Addition of Standby Auto Actuation Logic for the ECW Pump

Addition of standby auto actuation logic would demand the ECW pump to auto start on low ESW system pressure after the emergency diesel generator auto start signal has been received. This would require the diesel gencrator auto start signal to be sealed-in to the pump and pump motor-operated discharge valve, until cleared by the operator, and a low ESW system pressure signal be present for the ECW pump to auto start and the pump discharge valve to open. This modification in affect would have the ECW pump respond as if it were a third ESW purmp and would eliminate the dependency of the ECW pump on the operator following a loss of offsite power transient.

Figure 4.5 illustrates this proposed modification. Note that all the required signals to the pump control logic currently exist as well as required power supplies, see Figure 4.6. Therefore this modification would be implemented as a change in the pump control circuit logic, i.e., no new sensors or power supplies are needed.

Modification 3: Provide Additional Operator Training. Revise Procedures, Add Additional Alarms in the Control Room

In cases where emergency service water has started and run for >45 seconds, manual operation of the emergency cooling water pump is required if the ESW purups should subsequently fail. For T1 or LOSP type events, only minutes are available to supply jacket cooling to the diesels.

This modification would provide additional operator training and revision of procedures to enhance the operators response to conditions requiring the starting of the ECW pump. In addition, additional alarms and indication would be provided to aid the operator.

Vulnerability 2: Failure to Restore ESW Components After Maintenance

These failures are important in loss of offsite power accident sequer es and account for approximately 1% of the Pilot Plant total CDF,

Failure to restore an ESW motor driven pump or ESW diesel generator cooling components defeats one-half of ESW. Restoration of these components after maintenance
is performed using written procedures with independent verification. Functional testing of these components is performed following maintenance to verify operability. Therefore these failures are a direct result of the operator failing to follow plant procedures.

Modification 3: Provide Additional Operator Training and/or Revise Procedures

This is the same modification as proposed for Vulnerability 1.

Vulnerability 3: Discharge Check Valve Failures Fail Cross-Tied ESW Pumps

This failure is dominant in loss of offsite power accident sequences and accounts for approximately 4% of the Pilot Plant total CDF.

This failure of the running ESW pump is caused by fsilure (back leakage) of the standby ESW pump discharge check valve. That is, when the standby pump is secured following auto-actuation with the chosen pump running, the flow from the operating pump recirculates back through the standby pump and results in functional failure of the operating pump. The failure probability used in NUREG/CR-4550 for a ESW check valve failure due to back leakage was based on a check valve functional test frequency of three months at the Pilot Plant.

Modification 4: Addition of a Second Pump Discharge Check Valve

During one ESW pump operation, the failure of the idle pump's discharge check valve to reclose following shutdown of the pump will defeat the ESW system in accordance with the NUREG/CR-4550 analysis. This modification would provide a second pump discharge check valve (20 inch valve) in series with the existing pump discharge check valve to reduce the probability of this occurrence. Figure 4.7 illustrates this proposed modification.

Modification 5: Increase Systum Functional Testing Frequency for ESW Pump Discharge Check Valves

During one ESW pump operation, the failure of the idle pump's discharge check valve to reclose following shutdown of the pump will defeat the ESW system in accordance with the NUREG/CR-4550 analysis. This modification would increase the ESW system test frequency from quarterly (current frequency) to monthly.

Figure 4.5 Proposed EHS Pump Logic

Figure 4.6 Current EHS Pump Logic

By doing so, the failure probability of a check valve failing to reclose would decrease by a factor of three.

Vulnerability 4: ESW Pump Hardware Fuults

ESW pump hurdware faults are important in loss of offsite power accident sequences and account for approximately 1% of the Pilot Plant total CDF.

The ESW consists of two redundant, cross-tied pump trains. The success criteria established is one of two ESW pumps operating delivering flow or the ECW pump delivering flow to the ESW system. Therefore multiple failures have to occur before ESW pump failures begin to show up in the cut sets. Dominant cut sets generally consist of EDG B or C failing, which fails one ESW pump, and the resulting available pump failing to start/run, and the operator fails to initiate the ECW pump.

Modification 1: Addition of a Third ESW Pump

This is the same modification is proposed for Vulnerability 1.

Modification 2: Addition of Standby Adto Actuation Logic for the ECW Pump

This is the same modificatinat as proposed for Vulnerability 1.

Vulnerability 5: Failure of ESW to Cool the EDGis Due to AOV Failures

ESW AOV hardware faults are dominant in loss of offsite power accident sequences and account for approximately 2% of the Pilot Plant total CDF.

The ESW provides cooling water to the eanergency diesel generators. The ESW outlet header from each emergency diesel generator contains an air operated isolation valve that is signaled open when its respective diesel generator starts. Failure of this valve to open on diesel start defeats ESW cooling to that diesel which results in failure of the respective diesel generator. Failure of the diesel generators following a loss of offsite power results in a station blackout.

Modification 6: Addition of a Check Valve in Series to the Diesel Generator AOVs

This modification would remove the demand on the AOVs to open on diesel start by making them normally open valves and installing a check valve (six-inch valve) in
series with the AOV
Figure 4.8 illustrates this proposed modification.

Modifirgiton 7: Additior of a Swing, Self-Cooled Diesel Generator

This modification consists of the addition of a swing, selfcooled diesel generator that would auto start in the event of loss of normal sources of power to the onsite power system. The diesel generator would be manually started and cross-connected to the appropriate bus. The engine would have its own self contained cooling system which would consists of a forced circulation cooling water system. The cooling water system would cool the engine directly and an air-cooled radiator system would remove the heat from the cooling water. The cooliug water pump would preferentially be directly driven by the engine crankshaft. Thereby no external source of power would be required and no external cooling source would be required.

The engine would also have a self contained lube oil system. The lube oil pump would preferentially be directly driven by the engine crankshaft. The lube oil heat exchanger would be served by the engine cooling water system. Thereby no external power source would be required and no external cooling source would be required.

A new (dedicated) 125 volt battery, battery charger, and distribution panel will be required to provide field flashing and control.

A summary of the important internal events vulnerabilities and the proposed SWS modifications is given in Table 4.2. Note that each vulnerability is addressed by one or more of the proposed modifications.

4.6 Implementation of Proposed ESW Modifications

This section describes the implementation of the proposed modifications of the NUREG/CR-4550 analysis. In order to perform this analysis the Pilot Plant models as available on IRRAS were used. The IRRAS Pilot Plant model is a replication of the NUREG/CR-4550 analysis. A description of this model can be found in Reference 49. Before implementing the proposed modifications, changes to the IRRAS model were made as described below.

A check of the IRRAS Pilot Plant cut sets for the dominant accident sequences was performed to determine where ESW events occurred and to determine the

Figure 4.8 Addition of a Check Valve in Series with EDG ESW Outlet AOV

Tatle 4.2
Internat Event Vuluersidities

Vulnerability

1. Operator faits to operate the LCW pump
2. Fiilure to restore ESW components after maintensace
3. Discharge check valve failures fail cross-tied ESW pump
4. E"W" purmp hardware faults
5. Failurs of ESW to cool the EDGs due to AOV failures

> Modification
> 1. daldinton of a third ESW pump
> 2. Addition of standby euto-actur ${ }^{2}$ in logic for the EL'W pump
> 3. Additional operutor training, revise procedures, add pdditionsl alarms in the control room
> 4. Addition of a second pump discharge check valve
> 5. Increase system testing frequency
> 6. Addition of check valves in series to the AOV/s
> 7. Addition of a swing, t Elf-cooled, DG
contribution these cut sets make to the total core damage frequency. As a resuit of this review it was evident that some of the cut set probabitities were in disngreement with the NUREG/CR-4550 results e: Th though the out sets were in agreement. As a check, the IRRAS basic event data base was reviewed to account for these discropancies. The following basic e ont tata was found to be different in the IRRAS model WL_{L}. - ompared to the NUREG/CR-4550 model for which the IRRAS model is to reflect.

Basic Eveta	IRRAS Unavailability	NUREG/CR-4550 Unavailabillt
ACP-DGN-LP-CCF	3.3E-03	3.0E-03
ACP-DGN-FR-ED-GA	4.5E-03	$15 \mathrm{E}-02$
ESW-MDP-FS-CCF	7.8E-05	3.0E-03

The NUREG/CR-4550 model basic event probabilities were entered into the IRRAS model and the dominant accident sequences were then requantified. The results reflect the NUREG/CR-4550 results for the Pilot Plant and are giv. in Table 4.3. Note that the valuey shown in this table for the sequenoes listed in the Executive Summary (EXEC-3) are the point estimates which correspond to the means shown on EXEC. 3 .

The reasnn for using point estimates is that an uncertainty analysis was not available on IRRAS for all accident
sequences, therefore an IRRAS calculated mean CDF is nut available. For those sequences for which an uncertainty analysis was performed on TRRAS, the results varied from approximaidy $+10 \%$ to -79% when compared with the NUREG/CR-4550 Pilot Plant results. Therefore, to avoid having to complete the IRRAS uncertainty analysis and to ensure comparable results with NUREG/CR-4550, point estimates are used throzghoat this analysis.

In an attempt to generalize the Pilot Plant results, generic dgte sas it Se suisututed for plant specific data. A review of the Pilot Plant $\mathrm{NI}^{m r 3 G / C R-4550}$ dath bast showed that generic ASEP data was used slmost exclusively. Notable exceptions found were:

Brasic Event	Probability
ACP-DGN-LP-EDGA	$3.0 \mathrm{~F}-03 / \mathrm{d}$
ACP-DGN-LP-EDGB	$3.0 \mathrm{E}-03 / \mathrm{d}$
A/PP-DGN-LP-EDGC	$3.0 \mathrm{E}-03 / \mathrm{d}$
/.CP-DGN-LP-EDGD	$3 \mathrm{E}-03 / \mathrm{d}$

Seneric ASEP data ${ }^{51}$ for diesel generator failures to start is $3.0 \mathrm{E}-02 / \mathrm{d}$, which is mn order of magnitude higher. Updating the accident sequences with this generic ASEP date gives a new poin stimate for CDF of $467 \mathrm{E}-06$, a

Table 4.3
Corrected IRRAS Model Polint Pstimat- Results

Seguence Name	Point Estimate	Point Estimate
	$9.29 \mathrm{E}-07$	9.29E-07
T1-BNU11	$1.41 \mathrm{E}-06$	1.41E-06
T3A-C-SLC	$2.62 \mathrm{E}-07$	2.62E-07
\$1-V2V3V4NU11	$1.60 \mathrm{E}-07$	1.60E-07
T1-BU11U21	1.78E-07	1.78E-07
Ti-PIENU11	8.15E-08	8.12E-08
T1-BU11NU21	6.63E.08	6.60E-08
T3C-C-SLC	1.07E-07	$1.07 \mathrm{E}-07$ $8.99 \mathrm{E}-08$
TI-P2V234NU11B	8.97E-08	$8.99 \mathrm{E}-08$
T2.P2V234NU11	5.32E.08	5.32E-08
T3B-P2V234NU11	6.41E.08	6.41E-08
A.V2V3	$5.34 \mathrm{E}-08$	5.34E-08
T1-C-SLC	4.42E-08	4.42E-08
T3B-C.SLC	3.36E-08	3, 36E-08
T2-C.SLC	$2.80 \mathrm{E}-08$	$2.80 \mathrm{E}-08$
T3A.P2V234NU11	$2.66 \mathrm{E}-08$	2.66E-08
T3C-CU11X	$1.94 \mathrm{E}-08$	1.94E-08
T1-P18U11U21	$1.71 \mathrm{E}-08$	$1.71 \mathrm{E}-08$
Totals	3.62E-06	$3.62 \mathrm{E}-06$

Note: All valuer are per reactor-year of operation.
29% increase. Table 4.4 gives a listing of the new point estimate for eack, dominant accident sequence. The values shown in this table for the soquences listed in the Executive Summary (EXEC-3) do not agree since they ase point eatimates, rather than means, for sequences using different, i.e., genoric data.

The cut set results following the above data changes provide the basis for all quantitative analyses performed in this report. appendix F provides a listing of the resulting cut sets for all dominunt accident sequences.

4.7 Combinations of Proposed Modifications to be Implemented

Five sllemative ESW modification packages were proposed for analywis. These alternatives are defined as follows:

IKRAS
Point Estimate

NUREG/CR-4550 Roint Estimate
9.29E-07
$1.41 \mathrm{E}-06$
2.62E-07
1.60E-07
$1.78 \mathrm{E}-07$
8.12E-08

$$
6.60 \mathrm{E}-08
$$

$$
1.07 \mathrm{E}-07
$$

$$
8.99 \mathrm{E}-08
$$

$$
5.32 \mathrm{E}-08
$$

6.41E-08

$$
5.34 \mathrm{E}-08
$$

4. 42E-08
3.36E-08

$$
2.80 \mathrm{E}-08
$$

$2.66 \mathrm{E}-08$
$1.94 \mathrm{E}-08$
1.71 E .08
$3.62 \mathrm{E}-06$

Totals

Table 4.4

Base Case: IRRAS Model Point Estimate Results

Sequence Nome
T1. BNU11
T3A-C-SLC
73A-CU11X
\$1-V2V3V4NU11
Ti-bUIINU21
Ti-PIBNU11
TI-BU1INU2I
T3C-C-SLC
T1-P2V234NU11B
T2-P2V234NU11
T3B-P2V234NU1!
A-V2V3
T1-C-SLC
T3B-C-SLC
T2-C-SLC
T3A-P2V234NU11
T3C-CU1IX
T1-P1BU11U21

CDF Point Estimate
1.83E-06
$1.41 \mathrm{E}-06$
2.62E-07
1.60E-07
$1.78 \mathrm{E}-07$
$1.62 \mathrm{E}-07$
$1.36 \mathrm{E}-07$
$1.07 \mathrm{~B}-07$
$8.99 \mathrm{E}-08$
$5.32 \mathrm{E}-08$
6.41E-08
$5.34 \mathrm{E}-08$
4.42E-08
3.36E-08
2.80E-08
2.66E-08
$1.94 \mathrm{E}-08$
1.712 .08

миmamane
Total \quad 4.67E-06

Note: all values are per reactor-year of operation.
additions and modifications. The specifie modifications selected for each alternative are describeci bslow.

Alterative 1

SIternative 1 would implement three of the identified modifications: (1) provide additional operator training, revise procedures, cad/or add additional alarms in the control room in order to reduce the probsbility that the operator fails to operate the ECW pump and to reduce restoration errors; (2) increase the ESW functional testing frequency from quarterly to monthly to reduce the probability of pump discharge check valve failures d as to back leakage (i.e., fails to reciose); and (3) add check valves in series to the diesel ESW discharge airoperated velves which are required to open on diesel start.

Wemative ?

Alternative 2 is the same as Alternative 1 except that instead of increasing the ESW functional testing frequency to reduce the prohability of check valve failures due to back leakage .e.e., fails to reclose) a second check valve
would be installed in the pump discharge line in seties with the existing check valve.

Alternative 3

Alternative 3 is the same as Alternative 1 except that instead of providing additional training for the operators, revising procedures, and/or adding additional alarms in the control room, standby auto-actuation logic would be provided for the ECW pump and pump discharge motoroperated valve.

Alternative 4

Alternative 4 is the same as Alternative 3 excent that instead of providing auto-actuation logic for the ECW pump, a third ESW pump would be installed that would function the same as the existing two ESW pumps.

Alternative 5

Alternative 5 would add a selif-cooled diesel generator that would be manuslly initiated and loaded to the appropriate AC bus.

4.7.1 Implementation of Alternatives

Aliernative I consists for the following modifications:

1. provide additional operaior training, revise procedures, and/or add additional alarms in the control room,
2. Increase the functional testing frequency of the ESW system from quarterly to monthly for the pump discharge check valves,
3. add check valves in series to the diesel ESW discharge air-operated valves.

No credit is taken for increasing operator training to reduce the probability of the operator failing to operate the ECW pump due to the amount of time (just a few minutes) available for the operator to take action.

No credit is taken for revising procedures to reduce the somponent restoration faults following maintenance. The current practice is proceduralized and requires appropriate operator sign-offs and functional testing of components taken out for maintenance before declaring ESW operable.

No credit is taken for installing additional alarms in the control room to alert the operator of failed ESW system and the need to operate the ECW pump. System parameters such as system pressure and flow already exist in the control room and it is assumed that high diesel engine jacket water temperature and high diesel engine lube oil temperature (indicating failed cooling) is already alermed in the control room.

Increasing the functional testing frequency of the ESW system from quarterly to monthl would : sduce the probability of check valve fuilure s to back leakage (i.e., fails to reclose) by a factor of 3. The generic failure frequency used in NUREG/CR-4550 for a check valve failing to close was $3.0 \mathrm{E}-03 / \mathrm{d}$ which was derived from the time related component failure probability term, $1 / 2 \lambda t$, where the failure rate $\lambda=3.0 \mathrm{E}-06 / \mathrm{hocr}$ end time $t=2160$ hours (720 hours/month $\times 3$ months between actuations). Increasing the functional testing frequency to monthly gives a new failure probability for check valve failure due to back leakage of $1.0 \mathrm{E}-03 / \mathrm{d}$. This modification is implemented into the model as a simple data base change, i.e., change the failure probability of check valves in question (ESW-CKV-CB-C515A and ESW-CKV-CB-CS15B) from 3.0E-03/d to 1.0E-03/d.

Adding check valves in series with the ait-operated valves and changing the $A O V s$ normal operating position from
closed to open is implemented as a chinge in basic event probability for the normally closed AOV failing to open. The new failure probability is composed of the following events:

1. Check valve fails to open ($p=1.0 \mathrm{E}-04 / \mathrm{d}$)
2. Normally open AOV spurious closure ($\mathrm{p}=1.0 \mathrm{E}-07 / \mathrm{hr}$).

Using an 8 hour mission time to be consistent with the NUREG/CR-4550 analysis. a new unavailability for the existing basic events under question (normally closed AOV fails to open) is calculated as follows: ($1.0 \mathrm{E}-04 / \mathrm{d}$ x id) $+(1.0 \mathrm{E}-07 / \mathrm{hr} \times 8 \mathrm{hr})=1.0 \mathrm{E}-04$.

Implementation of Alternative 1, in short, consisted of updating the unsvailability number of the applicable basic events and requantifying the dominance accident sequences to get the overall effect on CDF. The basic events affected and their associated unavailability is giv. in Table 4.5.

Implementation of Alternative 2

Alternative 2 is the same as Alternative 1 except that instead of increasing the functional testing frequency of the pump discharge check valves, a second pump discharge check valve would be installed in series with the existing valve. Adding the second check valve would result in a change of the failure probability of the check valve already modeled from a single event to a common mote event of two check valves in series failing to reclose. Assuming a beta factor of 0.1 for screening purposes, the failure probability for one check valve failing to reclose ($\mathrm{p}=3.0 \mathrm{E}-03 / \mathrm{d}$) is changed to $3.0 \mathrm{E}-$ $04 / \mathrm{d}(3.0 \mathrm{E}-03 \times 0.1)$ to account for the second check valve.

Adding the second check valve also increases the failure probability of the pump train since the check valve must open for successful pump operation. This tailure anode is accounted for by updating the already modeled failure of the existing check valve to open by factor of 2 . The failure probability for the existing check valve to open (ESW-CKV-HW-C515A and ESW-r Bis HW-C515B) is $1.0 \mathrm{E}-04 / \mathrm{d}$, doubling this to account fon "is 3 "dition of the second check valve gives a failure probsbuity of $2.0 \mathrm{E}-$ 04/d.

Implementation of Alternative 2, in short, coasisted of updating the unavailability number of the applicable basic events mad requantifying the dominant accident sequences to get the overall effect on the CDF. The basic events

Table 4.5
Alternative 1 Affected Basic Events and Associated Unavailabilities

Basic Event	Original Unavailability	Alternative 1 Unavailability
ESW-AOV-CC-0241A	$1.0 \mathrm{E}-03$	$1.0 \mathrm{E}-04$
ESW-AOV-CC-0241B	$1.0 \mathrm{E}-03$	$1.0 \mathrm{E}-04$
ESW-AOV-CC-0241C	$1.0 \mathrm{E}-03$	$1.0 \mathrm{E}-04$
ESW-AOV-CC-0241D	$1.0 \mathrm{E}-03$	$1.0 \mathrm{E}-04$
ESW-AOV-CC-CCF	$1.0 \mathrm{E}-03$	$1.0 \mathrm{E}-04$
ESW-CKV-CB-CS15A	$3.0 \mathrm{E}-03$	$1.0 \mathrm{E}-03$
ESW-CKV-CB-C515B	$3.0 \mathrm{E}-03$	$1.0 \mathrm{E}-03$

affected and their associated unavailability are given in Table 4.6.

Implementation of Alternative 3

Alternative 3 is the same as Alternative 1 except that instead of providing additional operator training, updating procedures, and/or providing additional alarms poad indication in the ocutrol room, Alternative 3 would provide standby auto-actuation of the ECW pump and pump discharge motor-operated valve.

Addition of standby auto-actuation logic for the ECW pump eliminates the need for operator intervention to
restart the pump should the ESW pumps fail during an accident. This modification is implemented by revising the operator error probability from 0.9 to 0.0 . No additional changes are necessary since in the NUREG/CR4550 analysis, control circuit failures are accounted for in the pump and valve failure probabilities a used.

Implementation of Alternative 3, like Alternatives 1 and 2 , is accomplished by updating applicable basic event probabilities and requantifying the dominant accident sequences to get the overall effect on the CDF. The basic events affected and their associated unavailability is given in Table 4.7.

Table 4.6
Alternative 2 Affected Basic Events and Associated Unavailabilities

Basic Event	Origital Unavailability	Alternative 2 Unavailability
ESW-AOV-CC-0241A	$1.0 \mathrm{E}-03$	
ESW-AOV-CC-0241B	$1.0 \mathrm{E}-03$	$1.0 \mathrm{E}-04$
ESW-AOV-CC-0241C	$1.0 \mathrm{E}-03$	$1.0 \mathrm{E}-04$
ESW-AOV-CC-0241D	$1.0 \mathrm{E}-03$	$1.0 \mathrm{E}-04$
ESW-AOV-CC-CCF	$1.0 \mathrm{E}-03$	$1.0 \mathrm{E}-04$
ESW-CKV-CB-C515A	$3.0 \mathrm{E}-03$	$1.0 \mathrm{E}-04$
ESW-CKV-CB-C515B	$3.0 \mathrm{E}-03$	$3.0 \mathrm{E}-04$
ESW-CKV-HW-C515A	$1.0 \mathrm{E}-04$	$3.0 \mathrm{E}-04$
ESW-CKV-HW-C515B	$1.0 \mathrm{E}-04$	$2.0 \mathrm{E}-04$
ESW-CKV-CM-C515	-	$2.0 \mathrm{E}-04$

Table 4.7
Atternative 3 Affected Basic Erents and Associated Unarailabilities

Basic Event	Original Unavailability	Alternative 3 Unavailability
ESW-AOV-CC-0241A	1.0E-03	1.0E-04
ESW-AOV-CC-0241B	$1.08-03$	1.0E-04
ESW-AOV-CC-0241C	1.08-03	$1.0 \mathrm{E}-04$
ESW-AOV-CC-0241D	1.0E-03	1.0E-04
ESW-AOV-CC-CCF	1.0E-03	1.0E-04
ESW-CKV-CB-C515A	$3.0 \mathrm{E}-03$	1.0E 03
ESW-CKV-CB-C515B	3.0E-03	1.0E-03
ESW-XHE-FO-EHS	9.03-01	0.0E-00

Table 4.8
Alternative 4 Affected Basic Events and Associated Unavailabilities

Basic Event	Original Unavailabilicy	1 ativ 4 c. 5
BETA-2SWSPS	2.68-02	No Change
BETA-3SWSPS	$1.4 \mathrm{E}-02$	N\% Change
ESW-AOV-CC-0241A	1.OE-03	$1.0 \mathrm{E}-04$
ESW-AOV-CC-0241B	$1.0 \mathrm{E}-03$	$1.08-04$
ESW-AOV-CC-0241C	1.0E-03	1.0E-04
ESW-AOV-CC-0241D	$1.0 \mathrm{E}-03$	1.0E-04
ESW-AOV-CC-CCF	1.0E-03	1.0E-04
ESW-CKV-CB-C515A	$3.0 \mathrm{E}-03$	1.0E-03
ESW-CKV-CB-C515B	3.0E-03	1.0E-03
ESW-CKV-CB-C515C	$3.0 \mathrm{E}-03$	1.03-03
ESW-CKV-HW-C515C	1.0E-04	No Change
ESW-MDP-FR-MDPC	1.2E-03	No Change
ESW-MDP-FS-MDPC	$3.0 \mathrm{E}-03$	No Change
ESW-MDP-MA-MDPC	$2.0 \mathrm{E}-03$	No Change
ESW-PNPP ${ }^{\text {d }}$	N/A	1.0E-02
ESW-PTF-RE-MDPC	2.19E-03	No Change
ESW-XVM-PG-X507C	4.OE-05	No Change

${ }^{1}$ Event module added to cut sets to account for the addition of Pump C. Consists of Pump C hardware faults.

Implementation of Alternative 4

Alternative 4 is the same as Alternative 3 except that instead of providing standby auto-actuation logic for the ECW pump and pump discharge valve, a third, 100% capacity, ESW pump would be installed that would operate in the same manner as the existing ESW pumps.

Implementatiof of this alternative required updating basic event probabilities where applicable and also manipulating the secident sequence out sets where spplicable. Manipulation of the out sets wss required to account for the change is ESW system faul tree logic and to account for the added failure modes attributed to the addition of the third pump. To aid in this analysis, a fault tree model for the third pump was developed and is shown in Figure 4.9. Unavailability date for the basic events shown in Figure 4.9 as well as for those basic events in which their failure probabilities were updated to account for the other modifications implemented in this Alternative is given in Table 4.8 on the previous page.

The ESW evente affected by this alternative show up in three dominant accident sequences (i.e., station blackout sequences). Therefore only the cut sets which contained ESW events in these sequences (i.e., T1-BNU11, $\mathrm{T} 1=\mathrm{P} 1 \mathrm{BNU} 11$, and $\mathrm{T} 1-\mathrm{BU} 11 \mathrm{NU} 21$) were manipulated in order to implement this modification. Dominant out sets involving ESW faults genarally consisted of the following events:

1. Failure of one ESW pump to run and failure of the other ESW pump due to hardware faults and failure of the operator to start the ECW pump, or
2. ESW discharge check valve fails open and independent failure of the pump associated with failed sheck valve, of
3. Common cause failure of the two ESW pumps to start and failure of the ECW pump. All three of these fail the ESW system which in turn fails the emergency diesel generators (i.e., fails onsite AC power).

For those cut sets consisting of Type 1, a single module event was added to account for the addition of pump train C. This module event (ESW-PMPC) is made up of pump train C hardwere faults as follows:

Basic Event Description

ESW-CKV-HW-C515C Pump C discharge check valve fails to open on demand

ESW-MDP-MA-MDPC Motor-driven pump C out for

ESW-YTF-RE-MDPC Failure to restore motor-driven

ESW-MDP-FS-MDPC

ESW-XVM-PG-X507C

DGACTD

Motor-driven pump C fails to run given start

Motor-driven pump C fails to start maintenance pump C after maintenance

Motor-driven pump C discharge manual valve fails due to plugging

Failure or diesel generator D actuation to initiate pump C

The cumulative unavailability of these basic events is 1.0E-02, which is the unavailability of term ESW-PMPC.

For those cut sets of Type 2, additional cut sets were added to the accident sequences to account for pump discharge check valve failure to reclose, resulting in backflow through the idle pump and subsequent failure of the ESW system to provide cooling to the emergency diesel generators. These additions were a simple matter of duplicating the cut sets containing check valve back leakage faults and substituting in the pump C pump fault and pump C check valve CB term. The following example is offered:

Existing cutset - T1 * ESW-CKV-CB-C515A *
 ESW-MDP-FR-MDPA

This cut set was duplicated and the following revisions made

$$
\begin{aligned}
& \text { T1 * ESW-CKV-CB-C515C * } \\
& \text { ESW-MDP-FR-MDPC }
\end{aligned}
$$

to account for the addition of pump C and its associated valving.

Cut sets of Type 3 consiat of common mode failures of two ESW pumps to start. With the addition of a third ESW pump, the beta factor was changed from two pumps to three, i.e., BETA-2SWPS became BETA-3SWPS.

Note that the pump C would be powered from AC and DC division D, the same as the ECW pump. Therefore, division D faults are already accounted for in the cut sets

due to the FeW puttp thd no additional additions were necessary.

Once the out sets were revised to account for the addition of the third ESW pump, the sequences were requantified to get the overall effect this alternative has on the total CDF

Implementation of Alternative 5

Alternative 5 would add a self-cooled swing diesel generator that would be manually initiated and londed to the approptiate AC bus from the control room. This alternative would not change the configuration of the ESW system but would reduce the plants onsite electric power dependency on ESW

Implementation of this alternative required updating postaccident human error probability (HEP) data where applicable to account for the operator actions to start and load the swing diesel generator. Also included in the updated HEP data were swing diesel independent faults. The following swing diesel generator failure modes were accounted for in this analysis:

Basic Event

ACP-DGN-FR-EDGS

ACP-DGN-LP-EDGS

ACP-DGN-MA-EDGS

ACP-DGN-TE-EDGS

ACP-DGN-RE-EDGS

Description

Swing diesel fails to run (unavail. $=1.2 \mathrm{E}-02$)
Swing diesel fails to start (unavail. $=3.0 \mathrm{E}-02$)
Swing die'el out for maintenance (unavail $=6.0 \mathrm{E}$ 03)

Swing diesel unavail. due to test (unavail. $=2.3 \mathrm{E}-03$)
Failure to restore swing diesel after maintenance (unavail. = $7.98 \mathrm{E}-04$)

The cumulative unavailability of these basic events is $5.5 \mathrm{E}-02$, which is the unavailability of the swing diesel.

Table 4.9 lists the basic HRA post-accident terms updated in this analysis along with their NUREG/CR-4550 HEP values and the value of each term used in this analysis to calculate the effect the addition of a swing diesel would have on the CDF. The value of each term in this analysis is a combination of the diesel generator faults listed above and the probability of the operator fa.ling to cross-tie the swing diesel. The HEP values were extracted from the Grand Gulf NUREG/CR-4550 analysis.*

After updating the HEP value for sach of the terms listed
in Table 4.9, the dominant accident sequences were requantified to gei the overall effect on the CDF

4.7.2 Modification Results

The results of the quantification for the alternative design modification described above are presented in Taile 4.10. It compares the sequence frequencies after modification. Recovery factors have been accounted for in all the sequences in Table 4.10.

From the results listed in Table 4.10, it is seen that the greatest reduction in CDF is obtained with Alternatives 3 and 4 (i.e., approximately 33% and 31% reduction in CDF, respectively). Both of these altematives decrease the dependency on the operator to initiate the ECW pump and also eliminate the dependency of the diesel generators on the ESW AOV/ which must open for successful diesel operation.

4.8 Sensitivity Analysis

Sensitivity analyses were performed for selected ESW components to determine the se ssitivity of the risk model to the increase in component failure probability. The ESW faults selected for sensitivity unalysis were chosen using the following criteris:

1. Based on NUREG/CR-4550 risk increase results, the ESW basic event has the potential for being a significant contributor to risk if current levels are not maintained.
2. The ESW component is susceptible to water quality problems such as silt (e.g., plugging of valves), corrosion (e.g., degrades proper firctioning of components such as valves), and arosion (e.g., increased wear on pumps).

Based on these criteria, the following ESW ocmponent types and failure modes were selected for sensitivity analysis.

Component	Eailure Mode
Check valves	Back leakage (CB) Failure to open (HW)
Air-operated valves	Closed fails to open (CC) Maintenance unavailability (MA)
Manual valves	Plugging (PG)

Table 4.9
Aternative 5 Diesel Generntor Cross-Tie Recovery Action Data

Basic Event	NUREG/CR-4550 HEP Value	X-Tie HEP Value	DG Unavailability	Alt. 5 Value
DGHWNR3HR	$8.0 \mathrm{E}-01$	$1.0 \mathrm{E}-01$	$5.5 \mathrm{E}-02$	$1.6 \mathrm{E}-01$
DGHWNR5HR	$7.0 \mathrm{E}-01$	$8.5 \mathrm{E}-02$	$5.5 \mathrm{E}-02$	$1.4 \mathrm{E}-01$
DGHWNR7HR	$6.0 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$5.5 \mathrm{E}-02$	$1.2 \mathrm{E}-01$
DGHWNR9HR	$5.8 \mathrm{E}-01$	$4.0 \mathrm{E}-02$	$5.5 \mathrm{E}-02$	$9.5 \mathrm{E}-02$
DGHWNR 12 HR	$5.5 \mathrm{E}-01$	$6.6 \mathrm{E}-03$	$5.5 \mathrm{E}-02$	$6.2 \mathrm{E}-02$

Table 4.10

ESW Alternative Modification Results

Sequence Identifier	Original Probability	Alternative 1	Alternative 2	Alterative 3	Alternative 4	$\begin{gathered} \text { Alternative } \\ 5 \end{gathered}$
T1-BNU11	1.83E-06	1.41E-06	1.33E-06	$5.01 \mathrm{E}-07$	5.70E-07	9.21E-07
T3A-C.SLC	1.41E-06	1.41E-06	1.41E-06	1.41E-06	1.41E-06	$1.41 \mathrm{E}-06$
T3A-CU11X	2.62E-07	$2.62 \mathrm{E}-07$	2.62E-07	2.62E-07	2.62E-07	2.62E-07
S1-V2V3V4NU11	1.60E-07	1.60E-07	1.60E-07	1.60E-07	1.60E-07	1.60E-07
T1-BU11U21	1.78E-07	$1.78 \mathrm{E}-07$	1.78E-07	1.78E-07	$1.78 \mathrm{E}-07$	$1.78 \mathrm{E}-07$
TI-P1BNU11	1.62E-07	1.24E-07	1.17E-07	4.60E-08	$5.24 \mathrm{E}-08$	8.10E-08
T1-BU11NU21	1.36E-07	1.12E-07	1.07E-07	4.04E-08	4.51E-08	$6.79 \mathrm{E}-08$
T3C-C-SLC	$1.07 \mathrm{E}-07$	$1.07 \mathrm{E}-07$	1.07E-07	$1.07 \mathrm{E}-07$	$1.07 \mathrm{E}-07$	$1.07 \mathrm{E}-07$
T1-P2V234NU11B	8.99E-08	$8.99 \mathrm{E}-08$	8.99E-08	8.99E-08	8.99E-08	8.99E-08
T2-P2V234NU11	$5.32 \mathrm{E}-08$	3.32E-08	$5.32 \mathrm{E}-08$	$5.32 \mathrm{E}-08$	5.32E-08	$5.32 \mathrm{E}-08$
T3B-P2V234NU11	6.41E-08	6.41E-08	6.41E-08	6.41E-08	6.41E-08	$6.41 \mathrm{E}-08$
A-V2V3	$5.34 \mathrm{E}-08$	5.34E-08	5.34E-08	$5.34 \mathrm{E}-08$	$5.34 \mathrm{E}-08$	$5.34 \mathrm{E}-08$
TI-C-SLC	4.42E-08	4.42E-08	4.42E-08	4.42E-08	4. $22 \mathrm{E}-08$	4.42E-08
T3B-C-SLC	3.36E-08	3.36E-08	3.36E-08	3.36E-08	3.36E-08	$3.36 \mathrm{E}-08$
T2-C-SLC	2.80E-08	$2.80 \mathrm{E}-08$	$2.80 \mathrm{E}-08$	2.80E-08	$2.80 \mathrm{E}-08$	2.80E-08
73A-P2V234NU11	2.66E-08	$2.66 \mathrm{E}-08$	2.66E-08	$2.66 \mathrm{E}-08$	$2.66 \mathrm{E}-08$	$2.66 \mathrm{E}-08$
T3C-CU11X	$1.94 \mathrm{E}-08$					
T1-PIEU1IU21	$1.71 \mathrm{E}-08$	1.71E-08	$1.71 \mathrm{E}-08$	1.71E-08	$1.71 \mathrm{E}-08$	$1.71 \mathrm{E}-08$
Totals	4.67E-06	4.19E-06	4.09E-06	3.13E-06	$3.21 \mathrm{E}-06$	$3.61 \mathrm{E}-06$

Note: all values are per reactor-year of operation.

Motor-drlven pumps
Fails to run (FR)
Maintenance unavailability (MA)

A sensitivity analysis was performed for each component with all failure modes lisied with an inciease in basic event protability of 3 and 10 tivees the ofiginat bisic event probability. These maitipliers were selocted to provide a comparable range of results from which to drew conclusions. A new core damage frequency was found which is in indicator of the sensitivity of the risk model to the increase in component failure probability. After the sensitivity analysis was performed for each component selected, s sensitivity analysis was fun with all components fisted atove. Titie 4.11 gives the basic event unavailabilities used in the analysis.

The reader shomid note that only the dominant accident sequence cut sets are available on IRRAS and were maniputated in this analymis. It is technically incorrect to do this in that all the accident sequences should be requantified with the new data to determine all the cuf sets. However, the information (e.g. sequence logic, mutually exclusive event files, flag files, etc.) required to perform this requantification are not on IRRAS and would have to be recreated and checked to ensure IRRAS gives the same results as the NUREG/CR-4550 analysis. This level of effort is beyond the scope of this project.

Table 4.12 gives the results for each componet: from the sensitivity runs made with all selected components failure protibibititas increased by factors of 3 and 10.

Table 4.11
Sensitivity Analysis Basic Event Unavailabilities

ESW COMPONENT	FAIL MODE	$\begin{gathered} \text { BASE } \\ \text { UNAVAIL. } \end{gathered}$	$\begin{gathered} \text { BASE } \\ \times 3 \end{gathered}$	$\begin{aligned} & \text { BASE } \\ & \times 10 \end{aligned}$
Check Valve	$\begin{aligned} & \mathrm{CB} \\ & \mathrm{HW} \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{E}-03 \\ & 1.0 \mathrm{E}-04 \end{aligned}$	$\begin{aligned} & 9.0 \mathrm{E}-03 \\ & 3.0 \mathrm{E}-04 \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{E}-02 \\ & 1.0 \mathrm{E}-03 \end{aligned}$
Air-Operated Valve	$\begin{aligned} & \mathrm{CC} \\ & \mathrm{MA} \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{E}-03 \\ & 2.0 \mathrm{E}-04 \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{E}-03 \\ & 6.0 \mathrm{E}-04 \end{aligned}$	$\begin{aligned} & \text { 1.0E }-02 \\ & \text { 2.0E-03 } \end{aligned}$
Manual Valve	PG	4.0E-05	$1.2 \mathrm{E}-04$	4.0E-04
Metor-Driven Pump	$\begin{aligned} & \text { FR } \\ & \text { MA } \end{aligned}$	$\begin{aligned} & \text { 1.2E-03 } \\ & \text { 2.0E-03 } \end{aligned}$	$\begin{aligned} & 3.6 \mathrm{E}-03 \\ & 6.0 \mathrm{E}-03 \end{aligned}$	$\begin{aligned} & \text { 1.2E-02 } \\ & \text { 2. } 0 \mathrm{E}-02 \end{aligned}$

Table 4.12
Sensitivity Analysis Results in Terms of CDF

COMPONENT	$\begin{gathered} \text { CDF } \\ \text { BASE } \times 3 \end{gathered}$	$\begin{gathered} \triangle C D F^{1} \\ \text { INCREASE } \end{gathered}$	$\begin{gathered} \text { CDF } \\ \text { BASE } \times 10 \end{gathered}$	$\begin{gathered} \triangle C D F^{1} \\ \text { INCREASE } \end{gathered}$
Check Valve	$5.54 \mathrm{E}-06$	$8.70 \mathrm{E}-07$	8,56E-06	3.89E-06
Manual Valve	4.68E-06	1.00E-08	4.70E-06	$3.00 \mathrm{E}-08$
Air-Operated Valve	$5.14 \mathrm{E}-06$	$4.70 \mathrm{E}-07$	6.85E-06	$2.18 \mathrm{E}-06$
Motor-Driven Pump	5,00E-06	$3.30 \mathrm{E}-07$	$6.43 \mathrm{E}-0 \mathrm{0}$	$1.76 \mathrm{E}-06$
Al!	6.52E-06	1.85E-06	$1.63 \mathrm{E}-05$	$1.16 \mathrm{E}-05$

[^1]
5.0 INTEGRATED VALUE-IMPACT ANALYSIS

Ini this section the quentitutive value thatysis and the impact analysis are combined to form an integrated valueimpact analysis. The methodology for the value-impaci sanalysis is presented in Appendix L of NUREO-CR4767. ${ }^{3}$ In order to implement the value-impact analysis and illustrate the steps performed, the methodology will be reviewed briefly priot to summarizing the pilot plant resilu.

5.1 Methodology

5.1.1 Value and Impact Analysis Variables

Ea-h of the variubles to be weed ase input in the value. impest andysis is defined in Table 5.1 and characterized in several ways. First, the costs and values may be incurred one time of on an annual basis. All recurring costs of costs which might occur at any time during the remaining plant lifetime are valued in 1992 dollars hy using a present worth factor. The present worth factor for the pilot plant based upon 16 years remaining life is 10.8 at a 5 percent discount rate.

$$
\text { present worth factor }=\frac{(1.05)^{16}-1}{0.05(1.05)^{16}}=10.8
$$

Second, there are positive and negative valuss and impacts. The value measures involve the potential radiation dose incurred during the instatlation or operation of an alternative (a negative value) or the dose averted from a lower core melt probability (a positive value). Impacts are the costs associated with implementation of an altemative. The direct materiel and labor costs of ant alternative represent positive impacts. The power replacement, cleanup and other costs which are averted by implementation of an alternative are treated as negative impacts. Third, costs or doses result from either the proposed modifications or an accident. Fourth, each variable may affect the utility, and the NRC, or the public. Last, the information for each variable comes from the appendices and/or the value analysis.

In addition to the value and impact variables, the change (reduction) in cure damage frequency ($\triangle C D F$) for each alernative from the base case core damage frequency (i.e., without any modifications) is calculated from:

$\triangle C D F(j)=C D F \cdot C D F(j)$
where:
$C D F=$ base case core damage frequency, and

$$
\begin{aligned}
& \operatorname{CDF}(j)= \text { core damage frequency of the } j \text { th } \\
& \text { alternative. }
\end{aligned}
$$

These values, as derived from Table 4. 10, are given in Table 5.2.

5.1.2 Value Impact Analysis Measures

Impact Measures - Impacts I_{7} and I_{4} (refer to Taiole 5.1) must be multiplied by the present worth factor, which is 10.8 for the pilot plent assuming 5 percont discount fite. The present worth factor accounts for the reduced worth of the payments made or incurred at some future date. Therefore, the total positive impact, $\mathrm{Tl}(\mathrm{j})$, of the jth alternative is piven by:

$$
\pi(j)=1_{4}(\mathrm{j})+10.81_{2}(\mathrm{j})+1_{3}(\mathrm{j})+10.81_{4}(\mathrm{j}) .
$$

This is the total of all the positive impacts. The negative impacts sum to the total avertable cost, $1_{5}(0)$, or

$$
I_{s}^{\prime}(\mathrm{i})=I_{31}^{\prime}(\mathrm{j})+\mathrm{I}_{32}^{\prime}(\mathrm{j})+\mathrm{I}_{33}(\mathrm{j})
$$

where

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{si}}(\mathrm{j})=\triangle \operatorname{CDF}(\mathrm{i}) \times \mathrm{I}_{\mathrm{s}}(\mathrm{j}) \\
& \mathrm{I}_{52}(\mathrm{j})=\triangle \operatorname{CDF}(\mathrm{i}) \times \mathrm{I}_{\mathrm{v}}(\mathrm{j}) \\
& \mathrm{I}_{n(0)}=\triangle C D F(0) \times \mathrm{I}_{\mathrm{s}}(\mathrm{i})
\end{aligned}
$$

The net impact, NI (0), if the jth alternative can ne + be estimated by subtracting the total averiable costs from the total impact on:

$$
\mathrm{N}(\mathrm{j})=\mathrm{T}(\mathrm{j})-\mathrm{I}_{s}(\mathrm{j}) .
$$

Integrated Value-Impact Analysis

Titte 5.1. Value and Impact Analysis Input Variables

Syumbol	Description	Resuls from	Affects the	Source of Informatio	
1.	Engineering and Installation Cost one time	Positive Impact	Modifications	Utility	i 4 Engineer
15	Operations and Maintenance Costs/year - present worth	Positive Impact	Modifications	Utility	Architeet Engineer
13	Installation Repiacarnent Power Costs - one time	Positive Impact	Modifications	Public	Architect Engineer
14	In-service Replacement Power Costs - per year	Positive or Negative Impact	Modifications	Public	Not available - but assumed negligible
I_{3}	Avertable Onsite Costs . one time	Negative Impact	Accident	Utility analysis	Sased on previous
15	Replacement Power Costs				
I_{13}	Loss of Investment Costs				
I_{5}	Site Cleanup Costs				
1.	Other Costs - one time	Positive Impact	Modifications \& NRC	Utility analysis	Not covered in this
V_{1}	Averted Onsite Dose Over Plant Lifetime	Positive Value	Accident	Utility analyses	Bused on previous
V_{1}	Present Worth of Averted Onsite Dose @ $\$ 1000 /$ p-rem	Positive Value	Accident	Utility analyses	Based on previous
V_{2}	Averted Offsite Dose Over Plant Lifetime	Positive Value	Accident	Public	From value analyses
$V^{\prime}{ }_{2}$	Present Worth of Avertod Offsite Dose © \$1000/p-rem	Positive Value	Accident	Public	From value snalyses
V_{3}	Installation Dose - one time	Negative Value	Modifications	Utility	Accident Engineer
V',	Present Worth of Installation Dose @\$1000/p-rem	Positive Value	Modifications	Utility	Architect Eingineer
V_{4}	In-service Operational Dose over Plant Lifetime	Positive or Negative Value	Modifications	Utility	Not available
V^{\prime}	Present Worth of Occupational Dose (2) $\$ 1000 / \mathrm{p}$-rem	Positive or Negative Value	Modifications	Utility	Not available

Table 5.2 Inputs to Value/Impact Analysis

Integrated Value-Impact Analysis

The discoumted thatues for the begative impacts due to avertable onsite costs, conditional upon an accident, bused on the method in Appendix L. of NUREG/CR-4767 sre given by:

$$
\begin{aligned}
& I_{31}=P W_{7} \times P W_{n} \times I F \times R \\
& I_{52}=K W_{n} \times C F_{0} \times I F \times F_{N} \times C F_{1} \\
& I_{35}=C_{m} \times P W_{n} \times I F
\end{aligned}
$$

where

$\mathrm{PW}_{*}=$| present worth factor for ten years of |
| :--- |
| replacement power. |

$\mathrm{PW}_{A}=$| present worth factor for the pilot plant |
| :--- |
| remaining life. |

$\mathrm{IF}=$ inflation factor from 1985 to 1992.
$\mathrm{R}=$ cost of replacement power for one year.
$\mathrm{KW}=$ kilowatt electrical output of pilot plant.

$\mathrm{CF}_{4}=$| construction cost per kilowatt elestrical |
| :--- |
| output. |

$\mathrm{F}_{n}=$ fraction of plant life remaining.
$\mathrm{CF}_{1}=$ ratio of maximum expested loss to current
value of plant.

Using ai 5 percent discount raie and a remaining plant life of 16 years:

$$
\mathrm{PW}_{r 0}=7.72 \text { and } \mathrm{PW}_{n}=10.8
$$

Based on the consumer price index for the years 1985 to 1992:

$$
I F=1.327
$$

Using data for the pilot plant from NUREG/CR-4012, and a 65 percent capacity factor:

$$
\mathrm{R}=\$ 1.24 \mathrm{E} 8
$$

For the pilot plant:

$$
\begin{aligned}
& K W_{z}=1051 \mathrm{E3} \mathrm{KW} \\
& F_{p}=\text { yeare of life remaining total plant life }=16 / 40
\end{aligned}
$$

From Appendix L of NUREG/CR-4767:

$$
\begin{aligned}
& C F_{e}=\$ 1500 / \mathrm{KW} \\
& \mathrm{C}_{\mathrm{m}}=\$ 1.2 \mathrm{Eg}
\end{aligned}
$$

Finally, based on the avernge of the results of applying the methodology of Appendix L of NUREG/CR-4767 to six different plants:

$$
C F_{1}=4.27
$$

Using the above values:

$$
\begin{aligned}
\mathrm{I}_{51}= & 7.72 \times 10.8 \times 1.327 \times 1.24 \mathrm{E} 8=\$ 1.37 \mathrm{E} 10 \\
\mathrm{I}_{49}= & \begin{array}{l}
1051 \mathrm{E} 3 \times 1500 \times 1.327 \times 16 / 40 \times 4.27= \\
\\
\$ 3.57 \mathrm{E} 9
\end{array} \\
\mathrm{I}_{59}= & 1.2 \mathrm{Eg} \times 10.8 \times 1.327=\$ 1.72 \mathrm{E} 10
\end{aligned}
$$

all in 1992 dollars.
Value Measures - The averted onsite dose (V_{1}) for each alternative is estimated from the onsite dose received during an accident. For purposes of this analysis, this onsite dose $(40,000$ person-rem) is assumed to be the same for any core damage accident as discussed in Appendix L of NUREG/CR-4767. The averied onsite dose (40,000 person-rem) is multipliod by $\triangle C D F$ for the jth alternative and by the number of years of operation remaining. Thus:

$$
V_{1}(\mathrm{j})=(40000) \times \triangle C D F(j) \times 16(\mathrm{p}-\mathrm{rem})
$$

The present worth, $\mathrm{V}_{\mathrm{i}}^{\prime}(\mathrm{j})$, of the above avertable onsite dose, valued at $\$ 1000$ per person-fem is:

$$
V^{\prime}(j)=(40000) \times \$ 1000 \times \Delta C D F(j) \times 10.8(\$)
$$

The averted offsite averted dose $\left(\mathrm{V}_{2}\right)$ for each alternative is estimated from the averiable offsite dose per reactor year multiplied by the remaining years of plant operation. Thus:

$$
V_{2}(\mathrm{j})=\text { (Averted offsite dose) } \times 16 \text { (p-rem) }
$$

In this case the $\triangle C D F$ is not required because the core melt probability is inherent in the calculation.

The present worth $\mathrm{V}_{2}^{\prime}(\mathrm{j})$ of the avertable offsite dose valued at $\$ 1000$ per person-rem is:

$$
V^{\prime}(0)=(\text { Averted dose }) \times \$ 1000 \times 10.8(\$)
$$

The totals of the positive values (onsite + offsite) for averted dose and costs are:

$$
\begin{aligned}
& V_{12}(j)=V_{1}(j)+V_{2}(j)(p-r o m) \\
& V_{15}^{\prime}(0)=V_{1}^{\prime}(j)+V_{2}^{\prime}(j)(\$)
\end{aligned}
$$

The ratio of the averted offsite dose $\left(\mathrm{V}_{2}\right)$ to the base case dose, $\mathrm{ADR}_{\mathrm{p}}$, is given by:

$$
A D R_{e}=\frac{V_{2}(\mathrm{U})}{(\text { Baie Case Dose } \times 16)}
$$

The base case dose is given in Appendix G.
Similarly, the ratio of the total averted dose $\left(\mathrm{V}_{12}\right)$ and the total base case dose, $\mathrm{ADR}_{\mathrm{e}}$ is given by:

$$
A D R_{\mathrm{n}}=\frac{V_{12}(f)}{\text { Base Case Dose } x 16+V_{1}(j)}
$$

The negative values considered for the jth alternative included the dose received during installation (a one time dose), $V,(j)$, and the is-service occupational dose received over the remaining plant life time, $\mathrm{V}_{4}(\mathrm{j})$. These doses can be present valued at $\$ 1000$ per persca-rem in a manner analogous to that used for the positive values, thus,

$$
\begin{aligned}
& V_{3}^{\prime}(j)=V_{3}(j) \times \$ 1000(\$) \\
& V_{4}^{\prime}(j)=\left(V_{4}(j) / 16\right) \times \$ 1000 \times 10.8(\$)
\end{aligned}
$$

$\mathrm{V}^{\prime}{ }_{3}(\mathrm{i})$ does not include the present worth factor (10.8) because it is a one ime dose, whereas the dose associated with operations, $V_{4}(j)$ is recurring. It is divided by 16 to account for the years of plant life remsining.

The net averted dose, NV ($)$, and the present worth of the net averteó costs at $\$ 1000$ p-rem, $\mathrm{NV}^{\prime}(\mathrm{j})$, associated with each alternative can be calculated by subtracting the negative values from the positive. Thus:

$$
\begin{aligned}
& N V(j)=V_{1}(j)+V_{2}(j)-V_{3}(j)-V_{4}(j)(p-r e m) \\
& N V^{\prime}(j)=V_{(}^{\prime}(j)+V_{2}^{\prime}(j)-V_{3}^{\prime}(j)-V_{4}^{\prime}(j)(\$)
\end{aligned}
$$

Value-Impact Measures - The value-impact measures can be constructed from the variables aefined previously. Each of the value-impact measures is calculated from the cost for the total impact (T1) and the cost for the net impact (NI). The first measure considered is the ratio of averted costs to impacts. The first, VIR , considers only the averted offsite costs and the total impact. Fer the jth alternative:

$$
\mathrm{VIR}_{\mathrm{e}}=\mathrm{V}^{\prime}(\mathrm{j}) / \mathrm{TI}(\mathrm{j})
$$

The second ratio, VIR $_{\mathrm{p}}$, is the net value-impact ratio which accounts for the net averted offsite and onsite costs and the net impacts. For the jth alternative:

$$
V_{I} K_{n}=N V^{\prime}(j) / N I(j)
$$

Similarly there are two net benefit values. The first, $\mathrm{NBV}_{\text {o }}$, considers only averied offsite costs, while the second, $\mathrm{NBV}_{\mathrm{e}}$, includes averted costs and impacts. That is, for the jth alternative:

$$
\begin{aligned}
& \mathrm{NBV}_{e}=\mathrm{V}_{2}^{\prime}(\mathrm{j})-\mathrm{Tl}(\mathrm{j})(\$) \\
& \mathrm{NBV}_{\mathrm{s}}=\mathrm{NV}^{\prime}(\mathrm{j})-\mathrm{Nl}(\mathrm{j})(\$)
\end{aligned}
$$

The final value-impact measures are the estimated cost in dollars per person-rem of dose averted if the alternative is implemented. Again, there are two values. The first, $\mathrm{DPR}_{\mathrm{e}}$, is the ratio of the toxisi impact to the averted offsite dose. For the j th aliernative:

$$
D P R_{\mathrm{e}}=T(\mathrm{j}) / \mathrm{V}_{2}(\mathrm{j})
$$

The second is DPRe, which is the ratio of the aet impact to the net averted dores. For the jth alternative:

$$
\mathrm{DPR}_{\mathrm{n}}=\mathrm{Nl}(\mathrm{j}) / \mathrm{NV}(\mathrm{j})
$$

A more complete discussion of the reasons for selecting these measures is providec in Appendix L of NITREG/CR-4767.

5.2 Results

The values, impacts, and value impact measures defined in the previous section were calculated for the Pilot Plant using the results of the internal analysis and the impact analysis. These results are tabulated in Tables 5.3, 5.4. and 5.5. The symbols for the values, impacts, and measures are given at the beading of each column. It is important to note that the offsite population dose is an integrated dose out to a radius of 50 miles from the site and the conversion from dose to cost is $\$ 1000$ per person rem. All present value estimates are based on a 5 percent discount rate.

Table 5.3 summarizes the impacts for the pilot plant by alternative. The four positive impacts are individually tabulated and then totaled to obtain the Total Impact (T1) of modifications nssociated with each alternative. One time costs of installing the modifications and replacement power during the installation are already in present dollars. The in-service operations and mainienance costs and replacement power eosts must, however, be multiplied by 10.8 to account for the present worth of these impacts. The installation of modificutions at the pilot plant can be accomplished during normal outages so that there are no replacement power costs. Although replacument power costs due to in-service maintenance were not specifically extimated, these costs probably have a negligible impact.

The negative impacts result from the averted onsite costs attributed to a potential accident. The costs are, of course, probabilistic. Thus, the potential costs for $\mathrm{I}_{51}, \mathrm{I}_{52}$ and I_{5} in 1992 dollars must all be multiplied by $\triangle C D F$. The net impact (NI) is the positive impacts minus the negailive impacts. The lower the net impact the more fa orable the alernative appears.

Table $5.4 a$ presents the positive values for each alternative. These are onsite averted dose (V_{1}) and offsite averted dose $\left(\mathrm{V}_{2}\right)$ due to a potential accident. These are both probabilistic in nature; however, the calculation of offsite averted dose (V_{2}) does not explicitly include $\triangle C D F$ since it is implicitly included in the analysis to obtain V_{2}. Both averted doses must include a factor to account for the remaining plant life which is 16 years in 1992.

The total averted dose $\left(\mathrm{V}_{12}\right)$ is also given as are the present worth dollar values. Each of the dollar values is based on $\$ 1000 / \mathrm{p}$-rem and a 10.8 present worth factor as desoribed in Appendix L of NUREG/CR-4767.

Table 5.4 b summarizes the negative values for each alternative. The installation dose $\left(\mathrm{V}_{3}\right)$ restits from radiation exposure to coniractor pervounel during installation of the modifications for any particular alternative. In-service occupational dose is considered to be negligible at the pilot platt for the alternatives propossd here. In each cuse the doses are converted to dollars by multiplying by $\$ 1000 / \mathrm{p}$-rem. V_{3} is already a present worth but V_{i} requires application of the 10.8 present worth factor.

The net value of each altemative is the positive values V_{i} of V^{\prime} i2 minus the negative values for $\mathrm{V}_{3}+\mathrm{V}_{4}$ and $\mathrm{V}_{3}^{\prime}+$ V^{\prime}, respectively. Upper and lower bounds are given for NV and NV' which result from the bounds from the positive 1 alues only.

Table 5.5 is a summary of the Value-Impact analysis which repeats several measures from Tables $5.3,5.48$, and 5.4 b . These mpeated measures are TI, NI, $\mathrm{V}_{2}, \mathrm{~V}_{2}{ }_{2}$ ADR_{v}, and NV^{\prime}. The value-impact measures derived from these measures are the Value-Impact Ratio (VIR), the Net Benefit Value (NBV), and the Dollars per personrem (DPR) based on offsite costs alone and based on offsite and cnsite costs combined. Table 5.6 is a further condensation of the results which show eight mensures extracted from Table 5.5. The coste (Impact) estimated for each alternative could easily be higiser or lower for a different plani. Similarly, the benefits (value) could be higher by an order of magnitude or more for other plants with greater base case core damage frequencies

Table 5.3 Summary of Impacts (Based Upon 5\% Discount)

Alternetive No.	Chenge in Core Meit Probability (Centrel) Velue)	POSTTVE MPACTS ASSOCLATED WTTH MODIFHCATIONS (Preseet Worths)					NEGATIVE MAPACTS DUE TO AVERTARLE ONSITE COSTS (Present Worths)				NET mapact 15×10^{0}
		Utility Costs		Repincement Power Costr		$\begin{aligned} & \text { TOTAL } \\ & \text { MPACT } \\ & \left(\$ \times 10^{\prime}\right) \end{aligned}$	Repiact ment Power Costs (5×10)	Luse of Invest- meet Costs $\left(5 \times 1 e^{*}\right)$	Site Clesnem Costs $\left(5 \times 10^{\circ}\right)$	Total Avers- able Coum $\left(5 \times 10^{\circ}\right)$	
		Installs- tion anes Engineer- ing Costs (5×10^{6})	Operations \& Msimen: sace Costs (PW) ($3 \times 10{ }^{6}$)	Instal- Iation $\left(5 \times 10^{6}\right)$	In Service (PW) $\left(5 \times 10^{\circ}\right)$						
)	${ }^{\text {apm }}$	1.	30.81	1.	1085	71	$\mathrm{r}_{\text {m }}$	$\mathrm{r}_{\text {e }}$	r_{3}	F,	N1
1	4 see 7	1.805	2549	ee	to 1	2345	5.28	1.73	* 15	15.17	233
2	$5.80 \mathrm{E} \cdot 7$	3.000	0.324	0.0	*	3.324	6.38	209	9.86	18.33	3.31
3	1.54E-6	1.955	6.594	0.0	*	2549	16.94	5.54	28.7	48.56	250
4	$1.46 E 6$	14.305	0836	00	*	15.091	16.66	5.26	24.32	\$6.14	15 05
5	$1.06 E-6$	20900	1.890	0.0	*	2279	11.66	3.82	180	33.50	227

Note 1: Not available, probebly aegligible.
$\mathrm{T}=\mathrm{I}_{4}+10.8 \mathrm{I}_{2}+\mathrm{I}_{3}+10.8 \mathrm{I}_{4}$
$\mathrm{r}_{\mathrm{n}}-\mathrm{r}_{\mathrm{m}}+\mathrm{r}_{\mathrm{m}} * \mathrm{r}_{\mathrm{m}}$
$N I=\Pi$ II,

Table 5.4a Summary of Values (Based on Population Dose to 50 Miles. 5 \% Discount Rate)

ALTERNATTVES		Rosttive values							
	Cherge in Core Melt Probebility (Cencrei) Vative)	Onsite		Offisite			Totel		
Alternetive Na .		Averted Dese (p-rem)	Present Worth of Avertad Dose © $1000 / \mathrm{p}$-rem ($3 \times 10^{*}$)	Averted Dose p-rem	Averted Dose + Bese Case Inos.	Presens Worth of Averted Dose 항 iovejp tem ($5 \times 1 \mathrm{ln}$)	Averted Dose (p-rem)	Averted Dese 4 Bese Cise Dose	Present Worth of Averted Dose \& 1000 10 vem $\left(5 \times 1 e^{4}\right)$
j	Δ_{p}	v_{1}	V^{\prime}	v_{3}	$A D R$	V_{2}	\#10	ADP,	$\mathrm{V}^{\text {a }}$
1	4.800 .7	03907	0.207	17:12	0.12	11.56	2743	9.13	117
2	5.80E-7	0.371	0.251	26.64	0.15	13.93	21.01	0.15	14.15
3	1.54E-6	0.986	0.665	55.04	4, 40	37.35	56.03	9 900	37.32
4	1 46E-6	0.534	e 631	52.16	238	3571	53.09	6.38	3584
5	$1.06 E-6$	Q. 678	0.458	37.76	6.27	2549	38.44	0.28	25 95

[^2]Integrated Value-Impact Analysis
Table 5.40 Summary of Values (Based on Population Dose to 50 Miles, 5% Discount Rate)

ALTERNATTVES		NEGATTVE VALUE						Net Value	
Aitersutive No.	Chenge in Come Meit Probability	Installation		Operation		Total			
		Install- ation Dose (p-rem)	Presemt Worth of Installs- tion Dose as 1000/p-rem	la-Service Opers: tionn: Dose (p-remi)	Present Worth of lo-Service Oper. Dose (4) $1000 / p-4 m$ (5×10)	finstelisSiven and Opecstiven\# Dose	Present Worth of Install. : Oper. Dose (t) ${ }^{10000} \mathrm{p}$-rem ($\$ \times 10^{\circ}$)	Averted Dose p-rem	Present Worth of Averted Dose (c) 1000/p-rem (5) $\times 10^{\circ}$)
)	Δ_{F}	V_{3}	V',	$\mathbf{v}_{\text {c }}$	V^{\prime} 。	$\mathrm{V}_{5}+\mathrm{V}_{*}$	V^{\prime} + V^{*}.	NVV	NV*
	4.30E-T	6	0	0	θ	0	θ	17.43	11.77
2	5.80E.7	0	9	0	9	0	0	21.08	14.18
3	1.54E6	0	0	0	0	0	0	56.03	3782
4	1.46E-6	0	0	0	0	0	0	5309	35.84
5	1 OSE-6	0	0	6	9	0	θ	38.44	2595

$V^{\prime}=V_{3} \pi \$ 1000$
$V_{4}^{\prime}=\left(V_{4}+16\right) \times \$ 1000 \times 10.8$
$N^{\prime}=V_{1}+V_{2}-V_{,}-V_{0}$
$N^{\prime}=V_{1}+V_{2}^{\prime} \cdot V^{\prime},-V_{*}^{\prime}$.

Table 5.5 Summary of Value-Impact Analysis (Based on Population Dose to 50 Miles, 5% Discount Rate)

		V-I ANAL YSIS BASED ON OFFSTIE COSTS							V 4 ANAL YSIS BASED ON OFFSTTE AND ONSTIE COSTS				
							teassres of					Sessures of 7	
Aiternative No	Change in Core Melt Probability	Averted Offiste Dose (p-rem)	Averted Dose + Bese Case Dose	Total Impset (5×105)	of Averted Dose it 1000: p-rem $\text { (} 5 \times 109$	V-I Ratio	Nei Benefit $\left(5 \times 10^{\circ}\right)$	Dellers per prem $\left(5 \times 10^{\circ}\right)$	Net Hergact $\left(\$ \times 10^{\circ}\right)$	of Averted Dose $z_{3} 1000$ i prem $i=1 e^{5}$	v. 1 Ration	Net Bermifis 5×10^{n}	Doliers ser P - - $3 \times 10^{*}$
1	A_{p}	V_{2}	ADR.	TI	V_{2}	VIR.	NBV.	DPR,	N1	NV ${ }^{-}$	VIR,	Nabv,	DPR.
7	\% see. 7	17.12	0.12	2345	17.56	4.95 .3	-233	137	253	11.7	5.12.3	-2.32	* 64
2	$5.80 \mathrm{E} \cdot 7$	20.64	0.15	3.324	13.93	4.2E.3	-3.31	161	3.31	14.18	4.3E3	-3 30	158
3	15456	55.04	0.40	2540	37.15	1.SE2	-2.51	46	250	3782	1.5E: 2	\pm =6	45
4	1.46E-6	52.16	0.38	15.091	35.21	2.3E-3	-1506	289	15.05	35.84	2.4E-3	-15.91	2**
5	$1.06 E-6$	37.76	027	22.790	25.49	1.18 .3	22.76	604	2π	2595	1 IE3	20, 74	592

$\mathrm{VRR}=\mathrm{V}_{2}^{\prime}+\mathrm{TI} \quad \mathrm{VTR}_{2}=\mathrm{NV}^{\prime}+\mathrm{NI}$
$\mathrm{NBV}_{8}=\mathrm{V}_{3}-\mathrm{TI} \quad \mathrm{NBV}_{8}=\mathrm{NV}^{\prime}-\mathrm{NI}$
$\mathrm{DPR}=\mathrm{TI}+\mathrm{V}_{\mathrm{x}} \quad \mathrm{DPR}_{2}=\mathrm{NI}+\mathrm{NV}$

Table 5.6 Summary of Vaiue-Impact Measures

Alternative	Reduction in Core Melt Probubility	Offerite Avertad Dose p-rem	Averted Dese Ratio	V-I Analysis of Offisite Costs			V-I Analysis Based on Offisite 1 Onsite Costs		
				v. Retio	Net Benefis $\left(3 \times 10^{\circ}\right)$	Dollers per p -rem $\left(3 \times 1 e^{7}\right)$	V. 1 Katio	Net Benefit $\left(5 \times 10^{6}\right)$	Dolliers per p - rem $\left(5 \times 10^{\circ}\right)$
3	Δp_{*}	V_{2}	ADR,	VIR,	NBV.	DPR,	VIR,	NBV*	DPF,
1	4.80E-7	17.12	0.13	0.005	-2.33	137	0.005	-232	134
2	$5.80 \mathrm{E}-7$	20.64	0.15	0.004	-3.31	161	0.004	-3.30	158
3	1.54E-6	55.94	0.40	6.045	2.51	46	0.015	-2 46	45
4	$1.46 \mathrm{E}-6$	52.16	0.38	0.002	-15.96	339	0.002	-15.01	283
5	$1.06 E \cdot 6$	37.76	0.28	0.001	-22.76	664	0.001	22.74	592

6.0 SUMMARY AND CONCLUSIONS

This repori documents a scoping study performed by Sandia National Laboratories for the U.S. Nuclear Regulatory Commission (NRC). The main objective of this scoping study was to evaluate the importance of service water systems to core damage frequency (CDF), and to perform limitod value/impaci and sensitivity studies on a selected prototypical (pilot) plant.

To evaluate the importance of service water systems to CDF, eleven NRC-sponsured PRAs were reviewed to determine the service water contribution to CDF and to identify the dominant service water system component faults and related failures, e.g., human errors or test and maintenance unavailability, contributing to core datnage (see Section 2.0).

The contribution made to core damage frequency of each of the NRC-sponsored PRAs reviewed is summarized in Table 6.1. Also included in this table is service water core damage contribution made by six plants analyzed in the Electric Power Research Institute (EPRI) report NSAC. $148 .{ }^{15}$ These six plants are identified by the letters A through F. As can be seen from Table 6.1, for plants characterized as "old" (i.e., plants with operating licensees prior to January 1976) the service water contribution to CDF is about twice that for "new" plants (i.e., plants receiving operating licensees after January 1 , 1976). Also from Table 6.1 the contribution made by service water to the CDF for BWRs is two to three times that made for PWRs.

As shown in Table 6.1, the service water contribution to CDF varies by plant. The reasons for the variation are the degree of dependency a plant has on service water, the reliability of the service water systetas themselves, and, to some extent, the differences in the NRCsponsored PRAs in terms of modeling assumptions and scope of each PRA program. These are the same basic conclusions as found in EPRI report NSAC-148 ${ }^{19}$ except that the EPRI report also concluded that water quaity was a major influence. Water quality problems would not be expected to be a major finding in the NRC sponsored PRAs since these studies typically used generic data to quantify the system models instead of plant specific data. Therefore, water quality problems, e.g., above average maintenance outage times for the service water system and higher component failures rates, would not typically be accounted for.

Sensitivity analysis were performed for selected pilot plant ESW components in part to address the effect water quality problems would have on the NUREG/CR-4550 results. This analysis is discussed in Section 4.7. This analysis showed that water quality could have a significant effect on the SW contribution to CDF as concluded in the EPRI repori

The service water system dominant failure modes found from the review of the NRC-sponsored PRAs tend to have some commonality between the planis even though the service water system configurations for each plant are unique. Two common service water fuults found were the dependency of the service water system on motor-operated or air-operated isolation valves to open on demand to supply cooling water to safety related loads rad failure of the standby service water pumps to siari. Two subile failure modes identified in the NUREG/CR-4550 ${ }^{41}$ program were found to be dominant failure modes for three of the plants reviewed. These subtle failures are (1) the failure to isolate nonessential cooling water loads; and (2) pump discharge check valve back flow failing crosstied pumps. The failum to isolate nonessential cooling loads can result in inadequate cooling of the essential Irwis due to the diversion of water away from the es atial loads and the potential for pump runout and failure.

The pump discharge check valve failure deals with the dure (fail to reclose) of the discharge check valve in one pump train of a multiple pump system where the pumps are all cross-tied. The failure of the check valve to reclose occurs when one of the operating pumps is shut down. This allows flow from the other pump(s) to recirculate back through the idle pump resulting in functional failure of the system.

A review of operational history was performed in an attempt to establish typical service water system vulnerabilities that should be addressed in this analysis (see Section 2.0). The events found were highly plant specific and represented a large variety of root causes, indicating no obvious pattern in terms of hardware or operator errors that are nof generally covered by PRA methods.

To provide an example of the type of analysis that can be performed using PRA methods to address service water vuitnerabilities, a pilsi plant was selected (see Section

Table 6.1
Service Water Contribution to Internal CDF By Reactor Type

PWRs				BWRS			
"Old"		"New*		*OId ${ }^{\text {c }}$		"New"	
A	18\%	B	9\%	$\mathrm{C}^{\text {l }}$	575	F	25\%
D	18\%	E	5\%	Peach Bottom	22\%	Grand Gulf	14%
Oconee	16\%	St.Lucie	13\%	Quad Cities	30\%	LaSaile	7\%
Calvert Cliffs	11\%	Sequoyah ${ }^{2}$	$<1 \%$	Cooper	65\%		
ANO-1	12\%			Millstone 1	7\%		
Point Beach	19\%						
Tarkey Point	5\%						
Surry ${ }^{2}$	<1\%						
"Average"	12\%		7%		36\%		15\%

Incomplete recovery.

${ }^{2}$ May not be accurate slthough both piants have unique service water systems.
3.0). This selection was based on the availability and quality of NRC-sponsored PRAs, the contribution of service water failure to core damage, the dominance of common failure modes, and the plant being representative of a large group of vendor types.

Based on the identified failure modes in the pilot plant PRA and the common failure modes found between plants, a number of modifications were suggested for the most significant service water system vulnerabilities (see Section 4.0). These modifications were combined in various ways to define five possible aliernatives. The total core damage frequency was then reevaluated for the pilot plant assuming the alternatives were in place (see Sectinn 4.0) with the following results:

Probsbility of
Core Damage per
Alternative
Reactor Year
4. $19 \mathrm{E}-06$
4.09E-06
3. 13E-06

21E-06
3.61E-06

Change in Core Damage

The change in core damage frequency is the change from a base case core damage frequency of $4.67 \mathrm{E}-06 / \mathrm{R}$ yr (ref Table 4.9).

These results were used in an integrated value-impact analysis. Detailed results are tabulated and presented in Section 5.0. Table 6.2 provides a summary of the inputs to the value-impact analysis and Table 6.3 compares the pilot plant value/impact analysis results with the TAP A45 plants. None of the alternatives are attractive from the dollars per person REM results. External events were not included in this analysis. A discussion of external events contribution to CDF is presented in Section 4.3. If external events had been considered, the value/impact analysis might have been more favorable. However, the costs to implement modifications to address external event SW related vulnerabilities might affect some of the improvement in dollars per person-REM resulting from an expected larger $\triangle C D F$.

Table 6.2
Inputs to and Results from the
Value/Impact Analysis

Table 6.3
Comparison of Dollars/Person REM For TAP A-45 Plants and the Pilot Plant Selected Alternatives (Offsite and Onsite Costs)

Table 6.3 Notes:

1. Zero values imply negative NI, i.e., modification in alternative very cost beneficial.
2. Alternative numbers are for reference only and do not relate between plants.
3. Some plant analyses proposed more alternatives than others depending on the possible meaningful combinations.

7.0 REFERENCES/BIBLIOGRAPHY

1. NUREG/CR-5526, "Analysis of Risk Reduction Mensures Applied to Shared Essential Servior Water Systems at Multi-Unit Sites, U.S. Nuclear Kegulatory Commission, June 1991.
2. NUREG/CR-2797, 'Evaluation of Events Involving Service Water System in Nuclear Power Plant, ${ }^{\text {E }}$ U.S. Nuclear Regulatory Commission, November 1982.
3. IE Bulletin 80.24 , U.S. Nuclear Regulatory Commission, November 21, 1980.
4. IE Bulletin 81 03, U.S. Nucicar Regulatory Commission, April 10, 1981.
5. Generic Letter 89.13, "Service Water Systom Problems Affecting Safety Related Equipment, " U.S. Nuclear Regulatory Commission, July 18, 1989.
6. NUREG-0933, Generic Issue 51, "Proposed Requirements for Improving Open Cycle Service Water Systems," U.S. Nuclear Regulatory Commission, June 1989.
7. NUREG-0933, Generic Issue 65, "Probability of Core-Melt Due to Component Cooling Water System Failures, U. S. Nuclear Regulatory Commission, June 1989.
8. NUREG-0933, Generic Issue 130, 'Essential Service Water Pump Failures at Multi-Unit Sites," U.S. Nuclear Regulatory Commission. June 1989.
9. NUREG-1275, Vol. 3, "Operating Experience Feedback Report-Service Water System Failure and Degradations," U.S. Nuclear Regulatory Commission, November 1988.
10. Nuclear Power Experience, NPE, published by the S.M. Stroller Corp.
11. NUREG/CR-5826, BNL-NUREG-52225, "Analysis of Risk Reduction Measures Applied to Sharsd Essential Service Water Systems at Multi-Unit Sites, Broo' "aven Laboratory, August 1990.
12. "Insights and Recommendations to Resolve Generic Issue 153: Loss of Essential Sorvice Water at Light Water Reaclors, * Broolhiven National Laboratory, November 1990.
13. NUREG/CR-4767, SAND86-2419, "Shutdown Decay Heat Removal Analysis of a General Electric BWR4/Mark 1.' Sandia NationaI Laboratories, July 1987.
14. NUREG/CR-4941, SAND87-7116, *The Application of Value-Impact Analysis to USI A45. Summary Reports of UCLA Study on ValueImpact Analysis in Relation to USI A-45," Sandia National Laboratories, September 1987.
15. NUREG/CR-4627, "Generic Cost Estimates, ${ }^{\text {E }}$ U.S. Nuclear Regulatory Commission, June 1986.
16. NUREG/CR-397i, ANL/EES-TM-265, "A Handbook for Cost Estimating, * Argonne National Laboratory, Otiober 19 cs .
17. NUREG/CR-5234, "Value/Impact Analysis for Generic Issue 51: Improving the Reliability of Open-Cycle Service-Water Systems, * U.S Nuclear Regulatory Commission, Febnvary 1989.
18. "NRC Information Notice No. 90-39: Recect Problems with Service Water Systems, R. Woodruff, USNRC, Jine 1990.
19. NSAC 148, "Service Water Systems and Nuclear Plant Safeiy, * prepared by Pickard, Lowe and Garrick, lnc, for Nuclear Safety Analysis Center and Electric Power Research Institute, May 1990.
20. NUREG-1150, "Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants, ${ }^{\text {U }}$ U.S. Nuclear Regulatory Cormmission, December 1990.
21. NUREG/CR-4550, SAND86-2084, Vol, 4, Rev. 1, Part 1, "Analysis of Core Damage Frequency: Peach Bottom, Unit 2 Internal Events," Sandia National Laboratories, August 1989.
22. NUREG/CR-4550, SAND86-2084, Vol. 4, Rev 1. Part 3, "Ana'ysis of Core Dimage Frequency: Peach Bottom, Unut 2 Extornal Events, * Sandia National Laboratories, December 1990.
23. NUREG/CR-4551, SAND86-1309, Vol. 4, Rev 1. "Evaluation of Severe Accident Risks: Peach Bottom, Unit 2," Sandia N $2 a l$ Laboratories, December 1990.
24. NUREG/CR-2497, ORNL/NSIC-182, Volume 1, "Precursors to Potential Severe Core Damage Accidents: 1969-1979, A Status Repor! " Oak $R^{\text {if }} \mathrm{ge}$ National Laboratory, June 1982.
25. NUREG/CR-3591, ORNLNSIC-217, Volumes 1 and 2, "Precursors to Potential Severe Core Damag? Accidents: 1980-1981, A Status Het ort, * Oak Ridge National Laboratory, July 984.
26. NUREG/CR-4674, ORNL/NOAC-232, Volumes 3 and 4, "Precursors to Potential Severe Core Damago Accidents: 1984, A Status Report, ${ }^{*}$ Oak Ridg: Vational Laboratory, May 1987.
27. NUREG/CR-4674, ORNL/NOAC-232, Volumes 1 and 2, "Precursors to Potential Severe Core Damage Accidents: 1985, A Status Report," Oak Ridge National Laboratory, December 1986.
28. NU: GG/LR-4674, Volumes 5 and 6, "Precursors to Potential Severe Core Damage Accidents: 1986, A Status Report, " Oak Ridge National Laboratory, May 1988.
29. NUREG/CR-46 ${ }^{\circ} 4$, Volumes 7 and 8 , "Prscursors to Potential Severe Core Damage Accidents: 1987, A Status Report, " Oak Ridge National Laboratory, July 1989.
30. NUREG/CR-47. Volumes 9 and 10 , "Precursors to Potential Severe Core Damage Accidents: 1988, A Status Report, " Oak Ridge Nat: at Laboratory, February 1990.
31. NUREG/CR-4674,ORNL/NOAC-232, Volumes 11 and 12, "Precursors to Potential Severe Core Damage Accidents: 1989, A Status Report," Oak Ridge National Laboratory, August 1990.
32. SAIC-89/1541, "Nuclear Power Plant System Sourcebook, " Science Applications International Corporation, ITN D-1765, March 1990.
33. *ASEP Plant Survey and Initial Plant Grouping Letter Report Volume 1: Main Report, " Sandia National Laboratories, December 22, 1983.
34. NUREG/CR-4448, SAND85-2373, "Shutdown Decay Heat Removal Analysis of a General Electric BWR3/Mark 1 Case Study," Sandir National Laboratories, March 1987.
35. NUREG/CR-4550, SAND86-2084, Volume 4, Rev. 1, Purt 2, "Analysis of Core Damage Frequency: Peach Bottow, Unit 2 Internal Event6 Appendices," Sandia National Laboratories, August 1989.
36. NUREG/CR-4550, SAND86-2084, Volume 6, Rev. 1, Part 1, "Analysis of Core Damage Frequency: Grand Gulf, Unit 1 Internal Events," Sandia National Laboratories, September 1989.
37. NUREG/CR-4550, SAND86-2084, Volume 6, Rev. 1, Part 2, "Analysis of Core Damage Frequency: Grand Gulf, Unit 1 Internal Events Appendices," Sandia National Laboratories, September 1989.
38. NUREG/CR-4710, SAND86-1797, 'Shutiown Decay Heat Removal Analysis of a Combustion Fagineering 2-Loop Pressurized Water Reacior de Study," Sandia National Laboratories, July 1987.
39. NUREG/CR-3511/1 of 2, SAND83-2086/1 of 2, "Interim Reliability Evaluation p_{1} eve ils Analysis of the Calvert Cliffs Unit ar Power Plant Volume 1. Main Report, ${ }^{\text {a }}$ Sandia National Laboratories, September 1983.
40. NUREG/CR-4713, SAND86-183?, "Shutdown Decay Heat Removal Analysis of a Babcock and Wilcox Pressurized Water Reactor Case Study," Sandia National Laboratories, March 1987.
41. NUREG/CR-4458, SAND86-2496, "Shutdown Decay Heat Removal Analysis of a Westinghouse 2-Loop Pressurized Water Reactor Case Study," Sandia National Laboratories, March 1987.
42. NUREG/CR-4762, SAND86-2377, "Shutdown Decay Heat Removal Analysis of a Westinghouse 3-Loop Pressu:ized Watar Reactor Case Study, Sandia National Laboratories, March 1987
43. NUREG/CR-4550, SAND86-2084, Voiume 3. Rev 1, Part 1, "Acalysis of Core Damage Frequency: Surry, Unit ! Internal Events,' Sandia National Laboratories, April 1990
44. NUREG/CR-4550, SAND86-2084, Volume 3, Rev. 1, Part 2. "Analysis of Core Damage Frequency: Surry, Unit 1 Internal Events Appendices," Sandia National Laboratories, April 1990
45. NUREG/CR-4550, SAND86-2084, Volume 5, Rev. 1, Part 1, "Analysis of Core Damage Frequency: Sequoyah, Unit 1 Internal Events," Sandia National Laboratories, April 1990.
46. NUREG/CR-4550, SAND86-2084, Volume 5 Rev. 1, Part 2, "Anaiysis of Core Damqge Frequency: Sequoyah, Unit I Internal Events Appendices: Sandia National Iaboratories, April 1990.
47. "Peach Bottom Updated Final Safety Analysis Report," U'slumes 4 and 5, Philadelphia Electric Co., 1985 and Ametidments through early 1988
48. SAlC-89/1020, "Nucleay Power Plant System Sourcebook, Peach Bottom 2 and 3, 50-277 and 50-278, " Science Applications International Corf oration, FIN D-1763, January 1989.
49. "Peac1 Bottom Unit 2 Probabilin. Risk Assessment (PRA) Related Data Base Letter Report," EG\&G Idaho Inc., FiN: A6883, November 30, 1990.
50. "Integrated Reliability and Risk analysis System (IRRAS) Version 2.6 Volume 1 - Reference Manual (Draft), ${ }^{*}$ EG\&G Idaho Inc., FIN No. A6399, September 1991.
51. NUREG/CR-4550, SAND86-2084, Vol. 1, Rev, 1, "Analysis of Core Damage Frequency: Internal Events Methodology," Sandia National Laboratories, January 1990.

APPENDIX A

NUCLEAR POWER PLANT SUMMARY TABLES

Treble A. 1
NPPs, Sarted By Opersting Licemse Date

PLANT	NSSS	2EACTOR	TYPE	MWE	OPERATING LICENSE DATE	STATUS*	$\begin{aligned} & \text { ASEP } \\ & \text { PL.ANT } \end{aligned}$	SYSTEM SOURCE BOOK	NRC PRA	$\begin{aligned} & \text { GI-130 } \\ & \text { PL_ANT } \end{aligned}$
YANKEE-ROWE	W	PWR	4-hoop	167	97/19/60	C		Y		
BIG ROCK POINT	GE	EWR	1	69	05/01/64	0		Y		
SAN ONOFRE 1	W	PWR	3-1oop	436	03/27/67	0				
HADDAM NECK	W	PWR	4 Hoop	569	06/30/67	0		Y		
LA CROSSE	AC	BWR		50	07/03/67	C				
OYSTER CREEK	GE	BWR	2	620	08/01/69	0		Y		
NINE MILE POINT 1	GE	EWR	2	610	08/22/69	0	Y			
GINNA	w	PWR	2-hoop	470	09/19/69	0				
DRESDEN 2	GE	BWR	3	772	12/22/69	\bigcirc	Y	Y		
MO.,TICELLO	GE	BWR	3	536	09/08/70	0	Y	Y		
ROBINSON 2	W	PWR	3-heep	665	09/23/70	0	Y	Y		
POINT BEACH 1	W	PWR	2-boop	485	10/05/70	0			Y	
MILLSTONE 1	GE	BWR	3	654	10/97/70	0	Y	V	Y	
DRESDEN 3	GE	BWR	3	773	03/02/71	0	Y	Y		
SURRY 1	\%	PWR	3-1oop	781	05/25/72	0	Y		\mathbf{Y}	
POINT BEACH 2	W	PWR	2-bsop	485	05/25/72	0				
TURKEY POINT 3	W	PWR	3-hoop	666	$07 / 19 / 72$	0				
PILGRIM	GE	BWR	3	670	09/15/72	0				
PALISADES	CE	PWR	2-100p	730	10... ${ }^{\text {2 }}$	0				
QUAD CITIES 1	GE	BWR	3	769	12/14/\%	0	Y	Y	Y	
QUAD CITIES 2	GE	BWR	3	769	$12 / 14 / 72$	0	Y	\mathbf{Y}		
SURRY 2	W	PWR	3-100p	781	01/29/73	0	Y			
OCONEE 1	B\&W	PWR	L-hoop	846	02/06/73	0	\mathbf{Y}			
VERMONT YANKEE	GE	BWR	4	504	02/28/73	0				
TURKEY POINT 4	W	PWR	3-hoop	566	04/10/73	0				
MAINE YANKEE	CE	PWR	3-hoop	810	06/29/73	0	Y	Y		
PEACH BOTTOM 2	GE	BWR	4	1051	08/08/73	0	V	Y	Y	
PRAIRIE ISLAND 1	W	PWR	2-boop	503	08/09/73	0	Y			
FORT CALHOUN	CE	PWR	2-trop	478	08/09/73	0	Y	Y		
INDIAN POINT 2	W	PWR	4-hoop	849	09/28/73	0				
OCONEE 2	8. ${ }^{\text {W }}$ W	PWR	L-hoop	846	10/06/73	\bigcirc	Y			
ZION 1	W	PWR	4-hoop	1040	10/19/73	0	Y	Y		
ZION 2	W	PWR	4 3oop	1040	11/14/73	0	Y	Y		
BROWNS FERRY 1	GE	BWR	4	1065	12/20/73	0	Y	Y		

$C=$ Operatin
$C=$ Closed
$\mathrm{S}=$ Shutdown
Table A. 1 (Centimend)
NPPs Serted By Opersting License Dide

PLANT	NSSS	REACTOR	TYPE	MWE	OPERATING LICENSE DATE	STATUS*	ASEP PLANT	SYSTEM SOURCE BクOK	$\begin{aligned} & \text { NRC } \\ & \text { PRA } \end{aligned}$	$\begin{aligned} & \text { GI-130 } \\ & \text { HLANT } \end{aligned}$
KEWAUNEE	W	PW\%	2-koop	503	12/21/73	0				
COOPER	GE	3WR	4	764	01/18/74	0	Y	Y	Y	
DUANE ARNOLD	GE	BWR	4	515	02/22/74	\bigcirc	Y	Y		
THREE MILE ISLAND 1	B\&W	PWR	L-hoop	776	94/19/74		Y	1	Y	
ANO 1	B\&W	PWR	L-Hoep	836	05/21/74	0	Y	Y	Y	
PEACH BOTTOM 3	GE	BWR	4	1035	97/02/74 $37 / 1974$	0	Y	Y	Y	
OCONEE 3	B\&W	PWR	L-toop	846	$37 / 19 / 74$	0	Y		Y	
CALVERT CLIFFS 1	CE	PWR	2-6opp	825	$07 / 31 / 74$ $08 / 02 / 74$	0	Y	Y	Y	
BROWNS FERRY 2	GE	BWR	4	1065	08/02/74	C	I	\mathbf{Y}		
RANCHO SECO	B\%W	SWR	L-loop	873	$08 / 16 / 74$ $10 / 13 / 74$	0	Y	Y		
HATCH 1	GE	BWR	4	756	$10 / 13 / 74$ $10 / 17 / 74$	0	Y	Y		
FITZPATRICK	GE	BWR	4	778	$10 / 1774$	0	Y			
D.C. COOK 1	W	PWR	4-hoop	1020	$10 / 2574$	0	V			
PRAIRIE ISLAND 2	W	PWR	2-hoop	503	10/29/74	\bigcirc	y	Y		
BRUNSWICK 2	GE	BWR	4	790	$12 / 2776$		v			
MILLSTONE 2	CE	PWR	2-hoop	863	99/36/	0	Ψ	Y		
TROJAN	W	PWR	4-hoop	1095	11/21/7	0	Y	Y	Y	
ST. LUCIE 1	CE	PWR	2-hoop	839	03/01/76	0	Y			
INDIAN POINT 3	W	PWR	4-loop	965	$04 / 05 / 76$ $07 / 02 / 76$	0	Y	Y		
BEAYER VALLEY 1	W	PWR	3-1oop	810	08/18/76	\bigcirc	Y	Y		
BROWNS FERRY 3	GE	BWR	4	1065	11/12/76	0	Y	Y		
BRUNSWICK 1	GE	BWT	4.4	799	$11 / 12 / 76$ $11 / 39 / 76$	0	Y	r		
CALVERT CLIFFS 2	CE	PW\%	2Hoop	825	$11 / 39 / 76$ $12 / 01 / 76$	0	\%			
SALEM 1	W	PWR	4-hoop	1106	12/01/76	0	Y	Y		
CRYSTAL RIVER 3	B\&W	PWR	L-toop	821	$0128 / 7$	0	Y	Y		
DAVIS-BESSE	B\&W	PWR	R-hoop	860	04/22/77	O	γ			
FARLEY 1	W	PWR	3-loop	813	$06 / 25 / 77$ $12 / 23 / 77$	0	Y			Y
D.C. COOK 2	W	PWR	4-loep	14	12/23	0	V			
NORTH ANNA 1	W	PWR	3-hoop		04/01/78	0	Y	Y		
HATCH 2	GE	BW\%	4	768	-6/13/78	0				
ANO 2	CE	PWR	2-hoop	858	$12 / 14 / 78$ $08 / 21 / 80$	0	Y			
NORTH ANNA 2	W	PWW	3-hoop	915 1148	08/217/80	0	Y		Y	
SEQUOYAH 1	W	PWR	4-hoop	1148	09/1780	\bigcirc				

$* O=$ Operating
$C=$ Closed
$S=$ Shutdown

Tahle A. 1 (Costimeed)
NPPs Sorted By Opersting License Dete

[^3]$S=$ Shutdown

Table A. 1 (Contiened)
NPTS Sorted By Operating licerse Date

| | | | | OPERATING | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PLANT | NSSS | REACTOR | TYPE | MWE | LICENSE
 DATE | STATUS* |

$\begin{aligned} & * \\ & \\ & \mathrm{C}=\text { Operating } \\ & \text { Closed }\end{aligned}$
$\mathrm{C}=\mathrm{Closed}$
$\mathrm{S}=$ Shutdown

Table A. 2
NPFs Serted Alphabetically

Table A. 2 (Centingect) NE: 's Sorted Alphesbeticsily

PLANT	NSSS	REACTOR	TYPE	MWE	OPERATING LICENSE DATE	STATUS*	ASEP PLANT	SYSTEM SOURCE BOOK	NRC PRA	$\begin{aligned} & \text { Gi-130 } \\ & \text { PLANT } \end{aligned}$
FARLEY 1	w	PWR	3-loop	813	06/25/77	0				
FARLEY 2	W	PWR	3-kop	823	03/31/81	0				
FERMI 2	GE	BWR	4	1093	07/15/85	0	\mathbf{Y}			
FITZPATRICK	GE	BWR	4	778	10/17/74	0	Y	Y		
FORT CALHOUN	CE	PWR	2-loop	478	88/09/73	0	Y	V		
GINNA	W	PWR	2-hoop	470	09/19/69	0				
GRAND GRIF	GE	BWR	6	1142	11/01/84	0	Y	Y	Y	
HADDAM NECK	W	PWR	4-loop	569	06/30/67	0		Y		
HATCH 1	GE	BWR	4	756	10/13/74	0	Y	Y		
HATCH 2	GE	SWR	4	768	06/13/78	0	\mathbf{Y}	Y		
HOPE CREEK	GE	BWR	4	1067	07/25/86	0	Y	Y		
INDIAN POINT 2	W	PWR	4-loop	849	09/28/73	0				
INDIAN POINT 3	W	PWR	4-loop	965	04/05/76	0		Y		
KEWAUNEE	W	PWR	2-hoop	503	12/21/73	0				
LA CROSSE	AC	BWR		50	07/03/67	C				
LASALLE COUNTY 1	GE	BWR	5	1036	08/13/82	\bigcirc	Y		Y	
LASALLE COUNTY 2	GE	BWR	5	1036	03/23/84	0	Y			
LIMERICK 1	GE	BWR	4	1055	08/08/85	0	Y	Y		
LFMERICE 2	GE	BWR	4	1065	11	0	Y	Y		
MAINE YANKEE	CE	PWR	3-hoop	810	06/29/73	0	Y	Y		
MCGUREE 1	W	PWR	4-loop	1129	07/08/81	0		Y		Y
MCGURE 2	W	PWR	4-hoop	1129	05/27/83	0		Y		
MILLSTONE 1	GE	BWR	3	654	10/67/70	0	Y	Y	Y	
MILLSTONE 2	CE	PWR	2-100p	863	09/30/75	0		Y		
MHLLSTONE 3	W	PWR	4-loop	1142	01/31/86	0	Y	Y		
MONTICELLO	fE	BWR	3	536	09/08/70	0	Y	Y		
NINE MHLE POINT 1	GE	BWR	2	610	08/22/69	0		Y		
NINE MILE POINT 2	GE	BWR	5	1080	07/02/87	0	Y	Y		
NORTH ANNA 1	W	PWR	3-hoop	915	04/01/78	0	Y			
NORTH ANNA 2	W	PWR	3-loop	915	08/21/80	0	Y			
OYSTER CREEK	GE	BWR	2	620	08/01/69	0		\boldsymbol{Y}		

[^4]Table $A .2$ (Coetimsed)
NPPY Sorted Alphniveticelly

Twhle A. 2 (Coentizeed)
NPTs Sorted Alplanbecically

PLANT	NSSS	REACTOR	TYPE	MWE	OPERATING LICENSE DATE	STATUS*	ASEP PLAN?	SYSTEM SOURCE BOOK	$\begin{aligned} & \text { NRE } \\ & \text { PRA } \end{aligned}$	$\begin{aligned} & \text { G1-130 } \\ & \text { PLANT } \end{aligned}$
SURRY 2	W	PWR	3-hoop	781	01/29/73	0	Y	Y		
SUSOUEHANNA 1	GE	BWR	4	1032	11/12/82	0		V		
SUSQUEHANNA 2	GE	BWR	4	1032	60/27/84	0	Y	Y		
THREE MILE ISLAND 1	BEW	PWR	L-hoop	176	21	0		Y		
TROJAN	W	PWR	4-hoop	1095	07/19 72	0				
TURKEY POINT 3	W	PWR	3-hoop	66	04/10/73	0				
TURKEV POINT 4	W	PWR	3-hoep	660	$02 / 28$ ¢	0				
VERMONT YANKEE	GE	BWR	4	504	03/16/	0		\mathbf{Y}		
VOGTLE 1	W	PWR	4 Hoop	1079	/ /	0		Y		
VOGTLE 2	W	PWR	4-hoop	1075	03/16/85	0	Y	Y		
WATERFORD 3	CE	PWR	2 -hoop	1075	/ /	5	Y			
WATTS BAR 1	W	PWR	4-hoop	116	11	5	Y			
WATTS BAR 2	W	PWR PWWR	4 hoop	1266	11	S	V			
WNP-1	BEW	PWR	5	1095	04/13/84	0	Y	Y		
WNP-2	GE	PWWR		1242	1 i	S	V			
WNP-3	CE	PWR	4-hoop	1128	06/04/85	0		\mathbf{Y}		
WOLF CREEK	w	PWR	4-hoop	167	07/19/60	C		Y		
YANKEE-ROWE	W	PWR	4-hoop	1040	10/19/73	0	Y	Y		
ZION 1	W	PWR	4-hoop	1040	11/14/73	0	Y	Y		
ZION 2	W	PWR	4-hop							

$* O=$ Operating
$\mathrm{C}=\mathrm{Closed}$
$S=$ Shutdown

Talte A. 3 (Comtimeed)
NPPY Sorted by Vendor

Plant	NSSS	REACTOR	TYPE	MWE	OPERATING LICENSE DATE	STATUS*	ASEP plant	SYSTEM SOURCE BOOK	NRC PRA	$\begin{aligned} & \text { G1-130 } \\ & \text { PLANT } \end{aligned}$
LA Crosse	AC	BWR		50	07/03/67	C				
ANO I	B\&W	PWR	L-boop	836	05/21/74	0			v	
BELLEFONTE 1	B\&W	PWR	R-toop	1213	11	S		Y		
BELLEFONTE 2	B8W	PWR	S-loop	1213	11	S		Y		
CRYSTAL RIVER 3	B\&W	PW\%	L- loop	821	$01 / 28 / 77$	0		Y		
DAVIS-BESSE	B\&W	PW\%	R-toop	860	04/22/77	0	Y	Y		
OCONEE 1	B\&W	PWR	L-hoop	846	02/06/73	0	y			
OCONEE 2	B\&W	PWR	L-hoop	846	$10 / 06 / 73$	0	Y			
OCONEE 3	BEW	PWR	L-Hoop	846	07/1974	0	Y		y	
RANCHO SECO	B\&W	SWR	L-Hoep	873	08/16/74	C				
THREE MILE ISLAND 1	B\&W	PWR	L-Hoop	776	04/19/74	0	y	Y		
WNP-1	B8W	PWR		1266	1 11	8	Y			
ANO 2	CE	PWR	2-hoop			${ }_{0}$				
CAIVERT CliFFs 1	$C E$	PWR	2 -hoop	825	$07 / 31 / 74$	\bigcirc	Y		\mathbf{Y}	
CALVERT CliFFS 2	CE	PWR	2 -hoop	825	11/30/76	0	Y			
FORT CALHOUN	CE	PWR	2 -oop	478	$08 / 09 / 73$	0	Y			
MAINE YANKEE	CE	PWR	3-6op	810	$06 / 29 / 73$	0	Y	\mathbf{Y}		
MILLSTONE 2	CE	PWR	2-doop	863		θ		Y		
PALISADES	CE	PWR	$2 \text { Hoop }$	730	$10 / 16 / 72$	\bigcirc				
Palo verde 1	CE	PWR	2 -hoop	1221	06/01/85	\bigcirc		Y		
PALO VFRDE 2	CE	PWR	2 - l opp	1221	$04 / 24 / 86$	\bigcirc		Y		
PALO VERDE 3	CE	PWR	2 -hoop	1221	11/25/87	0		Y		
SAN ONOFRE 2	CE	PWR	2 -hoop	1970	09/07/32	\bigcirc				
SAN ONOFRE 3	CE	PWR	2 -heop	1080	$09 / 16 / 83$	\bigcirc				
ST. LUCIE 1	CE	PWR	2-hoop	83.	$03 / 01 / 76$	\bigcirc	Y	Y	Y	
ST. LUCIE 2	CE	PWR	2 heop	839	06/10/83	\bigcirc	Y	Y		
WATERFORD 3	CE	PWR	2-hoep	1075	03/16/85	$\stackrel{ }{9}$	Y	Y		
WNP-3	CE	PWR		1242		S	Y			
BIG ROCK POINT	GE	BWR	1	69	05/01/64	\bigcirc		Y		
BROWNS FERRY 1	GE	BWR	4	1065	$12 / 20 / 73$	0	Y	V		
BROWNS FERRY 2	GE	BWR	4	1065	08/02/74	0	Y	y		
BROWNS FERRY 3	GE	BWR	4	1065	08/18/76	\bigcirc	y	y		
BRUNSWICK 1	GE	BWR	4	790	11/12/76	\bigcirc	y	Y		

[^5]| Plant | NSSS | REACTOR | TYPE | MWE | OPERATING LICENSE DATE | status* | $\begin{aligned} & \text { ASEP } \\ & \text { PLANT } \end{aligned}$ | SYSTEM SOURCE BOOK | NRC PRA | $\begin{aligned} & \text { GI- } 130 \\ & \text { PLANT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BRUNSWICK 2 | GE | BWR | 4 | 790 | 12/27/74 | 0 | Y | Y | | |
| CLINTON | GE | BWR | 6 | 930 | e4/17/87 | 0 | Y | y | | |
| COOPER | GE | 8WR | 4 | 764 | 01/18/74 | 0 | Y | Y | Y | |
| DRESDEN 2 | GE | SWR | 3 | 772 | 12/22/69 | 0 | Y | Y | | |
| DRESDEN 3 | GE | BWR | 3 | 773 | 03/02/71 | 0 | \mathbf{Y} | Y | | |
| DUANE ARNOLD | GE | 3WR | 4 | 515 | 92/22/74 | 0 | | | | |
| FERMI 2 | GE | BWR | 4 | 1093 | 07/15/85 | 0 | | | | |
| FITZPATRICK | GE | BWR | 4 | 778 | 10/17/74 | 9 | \mathbf{Y} | Y | | |
| GRAND GULF | GE | BWR | 6 | 1142 | 11/01/84 | 0 | Y | Y | Y | |
| HATCH 1 | GE | | 4 | 756 | 19/13/74 | 0 | Y | Y | | |
| HATCH 2 | GE | BWR | 4 | 768 | 06/13/78 | 0 | Y | Y | | |
| HOPE CREEK | GE | RWR | 4 | 1067 | 07/25/86 | 0 | Y | Y | | |
| LASALLE COUNTY 1 | GE | BWR | 5 | 1036 | 08/13/82 | 0 | Y | | Y | |
| LASALLE COUNTY 2 | GE | BWR | 5 | 1036 | 03/23/84 | 0 | Y | | | |
| LIMERICK 1 | GE | BWR | 4 | 1055 | 28/08/85 | 0 | Y | | | |
| LIMERICK 2 | GE | BWR | 4 | 1065 | 11 | 0 | Y | Y | | |
| MILLSTONE 1 | GE | BWR | 3 | 654 | $10 / 67 / 70$ | \bigcirc | Y | Y | Y | |
| MONTICELLO | GE | BWR | 3 | 536 | 09/08/70 | 0 | Y | Y | | |
| NINE MILE POINT 1 | GE | BWR | 2 | 610 | 08/22/69 | 0 | | Y | | |
| NINE MILE POINT 2 | GE | BWR | 5 | 1080 | $07 / 02 / 87$ | 0 | Y | Y | | |
| OYSTER CREEK | GE | BWR | 2 | 020 | 08/01/69 | 0 | | Y | | |
| PEACH BOTTOM 2 | GE | BWR | 4 | 1051 | 08/08/73 | 0 | Y | Y | \mathbf{y} | |
| PEACH BOTTOM 3 | GE | BWR | 4 | 1035 | 07/02/74 | \bigcirc | Y | y | | |
| PERRY 1 | GE | BWr | 6 | 1205 | 11/13/86 | 0 | Y | Y | | |
| PERRY 2 | GE | BWR | 6 | 1205 | 11 | 5 | Y | Y | | |
| PILGRIM | GE | BWR | 3 | 670 | 09/15/72 | \bigcirc | | | | |
| QUAD CITIES I | GE | BWR | 3 | 769 | 12/14/72 | \bigcirc | Y | Y | Y | |
| QUAD CITIES 2 | GE | BWR | 3 | 769 | 12/14/72 | 0 | Y | Y | | |
| RIVER BEND | GE | BWR | 6 | 936 | 11/20/85 | $\stackrel{0}{0}$ | \mathbf{Y} | Y | | |
| SHOREHAM | GE | BWR | 4 | 820 | 07/03/85 | C | Y | | | |
| SUSQUEHANNA 1 | GE | BWR | 4 | 1032 | 11/12/82 | \bigcirc | | y | | |
| SUSQUEHANNA 2 | GE | BWR | 4 | 1032 | 06/27/84 | \bigcirc | | Y | | |
| VERMONT YANKEE | GE | BWR | 4 | 504 | 02/28/73 | 0 | | | | |

[^6]| PLANT | NSSS | REACTOR | TYPE | MWE | OPERATING hicense DATE | STATUS* | ASEP
 PLANT | $\begin{aligned} & \text { SYSTEM } \\ & \text { SOURCE } \\ & \text { BOOK } \end{aligned}$ | $\begin{aligned} & \text { NRC } \\ & \text { PRA } \end{aligned}$ | $\begin{aligned} & \text { G1-130 } \\ & \text { PLANT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WNP-2 | GE | BWR | 5 | 1095 | 04/13/84 | 0 | Y | v | | |
| BEAVER VALLEY 1 | w | PWR | 3-6op | 810 | 07/02/76 | 0 | Y | Y | | |
| BEAVER VALLEY 2 | W | PWR | 3-hoop | 833 | 08/14/87 | 0 | Y | γ | | |
| BRAIDWOOD I | w | PWR | 4 -hop | 1120 | 07/62/87 | 0 | | Y | | Y |
| BRAIDWOOD 2 | w | PWR | 4-loop | 1120 | 05/20/88 | 0 | | Y | | Y |
| BYRON 1 | w | PWR | 4-6op | 1105 | 02/14/85 | 0 | | Y | | Y |
| BYRON 2 | w | PWR | 4 loop | 1105 | 01/30/87 | 0 | | Y | | Y |
| Callaway | w | PWR | 4 foop | 1145 | 10/18/84 | 0 | | y | | |
| Catawba 1 | w | PWR | 4 hoop | 1129 | 01/17/85 | 0 | Y | Y | | Y |
| CATAWBA 2 | W | PWP. | 4 -loop | 1129 | 05/15/86 | \bigcirc | v | Y | | Y |
| COMANCHE PEAK 1 | w | PWR | 4-hoop | 1150 | 11 | 0 | Y | Y | | Y |
| COMANCHE PEAK 2 | w | PWR | 4-hoop | 1150 | 11 | S | \mathbf{Y} | Y | | Y |
| D.C. COOK 1 | w | PWR | 4-hoop | 1920 | 10/25/74 | \bigcirc | \mathbf{Y} | | | |
| D.C. COOK 2 | w | PWR | 4-6op | 1060 | 12/23/77 | \bigcirc | Y | | | Y |
| diablo canyon 1 | w | PWR | 4 -leop | 1073 | 11/02/84 | | Y | | | Y |
| DIABLO CANYON 2 | w | PWR | 4 -hoop | 1087 | 08/26/85 | 0 | Y | | | |
| FARLEY 1 | w | PWR | 3-hoop | 813 | 06/25/77 | 0 | | | | |
| FARLEY 2 | w | PWR | 3-hoop | 823 | | 0 | | | | |
| GINNA | w | PWR | 2-6op | 470 | 09/19/69 | 0 | | | | |
| HADDAM NECK | w | PWR | 4-3oop | 569 | $06 / 30 / 67$ | 0 | | Y | | |
| INDIAN POINT 2 | w | PWR | 4-loop | 849 | $09 / 28 / 73$ | 0 | | | | |
| INDIAN POINT 3 | w | PWR | 4-kop | 965 | 04/05/76 | \bigcirc | | Y | | |
| KEWAUNEE | w | PWR | 2-foop | 503 | $12 / 21 / 73$ | \bigcirc | | | | |
| MCGUIRE 1 | w | PWR | 4-koop | 1129 | 07/08/81 | 0 | | Y | | Y |
| MCGUIRE 2 | w | PWR | 4 Hoop | 1129 | 05/27/83 | 0 | | Y | | |
| MILISTONE 3 | w | PWR | 4-hoop | 1142 | $01 / 31 / 86$ | 0 | | Y | | |
| NORTH ANNA I | w | PWR | 3-kop | 915 | 04/01/78 | 0 | Y | | | |
| NORTH ANNA 2 | w | PWR | 3-hoop | 915 | 08/21/80 | \bigcirc | Y | | | |
| POINT BEACH 1 | W | PWR | 2-100p | 485 | $10 / 05 / 70$ | 0 | | | Y | |
| POINT BEACH 2 | w | PWR | 2-heop | 485 | 05/25/72 | \bigcirc | | | | |
| PRAIRIE ISLAND 1 | w | PWR | 2 -oop | 503 | $08: 09 / 73$ | 0 | Y | | | |
| PRAIRIE ISLAND 2 | W | PWR | 2-hoop | 503 | $10 / 29 / 74$ | 0 | \mathbf{Y} | | | |
| ROBINSON 2 | w | PWR | 3-hoop | 665 | 09/23/70 | 0 | Y | Y | | |

Table A. 3 (Centinser)
NPPs, Sorted By Vendor

PLANT	NSSS	REACTOR	TYPE	MWE	OPERATING LICENSE DATE	STATUS*	ASEP PLANT	SYSTEM SOURCE BOOK	NRC PRA	$\begin{aligned} & \text { Gi-130 } \\ & \text { PLANT } \end{aligned}$
	W	PWR	4-300p	1106	12/01/76	0				
SALEM 1	w	PWR	4 Hoop	1106	05/20/81	0				
SAN ONOFRE I	w	PWR	3-hoop	436	03/27/67	0 0		Y		
SEABROOK	w	PWR	4-keop	1150	10/17/86	0	Y		Y	
SEQUOYAH I	W	PWR	4-hoop	1148	09/15/81	0	Y			
SEQUOYAH 20.	W	PWR PWR	3-hoop	1148 860	01/12/87	\bigcirc	Y	Y		
SHEARON HARRIS SOUTH TEXAS PROJECT 1	w	PWR	4 Hoop	1250	03/22/88	0		Y		
SOUTH TEXAS PROJECT 2	w	PWR	4 foop	1250	12/16/88	0		Y		
SUMMER	w	PWR	3-100p	885	11/12/82	0				
SURRY 1	w	PWR	3-hoop	781	05/25/72	O	Y			
SURRY 2	W	PWR	3 Hoop	${ }_{181}$	11/21/75	0		Y		
TROJAN	W	PWR PWR	-heop	666	07/19/72	0				
TURKEY POINT 3	W	PWR	3 -hoop	666	04/10/73	0				
VOGTLE 1	W	PWR	4-hoop	1079	03/16/87	0		\mathbf{v}		
vogtie 2	w	PWR	4-hoop	1079	11	\bigcirc		Y		
WATTS BAR 1	W	PWR	4 -hoop	1165	11	s				
WATTS BAR 2	w	PWR PWR	4 -hoop	1168 1128	06/04/85	0		Y		
WOLF CREEK	w	PWR PWR	4 loep	167	97/19/60	C		\mathbf{Y}		
ZION 1	w	PWR	4 - log	1040	16/19/73	0	Y	Y		
ZION 2	w	PWR	4-heop	1040	11/14/73	0	Y	Y		

${ }^{*} O=$ Opersting
$\mathrm{C}=\mathrm{Closed}$
$\mathrm{S}=$ Shutdown

APPENDIX B

REVIEW OF THE ACCIDENT SEQUENCE PRECURSOR PROGRAM PUBLISHED REPORTS FOR SERVICE WATER RELATED EVENTS

Appendix B
 Review of the Accident Sequence Precursor Program Published Reports
 for Service Water Related Events

The Accident Sequcnce Precursor Program at Oak Ridge National Laboratory reviews Licensee Event Reports (LERe) of operational events that have occurred al LWRs to identify and categorize procursors to potential severe core damage accidents. Accident sequences considered in this program are those associated with inadequate core cooling As a result of this work, a series of status reports have been published that describe the those events that heve occurred. This appendix documents the review of these published reports for service water related events.
J. W. Minarick, C. A. Kukielka, Precursors to Petential Severe Core Damage Accidents: 1969-1979. A Status Report, NUREG/CR-2497, ORNL/NSIC-182, Volume 1, June 1982.

This report describes 1969 operational events, reported in Licensee Event Reports (LERs), which occurred at commercial light water reactors during 1969 through 1979 that are considered to be precursors to potential severe core danaage. These are described along with associated significance estimates, categorization, and subsequent analyses.

Of the 169 precursors identified in this report, one involves the service water system (LER 321/80-103). At Hatch 1, both divisions ? and II service water strainers plugged, thus reducing the plant service water to the turbine i 1 Reactor building. The strainer drive motors had failed. The conditional probability of subsequent severe core damage given the failures observed in this event was estimated to be 9.13-04.
W. B. Cotirell, J. W. Minarick, P. N. Austin, E. W. Hagen, J. D. Harris, Precursors to Potential Severe Core Damage Accidents: 1980-1981, A Status Report, NUREG/CR-3591, ORNL/NSIC-217, Volumes 1 and 2, July 1984.

This report describes 58 operational events, reported in Licensee Event Reports (LERs), which occurred at commercial light water reactors during 1980 and 1981 that are considered to be precursors to potential severe core damage. These are described along with associated significance estimates, categorization, and subsequent analyses.

Of the 58 precursors identified in this report, six involve the service water or component cooling water systems. They are as followe:

1. Total loss of saltwater cooling (SWC) system at San Onefre I (LEER 206/80-006) All 1-Te SWC traine failed. The screen wwish pumps were manually started and manually aligned to discharge to the bottom component cooling water heat exchanger, which established CCW cooling. The conditional probability of subsequent severe core damage given the failures observed in this event was estimated to be 1.6E-05.
2. CCW loss to reactor cootant pump (RCP) seals, loss of RCPs and lop head bubble incident at St. Lucie I (LER 335/80-029). A short induced closure of the containment isolation valves in the CCW system caused loss of CCW cooling to all RCPs. The conditional probability of subsequent severe core dainage given the failures observed in this event was estimated to be $1.1 \mathrm{E}-03$.
3. Failure of service water system plus subsequens auxiliary feedwater syssem unavailability at Calvert Cliffs 1 (aER 317/80-027). Complete failure of an instrument air compress.. aftercooler tubes allowed compressed air to enter the SWS. Both SW pumps lost suction. The plant was manually tripped. Due to a valve realignment error during shutdown, the auxiliary feedwater system was also unavailable. The conditional probability of subsequent severe core damage given the failures observed in this event was estimated to be 7.0E 05.
4. Compozent cooling water inoperable at Pilgrim 1 (2ER 293/80-070). Loop B of the reactor building closed cooling water system (RBCCWS) was unavailable due to maintenance when a 480 V breaker tripped disabling Loop A . Loop A was immediately restored. The conditional probability of subsequent severe core damage given the failures observed in this event was estimated to be 4.2 E .09 .
5. Loss of service water cooling to the diesel generators at Salem I (LER 272/80-060). With the reactor in cold shutdown, service water header train 11SW was out of service for repairs. The diesels were found to be overheating. Train 125W flow valve was found to be indicating open when it was actually closed, resulting in loss of all SW to the DGs. The conditional probability of subsequent severe core damage given the failures observed in this event was estimaid to be $1.4 \mathrm{E}-07$.
6. Unavailability of diesel generator and component cooling water at Kewaunee (LER 305/81-033). With the reactor at full power, the 1 B diesel generator was removed from service for maintenance. The 1 A component cooling water heat exchanger was isolated and the supply MOV breaker opened. This resulted in unavailability of both component cooling water trains in the event of a LOOP. The conditional probability of subsequent severe core damage given the failures observed in this event was estimated to be L.IE08.
J. W. Minatick, J. D. Harris, P. N. Austin, J. W. Cletcher, E. W. Hagen, Precursors to Potential Severe Core Damage Accidents: 1984. A Status Report. NUREG/CR-4674, ORNL/NOAC-232, Volumes 3 and 4, May 1987.

This report describes 48 operational events, reported in Licensee Event Reports (LERs), which occurred at commercial light water reactors during 1984 that are considered to be precursors to potential severe core damage. These are described along with associated significance estimates, categorization, and ribsequent analyses.

Of the 48 precursors identified in this report, two involve the component cooling water (CCW) system. They are as follows:

1. All HPSI pumps unavailable at San Onofre 3 (LER 362/84-035). Train B CCW heat exchanger was removed from service for cleaning. Train B ESF components cooled by CCW, including the Train B HPSI pump, were therefore inoperable. Later the Train A HPSI bypass valves were opened in accordance with the approved surveillance procedure for conducting Train A subgroup relay testing. Opening the Train A HPSI bypass valves rendered Train A HPSI inoperable. The loss of
both trains of HPSI while operating at 100% power constitutes operation outside Limiting Condition for Operation. The conditional probability of subsequent severe core damage given the failures observed in this event was estimated to be $1.5 \mathrm{E}-07$.
2. Component cooling water isolated from charging pumps at Surry 1 (LER 280/84-011). Charging/SI pump CCW was found isolated from the intermediate seal cooler 1-SW-E-1B and SW was isolated from the intermediate seal cooler I-SW-E-1A. This alignment isolated the charging system's intended heat sink. The conditional probability of subsequent severe core damage given the failures observed in this event was estimated to be 1.1E-05.
J. W. Minarick, J. D. Harris, P. N. Austin, J. W. Cletcher, E. W. Hagen, Precursors to Potential Severe Core Damage Accidents: 1985, A Status Report, NUREG/CR-4674, ORNL/NOAC-232, Volumes 1 and 2, December 1986.

This report describes 63 operational events, reported in Licensee Event Reports (LERs), which occurred at commercial light water reactors during 1985 that are considered to be precursors to potential core damage. These are described along with associated significance estimates, categorization, and subsequent analyses.

Of the 63 precursors identified in this report, three involved service water or component cooling water. They are the following:

1. Component cooling water (CCW) system unavaiuable at Salem 2 (LER 311185-018). While one CCW heat exchanger was unavailable due to maintenance, the outlet valve for the redundant CCW heat exchanger transferred closed. Attempts to manually open the valve failed. Plant was shutdown to hot standby. The CCW heat exchanger that was undergoing maintenance was restored to an operable status and the shutdown was terminated. The conditional probability of subsequent severe core damage given the failures observed in this event was estimated to be 7.1E-06.
2. Loss of circulating water and nonsafety service water due to expansion joint failure at LaSalle 1 (L.ER 373/85-045). Flooding caused by failure of the 1 B circulating water pump discharge valve expansion joint rendered the circulation water
pumps and plant service water pumps unavailable. The conditional probability of subsequent severe core damage given the failures observed in this event was estimated to be 7.18E-05.
3. Potential simultaneous emergency service water (ESW) and RCIC wnawailabilities at Susqueharna 2 (LERs 388/85-014, 015). One ESW system train failed in testing. Three days prior, the RCIC system inboard steam isolation valve had failed. RCIC and the ESW system train could have failed at the same time. The conditional probability of subsequent severn core damage given the failures observed in this event was estimated to be $7.29 \mathrm{E}-08$.

J. W. Minarick, J. D. Harris, P. N. Austin, J. W. Cletcher, E. W. Hagen, Precursors to Potential Severe Core Damage Accidents: 1986, A Status Repors, NUREG/CR-4674, Volumes 5 and 6, May 1988.

This report describes 34 operational events, reported in Licensee Event Reports (LERs), which occurred at commercial light water reactors during 1986 that are considered to be precursors to polatial severe core damage. These are described along with associated significance estimates, categorization, and subsequent analyses.

Of the 34 precursors identified in this report, two involve the service water and component cooling water system. They are as follows:

1. Charging pump service svater pumps are unauailable at Surry 1 (LERR 280/86-029). All service water flow to the charging pump service water subsystem was lost because the pump became air bound. This abnormal condition affected the heat sink for the charging pump lubrication air coolers and the intermediate heat sink for the charging pump mechanical seals.

Maintenance activities on Service Water Pump A resulted in actuation of a smoke detector, which autornatically closed a service water fire isolation valve. Due to a leak on a strainer blowdown line in the service water supply line, the valve closure allowed air in-leakage, which caused Service Water Pump B to become air bound. The conditional probability of subsequent severe core damage given the failures observed in this event was estimated to be $1.0 \mathrm{E}-08$.
2. Saltwater and CCW systems are unawailable at San Onofre 3 (LER 362/86-01I). Saltwater cooling flow through the train A CCW heat exchanger decreased as a rcault of fouling with marine growth. The flow rate was below the design basis flow rate required for removal of CCW beat loads, and therefore the heat exchanger was declared inoperabls. At the same time, train B was operating with reverse salt water cooling flow to remove similar fouling Both trains of the saltwater cooling system were considered inoperable until realignment was complete. The conditional probability of subsequent severe core damage given the failures observed in this event was estimuted to be 2.6 E 07.
J. W. Minarick, J. D. Harris, J. W. Cletcher, P. N. Austin, A. A. Blake, Precursors to Potential Severe Core Damage Accidents; 1987, A. Status Report, NUREG/CR-4674, Volumes 7 and 8, July 1989.

This report describes 48 operational events, reported in Licensee Event Reports (LERs), which occurre, at commercial light water reactors during 1987 that are considered to be precursons to potential severe core damage. Each of these events has conditional probability of subsequent severe core damage of $1.0 \mathrm{E}-06$ or higher. These are described along with associated significarce estimates, categorization, and subsequent analyses.

Of the 48 precursors identified in this report, one involves the service water system.

1. Trip with service water train and PORVs unawailable at McGuire 2 (LER 370/87-016, . 017). Service water train 2A was taken ou: of service for cleaning after a test where it faile 1 to provide adequate circulation to the train 2A CCW 2A heat exchanger, containment spray heat exchanges, and RHR pump air handling unit.

During this period, the reactor tripped, and the precursor pow - -operated relief valves (PORVs) failed to open on high pressure due to loss of power to the PORVs. All SG PORVs opened and closed late. After recovery from the trip. the unit was placed in hot standby.

The trip required that the solid state protection system train 2B be tested prior to returning to power. Operations supervision permitted the test
even though it would render both SW trains inoperable. The conditional probability of subsequent severe core damage given the failures observed in this event was estimated to be 70E06.
J. W. Minarick, J. W. Cletcher, A. A. Blake, Precursors to Potential Severe Core Damage Accidents: 1988, A Status Report, NUREG/CR-4674, Volumes 9 and 10, February 1990.

This report describes 32 operational events, reported in Licensec Event Reports (LERs), which occurred at commercial light water reactors during 1988 that are considered to be precursors to potential severe core dunage. Each of these events kiss a conditional probability of subsequent severe core damage of $1.0 \mathrm{E}-06$ or higher. These are described along with associated significance estimates, categorization, and subsequent analyses.

Of the 32 precursors itified in this report, three involve service water or cooling water. They are as follows:

1. Potential lass of service water pumps ar Palisades (LER 255/88-021). Spurious service water pump trips led to the discovery of incorrectly set relays that could have resulted in a loss of service water during high beat load situations. The conditional probability of severe core damage estimated for this event is $2.7 \mathrm{E}-05$.
2. Potential for AFW and CCW pump failure to autostart during LOOP due so anti-pump breaker design deficiency at Zion I (2.ER/88-019). The auxiliary feedwater (AFW) pumps (motor driven only) and component cooling water (CCW) purmps might not start during a loss of offsite power, and the service water pumps would lock out in the case of a "degraded grid voltage" condition. A design deficiency of the anti-pump feature of the AFW and CCW breaker control circuits would lock out the breakers in the "tripped" condition if an actual LOOP occurred. The conditional probability of severe core damage estimated for this event is $1.0 \mathrm{E}-04$.
3. Component cooling valves drift closed on lass of air at Davis Besse (LER 346/88-007 R1). During malintenance, it was discovered that a prolonged loss of instrument air would cause three service water valves to close. This closure resulted in isolation of service water to the
component cooling water heat exchangers, which faults the heat removal capability of this system. The conditional probability of severe core damage estimated for this event is $1.6 \mathrm{E}-06$.

This report also listed 28 potentially significant events that were impractical to analyze. These events are believed capable of significantly impacting core damage sequences. However, they involve component degradations where the extent of the degradation could not be determined or where the impact of the degradation on plant response could not be ascertained. There were two service water events in this list. They are as foilows:

1. Both eme gency chilled water system (ECWS) trains inoperable at San Onofre (LER 361/88010 RI). The ECWS was unavailable for approximately four days cs a result of low freon level in the systom chillers, combined with low CCW temperature which caused the chiliers to trip when staring. Loss of the ECWS cauld result in the unavailability of emergency room cooling for the high and low pressure injection and containment spray pumps.
2. Postulated fire can result in loss of service water at Farley 1 and 2 (LER 348-88-018 R1). After an evaluation, it was determined that a fire in a single fire area could cause the loss of both trains of the service water system in the plant. The fire could result in damage to circuitry for two valves that allow recirculation of sorvice water back to the service water pond.

J. W. Minarick, J. W. Cletcher, D. A. Copinger, B. W. Dolan, Precursors to Potential Severe Core Damage Accidentsi 1989. A Status Report, NUREG/CR-4674, ORNL/NOAC-232, Volumes 11 and 12, August 1990.

This report describes 30 operational events, reported in Licensee Event Reports (LERs), which occurred at commerciat light water reactors during 1989 that are considered to be precursors to potential severe core damage. Each of these events has a conditional probability of subsequent severe core damage of $1.0 \mathrm{E}-06$ or higher. These are described along with associated significance estimates, categorization, and subsequent analyses.

Of the 30 precursors identified in this report, one involves service water. At Arkansas Nuclear One, Unit 1 (LER $313 / 89-028$), an unknown contact was discovered in the control circuits for two of the three service water pumps.

Appendix B

In situations involving a safety actuation signe ${ }^{1}$ without previous main generator lockout (spurious safety actuation signal or large break LOCA), this contact would prevent service water pump restart. The conditional core damage probability was estimated at $2.8 \mathrm{E}-64$.

This report also listed twenty seven potential significant events that were impractical to malyze. These events are believed capable of significanily impacting core damage sequences. However, they involve component degradations where the extent of the degradation could not be determined or where the impact of the degradation on plant response could not be ascertained. There were five service water events in this list. They are as follows:

1. Emergency service water and high pressure service water systems may not function correctly at Peach Bottom 2 (LER 277/89-002). Instrumentation and control problems resulted in unacceptable-test performance under low flow conditions.
2. Potential for pipe rupture in nonsafery service waiar system to foil both safery-related service water trains at Calvert Cliffs I (LER 317/89-023 R1). Rupture of service water piping in the turbine building could rapidly drain both safetyrelated service water suiusystems supplying the auxiliary building.
3. Break in nonsafety circulation water line would render setvice water pumps inoperable at DavisBesse 1 (LER 346/89-004). A flood path was identified between the condenser pit and the service water tunnel. Flooding in the condenser pit area could propagate to the service water pump area and cause the loss of all service water pumps.
4. Potential for service water and emergency core cooling system (ECCS) pump room flooding at Nine Mile Point 2 (LER 410/89-002). Floods from turbine building could propagate to service water and ECCS pump rooms.
5. Service water leak flooded auxiliary building at River Bend (LER 458/89-020) A freeze plug failed in a standby service water line in the auxiliary building. About 15,000 gallons of water were released, which impaired various electrical control and power sysiems.

APPENDIX C

SERVICE WATER SYSTEM DATA SHEETS

Table of Contents

Section Page
1.0 INTRODUCTION C-5
2.0 COOPER NUCLEAR STATION COOLING WATER SYSTEM SUMMARIES C-7
3.0 QUAD CITIES NUCLEAR STATION UNIT I COOLING WATER SYSTEM SUMMARIES C-13
4.0 PEACH BOITOM NUCLEAR STATION UNIT 2 COOLING WATER SYSTEM SUMMMARIES C-17
5.0 GRAND GULF NUCLEAR STATION COOLING WATFR SYSTEM SUMMARIES C-23
6.0 St . LUCIE NUCLEAR STATION UNIT 1 COOLING WATER SYSTEM SUMMARIES C-26
7.0 CALVERT CLIFFS NUCLEAR STATION UNIT 1 COOLING WATER SYSTEM SUMMARIES C-32
8.0 ARKANSAS NUCLEAR ONE COOLING WATER SYSTEM SUMMARIES C-38
9.0 POINT BEACY NUCLEAR STATION UNIT 1 COOLING WATER SYSTEM SUMMARIES C-40
10.0 TURKEY POINT NUCLEAR STATION UNIT I COOLING WATER SYSTEM SUMMARIES C-45
11.0 SURRY NUCLEAR STATION UNIT 1 COOLING WATER SYSTEM SUMMARIES C-49
12.0 SEQUOYAH NUCLEAR STATION UNIT 1 COOLING WATER SYS:EM SUMMARIES C-53

List of Figures

Figure Page
C. 1 Cooper Nuclear Station Service Water System C-11
C. 2 Cooper Nuclear Station Reactor Building Closed Cooling Water System C. 12
C. 3 Quad Cities Residual Heat Removal Service Water System C-15
C. 4 Quad Cities Diesel Generator Cooling Water System C-16
C. 5 Peach Bottom Emergency Service Water System C-20
C. 6 Peach Bottom High Pressure Service Water System C-22
C. 7 Grand Gulf Standby Service Water System C-24
C. 8 St . Lucie Component Cooling Water System C-30
C. 9 St. Lucie Intake Cooling Water System C-31
C. 10 Calvert Cliffs Salt Water System C-35
C. 11 Calvert Cliffs Component Cooling Water System C-36
C. 12 Calvert Cliffs Service Water System C-37
C. 13 ANO-1 Service Water System C-39
C. 14 Point Beach Service Water System C-43
C. 15 Point Beach Component Cooling Water System C-44
C. 16 Turkey Point Service Water System C-47
C. 17 Turkey Point Component Cooling Water System C-48
C. 18 Surry Service Wa.ar System C-51
C. 19 Surry Component Cooling Water System C-52
C. 20 Sequoyah Service Water System (Page 1 of 4) C-56
C. 21 Sequoyah Component Cooling Water System C-60

List of Tables

Table Page
C. 1 Plants Reviewed C-6

1.0 ENTRODUCTION

The cooling water systems (e.g., service water, component cooling water, salt water, etc.) of eleven nuclear power plants for which a NRC Probabilistic Risk Assessment (PRA) was available were reviewed to obtained some basic information on the fundamental safety function each is required to perform following an accident. Table C. 1 lists the plants reviewed and each plant's respective cooling water system.

System summary data sheets were filled out for each system considered and are contained herein. The information contained in this appendix was obtained from each plant's respective NRC sponsored PRA is well as NRC-sponsored system source books where available. Note that the systems reviewed are thuse systems that were modeled in the PRA reviewed.

Table C. 1

Plants Reviewed

Plant	Cooling Water system Reviewed
Cooper Nuclear Station	Service Water Sy stem
	Reactor Building Closed Cooling Water System
Quad Cities	Residual Heat Removal Service Water System
Peach Bottom	Emergency Service Water system
	High Pressure Service Water System
Grand Gulf	Standby Service Water System
St. Lucie	Component Cooling Water System
	Intake Cooling Water System
Calvert Cliff	Salt Water System
	Component Cooling Water System
	Service Water System
ANO-1	Service Water System
Point Beach	Service Water Syztem
	Component Cooling Water System
Turkey Point	Service Water \$ystem
	Component Conling Water System
Surry	Service Water System
	Commonent Comling Water System
Sequoyah	Service Water Systm
	Component Cooling Water System

2.U COOPER NUCLEAR STATION COOLING WATER SYSTEM SUMMARIES

PLANT: COOPER TYPE: BWR VINTAGE: OLD NO. UNITS: 1
SYSTEM: SWS OPEN OR CLOSED LOOP: OPEN SOURCE: RIVER
NUMBER OF TRAINS: 2 NUMBER OF PUMPS/TRAIN: 2
PRA: NUREG/CR-4767 TAP A-45
SUCCESS CRITERIA:
Any one of four SWS pumpr we assumed to supply sufficient cooling water flow during an accident when the non-critical header has been isolated.

If the non-critical header does not isolate, TAP A-45 assumed that all four SWS pumps are required for success. See Figure C. 1.

CROSS-TIES:

Four SW pumps discharge to a common header from which independent piping supplies to safety related cooling water loops and the Tu.tine Building Closed Cooling Water (TBCCW) heat exchangers which are not safety-related.

SYSTEM VULNERABILITIES:
Failure of non-critical header to isolate (i.e., MOV-MO117 to close) following an accident thereby diverting flow away from safety-related loads.

POTUNTLAL SYSTEM RECOVERY ACTIONS:
Manually close non-critical supply MOV (MOV117).

PLANT: COOPER TYPE: BWR VINTAGE: OLD NO, UNITS: 1

SYSTEM: RBCCW OPEN OR CLOSEN LOOP: CLOSED SOURCE: N/A

NUMBER OF THCALIS: 2 NUMBER OF PUMPS/TRAIN: 2

PRA: NUREG/CR-4/67 TAP A-45

SUCCESS CRITERIA:

Following a design basis accident, the following success criteria spplies:

- One-out-of-four RBCCW operate successfully,
- Non-critical header isolates,
- The appropriate RBCCW heat exchanger is available, and
- The appiropriate train of the service water system is successful.

Note that the service water system is a redundant cooling water source for most of the components served by the RBCCW system, therefore the SW system can perform the same functions as the RBCCW system.

TAP A-45 assumed that if the non-critical header did not isolate, four RBCCW pumps were required for success. See Figure C. 2.

CROSS-TIES:
The service water system can be manually connected to supply most of the loads served by the RBCCW system. Since RBCCW success is dependent on SW success, the RBCCW pumps and heat exchangers can be unnecesarly under emergency condiuons.

SY:゙TEM VULNERABIIITIES:

If the non-critical h. r fails to isolate during an accident then some flow will be diverted away from safety-related loads. P A-45 assumed that if the non-critical header fails to isolate, four RBCCW pumps are required t jocess.

Failure of RBCCW supply MOVs to BCCS room coolers and pump coolers to open following an accident.

The RBCCW consists of two cross-tied supply headers. Fach header is supplied with a normally closed MOV. Common-mode failure of these two valves to open fails RBCCW.

POTENTIAL SYSTEM RECOVERY ACTIONS:

TAP A-45 recovery actions considered:

- Manually isolate non-critical header MOV (MOV700).
- Recovery of the RBCCW system by manually upening connections to the SWS and use the SWS pumps to cool the RBCCW loads.

One combination of failures identified in the analysis involved loss of secondary cooling to the RBCCW beat exchanger 1 A and failure of RBCCW valve 714 to open. Based on the RBCCW flowpath arrangement, water from heat exchanger IB could be routed through valve 711 to the safety loads if heat exchanger 1 A is isolate:. Isolation of heat exchanger 1 A requires closure of MOV $7: 3$ and manual valve 18 .

BIBLIOGRAPHY:

1. Steven W. Hatch, et al., Shutdown Decay Heat Removal Analysis of a General Electric BWR4/Mark 1 Case Study, NUREG/CR-4767, SAND86-2419, July 1987.
2. U. S. Nuclear Regulatory Commission, Nuclear Power Plant Systrm Sour ebook Ceaper 50-298, SAIC 88/1994.

PLANT COOPER TYPE: BWR VINTAGE: OLD NO, UNITS: 1
SYSTEM: RHRSW OPEN OR CLOSED LOOP: OPEN SOURCE: SWS
NUMBER OF TRAINS: ? NUMBER OF PUMPS/TRAIN: 2
PRA: NUREG/CR-4776 TAP A-45

SUCCESS CRITERIA:

For RHRSW to be successful:

- One pump per RHRSW train must be available to supply the R:AR loop HX selected for CSS, SPC, or SDC.
- SW must be successful supplying the appropriate RHRSW pump train,
- The RHRHX placed in service for CSS, SPC, or SDC, RHRSW outlet MOV must open.

See Figure C. 1.
CROSS-TIES:
The two RHRSW headers are cross-tied with normally Locked Closed manual valves.

SYSTEM VULNERABII ITTES:

The RHRHX service water outlet MOV, for the selected HX, must open for RHRSW success. Failure defeats one loop of RHR for SPC, SDC, and CSS.

RHRSW is supplied by the SW system. Failure of the SW system defeats RHRSW,

POTENTIAL SYSTEM RECOVERY ACTIONS:

Manually open RHRHX RHRSW outlet MOV.
Open cross-tie mzaual valves to feed failed RHRSW train.

REFERENCES:

1. Steven W. Hatch, et al., Shutdown Decay Heat Removal Analysis of a General Electric BWR4/Mark I Case Study, NUREG/CR-4767, SAND86-2419, July 1987.
2. U. S. Nuclear Regulatory Commission, Nuclear Power Plant System Sourcebook Cooper 50-298, SAIC 88/1994.

3.0 QUAD CITIES NUCLEAR STATION UNIT 1 COOLING WATER SYSTEM SUMMARIES

PLANT: QUAD CITIES TYPE: BWR VINTAGE: OLD NO. UNITS: 2
SYSTEM: RHRSW OPEN OR CLOSED LOOP: OPEN SOURCE: RIVER
NUMBER OF TRAINS: 2 NUMBER OF PUIMPS/TRAIN: 2
PRA: NUREG/CR-4448 TAP A-45

SUCCESS CRITERIA:

The Residual Head Removal Service Water (RHRSW) System success criteria is one pump taking suction from the crib house and supplying cooling water to the RHR heat exchi ger in the RHR loop aligned for containment spray, suppression pool cooling, or shutdown cooling. See Figure C.3.

CROSS-TIES:
The RHR service water pump trains are nct cross-tied.

SYSTEM VULNERABILITIES:

Failure of RHRHX RHRSW outlet MOV to open in the selected loop will fail HX cooling, thus failing one loop of RHR for CSS, SDC, and SPC.

POTENTIAL SYSTEM RECOVERY ACTIONS:

Recovery actions incomorated in the TAP A-45 study included:

- recovery of pump common mode failure within four hours.
- recovery of pump common mode failure within 24 hours.

BIBLIOGRAPHY:

1. S. W. Hatch, et al., Shutdown Decay Heat Removal Analysis of a General Electric BWR3/Mark 1 Case Study, NUREG/CR-4448, SAND85-2373, March 1987.
2. U. S. Nuclear Regulatory Commission, Nuclear Power Plant System Sourchbok Quad Cities 1 and 250-254 and 50-265, SAIC 89/1537.

Appendix C
PLANT: QUAD CITTES TYPE: BWR VINTAGE: OLD NO. UNITS: 2
SYSTEM: DGCW OPEN OR CLOSED LOOP: OPEN SOURCE: RIVER

NUMBFR OF TRAINS: 3 NUMPRR OF PUMPS/TRAIN: 1

PRA: NUREG/CR-4448 TAP A-45

SUCCESS CRITERIA:

The success criteria for Diesci Jenerator Cooling Water (DGCW) System is that, for each operating diesel generator, the associated DGCW pump can provide adequate cooling water. See Figure C. 4.

If emergency room cooling is necessary, the Unit 1 emergency room air coolers can be supplied witk adequate room cooling by either, (a) DGCW train 1, (b) cross-tie to DGCW train 1/2, or (c) the low pressure service water system, if available.

Comparable options exists for Unit 2.

CROSS-TIES:

Units 1 and 2 Room cooling supply headers are each cross-tied to swing DG $1 / 2$ cooling water header through a manual valve.

SYSTEM VULNERABILITIES:

Each of the three diesels has its own independent DGCW pump to provide jacket water and lube oil cooling. Therefore, single failures in the DGCW would defeat the diesel being cooled.

POTENTIAL SYSTEM RECOVERY ACTIONS:
Recovery actions incorporated into the TAP A-45 analysis were:

- recovery of a system subtrain or componerif from a maintenance outage within 24 hours
- recovery of pump commes tiode failures within 24 hours
- recovery of pump common mode failures within 4 hours

BIBLIOGRAPHY:

1. S. W. Hatch, et al., Shutdown Decay Heat Removal Analysis of a General Electric BWR3/Mark 1. Case Study, NUREG/CR-4448, SAND85-2373, March 1987.
2. U. S. Nuclear Regulatory Commissior., Nuclear Power Plant System Sourcebook Quad Cities
3. and $2.50-254$ and $50-265$, SAIC 89/1537.

Figure C. 3 Quad Cities Residual Heat Remeval Service Water System

Appendix C

Figure C. 4 Quad Cities Diesel Generator Cooling Water System

4.0 PEACH BOTTOM NUCLEAR STATION UNTT 2 COOLING WATER SYSTEM SUMMARIES

PLANT: PEACH BOTTOM UNIT2 TYPE: BWR VINTAGE: OLD NO. UNITS: 2
SYSTEM: ESW OPEN OR CLOSED LOOP: OPEN/CLOSED SOURCE: RIVER
NUMBER OF TRAINS: 2 NUMBER OF PUMPS/TRAIN: 1

PRA: NUREG/CR-4550

SUCCESS CRITERIA:

System source book success criteria:
The Emergency Service Water (ESW) system can operate in either of two modes: open-loop or closed-loop. The success criteria for open-loop operation are 1 of 2 ESW pumps must operate and there must be an intact flow path from the pump to the heat loads. The success criteria for closed-loop operation are, (a) 1 of 2 ESW pumps or the emergency cooling water pump must operate, (b) 1 of 2 ESW booster pumps must operate, and (c) there must be an intact closed-loop flow path. If the main ESW pumps are used, the closed loop flow patn includes the gravity feed line from the cooling tower reservoir back to the suction wells. If the emergency cooling pump is used, the closed-loop flow path includes the line from this pump to the two ESW supply headers.

NUREG/CR-1150 success criteria:
The success criteria for the ESW system is either of the ESW pumps or the ECW pump supplying cooling water to system heat loads.

See Figure C. 5 .

CROSS-TIES:

The ESW system consists of two pumps operating in parallel. Both pumps are cross tied at their discharge through two manual valves.

The ESW is backed up by the emergency cooling water pump. To align the emergency cooling water pump, the normal ESW suction path is isolated by closing the sluice gates in the service water suction wells, the normal ESW discharge path is isolated by closing the MOV to the discharge pond, and an alternate flow path via the emergency cooling towers is established. One emergency cooling tower with one of three fans operating is needed to provide adequate cooling. The emergency cooling water pump takes suction from the emergency cooling tower reservoir and delivers water to the two ESW supply headers through a motor-operated valve. Units 2 and 3 share the ESW system.

Appendix C

SYSTEM VULNERABILITIES

Dependency on the operator to initiate the emergency heat sink following loss of the ESW pumps.
Failure of the operating ESW pump due to back leakage of the standby ESW discharge check valve.

POTENTIAL SYSTEM RECOVERY ACTIONS:

The significant recovery action to consider is to align the emergency heat sink following loss of cooling water flow from the ESW pumps.

MISCELLANEOUS:

Pumps are self cooled. ESW room cooling was not modeled in 1150 analysis.

BIBLIOGRAPHY

1. A. M. Kolaczkowski, et al, Analysis of Core Damage Frequency: Peach Bottom, Unit 2 Internal Events, NUREG/CR-4550, SAND86-2084, Volume 4, Rev. 1, Part 1, August 1989.
2. U. S. Nuclear Regulatory Commission, Nuclear Power Plant System Sourcebook, Peach Bottom 2 and 3, 50-277 and 50-278, SAIC 89/1020.

PLANT: PEACH BOTTOM TYPE: BWR VINTAGF: OLD NO, UNITS: 2

SY':EM: HPSW OPEN OR CLOSED LOOP: OPEN SOURCE: RIVER
NUMBER OF TRAINS: 2 NUMBER OF PUMPS/TRAIN: 2
PRA: NUREG/CR-4550

SUCCESS CRITERIA

One High Pressure Service Water (HPSW) pump is required for each RHR heat exchanger that is in service. The HPSW pumps are normally aligned to specific RHR heat exchangers but all pump trains are cross-connected. See Figure C. 6.

CROSS-TIES:

Both Units have two trains of HPSW with each train consisting of two pumps. The two trains are cross-connected through a motor-operated valve.

Units 2 and 3 HPSW systems are also cross-connected through manual valves.

SYSTEM VULNERABILITIES:

HPSW system failures do not appear in any of the 4550 analysis dominant cutsets.
The HPSW is susceptible to common mode failure of the RHR heat exchanger air operated valves, which have to open for HPSW success.

POTENTIAL SYSTEM RECOVERY ACTIONS:

The amount of redundancy provided in the HPSW system allows multiple opportunities for recovery of system component failures.

MISCELLANEOUS:

Room cooling not required per 4550 analysis.

BIBLIOGRAPHY:

1. A. M. Kolaczkowski, et al, Analysis of Core Damage Frequency: Peach Bottom, Unit 2 Internal Events, NUREG/CR-4550, SAND86-2084, Volume 4, Rev. 1, Part 1, August 1989.
2. U. S. Nuclear Regulatory Commission, Nuclear Power Plant System Sourcebook, Peach Bottom 2 and 3, 50-277 and 50-278, SAIC 89/1020.

Figure C. 5 Peach Bottom Emergency Service Water System (Page 1 of 2)

Figure C. 5 Peach Bottom Emergency Service Water System (Page 2 of 2)

Figure C. 6 Peach Bottom High Pressure Service Water System

5.0 GRAND GULF NUCIEAR STATION COOLING WATER SYSTEM SUMMARTES

PLANT: GRAND GULF TYPE: BWR VINTAGE: NEW NO. UNTTS: 1
SYSTEM: SSWS OPEN OR CLOSED LOOP: CLOSED SOURCE: COOITNG TOWER
NUMBER OF TRAINS: 3 NUMBER OF PUMPS/TRAIN: 1

PRA: NUREG/CR-4550

SUCCESS CRITERIA:

The Standby Service Water System (SSWS) is made up of three separate trains. Therefore the success criteria for the SSWS is defined on a per train basis. For each train of SSWS, the SSWS pump must 0_{1} viate, the intertie between the SSWS and the Plant Service Water System (PSWS) must isolate (PSWS is the normal cooling water source for ESF room coolers), and the flow path to the various heat loads must be open. See Figure C. 7.

CROSS-TIES:
SSWS Trains A and B can be cross-tied to each other. SSWS train C is dedicated to serving the heat loads associated with the KPCS, and can not be cross-tied to the other SSWS trains.

SYSTEM VULNERABILITIES:

Station blackout sequences dominate the core damage frequency in the 4550 analysis. The SSWS shows up as dominate contributor to the Grand Gulf CDF because the emergency diesel generators are dependent on the SSWS for jacket water cooling.

The dominate failure mode of SSWS is common mode failure of the SSWS pumps.
All other dominate cutsets which contain SSWS events are single SSWS failures coupled with diesel failures, e.g., SSWS pump A fails to start and DG 12 fails to run and DG 13 fails to start.

POTENTIAL SYSTEM RECOVERY ACTIONS:

No SSWS recovery actions were incorporated in.o the 4550 analysis.

BIBLIOGRAPHY:

1. M. T. Drouin, et al, Analysis of Core Damage Frequency; Grand Gulf, Unit 1 Internal Events, NUREG/CR-4550, SAND86-2084, Volume 6, Rev. 1, Part 1, September 1989.
2. U. S. Nuclear Regulatory Commission, Nuclear Power Plant System Sourcebook Grand Gulf 150-416, SAIC 89/1007.

Figure C. 7 Grand Gulf Standby Service Water System (Page 1 of 2)

6.0 St LUCIE NUCLEAR STATION UNIT 1 COOLING WATER SYSTEM SUMMARIES

PLANT: St. LUCIE TYPE: PWR VINTAGE: NEW NO, UNITS: 2

SYSTEM: CCWS OPEN OR CLOSED LOOP: CLOSED SOURCE: SURGE TANK

NUMBER OF TRAINS: 2 NUMBER OF PUMPS/TRAIN: 1

PRA: NUREG/CR-4710 TAP A-45

SUCCESS CRITERIA:

The success criteria is given on a per loop basis. The success criteria per loop is:

- I of 2 CCW pumps per loop must operate (i.e., 1 A or 1 C in $\operatorname{loop} \mathrm{A}, 1 \mathrm{~B}$ or 1 C in $\operatorname{loop} \mathrm{B})$ - The CCW heat exchanger must be available as a heat sink.

Note that pump 1C can only be aligned to one CCW Loop, A or B. See Figure C. 8 .

CROSS-TIES

There are two CCW loops supplying separate loads. Each CCW cooling loop has one dedicated pump. A third pump is available to provide cooling water to sither loop should one of these pumps fail.
SYSTEM VULNERABILITIES:
Common mode failure of the CCW pump would result in overheating of the HPI pumps and the LPI pumps and emergency core coolant injection failure after a small LOCA or transient induced LOCA. In addition, the containment spray injection pumps, fan coolers, and shutdown heat exchangers require CCW for successful operation.

No mention is made in TAP A-45 or the System Source Book as to whether the non-critical header supplied by CCW during normal operation is a diversion path should it fail to isolate following a SIAS.

POTENTIAL SYSTEM RECOVERY ACTIONS:

Failure of one CCW pump can be recovered by starting the standby pump and aligning to the failed pumps discharge header.

MISCELLANEOUS:
The Unit 1 and Unit 2 CCWSs are independent systems.

BIBLIOGRAPHY:

1. W. R. Cramond, et al, Shutdown Decay.Heat Removal Analysis of a Combustion Engineering 2:Loop Pressurized Water Reactor Case Study, NUREG/CR-4710, S4ND86-1797, July 1987.
2. U, S. Nuclear Regulatory Commission. Nuclear Power Plant.System Sourcebook, St. Lucie. 1 and 2. 50-335 and 389, SAIC 89/1527.

Appendix C
PLANT: SL.LUCIE TYPE: PWR VINTAGE: NEW NO. UNITS: 2
SYSTEM: ICWS OPEN OR CLOSED LOOP: OPEN SOURCE: OCEAN
NUMBER OF TRAINS: 2 NUMBER OF PUMPS/TRAIN: 1
PRA: NUREG/CR-4710 TAP A-45

SUCCESS CRITERIA:

The success criteria for the Intake Cooling Water System (ICWS) is given on a per loop basis. The success criteria per loof is:

- 1 of 2 CCW pumps per loop must operate (i.e., 1 A or 1 C in $\operatorname{loop} \mathrm{A}, 1 \mathrm{~B}$ or 1 C in loop B)
- The CCW heat exchanger must be available as a heat sink.

Note that pump 1C can only be aligned to one CCW loop, A or B. See Figure C.9.

CROSS-TIES

There are two ICWS loops supplying separate loads. Each ICWS cooling loop has one dedicated pump. A third pump is available to provide cooling water to either loop should one of these pumps fail.

SYSTEM VULNERABILITIES:

Common mode failure of the ICWS pumps prevents adequate heat removal via the CCW heat exchangers. There is no mention in TAP A-45 or the System Source Book as to whether the non-critical header supplied by ICWS during normal operation is a diversion path should it fail to isolate following a SIAS.

POTENTIAL SYSTEM RECOVERY ACTIONS:
Failure of either ICWS pump can be recovered by starting the standby pump and aligning to the failed pumps discharge header.

MISCELLANEOUS:
The Unit 1 and Unit 2 ICWS are independent systems.

BIBLIOGRAPHY:

1. W. R. Cramond, $c i$ al, Shutdown Decay Heat Removal Analysis of a Combustion Engipan, 2-Loop Pressurized Water Reactor Case Study, NUPEG/CR-4710, SAND86-1797, Ju'
2. U. S. Nuclear Regulatory Commission. Nuclear Power Plant System Sourcebook, and 2, 50-335 and 389, SAIC 89/1527.

Figure C. 8 St. Lucie Component Cooling Water System

Figure C. 9 St. Lucie Intake Cooling Water System

7.0 CALVERT CLIFFS NUCLEAR STATION UNIT 1 COOLING WATER SYSTFM SUMMARIES

PLANT: CALVERT CLIFFS TYPE: PWR VINTAGE: OLD NO. UNITS: 2
SYSTEM: SWS OPEN OR CLOSED LOOP: OPEN SOURCE: OCEAN
NUMBER OF TRAINS: 2 NUMBER OF PUMPS/TRAIN: 1

PRA: NUREG/CR-3511 IREP

SUCCESS CRITERIA:

The success criteria for the Salt Water System (SWS) is given on a per loop basis. The success criteria per loop is:

- 1 of 2 SWS pumps per loop must operate (i.e., pump 11 or 13 in loop 11, pump 12 or 13 in loop 12)
- The SWS heat exchanger must be available as a heat sink.

Note that pump 13 can only be aligned to one SWS loop, A or B. See Figure C. 10.
CROSS-TIES:
There are two SWS loops supplying separate loads. Each SWS cooling loop has one dedicated pump. A third pump is available to provide cooling water to either loop should one of these pumps fail.

SYSTEM VULNERABILITIES:

The Calvert Cliff SWS is very similar to the St. Lucie ICWS and CCW systems. In the St. Lucie TAP A-45 study common mode failures of the cooling water pumps dominated cooling water system faults. However, in the Calvert Cliffs IREP analysis there appears to be no modeling of common mode failures which leaves in doubt the amount of contributios. made by the SWS to the total CDF.

POTENTIAL SYSTEM RECOVERY ACTIONS:

The only recovery modeled in the PRA was failure of the operator to manually open SWS pneumatic valves following their failure to automatically open.

BIBLIOGRAPHY:

1. Arthur C. Payne, Jr., Interim Reliability Evaluation Program: Analysis of the Calyert Cliffs Unit 1 Nuclear Power Plant Volume 1. Main Report, NUREG/CR-3511/1 of 2, SAND83-2086/1 of 2, September 1983.

PLANT: CALVERT CLIFES TYPE: PWR VINTAGE: OLD NO, UNITS: 2
SYSTEM: rCWS OPEN OR CLOSED LOOP: CLOSED SOURCE: N/A

NUMBER OF TRAINS: 2 NUMBER OF PUMPS/TRAIN: 1

PRA: NUREG/CR-3511 IREP

SUCCESS CRITERIA:

Success for the Component Cooling Water (CCW) System was considered to be one CCW purnp and one CCW heat exchanger available to remove heat from the CCW loads during accident conditions. See Figure C. 11.

CROSS-TIES:

Three CCW pumps discharge to a common header which feeds two separate cross-tied distribution headers.

SYSTEM VULNERABIIITIES:

As with SWS, there was no comtnon mode failure of the pumps considered in the analysis. This appears to be a significant oversight.

POTENTLAL SYSTEM RECOVERY ACTIONS:

No recovery modeled for CCW in IREP PRA.
BIBLIOGRAPHY:

1. Arthur C. Payne, Jr., Interim Reliability Evaluation Program; Analysis of the Calvert Cliffs Unit 1 Nuclear Power Plant Volume 1. Main Report, NUREG/CR-3511/1 of 2, SAND83-2086/1 of 2, September 1983.

Appendix C
PLANT: CAYVERT CLIEFS TYPE: PWR ITNTAGE: OLD NO UNITS: 2
SYSTEM: §RWS OPEN OR CLOSED LOGP: CLOSED SOLRCE: N/A
NUMBER OF TRAKHS: 2 NUMBER of PUMPS/TRATN: 1

PRA: NUREG/CR-3511 IREP

SUCCESS CRITERIA:

The success criteria for the Service Water System (SRWS) System is given on a subsystem basis. The success criteria is as follows:

1 of 2 SRWS purnps per loop must operate (i.e., pump 11 of 13 in loop 11, pump 12 or 13 in loop 12)
The SWS neat exchanger must be available as a heat sink.
Note that pump 13 can only be aligued to one SWS loop, 11 or 12 . See Figure C. 12.
CROSS TTES:
Three SRWS pumps discharge to a common header which feeds two separate cross-tied distribution headers.

SYSTEM VULNERABILITIES:

As with SWS, there was no common mode failure of the pumps consideret in the analysis. This appears to be a significant oversight.

POTENTIAL SYSTEM RECOVERY ACTIONS:
No recovery modeled for CCW in IREP PRA.

BIBLIOGRAPHY:

1. Arthur C. Payne, Jr. Interim Reliability Evaluation Program: Analysis of the Calvert Cliffs Unit 1 Nuclear Power Plans Volume 1. Main Rerort, NUREG/CR-3511/1 of 2, SAND83-2086/1 of 2, September 1983.

Figure C. 11 Calvert Cliffs Component Cooling Water System

Figure C. 12 Calvert Cliffs Service Water System

Appendix C

8.0 ARKANGAS NUCLEAR ONE COOLING WATER SYSTEM SUMMARIES
 PLANT: ANO-1 TYPE: PWR VINTAGE: OLD NO. UNITS: 1
 SYSTEM: SWS OPEN OR CLOSED LOOP: OPEN SOURCE: LAKE
 NUMBER OF TRAINS: 2 NUMBER OF PUMPS/TRAIN: 1

PRA: NUREG/CR-4713 TAP A-45

SUCCESS CRITERIA:

As ciefined in the TAP A-45 analysis, the success criteria for the SWS is as follows:
With an ESAS signal, no credit is given for one loop backing up tho other. That is, the loops are designed to isolate on an ESAS, and if they do not, the operator is trained to isolate them. A.ly diversion from a loop subsequent to the ESAS signa!, is assumed to fail the loop.

For the case without an ESAS condition, credit is given for one loop backing up the other, and diversions to normal plant loads do not fail the SWS because the pre-ESAS loads are not as large.
13.
A..... are three SWS pumps. During normal operation, two of them are in use with the third pump in
standby. All of the crossover valves in standby. All of the crossover valves in the common-pump-discharge headers are open, but they close upon DSAS actuation. No valve realignment occurs unless an ESAS signal is present.

SYSTEM VULNERABILITIES:

Due to the redundancy provided, common mode failures dominate SWS failure. However, a single valve failure (i.e., plug) can obstruct the common SWS discharge line back to the lake.

POTENTIAL SYSTEM RECOVERY ACTIONS:

No recovery actions were found in the TAP A-45 cutsets that applied directly to the SWS. This is not surprising since all of the SWS events found were common mode failures of valves or pumps.

BIBLIOGr.APHY:

1. W. R. Cramond, et al, Shutdown Decay Heat Rernoval Analysis of a Babcock and Wilcox Pressurized Water Reactor Case Study, NUREG/CR-4713, SAND86-1832, March 1987.

Figure C. 13 ANO-1 Service Water System

9.0 POINT BEACH NUCLEAR STATION UNIT 1 COOLING WATER SYSTEM SUMMARIES

PLANT: POINT BEACH TYPE: PWR VINTAGE: OLD NO, UNITS: 2

SYSTEM: SWS OPEN OR CLOSED LOOP: OPEN SOURCE: LAKE

NUMBER OF TRAINS: 2 NUMBER OF PUMPS/TRAIN: $\frac{3}{2}$
PRA: NUREG/CR-4458 TAP A-45

SUCCESS CRITERIA:

Three of the six Service Water System (SWS) pumps are required for successful cooling of all loads during accident conditions. See Figure C. 14.

CRCSS-TIES:

Six SWS pumps are shared between units 1 and 2. Two sets of three pumps are provided. Each set of three pumps discharge to a common header. The two SWS supply headers are cross-tied and are redundant to each other.

SYSTEM VULNERABILITIES:
Due to the redundancy provided, the SWS only shows up in the dominant cutsets due to pump common mode failures.

BIBLIOGRAPHY:

1. W. R. Cramond, et al, Shutdown Decay Heat Removal Analysis of a Westinghouse 2-Loop Pressurized Water Reactor Case Study, NUREG/CR-4458, SAND86-2496, March 1987.

PLANT: POINT BEACH TYPE: PWR VINT.GE: OLD
SYSTEM: CCW OPEN OR CLOSED LOOP: CLOSED
NUMBER OF TRAINS: 1 NUMBER OF PUMPS/TRAIN: 2
PRA: NUREG/CR-4458 TAP A-45

SUCCESS CRITERIA:

Successful operation of the Component Cooling Water (CCW) System requires the operation of one pump and one heat exchanger to provide sufficient cooling of all emergency loads. See Figure C. 15 .

CROSS-TIES:

The CCW system consists of two pumps operating in parallel discharging to a common header to supply the loads.

SYSTEM VULNERABILITIES:

Vulnerabilities identified in the TAP A-45 study were:

- Failure of ECC recirculation due to RHR pump cooling due to CCW valve failure. The low pressure pumps CCW discharge flow from each pumps passes through a single manual valve (XOV-30). The unavailability of this valve due to maintenance or plugging would defeat both the high pressure recirculation and the low pressure recirculation modes of operation.
- Failure of ECC injection due to CCW system failure caused ty lose of cooing from the SWS through the CCW heat exchanger. This event consist of SWS flow blockage to the CCW heat exchanger in service or failure of any of the manual valves used to isolate the heat exchanger due to plugging.
- Failure of CCW pumps. Fails cooling to the ECC system pumps.

Note that the TAP A-45 study states that Point Beach was implementing a modification to add a fourth CCW heat exchanger and suggests that there would be one dedicated CCW heat exchanger per unit with two swing CCW heat exchangers. However, the study did not account for this modification in the analysis.

Appendix C

POTENTIAL SYSTEM RECOVERY ACTIONS:

No recovery actions were found in the TAP A-45 analysis for the CCW system.
However, an obvious recovery action is to align the standby pump or standby CCW heat exchanger for operation should the normally operating pump or heat exchanger fail.

BIBLIOGRAPHY:

1. W. R. Cramond, et al, Shutdown Decay Heat Removal Analysis of a Westinghouse 2-Loop Pressurized Water Reactor Case Study, NUREG/CR-4458, SAND86-2496, March 1987.

Figure C. 14 Point Beach Service Water System

Figure C. 15 Point Beach Component Cooling Water System

10.0 TURKEY POINT NUCLEAR STATION UNIT 1 COOLING WATER SYSTEM SUMMARIES

PLANT: TURKEY POINT TYPE: PWR VINTAGE: OLD NO. UNITS: 2
SYSTEM: SWS OPEN OR CLOSED LOOP: OPEN SOURCE: OCEAN
NUMBER OF TRAINS: 3 NUMBER OF PUMPS/TRAIN: 1
PRA: NUREG/CR-4762 TAP A-45

SUCCESS CRITERIA:

Three intake Service Water System (SWS) pumps are provided per unit. For accident conditions, one pump is required for success providing cooling water to the CCW heat exchangers and the non-essential loads isolated. See Figure C. 16.

CROSS-TIES:

During normal operation, two of the three SWS pumps are operating, discharging to two redundant (cross-tied) beaders.

SYSTEM VULNERABILITTES:

From the cutsets given in the TAP A-45 study the SWS is vulnerable to common mode failure of the pumps and failure of the non-essential header to isolate during accident conditions. Common mode failure of the service water pumps will prevent adequate heat removal via the component cooling water system heat exchangers. This, in turn, will lead to overheating of the high pressure injection pumps and emergency core coolant injection failure.

Pneumatic-hydraulic valve CV-2201 is normally open to allow service water to flow to non-safety systems. Following LOCAs, this valve receives a signal to ciose from safety injection signal train A. Failure of this valve to close will divert adequate water from the safety related components.

POTENTIAL. SYSTEM RECOVERY ACTIONS:

Recovery actions considered in TAP A-45 include:

- locally opening the alternate SWS discharge path should the discharge path in use fail.
- start an idle pump from the control room should the normally operating pump fail.

BIBLIOGRAIHY:

1. G. A. Sanders, et al, Shutdown Decay Heat Removal Analysis of a Westinghouse \&-Loop Pressurized Water Reactor Case Study, NUREG/CR-4762, SAND86-2377, March 1987.

PLANT: TURKEY POINT TYPE: PWR VINTAGE: OLD NO, UNITS: 2
SYSTEM: CCW OPEN OR CLOSED LOOP: CLOSED SOURCE: N/A
NUMBER OF TRAINS: 3 NUMBER OF PUMPS/TRAIN: 1
PRA: NUREG/CR-4762 TAP A-45

SUCCESS CRITERIA:

The success criteria for the CCW system is two of three pumps and two of three heat exchangers providing the necessary cooling for the safety related loads. See Figure C. 17.

CROSS-TIES:

The system consists of three cross-tied pumps operating in parallel, discharging to a common distribution header.

SYSTEM VULNERABILITIES:

The CCW system is vulnerable to common mode failure of the pumps as identified in the TAP A-45 study. Common mode failure of the CCW pumps results in the overheating of the HPI and LPI pumps and emergency core coolant injection failure after a small LOCA.

POTENTIAL SYSTEM RECOVERY ACTIONS:

The only recovery action considered in the TAP A-45 analysis was recovery of a CCW pump suction valve failure. There are two return headers to the CCW pumps from the CCW loads. Failure of a return header manual valve would result in the loss of one-half of the safety systems dependant on CCW. The return headers are cross-tied, and therefore, failure of one of the return header valves could be recovered.

BIBLIOGRA.PHY:

1. G. A. Sanders, et al, Shutdown Decay Heat Removal Analysis of a Westinghouse 3-Loop Pressurized Water Reactor Case Study, NUREG/CR-4762, SAND86-2377, March 1987.

Appendix C

Figure C. 16 Turkey Point Service Water System

11.0 SURRY NUCLEAR STATION UNIT 1 COOLING WATER SYSTEM SUMMARIES

PLANT: SURRY 1 TYPE: PWR VINTAGE: OLD NO. UNITS: 2
SYSTEM: SWS OPEN OR CLOSED LOOP: OPEN SOURCE: CANAL
NUMBER OF TRAINS: 2 NUMBER OF PUMPS: $\underline{0}$
PRA: NUREG/CR-4550

SUCCESS CRITERIA:

The success criteria as defined in NUREG-4550 is sufficient flow through the Inside Spray Recirculation (ISR) System and Outside Spray Recirculation (OSR) System heat exchangers. See Figure C. 18.

CROSS-TIES:

The SWS consists of two parallel headers taking suction from a canal. The two headers are crosstied via two normally open motor-operated valves in series such that flow from either inlet line can be used to cool all four ISR and OSR heat exchangers.

SYSTEM VULNERABILITIES:

Common mode failure of the service water valves due to corrosion from exposure to brackish water.
POTENTIAL SYSTEM RECOVERY ACTIONS:
The only components required to change state are the service water intake mot i-operated valves. These valves can be recovered by manually opening them.

BIBLIOGRAPHY:

1. R. C. Bertucio and J. A. Julius, Analysis of Core Damage Frequency: Surry. Unit 1 Internal Events, NUREG/CR-4550, SAND86-2084, Volume 3, Rev. 1, Part 1, April 1990.

PLANT: SURRY 1 TYPE: PWR VINTAGE: OLD NO. UNITS: 2
SYSTEM: CCW OPEN OR CLOSED LOOP: CLOSED SOURCE: N/A
: $\because M M B E R$ OF TRAINS: 1 NUMBER OF PUMPS: 2
PRA: NUREG/CR-4550
SUCCESS CRITERIA:

The success criterion for Surry Unit 1 CCW/ system is that continued CCW flow is provided to the RCP pump thermal barriers, RHR pumps, and RHR heat exchangers following reactor shutdow.

Following station blackout at Unit 1, Unit 2 CCW system provides the cooling to the RCS pump thermal barriers.

Both CCW pumps and heat exchangers are required for success. See Figure C.19.
CROSS-TTES:
The Unit 1 and Unit 2 CCW systems are cross-tied through manual valves downstream of their respective pumps and heat exchangers.

SYSTEM VULNERABILITIES:
Common mode failure of the pumps to run.
POIENTIAL SYSTEM RECOVERY ACTIONS:
Failure of the CCW for one unit can be recovered by lining up the CCW of the other unit to provide the heat sink.

BIBLIOGRAPHY:

1. R. C. Bertucio and J. A. Julius, Analysis of Core Damage Frequency: Suny, Unit Internal Events, NUREG/CR-4550, SAND86-2084. Volume 3, Rcv. 1, Part 1, April 1990.

Appendix C

Appendix C

Figure C. 19 Surry Component Cooling Water System

12.0 SEQUOYAH NUCLEAR STATION UNIT 1 COOLING WATER SYSTEM SUMMARIES

PLANT: SEQUOYAH 1 TYPE: PWR VINTAGE: NEW NO. UNITS: 2
SYSTEM: SWS OPEN OR CLOSED LOOP: OPEN SOURCE: RIVER
NUMBER OF TRAINS: 4 NUMBER OF PUMPS/TRAIN: 2

PRA: NUREG/CR-4550

SUCCESS CRITERIA:

For each Service Water system (SWS) header (A or B) three of the four available pumps must operate to provide flow to the loads dependant on the header. See Figure C. 20 .

CROSS-TIES:

The SWS system consists of four trains of pumps consisting of two pumps per train. The SWS pump trains are cross-connected to effectively makeup two service water supply systems (A and B), where SWS A is fed from two cross-tied pump trains and SWS B is fed from the other two cross-tied pumps trains. From the SWS fault tree, three of the four pumps feeding a particular SWS train must be available for success.

SYSTEM VULNERABILITIES:

SWS does not show up as an important contributor to core damage in the 1150 analysis.

BIBLIGGRAPHY:

1. R. C. Bertucio and S.R. Brown, Analysis of Core Damage Frequency; Sequoyah, Unit 1 Internal Events, NUREG/CR-4550, SAND86-2084, Volume 5, Rev, 1, Part 1, ApriI 1990.

Appendix C

PLANT: SEQUOYAH 1 TYPE: PWR VINTAGE: NEW NO, UNITS: 2
SYSTEM: CCW OPEN OR CLOSED LOOP: CLOSED SOURCE: N/A
NUMBER OF TRAINS: 5 NUMBER OF PUMPS/TRAIN: 1
PRA: NUREG/CR-4550

SUCCESS CRITERIA:

The suczess criteria, in terms of the number of Component Cooling Water (CCW) pumps needed for Unit 1 and the status of the spent fuel heat exchangers are different, depending on whether ESFs are in the injection mode or in the recirculation mode. If the RHR HX are not required, one CCW pump will provide sufficient flow to train 1A and the RCP thermal barriers, regardless of whether or not spent fuel pool heat exchangers have been transferred to Unit 2. After activation of the RHR HXs, in the recirculation mode, one CCW pump will provide sufficient cooling only if the spent fuel pool HXs have been transferred to Unit 2, but both CCW pumps $\backslash \mathrm{A}-\mathrm{A}$ and $1 \mathrm{~B}-\mathrm{B}$ are required if the spent fuel pit HXs have not been transferred. See Figure C. 21 .

CROSS-TIES:

The CCW system contains five pumps and three beat exchangers serving both Units 1 and 2 . Unit 1 is normally served by CCW pump $1 \mathrm{~A}-\mathrm{A}$ and CCW EXX A , which also serves the RCP thermal barriers in the Unit 1 reactor building. Train 2A is normally served by CCW Pump 2A-A and CCW HX B. The B trains at both units are normally served by CCW pump C-S and CCW HX C.

Of the pumps and heat exchangers that are normally aligned to serve Unit 1 (i.e., Pumps $1 \mathrm{~A}-\mathrm{A}, 1 \mathrm{~B}-\mathrm{B}$, and $\mathrm{C}-\mathrm{S}$ and HXs A and C), pumps 1A-A and C-S and both heat exchangers are normally in operation. CCW pump 1B-B is normally in a standhy condition but starts automatically on low pressure at the combined discharge header of pumps 1A-A and 1B-B.

SYSTEM VULNERABILITIES:

Valve failures that result the loss of the RHR heat exchangers dominate during the recirculation.

POTENTIAL SYSTEM RECOVERY ACTIONS:

Recovery action taken credit for in the PQA concerned recovery of failed CCW valves that results in the failure of the RHR heat exchangers.

Due to the redundancy provided, a failed CCW pump could be recovered by aligning the standby pump for operation.

BIBLIOGRAPHY:

1. R. C. Bertucio and S.R. Brown, Analysis of Core Damage Frequency: Sequoyah, Unit 1 Internal Events, NUREG/CR-4550, SAND86-2084, Volume 5, Rev. 1, Part 1, April 1990.

Figure C. 20 Sequoyah Service Water System (Page 1 of 4)

Figure C. 20 Sequoyah Service Water System (Page 3 of 4)

Figure C. 20 Sequoyah Service Water System (Page 4 of 4)

Figure C. 21 Seqroyah Component Cooling Water System (Page 1 of 3)

Figere C. 21 Sequoyah Component Cooling Water System (Page 2 of 3)

AIL COHNONENTS OUSHOE CONTABMENT
Figure C. 21 Sequoyah Component Cooling Water Systein (Page 3 of 3)

APPENDIX D

SERVICE WATER SYSTEM DEPENDENCY DIAGRAMS

Appendix D

Dependency diagrams in terins of the safety functions that are served by each of the systems reviewed for the scoping study are presented in this Appendix. The BWRs are presented first followed by the PWRs.

The acronyms used are defined below.
AFW auxiliary fredwater
CCP centrifugal charging pump
CCW component cooling water
CSS containment spray system
DG diesel generator
DGCW diesel generator cooling water
HPCI high pressure core injection
HPCS high pressure core spray
IIPIS high pressure injection system
HPSW high pressure service water
HX heat exchanger
LPCS low pressure core spray
LPIS low pressure injection system
RCIC reactor core isolation cooling
RHR residual heat removal
RHRS'\$ residual heat removal service water
SRW service water (Calvert Clifis)
SWS salt water system (Calvert Cliffs)
SWS service water sysiem

Figure D. 1 Cooper Service Water Dependency Diagram

I igure D. 2 Quad Cities Service Water Dependency Diagram

Figure D. 3 Peach Bottom Service Water Dependency Diagram

Figure D. 4 Grand Gulf Service Water Dependency Diagram

Figure D. 5 St. Lucie Service Water Dependency Diagram

Figure) 6 Calvert Cliffs Service Water Dependency Diagram

Figure D. 7 ANO-1 Service Water Dependency Diagram

Figure D. 8 Point Beach Service Water Dependency Diagram

Figure D. 9 Turkey Point Service Water Dependency Diagram

Appendix D

Figure D. 10 Sequoyah Service Water Dependency Diagram

APPENDIX E

SWS CONTRIBUTION TO CORE DAMAGE FREQUENCY: SUMMARY OF NRC SPONSORED PRA RESULTS

Appendix E

Table of Contents
Section
Page
1.0 INTRODUCTION E-4
2.0 COOPER NUCLEAR STATION: TAP A-45 STUDY E. 5
2.1 COOPER NUCLEAR STATION: TAP A-45 SUMMARY OF RESULTS E. 5
2.2 COOPER ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: TAP A-45 ANALYSIS E-7
3.0 QUAD CITIES: TAP A 45 STUDY E-13
3.1 QUAD CITIES: TAP A-45 SUMMARY OF RECULTS E-13
3.2 QUAD CITIES ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: TAP A-45 ANALYSIS E-15
4.0 PEACH BOTTOM: NUREG/CR-4550 E. 19
4.1 PEACH BOTTOM UNIT $2: 4550$ ANAL.YSIS SUMMARY OF RESULTS E-19
4.2 PEACH BOTTOM ACCIDENT SEQUENCES WTTH SWS CONTRIBUTIONS NI/RESICR. 4550 ANALYSIS E-22
5.0 GR/ND GULF: NUREG/CR-4550 E-25
5.1 GRAND GULF UNIT 1: 1150 ANALYSIS SUMMARY OF RESULTS E-25
5.2 GRAND GULF ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: NUREG/CR-1150 ANALYSIS E-30
6.0 ST. LUCIE: TAP A-45 E. 36
6.1 ST. LUCIE. TAP A-45 SUMMARY OF RESULTS E-36
6.2 St. LUCIE ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: TAP A-45ANALYSIS
E-38
7.0 CALVERT CLIFFS: IREP
E-38
7.1 CALVERT CLIFFS: IREP SUMMARY OF RESULTS
7.2 CALVERT CLIFFS AUCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: IREP ANALYSIS E 41
8.0 ANO-1: TAP-45 E-44
8.1 ANO-1: TAP A-45 SUMMARY OF RESULTS E-44
8.2 ANO-1 ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: TAP A-45 ANALYSIS E-45
9.0 POINT BEACH: TAP A-45 E. 50
9.1 POINT BEACH: TAP A-45 SUMMARY OF RESULTS
E-50
E-50
9.2 POINT BEACH ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: TAP A-45 ANALYSIS E-51
10.0 TVTRKEY POINT: TAP A-45 E. 54
10.1 TURKEY POINT: TAP A-45 SUMMARY OF RESULTS
E-54
E-54
10.2 TURKEY POINT ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: TAP A-45 ANALYSIS E-55
11.0 SURRY: NUREG/CR-4550 E-57
11.1 SURRY UNIT 1: 1150 ANALYSIS SUMMARY OF RESULTS E-5?
11.2 SURRY, UNIT I ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: NUREG/CR 4550 ANALYSIS E-57

Table of Contents
Section Pane
12.0 SEQUOYAH: NUREG/CR-4550 E. 58
12.1 SEQUOYAH, UNIT 1: 1150 ANALYSIS SUMMARY OF RESULTS E. 58
12.2 SEQUOYAH, UNIT 1 ACCILENT SEQUENCES WI.H SWS CONTRIBUTIONS: NUREGICR 4550 ANALYSIS 1. 60
13.0 REFERENCES E. 63
List of Tables
Table Page
E. 1 NRC Sponsored PRAs Reviewed E-4

Appendix E

1.0 ENTRODUCTION

This appendix documents the review of those NRC sponsored PRA.s listed in Table C. I to determine the contribution cooling water systems (e.g., service water, component cooling water, etc.) make to the total core damage frequency found for each respective PRA

Table E. 1
NRC Sponsored PRAs Reviewed

Plant	Study
Cooper	TAP A-45
Quad Cities 1	TAP A-45
Peach Bottom 2	NUREG/CR-4550
Grand Gulf	NUREG/CR-4550
St. Lucie 1	TAP A-45
Calvert Cliffs 1	IREP
ANO-1	TAP A-45
Point Beach 1	TAP A-45
Turkey Point 1	TAP A-45
Surry 1	NUREG/CR-4550
Sequoyah 1	NUREG/CR-4550

The following sections give for each plant and associated PRA listed a summary of the PRA results in terms of the dominant cooling water everts contributing to the core damage frequency and a discussion of the accident sequences in which the events contribute to core damage and the contribution made.

2.0 COOPER NUCLEAR STATION: TAP A-45 STUDY

2.1 COOPER NUCLEAR STATION: TAP A-45 SUMMARY OF RESULTS

The basic events for those cooling water systems (i.e., Service Water Syste , (bWS) and Kesuto suiding Closed Cooling Water (RBCCW) System) which were found to te major contributors to the total core damage frequancy (CDF) at the Cooper Nuclear Station are listed below along w it the contribution each basic event tnakes to the total CDF and the number of cutsets in which the basic event appears. A description of each basic event is also included.

Internal Events:

Basic Event	Contribution to CDF	\# Cutsets
SWS-LOOP2-UTM	1.40E-05	1
SWS117-VOO-LF	4.81E-06	2
SWS117-VOO-LF*SWS1D-9MS-L.E*RA11B	2.90E-06	4
SWS653-VCC-LPaSWS652-VCC-LF	1.59E-06	8
SWS152-XOC-LF	1.20E-07	1
SWS72-XOC-LF	1.20E-07	1
SWS653.VCC-LF	$2.38 \mathrm{E}-08$	2
SWS652-VCC-LF	2.38E-08	2
SWS117-VOO-LF*SWSIC-PMS-LF*RA11B	1.70E-08	1
SWS653-VCC-LF* -WS145-XOC-LF	1.30E-08	1
SWS653-V	6.80E 09	2
RBC700-VCC-LF	4.34E-05	6
RBC714-VCC-LF	2.90E-05	$?$
RBC711-VCC-LF*RBC714-VCC-LF	2.42E-05	7
RBC-LOOP2-UTM	2.14E-05	4
RBC700-VOO-LF*RBCID-PMS-LF	1.86E-05	4
RBC700-VOO-LP*RBC-LOOPI-UTM	1.06E-05	4
RBC700-VOO-LF*RBC-LOOP2-UTM	$1.06 \mathrm{E}-05$	4
RBC700-VOO-LF*RBCIC-PMS-LF	$2.92 \mathrm{E}-06$	2
RBC700-VOO-LF*RBCIB-PMS-LF	$2.92 \mathrm{E}-06$	2
RBC413-XOC-LF	1.20E-07	1
Total SWS Contribution	$1.8{ }^{7} \mathrm{E}-04$	
Internal Events Total CDF	2.90E-04	
External Events Total CDF	$1.48 \mathrm{E}-04$	

Appendix E

Cooper Event Descriptions:

RAllB.

RBC-LOOPI-UTM RBC.LOOP2-UTM . RBCIB-PMS-LF

RBCICD-PMS-LF RBCID-PMS-LF RBC413-XOC-L. RBC700-VCCLF . RBC711.VCC.LF. RBC714-VCC-LF SWS-LGOP2-UTM. SWSICPMS-LF SWSID-PMS-LF SWS117-VOO-LF . SWSI $45-\times O C-L F$. SWSI52-XGC-LF . SWS652-VCC-L.F SNS653-VCC-LF . SWS71-XOC-LF SWS72-XOC-LF

The probability that RBSW valve 117 is not manually isolated within four hours.
Reactor Buthdigg Closad Coutling Water syitem toop 1 unavailable due to maintenance outnge.
Reactor Building Closed Cooling Water system loop 2 unavailable due to maintenance outage.

Locui fault of Reactor Building Closed Cooling Water system pump IC Fovat fuutt of Reactor Buitding Closed Cooling Water system pump 1D. Looal fault of Reactor Builditg Closed Cooling Water system manual valve 413. Locat fautt of Reactes Buitding Closed Cooling Water system valve 700 to isolate nonsafery londs. Looal fault of Reactor Building Closed Cooling Water system valve 'il to open. Leral frult of Ructor Buttding Closed Cooting Wator sysiem valve 714 to open. Keactor Building Service Water system loop 2 unavailable due to a maintenance outage. Local fath of Ruactor Bultding Service Water system pump IC Local fault of Reactor Building Service Water systern pump 1D. Locat fuutt of Roactor Building Service Water system valve 117 to isolate nonsafety londs. Lacal frult of Reactor Building Service Wuter systom valve 145. Local fautt of service water inlet valve for RHR beat exchanger IB. Local fault of gervice whter outlet valve for RHR heat exchangor iA Local failt of sorvice waler outlet valve for RHR heat exchanger IB. Local fault of Reactor Building Service Water system valve 71. Locat Ault of service water header outlet manual valve 72 .

2.2 COOPER ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: TAP A-45 ANALYSIS

The following presenis the TAP A-45 accident sequences in which Service Water System (SWS) and Reactor Building Closed Cooting Water (RBCCW) System events appear along with the contribution SW and RBCCW makes to the total CDF for the given accident sequence, Note that the dominant cuisets listed in the TAP A-45 report for each accident sequence typically represenis less than 50% of the total sequence frequency.

Sequence TIYZ
This sequerice is initiated by a loss-of-offsite power transient (T1) and is foliowed ty loss of the main condenser as a heat sink (Y) and failure of all suppression pool cooling (Z). Feedwater injection and the condenser are assumed to be lost following the LOSP.

1. 4 E -06 Mean CDF $<1 \%$ of the Total CDF

SSW Basie Events:

$$
\begin{array}{ll}
\text { SWSE53 VCC L- } 2 \text { SWS652-VCC-LF } & 5.5 E-07 \\
\text { SWS653-VCC-LF*1-PCI-LOOF 1-UTM } & 5.8 \mathrm{E}-08 \\
\text { SWS652-VCC-LF*LPCl-LOO } 2-\text { UTM } & 5.8 \mathrm{E}-08
\end{array}
$$

These basic events represent failures of the SWS to cool the RYR heat exchangers, i.e., loss of suppression pool cooling.
CDF Comtrbution $=5.75-07$ which is $\angle 17$ of the total CDF (2.9E-04)
Sequence T2YZ
This sequence is initiated by a loss of feedwater transient (T.) and is followed by loss of the main condenser as a heat sink (Y) and failure of all suppression pool cooling (Z).
2.6E-06 Mean CDF 1 of the Total CDF

SWS Basic Events:

SWS653-VCC-LF*SWS652-VCC-LF	5.2E-07
SWS653-VCC-LF*LPCI-LOOPI-UTM	$1.5 \mathrm{E}-07$
SWS652-VCC-LR*LPCI-LOOP2-UTM	$1.5 \mathrm{E}-07$
SWS653-VCC-LF*SWS145-XOC-LF	$1.3 \mathrm{E}-08$

These failures represent loss of SPC due to RHR service water valve faults und maintenance outages of LPCI.
CDF Contribution $=8.3 \mathrm{E}-07$ which is $<1 \%$ of the total CDF $(2.9 \mathrm{E}-04)$.

Sequence T3YZ

This sequence is initiated by some miscellaneous transient that does not cause feedwater to trip or otherwise affect any safety systems (T3) and is followed by loss of the main condenser as a heat sink (Y) and fuilure of all suppression pool cooling (Z),

SWS Baric Events:

```
SWS653-VCC-LF*SWS652-VCC-LF 2.1F-07
SWS653-VCC-LF*LPCI-LOOPI-UTM 2.2E-08
SWS652-VCC-LF*LPCI-LGOP2-UTM 2.2E-08
SWS653.VCC-LF*SWS71-XOC-LF 
```

These failures represent loss of SPC due to RHR service water valve faults and maintenance nutages of LPCl.
CDF Contribution $=2.6 \mathrm{E}-07$ which is $<1 \%$ of the total CDF $(3.9 \mathrm{E}-04)$

Sequence TIYZE

This soquence is initiated by a loss-of-offsite power transient (Ti) and is followed by loss of the main condenser as a heat sink (Y) and failure of all suppression pool cooling (Z) and long-term failure of all emergency core cooling (E). Feedwater iniection and the condenser are assumed to be lost following the LOSP.

```
4.6E-05 Mean CDF 16% of the Total CDF
```

SWS Basic Events:

```
RBC711-VCC-LF*RBC714-VCC-LF
    3.2E-06
RBC700-VOO-LF*RBCIC-PMS-LF 2.9E-06
RBC700-VOO*RBC1B-PMS-LF
2.9E-06
```

These failures represent loss of ECCS room cooling due to RBCCW faults resulting in loss of all ECCS.
CDF Contribution $=9.1 \mathrm{E}-06$ which is 3π of the total CDF $(2.9 \mathrm{E}-04)$

Sequence TIYrZE

This sequence is initiated by a loss-of-offsite prwer transient (T1) followed by a relief valve sticking open (P) and loss of the main condenser as a heat sink (Y) and fuilure of all suppression pool cooling (Z) and long-term failure of all ent'gency core cooling (E). Feedwater injection and the condenser are assumed to be lost following the LOSP.
3.7E-07 Mean CDF <1\% of the Total CDF

SWS Basic Events:

RBC711-VCC-LF*RBC714-VCC-LF	$2.6 \mathrm{E}-08$
REC700-VOO-L ${ }^{*} \mathrm{RBBC}^{\prime} \mathrm{C}-\mathrm{PMS}-\mathrm{LF}$	$2.3 \mathrm{E}-08$
RBC700-VOO-LF*RBCIB-PMS-LT	$2.3 \mathrm{E}-08$

These failures represent loss of ECCS room cooling and/or RHR pump seal cooiing due to RBCCW faults resulting in loss of ail ECCS.

CDF Contribution $=7.2 \mathrm{E}-08$ which is $<1 \%$ of the total CDF $(2.9 \mathrm{E}-04)$

Sequence T2YZE

This sequence is inithated by a loss of feedwater transient (T2) and is foliowed by less of the main condenser as a heal sink (Y) failure of all suppression pool cooling (Z) and long-term failure of all emergency core cooling (E).

$$
7.9 \mathrm{E}-5 \text { Mean CDF } \quad 27 \% \text { of the Total CDF }
$$

SWS Basic Events:

RBC711-VCC-LF*RBC714-VCC-LF	$1.9 \mathrm{E}-05$
RBC700-VOO-LF*RBCID-PMS-LF	$1.7 \mathrm{E}-05$
RBC700-VOO-LF*RBC-LOOP2-UTM	$9.7 \mathrm{E}-06$
RBC700-VOO-LF*RBC-LOOP1-UTM	$9.7 \mathrm{E}-06$
SWS $117-$ VOO-LP*SWSID-PMS-LF*RA11B	$2.8 \mathrm{E}-06$

These failures represent loss of ECCS room cooling and/or RHR pump seal cooling due to SWS and RBCCW faults resulting in loss of ail ECCS. Recovery action RA11B represents failure of the operators to manually isolate the SWS non-critical hiender ($\mathrm{P}=0.1$).

CDF Contribution $=58 \mathrm{EE}-05$ which is 20% of the total CDF (2.9E-04).

Sequence T2PY7F

This sequence is initiated by a loss of roedwater transient (T2) and is followed by a relief valve sticking open (P), loss of the main condenser as a heat sink (Y) failure of all suppression pool cooling (Z) long-term failure of all emergency core cooling (E).

$$
\text { 6.4E-07 Mean CDF } \quad<1 \% \text { of the Total CDF }
$$

SWS Basic Events:

RBC711-VCC-LP*RBC714-VCC-LF	$1.6 \mathrm{E}-07$
RBC700-VOO-LF*RBCID-PMS LF	$1.4 \mathrm{E}-07$
RBC700-VOO-LF*RBC-LOOP2-UTM	$7.8 \mathrm{E}-08$
RBC700-VOO-LF*RBC-LOOP1-UTM	$7.8 \mathrm{E}-08$
SWS117-VOO-LF*SWSID-PMS-LF*RA11B	$2.3 \mathrm{E}-08$

These failures represent loss of ECCS room coolin, _nd/or RHR pump seal cooling due to RBCCW and SWS faults resulting in loss of all ECCS. Recovery action RA11B represents failure of the operators to manally isolate the SWS non-critical header ($\mathrm{P}=0.1$).

CDF Contribution $=4.8 \mathrm{E}-07$ which is $<1 \%$ of the total $\mathrm{CDF}(2.9 \mathrm{E}-04)$.

Sequence T3YZE

This sequence is initiated by some miscellaneous transient that does not cause feedwater to trip or otherwise affect any safety systens (T3) and is followed by loss of the main condenser as a heat sink (Y) failure of all suppression pool cooling (Z), and long-term failure of all emergency core cooling (E).
6.3E-06 Mean CDF 2% of the Total CDF

SWS Basic Events.

$$
\text { RBC711-VCC-LF-RBC714-VCC-LF } \quad 1.2 \mathrm{E}-06
$$

```
R6C+(t)-VOO-LI*RBCID-PMS-L.F
1.1E-06
RBC700-VOO-LF*RBC-LOOP2-UTM 6.2E-07
RBC700-VOO-LF*RBC-LOOPI-UTM 6.2E-07
```

These failures represent loss of ECCS room cooling doe to RBCCW faults resulting in loss of all ECCS.
CDF Contribution $=4.5 \mathrm{E}-06$ which is 2% of the total CDF (2.9E-04).

Sequence $\$ 2$

Thits sequence ts initiated by a small loss of coolant accident (S) and is followed ty failure of all suppression pool cooling (Z). It was assumed that the msin condenser was not available for heat removal following r, small LOCA.

```
1.5E-07 Mean CDF < < % of the Total CDF
```

SWS Basic Events:

SWS653-VCC-LF*SWS652-VCC-LF	$6.3 \mathrm{E}-08$
SWS653-VCC-LF*LPCI-LOOP1-UTM	$6.8 \mathrm{E}-09$
SWS652-VCC-LF*LPCI-LOOP2-UTM	$6.8 \mathrm{E}-09$
SWS653-VCC-LF*SWS71-XOC-LF	$1.6 \mathrm{E}-09$

These failures represent loss of SPC due to failures of RHR service water valvec and maintenance octages of LPCl.
CDF Contribution $=7.7 \mathrm{E}-08$ which is <1 年 of the total CDF $(2.9 \mathrm{E}-04)$.

Sequence SZE

This sequence is initiated by a small loss of coolant accident ($\$$) and is followed by failure of all suppression prol cooling (Z) and long-term failure of all emergency core cooling (E).
1.5E-06 Mean CDF <1\% of the Total CDF

SWS Basic Events:

RBC711-VCC-LF*RBC714-VCC-LF	3.7E-07
RBC700-VOO-LF*RBC1D-PMS-LF	$3.3 \mathrm{E}-07$
RBC700-VOO-LF*RBC-LOOP2-UTM	$1.9 \mathrm{E}-07$
RBC700-VOO-LF*RRC-LOOP1-UTM	$1.9 \mathrm{E}-07$
SWS117-VOO-LH*SWS1D-PMS-LF*RA11B	$5.6 \mathrm{E}-08$

These failures represent loss of ECCS room cooling, RHR pump seal cooling, or RHR heat exchanger cooling due to SWS and RBCCW faults resulting in loss of all ECCS. Recovery action RA11B represents failure of the operators to manually isolate the SWS non-critical header ($\mathrm{p}=0.1$).

CDF Contribution $=1.1 \mathrm{E}-06$ which is $<1 \%$ of the total $\mathrm{CDF}(2.9 \mathrm{E}-04)$.

Sequence T-AC-YZ

This sequence is initiated by a loss of 4160 VAC bus $1 \mathrm{~F}(\mathrm{~T}-\mathrm{AC}$) and is followed by loss of the main condenser as a heat sink (Y) and failure of all suppression pool cooiing (Z). Feedwater injection and the main condenser are assumed to be lost following the initiator

SWS Basic Events:

```
SWS152-XOC-LF
    1.2.E-07
5.W572-XOC-LF
    1.2E-07
RBC413 XOC-LF
    1.2E-07
```

These failures represent loss of suppression pooi cooling due to failures in the SWS and RBCCW system.
CDF Contribution $=3.6 \mathrm{E}-07$ which is <14 of the total CDF $(2.9 \mathrm{E}-04)$

Sequence T-AC-YZE

This sequence is initiated by a loss of 4160 VAC bus IF (T-AC) and is followed by loss of the main condenser as a heat sink (Y), failure of all suppression pool cooling (Z) and long-term emergency core cooling (E). Feedwater injection and the main condenser are assumed to be lost following the initiator

$$
95 F 05 M \text { ean CDF } \quad 33 \% \text { of the Total CDF }
$$

SWS Basic Events:

REC714-VCC-LF	$2.9 \mathrm{E}-05$
RBC700-VOO-LF	$2.9 \mathrm{E}-05$
SWS-LOOP2-UTM	$1.4 \mathrm{E}-05$
RBC-LOOP2-UTM	$1.4 \mathrm{E}-05$
SWS117-VOO-LF*RA11B	$4.8 \mathrm{E}-06$

These failures represent loss of ECCS room cooling, RHR pump seal cooling, or RHR heat exchanger cooling due to SWS and RBCCW faults resulting in loss of all ECCS. Recovery action RA11B represents failure of the operators to manually isolate the SWS non-critical header ($p=0.1$).

CDF Contribution $=9.1 \mathrm{E}-05$ which is 31% of the total CDF $(2.9 \mathrm{E}-04)$.

Sequence T-AC-D

This sequence is initiate, by a loss of 4160 VAC bus if (T-AC) and is follow ed by immediate failure of all emergency core cooling (D). Feedwater injection was assumed to be lost following this initiator.

```
2.3E-07 Mcan CDF
\(<1\) 年 of the Total CDF
```

SWS Basic Events:

SWS117-VOO-LF	$1.2 \mathrm{E}-08$
RBC714-VCC-LF	$2.2 \mathrm{E}-08$
RBC700-VOO-LF	$2.2 \mathrm{E}-08$

These failures represent loss of $\mathrm{F} Y \mathrm{R}$ pump seal cooling due to SWS and RBCCW faults.
CDF Contribution $=5.6 \mathrm{E}-08$ which is $\angle 1 \pi$ of the total $\mathrm{CDF}(2.9 \mathrm{E}-04)$.

Appendix E

Segrence T-TVC.YZ

This sequence is initiated by a loss of 125 VDC Battery Bus IA (T-DC) and is followed by loss of the main condenser as a heat sink (Y) and failure of all suppression pool cooling (Z).

1.2E-07 Mean CDF <14 of the Total CDF

SWS Basic Events:

SWS653-VCC-LF*SWS652-VCC-LF	$1.9 \mathrm{E}-08$
SWS653-VCC-LF*LCIICB-PMS-LF	$1.7 \mathrm{E}-08$
SWS 5632 -VCC-LF*LCIIDB-PMS-LF	$1.7 \mathrm{E}-08$

These basic events are failures of RHR heat exchangers, i.e., loss of suppression pool cooling due to SWS frults.
CDF Contribution $=5.3 \mathrm{E}-08$ which is $<1 \%$ of the totat CDF (2.9E-04)

Sequence T-DC-YZE

This sequence is initiated by a loss of 125 VDC Battery Bus 1A (T-DC) and is followed by loss of the main condenser as a heat sink (Y), failure c : al suppression pool cooling (Z), and long-term emergency core cooling(\mathbf{E}). Feedwater injection and the condenser are assumed to be lost following the initiator.

```
2.2E-05 Mean CDF 8% of the Total CDF
```

SWS Basic Events:

```
RBC711-VCC-LF*RBC714-V C-LF 1.2E-07
RBC700-V9O-1: 
RBC-LOOP2-UTM 7.2E-06
SWS117-VOO-LF*SWSIC-PMS-LP*RA11B 1.7E-08
SWS117-VOO-LF*SWSID-PMS-LF*RA11B 1.7E-08
```

These failures represent loss of ECCS room cooling ant or pump cooling resulting in loss of all ECCS. Recovery action RA11B represents failure of the operators to manually isolate the SWS non-critical header ($\mathrm{P}=0.1$).

CDF Contribution $=2.1 \mathrm{E}-05$ which is 7% of the total CDF (2.9E-04).
S-quence T-DC-D
This sequence is initiated by a loss of 125 VDC Battery Bus 1 A ($\mathrm{T}-\mathrm{DC}$) and is followed by immediate failure of all emergency core cooling. Feedwater injection is assumed to be lost following the initiator.

$$
\text { 9.8E-07 Mean CDF }<1 \% \text { of the Total CUF }
$$

SWS Basic Events:

```
RBC700-VOO-LF 3.6E-07
RBC-LOOP2-UTM 1.8E-07
```

These failures represent loss of RHR pump lube oil cooling resulting in loss of RHR.
CDF Contribution $=5.4 \mathrm{E}-07$ which is $<1 \%$ of the total CDF (2.9E-04).

3.0 QUAD CITIES: TAP A-45 STIDV

3.1 QUAD CITIES: TAP A-45 SUMMARY OF RESULTS

The basic events for those cooling water systems (i.e., Residual Heat Removal Service Water System (SWS) and Diesel Generator Cooling Water (DGCW) System) which were found to be major contributors to the total core darnage frequency (CDF) at the Quad Cities nuclear station are listed below along with the contribution each basic event makes to the total CDF and the number of cutsets in whica the basic event appears. A description of each basic event is also included.

Internal Events:
Basic Event
Contribution to CDF
\# Cutsets

Basic Event	Contribution to CDF	* Cutsets
RSW-LOOPI UTM	1.90E-05	3
DSW39031-PMS-LF	2.31E-06	3
RSW-PUMP-CM	2.11E-06	2
DSW3903S-PMS-LF	1.91E-06	3
DSW-PUMP-CM*RA12B	$1.86 \mathrm{E}-06$	3
RSW182BX-XOC-LF	$9.60 \mathrm{E}-07$	1
RSW182aX-XOC-LF	9.60E-07	1
RSW-PUMP-CM*DSW39031-PMS-LF*RA12B	$5.00 \mathrm{E}-07$	1
RSW-PUMP-CM*RA12C	2.68E-07	3
RSW-PUMP-CM*DSW-DGN1-UTM*RA12B	8.50E-08	1
DSW-DGNI-UTM	$8.50 \mathrm{E}-08$!
RSW-LOPP2-UTM	3.609 -08	1
RSW-LOOP2-UTM*RA3C	$2.648-08$	2
RSW182DX-XOC-LF	1.80E-09	1
RSW-LOOP2-UTM ${ }^{\text {- }}$ SWW3903S-PMS-LF	4.40E-09	!
RSW-LOOP2-UTM*PSW182AX-XOC-LF	$6.50 \mathrm{E}-09$	1
Total	3.01E-05	
Internal Events CDF	9.90E-05	
External Events CDF	9.74E-05	
Total	$1.96 \mathrm{E}-04$	

Appendix E

Guad Cities Event Descriptions:

DSW-DGN1-UTM * Diesel Gencraioi Service Water System Loop 1 unavailable due to maintenance outage.
DSW-PUMP-CM . Common mode failure of all Diesel Generator Service Water pumps.
DSW39035-PMS-LF . Local fault of Diesel Generator $1 / 2$ Service Water pump.
DSW39031-PMS-LF - Local fautit of Diesel Generator Service Water pump 1.
RA3C - The probability of not recovering a system subtrais or a component from a maintenance outage within 24 bours.

RA12B - The probability that a pump common-mode failure is not recovered within four harars.
RA12C - The probability that a pump common-mode failure is not recovered within twenty four hours.
RSW-LOOPI-UTM - RHR Service Water System Loop I unavailable due to maintenance outage.
RSW-LOOP2-UTM . RHR Service Water System Loop 2 unavailable due to maintenance outage.
RSW-PUMP-CM - Common mode failure of all RHR Service Water pumps
RSW182AX-XOC-LF - Local fault of RHR Service Water System seal cooling inlet valve 1001-182A.
RSW182BX-XOC-LF - Lacal fault of RHR Service Water System seal cooling outlet valve 1001-182B.
RSW182DX-XOC-LF - Local fault of RHR Service Weter System seal cooling outlet valve 1001-182D.

3.2 GUAD CITIES ACCIDENT SEQUENCES WITH SWS CONTRIBUIIONS: TAP A-45 ANALYSIS

n. : following presents the TAP A-45 accident sequectoss in which Rusidual Heat Removal Service Water (RHF Mo) System and Diesel Generator Service Water (DCSW) Syetem events appear along with the coctribution RHKSW and DurSW roukes to the total CDF for the given accident sequesce. Note that the dominani cutsets isted it the TAP A-45 repori for each accident sequence typically represents Jess then 50% of the ivtal asquetice friquency.

Sequence TIYZ

This sequence is initiated by a loss-of-offaite power transient ($\$$?) and is followed by loss of the main condenser as a heet sink (Y) and failure of all suppression pool cooling (Z).
1.1E-06 Mean CDF IT of the Total CDF

SWS Basic Events:

```
RSW-PUMP-CM S.1E-07
RSW-LOOP2-UTM*RA3C 2.4E-08
RSW-LOOP2-UTM*DSW3903S-PMS-LF 4.4E-09
```

These basic events are failures of RHR service water pumps, i.e., loss of suppression pool cooling. Recovery action PA3C represents failure of the operator to restoring RSW loop 2 from maintenance within 24 hou. a.

CDF Contribution $=5.4 \mathrm{E}-07$ which is $<1 \%$ of the total CDF $(9.9 \mathrm{E}-05)$.

Sequence T2YZ

This sequence is initiated by a loss of feedwater transient (T2) and is foliowed by loss of the main condenser as a heat sink (Y) and failare of all suppression pool cooling (Z).

```
3.4E-06 Mean CDF 3% of the Total CDF
```

SWS Basic Events:

RSW-PUMP-CM	$1.6 \mathrm{E}-06$
RSW-LOOP1-UTM	$1.3 \mathrm{E}-08$
RSW-LOOP2-UTM*RSW182AX-XOC-LF	$6.5 \mathrm{E}-09$

These failures represent loss of SPC due to common mode failure of the RHR service water pumps and failures of RHR service water and LPCl valve faults and maintenance outages of an RHR service water loop.

CDF Contribution $=1.6 \mathrm{E}-06$ which is 2% of the total CDF (9.9E-05).
Sequence T3YZ
This sequence is initiated by some miscellaneous transient that does not cause feedwater to trip or otherwise affect any safety systems (T3) and is followed by loss of the main condenser as a heat sink (Y) and failure of all suppression pool cooling (Z).

[^7]$$
<1 \% \text { of the Total CDF }
$$

Appendix E

SWS Basic Events:

RSW-PUMP-CM*RA12C	$1.9 \mathrm{E}-07$
RSW-LOOP2-UTM*RA3C	$4.4 \mathrm{E}-09$

Those failures represent loss of SFC Jue to common cause failare of RHR service water purgs and maintenance eutages of one loop of RHK servise water wong witio diesel goneiator caults. Recovery action kA3c represents failure of the operator to restoring RSW loop 2 from manhtenance within 24 bours. Recovery sction RA 12 C represents failure to recover cominon mode failurt of the pumps within twenty four hours.

CDF Contribution $=1.9 \mathrm{E}-07$ which is $<1 \%$ of the total CDF $(9.9 \mathrm{E}-05)$.

Sequence TIYZE

This sequence is initiated by a loss-of-offsite power transient (T1) and is follon by losin of the rnain condenser as a beat sink (Y) and failure of all suppression pool couling (Z) and long-term failure of all emergency core cooling (E). Feedwater injoction and the condenser are asmumed to be lost following the LOSP.
2.3E-05 Mean CDF 23\% of the Tetal CDr

SWS Basic Events:
DSW39035-PMS-LF $\quad 1.8 \mathrm{~g}$-06
DSW39031-PMS-LF 1.
DSW-PUMP-CM*RA128 1.2E-06

These failures represent faults is the diesel genurator service water system. Recovsey action RA1 28 represents failure of the operator to recover common mode failure of the DSW pumps within 4 hours.

CDF Contribution $=4.8 \mathrm{E}-06$ which is 5% of the total CDF $(9.9 \mathrm{E}-05)$.

Sequence TIPYZE

This sequence is initiated by a loss-of-offsite power tiansient (T1) followes by a relief valve ctiching open (P) and lese of the main condenser as a heat sink (Y) and failurs of ail suppression pc I cocing (Z) and long-tent failure of all ensergency core cooling (E). Feedwater injection and the condenser sre assumed to be lost foilowing the LOSP.
1.9E-07 Mean CDF < 1\% of the Total CDF

SWS Basic Events:

DSW3903S-PMS-LF	$1.5 \mathrm{E}-08$
DSW39031-PMS-LF	$1.5 \mathrm{E}-08$
DSW-PUMP-CM*RA12B	$1.0 \mathrm{E}-08$

These failures represent faults of the diesel generator service water system. Failure of the diesel cooling water pump fails ECCS room cooling. Recovery action RA12B represents failure of the operator to recover common mode failure of the DSW pumps within 4 hours.

CDF Contribution $=4.0 \mathrm{E}-08$ which is $<1 \%$ of the total CDF (9.9E-05).

Sequence T2Y:E

Thils sequence ts initftied by a lose of feedwater transient (T2) and is followed by loss of the main condenser as a heat sink (Y) failure of all suppression pool cooling (Z) and long-term failure of all emsegency core cooling (E).

$$
\text { 1.3E-06 Mean CDF } \quad \text { is of the Total CDF }
$$

SWS Basic Everts.

RSW-PUMP-CM*DSW39031-PMS-1F*RA12B	$5.0 \mathrm{E}-07$
DSW39031-PMS-LF	$5.0 \mathrm{E}-07$
RSW-PUMP-CM-DSW-DGN1-UTM*RA12B	$8.5 \mathrm{E}-08$
DSW-DGN1-UTM	$8.5 \mathrm{E}-08$

These failures iepresent faults of the diesel generator service water system and common mode failure of the RHR service water purnps. Failure of the diesei cooling water pump fails ECCS room cooling. Revovery action R.A12B represents failure to rocover common mode failure c? the pumps within four hours.

CDF Contribution $=1.2 \mathrm{E}-06$ which is 1% of the total CDF $(9.9 \mathrm{E}-05)$.

Sequence T3YZE

This sequence is initiated by some miscellaneous transient that does not cause feedwater to trip or otherwisu affect any safety systems (T3) and is followed by loss of the main condenser as a hed' sink (Y) failure of all suppre tion pool cooling (Z), and long-tarm failure of all emergency core cooling (L).
1.1E-06 Mean CDF $\quad 1 \%$ of the Total CDF

SWS Rasic Events:

DSW-PUMP-CM*RA12B	$6.5 \mathrm{E}-07$
DSW30031-PMS-LF	$9.9 \mathrm{E}-08$
DSW3903S-PMS-LF	$9.9 \mathrm{E}-08$

These failures represent diesel gezerator failures due to diesel generator service wator faults and common mode DSW pump faults. Recovery action RA12B represents failure of the operator to recover common mods failure of the DSW pumps within A hours.

CDF Contribution $=8.5 \mathrm{E}-07$ which is 1% of the tntal $\operatorname{CDF}(9.9 \mathrm{E}-05)$.

Sequence \$2

This sequence is initiated by a small loss of soolant accident ($\$$) and is follu wed by railure of all suppression pool cooling (2). It was assumed that the mais cundenser was not available for heat removal following a small LOC fo.

1. 3E-07 Mexn CDF $<1 \%$ of the Yotal CDF

SWS Gasic Events:
RSW-PUMF-CM*RA12C
6.0E-08

This failure represents loss of SPC due to common sode failure of RHR service water pumps. Recovery action RA12C represents failure of the operator to recover common mode failure of the RSW pumps within 24 hours.

Appendix E

CDF Contribution $=6.0 \mathrm{E}-08$ which is $<1 \%$ of the total CL? $(9.93-05)$.
Sequence T-AC-YZE
This sequence is initiated by a loss of $4160 \mathrm{VA}=$ bus $14-1$ (T-AC) and is followed by loss of the man condenser as a heat sink (Y), failure of all suppression pool cooling (Z) and long-term emergency con cooling (E). Fetdwater injection and the main condenser are assumed to be wst following the initiator.

$$
\text { 3.7E-05 Mean CDF } \quad 37 \% \text { of the Total CDF }
$$

SW: Fisic Events:

```
RSW-LOOP1-UTM
    1.9E-05
RSW182AX-XOC-L 
9.6E-07
RSW182BX-XOC-LF
9.6E-07
```

These failures represent loss of a service water loop due to maintenance outage or sop valve faults which fail one-half of SPC. One-half of SPC is lost by the initiator.

CDF Contribution $=2.15-05$ which is 21% of the total CDF $(9.9 \mathrm{E}-05)$.

Seqquence T-DC-YZ

This sequence is initiated by a loss of 125 VDC Battery bui ! (T-DC) and is Hollowed by loss of the main condenser as a heat sink (Y) and failure of all suppression pool cooling (Z).

```
1.1E-07 Mean CDF < < % of the Total CDF
```

SWS Basic Events:

RSW-LOOP2-UTM	$3.6 \mathrm{E}-08$
RSW-PUMP-CM*RA12C	$1.8 \mathrm{E}-08$
RSW182DX-XOC-LF	$1.8 \mathrm{E}-09$

These basic events represent RHR Service Water unavailabilities which fail SPC.
CDF Contribution $=5.6 \mathrm{E}-08$ which is $<1 \%$ of the total CDF $(9.9 \mathrm{E}-05)$.

4.0

PEACH BOTTOM: NUREG/CR-4550

4.1 PEACH BOTTOM UNIT $2: 4550$ AN YSIS SUMMARY OF RESULTS

The basic events for those cooling water systems (i.e., Emergency Service Water (CSW) System) found tc be major contributors to the total core damage frequency (CDF) at the Peach Bottom Unit 2 nuclear power station are listad helow aiong with the contribution each basic event makes to the total CDF and the number of cutsets in which the basic event appears. A description of each basic event is also included.

9adial Evects
Basic Event
Contribution to CDF
\# Cutsets

ESW-XHE-FO-EHS	6.20E-07	795
ESW-CKV-CB-C515A	$9.84 \mathrm{E}-08$	175
ESW-CKV-CB-C5158	$9.84 \mathrm{E}-08$	175
ESW-AOV-CC-CCF	$9.75 \mathrm{E}-08$	35
ESW-MDP-FS-MDPA	8.29E-09	75
ESW-NDP-PS-MDPB	8.29E-09	75
ESW PTF-RE-DGC	$7.88 \mathrm{E}-09$	40
ESW-PTF-RE-DGB	7.88E-09	40
ESW-PTF-RE-MDPA	4.62E-09	35
ESW-PTF-RE-MDPB	$4.62 \mathrm{E}-09$	35
ESW-MDP-MA-MDPA	4.39E. 09	65
ESW-MDP-MA-MDPB	4.39E-09	65
ESW-CK:-HW-CV513	$4.25 E-0$.	2
ESW-MDP-FS-CCF*BETA-2SWPS	2.0\% -9	35
ESW-XVM-PG-XV502	1.58E-09	1
ESW-AOV-CC- 241 B	$1.26 \mathrm{E}-09$	95
ESW-AOV-CC-0241C	1.26E-09	95
ESW-MDP-FR-MDPA	9.17E-10	85
ESW-MDP-FR-MDPB	$9.17 \mathrm{E}-10$	85
FSW-MDP-FS ECW	$5.51 \mathrm{E}-1$	10
NSW-SYS-FO-NSW-1	3.00E-10	1
ESW-MDP-MA-ECW	$2.50 \mathrm{E}-10$	5
TSW-AOV-MA-0241B	$3.56 \mathrm{E}-11$	10
ESW-AOV-MA-0241C	$3.56 \mathrm{E}-11$	10
ESW-XVM-nG-XV505B	$1.41 \mathrm{E}-11$	5
ESW-XVM :G-XV505C	$1.41 \mathrm{E}-11$	5
ESW-CKV-HW-C515A	$1.11 \mathrm{E}-11$	10
ESW-CKV-HW-C515B	1.11E-11	10
ESW-XVM-PG-XV510	1.01E-12	5
ESW-XVM-PG-XV509	1.01E-12	5
ESW-XVM-PG-XV507A	1.01E-12	5
13SW-XVM-PG-XV507B	$1.01 \mathrm{E}-12$	5
Total	9.78E-07	
Internal Events CDF	4.50E-06	
External Events CDF	$9.70 \mathrm{E}-05$	
Tutal	$\overline{1.02 \mathrm{E}-04}$	

Appendix E

Peach Bottom Event Descriptions:

ESW-AOV-CC-CCF
ESW-AOV-CC-0241B.
ESW-AOV-CC-0241C.
ESW-AOV-MA-0241B
ESW-AOV-MA-0241C .
ESW-CKV-CB-C515A .
ESW-CKV-CB-C515B
ESW-CKV-HW-CV513
ESW CKV-HW-C515A -
ESW-CKV-HW-C515B
ESW-MDP-FR-MDPA -

ESW-MDP-FR-MDPB .
ESW-MDP-FS-CCF -
ESW-MDP-FS-ECW .
ESW-MDP-FS-MDPA.
ESW-MDP-FS-MDPB
ESW-MDP-MA-ECW -
ESW-MDP-MA-MDPA .
ESW-MDP-MA-MDPB -
ESW-PTF-RE-DGC .
ESW-PTF-RE-DGB
ESW-PTF-RE-MDPA -
ESW-PTF-RE-MDPB .
ESW-XHE-FO-EHS -
ESW-XVM-PG XV502 -

Common cause failure of air operated vali,es (various valves) to open.
Air operated valve 0241 B frils to open.
Air operated valve 0241C fails to open.
Valve 02418 out for maintenance.
Valve 0241 C out for maintenance.
Check valve 515 A fails due tc rack teakage.
Check valve 515 B fails due to back leakage.
Check valve 513 fails to open.
Check valve 515A fails to open.
Check valve 515 b fails to open.
ESW pump A fails to run.
ESW pump B fails to run.
Common mode fallure of ESW pumps to start.
Emergency cooling water pump fails to start.
ESW pump A fails to start.
ESW pump B fails to start.
Emergency cooling witer pump out for maintenance.
ESW pump A out for maintenance.
ESW pump B out for maintenance.
Failure to restore DGN C cooling components after maintenance.
Failure to restore DGN B cooling components after maintenance.
Failure to restore ESW pump A trains after maintenance.
Failure to restore ESW pump B trains after maintenance.
Failuro of operator to initiate emergency heat sink.
Manual valve 502 fails due to plugging.

Peach Bottom Event Descriptions (Continued):

ESW-XVM.PC.XV505B -
ESW-XVM-PG-XV505C -ESW-XVM-PG-XV507A . ESW-XVM-PG-XV507B -ESW-XVM-PG-XV509 -ESW-XVM-PG-XV510 -NSW-SYS-FO-NSW-1 -

Manual valve 505 B fails due to plugging.
Manual valve 505 C fails due to plugging.
Manual valve 507 A fails due to plugging.
Manual valve 507 B fails due to plugging.
Manual valve 509 fails due to plugging.
Manual valve 510 faits due to plugging.
Normal Service Water fails to operate given PCS failed or isolated.

4.2 PEACH BOTTOM ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS NUREG/CR-4550 ANALYSIS

The following presents the NUREG/CR-4550 accident sequences in which Emergency Service Water (ESW) System events appear along with the contribution ESW makes to the total CDF for the given accident sequence.

SEQUENCE T1-BNU11

This accident sequence is initiated by a loss of offsite power (TI) with subsequent failure of all diesel generators (B), which results in a station blackout.

$$
1.64 \mathrm{E}-06 \text { Mean CDF } \quad 36.4 \% \text { of the Total CDF }
$$

SWS Basic Events:

ESW-XHE-FU-EHS	$5.36 \mathrm{E}-07$
ESW-CKV-CB-C515A	$8.53 \mathrm{E}-08$
ESW-CKV-CB-C5158	$8.57 \mathrm{E}-08$
ESW-AOV-CC-CCF	$8.18 \mathrm{e}-08$
ESW-PTF-RE-DGB	$7.20 \mathrm{E}-09$
ESW-PTF-RE-DGC	$7.20 \mathrm{E}-09$
ESW-MDP-FS-MDPA	$7.10 \mathrm{E}-09$
ESW-MDI-FS-MDPB	$7.10 \mathrm{E}-09$
ESW-PTF-RE-MDPA	$4.20 \mathrm{E}-09$
ESW-PTF-RE-MDPB	$4.20 \mathrm{E}-09$
ESW-MDP-MA-MDPA	$3.80 \mathrm{E}-09$
ESW-MDP-MA-MDPB	$3.80 \mathrm{E}-09$
ESW-MDP-FS CCF*BETA-2SWPS	$2.07 \mathrm{E}-09$
ESW-AOV-CC-0241B	$1.10 \mathrm{E}-09$
ESW-AOV-CC-024C	$1.10 \mathrm{E}-09$
ESW-MDP-FR-MDPA	$9.00 \mathrm{E}-10$
ESW-MDP-FR-MDPB	$9.00 \mathrm{E}-10$
ESW-AOV-MA-0241B	$4.00 \mathrm{E}-11$
ESW-AOV-MA-0241C	$4.00 \mathrm{E}-11$
ESW-CKV-HW-C515A	$1.00 \mathrm{E}-11$
ESW-CKV-HW-C5i5B	$1.00 \mathrm{E}-11$

These basic events represent failure of the operator to initiate the emergency heat sink and ESW faults which prevent the ESW from meeting its success criteria for cooling the emergency diesel generators and HPCI pump room cooler, thus resulting in the loss of onsite power and long term failure of HPCI .

CDF Contribution $=8.39 \mathrm{E}-07$ which is 19% of the total $\mathrm{CDF}(4.5 \mathrm{E}-06)$.

SEQUENCE T1-PIBNU11

This accident sequence is initiated by a loss of offsite power (T1) followed by one stuck open relief valve (P1). Subsequent failure of all diesel generators (B) results in a station blackout.

$$
\text { 1.31E-07 Mean CDF } \quad 2.9 \% \text { of the Total CDF }
$$

Basic Events:

ESW-XHE-FO-EHS	$4.51 \mathrm{E}-08$
ESW-AOV-CC-CCF	$7.85 \mathrm{E}-09$
ESW-CKV-CB-C515A	$7.75 \mathrm{E}-09$
ESW-CKV-CB-C515B	$7.75 \mathrm{E}-09$
ESW-PTF-RE-DGB	$7.00 \mathrm{E}-10$
ESW-PTF-RE-DGC	$7.00 \mathrm{E}-10$
ESW-MDP-FS-MDPA	$6.50 \mathrm{E}-10$
ESW-MDP-FS-MDPB	$6.50 \mathrm{E}-10$
ESW-PTF-RE-MDPA	$4.00 \mathrm{E}-10$
ESW-PTF-RE-MDPB	$4.00 \mathrm{E}-10$
ESW-MDP-MA-MDPA	$3.50 \mathrm{E}-10$
ESW-MD $-M A-M D P B$	$3.50 \mathrm{E}-10$
ESW-AOV-CC-0241B	$110 \mathrm{E}-10$
ESW-AOV-CC- 241 C	$1.10 \mathrm{E}-10$
ESW-MDP-FR-MDPA	$8.00 \mathrm{E}-11$
EW-MDP-FR-MDPB	$8.00 \mathrm{E}-11$

These basic events represent failure of the operator to initiate the emergency heat sink and ESW fault which prevent the ESW from meeting its success criteria for cooling the emergency diesel generators and HPCI room coolers, thus resulting in the loss of onsite power and long term failure of HPCl

CDF Contribution $=7.34 \mathrm{E}-08$ which is 2% of the total CDF $(4.5 \mathrm{E}-06)$.

T1-BU11NU2:

This sequence is initiated by a loss of offsite power (T1), followed by loss of all diesels (B) which results in a station blackuut.
1.25E-07 Mean CDF
2.7% of tw Total CDF

Basic Events:

ESW-XHE-FO-EHS	$3.89 \mathrm{E}-08$
ESW-AOV-CC-CCF	$7.85 \mathrm{E}-09$
ESW-CKV-CB-C515A	$5.18 \mathrm{E}-09$
ESW-CKV-CB-C515B	$5.18 \mathrm{E}-09$
ESW-MDP-FS-MDPA	$5.40 \mathrm{E}-10$
ESW-MDP-FS-MDPB	$5.40 \mathrm{E}-10$
ESW-MDP-MA-MDPA	$1.90 \mathrm{E}-10$
ESW-MDP-MA-MDPB	$1.90 \mathrm{E}-10$
ESW-PTF-RE-MDPA	$2.00 \mathrm{E}-12$
ES -PTF-RE-MDPB	$2.00 \mathrm{E}-12$

These basic events represent failure of the operator to initiate the emergency heat sink and ESW faults which prevent the ESW from meeting its success criteria for cooling the emergency diesel generators and RCIC room coolers, thus resulting in the loss of onsite power and long term failure of RClC .

CDF Contribution $=5.88 \mathrm{E}-08$ which is 1% of the total CDF $(4.5 E-06)$.

Appendix E

T1-P2V234NU11B

This is a loss of offsite power transient (T1) not leading to a station blackout.
8.73E-08 Mean CDF
1.9\% of the Total CDF

Basic Events:
ESW-CKV-HW-CV513
3.95E-09

ESW-XVM-PG-XV502
$1.58 \mathrm{E}-09$
These basic events represent failure of the ESW to provided ECCS pump cooling and ECCS room cooling. This loss of cooling results in failure of the low pressure systems (i.e., LPCI and LPCS) when demanded.
$C D P$ Contribution $=5.5 \mathrm{E}-09$ which is <19 of the total $\operatorname{CDF}(4.5 \mathrm{E}-06)$.

5.0 GRAND GULF: NUREG/CR-4550

5.1 GRAND GULF UNIT 1: 1150 ANAL YSIS SUMMARY OF RCSULTS

The besic events for those cooling werer systems (i. ., Standby Service Water (SSW) System) forind to be major contributors to the total core damage frequency (CDF) at the Orand Oulf nuclear power sation are listed below along with the contriturion aach basic event makes to the total CDF and the number of cutsets in which the basic evert sppeara. A description of each bas event is also included.

Braic Event	Contritstion to CDF	\% Cutsets
BETA-35SW*SSW-MDP-FS-CM	$1.68 \mathrm{E}-07$	52
SSW-MDP-FS-MDP2C	$6.00 \mathrm{E}=08$	292
SSW-MOV-CC.MV11	$6.008-08$	290
SSW-MOV-CC-MV1A	$3.50 \mathrm{E}-08$	234
SSW-MDP-FS-MDP1A	3.50508	232
SSW-MOV-CC-MV5A	3 50E-08	232
SSW-MOV-CC-MV5B	$3.49 \mathrm{E.08}$	231
S8W-MOY-CC.MV18B	3.49 E .08	231
SSW-MDP-FS-MDPIE	3.49 E .08	231
SSW-MOV-CC-NV1B	$3.49 \mathrm{E}-08$	231
SSW-MOV-CC-MVISA	$3.49 \mathrm{E}-08$	231
SSW-MDP-MA-MDP2C	3.37E-08	183
SSW-XHE-RE-TAB2	1.97E.08	184
SSW-XHE-RE-TAB4	$1.97 \mathrm{E}-08$	183
3SW-MDP-MA-MDP1A	$1.85 E-08$	148
SSW-MDP-MA-MDP1B	1.83E-08	142
SSW-MDP-FR-MDF2C	9.35E-09	87
SSW-MOV MA-MVII	8.1TE 49	31
SSW-MDF-FR-MDPAA	4.84E-09	72
SSW-MDP-FR-MDP1B	4.84 E 09	69
SSW-XHE-RE-SSWC	4.21E-09	34
SSW-MOV-MIA MVIA	$3.45 E-09$	73
SSW-MOV-MA-MV5A	3,45E-09	2.
SSW-MOV-MA MVSB	3,44E-09	20
SSW-MOV-MA-MVI8A	3.44E-09	20
SSW-MOV MA-MV1B	$3.44 \mathrm{E}-19$	20
SSW-MOV-MA-MV18B	3.4'E-09	20
SSW XHE RE-SSWA	$1.08 \mathrm{E}-09$	19
SSW-XHE-RESSWB	$1.08 \mathrm{E}-09$	19
SSW-CKV-HW-CV12	$8.05 \mathrm{E}-10$	15
SSW-HTX-PG-HXI	6.70e-10	15
SSW-HTX-PG-HXD1	$6.70 \mathrm{E} 10$	15
SSW-HTX-PG-HXIC	$4.59 \mathrm{E}-10$	1
SSW-HTX-PG-HX4A	$3.05 E-10$	10
SSW-HTX-PG-HX4B	$3.05 \mathrm{E}-10$	10
SSW-HTX-PG-HXIA	$3.05 \mathrm{E}-10$	10
SSW-HTX-PO-HXIB	$3.05 \mathrm{E}-10$	10
SSW-CKV-HW-CV8A	2.16E-10	9
SSW-CKV-HW.CV8B	$2.16 \mathrm{E}-10$	9
SSW-XVM-PGXV13	$1.36 \mathrm{E}-10$	3
SSW-XVM-PG-XV 60	1.31E-10	1
\$SV-XVM-PG-XV/54B	1.31E-10	1
SSW-XVM-PG.V186A	$5.02 \mathrm{E}-12$	2
SSW-XVM-PG-Y186B	$5.02 \mathrm{E}-12$	2
SSW-XVM-PG-VI85A	$5.02 \mathrm{E}-12$	2
SSW-XVM-PG-V185B	5.02E-12	2
\$SW-XVM-PG XV23A	$2.21 \mathrm{E}-12$	1
SSW-XVM-PG-XV23B	$2.21 \mathrm{E}-12$	1
SSW-XVM-PG-V199A	$2.21 \mathrm{E}-12$	1

Appendix E

Total CDF INTERENAL EVENTS

1

Grand Gulf Event Descriptions:

Appendix E

Grand Gulf Event Descriptions (Continued):
SSW-MOV-CC-MV5B - Motor-operated valve 3 B fails to open.
SSW-MOV-CC-MV18A - Motor-operated valve 18A fails io open.
SSW-MOV-CC-MV18E
SSW-MOV-MA-MVIA .
SSW MOV-MA-MVIB .
SSW-MOV-MA-MV5A . SSW-MOV-MA-MV5B -SSW-MOV-MA-MVII . SSW-MOV-MA-MV18A. SSW-MOV-MA-MV18B -

SSW-XHE-RE-SSWA -
SSW-XHE-RE-SSWB -
SSW-XHE-RE-SSWC .
SSW-XHE-RE-TAB2 -
SSW-XHE-RE-TAB4 -
SSW-XVM-PG-XV13 -
SSW-XVM-PG-XV23A
SSW-XVIA-PG-XV23B .
SSW-XVM-PG-XV54B -
SSW-XVM-PG-XV60 -
SSW-XVM-PG-V185A
SSW-XVM-PG-V185B -
SSW-XVM-PG-V186A .
SSW-XVM-PG-V186B -

SSW-XVM.PG-Vi99A. Manual valve 199A fails due to plugging.
SSW-XVM-PG-V199B - Manval valve 199B fails due to plugging

Appendix E

5.2 GRAND GULF ACCIDENT SEQUFNCES WITH SWS CONTRIBUTIONS: NUREG/CR-1150 ANALYSIS

The following presents the NUREG/CR-4550 accident sequences in which Standby Service Water (SSW) System events appear along with the contribution SSW makes to the total CDF for the given accident seq ence.

Sequence TBSEQ16

This sequence is initialed by loss of offsite power (T1) followed by loss of all three diesel generators and failure of RCIC.

6E-or Mean CDF	89\% of the Total CDF
Basic Events:	
BETA-3SSW*SSW-MDP-FS-CM	1.56E-07
SSW-MDP-FS-MDP2C	4.60E-08
SSW-MuV-CC-MV11	4.60E-08
SSW-MOV-CC-MVIA	3.19E-08
SSW-MDP-FS-MDP1A	3.19E-08
SSW-MOV-CC-MV5A	3.19E-08
SSW-MOV-CC-MV5B	3.19E-08
SSW-MOV-CC-MV18R	3.19E-08
SSW-MDP-FS-MDP1B	3.19E-08
SSW-MOV-CC-MVIB	3.19E-08
SSW-MOV-CC-MV18A	3.19E-08
SSW-MDP-MA-MDP2C	$2.48 \mathrm{E}-08$
SSW-XHE-RE-TAB2	1.80E-08
SSW-XHE-RE-TAB4	1.86E-08
SSW-MDP-MA-MDP1A	1.68E-08
SSW-MDP-MA-MDPIB	1.67E-08
SSW-MDP-FR-MDP2C	6.27E-09
SSW-MOV-MA-MV11	4.988-09
SSW-MDP-FR-MDPIA	4.33E-09
SSW-MDP-FR-MDP1B	4.33E-09
SSW-XHE RE-SSWC	2.72E-09
SSW-MOV-MA-MV1A	3.09E-09
SSW-MOV-MA-MV5A	3.09E-09
SSW-MOV-MA-MV5B	3.09E-09
SSW-MOV-MA-MV18A	3, SSE-09
SSW-MOV-MA-MV1B	$3.09 \mathrm{E}-09$
SSW-MOV-MA-MV18B	$3.09 \mathrm{E}-09$
SSW-XHE-RE-SSWA	$9.64 \mathrm{E}-10$
SSW-XHE-RE-SSWB	$9.64 \mathrm{E}-10$
SSW-CKV-HW-CV12	4. $23 \mathrm{E}-10$
SSW-HTX-PG-HXI	5.92E-10
SSW-HTX-PG-HX01	5.92E-10
SSW-HTX-PG-HX4A	$2.61 \mathrm{E}-10$
SSW-HTX-PG-HX4B	$2.61 \mathrm{E}-10$
SSW-HTXX-PG-HXIA	$2.61 \mathrm{E}-10$
SSW-HTX-PG-HXIB	2.61E-10
SSW-CKV-HW-CV8A	1.87E-10
SSW-CKV-HW-CV8B	$1.87 \mathrm{E}-10$

These basic events represent SWS cooling a ater frults that defeat the diesel ganerators which leads to station biackout.

CDF Contribution $=4.8 \mathrm{E}-\mathrm{A}^{7}$ which is 12% of the total $\mathrm{CDF}(4.05 \mathrm{E}-06)$.
Sequence TBSEQ21
This sequence is initiated by loss of offsite powor (T1) followed by loss of all three diesel generators and failure of one SRV to reclose.

1.6E-07 Mean CDF	4% of the Total CDF
Basic Events:	
BETA-3SSW*SSW-MDP-FS-CM	6.23E-09
SSW-MDP-FS-MDP2C	1.84E-09
SSW-MOV-CC-MV11	1.83E-09
SSW-MOV-CC-MV1A	1.28E-09
SSW-MD ${ }^{\text {n-FS-MDPIA }}$	$1.28 \mathrm{E}-99$
SSW-MOV-CC-MV5A	1.28 E .09
SSW-MOV-CC-MV5B	1.28E-09
SSW-MOV-CC-MV18R	1.28E-09
SSW-MDP-FS-MDP1B	1.28E-09
SSW-MOV-CC-MV1B	1.28E-0y
SSW-MOV-CC-MV18A	1.28E-09
SSW-MDP-MA-MDP2C	$9.93 \mathrm{E}-10$
SSW-XHE-RE-TAB2	$7.19 \mathrm{E}-10$
SSW-XHE-RE-TAE ${ }^{\text {d }}$	$7.19 \mathrm{E}-10$
SSW-MDP-MA-MDP1A	$6.73 \mathrm{E}-10$
SSW-MDP-M/s-MDP1B	6.58E-10
SSW-MDP-KR-MDP2C	2.51 E 10
SSW-MOV-MA-MVII	$1.99 \mathrm{E}-10$
SS':-MDP-FR-MDP1A	$1.73 \mathrm{E}-10$
SSW-MDP-FR-MDP18	$1.73 \mathrm{E}-10$
SSW-X CE -RE-SSWC	$1.09 \mathrm{E}-10$
SSW-MOV-MA-MV1A	1.23E-10
SSW-MOV-MA-MV5A	1.23E-10
SSW-MOV-MA-MV5B	1.23E-10
SSW-MOV-MA MV18A	1.23E-10
SSW-MOV-M/-MV1B	1.235-10
SSW-MOV-MA-MY18B	1.23E-16
SSW-XHE-R SWA	3.868-11
SSW-XHE-Rb-SSWB	$3.86 \mathrm{E}-11$
SSW-CKV HW-CV12	$1.69 \mathrm{E}-11$
SSW-H: X-PG HX1	$2.37 \mathrm{E}-11$
SSW-HTX-PG-HX01	$2.37 \mathrm{E}-11$
SSW-HTX-PG-HX4A	$1.05 \mathrm{E}-11$
SSW-HTX-PG-HX48	$1.05 \mathrm{E}-11$
SSW-HTX-iの-HXLA	$1.05 \mathrm{E}-11$
SSW-HTX-PG-HXIB	$1.05 \mathrm{E}-11$
SSW-CKV-HW-CV8.A	$7.46 \mathrm{~F}-12$
SSW-CKV-HW-CV8B	$7.46 \mathrm{E}-12$

These basic events represent SWS cooling water fattes that defeat tie diesel generators which leads to station olackoat.
CDF Contribution $=2.8 \mathrm{E}-08$ which is $<1 \alpha$ of the tot:11 CDF (4.05E-06).

Appendix F

Squence TC74

This sequence is an ATWS, followed by a subsequent closure of the main steam line valves (Q).
1.1E-07 Mean CDF
3\% of the To'al CDF

Basic Events:

SSW-MDP-FS-MDP2C	$9.84 \mathrm{E}-09$
SSW-MOV-CC-MV1I	$9.84 \mathrm{E}-09$
SSW-MDF-MA-MDI2C	$6.56 \mathrm{E}-09$
SSW-MDP-FK-MDF-2C	$2.36 \mathrm{E}-09$
SSW-MOV-MA-MV11	$2.62 \mathrm{E}-09$
SSW-XHE-RE-SSWC	$1.21 \mathrm{E}-09$
SSW-HTX-PG-HXIC	$4.59 \mathrm{E}-10$

These basic events represent SWS cooling water faults that result in long term failure of the HPCS systerm due to loss of foom ceoling

CDF Contribution $=3.2 \mathrm{E}-08$ which is 1% of the toul CDF $(4.05 \mathrm{E}-06)$,

Sequence TBEEQ13

This sequence is nitiated by loss of offsive power (T1) followed by loss of all three diesel generators
6.6E-08 Mean CDF 2% of the Tutal CDF

Basic Events:

BETA-35SW $5 S W-M D P-F S-C M$	2.58E-09
SSW-MDP-FS-MDP2C	1.18E-09
SSW-MOV-CC-MV11	1.18E-69
SSW-MOV-CC-MV1A	8.88E-. 0
	8.88E-10
SSW-MCV- -MV5A	8.88E-10
SSW-M 3 - C6 MV5b	$8.88 \mathrm{E}-10$
SSW-MOV-CC-MV188	8.88E-10
SSW MDF FS-MDPIB	8.88E-10
SSW-MOV-CC-MV1B	8.88E: 10
SSW-MOV-CC-MV18A	8.88E-10
SSW-MDP-MA-MDP2C	$6.37 \mathrm{E}-10$
SSW-XHF-RE-TAB2	5.13E-10
SSW-XHE-RE-TAB4	5.17E-10
SSW-MDP-MA-MDP1A	4.57E-10
SSW-MDP-MA-MDP1B	4.57E-10
SSW-MDP-FR-MDP2C	$2.53 \mathrm{E}-10$
SSW-MOV-MA-MV11	1.69E-10
SSW-MDP-FR-MDP1A	$1.86 \mathrm{E}-10$
SSW-MDF-FR-MDP1B	$1.86 \mathrm{E}-10$
SSW-XHE-RE-SSWC	1.12E-10
SSW-MOV-MA-MV1A	1.04E-10

```
SSW-MOV-MA-MV5A
SSW-MOV-MA-MV5B
SSW-MOV-MA-MV18A
SSW-MOV-MA-MVIR
SSW-MOV-MA-MV18B
1.04E-10
1.04E-10
1.04E-10
1.04E-40
1.04E-10
```

These basic events represent SWS cooling water faults that defeat the diesol generators, which leads to station blackout.
CDF Contribution $=1.0 \mathrm{E}-08$ which is $\angle 1$ 第 of the total CDF (4.05E-06).

Sequence TBSEQ17

This sequence is initiated by loss of offsite power (T1) followed by loss of all three diesel generators and two SRVs fail to reclose.

3.7E-03 Mean CDF	1% of the Totil CDF
Basic Events:	
EETA-3SSW-SSW-MLP-FS-CM	$1.05 \mathrm{E}-09$
SSW-MDP-FS-MDP2C	$4.94 \mathrm{E}-10$
SSW-AOV-CC-MV11	$4.94 \mathrm{E}-10$
SSW-MOV-CC-MV1A	$3.73 \mathrm{E}-10$
SSW-MDP-PS-MDP1A	$3.735-10$
SSW-MOV-CC-MV5A	$3.74 \mathrm{E}-10$
SSW-MOV-CC-MV5B	$3.73 \mathrm{E}-10$
SSW-MOV-CC-MV18B	$3.73 \mathrm{E}-10$
SSW-MDP-FS-MDP1B	$3.73 \mathrm{E}-10$
SSW-MOV-CC-MV1B	$3.72 \mathrm{E}-10$
SSW-MOV-CC-MV18A	$3.72 \mathrm{E}-10$
SSW-MDP-MA-MDP2C	$3.13 \mathrm{E}-10$
SSW-XHE-RE-TAB2	$2.19 \mathrm{E}-10$
SSW-XHE-KE-TAB4	$2.19 \mathrm{E}-10$
SSW-MDP-MA-MDP1A	$2.32 \mathrm{E}-10$
SSW-MDP-MA-MDP1B	$2.32 \mathrm{E}-10$
SSW MDP-FR-MDP2C	$1.64 \mathrm{E}-10$
SSW-MCV-MA-MV11	$1.01 \mathrm{E}-10$
SSW-MDP-FR-MDPIA	$7.84 \mathrm{E}-11$
SSW-MDP-FR-MDP1B	$7.84 \mathrm{E}-11$
SSW-XHE-RE-SSWC	$5.06 \mathrm{E}-11$
SSW-MOV-MA-MV1A	$7.34 \mathrm{E}-11$
SSW-MOV-MA-MV5A	$7.34 \mathrm{E}-11$
SSW-MOV-MA-MV5B	$7.34 \mathrm{E}-11$
SSW-MOV-MA-MV18A	$7.34 \mathrm{E}-11$
SSW-MOV-MA-MV1B	$7.34 \mathrm{E}-11$
SSW-MOV-MA-MV18B	$7.34 \mathrm{E}-11$
SSW-XHE-RE-SSWA	$2.53 \mathrm{E}-11$
SSW-XHE-RE-SSWB	$2.53 \mathrm{E}-11$

These basic events represent SWS cooling water faults that defest the diesei generators, whicu leads to station blackout.
CDF Contribution $=7.3 \mathrm{E}-2$ which is $<1 \%$ of the total $\mathrm{CDF}(4.05 \mathrm{E}-06)$.

Appendix E

Sequence TBSEQ14

Tuils sequence is initiated by loss of offsite power (Ti) followed by loss of all three diesel generaturs and loss of ai.i zoolant injection.

```
C48-08 Mcan CDF 15 of the Total CDF
```

Basic Evants:

SSW-MDP.FS.MDP?C $\quad 8.66 E-10$
SSW-MOV-CC-MV! $\quad 8.60$ E-09
SSW-MOV-CCMVIA 6.50E-10
SSW.MDP.FS-MDF1A 6.50E-10
SSW-MOV.CC.MV5A 6.50E-10
SSW-MOV CC-MV5B $650 \mathrm{E}-10$
SSW-MJV-LC- $5 \mathrm{FV} 18 \mathrm{~B} \quad 6.50 \mathrm{E}-10$
S.W-MUP.-S-MDPIB $5.50 \mathrm{E}-10$

SSW-MOV-CC-MVIB $6.50 \mathrm{E}-10$
SSW-MOV CC-MV ${ }^{\text {SA }}$. 6. 9 E 10
5SW-MDP-MA-MDF2C $\quad 3.76 \mathrm{E}-1 \mathrm{C}$
SSW-XHE-RE-TAB2 $4.65 E-3 W$
SSTV-XHE RE-TAB $\quad 3.79 \mathrm{E}-9$
SSW-MDP-MA-MDP'A $\quad 3.35 \mathrm{E}-16$
SSH MDP-MA.MDPIB $\quad 3.353-13$
SSW MDP-FR-MDP2C $\quad 1.85 \mathrm{E}-10$
S5\%-MOV-MA-MV11 $\quad 1.24 \mathrm{E}-10$
SCT-MDP-FR-MDPIA 1.30E-10
SSW-MDP-rR-MDP1B $\quad 1.36 \mathrm{E}-10$
SSW-XHE-RE-SSWC
SSW-MOV-SIA-MV1A
8.22E-11

SSW.MOV-MA-MV5A $\quad 7.62 \mathrm{E}-11$
SSW-MOV-MA-MV5B $\quad 7.62 E-11$
S5W-MOV-MA-MV18A $\quad 7.6 .2 \mathrm{E}-11$
S5m-MOV-MA-MV1B $\quad 7.62 \mathrm{E}-11$
SSW-MUV-MA-MY18B
$1.62 \mathrm{E}-11$
These basic events represent SWS cooling *ater fauis that defeat the diesel geaerators (3.e., ioss of jacket Wuter cooling), which leads to station blackout.
CDF Contribution $=1.3 \mathrm{E}-08$ which is $<1 \%$ of the total $\operatorname{CDF}(4.05 \mathrm{E}-06)$.

Sequence TSEQ56

This sequence is initiated by a loss of the PCS (T2). Offsite power is available and st high pressure woolant ideation systems fail to inject.

```
1.3E-08 Mean CDF < 1% of the Tutal CDF
```

Hosic Events:

SSW-MDP-FS-MDP2C	$4.22 \mathrm{E}-11$
SSW MOV-CC-MV11	$4.03 \mathrm{E}-11$
SSW-MOV-CC-MV5A	$3.25 \mathrm{E}-11$
SSW-MOV-CC-MV1A	$3.25 \mathrm{E}-11$
SSW-MDP-FS-MDP1A	$3.25 \mathrm{E}-11$
SSW-MDP-MA-MDP2C	$2.68 \mathrm{E}-11$
SSW-MDP-MA-MDP1A	$2.17 \mathrm{E}-11$
SSW-XHE-RE-TAB2	$1.95 \mathrm{E}-11$
SSW-XHE-RE-TAB1	$1.08 \mathrm{E}-11$
SSW-MOV-MA-MV5A	$9.19 \mathrm{E}-12$
SSW-MOV-MA-MV1A	$9.19 \mathrm{E}-12$
SSW-MOV-MA MV11	$9.01 \mathrm{E}-12$
SSW-MDP-FR-MDP2C	$7.79 \mathrm{E}-12$
SSW-MDP-FR-MDF1A	$7.95 \mathrm{E}-12$
SSW-XHE-RI-SSWA	$2.71 \mathrm{E}-12$
SSW-XHE-RE-SSWC	$4.01 \mathrm{E}-12$
SSW-HTA-PG-FX1C	$1.61 \mathrm{E}-12$
SSW-HTX-PG-FXIA	$1.16 \mathrm{E}-12$
SSW HTX-PG-HX6	$1.09 \mathrm{E}-12$

These basic evecits represeas SSw 3 mults that result in loss of HPCS and RCIC room cooling, i.e., loss of high pressure injection systems.

CLUF Contribution $=3$ IE 10 which is $<1 \%$ of the total CDF ($4.05 \mathrm{E}-06$).

Appendix E

6.0 ST. LUCIE: TAP A-45

6.1 ST. LUCIE: TAP A-45 SUMMARY OF RESULTS

The basic events for those cooling water systems (i.e., Component Cooling Water (CCW) System and Intake Cooling Water (ICW) System) found to be major contributors to the total core damage freque cy (CDF) at the St. Lucie nuclear power station are listed below along with the contribution each basis event makes is .ue total CDF and the number of cutsets in which the basic event appears. A description of each basic eve..t is also ti Iuded.

Internal Events:

Basic Event	Contributior to CDF	\# Cutsets
CCW-PUMP-CM	1.4E-06	2
ICW-PUMP-CM	2.5E-07	2
Total	1.8E-06	
Internal Events CDF	1.4E-05	
External Events CDF	5.08-05	
Total	7.4E-05	

ST, LUCIE Event Descriptions:

CCW-PUMP-CM - Common mode failure of component cooing water pumps.
ICW-PUMP-CM - Common mode failure of intake cooling water pumps.

6.2 St. LUCIE ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: TAP A-45 ANAL YSTS

The following presents the TAP A-45 accident sequences in which Component Cooling Water (CCW) and Intake Cooling Water (ICW) events appear along with the contribution SSW makes to the total CDF for the given accident sequence. Note that the dominant cutsets listed in the TAP A-45 repori for each accident sequence typically represents less than 50% of the total sequence frequency.

Sequerve $\mathbf{S 2 M D}_{1} \mathrm{D}_{2}$

This sequence is initiated by a small LOCA (S_{2}) with subsequent failure of both high pressure and low pressure injection systems, HPIS $\left(D_{1}\right)$ and LPIS $\left(D_{2}\right)$ which leads to an early core melt.
1.9E-06 Mean CDF

14 \% of the Total CDF

SSW Basic Events:

CCW-PUMP-CM	$8.0 \mathrm{E}-07$
ICW-PUMP-CM	$2.0 \mathrm{E}-07$

These basic events are failures of the ICW system, which fails CCW, and the CCW system which fails the high and low pressure iajection systems, HPIS and LPIS, due to loss of pump cooling.

CDF Contribution $=1.0 \mathrm{E}-06$ which is 7% of the total CDF $(1.4 \mathrm{E}-05)$

Sequence $\mathrm{T}_{3} \mathrm{QD}_{1} \mathrm{D}_{2}$
This sequence is a transient in which PCS and offsite power are initially available. Following the transient, one SRV fails open (Q) and injection systems HPSI $\left(\mathrm{D}_{1}\right)$ and LPSI (D) fail to function.
1.25E-06 Mean CDF
9% of the Total CDF

SWS Basic Events:
CCW-PUMP-CM 6.0E 97
ICW-PUMP-CM $1.5 \mathrm{E}-07$
These basic events are failures of the ICW system, which fails CCW, and the CCW system which fails the high and low pressure injection systems, HPIS and LPIS, due to loss of pump cooling.

CDF Contribution $=7.5 \mathrm{E}-07$ which is 5% of the total $\mathrm{CDF}(1.4 \mathrm{E}-05)$.

Appendix E

7.0

CALVERT CLIFFS: IREP

7.1 CALYERT CLIFFS: IREP SUMMARY OF RESULTS

The basic events for the Service Water System (SRWS), Salt Water System (SWS), and Component Cooling Water Sysiem (CCW) found to be major contributors to the total core damage frequency (CDF) at the Calvert Cliffs nuclear power station are listed below along with the contribution each casic event makes to the total CDF and the number of cutsets in which the basic event appears. A description of each besic event is also included.

Internal Events
\$WSS171A-NCC-LF
$1.46 \mathrm{E}-06$
SWS5173B-NCC-LF
$9.63 \mathrm{E}-07$
7.60E-07

CCW 3826 N -NCC-OE*SW $\$ 3206 \mathrm{~A}-$ NCC-LF
6.30E-M

CCW $3826 \mathrm{~N} \cdot \mathrm{NCC}-\mathrm{OE} * S W S 5160 \mathrm{~A} \cdot \mathrm{NCC}-\mathrm{LF}$
.30E-07
CCW 3826 N NCC-OE*CCW $3823 \mathrm{~N}-\mathrm{NTO}-\mathrm{LF}$
6.30E-07

SWS5206A-NCC-LF*SWS5208B-NCC-1-F
1.90E-07

SWS520:A-NCC-LF*SWS 163 B-NCC-LF
SWS5206A-NCC-LF*SWS5162B-NCC-LF
$1.90 \mathrm{E}-07$
SWS $5206 \mathrm{~A}-\mathrm{NCC}-L F * C C W 3826 \mathrm{~N}$ - FCC-LF SWS5206A-NCC-LF*CCW3825N-NTO-LF SWS5160A NCC-LF*SWS5208B-NCC-LF SWS5160A NCC-LF*SWS5163B-NCC-LF

1 9OE-07
$1.90 \mathrm{E}-07$
$1.90 \mathrm{E}-07$
1.90E-07

SWS $5160 \mathrm{~A}-\mathrm{NCC}-\mathrm{LF}$ *WS $5162 \mathrm{~B}-\mathrm{NCC}-$ LF
$1.90 \mathrm{E}-07$

CCW 3826 N -NCC-LF*SWS5160. NCC-LF CCW 3825 N -NTO-LPeSW 55160 N . NCC-LF CLW3823N-NTO-LF*SWS5208B-NCC-LF CCW3823N-NTO-LF*SWS5163B-NCC-LF
1.90E-07
1.90E-07
1.90E-07
$1.90 \mathrm{E}-07$
©CW3823N-NTO-LF*SWS5162B-NCC-LF
$1.90 \mathrm{E}-07$
CCW 3823 N -NTO-LF*CCW $3826 \mathrm{~N}-\mathrm{N} \cdot \mathrm{CC}-\mathrm{LF}$
$1.90 \mathrm{E}-07$
CCW $3823 \mathrm{~N}-\mathrm{NTO}-\mathrm{LF}{ }^{\circ} \mathrm{CCW} 3825 \mathrm{~N}-$ NTO-LF
\$WS5173B-NCC-LF*SWS 5171 A-NCC-LF
$1.90 \mathrm{E}-07$

SWS5175B-NCC-L.F*SWS51 ${ }^{\text {TA A-NCC-LF }}$
SRWI587A-NCC-LF
$1.90 \mathrm{E}-07$
$1.90 \mathrm{E}-07$

SRWAO11A-BOO-LF
SWS5210A-NTC-CC
SWSI 10SA BOO-LF
SWS5150 A-NOC-CU
SWSO196X-XOC-LF
\$WS5210A-NOC-CC
CCW 3826 N - NCC OE*SWS $5206 \mathrm{~A}-\mathrm{NCC}-\mathrm{CC} * R A 18$
CCW 3826 N -NCC-OE*SWS5160A-NCC-CC*RA18
SWS5170A-NCC-CC*RA18
SWS5171A-NCC-CC*RA18
SWS5173B-NCC-CC*RA18
SWS5174B-NOC-CC*RA18
SWS5175B-NOC-CC*RA18
SRW1588B-NCC-LF
$1.90 \mathrm{E}-07$
$1.06 \mathrm{E}-07$
1.70E-07
$1.30 \mathrm{E}-07$
$1.70 \mathrm{E}-07$ - 4
$7.70 \mathrm{E}-08$ 3
$5.00 \mathrm{E}-08$ 1
5.30E-08
$5.30 \mathrm{E}-08$ I
5.30E-08 I
$3.50 \mathrm{E}-08$ I
3.50E-08 1
3.50E-08
$3.50 \mathrm{E}-08$ I
$3.50 \mathrm{E}-08$ I
SWSI405B-BOO-LF
$2.90 \mathrm{E}-08$ I
SWS5153B-NOC-CU
$2.90 \mathrm{E}-08$

SWS 5212 B-NTC-CC
$2.40 \mathrm{E}-08$
2. 40E-08

SWSTDI3-LF*CCW3826N-NCC-OE
2.30E-08

Total
$\overline{1.17 \mathrm{E}-05}$
Internal Events CDF
1.30E-04

Calvert Cliffs Event Descriptions:

CCW0258X-XOC-LF - Local fault of CCW valve resulting in common mode failure of all LPSR and HPSR pump seal cooling and pump failure.

CCTV $3823 \mathrm{~N}-$ NTO-LF - Locai fault of bypass valve on CCW HTX $\# 11$ results in failure of heat removal, fails $1 / \sim$ CCW.
CCW 3825 N -NTO-LF - Local fault of CCW HTX $\# 12$ bypass valve results in failure to remove heat, fails $1 / 2$ of CCW.
CCW 3826 N -NCC-If - Local faut of outlet valve on CCW HTX \#12 fails $1 / 2$ of CCW.
CCW $3826 \mathrm{~N}-\mathrm{NCC}-\mathrm{OE}$ - Failure of the operator to open CCW HTX \#12 outlet : alve resulting in failure of CCW HTX \#12 fai'ing 1/2 of CCW.

RA18 - Probability of c, \cdots, sailing to manually open SWS pneumatic valves $(p=0.1)$.
SRWA011A-BOO-LF - Local fault of power breaker on SRW pump \#11, fails DG \#11 cooling and train A of AC power. SRWA012B-ROO-LF - Local fault of SRW pump $\$ 12$ power breaker, fails DG $\$ 12$ cooling and train B of AC power. SRW1587A-NCC-LF - Local fault of DG \#11 cooling outlet valve, fails DG \#11 and train A of AC power. SKW 1587 A- 111C - F- Local fault of outlet valve from DO \#11 coolers, fails DG \#11 and Train A of AC power. SRW1588B-NCC-LF - Local fault of inlet valve to DG $\# 12$ coolers, fails $D G \$ 12$ and train B of $A C$ power. SWSTD13-LF - Short in one-second time dclay salt water pump \#13 results in failure of salt water pump \#11, fails $1 / 2 \mathrm{CCW}$.

SWSO196X-XOC-LF - Local fault of SWS ESF and CCW HTX outlet valve failing heat removai from all ESF pump room coolers and both CCW HTXs. This fails all HPSR, LPSR, and CSSR pumps and both shutdown heat exchangers.

SWS1105A-BOO-LF - Local fault of power breaker on SWS pump \#11, fails DG \#11 cooling and train A of AC power. SWS1405B-B00-LF - Local fault of SWS pump \#12 power breaker, fails DG \#12 cooling and train B of AC power. SWS5150A-NOC-CC - Control circuit fault of service water heat exchanger \#11 inlet valve, fails DG 111 and train A of AC power.

SWS5153B-NOC-CC - Control circuit fault of service water heat exchanger outlet valve, fails DG $\$ 12$ cooling and train B of AC power.

SWS5160A-NCC-CC - Control faulk of salt water valve fails CCW HTX \#11 cooling resulting in failure of $1 / 2 \mathrm{CCW}$. SWS5160A-NCC-LF - Local fault of salt water valve fails CCW HPX \#11 cooling resulting in failure of $1 / 2 \mathrm{CCW}$. SWS5162B-NCC-LF - Failure of salt water valve fails cooling to CCW HTX \#12 failing $1 / 2$ of CCW

Appendix E

Calvert Cliffs Event Descripaions (Continued):

SWS5.53B-NCC-LF - Failure of salt water valve fails cooling to CCW HTX \# 12 failing $1 / 2$ of CCW
SWS5173A-NCC-CC - Control fault of ESF pump room cooler \#11 inlet valve, fails HPSR pumps \#11 and \#12 and CSSR pump \#11.

SWS5170A-NCC-I-F - Failure of salt water valve results in failure of ESF pump rocm cooling and fails HPSR pump \#11 and \#12 and CSSR pump \#11.

SWS5171A-NCC-CC - Control fault of ESF pump room cooler \#11 outlet valve, frils HPSR pumps \#11 and \#12 and CSSR pump \#11.

SWS5171A-NCC-LF - Fal'ure of salt water valve results in failure of ESF pump room cooling and fails HPSR pump \#11 and $\$ 12$ and CSSR pump \#11.

SWS5173B-NCC-CC - Control fault of ESF pump room cooler \#12 inlet valve, fails HPSR pump \#13 and CSSR pump $\$ 12$.

SWS5173B-NCC-LF - Local fault of SWS valve, fail. ESF pump room cooler \#12 failing HPSR pump \#13 and CSSR pump \#12.

SWS5174B-NOC-CC - Control fault of ESF pump room cooler \#12 outlet valve, fails HPSR pump \#13 and CSSR pump $\$ 12$.

SWS5175B-NOC-CC - Control fault of ESF pump room cocier \$12 outlet valve, fails HPSR pump \#13 and CSSR pump -12.

SWS5206A-NCC-CC - Control fault of salt water valve fails CCW HTX \#11 cooling resulting in failure of 1/2 CCW
SWS5206A-NCC-LF - Local faul of salt water valve fails CCW HTX $\# 11$ cooling resulting in failure of $1 / 2$ CCW
SWS5208B-NCC-LF - Failur of salt water valve fails cooling to CCW HTX \#12 failing $1 / 2$ of CCW.
SWS5210A-NTC-CC - Contrui urcuit fault of service water heat exchanger \#11 outlet valve, fails DG \#11 and train A of AC power.

SWS5212B-NTC-CC - Control circuit fault of service water heat exchanger outlet valve, fails DG $\# 12$ cooling and train B of AC power.

7.2 CALVERT CLIFFS ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: IREP ANALYSTS

The following presents the IREP accident sequences in which Component Cooling Water (CCW), Service Water (SRWS), and Salt Water (SWS) events appear along with the contribution SSW makes to the total CDF for the given accident sequence.

Sequence S, H

This sequence is initiated by a Small-small LOCA followed by loss of primary makeup (High Pressure Safety Recirculation system fails (H)) in the long uerm which results in the core uncovering and core melt.

1.5E-05 Mean CDF 11% of the Total CDF

Basic Events:

SWS5190A-NCC-LF	8.07E-07
SWS5171A-NCC-LF	$8.07 \mathrm{E}-07$
CCW0258X-XOC-LF	7.60E-07
CCW $3826 \mathrm{~N}-\mathrm{NCC}-\mathrm{OE}$ *SWS5206A-NCC-LF	6.30E-07
CCW $3826 \mathrm{~N}-\mathrm{NCC}-\mathrm{OE}$-SWS5160A-NCC-LF	6.30E-07
CCW $3826 \mathrm{~N}-\mathrm{NCC}-\mathrm{OE} *$ CCW $3823 \mathrm{~N}-\mathrm{NTO-LF}$	6.30E-07
SWS4144A-VCC-LF	3.80E-07
SWS5206A-NCC-LF*SWS5208B-NCC-LF	$1.90 \mathrm{E}-07$
SWS5206A-NCC-LF*SW55163B-NCC-LF	1.90E-07
SWS5206A-NCC-LF-SWS5162B-NCC-LF	1.90E-07
SW55206A-NCC-LF*CCW3826N-NCC-LF	$1.90 \mathrm{E}-07$
SWS5206A-NCC-LF*CCW3825N-NTO-LF	$1.90 \mathrm{E}-07$
SWS5160A-NCC-LF*SWS5208B-NCC-LF	$1.90 \mathrm{E}-07$
SWS5160A-NCC-LF*SWS5163B-NCC-LF	1.90E-07
SWS5160A-NCC-LF*SWS5162B-NCC-LF	1.90E-07
CCW $3826 \mathrm{~N}-\mathrm{NCC}-\mathrm{LF} *$ SWS5160A-NLC-LF	$1.90 \mathrm{E}-07$
CCW $3825 \mathrm{~N}-$ NTO-LF*SWS5160A-NCC-L.F	1.90E-07
CCW3823N-NTO-LF*SW55208B-NCC-LF	1.90E-07
CCW3823N-NTO-LF*SWS5163B-NCC-LF	1.90E-07
CCW $3823 \mathrm{~N}-\mathrm{NTO}-\mathrm{LF} *$ SWS5162B-NCC-LF	1.90E-07
CCW $3823 \mathrm{~N}-\mathrm{NTO}-\mathrm{LF} *$ CCW $3826 \mathrm{~N}-\mathrm{NCC}-\mathrm{LF}$	$1.90 \mathrm{E}-07$
CCW $3823 \mathrm{~N}-\mathrm{NTO}-\mathrm{LF} *$ CCW $3825 \mathrm{~N}-\mathrm{NTO-LF}$	1.90E-07
CCW $38.6 \mathrm{~N}-\mathrm{NCC}-\mathrm{OE} *$ SWS5206A-N:C-CC*RA18	$5.30 \mathrm{E}-08$
CCW $3826 \mathrm{~N}-\mathrm{NCC}-\mathrm{OE} *$ SWS5160A-NCC-CC*RA18	$5.30 \mathrm{E}-08$
SWSTD $13-L F *$ CCW $3826 \mathrm{~N}-\mathrm{NCC}-\mathrm{OE}$	$2.30 \mathrm{E}-08$

These basic events represent SWS and CCW faults that result in the loss of pump seal cooling and room cooling for the HPSI/R pumps. Recovery action RA-18 is the failure of the operator to manually open SWS pneumatic valves ($p=0.1$).

CDF Contribution $=7.6 \mathrm{E}-06$ which is 6% of the total CDF $(1.35 \mathrm{E}-04)$.
Sequence $\mathrm{S}_{2} \mathrm{FH}$
This sequence is initiated by a Small-small LOCA followed by loss of primary makeup (High Pressure Safety Recirculation system fails (H) and the Containment Spray system Recirculation (F$)$) in the long term which results in the cose uncovering and core melt.

```
1.1E-05 Mean CDF % _ : the Total CDF
```

Basic Events:

```
SWS5170A-NCC-LF 9.63E-07
SWS5171A-NCC-LF 6.49E-07
SWS5173B-NCC-LF 9.63E-07
3WS4144A.VCC-LF 3.90E-08
SWS5173B-NCC-LF*SWS5171A-NCC-LF 1.90E-07
SWS5173B-NCC-LF*SWS5170A-NCC-LF 1.90E-07
SWS0196X-XOC-LF 5.00E-08
SWS5170A-NCC-CC*RA-18 3.50E-08
SWS5171A-NCC-CC*RA-18 3.50E-08
SWS5173B-NCC-CC*RA-18 3.50E-08
SW55174B-NOC-CC*RA-18 3.50E-08
SWS5175B-NOC-CC*RA-18 3.50E-08
```

These basic events represent SWS faults that result in the loss of ESF pump room coolers. This fails the HPSR and CSSR pumps. Recovery action RA-18 is the failure of the operator to manually open SWS pneumatic valves to an ESF room cooler, fails one room cooler ($p=0$.

CDF Contribution $=3.2 \mathrm{E}-06$ which is 2% of the total $\mathrm{CDF}(1.3 \mathrm{E}-04)$.

Sequence $\mathrm{T}_{1} \mathrm{Q}-\mathrm{D}^{2} \mathrm{CC}$

This sequence is initiated ty a loss of offsite power $\left(\mathrm{T}_{1}\right)$ followed by a transient induced LOCA (Q). HPSI (D*), CSSi (C') and CARCS (C) subsequently fail following the initiator which results in loss of primary system makeup uncovering the core.
5.3E-06 Mean CDF
4\% of the Total CDF

Basic Events:

SRW1587A-NCC-LF	$9.30 \mathrm{E}-08$
SWS1105A-BOO-LF	$9.30 \mathrm{E}-08$
SRWA011A-BOO-LF	$9.30 \mathrm{E}-08$
SWS5210A-NTC-CC	$7.70 \mathrm{Z}-0$
SWS5210A-NOC-CC	$5.30 \mathrm{E}-08$
SRW1588B-NCC-LF	$2.90 \mathrm{E}-08$
SWS1405B-BOO-LF	$2.90 \mathrm{E}-08$
SWS5150A-NOC-CC	$2.40 \mathrm{E}-08$
SWS5153B-NOC-CC	$2.40 \mathrm{E}-08$
SWS5212B-NTC-CC	$2.40 \mathrm{E}-08$

These basic events represent SWS and SRW faults that result in the loss of diesel generator cooling and diesel generator room coolers. This fails the diesel generators which in turn fail the ESF systems.

CDF Contribution $=5.4 \mathrm{E}-07$ which is $<1 \%$ of the total CDF ($1.3 \mathrm{E}-04$).

Sequence $\mathrm{T}_{1} \mathrm{~L}$

This sequence is initiated by a loss of offsite power (T_{1}) followed by failure of AFW (L).
4.9E-06 Mean CDF 4% of the Total CDF

Basic Event:

SWS 1105 A-BOO-LF	$6.40 \mathrm{E}-08$
SRWA011A-BOO-LF	$6.40 \mathrm{E}-08$
SWS5210A-NTC-CC	$5.30 \mathrm{E}-08$
SWS5150A-NOC-CC	$5.30 \mathrm{E}-08$

These basic events represent SWS and SRW faults that result in the loss of diesel generator \#11 cooling. This fails diesel generator $\$ 11$ which in turn fails AFW.
CDF Contribution $=2.3 \mathrm{E}-07$ which is $<1 \%$ of the total $\mathrm{CDF}(1.3 \mathrm{E}-04)$.

Sequate T.LCC

This aequence is initiated by a loss of offsite power (T_{1}) followed by failure of AFW (L), CSSI (C), and CARCS (C').
1.0E-06 Mean CDF 1\% of the Total CDF

Basic Events:

```
SRW1587A-NCC-IF 1.33E-08
SWS1!N:A-BOO-LF 1.33E-08
SRW,*ISA BOO-LF 1.33E-08
```

These basic events represent SWS and SRW faults that result in the loss of diesel generator \#11 cooling. This fails diesel generator \#11 which in turn fails $1 / 2$ of all ESF systems and motor-driven AFW pump.

CDF Contribution $=4.0 \mathrm{E}-08$ which is $\angle 1 \%$ of the total CDF $(1.3 \mathrm{E}-\Omega 4)$.

Appendix E

8.0 ANO-I: TAP-45

8.1 ANO-1: TAP A-45 SUMMARY OF RESULTS

The basic events for those woling water systems (i.e., Service Wrter System (SWS)) found to be major contributors to the total core damage frequency (CDF) at the ANO-1 nuclear power station are listed below along with the contribution each basic event makes to the total CDF and the number of cutsets in which the basic event appears. A description of each basic event is also included.

Internal Events:

Basic Event	Contribution to CDF	\# Cutsets
SWSV -02-03-CM	4.85E-06	4
SWSV-40-41-CM	$3.34 \mathrm{E}-06$	3
SWSV-40-51-CM	$1.51 \mathrm{E}-06$	1
SWSP-CM	$7.59 \mathrm{E}-07$	6
SWSV-06-07-CM	2.02E-07	2
SWS3824-VOC-LF	4.92E-08	2
SWSV-08-10-CM	$4.55 \mathrm{E}-08$	2
Total	$1.08 \mathrm{E}-05$	
Internal Events CDF	8.80E-05	
External Events CDF	$9.10 \mathrm{E}-05$	
Total	$1.79 \mathrm{E}-04$	

ANO-1 Event Descriptions:

SWSP-CM - Local fault common mode failue between 2 PMD normally running and 1 PMD on standby.
SWSV-02-03-CM - Common mode failure of MOVs 02 and 03 - failure to open.
SWSV-06-07-CM - Common mode failure of MOVs 06 and 07 - failure to open.
SWSV-08-10-CM - Common mode failure of MOVs 08 and 10 - failure to open.
SWSV-40-41-CM - Common mode failure of MOVs 40 and 41 - failure to open.
SWSV-40-51-CM - Common mode failure of MOVs 40 and 51 - failure to open.
SWS3824-VOC-LF - Normally open valve 3824 fails closed.

8.2 ANO-1 ACCIDENT SEQUENCES WTTH SWS CONTRIBUTIONS: TAP A-45 ANALYSIS

The following presents the TAI ~-45 accident sequences in which Service Water System (SWS) events appear along with the contribution SWS makes to the total CDF for the given accident sequence. Note that the dominant cutsets listed in the TAP A-45 report for each accident sequence typicaliy represents less than 50% of the total sequence frequency.

Sequence $\mathrm{S}_{3} \mathrm{MH}_{3} \mathrm{H}_{2}$
This sequence is initiated by a Small LOCA followed by loss of main feedwater (M) and primary makeup (High Pressure Recirculation system fails $\left(\mathrm{H}_{1}\right)$ and Low Pressure Recirculation system $\left(\mathrm{H}_{2}\right)$) in the long term which results in the core uncovering and core melt.

$$
\text { 2.34E-05 Mean CDF } \quad 27 \% \text { of the Total CDF }
$$

Basic Events:

```
SWSV-40-41-CM 3.04E-U6
SWSV 02-03-CM 3.04E-06
```

These basic events represent SWS faults that result in the loss of the low pressure pump room coolers and low pressure purnp lube oil coolers.

CDF Contribution $=6.0 \mathrm{E}-06$ which is 7% of the total $\mathrm{CDF}(8.8 \mathrm{E}-05)$.

Sequence $\mathrm{S}_{3} \mathrm{MED}_{2}$

This sequence is initiated by a Small LOCA followed by loss of main feedwater (M), failure of feed and bleed mode of HPSI (E), and failure of LPSI (D_{2}) which results in early core melt.

$$
\text { 6.6E-06 Mean CDF } \quad 7 \% \text { of the Total CDF }
$$

Basic Events:

SWSP-CM
1.9E-07

This basic event results in failure of both the HPSI and LPSI pumps due to loss of pump cooling.
CDF Contribution $=1.9 \mathrm{E}-07$ which is <19 of the total $\mathrm{CDF}(8.8 \mathrm{E}-05)$.
Sequence S_{3} MXE
This sequence is initiated by a Small LOCA followed by loss of main feedwater (M), failcre of fee' and bleed mode of HPSI (E), and failure to depressurize (X) which results in early core melt.

2.33E-06 Mean CDF
 3% of the Total CDF

Basic Events:
SWSP-CM

Appendix E

Thit biste event results in failure of the HPSI due to loss of pump cooling
CDF Contribution $=2.57 \mathrm{E}-09$ which is <1 每 of the total CDF $(8.8 \mathrm{E}-05)$.

Sequence T, MLE

sequence is initiated by a 'sss-of-offsite power and followed by 'oss of main feedwater (M), failure of emergency feedwater (L), and failure of feed and bleed mode of HPSI (E), which results in core melt.

$$
\text { 2.13E-05 Mean CDF } \quad 24 \% \text { of the Total CDF }
$$

Basic Events:

$$
\text { SWSV } 06.07 \cdot \mathrm{CM}
$$

$$
1.93 \mathrm{E}-07
$$

This basic event results in failure of the HPSI.
CDF Contribution $=1.93 \mathrm{E}-07$ which is $<1 \%$ of the total CDF $(8.8 \mathrm{E}-05)$.

Sequence T, MLE

This sequence is a loss of feedwater transient (T_{2}) cauced by loss of the power conversion system followed by failure of the emergency feedwater system (L) and failure of feed and' 'rieed mode of HPSI (E), which results in core melt.

```
2.38E.55 Mean CDF
\(3 \%\) of the Total CDF
```

Basic Events:

SWSP-CM	$3.09 \mathrm{E}-07$
SWS3824-VOC-LF	$3.33 \mathrm{E}-08$

These basic events result in failure of the HPSI due to loss of pump cooling.
CDF Contribution $=6.4 \mathrm{E}-07$ which is 1% of the total CDF ($8.8 \mathrm{E}-05$).

Sequence ₹, MLE

This sequence is a transient with the power conversion system (PCS) initially evailable. The PCS subsequectly fails (M) followed by loss of emergency feedwater system (L) and failure of feed and bleod mode of HPSI (E), which results in core melt.
1.14E-06 Mean CDF

1\% of the Total CDF

Basic Events:

```
SWSP-CM
    1.47E-07
SWS3824-VOC-LF
1.59E-08
```

This basic event results in failure of the HPSI due to loss of pamp cooling.
CDF Coatribution $=1.6 \mathrm{E}-07$ which is $<1 \%$ of the total CDF (8.8E-05).

Sequence T, MQLD

This sequence is initiated by a lass-of-offsite power and followed by loss of main feedwater (M), failure of the pressurizer safety relief valves to reclose (Q) which results in a transient induced $L^{2} r$, ... failure of emergency feedwater (L), and failure of HPSI (D_{1}), which results in core melt.
$7.85 \mathrm{E}-07$ Mean CDF <1类 of the Total CDF

Basie Events:

$$
\text { SWSV- } 06-61-\mathrm{CM}
$$

This basic eve., results in failure of the HPSI.

CDF Contribution $=9.33 \mathrm{E}-09$ which is $<1 \%$ of α, total CDF ($8.8 \mathrm{E}-05$).

Sequence $\mathrm{T}_{2} \mathrm{MQH}_{1} \mathrm{H}_{2}$

This sequence is a loss of feedwater transient (T_{2}) caused by loss of the power conversion system (M) followed by failure of the pressurizer safety relief valves to reciose (Q) whick results in a transient induced LOCA, and be $\%$. Se high pressure recirculation system $\left(\mathrm{H}_{1}\right)$ and the low pressure recirculation system $\left(\mathrm{H}_{2}\right)$ fail leading to core melt.

```
1.71E-06 Mean CDF 2% of the Total CDF
```

Basic Events:

```
SWSV-40-41-CM
    2.13E-07
SWSV -02-03-CM
    ..13E-07
```

These basic events represent SWS faults that result in the loss of the low pressure pump room coolers and low pressure pump lube oil coole .

CDF Contribution $\approx 4.2 \mathrm{E}-07$ which is $<1 \%$ of the total CDF $(8.8 \mathrm{E}-05)$.
Sequence $\mathrm{T}_{2} \mathrm{MQD}_{1} \mathrm{D}_{2}$
This sequence is a loss of foedwater transient $\left(\mathrm{T}_{2}\right)$ caused by loss of the power conversion system (M) followed by failure of the pressurizet safoty rerief valves to reclose (Q) which results in a transient induced LOCA, and both HPSI (D_{1}) and LPCI (D_{2}) fail leading to core inelt
6.66E-07 Mean CDF $<1 \%$ of the Total CDF

Basic Events:

SWSP-CM
$1.40 \mathrm{E}-08$

Appendix E

This basic event results in loss of the L.PSI and HPSI pumpe due to loss of cooting
CDF Contribution $=1 . E E-08$ which is $\angle 1$ क 4 of the wtal C.OF (8.8E-05).

Sequence $\mathrm{T}_{3} \mathrm{MQH}_{4} \mathrm{H}_{2}$

This sequence is a transient with the power conversion system (PCS) isitially available. The PCS subsequently fails (M) followed by failure of the pressurizer safery relief valves to reclose (Q) which results in a transient induced LOCA, and both the high pressure recirculation system $\left(\mathrm{H}_{3}\right)$ and the low pressure recirculation system $\left(\mathrm{H}_{2}\right)$ fail leading to core melt.
7.31 E-07 Mean CDF $\quad 1 \%$ of the Total CDF

Basic E-ents:

```
SWSV-40-41-CM
9.12E-08
\[
\text { SWSV-02-03-CM } \quad 1.12 \mathrm{E}-08
\]
```

These basic events represent SWS faults that result in the loss of the low pressure pump room coolers and low pressure purep lube oil coolers.

CDF Contribution $=1.8 \mathrm{E}-07$ which is $<1 \%$ of the total CDF $(8.8 \mathrm{E}-05)$.

Sequence $\mathrm{T}_{3} \mathrm{QH}_{1} \mathrm{H}_{2}$

This sequence is a transient with the power conversion system (PCS) initially available, foliowed by failure of the pressurizer safety relief valves to reclose (Q) which results in a transient induced LOCA, and both the high pressure recirculation system $\left(\mathrm{H}_{4}\right)$ and the low pressure recirculation system $\left(\mathrm{H}_{2}\right)$ fai! leading to core melt.

$$
\text { 1.21E-05 Mean CDF } \quad 14 \% \text { of the Total CDF }
$$

Basic Events:

```
SWSV-40-41-CM 1.51E-06
SWSV-02-03-CM 1.51E-06
```

These basic eveats represent SWS faults that result in the loss of the low piessure pump room coolers and low pressure pump lube oil coolers.

CDF Contribution $=3.0 \mathrm{E}-06$ which is 3 最 of the total CDF (8.8E-05),

Sequence $\mathrm{T}_{3} \mathrm{QD}_{1} \mathrm{D}_{2}$

This sequence is a transient in which the power conversion system is initially available, followed by failure of the pressurizer ssiety relief valves to reclose (Q) which results in a transient induced LOCA, and both HPSI (D_{1}) and LPS' (D_{2}) fail leading to core melt.

Besic Events:
SWSP-CM
9.6E-08

This basic event result in loss of the LPSI and HPSI putsips due to loss of cooling.
CDF Contribution $=9.6 \mathrm{E}-08$ which is $<1 \%$ of the total CDF (8.8E-05),

Sequence T_{4} MLE

This sequence is initiated by a loss of an AC bus followed by failure of the power conversion system, failure of the emergency feedwater system (L) and failure of feed and bleed mode of HPSI (E), which results in core melt.

```
4.08E-06 Mean CDF 5% of the Total CDF
```

Basic Events:
SWSV-08-10-CM $3.05 \mathrm{E}-08$
These tesic events result ia feilure of the HPSI due to loss of pump cooling.
CDF Contribution $=3.05 \mathrm{E}-08$ which is $<1 \%$ of the total CDF (8.8E-05).

Sequence $\mathrm{T}_{8} \mathrm{MLE}$

This sequence is initiated by a loss of an DC bus followed by failure of the power conversion system, failure of the emergeacy feedwater system (L) and failure of feed and bleed mode of HPSI (E), which results in core melt.

2.46E-06 Mean CDF 3% of the Total CDF

Basic Events:
SWSV-08-10-CM $1.50 \mathrm{E}-08$
These basic events result in failure of the HPSI due to loss of pump cooling.
CDF Contribution $=1.50 \mathrm{E}-08$ which is $<1 \%$ of the total $\mathrm{CDF}(8.8 \mathrm{E}-05)$.

Appendix E

9.0 POINT BEACH: TAP A-45

9.1 TOINT BEACH: TAP A-45 SUMMARY OF RESULTS

The basic events for those cooling water systems (i.e., Service Water System (SWS) and Component Cooling Water (CCW) System) found to be major contributors to the total core darnage frequency (CDF) at the Point Beach nuclear power station are listed below along with the contribution each basic event makes to the total CDF and the number of cutvetz in which the basic event appears. A description of each basic uvent is also included.

Internal Events:
Basje Event
Contribution to CDF

\# Cutsets

C:SWXV30-XOC-UTM	1.19E-05
CCWMP-PMD-CM	6.30E. 06
CCWXV30-XOC-LF	3.13E-06
CCWMDPA-PMD-LF*CCWMDPB-PMD-1.F +	$1.86 \mathrm{E}-06$
CCWMDPA-PMD-1F*CCWMDPB-PMD-UTM	
CCWHXA-HTX-FB	$1.04 \mathrm{E}-06$
SWSP-CM	2.15E-06
Toial	2.64E-05
Internal Events CDF	1.40E-04
External Eveuts CDF	1.70E-04
Totai	$3.10 \mathrm{E}-04$

Point Beach Event Descriptions:

CCWHXA-HTX-FB .
CCWMP-PMD-CM

CCWMDPA-PMD-LF - Normally runsing Component Cooling Water pump A fails to restart following LOSP.
CCWMDPB-PMD-LF . Normaily running Component Cooling Water pump B fails is restart following LOSP.
CCWMDPB-PMD-UTM - Component Cooling Water pump B unavailable due ts maintenance outage.
CCWXV30-XOC-LF . Normally open Component Cooling Water manual valve 30, RHR pump coolers return valve, fails closed.

Component Cooling Water manual valve 30 , RHR pump coolers return valve, unavailable due to maintenance.

Common mode failure of all six Service Water pumps to operate.

9.2 POINT BEACH ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: TAP A-45 ANALYSIS

The following presents the TAP A-45 accident sequences in which Service Water System (SWS) and Compotent Cooling Water (CCW) system events appear along with the contribution SSW and CCW makes to the total CDF for the given accident sequence. Note that the dominant cutsets listed in the TAP A- -45 report fo: each accident sequence typicalty represents less than 50% of the total sequence frequency.

Sequence $\mathrm{S}_{2} \mathrm{MH}_{1}{ }_{1} \mathrm{H}_{2}$
This sequence is initisted by a Small LOCA followed by main feedwater trip due from a safety injection rignal (M) and primary makeup (High Pressure Recirculation system fails $\left(\mathrm{H}^{\prime}\right)$) and Low Pressure Recirculation systetn $\left(\mathrm{H}_{2}^{\prime}\right)$) in the long rasa which results in the core uncovering and core melt.
$5.96 \mathrm{E}-05$ Mean CDF $\quad 42 \%$ of the Total CDF
Basic Events:

$$
\begin{array}{ll}
\text { CCWXV30-XOC-UTM } & 7.6 \mathrm{E}-06 \\
\text { CCWXV30-XOC-LF } & 2.0 \mathrm{E}-06
\end{array}
$$

These basic events represent CCW faukz that rosilt in the loss of the low pressure pumps due to loss of pump cooling, which in turn fails the low pressure recirculation and ligh pressure recirculation modes of operation.

CDF Contribution $=9.6 \mathrm{E}-06$ which is 7% of the total CDF $(1.4 \mathrm{E}-0 \%)$.

Sequence $\mathrm{S}_{2} \mathrm{MD}_{1} \mathrm{D}_{3}$

This sequence is initisted by a Small LOCA followed by main feedwater trip due to a safety injection signal (M), failure of the high pr ure injection system $\left(\mathrm{D}_{1}\right)$, and failure of the low pressure injection system (D_{2}) following successful deppressurization which resul's in early core melt.

$$
\text { 8.98E-06 Mean CDF } \quad 6 \% \text { of the Total CDF }
$$

Basic Events:

```
CCWMP-PMD-CM 4.0E-06
CCW-STX*ASSO XOC 3.8E-07
CCWMPA-PMD-LF*CCWMPB-PMD-LF +
CCWMPA-PMD-LF*CCWMDB-PMD-UTM 1.23E-06
SWSP-CM 6.0E-07
```

These basic events represent CCW and SWS faults that result in loss of pump cooling to the low pressure injection and high prese : injection system.

CDF Contribution $=6.21 \mathrm{E}-06$ which is 4% of the total CDF $(1.4 \mathrm{E}-04)$.

S.quence $\mathrm{S}_{2} \mathrm{MXD}_{1}$

This sequence is initiated by ; sma ${ }^{+}$LOCA foliowed by main feedwater trip due to a safety injectio, signal (M), failure or the high pressure injection sysi in $\left(\mathrm{D}_{\mathrm{i}}\right)$, and failure to pressurize (X) where low pressure injection could be used which results in early core melt.

Basic Events:

$$
\begin{array}{ll}
\text { CCW-PMD-CM } & 6.0 \mathrm{E}-68
\end{array}
$$

This basic event results in failure of the HPSI due to loss of pump cooling.
CDF Contribution $=6.0208$ which is $<1 \%$ of the totat CDF ($1.4 \mathrm{E}-04$)

Sequence T2MLE

This sequence is a loss of the feedwater system transient (T_{2}) caused by loss of the power conversion system (M) followed by failare of the auxiliary feedwater system (L) and failure of feed and bleed mode of HPSI (E), which results in core melt.

6.61E-06 Mean CDF

Basic Events
SWSP-CM
5% of the Total Cr?
1.21E-06

This basic event results in failure of the high pressure injection system and the AFW motor driven pumps due to loss of pump cooling.

CDF Contribution $=1.21 \mathrm{E}-06$ which is 1% of the total $\mathrm{CDF}(1.4 \mathrm{E}-04)$.

Sequence $\mathrm{T}_{2} \mathrm{MQH}_{4} \mathrm{H}_{2} \mathrm{H}_{2}$

This sequence is a loss of feedwater transient $\left(T_{2}\right)$ caused by loss of the power conversion system (M) followed by failure of the pressurizer safety relief valves to reclose (Q) which results in a transient induced LOCA, and both the high pressure recirculation system $\left(\mathrm{H}_{1}^{\prime}\right)$ snd the low pressure recirculation system $\left(\mathrm{H}_{2}\right)$ faill leading to core melt.
4.17E-06 Mean CDF
3\% of the Total CDF

Basic Events:

CCWXV30-XOC-UTM
CCWXV30-XOC-LF
5.32E-07
1.4E-07

These basic eveats repinent CCW faults that result in the loss of the low pressure pumps due to loss of pump cooling, waich in turn fails the low pressure recirculation and high pressure recirculation modes of operation.

CDF Contribution $=6.72 \mathrm{E}-07$ which is <1 多 of the total $\mathrm{CDP}(1.4 \mathrm{E}-04)$.

Sequence $\mathrm{T}_{2} \mathrm{MQD} \mathrm{D}_{1} \mathrm{D}_{2}$

This sequence is a loss of feedwater transieat $\left(T_{2}\right)$ caused by loss of the power conversion system (M) followed by failure of the pressurizer safety relief valves to teclose (Q) which results in a transient induced LOCA, and both HPSI (D_{1}) and LPSI (D.) fail leading to core melt.
6.86E-07 Mes, CDF
$<1^{\prime} 4$ of the Total CDF

Basic Events:

CCWMP-PMD-CM	$2.80 \mathrm{E}-07$
SWSP-CM	$4.20 \mathrm{E}-08$
CCWHXA-HTX-FB*ASSOC XOC	$8.26 \mathrm{E}-08$

These basic events represent CCW and SWS faults thas result in loss of pump cooling to the low pressure injection and high pressure injection system.

```
CDF Contribution = 4.04E-07 which is < < % of the total CDF (1.4E-04).
```

Sequence $\mathrm{T}_{2} \mathrm{QH}_{1} \mathrm{H}_{3}{ }_{3}$
This sequence is a trunsient with the power convercion system (PCS) initially available, followed by failure of the pressurizer safety relief valves to reclose (Q) which resuits in a transient induced LOCA, and both the high pressure recirculatiou systern $\left(\mathrm{H}_{1}\right)$ and the low pressure recirculation system $\left(\mathrm{H}_{2}\right)$ fail leading to core melt.
2.95E-05 Mean CDF
21\% of the Total CDF

Basic Events:

```
CCWXV30-XOC-UTM 3.76E-06
CCWXV30-XOC-LF
9.90E-07
```

These basic events represent CCW faults that result in the loss of the low pressure purms due to loss of pump cooling, which in turn fails the low pressure recirculation and high pressure recirculation modes of operation.

CDF Contribution $=4.75 \mathrm{E}-06$ which is 3% of the total CDF $(1.4 \mathrm{E}-04)$.

Sequence $\mathrm{T}_{3} \mathrm{QD}_{1} \mathrm{D}_{2}$

This sequence is a transient in which the power conversion system is initially available, followed by failure of the pressurizer safety relief valves to reclose (Q) which results in a transieut induced LOCA, and both HPSI (D_{1}) and LPSI (D_{2}) fail leading to core melt.

```
4.80E-06 Mean CDF 3% of the Total CDF
```


Basic Events:

```
CCWMP-PMD-CM 1.96E-06
SWSP-CM 2.94E-07
CCWMPA-PMD-LF*CCWMPB-PMD-LF+
CCWMPA-PMD-LF*CCWMPB-PMD-UTM
6.03E-07
CCWHXA-HTX-FB*ASSOS XOC
5.78E-07
```

These basic events represent CCW and SW'S fauls that result in loss of pump cooling to the low pressure injection and high pressure injection system.

CDF Contribution $=3.44 \mathrm{E}-06$ which is 2% of the total CDF $(1.4 \mathrm{E}-04)$,

Appendix E

10.0 TURKEY POINT: TAP A-45

10.1 TURKEY POINT: TAP A-45 SUMMARY OF RESULTS

The basic events for those cooling water systems (i.e., Service Water System (SWS) and Component Cooling Water (CCW) System) found to be major contributors to the total core damage frequency (CDF) at the Turkey Point nuclear power station are listed below along with the contribution each basic event makes to the total CDF and the number of cutsets in which the basic event appears. A description of each basic event is also included.

Internal Events:
Basic Event
Contribution to CDF
\# Cutsets

CCMDP-CM	1.13E-06
SWNV2201-NOO-LF	1.13E-06
SWSMP-CM	1.13E-06
Total	$3.39 \mathrm{E}-06$
Internal Events CDF	7.10E-05
External Events CDF	1.60E-04
Total	$2.31 \mathrm{E}-04$

Turkey Point Event Descriptions:

CCMDP-CM - Common mode failure of Component Cooling Water pumps to operate.
SWNV2201-NOO-LF - Normally open Service Water pneumatic valve 2201 fails to isolate nod-essential systems.
SWSMP-CM - Common mode failure of all three Service Water pumps to operate.

Appendix E

10.2 TURKEY POINT ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: TAP A-45 ANALYSIS

The following presents the TAP A-45 accident sequences in which Service Water System (SWS) and Component Cooling Water (CCW) system events appear along with the contribution SSW and CCW make to the total CDF for the given accident sequence. Note that the dominant cutsets listed in the TAP A-45 report for each accident sequi e typicaily represent less than 50% of the total sequence frequency.

Sequence $\mathrm{S}_{2} \mathrm{MD}_{1} \mathrm{D}_{2}$
This sequence is intitated by a Small LOCA followed by main feedwater trip due to a safety injection signel (M), failure of the high pressure injection system $\left(\mathrm{D}_{1}\right)$, and feilyre of the low pressure injection system (D_{2}) following successful deppressurization which results in early core mell.

```
1.4E-05 Masin CDF % % % the Total CDF
```

Basic Events:

CCMDP-CM	$6.0 \mathrm{E}-07$
SWSMP-CM	$6.0 \mathrm{E}-07$
SWNV2201-NOO-Li	$6.05-07$

These baic events represent CCW and SWS faults that result in loss of pump cooling to the low pressure injection and high pressure injection pumps.

CDF Contribution $=1.8 \mathrm{E}-06$ which is 2% of the total CDF (7.1E-05).

Sequence $\mathrm{S}_{2} \mathrm{MXD}_{1}$

This sequence is initiated by a Small LOCA followed by main feedwater trip due to a safety injection signal (M), failure of the high pressure injection system (D_{1}), and failure to pressurize (X) where low pressure injection could be used which results in eariy core twelt.

8.42E-07 Mean CDF
 1\% of the Total CDF

Basic Events:

CCMDP-CM	$9.6 \mathrm{E}-09$
SWSMP-CM	$9.6 \mathrm{E}-99$
SWNV2201-NOO-LF	$9.6 \mathrm{E}-09$

This basic event results in failure of the HPSI due to loss of pump cooling.
CDF Contribution $=2.88 \mathrm{E}-08$ which is $\cdots i \%$ of the total $\mathrm{CDF}(7.1 \mathrm{E} .05)$.

Sequence $\mathrm{T}_{2} \mathrm{MQD}_{1} \mathrm{D}_{2}$

This sequence is a loss of feedwater transient (T_{2}) caused by loss of the power conversion system (M) followed by failure of the pressurizer safety relief valves to reclose (Q) which results in a transient induced LOCA, and both HPSI (D_{1}) and LPSI (D_{2}) fail leading to core melt.

Appendix E

```
1.23E-06 Meam CDF 28 of the Total CDF
```

Basic Events:

```
CCMDP-CM 6.3E-08
SWSMP-CM 6.3E-08
SWNV2201-NOO-LF 6.3E-08
```

These basic events represent CCW and SWS faults that result in loss of pump cooling to the low pressure injection ard high pressure injection system.

CDF Contribution $=1.894 \mathrm{E}-07$ which is $\angle 1 \%$ of the total CDF (7.1E-05).

Sequence $\mathrm{T}_{3} \mathrm{QD}_{1} \mathrm{D}_{2}$

This sequence is a transient in which the power conversion system is initially available, followal by failure of the pressurizer safety relief valves to ryclose (Q) which results in a transient induced LOC'A, and both HPSI $\left(D_{1}\right)$ and LPSI (D_{2}) fail leadirg to core melt.

```
8.70E-06 Mean CDF 12% of te Total CDF
```

Basic Ever's:

CCMDP-CM	4.5E-07
SWSMP-CM	$4.5 \mathrm{E}-07$
SWNV2201-NOO-LF	$4.5 \mathrm{E}-07$

These basic events represent CCW and sWS faults that result in loss of pump cooling to the low pressure injection and high pressure : jection system.

CDF Contribution $=1.35 \mathrm{E}-06$ which is $<1 \%$ of the total CDF $(7,1 \mathrm{E}-05)$.

Sequence $\mathrm{T}_{3} \mathrm{QXD}_{1}$

This sequence it a transient in which the power conversion system is initially available, followed by failure of the pressurizer safety relief valves to reclose (Q) which results in a transient induced LOCA, failure of HPSI (D_{1}), and failure to depressurize (X) خeading to core melt.
6.0F-08 Mean CDF $\quad<1 \%$ of the Total CDF

Basic Events:

```
CCMDP-CM 7.2E-09
SWSMP-CM 7.2E-09
SWNV2201-NOO-LF 7.2E-09
```

These basic events represent CCW and SWS faults that result in loss of pump cooling to the high pressure injection system.
CDF Contribution $=2.16 \mathrm{E}-08$ which is $<1 \%$ of the total CDF $(1.4 \mathrm{E}-04)$.

11. SURRY: NUREG/CR-4550

11.1 SURRY *NTT 1: 1150 ANALYSIS SUMMARY OF RESULTS

The basic events for those cooling water systems (i.e., Service Water System (SWS)) found to be contributors to the total core damage frequency (CDF) at the Surry ny relear power station are listed below along witi the contribution each basic event makes to the tout CDF and the nutrter of cutsets in which the hasic event appears. A desuription of each basic event is also included.

Internal Events:

Basic Event	Contribution to CDF	\# Cutsels
SWS-CCF-FT-3ABCD	$7.56 \mathrm{E}-09$	3
SWS-XHE-FO-OPEN	$7.56 \mathrm{E}-09$	
Total	$\overline{1.518-08}$	
Internal Events CDF	4.01E-05	
External Events CDF	1.30E. 04	
Tutal	1.70E-04	

Surry, Unit 1 Event Descriptions:

SWS CCF-FT-3ABCD - Common cause failure of SW 3 isolation MOVs $103 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ and D (SWS-MOV-FT * BETASWMOV).

SWS-XHE-FO-OPEN - Operator fails to open spray huat exchanger MOV.

11.2 SURRY, UNIT 1 ACCIDENT SEQUENCES WITH SWS CONTRIBUTIONS: NUREG/CR 4550 ANALYSIS

The events listed above appear in the Surry "Total Core Damage Model" cutset listing and not in any specific accident cutset listing. Therefore no specific accident sequence is associated with the listed events.

Appendix E

12.0 SEQVOYAH: NUREG/CR-4550

12.1 SEQUOYAH, UNIT 1: 1150 ANALYSIS SUMMARY OF RESULTS

The basic events for those cooling water syst-m (i.e., Service Water Syatem (SWS) and Component Cooling Water (CCW) System) found to be major contributors to the total core damage frequency (CDF) at the Sequoyah nuclear power station are listed below along with the contribution each basic event makes to the total CDF and the turmber of cutsets in which the basic event appears. A description of each basic event is also included.

Internal Events:

Basic Event	Contribution to CDF	\# Cutsets
CCW-MOV-CC-1153*RA8	$5.28 \mathrm{E}-08$	26
CCW-MOV-CC-1156*RAS	$5.28 \mathrm{E}-08$	26
CCW-MOV-CC-1153	2.48E-08	9
CCW-MOV-CC-1156	$2.48 \mathrm{E}-08$	9
CCW-MOV-CC-1153*CCW-MOV-CC-1156	1.80E-08	1
CCW-MOV - $\mathrm{CC}-1153^{*} \mathrm{CCW}-\mathrm{MOV}-\mathrm{CC}-1156 * \mathrm{RAB}$	1.32E-08	4
CCW-XVM-RE-RHR1A	2.25E-09	3
CCW-XVM-RE-RHR1B	2.25E-09	3
CCW-XVM-RE-RHRX1A	1.12E-09	2
CCW-XVM-RE-RHRXIB	1.12E-09	2
SWS-STR-PG-A121H	8.19E-09	6
SWS-STR-PG-A 22.1 H	8.19E-09	6
SW-S-STR-PG-B121H	8. $19 \mathrm{E}-09$	6
SWS-STR-HG-B221H	8.19E-09	6
SWS-XVM PR-1603A	1.75E-09	3
SWS-XVM-PR-1603B	1.75E-09	3
SW/S-XVM-PR-1606A	1.75E-09	3
SWS-XVM-PR-1606B	$1.75 \mathrm{E}-09$	3
SWS-XVM-PR-1613A	$1.75 \mathrm{E}-09$	3
SWS-XVM-PR-1613B	1.75E-09	3
Total	$2.35 \mathrm{E}-07$	
Internal Events CDF	5.70E- 5	

Sequoyah, Unit 1, Event Dewariptions:

CCW-MOV-CC-1153.
CCW-MOV-CC-1156.
CCW XVM-RE-RHR1A -
CCW-XVM-RE-RHRIB

CCW-XVM-RE-RHRXIA
CCW-XVM-RE-RHRXIB .
RA8 -

SWS-STR-PG-A121H -
SWS-STR-PG-A2.21H -
SWS-STR-PG-B121H.
SWS-STR-PG-B221H -
SWS-XVM-PR 1603 A .
SWS-XVM-PR-1603B

SWS-XVM-PR-1606 ,
SWS-XVM-PR-1606B

SWS-XVM-PR-1613A.
SWS-XVM-PR-1613B.

Component Cooling Water flow control valve 1-153 fuils to open Comp(s) ant Cos'ing Water flow control valve 1-156 teits to upen.

Failure th, estore valve to RifR seal water heat exchangen 1A-A Failure to restore valve to RHR sual water beat exchaiger 18-B.

Failure to restony valve to RHR beat exchanger $1 \mathrm{~A}-\hat{\mathrm{R}}$.
Falure to restore valve to RHR heas exchumger iB-B.
Probatility of opevator failing to :ocally open the RHR CoW outlet valves ($\beta=0.24$). 5WS strainer A-1 Fiuggri for 21 hours.

SWS strainer $\mathrm{A}-2$ pirg ${ }_{\delta} 2 \mathrm{~d}$ for 21 hours.
SWS s. ainer B-1 plugged for 21 hours.
SWS strainer B-2 clagged for 21 hours.
SWS manual valve 1603A plugged or misporitioned
SWS manual valve 16058 plugged or mispositioned.
SWS manual valve 1606A plugged or misprevitioned.
SWS manual value 1606 B pluzgad or mispositioned
SWS aanual valve 1613A plugged or mispositioned.
SWS manual valve 1613 B plegged or mispo.itioned.

Ap ceadix E

12.2 SEQUOYAH, UNII 1 ACCIDENT SEQULNC2S WTTH SWS CONTRIBUTIONS: NURFG/CR 4550 ANAL: B S

The following presents ths NURFG 4550 accident sequences in which Service Water System (SWS) and Component Cooling Water (CCW) s, sten events apesar along with the contribution SSW ard CCW makes to the total CDF for the given accident sequeice.

Sequence $\mathrm{S}_{3} \mathrm{O}_{\mathrm{C}} \mathrm{H}_{2}$
This sequence is initianed by a very Senall LOCA followed by the uperators inability to control contaiament vprays and subsequent failure of the kigh pressure injection system in the recirculation mode. Coitinued heat up and buil off of primary coolant leads to core unesvery

$$
\text { 1.4E-05 Mean CDP } 25 \% \text { of the Total CDF }
$$

Taxic Eveats:

```
CCW-MOV-CC-.156*RA8 4.27E-10
CCW-MOV-Cr-1153*RA8 4.27E-10
```

These basic events result its failure of the CCW system te provide cooling to the RHR hear exchangers, failing LPR which fails ifr'n. Recovery sction RAX is the failure to locally open these valves ($\mathrm{p}=24$),

CDF Contribution $=8.54 \mathrm{E}-10$ which is <1 f of the total CDF $(4.0 \mathrm{E}-05)$,

Sequeace $\mathrm{S}_{\mathbf{5}} \mathrm{O}_{\mathrm{C}} \mathrm{H}_{3}$
This sequence is initisted by a very Small LOCA followed by the operators inability to control containment sprays and subsequasnt failure of the low pressure recirculation system.
5.0E-06 Mean CDF
8.8\% of the Total CDF

Basia Events:

CCW-MOV-CC-1153*RA8	$2.40 \mathrm{E}-08$
CCW-MOV-C--1156 RA8	$2.40 \mathrm{E}-08$
CCW-MOV-CC-153*C.W-MOV-CC-1156*RA8	$6.74 \mathrm{E}-09$
CCW-XYM-RE-RIIR1A	$2.205-09$
CCW-XVM-RE-RHR1B	$2.20 \mathrm{E}-09$
CCW-XVM-RE-RHRX1A	$1.12 \mathrm{E}-09$
CCW-XVM-RE-RHRX1B	$1.12 \mathrm{E}-09$
SWS-XVM-PR-1663A	$1.84 \mathrm{E}-09$
SWS-XVM-PR-1603B	$1.84 \mathrm{E}-09$
SWS-XVM-PR-1636A	$1.84 \mathrm{E}-49$
SWS-XVM-PR-16.36B	$1.84 \mathrm{E}-09$
SWS-XVM-PR-1613A	$1.84 \mathrm{E}-69$
SWS-XVM-PR-16138	$1.84 \mathrm{E}-09$

These basic events result in failure of the CCW systeta to provide cooling to the RHR heat exchangers, faihng $1 . P R$ and
failure of the SWS to provide cooting to the RGIR romm coolers. Reonvery actioa RA8 is the failure to locally open thr RHR CCW outlet valves ($p=24$).

CDF Contribution se 7.24 E .(os whick is <18 of the total CDF ($4.0 \mathrm{E}-05$).

Sequence $\mathrm{S}_{1} \mathrm{H}_{4}$
This sequievice is thitiated by a medium LOCA which is followed by successful operation of the high pressure injection system, but the low pressun system fails in either the miniflow mode during the injection phase or in the recirculation made.
$1.9 \mathrm{E}-16$ Mean CDF $\quad 3.3 \pi$ of the Total CDF
Bay © Events:

CCW-MOV-CC- 1153 PR A8	$6.60 \mathrm{E}-29$
CCW-MOV-CC-1156*RA8	6.60E 09
CCW-MOV-CC-1153*CCW-MOV-CC-1156*RA8	2. 68 E - 09
SWS.STR-PG-大121H	8.27E-09
SWS-STR +GG-A 221 H	8.27E-09
SWS-SIR-PG-8121H	$8.27 \mathrm{E}(\mathrm{S})$
	- 373E 09

Thene basic events result in failure of the CCW system to provide cooling to the RHR heat exchangers, failing IPR and failure of the SWS to provide cooling to the RHR reom coolers. necovery action RA8 is the failure to locally open the RHR CCW octlet valves ($\mathrm{p}=\underset{\sim}{2} 4$).

CDF Contribution $=4.65 \mathrm{E}-08$ which is $<1 \%$ of the total CDF $(4.0 \mathrm{E}-05)$.

Sequence $\mathrm{S}_{2} \mathrm{H}_{3}$
This sequence is initiated by a small LOCA which is followed failure of the high pressure reciretuation aystem due to failure of the low pressure recirculation systet.
1.7E-O. Mean CDF 3.0% sf the Total CDF

Basio Eveas:

```
CCW-MOV.CC-2153*RA8 7.72E-09
CCW-MOV-CC-1156*RA8 1.72E.09
CCW-MOV-CC-1153*CCW-MOV-CC 1156*RA8 2.16E-09
```

B. ese hasic events result in feilure of the CCW s.stem to provide copling to the RHR heat exchangers, failing LPR which
in turn fails HPR. Recovery action RA8 is the failure to locally open the RHR CCW outlor valves $/>=24$).
CDF Contribution $=1 .{ }^{4} 6 E-2$, whis 5 is $<1 \%$ of the total CDF (4.CE-05).

Sequence AH_{3}

Appendix E

This sequence is initiated by a large LOK'A which is fail pad iwilpro of the low prespure recitrulation bystere.

```
9.97E 07 Man CE% 2.0% of the Total CDF
```

Basic Events:

CWW-MOV-CC-1153
 2.48E-08

CCW-MJV-CC. 1156
2.48E-08

These basic events result in failure of the CCW system to provide cooling te the RHR beat exchangers, faifing LPR.

Sequence $\mathrm{S}_{3} \mathrm{~W}_{1} \mathrm{H}_{3}$
This sequence is initisted by a very small LOCA which is followed failure of the RHR system in the chutdr sa cooling mode and failure of low pressure recirculation

These basic evenis cesuls it "ulure of the CCW systen to provide cooling to the RHR heat exchangers, failing RHR and LPR. Recovery action RAs the failure to locally open the RHR CCW outlet valves $(\mathrm{p}=\mathrm{m}, 24)$.

CDF Contributict $=1.04 \mathrm{E}$. 08 which is $<1 \%$ of the cotal CUF ($4.0 \mathrm{E}-05$).

13.0 REFERENCES

1. NUREG/CR-4767, SAND86-2419. "Shutdown Decay Heat Removal Aanlysis of a General Electric BWR4/Mark 1 Casn Study, ${ }^{*}$ U.S. Nuclear Kegulatory Commision, Jaly 1987.
2. NUREGCR-4448, 3AND85-2373, "Shuidoxa Decay Heat Removal Analysis of a General Electria BWR3/Mark 1 Case Sujdy; U.S. Nuclear Regulatory Commision, Murch 1987.
3. NUREG CR-4550, SAhD86-2084, "Analysis of Core Damage Frequincy: Peach Bottom, Unit 2 Internal Events," Vothe 4 Rev. I. Part 1, i/.S. Nucitar Regulatory Cotamision, August 1989.
4. NUREG/CR-4550, SAND\$6-2084, "Analysis of Core Darrage Frequency; Grand Gulf, Unit I Internal Events,* Volune 6, Rev. 1, Part 1, U.S. Nuclear Regulatory Commision, Sep'rmber 1989.
5. NUKEG/CR-4550, SAVAD86-2014, "Analysis of Core Damage Frequency: Grand Gulf, Unit 1 Internal Events Appendices," Volume 6, Miev, 1, r'art 2, 11.S. Nuclear Regulatory Commision, September 1989.
 Pressurized Water Reactor Case Study," U.S. Nuelear Regulatory Commision, July 1987.
6. NUREG/CR-3511/1 of 2, 5.152583-5n86/1 of 2, "Interim Reliability Evaiuaion Program: Analysis of the Calvert Cliffs Unit I Nuclear Power Plant Volume 1. Main Report," U.\& Nuciear Regulatory Commision, September 1983.
7. NUREG/CR 4713, SANDA6-1832, "Shutdown Decay Hest Removal Analysis of a Babock and Wilcox Pressurized Water Reactor Case Srudy, U.S. Nuclear Regulatory Commision, March 1987.
8. NUREG/CR-4458, SARDE86-2496, "Stu'down Decay Heat Removal Anslysis of a Westighouse 2-Loop Prossurized Water Reactor Case Scudy, ${ }^{*}$ U.S. Nucleat Regulatary Commision, Marh 1987.
9. NUREO/CR-4762, SAND86-2377, "Shudow nTecty H:an Removal Anatysis of iWestinghouse 3-Loop Pressurized Water Reactor Case Study, U.S. Nucloar Regulatory Commision, Mr ch 1987.
10. NUREG/CR-4550, SANLs6-2084, 'Analysis of Core Damage Frequency: Surry, Unit I Ioternal Events, 'Voluene 3, Rev, 1, Part 1, U.S. Nuclear Regulatory Commision, April 1990.
11. NUREG/CR-4550, SAND86-2084, *Analynis of Core Damage Frequettey: Surry, Unit I Internal Events Appendices.' Volume 3, Rov. 1, Part 2, U.S. Nuciear Regulatory Commision, Apsil 1990.
12. NUREG/CR-4550, SAND85-2084, "Analysls of Core Damage Frequency: Sequoyath, Unit I Interial Events," Volume 5, Rev, 1, Part 1, U.S. Nuplear Regulatory Coumision, April 1990.
13. NUREG/CR-4550, SAND86-2084, "Anslysis of Core Thamage Frequerwy: Serguoyah, Uait I Internal Events Appendices," Volume 5, Rev. 1. Part 2, U.S. Nuclaar Regulatory Comusision, April 1990.

APPENDIX F

SCOPING S SUDY BASE CASE

DOMINANT ACCIDENT SEQUENCE CUT SETS

Table of Contents

Table Page
F. 1 Accident Sequence T1-BNU11 Cut Sets F-4
F. 2 Accident Sequence T1-BU11NU21 Cut Sets F-40
F. 3 Accident Sequence T1-P1BNU11 Cut Sets F-68
F. 4 Accident Sequence T1-BU11U21 Cut Sets F-85
F. 5 Accident Sequence T1-C-SLC Cut Sets F. 85
F. 6 Accident Sequence T1-P1BU11U21 Cut Sets F-86
F. 7 Accident Sequence T1-P2V234NU11B 1 F-86
F. 8 Accident Sequence T1-P2V234NU11B-2 F-87
F. 10 Accident Sequence S1-V234NU11 F-87
F. 11 Accident Sequence A-V2V3 F-88
F. 12 Accident Sequence T3A-C-SLC F-88
F. 13 Accident Suquence T3A-CU11X F-89
F. 14 Accident Sequence T3A-P2V/234NU11 F-90
F. 15 Accident Sequence T2-C-SLC F-90
F. 16 Accident Sequence T2-P2V234NU11 F-91
F. 17 Accident Sequence T3B-C-SLC F-91
F. 18 Accident Sequence T3B-P2V234NU11-1 F-92
F. 19 Accident Sequence T3B-P2V234NU11-2 F-92
F. 20 Accident Sequence T3C-C-SLC F-93
F. 21 Accident Sequence T3C-CU11X F-93

This Appendix presents the base case dominant accident sequence cut sets used in the pilot plant analysis. The base case cut sets are the result of updating the Peach Bottom NUREG/CR-4550 dominant accident sequence cut sets made available on IRRAS as discussed in Section 4.5 of the main report. These cut sets prov, 4 the bases for the dy of the service water modifications discussed in Section 4 of the main repon and also the sensitivity study described in Section 4.7 of the main report. The values shown in the Prob./Freq. column of the tables are point estimates.

Appendix F

Table F. 1
Accident Sequence T1-BNU11 Cut Sets

SEQUENCB CUT SETS (QUANTIFICATION) REPORT Family: PBACHBOT

Event Tree: T1 Sequence: T1-BNU11

Init. Event: IB-T1
Mincut Upper Bound $1.830 \mathrm{~B}-006$

	Cut No.	$\begin{aligned} & \text { Accum } \\ & \text { of } \\ & \text { Total } \end{aligned}$	of Cut Set	Prob/ Freq.	ALTERNATE CUT SETS
	1	4.7	4.7	8.6E-008	ACP-DGN-LP-CCF, BAT-DEP-3HR, BETA-4DGNS, DGCCFNR 3 HR, LOSPNR5HR
	2	9.0	4.3	8. OB-008	ACP-DGN-LP-CCF, BETA-4DGNS, DGCCFN LOSPNR13HR
	3	12.8	3.7	6. 8B-008	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, DGHWNR12HR, ESW-XHE-FO-BHS, INJ-FATLS, LOSPNR18HR
	4	16.5	3.7	$6.8 \mathrm{~B}-008$	$A C P-D G N-F R-E D G B, A C P-D G N-I P-E D G C, D G H W N R 12 H R$, ESW-XHE-FO-EHS. INJ-FAILS, LOSPNR18HR
	5	19.4	2.8	5.2E-008	ACP-DGN-ER-EDGB, ACP-DGN-LP-EDGC, BAT DGHWNR 3HR, ESW-XHE-FO-EHS, LOSPNR 9 HR
$\frac{7}{1}$	6	22.2	2.8	5.2B-008	ACP-DGN-FR-BDGC, $A C P-D G N-L P-B D G B, ~ B A T-D E P-3 H R$ DGHWNR3HR, ESW-XHE-FO-BHS, LOSPNR9HR
	7	25.1	2.8	5.2E-008	ACP-DGN-LP-CCF, BAT-DEP-9HR, BETA-4DGNS, DGCCFNR 9 HR, LOSPNR12HR
	8	27.8	2.6	4.9E-008	ACP-DGN-LP-CCF, BAT-DEP-5HR, BETA-4DGNS, DGCCFNR5HR, LOSPNR7HR
	9	30.0	2.1	4.0E-008	ACP-DGN-FR-EDGC, ACP-DGN-LP- BDGB, BAT-DEP-9HR, DGHWNR 9 HR, ESW-XHE-FO-EHS, LOSPNR17HR
	10	32.2	2.1	4.0E-008	ACP-DGN-FR-EDGB, ACP-DGN-LP-EDGC, BAT-DBP-9HR, DGHWNR9HR, ESW-XHE-FO-EHS, LOSPNR 17 HR
	11	34.2	2.0	3.6B-008	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, DGHW ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
	12	35.8	1.6	$2.9 \mathrm{E}-008$	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, BAT DGHWNR5HR, BSW-XHE-FO-BHS, LOSPNR 12 HR
	13	37.4	1.6	$2.9 \mathrm{E}-708$	ACP-DGN-FR-EDGB, ACP-DGN-LP-EDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-XHE-FO-BHS, LOSPNR12HR
2	14	39.0	1.6	2.9E-008	ACP-DGN-LP-CCF, BAT-DEP-7HR, BETA-4DGN
x					DGCCFNR7HR, LOSPNR9HR
\bigcirc	15	40.6	1.5	2.8B-008	BETA-3AOVS, ESW-AOV-CC-CCF,

16	42.1	1.5	2.7B-008	$A C P-D G N-F R-E D G B, ~ A C P-D G N-F R-E D G C, ~ B A T-D E P-3 H R$, DGHWNR 3HR, ESW-XHE-FO-EHS, LOSPNR9HR
17	43.5	1.3	2. 5B-008	ACP-DGN-LP-EDGC, DGHWNR12HR, ESW-CKV-CB-C515B, INJ-FAILS, LOSPNR13HR
19	44.9	1.3	$2.5 \mathrm{E}-008$	ACP-DGN-LP-EDGB, DGHWNR12HR, ESW-CKV-CB-C515A, INJ-FAILS, LOSDNR13HR
19	46.1	1.2	2.2E-008	ACP-DGN-LP-EDGC, BAT-DEP-3HR, DGHWNR3HR, ESW - CKV - CB-C515B, LOSFNR5HR
20	47.4	1.2	2.2E-008	ACP-DGN-LP-EDGB, BAT-DEP-3HR, DGHWNR $3 H R$, ESW-CKV-CB-C515A, LOSPNR5HR
21	48.5	1.1	2.1B-008	ACP-DGN-FR-EDGB, ACP-DGN FR-EDGC, BAT-DEP-9Hh, DGHWNR 9HR, ESW-XHE-FO- ЗHS, LOSPNR 1 THR
22	49.7	1.2	2. OE-008	ACP-DGN-ER-EDGB, ACP-DGN-LP-EDGC, BAT-DEP-7HR, DGHWNRTHR, ESW-XHE-FO-BHS, LOSPNR 14 HR
23	50.8	1.1	2.0E-008	$A C P-D G N-F R-E D G C, \quad A C P-D G N-L P-E D G B, \quad B A T-D B P-7 H R$, DGHWNR 7HR, ESW-XHE-FO-EHS, LOSPNR14HR
24	51.8	1.0	1. $8 \mathrm{E}-008$	BETA-6AOVS, EHV-AOV-CC-CCF, INJ-FAILS, LOSPNR13HR
25	52.7	. 9	1. 7E-008	BAT-DEP-3HR, BETA-3AOVS, ESW-AOV-CC-CCF, LOSPNR5HR
26	53.6	. 8	1. 6E-008	BAT-DEP-9HR, BETA-3AOVS, ESK-AOV-CC-CCF, LUSE: R12HR
27	54.5	. 8	2. $5 \mathrm{E}-008$	ACP-DEN-FR-EDGB, ACP-DGN-FR-EDGC BAT-DEP-5HR, DGHWNR 5HR, ESW-XHE-FO-EHS, LOSPNR $12 H R$
28	55.3	. 8	1. $5 \mathrm{E}-068$	ACP-DGN-LP-BDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-CKV-CB-C515A, LOSPNR12HR
2.9	56.2	. 8	1.5E-008	ACP-DGN-LP-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-CKV-CB-C515B, LOSPNR $12 H R$
30	156.9	.7	1. $3 \mathrm{E}-608$	ACP-DGN-LP-BDGB, BAT-DEP-5HR, DGHWNR5HR, ESW-CKV-CB-C515A, LOSPNRTHR
31	57.6	. 7	1.3E-008	ACP-DGN-LP-EDGC, BAT-DEP-5HR, DGHWNR $5 H R$, ESW-CKV-CB-C515B, LOSPNR7HR
32	58.3	. 6	1.1E-008	BAT-DEP-5HR, BETA-3AOVS, ESW-AOV-CC-CCF, LOSPNR7HR
33	58.9	. 6	1.1E-008	BAT-DEP-3HR, BETA-6AOVS, EHV-AOV-CC-CCF, LOSPNR5HR
34	59.5	.6	1. OE-008	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR $7 H R$, $B S W-X H E-F O-$ BHS, LOSPNR 14 HR
35	60.1	. 5	1. $0 \mathrm{E}-008$	BAT-DEP-9HR, BETA-6AOVS, BHV-AOV-CC-CCF, LOSPNR12HR
36	60.6	. 5	$9.9 \mathrm{E}-009$	ACP-DGN-FR-BDFB, ACP-DGN-MA-BDGC, DGMANR? $2 H R$, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR

37	61.2	. 5	9.9B-009	ACP-DGN-FR-EDGC, ACP-DGN-MA-EDGB, DGMANR12HR, BSW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
38	61.3	. 5	9. 1E-009	ACP-DGN-FR-EDGC, ACP-DGN-MA-EDGB, DGMANR 3HR, BSW-XHB-FO-EHS, LOSPNR9HR
39	62.2	. 5	9.1E-009	ACP-DGN-FR-EDGB, ACP-DGN-MA-EDGC, DGMANR 3HR, ESW-XHB-FO-EHS, LOSPNR9HR
40	62.6	. 4	8. $3 \mathrm{E}-009$	BAT-DEP-7HR, BETA-3AOVS, BEWR DGHWNR 7 HR,
41	63.1	. 4	8.1E-009	ESW-CKV-CB-C515A, LOSPNR9HR
42	63.5	. 4	8.1E-009	ACP-DGN- LP -EDGC, BAT-DEP- $7 \mathrm{C}, 2$, DGHWNP ? ESW-CKV-CB-C515B, LOSPNR9E *
43	63.9	. 4	7.6B-003	ACP-DGN-LP-EDGB, DGHWNR12HK, BSW-XHB-FO-BHS, INJ-FAILS, LOSPNR13HR
44	64.3	. 4	7.6E-009	$\begin{aligned} & \text { ACP-DGN-LP-EDGC, ING-FAILS, LOSPNR13HR } \\ & \text { BSW-XHB-FO-EHS, INJ } \end{aligned}$
45	64.8	. 4	7.6E-009	ACP-DGN-FR-EDGC, DGHWNR12HR, BSW-CNV INJ-FAILS, LOSFNR18HR
46	65.2	4	7. 6B-009	ACP-DGN-FR-EDGB, DGHWNR12HR, INJ-FAILS, LOSPNR18HR
$\begin{aligned} & 47 \\ & 48 \end{aligned}$	$\begin{aligned} & 65.6 \\ & 66.0 \end{aligned}$	$\begin{array}{r} .4 \\ .3 \end{array}$	$\begin{aligned} & 7.5 \mathrm{E}-009 \\ & 7.1 \mathrm{E}-009 \end{aligned}$	BAT-DEP-5HR, BETA-6AOVS, EHV-AOV-ER-EDGC, DGHWNR12HR, ESW-PTE-RE-DGB, ESW-XHE-FO-BHS, INJ-FAILS, LOSPNR18HR
49	66.4	. 3	7.1E-009	ACP-DGN-FR-EDGB, BSW-XHB-FO-BHS, INJ-FAILS, LOSPNR18HR
50	66.7	. 3	6.8E-00?	ACP-DGN-FR-EDCB, DGHWNR12HR, LOSPNR18HR
51	67.1	. 3	$6.8 \mathrm{~B}-0019$	ACP-DGN-FR-EDGC, INGH-FAILS, LOSPNR18HR
52	67.5	. 3	6.8E-009	ACP-DGN-LD-EDGB, BAT-DEP-AOV-CC-0241C, ESW-XHE-FO-EHS, LOSPNR5HR
53	67.9	. 3	6.8E-009	ACP-DGN-LP-BDGC, BAT-DBE-AOV CC-0241B, ESW-XHE-PO-EHS, LOSPNR5HR
54	68.2	. 3	$6.2 \mathrm{E}-009$	ACP-DGN-FR- BDGB, ACP PO-BHS, LOSENR 17 HR
55	68.5	. 3	6. $2 \mathrm{E}-009$	DGMANR9HR, BSW-XHE-FO-EHS, LOSPNR17HR
56	68.9	. 3	5.8B-009	ACP-DGN-FR-EDGB, ESW-CKV-CB-C515A, LOSPNR9HR

\%	57	69.2	. 3	5.8B-009	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-CKV-CB-C515B, LO3PNR9HR
$?$	58	69.5	.3	5.4E-009	$A C P-D G N-F R-E D G B, ~ B A T-D 3 P-3 H V, D G H W N R 3 H R$, ESW-PTF - RE-DGC, ESW-XHE-FO-EHS, LOSPNR9HR
$$	59	63.8	. 3	5. $4 \mathrm{E}-009$	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-PTF-RE-DGB, ESW-XHE-FO-EHS, LOSPNR9HR
O	60	70.1	. 3	5. $4 \mathrm{E}-009$	BAT-DEP-7HR, BETA-6AOVS, EHV-AOV-CC-CCF, LOSPNR9HR
	61	70.4	. 2	5.2E-009	ACP-DGN-FR-EDGC, ACP-DGN-TB-EDGB, DGHWNR12HR, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
	62	70.6	.2	5. $2 \mathrm{E}-009$	ACP-DGN-FR-EDGB, ACP-DGN-TE-EDGC, DGHWNR12HR, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
	63	70.9	. 2	5.2E-009	ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR3HR, ESW-MDP-FS-MDPB, ESW-XHB-FO-EHS, LOSPNR9HR
	64	71.2	. 2	5.2B-009	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWIR3HR, ESW-MDP-FS-MDPA, ESW-XHE-FO-ERS, LOSPNR9HR
	65	71.5	. 2	5.1E-009	ACP-DGN-LP-EDGB, DGHWNR12HR, ESW-MDP-FR-MDPB, ESW-XHE-FO-BHS, INJ-FAILS, LOSPNR18HR
	66	71.8	. 2	5.1E-009	ACP-DGN-LP-EDGC, DGHWNP12HR, ESW-MDP-FR-MDPA, ESW- XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
	67	72.1	. 2	5.1E-009	ACP-DGN-ER-BDGC, ACP-DGN-MA-BDGB, $A A T-D B P-5 H R$, DGMANR5HR, ESW-XHE-FO-EHS, LOSPNR $12 H R$.
	69	72.3	. 2	5.1E-009	ACP-DGN-FR-BDGB, ACP-DGN-MA-EDGC, BAT-DKP-5HR, DUMANR5HR, ESW-XHE-FO-EHS, LOSPNR $12 H R$
	69	72.6	. 2	5.0E-009	ACP-DGN-FR-EDGB, DGHWNR12HR, ESW-PTF-RE-MDPB, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
	76	72.9	. 2	5.0E-009	ACP-DGN-FR-BDGC, DGHWNR12HR, ESW-PTF-RE-MDPA, ESW-XHE-FO-BHS, INJ-FATLS, LOSPNR18HR
	71	73.1	. 2	4.8E-009	ESW-CKV-CB-C515A, ESW-PTF-RE-DGB, INJ-FAILS, LOSPNR13HR
	72	73.4	. 2	*.8E-009	ESW-CKV-CB-C515B, ESW-PTF-RE-DGC, INJ-FAILS, LOSPNR13HR
	73	73.7	. 2	4.6B-009	ACP-DGN-LP-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-AOV-CC-0241C, ESW-XHE-FO-EHS, LOSPNR12HR
	74	73.9	. 2	4.6E-009	ACP-DGN-LP-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-AOV-CC-0241B, ESW-XHE-FO-BHS, LOSPNR12HR
	75	74.2	. 2	4.6E-009	ESW-CKV-CB-C515B, ESW-MDP-FS-MDPB, INJ-FAILS, LOSPNR13HR
	76	74.4	. 2	4.6E-009	ESW-CKV-CB-C515A, BSW-MDP-FS-MDPA, INJ-FAILS, LOSPNR13HR

	78	74.9
	79	75.2
	80	75.4
	81	75.6
	82	75.9
	83	76.1
	84	76.3
	85	76.5
	86	76.7
ω	87	77.0
	88	77.2
	89	77.4
	90	77.6
	91	77.8
	92	78.0
	93	78.2
	94	78.5
π	95	73.7

. 2	4. 5E-009	ACP-DGN-FR-EDGB, DGHWNR 12 HR, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
. 2	4. 5E-009	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-MDP-MA-MDPA, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
. 2	4.4E-009	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-CKV-CB-C515B, LOSPNR17HR
. 2	4. $4 \mathrm{E}-009$	ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-CKV-CB-C515A, LOSPNR17HR
. 2	4.1E-009	ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-PTF-RE-DGC, ESW-XHE-FC-BHS, LOSPNR17HR
. 2	4.1E-009	ACP-DGN-FR-EDGC, BAT-DBP-9HR, DGHWNR9HR, ESW-PTF-RE-DGB, ESW-XHE-FO-BHS, LOSPNR17HR
. 2	4.0E-009	ACP-DGN-FR-BDGC, ACP-DGN-TE-EDGB, BAT-DBP-3HR, DGHWNR 3HR, ESW-XHE-FO-EHS, LOSPNR9HR
. 2	4.0E-009	ACP-DGN-ER-EDGB, ACP-DGN-TB-EDGC, BAT-DEP-3HR, DGHWNR 3HR, BSW-XHE-FO-BHS, LOSPNR9HR
. 2	4.0E-009	ACP-DGN-FR-EDGB, $B \quad \therefore$-DEP- $9 H R$, DGHWNR9HR, ESW-MDP-FS-MDPB, ELW-XHE-FO-EHS, LOSPNR17HR
. 2	4.0E-009	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-MDP-FS-MDPA, ESW-XHE-PO-EHS, LOSPNR17HR
. 2	3.9E-009	ACP-DGN-LP-EDGC, BAT-DBP-5HR, DGHWNR5HR, ESW-AOV-CC-0241B, ESW-XHE-FO-BHS, LOSPNR7HR
. 2	$3.9 \mathrm{E}-009$	AC2-DGN-MA-EDGC, BAT-DEP-3HR, DGMANR 3HR, ESW-CRV-CB-C515B, LOSPNR5HR
. 2	3.9E-009	ACP-DGN-MA-EDGB, BAT-DEP-3HR, DGMANR 3HR, ESW-CKV-CB-C515A, LOSPNR5HR
. 2	$3.9 \mathrm{E}-009$	F.CE-DGN-LP-EDGB, BAT-DBP-5HR, DGHWNR5HR, ESW-AOV-CC-0241C, ESW-XHE-FO-EHS, LOSPNR7HR
. 2	3.9E-009	ACP-DGN-LP-EDGB, BAT-DEP-3HR, DGHWNR 3HR, BSW-MDP-FR-MDPB, ESW-XHE-FO-EHS, LOSPNR9HR
. 2	$3.9 \mathrm{~B}-009$	ACP-DGN-LP-BIGC, BAT-DEP-3HR, DGHWNR $3 H R$, ESW-MDP-FR-MDPA, ESW-XHB-FO-EHS, LOSPNR9HR
. 2	3.8E-009	$A C P-D G N-F R-E D G C, B A T-$ - $E P-3 H R$, DGHWINR $3 H R$, ESW-PTF-RE-MDPA, ESk- AHE -FO-BHS, LOSPNR9HR
. 2	3.8E-009	$A C P-D G N-F R-E D G B, \quad B A T-D E P-3 H R$, DGHWNR 3HR, ESW-PTF-RE-MDPB, ESW-XHE-FO-EHS, LOSPNR9HR
. 2	3.7R-009	ACP-DGN-MA-BDGB, DGMANR12HR, ESW-CKV-CB-C515A, INJ-FAILS, LOSPNR13HR

	115	82.2	． 1	2．9B－009	BAT－CEP－3HR，ESW－CKT－CB－51j ETV－PTF RE－D 3 ， LOSENK 5 HR
	115	82.3	． 1	2．9E－009	BAT－DEF－3：3\％SSW ZV－LB XSW－PTF 2B－DGC， LOSPNR5HR
	$\therefore 17$	82.5	． 1	$2.9 \mathrm{E}-009$	ACP－DGN－FR－ERTB ESW－PTF－RE－MDPB
	118	82.7	． 1	20．009	ACP－DGN－FR－ED：A．\quad ，DGHWNR9ER， BSW－PTF RE－ML＿K， 2 SW a 1 IS，LOSPNR17HR
	119	82.8	． 1	2．8E－009	BAT－DEF－3HR，BSW－CKV－CA ． 515 A ，ESW－MDP－FS－MDPA LOSENR 5 HR
	120	83.0	． 1	2．8E－＇ 99	BAT－DEP－3HR，\quad ISW－CKV CB C515B，ESW－MDP－FS－MDPB， LOSPNR5HR
	121	83.1	． 1	2．7．－49	BAT－DEP－9HR，ESW－CKV－CB－C؟15A，SSW－PTF－RE－DGB， LOSPNR12HR
	122	83.3	． 1	2．7E－49	
	123	83.4	． 1	2．7E－009	ACP－1 R－EDGS，DGHWT 12HR，ESW－MDP－Fl MDPB， ESW－XHE－FC－BHS，INJ－FAILS，LOSPNR18HR
T	124	83.6	.1	2．7E－009	ACP－DGN－FR－BDGC，DGHWNR12HR，ESW－MDP－FR－N A， ESW－XHB－FO－EHS，INJ－FAILS，LOSPNR18HR
$=$	125	83.7	． 1	2．6E－00？	ACP－DGN－FR－EDGB，RAT－DEP－$-4 R$ ，DGFWNF 9 HR， ESW－MDE－MA－MDPB，ESW－XHE－FO－EFS，iUSPNR17HR
	126	83.9	． 1	$2.6 \mathrm{E}-00$	ACF－DGN－FR－EDGC，BAT－DEP－9 KR ，DGHFFRR9HR， ESW－MDP－MA－MDPA，ESW－XHE－FO－EHS，LOSPNR17HR
	127	84.0	． 1	2．6R－009	BAT＇－DRD－9HR，ESW－CKV－CP－C515B，ESW－MDP－FS－MDEB LOSPNE：12HR
	128	84.2	． 1	2．6B－009	BAT－DEP－9HR，ESW－CKV－CB－C $15 \mathrm{~A}, \mathrm{ESW}-\mathrm{MDP}-$ FS－MDPA，以分 PNR12HR
	129	84.3	． 1	2．4E－009	A P－DGN－LP－EDGC，BAT－DEP－7HR，GHRN ${ }^{7}$ HR， 3SW－4OV－CC－0241B，ESW－XHE－FO－EHE ，${ }^{+}$． P PNR9HR
	130	84.4	． 1	2．4．E－5 ${ }^{\circ}$	DC $3 N-L P-B D G B, ~ B A T-D E P-7 H R$ ，DGHWNR 7HR， DHS AOV－CC－0241C，ESW－XHB－FO－EHS，LOTPNR9HR
	131	84.6	． 1	2． $4 \mathrm{E}-005$	：Σ－ IGN－MA－EDGB，BAT－DEP－9PK，DGMANR9HR， ESW－CKV－CB－C515A，LOSPNR12HR
z	132	84． 7	． 1	2．4E－09＊	ACP－DCN－MA－BDGC，BAT－DEP－9IIR，DGMANR9HR， ESW－CKV－CB－C515B，LOSPIVR12HR
比	133	84．A	． 1	2．2E－C09	ACP－DGN－FR－EDGC，ACE－DGN－TB－EDGB，$工$ T－DEP－ $5 H R$ ， DGHWNR5HR，ESW－XHE－FO－BHS，LOSPNR12HR

172	89.2	． 0	1．6E－009	ACP－DGN－FR－EDGC，BAT－DEP－9HR，DGHWNR9HR， ESY－MDP－FR－MDPA，ESW－XHE－FO－EHS，LOSPNR17HR
173	89.3	.0	1．5E－009	ACP－DGN－FR－EDGB，ACP－DGN－TE－EDGC，BAT－DEP－7HR， DGHWNR THR，ESW－XHE－FO－BHS，LOSPNR14HR
174	89.3	． 0	1．5E－009	ACP－DGN－FR－EDGC，ACP－DCN－TE－EDGB，BAT－DEP－7HR， DGHWNR7HR，ESW－XHE－FO－BHS，LOSPNR14HR
175	89.4	.0	1．5E－009	ESW－AOV－CC－0241C，ESW－CKV－CB－C515B，INJ－「』IILS， LOSPNR13HR
176	89.5	．	1．5B－009	ESW－AOV－CC－0241B，ESW－CKV－CB－C515A，INJ－FAILS， LOSPNR13HR
177	89.6	． 0	1．5E－009	ACP－DGN－LP－EDGC，BAT－DEP－7HR，DGHWNR7HR， ESW－MDP－FR－MDPA，ESW－XHE－FO－EHS，LOSPNR14HR
178	89.7	． 0	1．5E－009	ACP－DGN－LP－EDGB，BAT－DEP－7HR，DGHWNR $7 H R$ ， ESW－MDP－FR－MDPB，ESW－XHB－FO－EHS，LOSPNR14HR
179	89.8	． 0	1． $5 \mathrm{E}-009$	ACP－DGN－TE－EDGC，BAT－DBP－3HR，DGMANR3HR， ESW－CKV－CB－C515P，LOSPNR5HR
180	89.8	． 0	1． $5 \mathrm{E}-009$	ACP－DGN－TE－EDGB，BAT－DEP－3HR，DGMANR 3HR， ESW－CKV－CB－C515A，LOSPNR5HR
181	89.9	． 0	1．4B－009	ACP－DGN－FR－EDGC，BAT－DEP－7HR，DGHWNR7HR， ESW－PTF－RE－MDPA，ESW－XHE－FO－EHS，LOSPNR14HR
182	90.0	.0	1．4E－009	$A C P-D G N-E R-E D G B, B A T-D E P-7 H R$ ，DGHWNR $7 H R$ ， ESW－PTE－RE－MDPB，ESW－XHE－FO－BHS，LOSPNR14HR
183	90.1	0	1． $4 \mathrm{E}-009$	ESW－AOV－CC－0241C ESW－PTF－RE－DGB，ESW－XHE－FO－BHS， INJ－FAILS，LOSPNR13HR
184	90.2	． 0	1． $4 \mathrm{E}-009$	BSW－AOV－CC－0241B，ESW－PTF－RE－DGC，ESW－XHE－FO－EHS， INJ－FAIL ${ }^{\circ}$ LOSPNR 13 HR
185	90.2	． 0	1．4E－009	BAT－DEP－7HR，BEv－CKV－CD－C515B，ESW－PTP－RB－DGC， LOSPNR9HR
186	90.3	.0	1． $4 \mathrm{E}-009$	FAT－DEP－7HR，BSW－CKV－CB－C515A，ESW－PTE－RE－DGB， 1 OSPNR9HR
187	90.4	． 0	2． $4 \mathrm{E}-009$	AIP－DGN－TE－EDGC，DGMANR12HR，ESW－CKV－CB－C515B， INJ－FAILS，LOSPNR $13 H R$
188	90.5	． 6	1．4E－009	ACE－̃̃ INJ－FAILS，IOSPMR13HR
189	90.6	． 0	1．3E－009	ACP－DGN－LP－EDGB，BAT－DEP－9HP，DGHWNR9HR， EHV－SRV－CC－RV3，ESW－XHE－FO－BHS，LOSPNR12HR
190	90.6	． 0	1．3E－009	ACP－DGN－TD－BDGC，BAT－DEP－9HR，DGHWNR9HR， BHV－SRV－CC－RV2，I．SW－XHE－FO－EHS，LOSFNR12HR

191	90.7	. 0	1. 3E-009	ESW-AOV-CC - 2241 C , ESW-MDP-FS-MDPA, ESW-XHB-FO-EHS, INJ-FAILS, LOSPNR13HR
192	90.8	. 0	1.3E-009	ESW-AOV-CC-0241B, ESW-MDP-FS-MDPB, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR13HR
193	$90 \quad 9$. 0	1. 3E-009	BAT-DEP-5HR, ESW-CKV-CB-C515B, ESW-PTF-RE-MDPB, LOSPNRTHR
194	90.9	- 9	1.3E-0r,9	BAT-DEP-5HR, ESW-CKV-CP-C515A, ESW-PTF- FB -MDPA, LOSPNR7HR
195	91.0	. 0	2.3E-009	ACP-DGN-Fh-EDGB, BAT-DEP-7HR, DGHWNR7HR, ESW-MDP-MA-MDPB, ESW-XHE-FO-BHS, LOSPNR 14 HR
196	91.1	. 0	1.3E-009	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-MDP-MA-MDPA, ESW-XHE-FO-EHS, LOSPNR14HR
197	91.2	. 0	1.3E-009	BAT-DEP-7HR, ESW-CKV-CB-C515A, ESW-MDP-FS-MDPA, LOSPNR9HR
298	53.2	. 0	1. 3B-009	BAT-DEP-7HR, ESW-CKV-CB-C515B, ESW-MDP-FS-MDPB, LOSPNR9HR
199	91.3	. 0	1.3E-009	ACP-DGN-MA-EDGB, BAT-DEP-7HR, DGMANR7HR, ESW-CKV-CB-C515A, LOSPNR9HR
200	91. ${ }^{4}$. 0	1.3E-009	ACP-DGN-MA-EDGC, BAT-DEP-7HR, DGMANR7HR, BSW-CKV-CB-C515B, LOSENR9HR
201	91.5	. 0	1. 3E-009	ACP-DGN-FR-EDGC, BAT-DEP- $9 H R$, DGHWNR $9 H R$, TSW-AOV-CC-0241B, ESW-XHE-FO-EHS, LOSPNR17HR
202	91.5	. 0	1. 3E-009	ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-AOV-CC-0241C, ESW-XHE-FO-EHS, LOSPNR17HR
203	$91 . €$. 0	1.3E-009	ACP-DGN-FR-EDGB, ACP-DGN-RE-EDGC, DGMANR12HR, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
204	$91 . \%$. 0	1.3E-009	ACP-DGN-FR-BDGC, ACP-DGN-RE-EDGB, DGMANR12HR, ESW-XHB-FO-BHS, INJ-ZAILS, LOSPNR18HR
205	91.7	. 0	1.2E-009	BAT-DBP-5HR, ESW-CKV-CB-C515A, ESW-MDP-MA ADPA, LOSPNR THR
206	91.8	. 0	1. 2E-009	BAT-DEP-5HR, ESW-CKV-CB-C515B, ESW-MDP-MA-MDPB, LOSPNP 7HR
207	91.9	. 0	1.2B-009	ACP-DGN-FR-RDGB, ACP-DGN-FR-EDGD, DGHWNR12HR, INJ-FAILS, LOSPNR1E4R
208	91.9	. 0	1. $2 \mathrm{E}-009$	ACP-DGN-FR-EDGC, ACP-DGN-FR-EDGD, DGHWNR 12HR, INJ-FAILS, LOSPNP18HR
209	92.0	. 0	1.2E-009	ACP-DGN-FR-EDGB, ACP-DGN-FR-BDGC, ACP-DGN-LP-EDGD, DGHWNR $12 H R$, INJ-FAILS, IOSPNR18HR

	229	93.2	. 0	9.7E-010	ESW-MDP-FR-MDPB, ESV.-PTF RE-DGB, ESW-XHE-FO-BHS, INJ-FAILS, LOSPNR18HR
	230	93.3	. 0	9.43-01.0	BAT-DEP-3HR, ESW-AOV-CC-0241B, ESW-CKV-CB-C515A, LOSPNRE ?
	231	93.3	. 0	9.423-010	BAT-DEP-3HR, ESW-AOV-CC-0241C, ESW-CKV-CB-C515B, LOSPNR5HR
	232	93.4	. 0	9.3E- 010	ESW -MD - FR-MDPB, ESW-MDP-FS-MDPA, ESW-XHE-FO-EHS INJ-FAILS, LOSPNR18HR
	233	93.4	. 0	9.3E-0:0	ESW-MDP- Z -MDPA, ESW-MDP-FS-MDPB, ESW-XHE-FO-EHS, INJ-FAII , LOSPNR18HR
	234	93.5	. 0	$9.3 \mathrm{E}-010$	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGD, BET-DEP-3HR, DGHWNR3HR, LOSPNR9HR
	235	93.5	. 0	9.3E-010	ACE-DGN-FR-EDGB, ACP-DGN-FR-EDGD, ACP-DGK-LP-EDGC, SAT-DEP-3HR, DGHWNA 3HR, LOSPNR9HR
	236	93.6	. 0	9.3E-010	CF-DGN-FR-EDGC, ACP-DGN-FR-EDGD, ACP-DGN-LP-EDGB, B2.F-DEP-3HR, DGHWNR3HR, LOSPNR9HR
	237	93.6	. 0	9.2E-010	BSW-AOV-CC-0241C, ESW-MDP-MA-MLPA, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR13HR
T	238	93.7	. 0	9.2E-010	ESW-AOV-CC-0241B, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR13HR
Ξ	239	93.7	. 0	9.2E-010	ACP-DGN-TE-EDGB, BAT-DEP-9HR, DGMANR9HR, ESW-CKV-CB-C515A, LOSPNR12HR
	240	93.8	. 0	9.2E-010	ACP-DGN-TE-EDGC, BAT-DEP-9HR, DGMANR9HR, ESW-CKV-CB-C515B, LOSPNR12HR
	241	93.8	. 0	9.0E-010	BAT-DEP-7HR, ESW-CKV-CB-C515B, ESW-MDP-MA-MDPE, LOSPNR9HR
	242	93.9	. 0	9.0E-010	BAT-DEP-7HR, ESW-CKV-CB-C515A, ESW-MDP-MA-MDPA, LOSPNR9HR
	243	93.9	. 0	8.9E-010	BAT-DEP-2HR, ESW-AO*-CC-0241C, ESW-PTF-RE-DGB, ESW-XHE-FO-EHS, LOSPNR5HR
	244	94.0	. 0	8.9E-010	BAT-DEP-3HR, ESW-AOV-CC-0241B, ESW-PTF-RB-DGC, EN'V-XHE-FO-EHS, LOSPNR5HR
	245	94.0	. 0	8. 8E-010	BAT DEP-9HR, ESW-AOV-CC-0241B, ESW-CKV-CB-C515A, LOSPNR 12 HR
\bigcirc	246	94.1	. 0	8. 8E-010	BAT-DEP-9HR, ESW-AOV-CC-0241C, ESW-CKV-CB-C515A, LOSPNR12HR
\bigcirc	247	¢ : .1	. 0	8.7E-010	ACP-DGN-TE-EDGC, BAT-DEP-5HR, DGMANR5HR, ESW-CKV-CB-C515B, LOSPNR7HR

248	94.1
249	94.2
250	94.2
251	94.3

.0 8.7E-010 ACP-DGN-TE-EDGB, BAT-DEP-5HR, DGMANR5HR, ESW - CKY - CB-C515A, LOSPNR7HR
.0
8. 5B-010 BAT-DEP-3HR, ESW-AOV-CC-0241C, ESW-MDP-FS-MDPA, ESW - XHE - FO-EHS, LOSPNR 5HR
8. 5B-010 BAT-DEP-3HR, ESW-AOV-CC-0241B, ESW-MDP-FS-MDPB, ESW - XHE - FO-EHS, LOSPNR5HR
8. 3E-010 BAT-DEP-9HR, ESW-AOV-CC-0241C, $2 S W-$ PTF-RE-DGB, ESW - XHE - FO-EHS, LOSPNR 12 HR
$252 \quad 94.3$
$0 \quad 8.3 \mathrm{~B}-010$ EAT-DEP-9HR, ESW-AOV-CC-0241B, ESW-PTE-RE-DGC, ESW-XHE-FO-EHS, LOSPNR12HR
25394.
.0
$254 \quad 94.4$
$.0 \quad 8.2 \mathrm{E}-010$ ACP-DGN-ER-EDGC, ACP-DGN-RE-EDGB, BAT-DEP-9HR, DGMANR9HR ESW-XHE-FO-EHS, LOSPNR17HR
$255 \quad 94.5$
$.0 \quad 8.1 \mathrm{E}-010$ DGMANR9HR, ESW-XHE-FO-EHS. LOSPNR17HR
94.8
94.9
DGN-FR-EDGB, BAT-DEP-7HR,
ESW-MDP-FR-MDPB, ESW-XHE-FO HS, LOSPNR14HR
8.1Z-010 ACP-DGN-FR-RDGC, BAT-DEP-7HR, DGHWNR7HR
ESW-MDP-FR-MDPA, ESW XHE-FO-EHS, LOSPNR14HR
8. OE-010 BAT-DEP- 9 HR , ESW-AOV-CC-0241C, ESW-MDP-FS-MDPA,
ESW-XHE-FO-EHS, LOSPNR12HR
8.0E-010 BAT-DEP-9HR, ESW-AOV-CC-0241B, ESW-MDP-ES-MDPB,
BSW-XHE-FO-EHS, LOSPNR12HR
7.4E-010 ACP-DGN-MA-EDGC, DGMANR12HR, ESW-MDP-FR-MDPA,
ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
7. $4 \mathrm{E}-010 \mathrm{ACP}-\mathrm{DGN}-\mathrm{MA}-\mathrm{EDGB}$, DGMANR12HR, ESW-MDP-FR-MDPB,
ESW-XHE-FO-BHS, INJ-FAILS, LOSPNR18HR
7.3E-010 AC:-DGN-LP-EDGC, BAT-DEP- $-H R$, DGHWNR7HR,
EHV-SRV-CC-RV2, ESW-XHE-FO-EHS, LOSPNR9HR
7. 3E-010 ACP-DGN-LP-BDGB, BAT-DEP-7HR, DGHWNR7HR,
ล ZHV-SRV-CC-RV3, ESW-XHE-FO-EHS, LOSPNR9HR
7.2E-010
ACP-DGN-MA-EDGC, BAT-DEP-9HR, DGMANR9HR,
ESW - AOV - CC-0241B, ESW-XHB - FO-EHS, LCSPNR12HR
7.2B-010 ACP-DGN-MA-EDGB, BAT-DER-9HR, DGMANR9HR,
ESW-AOV-CC-0241C, ESW-XI.B-FO-BHS, LOSPNR12HR
7.1E-010 ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGD,
BAT-DEP-9HR, DGHWNR9HR, I 2SPNR17HR
7.1E-010 ACP-DGN-FR-EDGC, ACP-DGN :R-EDGD, ACP-DGN-LP-EDGB,
BAT-DEP-9HR, DGHWNR9HR, LUSPNR17HR

	267	95.0	. 0	7.18-010	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGD, ACP-DGN-LP-EDGC, BAT-DEP-9HR, DGHWNR9HR, LOSPNR17HR
	268	95.0	. 0	6.8E-010	ACP-DGN-MA-EDGB, BAT-DEP-3HR, DGMANR 3HR, ESW-MDP-FR-MDPB, ESW-XKE-FO-EHS, LOSPNR9HR
	269	95.0	. 0	6.8E-010	ACP-DGN-MA-EDGC, BAT-DEP-3HR, DGMANR 3HR, ESW-MDP - FR-MDPA, ESW- XHE-FO-EHS, LOSPNR9HR
	270	95.1	.e	6.8E-010	ACP-DGN-FR-EDGC, DGHWNR 2 HR, BHV-SRV-CC-RV2, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
	271	95.1	. 0	6.8E-010	ACP-DGN-FR-EDGB, DGHWNR12HR, EHV-SRV-CC RV3, ESW - YHE-FO-EHS, INJ-FAILS, LOSPNR18HR
	272	95.1	. 0	6.8E-010	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR7HR, ESW-AOV-CC-0241C, ESW-XHE-FO-EHS, LOSPNR 14 HR
	273	95.2	. 0	$6.8 \mathrm{E}-010$	ACP-DGN-FR-BDGC, BAT-DEP-7HR, DGHWNR7PR, ESW-AOV-CC-0241B, ESW-XHE-FC-EHS, LOSPNR 14 HR
	274	95.2	. 0	6.8E-010	ACP-DGN-MA-EDGC, BAT-DEP-5HR, DGMANR $5 H R$, ESW-AOV-CC-0241B, ESW-XHE-FO-EHS, LOSPNR7FR
	275	95.3	. 0	6.8E-010	ACP-DGN-MA-EDGB, BAT-DEP-5HR, DGM VR 5 HR, ESW- AOV-CC-0241C, ESW-XHE-FO-EHS, LOS2NR7HR
T	276	95.3	. 0	$6.8 \mathrm{E}-010$	ESW-MDP-FR-MDPA, ESW-PTF-RE-MDPB, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
$\stackrel{\square}{6}$	277	95.3	. 0	6.8E-010	ESW-MDP-FR-MDPB, ESW-PTF-RE-MDPA, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
	278	95.4	. 0	$6.8 \mathrm{E}-010$	ACP-DGN-FR-EDGC, ACP-DGN-RE-EDGB, BAT-DEP-5HR, DGMANR 5 HR, ESW-XHE-FO-EHS, LOSPNR12HR
	279	95.4	. 0	6.8E-910	ACP-DGN-FR-EDGB, ACP-DGN-RE-EDGC, BAT-DEP-5HR, DGMANR5HR, ESW-XHS-FO-EHS, LOSPNR12HR
	280	95.4	. 0	6.6E-010	ACP-DGN-LP-ZDCD, BETA-2SWPS, DGHWNR12HR, ESW-MDP-FS-CCF, INJ-FAILS, LOSPNR13HR
	281	95.5	. 0	$6.5 \mathrm{E}-010$	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, ACP- FGN - FR-EDGD, DCHWNR 12 FR , INJ-FAILS, LOSPNR18HR
	282	95.5	. 0	E.3E-010	BAT-DEP-5HR, ESW-AOV-CC 0241C, BSW-CKV-CB-C515B, LOSPNRTHR
	283	95.5	. 0	$6.3 \mathrm{E}-\mathrm{C1} 10$	BAT-DEP-5HR, ESW-AOV-CC-0241B, ESW-CKV-CB-C515A, LOSPNR7HR
$\underset{c}{z}$	284	95.6	. 0	6. $2 \mathrm{E}-010$	ESW-MDP-FR-MDPA, ESW-MDP-MA-MDPB, ESW-XHE-FO-BHS, INJ-FAILS, LOSPNR18HR
获	285	95.6	. 0	6.2E-010	ESW-MDP-FR-MDPB, ESW-MDP-MA-MDPA, ESW-XHE-FO-EHS, INJ -FAILS, LOSPNR18HR

	305	96.2	. 0	5.3E-010	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGD, ACP-DGN-LP-EDGC, BAT-DEP-5HR, DGHWNR5HR, LOSPNR12HR
	306	96.3	. 0	5.3E-010	$A C P-D G N-F R-E D G C, A C P-D G N-F R-E D G D, A C P-D G N-L P-E D G B$, BAT-DEP-5HR, DGHWNR5HR, LOSPNR 12 HR
	307	96.3	. 0	5. 3E-010	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, ACP-DGN LP-EDCD, BAT-DEP-5HR, DGHWNR5HR, LOSPNR 12 HR
	308	96.3	. 0	5.2E-010	ACP-DGN-RE-EDGC, BAT-DEP-3HR, DGMANR3HR, ESW - CKV - CB-C515B, LOSPNR5HR
	309	96.4	. 0	5.2E-010	ACP-DGN-RE EDGB, BAT-DEP-3HR, DGMANR3HR, ESW-CKV-CB-C515A, LOSPNR5HR
	310	96.4	. 0	5. 2E-010	ACE-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, EHV-SRV-CC-RV2, ESW-XHE-FO-EHS, LOSPNR9HR
	311	96.4	. 0	5. 2E-010	ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR 3HR, EHV-SRV-CC-RV3, ESW-XHE-FO-EHS, LOSPNR9HR
	312	96.4	. 0	5.2E-010	ACP-DGN-TB-EDGC, BAT-DEP-7HF, DGMANR7HR, ESW-CKV-CB-C515B, LOSPNR9HR
	313	96.5	. 0	5.2E-019	ACP-DGN-TE-EDGB, BAT-DEP-7HR, DGMANR7HR, ESW-CKV-CB-C515A, LOSPNR9HR
O	314	96.5	.0	5. 1E-010	BAT-DEP-9HR, ESIV-MDP-FR-MDPB, ESW-MDP-FS-MDPA, ESW-XHE-FO-EHS, LOSPNR17HR
$\stackrel{\sim}{-}$	315	26.5	. 0	5.1E-010	BAT-DEP-9HR, ESW-MDP-FR-MDPA, ESW-MDP-FS-MDPB, ESh - XHE-FO-EHS, 'OSPNR171iR
	316	93.6	. 0	5.1E-010	BAT-DEP-3HR, ESW-NDP-FR-MDPA, ESW-PTF-RE-DGC, ZSW-XME-FO-EHS, IOSPNR9HR
	317	96.6	. 0	5. $1 \mathrm{E}-010$	BAT-DE ${ }^{2}-3 I \mathrm{IR}$, ESW-MDP-FR-MDPB, ES: - PTF-RE-DGB, ESW-XHE-Fา-EHS, LOSPNR9HR
	318	96.6	. 0	4.9E-010	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, ACP-DGN-FR-EDGD, BAT-DEP-3HR, DGHWNR3HR, LOSPNR9AR
	319	96.6	. 0	4.9E-010	ACP-DGN-RE-EDGC, DGMANR12HR, ESW-CKV-CB-C515B, INJ-FATLS, LOSPNRI3HR
	320	96.7	. 0	4.9E-010	ACP-DGN-RE-EDGB, DGMANRI2IIR, ESW-CKV-CB-C515A, INJ-FAILS, LOSPNR1? HR
	321	96.7	. 0	4.9F-010	BAT-DEP-3HR, ESW-MDP-PR-MDPB, ESW- $\omega \mathrm{DP}-\mathrm{FS}-\mathrm{MDPA}$, ESW-XHE-FO-EHS LOSPNR9HR
c	322	96.7	. 0	4.9E-010	BAT-DEP-3HR, $\quad \angle S W-M D P-F R-M D P A, \quad ~ \quad S W-M U P-F S-M D P B$, ESW-XHE-FO-EHS, LOSPNR9HR
0	323	96.7	. 0	4.6E-010	ACE-DGN-MA-EDGB, BAT-LEP-9HE, DGMANR9HR,
0					ESW-MDP-FR-MDPB, ESW-XHE- 2 C - EHS, LOSPNR17HR

$324 \quad 96.8$
$325 \quad 96.8$

326 96 8
32796.8
$328 \quad 96.9$
$329 \quad 96.9$
$330 \quad 96.9$
$331 \quad 76.9$
$332 \quad 97.0$
$333 \quad 97.0$
$334 \quad 97.0$
$335 \quad 97.0$
$336 \quad 97.1$
$337 \quad 97.1$
$238 \quad 97.1$
$339 \quad 97.1$
$340 \quad 97.2$
$341 \quad 97.2$
$342 \quad 97.2$
4. 6E-010 ACP-DGN-MA-ELGC. BAT-DEP-9HR, DGMANR9HR, ESW-MDP-FR-MDPA, ESW-XHE-FO-EHS, LOSPNR17HR
4. 6E-010 EHV-SPV-CC-RV2, ESW-CKV-CB-C515A, INJ-FAILS,
LOSPNR13HR
4. 6E-010 EHV-SPV-CC-RV2, ESW-CKV-CB-C515A, INJ-FAILS,
LOSPNR13HR
4. 6E-010 ESW-AOV-CC-9241B, ESW-AOV-CC-0241C, ESW-XHE-FO-EHS , IIIJ-FAILS, LOSPNR13HR

EHI-SRV
4.6E-010 EHV-SRV-CC-RV3, ECH CRV-CI-C515B, INJ-FAILS,
LOSPNR13HR
4.5E-010 ACP-DGN-TE-EDGC, BAT-DEP-3HR, DGMANR3HR,

SSW-AOV-CC-0241B, ESW-XHE-FO-EHS, LOSPNR5HR
ACP-DGN-TE-EDGB, BAT-DEP-3HR, DGMANR3HR,
ESW-AOV-CC-0241C, ESW-XHE-FO-EHS, LOSPNR 5HR
ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-AOV-MA-0241B ESW- KHE-FO-EHS, INJ-FAILS, LOSPNR18HR
$\mathrm{ACP}-\mathrm{DGN}-\mathrm{FR}-\mathrm{EDGB}, \mathrm{DGHWNR} 12 \mathrm{HR}, \quad \mathrm{ESW-AOV}-\mathrm{MA}-0241 \mathrm{C}$ ESW-XHE - FO-EHS, INJ-FAILS TOSPNR18HR
BAT-DEP-7HR, ESW-AOV-CC-0241C, ESW-CKV-CB-C515B, LOSPNR9HR
4. 5E-010 BAT-DEP-7M2, BSW AOV-CC-0241B, ESR LOSPNR9HR
4.5B-01C ACP-DGN-FR-EDGB, ACP-DGN-RE-EDGC, BAT-DEP-7HR, DGMANR7HR, ESW-XHE-FO-EHS, LOSPNR14HR
4.5B-010 ACP-DGN-FR-EDGC, ACP-DGN-RE-EDGB, BAT-DEP-7HR, DGMANTRTHR, ESW-XHE-FC-EHS, LOSPNK 14 HR
BAT-DEP-7HR, ESW-AOV-CC-0241B, ESW-PTE-RE-DGC, BSW - XHE - FC - EHS, LOSPN 9 9HR
4. 2B-010 BAT-DEP-7HR, ESW-AOV-CC-0241C, ESW-PTF-RE-DGB, ESTH-XHE-FO-EHS, LOSPNR9HR
.0 1.2E-010 ACP-DGN-TE-EDGC, DGMANR12Hk, ESW-AOV-CC-0241B, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNRI3HR
4.2E-010 ACP-DGN-TE-EDGB, DGMANP12HR, ESW-AOV-CC-0241C, ESW-XHE-PO-EHS, INJ-FAILS, LOSDNR13HR
4.1E-010 EHV-SRV-CC-RV2, ESW-MDP-FS DPB, ESW-XHE-FO-BHS, INJ-FAILS, LOSPNRI3HR
. 0 4.1E-010 EHV-SRV-CC-RV3, ESW-MDP-FS-MDEA, ESW-XHE-FO-EHS, INJ-FAILE, LOSPNR13HR
. $04.1 \mathrm{E}-010$ EAT-DEP-5HR, ESW-AOI-CC-0241C, ESW-PTF-RE-MDPA, ESW - XHE - FO- 3FiS, LOSPNR7HR

	343	97.2	. 0	4.1E-010	BAT-DEP-5HR, ESW-AOV-CC-C241B, ESW-PTF-RE-NDPB, ESW-XHE-FO-EHS, LOSI NR7HR
	344	97.2	. 0	4.0E-010	ACP - DGN - MA - BDGB, BAT-DEP - 7HR, DGMANR7HR. ESW-AOV- ${ }^{\circ} \mathrm{C}-0241 \mathrm{C}$, ESW-XHE-FO-EHS, LJSPNR9HR
	345	97.3	. 0	4.0E-010	BAT-DEP-7HR, ESW-AOV-CC- $\sim>41 B$, ESW-MDP-FS-MDPB, ESW - XHE-FO-EHS, LOSPNR9Hk
	346	973	. 0	4.0E-010	3AT-DEP-7HR, ESW-AOV-CC-0241C, ESW-MDH-FS-MDPA, ESW-XHE-FO-EHS, LOSPNR9HR
	347	97.3	. 0	4.0E-010	ACP-DGN-MA-EDGC, BAT-DEP-7HR, DGMANR7HR, ESW-AOV-CC-0241B, ESW- \#HB-FO-EHS, LOSENR9HR
	34ε	97.3	. 0	4.0E-010	ACP-DGN-LP-EDGD, BAT-DEP-9HR, BETA-2SWPS, DGHWNR 9 HR, ESW-MDP-FI CCF, LOSPNR $12 H R$
	349	97.4	. 0	4.0E-010	ACP DGN-FR-EDGC, B^{\prime} T-DEP-9HR, DGHWNR9HR, EHV-SRV-CC-RV2, ESW-XHE-FO-BHS, LOSPNR17HR
	350	97.4	. 0	4. OE-010	ACP-DGN - FR-EDGB, B^{-}T-DEP-9HR, DGIIWNR9hR, EHV-SRV-CC-RV3, ESW XHE-FO-EHS, LOSPNR17HR
	351	97.4	0	3.8E-010	ACP-DGN-MA-EDGB, BA Γ-DEP- $5 H R$, DGMPND $5 H R$, ESW-MDP-FR-MDPB, ESW - XHE-EO-EHS, LOSPNk 12 KR
T	352	97.4	. 6	3.8E-010	ACP-DGN-MA-EDGC, BAT-DEP-5HR, DGMANR 5 HR,
¢	353	97.4	. 0	3.8E-010	$A C P-D G N-F R-E D G B, A C P-D G N-F R-E D G C, \quad A C P-D G N-F R-E D G D$, BAT-DEP-9HR, DGHWNR9HR, LOSPNR17HR
	354	97.5	. 0	3.7E-010	BAT-DEP-5HR, ESW-AOV-CC-0241C, ESW-MDP-MA-MDPA, SSW-XHE-FO-EHS, LOSPNR7HR
	355	97.5	. 0	3.7E-010	EAT-DEP 5 HR , ESW-AOV-CC-0241B, ESW-MDP-MA-MDPB, ESW - XHE - FO- BHS, LOSPNR7HR
	256	97.5	. 0	3.7E-010	BAT-DEP-9HR, ESW-MDP-FR-MDPA, ESW-PTF-RE-MDPB, ESW-XHE-FO-BHS, LOSPNR 17 HR
	$35 ?$	97.5	. 0	3.7E-010	BAT-DEP-9HR, ESW-MDP-FR-MDPB, ESW-PTF-RE-MDPA, ESW-KHE-FO-ZHS, LOSPNR17HR
	358	97.5	. 0	3.7E-010	ESW-MDP- FR-MDPA, ESW-MDP-FR-MDPB, ESW-XHE- FO-EHS, INJ-FAILS, JOSPNR18HR
	359	97.6	.0	3.6E-010	ACP-DGN - FR-EDGB, ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGD, EAT-DEF - 7HR, DGHWNR7HR, LOSPKR14HR
z	360	97.6	. 0	3.6E-010	ACP-DGN-ER-EDGB, ACP-DGN-FR-EDGD, ACP-DGN-LP-EDGC, BAT-DEP-7HR, DGHWNR7HR, LOSPNR14IIR
0	361	97.6	. 0	3.6E-010	$A C P-D G N-F R-E D G C, A C P-D G N-E K-E D G D, A C P-D G N-L P-E D G B$, BAT-DEP-7HR, DGHWNR7HR, LOSPNR14HR

36297.

3.5E-910 BAT-DEP-3HR, ESW-MDP-FR-MDPA, ESW-PTF-RE-MDPB - XHE-FO-EHS, LOSPNPGHR ESW-XHE-FO-EHS, LOSPNR9 HR

ESW-MDP-FR-MDPB LOSPNR12HR

BSW-HOV-MA-0241B, ESW-IHS-FO-EHS, LOSPNR9HR BAT-DEP-9HR, ESW-MDP-FR-MDPA, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, LOSPNR 7 HR

DGHWNR 5HR , ESW-MDP-FS-CCF, LOSPNR7H:

 ESW-XHE-FO-EHS, LOSPNR22 HF ESW - XHE-FO-EHS, LOSPNR12HR ESW - XHE-FO-EHS, INJ-FAILS, LOSPNR13HR ESW-XHE - FO EHS. INJ-FAILS, LOSPNR13HR, ESW-MDP-FR-MDPA, ESW-MDP-MA-MDPB ESW-XHE-FO-EHS, LOSPNR9HR ESW-XHE-FO-EHS, LOSPNR9HR

ESW - XHE-FO-EHS, LOSENR12HK ESW-XHE-FO-EHS, LOSPNR12HR

381	98.0	. 0	3.1E-010	ACP-DGN-RE-EDGB, BAT-DEP-9HR, DGMANR9HR, ESW-CKV-CB-C515A, LOSPNR12HR
382	98.0	. 0	3.1E-010	ACP-DGN-RE-EDGC, BAT-DEP-9HR, DGMANR9HR, ESW-CIV-CB-C515B, 5 OSPNR12HR
383	98.0	. 0	3.1E-010	ESW-AOV-CC-0241C, ESW-NDP-FR-MDPA, ESW-XHE-FO-EAS, INJ-FAILS, LOSPNR18HR
384	98.0	. 0	$3.1 \mathrm{E}-010$	ESH-AOV-CC-02415, ESW- INJ-FAILS, LOSPNR 19 HR
385	98.0	. 0	3.0E-010	ESW-AOV-MA-0241C, ESW-CKV-CB-C515B, IN LOSPNR13HR
386	98.1	. 0	3.0E-010	BSW-AOV-MA-0241B, ESW-CKV-CB-C515A, INJ-FAILS LOSPNR13HR
387	98.1	. 0	3.0 E 010	ACP-DGN-RS-EDGB, BAT-LBE-5 पR, DGMANR5H BSW-CKV-CB-C515A, LOSPNR7HR
338	98.1	. 0	3.0B-C10	ACP-DGN-RE-EDGC, BAT-DEP-5HR, DGMANR5HR, BSW-CKV-CB-C515B, LOSPNR7HR
389	98.1	. 0	$2.9 \mathrm{E}-010$	ACP-DGN-ER-EDGC, BAT-DER-5HR, DGHWNR5HR, EHV-SRV-CC-RV2, ESW-XHE-FO-EHS, LOSPNR12HR
390	98.1	. 0	2.SE-010	ACP-DGN-FR-EDGB, BAT-DEP-5HR, DGHINR5HR, EHV-SRV-CC-RV3, ESW-XHE-FO-EHS, LOSPNR12HR
391	98.1	. 0	$2.9 \mathrm{E}-010$	BAT-DBP-7HR, ESW-AOV-CC-0241B, ESW-PTF-RE-M ESW-XHE-FO-EHS, LOSPNR9 HR
372	93.2	. 0	2.9B-010	BAT-DEP-7HR, BSW-AOV-CC-024?C, ESW-PTF-RE-MDPA, ESW-XHE-FO-EHS, LOSPNR9'IR
393	98.2	. 0	2.8E-010	ACP-DGN-TE-EDGC, DGMANR12HR, ESW-MDP-FR-MDPA, ESW-XHE-FO-EHS, INJ-FATLS, LOSPNR18ER
394	98.2	. 0	2.8E-010	$\mathrm{A} C \mathrm{P}-\mathrm{DCN}-\mathrm{TL}-\mathrm{EDGB}, \mathrm{DCMANR} 12 \mathrm{HR}, \mathrm{BSW}$ MDP-FR-MDPB, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
395	98.2	. 0	2.83-010	$\begin{aligned} & \text { BAT-ER - } 3 \mathrm{H} \\ & \text { LOSPNR5HR } \end{aligned}$
396	98.2	. 0	2.8E-010	BAT-DEP-7HF, ESW-CKV-CB-C515A, LOSPNR14HR
397	98.2	. 0	2.8E-010	BAT-DEP-7HR
398	98.3	. 0	2. $8 \mathrm{E}-010$	BAT-DPP-3HR, BHV-SRV-CC-RV2, LOSPNR5HR
399	98.3	. 0	2. $8 \mathrm{E}-010$	BAT-DEP-3HR, ESW-AOV-CC-0241B, ESW-XHE-FO-EHS, LOS ${ }^{\text {ENR }}$ 5HR

400	98.3	. 0	2.88-010	$A C P-D G N-F R-E D G B, A C P-D G N-F R-E D G C, A C P-D G N-F R-E D G D$ BAT-DEP-5ER, DGHWNR5HR, LOSPNR 12 HR
401	98.3	. 0	2. $7 \mathrm{E}-010$	EHV-SRV-CC-RVZ, ESW-MDP-MA-PDPB, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNRI3HR
402	98.3	. 0	2.7E-010	EHV-SKV-CC-RV3, ESW-MDP-MA-1. PA, ESW-XHE-FO-EHS, INJ-FAILS, LOGPNR13HR
403	98.3	. 0	2.7E-010	ACP-DGN-TE-EDGC, BAT-DEP-9HR, DGMANR9HR, ESW-AOV-CC-0241B, ESW-XHE-FO-EHS, $L O S P N R I 2 H R$
404	98.3	. 0	2.7E.010	ACP-DGR-TE-EDGB, BAT-DEP-9HR, DGMANR9HR, ESW-AOV-CC-0241C, ESW-XHE-FO-BHS, LOSPNR12HR
405	98.4	. 0	2.7E-010	MAT-DEP-7HR, ESW-AOV-CC-0241B, ESV-MDP-MA-MDPB, ESW-XHE-FO RHS, LOSPNR9HR
406	98.4	. 0	2. $7 \mathrm{E}-010$	BAT-DEP-7HR, ESW-AOV-CC-0242C, ESK-MDP-MA-MDPA, ESW-XHE-FO-EHS, LOS $2 N R 9 H R$
407	98.4	. 0	$2.6 \mathrm{E}-010$	ACP-DGN-FR-EDGC, BAT-DEP-9MR, DGHWNR9HR, ESW-AOV-MA-0241B, ESW-XHP-FO-EHS, LOSPNR17HR
408	98.4	. 0	2.6E-010	$A C P-D G N-F R-B D G B, B A T-L E P-9 H R$, DGHWTR 9 HR, ESW-ATV-MA-0241C, ESW-XHE-5O-EHS, LOSPNR17HR
409	98.4	. 0	2. 6E-010	$B A T-D-D-7 H R$, ESW-MDP-FR-MDPB, ESW-DT - RE-DGB, ESW-XHL-FO-EHS, LOSPNR14HR
410	98.4	. 0	2.6E-010	BAT-DEP- $7 H \mathrm{~F}$, ESW-MDP-FZ-MDPA, ESW-PTF-RE-DGC, ESh-XHE-1'O-BI (1, LOSPNR14HR
411	98.4	. 0	2.6E-010	BAT-DEP-9h? \TV-3RV-CC-RV ${ }^{4}$, ESW-CKV-CB-C515B, LOSPNR 12 HR
412	98.5	. 0	2.6 E 010	BAT-DEP-9HR, $3 W-$ AOV-CC-0241B, ESW-AOV-CC-024こC, ESW-XHE-FO-EHL LOSPNR12HR
413	98.5	. 0	2.6E-010	BAT-DBP-GHR, EHV-SRV-CC-RV2, ESW-CKV-CB-C515A, LOSPNR12HR
414	98.5	. 0	$2.6 \mathrm{E}-01.0$	ACP-DGN-TE-EDGB, BAT-DBP-3HR, DGMANR3HR, ESW-MDP-FR-MDPB, ESW-XHB-EC-EHS, LOSPNK9\%k
415	96.5	. 0	2.6E-010	ACP-DGN-TE-EDCC, BAT-DEP-3HR, DGMANR3HR, ESW-IDP - FR-MDPA, BSW-XHB-FO-BHS, LOSPNRGHR
416	98.5	. 0	2.6B-010	ACP-DGN-TE-EDGC, BAT-DEP-5HK, DGMFNR 5 HR , ESW-AOV-CC-0241B, BSW-XHE-FO-EHS, LOSPNR7HR
417	98.5	. 0	2.6E-010	ACP-DGN-TB-EDGB, BAT-DEP 5HR, DGMANR5HR, BSW-AOV-CC-0241C, ESK-XHE-FO-EHS, LOSFNR7HR
418	98.5	. 0	2.5B-010	ACP-DGN-MA- ЗDGC, BAT-DER-7HR, DGMANR7HR, ESW-MDP-FR-MDPA, ESW-XHE-FO-EHS, LOSPNR14HR

	419	98.6	. 0	2.53-010	BAT-DEP-3HR, BHV-BRV-CC-RV2, ESW-MDP-FS-MDRB, ESW תHE-FO-EHS, LOSPINR5HR
	423	98.6	. 0	$2.5 \mathrm{~B}-010$	BAT-DEP- 3HR, BHV-SRV-CC-RV3, RSW-KDE-FS-MDPA, ESW-XHE-FO-EHS, LOSPNRSHR
	421	98.6	. 0	2.5E-010	BAT-DEP-7HR, SSW-MDP- YR-MDPB, ESW-MDP-FS-MDIA ESW- $\mathrm{XHE}-\mathrm{FO}$-EHS, LOSENR1 AKR
	422	98.6	. 0	2.5E-010	ACP-DGN-MA-EDGB, BAT-DEP-7HR, DGMANR7HR, ESW-MDP-FR-MDPE, ESV-XHE-EO-EHS, LOSPNR 14 HR
	423	98.6	. 0	2.5E-010	BAT-DEP-7HR, ESW-MDP-FR-MDPA, ESW-MDP FS-MDPE, ESTW-XHE-FO-EHS, LOSPNR14 HR
	424	98.6	. 0	2.4E-010	ACP-DGN-FR-EDGB, ACE TGN-FR-EDGD, DGHWNR12HR, INJ FAILS, LOSPNR18HR
	425	98.6	. 0	2.48-010	ACP-DGN-FR-EDGB, ACP- GGN-FR-EDGC, DGHWNR12HR, INJJ-FAILS, LOSPNR18HR
	426	98.7	. 0	2.4E-010	$A C P-D G N-E R-E D G C, A C D-1, G N-F R-E D-D D, A C P-D G N-M A-E D G B$, DGHWNR 12 HR, INJ -FA. ;, LOSPNR 18 HR
	427	98.7	. 0	$2.4 \mathrm{E}-010$	BAT-TEEP-9HR, EHV-SRV-CC-RV2, ESK-MDP-FS-MDP ESW- XHE-FO-EHS, LOSFNR12HR
	428	98.7	. 0	2.4E-010	BAT-DEP-9HR, EHV-S.RV-CC-RV3, ESW-MDP-FS-MDP ESW-XHE-FO-EHS, LOSPNF . 2 HR
$\stackrel{\sim}{\sim}$	429	98.7	. 0	2.3E-010	BA'T-DEP-5HR, $B S W-M D E^{2}-F R-M D P B$, ESW-PTE-RE-MCP ESW-XHE-FO-EHS, LOSPNT 12 HR
	430	98.7	0	2.3E-010	BAT-DEP-5HR, ESK:-MDP-E:-MDPA, ESW-PTF-RE-MDPB, ESW-XHE-FO-EHS, LOSENR12HP
	431	98.7	. 0	2.2E-010	ACP-DGN-ER-FDGB, DGHWNR12HR, BSW-CKV-RW-C515B, ESW-XHE-FO-EHS, INJ-FAISS, LOSPNR1aHR
	432	98.7	. 0	2.2E-010	ACP-DGN-FR-EDC?, DGHWNR12GR, ESK-CKY-HW-C BS\%-XHE-FC-EHS, INJ-VAILS, LOSPNR1EHR
	433	98.7	. 0	2.2B-010	ACP-DGN-MA-EDGB, BAT-DEP-9HR, DGMANR9HR, BhY-SRV-CC-R/3, ESW-XHE-FO-THS, LOSPNR12FiR
	434	98.8	. 0	2.1E-010	ACP-DGN-MA-EDGC, BAT-DBP-9HR, DGMANF 9 :RR, BHV-STV-CC-RVI, BSW-XHE-FO-BHS, LOSPNR 12 HR
	435	98.8	. 0	2.1E-010	BRT-DEP-5HR, BE4-MDP-FR-MDPB, SSW-MUP-MA-MDRA, ESW-XHE-FO-EHS, LOSPNR22HR
${ }_{c}^{\text {c }}$	436		. 0	2.1E-010	BAT-DEP-SHR, RSE-MDF FR-MDPA, ES:-MUP-MA-MDPB, B. V^{-}- XHE - FO- BHS, LOSPNR 12 HR
$\underset{\sim}{0}$	437	98.8	. 0	2.1E-010	ACP-DGN-LP-EDGD BL_T-DEP-7HQ, EETA-2SWRS, DGIWNR $7 H R$, ESW-TIDE-FS-CCE, LOSPNR9HR

438	98.8	. 0	2.0E-010	BAT-DEP-9AR, RSW-MDP-RR-MDPA, ESW-MDP-FR-MD-B, ESW-XHE-FO-EHS, LOSPNR17E,
439	98.8	. 0	2.0E-010	$A C P-D G N-F R-E D G B, B A T-D E P-7 H R$, $D G H W N R 7 H R$, PHV-SRV-CC-RV3, ESW-XHE-FO-EHS, LOSPNR14HR
440	98.8	. 0	2. $0 \mathrm{E}-010$	ACP-DGN-FR-CDGC, BAT-DEP-7HR, DGHWNR7HR, EHV-SRV-CC-RV2, ESW-XHB-FO- PHS, LOSPNR14HR
441	98.8	. 0	2.0E-010	ACO-DGN-MA-EDGC, BAT-DBP-5HR, DGMANR5HR, EHV-SRV-CC-RV2, ESW- XHE-FO-EHS, LOSPNR THR
442	98.9	. 0	$2.0 \mathrm{E}-0 \geq 0$	$A C P-D G N-M A-E D G B, B A T-D B P-5 H R$, DGMA $\circ R 5$ RR , EHV-SRV-CC-RV3, ESW-XHE-FO-BHS, LOSFNR7FR
443	98.9	.0	1.9E-010	ACD-DGN-FR-BDGC, BAT-DEP-5IR, DGHWNR $5 H R$, ESW-AOV-MA-0241B, ESW-XHB-FO- उHS, LOSPNk 12 HR
444	98.9	. 0	2.9E-010	ACP-DGN-EQ-EDGB, BAT-DEP-5HR, DGHWNRSHR, ESW-AOV-MA-0241C, BSW-XHB-FO-EHS, LOSPNR 12 HK
445	9R.Y	. 0	1.9E-010	ACP-DGN-FR-BDGD, BETA-2SWPS, DCHWNR $12 H R$, ESW-MDP-PS-CCF, INJ-FAILS, LOSPNR18HR
446	98.9	. 0	$1{ }^{\text {a }}$ E-010	BAT-DEP- 3 HR, ESW-MDP-FR-MDPA, $3 S W-M D P-F R-M D P B$, ESW-XHE-FO-EHS, LOSPNR9TIR
447	98.9	. 0	1 E-010	ACP-DGN-FR-BDGB, ACP-DGN-FR-EDGC, ACP-DGN-FR-BDGD, BAT-DEP-7HR, DGHWNR 7HR, LCSPNR14HR
448	98.9	. 0	1.9E-C.?	BAT-DEP-5HR, ESW-AOV-CC-0241B, ESW-AOV-CC-0241C, ESW-XHB-FO- SHS, LOSPNRTHR
449	98.9	. 0	1.9E-010	BAT-DEP-5HR, EHV-SRV-CC-RY3, ESV CKV-CB-C515B, LOSPNR 7HR
450	98.9	. 0	1.9E-010	BAT-D2P-5HR, EHV-SRV-CC-RV2, BSW-CKV-CB-C515A, LOSPINR HR
451	98.9	. 0	2.9E-010	BAT-DEP-3HR, ESW-A /V-MA-0241C, ESW-CKV-CB-C515B, LOSPNP5HR
452	99.0	. 0	1.9E-010	EAT-DEP-3HR, ESW-AOV-MA-0241B, ESW-CKV-CB-C515A, LOSPNR5HR
453	99.0	. 0	1.8E-010	BAT-DZP- TKR, ESW-MDP-FR-MDPA E ESW-PTE-RE-MDPB, ESW-KHE-FO-EHS, LOSPNR 14 HR
454	99.0	. 0	1.8E-010	BAT-DEP 7 HR, ESW-MDR-TR-MDPZ, ESW-PTF-RE-MDPA, ESW-XHE-FO-BHS, LOSPNR14HR
455	99.0	. 0	1.8E-010	ACP-DGN-PR-EDGC, ACP-DGN-FR-EDGD, ACD-DGN-MA-EDGB, BAT-DEF - 3Hk, DGHWNR3HI, LOSPNR9HR
456	99.9	. 0	1.8E-010	$A C D-D C N-E R-E D G B, A C P-D G N-F R-E D G C, A C P-D G N-M A-E D G D$, BAT-DEP-3HR, DGHWNR3HR, LOSPNR9HR

457	99.0	. 0	1. 8E-010	ACP-DGN-FP-EDGB, ACP-DGN-FR-EDGD, ACP TGN-MA-EDGC BAT-DEP-3HR, DGHWNR3HR, LOSPNR9HR
458	99.0	. 0	1.8E-010	ACP-DGN-RE-BDGB, BAT-DEP-7HR, DGMANR7HR, ESW-CKV-CE-C515A, LOSPNR9HR
459	99.0	. 0	1. $8 \mathrm{E}-010$	ACP-DGN-RE-EDGC, BAT-DEP-7HR, DGMANR7HR, ESW-CKV-CB-C515B, LOSPNR9HR
460	99.0	. 0	1. 7E-010	ACP-DGN-TE-EDGC, BAT-DEP-9HR, DGMANR 9 HR, BSW-MDP-FR-MDPA, ESW-XHE-FO-EHS, LOSPNR17HR
401	99.0	. 0	1.7E-010	ACP-DGN-TE-EDGB, BAT-DEP-9HR, DGMAIJR9HR, ESW-MDP-FR-MDPB, ESW-XHB-FO-EHS, LOSPNR 174 R
462	99.1	. 0	1.7E-010	BAT-DEP-9HR, ESW-AOV-MA-0241B, ESW-CKV-CB-C515A, LOSPNR12HR
463	99.1	. 0	1.7E-010	BAT-DBP-9HR, ESW-AOV-MA-0241C, ESW-CKV-CB-C515B, LOSPNR12HR
464	99.1	. 0	$1.7 \mathrm{~B}-010$	ACP-DGN-FR-BDGB, BAT-DEP-3HR, DGHWNR 3HR, ESW-CKV-HW-C515B, ESW-XHB-FO-EHS, LOSPNR9HR
465	99.1	. 0	1.7E-010	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, E3W-CKV-HW-C515A, ESW-XHE-FO-BHS, LOSPNR9HR
466	99.1	. 0	$1.7 \mathrm{E}-010$	BAT-DBP-9HR, BSW-AOV-CC-0241B, BSW-MDP-FR-MDPB, ESW-XHR-FO-EHS, LOSPIVR17HR
467	99.1	. 0	1.7B-010	BAT-DBP-9HR, ESW-AOV-CC-0241C, BSW-MDP-FR-MDPA ESW-XHB-FO-BHS, LOSPNR17HP
468	99.1	. 0	1. 7B-010	BAT-DEP-7HR, ESW-MDP-FR-MDPA, ESW-MDP-MA-MDPE ESW-XHE-FO-EHS, LOSPNR14HR
469	99.1	. 0	1.7E-010	BAT-DEP-3HR, EHV-SRV-CC-RV3, ESW-MDP-MA-MDPA ESW - YHE-FO-RHS, LOSPNR5HR
470	99.1	. 0	1. $7 \mathrm{E}-010$	BAT-DEP-5HR, RHV-SRV-CC-RV2, BSW-MDP-FS-MDP ESW-XHE-FO-BHS, LCSPNR7HR
472	99.1	. 0	1.7E-010	BAT-DEP-5HR, BHV-SRV-CC-RV3, ESW-MLP-FS-MDPA ESW-XHE-FO-EHS, LOSPNR7HR
472	99.1	. 0	1.7E-010	BAT-DEP-3HP, BHV-SRV-CC-RV2, ESW-MDP-MA-MDPB, ESW-XHE-FO-RES, LOSPNR5HR
473	99.2	. 0	1.7E-010	BAT-DEP-7HR, ZSW-MDP-FR-MDPB, ESW-MDP-MD-MDPA, ESW-XHE-FO-BHS LOSPNR14HR
474	99.2	0	1.6E-010	BAT-DBP-3HR, BLW-AOV-CC-0241C, ESW-MDP-ER-MDR BSW-XHE-FO- ZHS, LOSPNR9HR
475	99.2	. 0	1.6E-010	BAT-DEP-3HR, ESW-AOV-CC-0241B, ESW-ESW-XHE-FO-BHS, LOSPNR9HR

$\begin{aligned} & \text { No } \\ & \\ & \hline \end{aligned}$	476	99.2	. 0	1.6E-010	BAT-LEEP-9HR, EHV-SRV-CC RV2, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, LOSPNR12HR
$$	477	99.2	. 0	1. 6E-010	BAT-DEP-9HR, EHV-SRV-CC-RV3, BSW-MDP-MA-MDPA, ESW-XHE-FO-EHS, LOSPNP12HK
	478	99.2	. 0	1.5E-010	AC = - DGN-TE-EDGC, BAT-DEP-7HR, DGMANR7HR, ESW-AOV-CC-0241B, ESW-XHE-FO-EHS, LOSPNR9HR
	479	99.2	. 0	1. 5E-010	ACP-DGN-TE-BDGB, BAT-DEP-7KR, DGMANR7HR, BSW-AOV-CC-0241C, ESW-XHE-FO-BHS, LOSPNR9HR
	480	99.2	. 0	1.5F-010	ACP-DGN-FR-EDGD, BAT-DEP 3HR, BETA-2SWPS, DGHWNR3HR, ESW-MDP-FS-CCF, LOSPNR 9 HR
	481	99.2	. 0	1. $4 \mathrm{E}-910$	ACP-DGN-TE-EDGB, BAT-DEP-5HR, DGMANR $5 H R$, ESW-MDP-FR-MDPB, ESW-XHE-FO-EHS, LOSPNR 12 HR
	487	99.2	. 0	1. $4 \mathrm{E}-010$	ACP-DGN-TE-BDGC, BAT-DEP-5HR, DGMANR5HR, ESII-MDP-FR-MDPA, ESW-XHE-FO-EHS, LOSPNR12HR
	483	99.2	. 0	1.4E-010	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGD, ACP-DGN-MA-EDGC, BAT-DEP-9HR, DGHWNR9HR, LOSPNR17HR
	484	99.3	. 0	1. $4 \mathrm{E}-010$	$A C P-D G L-\Gamma 卫-B D ; C, A C P-D G N-F R-E D G D, A C P-D G N-M A-E D G B$, BAT-DEP-9HR, DGHWNR9HR, LOSPNR17HR
	485	99.3	. 0	1. $4 \mathrm{~B}-010$	ACP-DGN-ER-EDGB, ACP-DGN-ER-EDGC, ACP-DGN-MA-EDGD, BAT-DEP-9HR, DGHWNR9HR, LOSPNR17HR
	486	99.3	. 0	1. 3E-010	ACP-DGN-TE-EDGC, BNT-DEP-3HR, DGMANR 3HR, 3HV-SRV-CC-RV2, ESW-XHE-FO-EHS, LOSPNR5HR
	487	99.3	. 0	1.3E-010	ACP-DGN-TE-EDGE, BAT-DEP-3HR, DGMANR3HR, EHV-SRV-CC-RV3, ESW-XHE-FO-EHS, LOSPNR5HR
	488	99.3	. 0	1.3E-010	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DCHWNRTHR, ESW-AOV-MA-0241R. ESW-XHE-FO-EHS, LOSPNR14HR
	489	99.3	. 0	1.3E-010	ACP - DGN - FR-EDGB, BAT-DEP-7HR, DGHWNR7HR, ES* - AOV-MA-0241C, ESW- XHE-FO-EHS, LOSPNR14HR
	490	99.3	. 0	1.3B-010	BAT-DEP- $/ \mathrm{HR}$, BSW-AOV-CC-0241B, ESW-AOV-CC-0241C, BSW-XHE-FO-BHS, LOS1-NR9HR
	491	99.3	. 0	1. $3 \mathrm{E}-010$	BhT-DEP-7HR, EHV-SRV-CC-RV3, $\angle S W-C K V-C B-C 515 B, ~$ LOSPNR9HR
	492	99.3	1	1. $3 \mathrm{E}-010$	BAT-DEP-7HR, EHV-SRV-CC-RV2, ESW-CK C515A, LOSPNR9HR
	493	99.3	. 0	1. 3E-010	ACP-DGN-FR-EDGC, DGACTB, DGACINR12HR, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
	494	99.3	. 0	1.3E-010	ACP-DGN-FR-EDGB, DGACTC, DGACTNR 12 HR , ESW-XHE-FO-BHS. INJ-FAILS, LCSPNR18HR

495	99.3	. 0	1.3E-010	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-CKV-HW-C515A, ESW-XHE-FO-EHS, LOSPNR17HR ,
496	99.3	. 0	1.3E-010	ACP-DGN-FR-EDGB, BAT-DEP- 3 HR, DGHWNR9HR, ESW-CKV-HW-C515B, ESK-XHB-FO-EHS, LOSPN 17 HR
497	99.3	. 0	1.2E-ल1.0	ESW- XHE-FO-EHS, LOSPNR 12 HR
498	99.4	. 0	1.2E-010	ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR13HR
493	99.4	. 0	1.2E-010	ACP-DGN-TB-EDGC, DGMANR12HR, ESW-XHE-FO-EHS, INJJ-FAILS, LOSPNR13HR
500	99.4	. 0	1.2E-010	BAT-DBPLOSPNR7HR
501	99.4	. 0	$1.2 \mathrm{~B} \cdot 010$	BAT-DEP-5HR, ESW-AOV-MA-0241C, LOSPNRTHR
502	99.4	. 0	1.2B-010	ACP-DGN-MA-BDGB, BAT-DBP-FO-EHS, LOSPNR9HR
503	99.4	. 0	1.2B-010	BAT-DEP-7HR, EHV-SRV-CC-R BSW-XHE-FO-EHS, LOSPNR9HR
504	99.4	. 0	1. $2 \mathrm{E}-010$	ACP-DGN-MA-EDGC, BAT-DEP-7HR, DGMANR THR, BHV-SRV-CC-RV2, ESW-XHB-FO-BHS, LOSPNR 9 HR
505	99.4	. 0	1. $2 \mathrm{E}-010$	BAT-DEP-7HR, EHV-SRV-CC-R BSW-XHE-FO-BHS, LOSPNR 9 HR
506	99.4	. 0	1. $2 \mathrm{~B}-010$	ACP-DGN-FR-BDGB, ACP-DGw-FR-EDG, BSW-MDP-FS-MDPB, INJ-FAILS, LOSPNR18HR
507	99.4	. 0	1.2B-010	ACP-DGN-FR-EDGC, ACP-DGN-FR, LOSPNR18HR
508	[3.4	. 0	1.2B-010	ACP-DGN-FR-EDGB, ACP-DGN-FR-BDGC, DOSPNR18HR
509	99.4	. 0	1.2B-010	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, ESW-MDP-FS-ECW, INJ-FAILS, LOSPNR1 9 HR
510	99.4	. 0	1.2B-010	BETA-2SWPS, INJ - FAILS, LOSPNR13HR
511	99.4	. 0	1.2B-010	INJ-FAILS, LOSPNR13HR
512	99.4	. 0	1.2E	INJ-FAILS, LOSPNR13HR
513	99.5	. 0	1.2E-010	INJ-FAILS, LOSPNR13HR

514	99.5	.0
515	99.5	.0
516	99.5	.0
517	99.5	.0
518	99.5	.0
519	99.5	.0
520	99.5	.0
521	99.5	.0
522	99.5	.0
523	99.5	.0
524	99.5	.0
525	99.5	.0
526	99.5	.0
527	99.5	.0
528	99.5	.0
529	99.6	.0
530	99.6	.0
531	99.6	.0
532	99.6	.0

1. IE-010 ACP-DGN-MA-EDGC, BAT-DEP-3HR, DGMANR3HR, ESW-CKV-TW-C515A, ESW-XHB-FO EHS, LOSPNR 5 HR
1.1E-010 ACP-DGN-MA-EDGB, BAT-DEP-3HR, DGMANR 3HR, ESW-CKV-HW-C515B, ESW-XHE-EO- 3HS, LOSPNR5HR

1. $1 \mathrm{E}-010 \mathrm{ACP}-\mathrm{DCN}-\mathrm{FR}-\mathrm{BDGD}, \mathrm{BAT}$ - DEP-9HR, BETA-2SWPS,

 DGHWNRSHR, ESW-MDP-FS-CCF, LOSPNR17HR BAT-DEP-5HR, EHV-SRV CC-RV3, ESW-MDP-MA-MDPA ESW- XHE-FO-EHS, LOSPNR7HR1.1E-010 BAT-DEP-5HR, EHV-SRV-CC-RV3, ESW-MDP-MA-MDPA, RHy SRV-CC-RV
1.1E-010 BAT-DEP-5HR, EHV-SRV-CC-RV2, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, LOSPNR7HR
1.1E-010 ACP-DGN-MA-EDGB, DGMANR12HR, ESW-CKV-HW-C515B, ESW-XHE-FO-EHS, INT-FAILS, LOSPNR13HR
1.1E-010 ACP-DGN-MA-EDGC, DGMANR12HR, ESW-CFY-HW-C515A, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR13HR

1. OE-010 EAT-DBP-5HR, ESW-AOV-CC-0241C, ESW-MDP-FR-MDPA, ESW-XHE-FO-BHS, LOSPNR 12 HR
1.0E-010 BAT-EEP-5HR, ESW-AOV-CC-0241B, ESW-MDP-FR-MDPB, BSW-XHE-FO-EHS, LOSPNR 12 HR
2. OE-010 ACP-DGN-FR-EDGC, ACP-DGN-FR-EDGD, ACP-DGN-MA-EDGE, BAT-DEP-5HR, DGHWNR5HR, LOSPNR12HR
3. OE-010 ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, ACE-DGN-MA-BDGD, BAT-DEP-5HR, DGHWNR5HR, LOSPNR 12 HF
4. OE-010 ACP-DGN-FR-EDGB, ACP-DCN-FR-EDGD, ACP-DGN-MA-EDGC, BAT-DEP-EHR, DGHWNR5HR, LOSFNR12HR
1.0E-010 ACP-DGN-FR-EDGC, BAT-DEP - 3HR, DGACTB, DGACTNR3HR, ESW-XHE-FO-EHS, LOSPNP9HR
5. UE-010 ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGACTC, DGRCTNR?HP, ESW XHE-FO-EHS, $\mathrm{ZOSPNR} 9 H R$
6. OB-010 ACP-DGN-MA-EDGD, BAT-DEP-3HR, BETA-2SWPS, DGMANR 3 HR, ESW-MDP-FS-CCF, LOSPNR5HR
1.0E-010 BAT-DEP-7HR, ESW-MDP-FR-MDPA, ESW-MDP-FR-MDPB, ESW XHE-FO-EHS, LOSPNP 14 HR
9.9B-011 ACP-DGN-FR-EDGB, BAT-DEF-5HR, DGHWNR5HR, ESW-CKV-HW-C515B, ESW-XHE-FO-EHS, LOSPNR12HR 9.9E-011 ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR5HR,

ESW-CKV-HW-C515A, ESW-XHB-FO-EHS, LOSPNR 12 HR
ACP-DGN-TE-EDGC, BRT-DEP-7HR, DGMANR7HR,
ESW-MDP-FR-MDPA, ESW-XHE-FO-BHS, LOSPNR14HR

	533	99.6	. 0	9.8E-011	ACP-DGN-TE-EDGB, BAT-DEP-7HR, DGMANR7HR, ESW-MDP-FR-MDPB, ESW-XHE-FO-EHS, LOSPNR14HR
	534	99.6	. 0	$9.6 \mathrm{E}-011$	ACP-DGN-MA-EDGD, EETA-2SWPS, DGMANR12HR, ESW-MDP-FS-CCF, INJ-FAILE LOSPNR13HR
	535	99.6	. 0	9. 3E-011	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGD, BAT-DEP- 3HR, DGHWNR 3HR, ESW-MDP-FS-MDPB, LOEPNR9HR
	536	99.6	. 0	S. 3E-011	ACP-DGN-FR-EDGC, ACP-DGN-FR-EDGD, BAT-DEP-3HR, DGHWNR 3HR, ESW-MDP FS-MDPA, LOSPNR9HR
	53.7	99.6	. 0	9.3E-011	ACP-DGN-FR-EDGB, ACP-DGN-FR-EIGC, EAT DEP-3HR, DGHWNR 3HR, ESW-MUV-CC-M0841, LOSPNR9HR
	538	99.6	. 0	$9.3 \mathrm{~B}-011$	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR3HR, ESW-MDP-FS-ECW, LOSPNR9HR
	539	99.6	. 0	$9.1 \mathrm{~B}-011$	ACP-LGN-FR-EDGB, DGHWNR12HR, ESW-XHB-FO-BHS, ESW-XVM-PG-D505C, INJ-FAILS, LOSPNR18HR
	540	59.6	. 0	$9.1 \mathrm{E}-011$	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-XHB-FO-EHS, ESW-XVM-PG-D505B, INJ-FAIIS, LOSPNR18HR
	541	99.6	. 0	$9.1 \mathrm{E}-011$	ACP-DGN-FR-EDGC, DGHWNR12HR, BSW-XHB-7O-BHS ESN-XVM-PG-XV510, INJ-FAILS, LOSPNR18HR
	542	99.6	. 0	$9.1 \mathrm{E}-011$	ACP-DGN-FR-EDGB, ${ }^{-}$HWNR12HR, ESW-XHB-FO-BHS, ESW-XVM-PG-XV509, INJ-FAILS, LOSPNR18HR
$\stackrel{\sim}{\omega}$	543	39.6	. 0	9.1B-011	ACP-DGN-FR-EDGB, DGHWNR12HR, ESW-XHE-FO-EHS, ESW-XVM-PG-X507B, INJ-FAILS, LOSPNR18HR
	544	99.6	. 0	$9.1 \mathrm{~B}-011$	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-XHB-FO-EHS, ESW-XVM-PG-X507A, INJ-FAILS, LOSPN 18 HR
	54.5	99.6	. 0	$9.0 \mathrm{~B}-\mathrm{Cl1}$	BAT-DSP-7HR, ESW-AOV-MA-0241C, ESW-CKV-CB-C51 LOSPNR9HR
	546	99.6	. 0	9.0E-011	BAT-DBP-7HR, ESW-AOV-MA-0241B, ESW-CKV-CB-C51 LOSPNR9HR
	547	99.6	. 0	8.9E-011	ACP-DGN-FR-EDGB, DCHWNR18HR, DCP-BAT-LP-C3 ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR
	548	99.6	. 0	8. 6B-011	ACP-DGN-FR-EDGD, BAT-DEP-5HR, BEAA-2SWPS, DGHWNR5HR, ESW-MDP-FS-CCF, LOSPNR:2HR
	549	99.7	. 0	8.5B-011	BAT-DEP-7HR, ESW-AOV-CC-0241C, ESW-MDP-FR-MDPA ESW-XHE-FO-BHS, LOSPNR14HR
${\underset{0}{0}}_{0}^{0}$	550	99.7	. 0	8.5E-011	BAT-DEP-7HR, ESW-AOV-CC-0241B, ESW-MDP-FR-MDPB, ESW-XHE-FO-EHS, LOSPNR14AR
$\stackrel{0}{\circ}$	551	99.7	. 0	8.2E-011	ACP-DGN-TB-EDGC, BAT-DEP-9HR, DGMRNR9HR, BHV-SPV-CC-RV2, ESW-XHE-FO-BHS, LOSPNR12HR

552	99.7	. 0	8.2E-011	ACP-DGN-TE-EDGB, BAT-DEP-9HR, DGMANR9HR, EHV-SRV-CC-RV3, ESW-XHE-FO-EHS, LOSPNR12HR
553	99.7	. 0	18.1E-011	BAT-DEP-7HR, EHV-SRV-CC-RV3, ESW-MDP-MA-MDPA, ESW-XHE-FO-EHS, LOSPNR9HR
554	99.7	. 0	18.1E-011	BAT-DEP-7HR, EHV-SRV-CC-RV2, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, LOSPNR9HR
555	99.7	. 0	8.1E-011	$A C P-D G N-F R-3 D G B, ~ A C P-D G N-F R-E D G C, ~ D G H W N R 12 H R$, ESW-MDP-MA-ECW, INJ-FAILS, LOSPNR18HR
556	99.7	. 0	B.1E-011	$A C P-D G N-F R-E D G C, ~ A C P-D G N-F R-E D G D, ~ D G H W N R 12 H R$, ESW-MDP-MA-MDPA, INJ-FAILS, LOSPNR18HR
557	99.7	. 0	8.1E-011	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGD, DGHWNR12HR, ESW-MDP-MA-MDPB, INJ-FAILS, LOSPNR18HR
558	99.7	. 0	$7.8 \mathrm{E}-011$	ACP-DGN-TE-EDGC, BAT-DEP-5HR, DGMANR5HR, EHV-SRV-CC-RV2, ES*-XHE-FO EHS, LOSPNR7HR
559	99.7	. 0	$7.8 \mathrm{E}-011$	ACP-DCN-TE-EDGB, BAT-DEP-5HR, DGMANR5HR, EHV-SRV-CC-RV3, ESW-XHE-FO-EHS, LOSPNR7HR
560	99.7	. 0	$7.4 \mathrm{E}-011$	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGACTB, DGACTNR9HR, ESW- XHE-FO-EHS, LOSPNR17HR
561	99.7	. 0	$7.4 \mathrm{E}-011$	ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGACTC, DGACTNR9HR, ESW - XHE - FO-EHS, LOSPNR17HR
562	99.7	. 0	7.3E-011	BAT-DEP-3HR, BETA-2SMPS, ESW-CKV-CB-C515A, ESW-MDP-FS-CCF, LOSPNR5HR
563	99.7	. 0	7.3E-011	BAT-DEP-3HR, EETA-2SWPS, ESW-MUP-FS-CCF, ESW-MOV-CC-MC841, LOSPNR5HR
564	99.7	. 0	7.3E-011	BAT-DBP-3HR, BETA-2SWPS, ESW-MDP-FS-CCF, ESW-MDP-FS-ECW, LOSPNR5HR
565	99.7	. 0	7.3F-011	BAT-DBP-3HR, BETA-2SWPS, BSW-CKV-CB-C515B, ESW-MDP-FS-CCF, LOSPNR5HR
566	99.7	. 0	$7.2 \mathrm{~B}-011$	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGD, ACP-DGN-MA-EDGC, BAT-DEP - 7HR, DGHWNR7HR, LOSPNR14HR
567	99.7	. 0	7.2E-011	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, ACP-DGN-MA-EDGD, BAT-DEP-7HR, DGHWNR7HR, LCSPNR14HR
568	99.7	. 0	7.2B-011	ACP-DGN-FR-EDGC, ACP-DGN-FR-BDGD, ACP-DGN-MA-EDGB, BAT-DEP - 7HR, DGHWNR7HR, LOSPNR14HR
569	99.7	. 0	7.2E-011	ACP-DGN-MA-EDGC, BAT-DEP-9HR, DGMANR9HR, ESW-CKV-HW-C515A, ESW-XHB-FO-EHS, LOSPNR 12 HR
570	99.7	. 0	7.2E-011	ACP-DGN-MA-EDGB, BAT-DEP-9HR, DGMANR9HR, ESW-CKV-HW-C515B, ESW-XHE-FO-EHS, LOSPNR12HR

PHOTOGRAPHIC SCIENCES CORPORATION
770 BASKET ROAD
P. O. BOX 338

WEBSTER, NEW YORK 14580
(716) 265-1600

PHOTOGRAPHIC SCIENCES CORPORATION

PHOTOGRAPHIC SCIENCES CORPORATION
770 BASKET ROAD
pO 80× 3~6
WEBSTER, NEW YORK 14580
(716) 265-1600

PHOTOGRAPHIC SCIENCES CORPORATION 4×2
7.1B-011 ACP-DGN-FR-EDGC, ACP-DGN-FR-EDGD, BAT-DEP-9HR, DGHWNR9HR, ESW-MDP-FS-MDPA, LOSPNR17HR
$7.1 \mathrm{~B}-011$ ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC BAT-DEP 9 HR , DGHWNR9HR, ESW-MOV-CC-M0841, LOSPNR17HR
7.1E-011 ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-MDP-ES-ECW, LOSPNR17HR
7.1E-011 ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGD, BAT-DEP-9HR, DGHWNR9HR, ESW-MDP-FS-MDPB, LOSPNR17HR
7.OE-011 ACP-DGN-FR-EDGB, BAT-DEP-3HR, DCHWNR9HR, DCP-BAT-LP-C3, ESW XHE-FO-EHS, LOSPNROHR
6.9E-011 ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHE-FO-EHS, ESW-XVM-PG-D505C, LOSPTrR9HR
6.9E-011 ACP-DGN-FR-EDGC, BAI DEL-3HR, D - पWNR 3HR,

ESW- XHE- FO-EHS, ESW-XVM-PG-X507A, LOSPNR9HR ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWNP 3HR,
6.9E-011 ACP-DGN-PR-EDGB, BA-XVM-PG-XV509, LOSPNR9HR
6.9E-011 ACP-DGN-FR-EDGC, BAT-DEP-3HR, DF NR 3HR, ESW-XHE-F)-EHS, ESW-XVM-PG-XV510, LOSPNR9HR
6.9E-011 ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHE-FO-EHS, ESW-XVM-PG-X507B, LOSPNR9HR
6.9-011 ACP-DGN-FR-BDGC, BAT-DEP-3HR, DGHWNR 3HR,

ESW-XHB-FO-EHS, ESW- $\mathrm{VVM}-\mathrm{PG}-\mathrm{D} 505 \mathrm{~B}, \mathrm{LOSPNR} 9 \mathrm{HR}$ RAT-E3P-9HR, BETA-2SWPS, ESW-CKV-CB-C515B, BSW-MDP-FS-CCF, LOSPNR12hR
6.9E-011 BAT-DEP-9HR, BETA-2SWPS, ESW-MDP-FS-CCF,
6.9E-011 BAT-DEP-9HR, BETA-2SWPS, ESW-MDP-FS-CCF,
ESW-MDP-FS-ECW, LOSPNR12HR BAT-DEP-9HR, BETA-2SWPS, ESW-CKV-CB-C515A,
$6.9 \mathrm{E}-011$ BAT-DEP-9HR, BETA-2SWPS, ESW-CKV-CB-C515A,
BSW-MDP-FS-CCF, LOSPNR12HR BAT-DEP-9HR, BETA-2SWPS, ESW-MDP-FS-CCF,
6.9E-011 BAT-DEP-9HR, BETA-2SWPS, ESW-MDP-FS-CCF,
BSW-MOV-CC-MO841, LOSPNR12HR ACP-DGN-FR-BL BB, BAT-DEP-5HR, DGACTC, DGACTNR5HR,
$6.8 \mathrm{E}-011$ ACP-DGN-FR-BL 3B, BAT-DEP-5HR, DGACTC, DGACTNR5HR,
ESW-XHB-FO-BHS, LOSPNR12HR ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGACTB, DGACTNR5HR, ESW - XHE-FO-BHS, LOSPNR: 2HR ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-CKV-HW-C515A, ESW-XHE-FO- BHS, LOSPRR14HR ACP-DGN-ER-BDGB, BAT-DEP-7HR, DGHWNR7HR, ESW-CKV-HW-C515B, BSW-XHE-FO-EHS, LOSPNR14HR

[^8]$608 \quad 99.9$

	609	99.9	. 0	5.3E-011	ACP-DGN-FR-EDGC, ACP-DGN-FR-EDGD, BAT-DEP-5HR,
	610	99.9	. 0	5.3E-011	ACP-DGN-FR-EDGB, ACP-DGN-FR-BDGC, BAT-DEP-5HR, LGHWNR5HR, ESW-MDP-FS-ECW, LOSPNR12HR
	611	99.9	. 0	4.9E-011	BAT-DEP-5HR, BETA-2SWPS, BSW-CKV-CB-C515B, ESW-MDP-FS-CCF, LOSPNR7HR
	612	99.9	. 0	4.9E-011	BAT-DBP-5HR, BETA-2SWPS, BSW-MDP-FS-CCF, ESW-MDP-FS-ECW, LOSPNRTHR
	613	99.9	. 0	4.9E-011	BAT-DBP-5HR, BETA-2SWPS, BSW-CKV-CB-C515A, BSW-MDP-FS-CCF, LOSPNR7HR
	614	99.9	. 0	4.9E-011	BAT-DEP-5HR, BETA-2SWPS, ESW-MDP-FS-CCF, ESW-MOV-CC-M0841, LOSPNR 7HR
	615	99.9	. 0	4.7B-011	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGD, BAT-DEP-9HR, DGHWNR9HR, ESW-MDP-MA-MDPB, LOSPNR17HR
	616	99.9	. 0	4.7B-011	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP -9HR, DGHWNR9HR, ESW-MDP-MA-ECW, LOSPNR17HP
	617	99.9	. 0	4. 7E-011	ACP-DGN-FR-EDGC, ACP-DGN-FR-EDGD, BAT-DEP-9HR, DGHWNR9HR, ESW-MDP-MA-MDPA, LOSPNR17HR
	618	99.9	. 0	4.7E-011	ACP-DGN-TE-EDGC, BAT-DBP-7HR, DGMANR7HR, EHV-SRV-CC-RV2, ESW-XHE-FO-BHS, LOSPNR9HR
$\underset{\sim}{\omega}$	619	99.9	. $)$	4. 7E-011	ACP-DGN-TE-EDGB, BAT-DEP-7HR, DGMANR7HR, EHV-SRV-CC-RV3, ESW-XHE-FO-EHS, LOSPNR9HR
	620	99.9	. 0	4.6E-011	ACP-DGN-FR-EDGB. BAT-DEP-5HR, DCHWNR12HR, DCP-BAT-LP-C3, BSW-XHE-FO-BHS, LOSPNR12HR
	621	99.9	. 0	4.0E-011	ACP-DGN-MA-EDGB, BAT-DEP-7HR, DGMANR $7 H R$, ESW-CKV-HW-C515B, ESW-XHB-FO-EHS, LOSPNR9HR
	622	99.9	. 0	4. $0 \mathrm{E}-011$	ACP-DGN-MA-EDGC, BAT-DEP-7HR, DGMANR7HR, ESW-CKV-HW-C515A, ESW-XHB-FO-EHS, LOSPNR9HR
	623	99.9	. 0	3.9E-011	ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR $5 H R$, ESW- ZHE-FO-EHS, ESW-XVM-PG-XV510, LOSPNR 12 HR
	624	99.9	. 0	3.9E-011	ACP-DGN-FR-BDGB, BAT-DEP-5HR, DGHWNR5HR, ESW-XHE-FO-EHS, ESW-XVM-PG-X507B, LOSPNR 12 HR
	625	99.9	. 0	3.9E-011	ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-XHB-FO-BHS, ESW-XVM-PG-D505B, LOSPNR12HR
$\underset{x}{\substack{x}}$	626	99.9	. 0	3. $9 \mathrm{~B}-011$	ACP-DGN-FR-BDGC, BAT-DEF-5HR, DGHWNR5HR,
$\stackrel{10}{0}$	627	99.9	. 0	3.9E-011	ACP-DGN-FR-EDGB, BAT-DEP-5HR, DGHWNRSHR, ESW-XHE-FO-EHS, BSW-XVM-PG-XV509, LOSPNR $12 H R$

3.9E-011 ACP-DGN-FR-EDGB, BAT-DEP-5HR, DGHWNR $5 H R$, ESW-XHE-FO-EHS, ESW-XVM-PG-D505C, LOSPNR 12 HR

628	99.9
629	99.9
630	99.9
631	99.9
632	99.9
633	99.9
634	99.9
635	99.9
636	99.9
637	99.9
638	99.9
639	99.9
640	99.9
641	99.9
642	99.9
643	100.0
644	100.0
645	100.0
646	100.0

629.99
$630 \quad 99.9$
\square
 ACP-DGN-FR-EDGB BAT-DEP-7HR, DCHWNR 14 HR DCP-BAT-LP-C3, ESW-XHE-FO-BHS, LOSPNR 14 HR
3.6E-011 ACP-DGN-FR-EDGC, ACP-DGN-PR-EDGD, BAT-DEP-7HR, DGHWNR 7HR, ESW-MDP-FS-MDPA, LOSPNR 14 HR
3.6E-011 ACP-DGN-FR-EDGB, ALP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-MDP-FS-ECW, LOSPNR14HR
3. 6E-011 ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGD, BAT-DEP-7HR, DGHWNR7HR, ESW-MDP-FS-MDP3, LOSPNR14HR
3. 6B-011 ACP-DGN-ER-EDGB, ACP-DGN-ER-EDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-MOV-IC-M0841, LOSPNR14HR
3.5E-011 ACP-DGN-MA-EDGD, BAT-DEP-7HR, BETA-2SWPS, DGMANR7HR, ESW-MDP-FS-CCF, LOSPNR9HR
3.5E-011 BAT-DEP-7HR, BETA-2SWPS, BSW-MDP-FS-CCF, ESW-MOV-CC-M0841, LOSPNR9HR
3.5E-011 BAT-DEP-7HR, BETA-2SWPS, ESW-CKV-CB-C515B, ESW-MDP-FS-CCF, LOSPNR9HT
3. 5E-011 BAT-DEP-7HR, BETA-2SWPS, ESW-MDE-FS-CCF, ESW-MDP-FS-ECW, LOSPNR9HR DGHWNR5HR, ESW-MDP-MA-MDPA, LOSPNR12HR
$A C P-D G N-F R-E D G B, A C P-D G N-F R-E D G C, B A T-D E P-5 H R$, DGHWNR $5 H R$, ESW-MDP-MA-ECW, LOSPNR 12 HR $A C P-D G N-E R-B D G B, A C P-D G N-F R-E D G D, B A T-D E P-5 H R$, DGHWN! $5 H R$, ESW-MDP-MA-MDPB, LOSPNR12HR 11 ACP-DGN-FR-BDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-XHE-FO-EHS, ESW-XVM-PG-X507A, LOSPNR14HR
2. 7B-011 ACP-DGN-PR-BDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-XHB-FO-EHS, ESW-XVM-PG-XV510, LOSPNR14HR
644100.0
2.73-011 ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR7HR,
ESW-XHE-FO-EHS, ESW-XVM-PG-XV509, LOSPNR1 ESW-XHE-FO-EHS, ESW-XVM-PG-XV509, LOSPNR14HR
646100.0 ACP-DGN-FR-EDGB, BAT - XHB-FO-EHS, ESW-XVM-PG-X507B, LOSPNR 14 HR ACP-DGN-FR-BDGC, BAT-DEP-7HR, DGHWNR7HR, BSW-XHB - FO-EHS , ESW - XVM-PG-D505B, LOSPNR14HR

F-38

647	100.0	. 0	2.7E-011	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR7HR, ESW-XHE-FO-BHS, ESW-XVM-PG-D505C, LOSPNR14HR
648	100.0	. 0	2.4E-011	ACP-DGN-FR-EDGC, ACP-DGN-FR-BDGD, BAT-DEP-7HR, DGHWNR7HR, ESW-MDP-MA-MDPA, LOSPNR1ヶतR
649	100.0	. 0	2.4B-011	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-MDP-MA-ECW, LOSPNR14HR
650	100.0	. 0	2. $4 \mathrm{E}-011$	ACP-DGN-FR-EDGB: ACP-DGN-FR-EDGD, BAT-DEP-7HR, DGHWNR 7 HR, ESW-MDP-MA-MDPB, LOSPNR 14 AR

Table F. 2
Accident Sequence Tl-BU11NU21 Cut Sets

SEQUENCE CUT SETS (QUANTIFICATION) REPORT Family: PEACHBOT
Sequence: $T 1-$ BU1 $1 \mathrm{NU} 2^{1}$
Event Tree: T1
Mincut Upper Bound $1.365 \mathrm{E}-007$

	$\begin{aligned} & \text { Cut } \\ & \text { No. } \end{aligned}$	Accum \% Total	\% Cut Set	Prob/ Freq.	ALITERNATE CUT SETS
	1	3.1	3.1	4.3E-009	ACP-DGN-LP-CCF, BAT-DEP-3HR, BETA-4DGNS, DGCCFNR 3HR, HCI-TDP-ER-20S37, LOSPNR5HR
	2	6.0	2.9	4.0E-009	ACP-DGN-LP-CCF, BETA-4DGNS, DGCCFNR12HR, HCI -TDP-FR-20S37, INJ-FAILS, LOSPNR13HR
	3	8.6	2.5	3.4E-009	ACP-DGN-FR-EDGB, ACP-DGN-LP-EDGC, DGHWNR12HR, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR18HR
	4	11.1	2.5	3.4E-009	ACP-DGN-FR-BDGC, ACP-DGN-LP-EDGB, DGHWNR12HR, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR18HR
E	5	13.0	1.9	2.6E-009	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, BAT-DEP-3HR, DGHWNR 3HR, BSW-XHE-FO-EHS, HCI-TDP-FR-2US37, LOSPNR9HR
	6	14.9	1.9	2. 6E-009	ACP-DGN-ER-EDGB, ACP-DGN-LP-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR9HR
	7	16.8	1.9	2.6E-009	ACP-DGN-LP-CCF, \quad DEP-9Fis BETA-4DGNS, DGCCFNR9HR, HCI. \quad FR-20S37, LOSPNR12HR
	8	18.7	1.9	2.5E-009	ACP-DGN-LP-CCF, EA1-DEP-3HR, BETA-4DGNS, DGCCFNR 3HR, HCI-TDP-FS-20S37, LOSPNR5HR
	9	20.5	1.8	2.4E-009	ACP-DGN-LP-CCF, BAT-DEP-5HR, BETA-4DGNS, DGCCFNR5HR, HCI-TDP-FR-20S37, LOSPNR7HR
	10	22.3	1.7	2. $4 \mathrm{E}-009$	ACP-DGN-LP-CCF, BETA-4DGNS, DGCCFNR12HR, HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR13HR
z	11	23.8	1.5	2.0E-009	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, DGHWNR12HR, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR18HR
$\frac{\pi}{0}$	12	25.3	1.5	2.0E-009	ACP-DGN-FR-EDGB, ACP-DGN-LP-EDGC, DGHWNR12HR, ESW- XHE-FO-BHS, HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR18HR

13	26.7	1.4	$2.0 \mathrm{E}-069$	ACP-DGN-FR-EDGB, ACP-DGN-LP-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-XHE-EO-EHS, HCI-TDP-FR-20S37, LOSPNR17HR
14	28.2	1.4	2.0E-009	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-XHB-FO-BHS, HCI-TDP-FR-20S37, LOSPNR17HR
15	29.6	1.3	1.8E-009	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-XHE-FO-BHS, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR18HR
16	30.7	1.1	1. 5E-009	ACP-DGN-FR-EDGB, ACP-DGN-LP-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR9HR
17	31.9	1.1	1.5B-009	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, BAT-DEP-3HR, DGHWNR3HR, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR9HR
18	33.0	1.1	1. $5 \mathrm{E}-009$	ACP-DGN-LP-CCF, BAT-DEP-9HR, BETA-4DGNS, DGCCFNR9HR, HCI-TDP-FS-20S37, LOSPNR12HR
19	34.1	1.0	1. $4 \mathrm{E}-009$	ACP-DGN-FR-EDGB, ACP-DGN-LP-EDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-XHE-FO-EHS, HCI-TDP-FR 20S37, LOSPNR12HR
20	35.2	1.0	1. $4 \mathrm{E}-009$	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, BAT-DEP-5HR, DGHWNR5HR, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR12HR
21	36.3	1.0	1. $4 \mathrm{E}-009$	ACP-DGN-LP-CCF, BAT-DBP-5HR, BETA-4DGNS, DGCCFNR5HR, HCI-TDP-FS-20S37, LOSPNR7HR
22	37.3	1.0	1. $4 \mathrm{E}-009$	ACP-DGN-LP-CCF, BAT-DEP-7HR, BETA-4DGNS, DGCCFNR THR, HCI-TDP-FR-20S37, LOSPNR9HR
23	38.4	1.0	1. $4 \mathrm{E}-009$	BETA-3AOVS, BSW-AOT CC-CCF, HCI-TDP-FR-20S37, INJ-EATLS, LOSPNR13HR
24	39.4	1.0	1. $3 \mathrm{E}-009$	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHB-FO-EHS, HCI-TDP-FR-20S37, LOSPNR9HR
25	40.3	. 9	1. $2 \mathrm{~B}-009$	ACP-DGN-LP-EDGC, DGHWNR12HR, ESW-CKV-CB-C515B, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR13HR
26	41.3	. 9	1. $2 \mathrm{E}-009$	ACP-DGN-LP-EDGB, DGHWNR12HR, ESW-CKV-CB-C515A, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR13HR

	58	61.3	. 4	6.1E-010	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, BAT-DEP-7HR, DGHWNR 7HR, ESW-XHE-FO-EHS, HCI-TDP-ES-20S37, LOSPNR14HR
	59	61.7	. 4	5.7E-010	BAT-DEP-5HR, BETA-3AOVS, ESW-AOV-CC-CCF HCI-TDP-FR-20S37, LOSPNR $7 H R$
	60	62.1	. 4	5.6E-010	BAT-DEP-3HR, BETA-6AOVS, EHV-AOV-CC-CCF, HCI-TDP-FR-20S37, LOSPNR5HR
	61	62.5	. 4	5.5E-010	BETA-6AOVS, EHV-AOV-CC-CCF, HCI-TDP-FS-20S37. INJ-FAILS, LOSPNR13HR
	62	62.9	. 4	$5.4 \mathrm{E}-010$	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHNNR $7 H R$, ESW-XHE-FO-EHS, HCI-TDP-FR-20537, LOSPNR 14 HR
	63	63.3	. 3	5.3E-010	BAT-DEP-9HR, BETA-6AOVS, EHV-AOV-CC-CCF, HCI TDP-FR-20S37, LOSPNR12HR
	64	63.7	. 3	5.2E-010	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, LOSPNR9HR
3	65	64.1	. 3	5.2E-010	ACP-DGN-FR-EDGB, ACP-DGN-LP-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, LOSPNR9HR
*	66	64.5	. 3	5.2E-010	BAT-DEP-3HR, BETA-3AOVS, ESW-AOV-CC-CCF, HCI-TDP-FS-20S37, LOSPNR5HR
	67	64.8	. 3	5.2E-010	ACP-DGN-LP-CCF, BAT-DEP-9HR, BETA-4DGNS, DGCCFNR9HR, HCI-TDP-MA-20S37, LOSPNR 12 HR
	68	65.2	. 3	4.9E-010	ACP-DGN-FR-EDGC, ACP-DGN-MA-EDGB, DGMANR12HR, ESW-XHB-FO-EHS, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR18HR
	69	65.6	. 3	4.9E-010	ACP-DGN-FR-EDGB, ACP-DGN-MA-EDGC, DGMANR12HR, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR18HR
	70	65.9	. 3	4.9E-010	ACP-DGN-LP-CCF, BAT-DEP-5HR, BETA-4DGNS, DGCCFNR 5HR, HCI-TDP-MA 20S37, LOSPNR7HR
	71	66.3	. 3	4.8E-010	BAT-DEP-9HR, BETA-3AOVS, ESW-AOV-CC-CCF, HCI-TDP-FS-20S37, LOSPNR12HR
$\begin{aligned} & z \\ & \text { z } \\ & \text { x } \end{aligned}$	72	66.6	. 3	4.7E-010	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR 5 HR, ESW-XHZ-FO-EHS, HCI-TDP-FS-20S37, LOSPNR12HR

73	67.0
74	67.3
75	67.7
76	68.0
77	68.3
78	68.6
79	68.9
80	69.2
81	69.5
82	69.8
83	70.1
84	70.3
85	70.6
86	70.9
87	71.2
81.4	
8	71

	74.9	. 2	2.9E-010	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR3HR, ESW-CKV-CB-C515B, HCI-TDP-FR-20S37, LOSPNR9HR
104	75.1	. 2	$2.9 \mathrm{E}-010$	AC- DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR 3HR,
105	75.4	. 2	2.8E-010	
				INJ-FAILS, LOSPNR13HR
106	75.6	. 2	2.7E-010	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, LOSPNR9HR
107	75.8	. 2	2. 7E-010	ACP-DGN-FR-EDGB, ACP-DGN-MA-EDGC, BAT-DEP-3HR, DGMANR3HR, ESW-XHE-EO-EHS, HCI-TDP-FS-20S37, LOSPNR9HR
108	76.0	. 2	2.7E-010	ACP-DGN-FR-EDGC, ACP-DGN-MA-EDGB, BAT-DEP-3HR, DGMANR 3HR, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR 9 HR
109	76.2	. 2	2.7E-010	ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR 3HR, ESW-PTF-RE-DGC, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR9HR
110	76.4	. 2	2.7E-010	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR3HR, ESW-PTF-RE-DGB, ESW-XHB-FO-BHS, HCI-TDP-FR-20S37, LOSPNR9HR
111	76.6	. 2	2. 7E-010	BAT-DEP-7HR, BETA-6AOVS, EHV-AOV-CC-CCF, HCI-TDP-FR-20S37, LOSPNR9HR
112	76.8	. 1	2.6E-010	ACP-DGN-FR-EDGb, BAT-DEP-3HR, DGHWNR 3HR, ESW-MDP-FS-MDPB, ESW-XHZ-FO-EHS, HCI-TDP-FR-20S37, LOSPNR9HR
113	76.9	. 1	$2.6 \mathrm{~B}-010$	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR3HR, ESW-MDP-FS-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR9HR
114	77.1	. 1	2.5E-010	ACP-DGN-FR-EDGB, ACP-DGN-MA-EDGC, BAT-DEP-5HR, DGMANR5HR, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR 12 HR
115	77.3	. 1	2. 5E-010	ACP-DGN-FR-EDGC, ACP-DGN-MA-EDGB, BAT-DEP-5HR, DGMANR5HR, ESW-XHE-FO- BHS, HCI-TDP-FR-20S37, LOSPNR 12 HR
116	77.5	. 1	2.5E-010	ACP-L $3 \mathrm{~N}-\mathrm{FR}-$ EDGC, DGHWNR12HR, ESW-PTF-RE-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR18HR

	117	77.7	. 1	2.5E-010	ACP-DGN-FR-EDGB, DGHWNR12HR, ESW-PTF-RE-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, INJ-FAILS, LUSPNR 18 HR
	118	77.9	. 1	2. 5E-010	BAT-DEP-7HR, BETA-3AOVS, ESW-AOV-CC-CCE, HCI -TDP - FS - 20S37, LOSPNR9HR
	119	78.0	. 1	2.4E-010	ACP-DGN-LP-EI -C, BAT-DEP-7HR, DGHWNR $7 H R$, ESW-CKV - CB C515B, HCI-TDP-ES-20S37, LOSPNR9HR
	120	78.2	. 1	2.4E-010	ACP-DGN-LP-EDGB, BAT-DEP-7HR, DGHWNRTHR, ESW-CKV-CB-C515A, HCI-TDP-FS-20S37, LOSPNR9HR
	121	78.4	. 1	2.4E-010	ACP-DGN-FR-EDGB, DGHWNR12HR, ESW-MDP-ER-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37. INJ-FAILS, LOSPNR13HR
	122	78.6	. 1	2.4E-010	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-MDP-FR-MDPA, ESW-XHE-FO-BHS, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR13HR
	123	78.8	. 1	2.4E-010	$A C P-D G N-F R-E D G B, \quad D G H W N R 12 H R$, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR1 3HR
$\stackrel{1}{*}$	124	78.9	. 1	2.4E-010	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-MD1-MR-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR13HR
	125	79.1	. 1	2.3E-010	ESW-CKV-CB-C515B, ESW-MDP-FS-MDPB, HCI-TDP-ER-20S37, INJ-FAILS, LOSPNR13HR
	126	79.3	. 1	2. 3E-010	ESW-CKV-CB-C515A, ESW-MDP-FS-MDPA, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR13HR
	12%	79.4	. 1	2.2E-010	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-MDP-MA-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37. INJ-FAILS, IOSPNR18HR
	128	79.6	. 1	2.2E-010	ACP-DGN-FR-EDGB, DGHWNR12HR, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR18HR
	129	79.8	. 1	2.2E-010	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-CKV-CB-C515B, HCI-TDP- $\mathrm{FS}-20 \mathrm{~S} 37$, INJ-FAILS, LOSPNR18HR
c	130	80.0	. 1	2.2E-010	ACP-DGN-ER-EDGB, DGHWNR12HR, ESW-CKV-CB-C515A, HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR18HR
\%	131	80.1	. 1	2.2E-010	BAT-DEP-5HR, BETA-6AOVS, EHV-AOV-CC-CCF, HCI-TDP-FS-20S37, LOSPNR7HR
0	132	80.3	. 1	2.2E-010	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-CKV-CB-C515B, HCI-TDP-FR-20S37, LOSPNR17HR

160	84.4	. 1	1.8E-010	ACP-DGN-MA-EDGC, DGMANR12HR, ESW-CKV-CB-C515B, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR13HR
161	84.6	. 1	1. 8E-010	BETA-6AOVS, EHV-AOV-CC-CCF, HCI-TDP-MA-20537, INJ - FAILS, LOSPNR13HR
167	84.7	. 1	$2.7 \mathrm{E}-010$	$A C P$ DGN-FR-EDGC, ACP-DGN-MA-EDGB, DGMANR $12 H R$, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, INJ-FA:LS, LOSPNR13HR
163	84.8	. 1	1.7E-010	ACP-DGN-FR-EDGB, ACP-DGN-MA-EDGC, DGMANR12HR, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, INJ-FAILS, LOSPNR 13 HR
164	85.0	. 1	1.7E-010	ACP-DGN-FR-EDGC, ACP-DGN-TE-EDGB, BAT-DEP-3HR ; DGMANR 3HR, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR9HR
165	85.1	. 1	1.2E-010	ACP-DGN-FR-EDGB, ACP-DGN-TE-EDGC, BAT-DEP-3HR, DGMANR 3HR, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR9HR
156	85.2	. 1	1. 7E-010	ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHINNR 3HR, ESW-MDP-MA-MDPB, ESW-Xت̃E-FO-EHS, HCI-TDP-FR-20S37. LOSPNR9HR
167	85.3	. 1	1.7E-010	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR3HR, ESW-MDP-MA-MDPA, ESW-XHE-FO-BHS, HCI-TDP-FR-20S37, LOSPNR9HR
168	85.5	. 1	1.7E-010	ACP-DGN-FR-EDGC, 13A2-DEP-3HR, DGHWNR3HR, ESW-CKV-CB-C515B, HCI TDP-FS-20S37, LOSPNR9HR
169	85.6	. 1	1.7E-010	ACP-DGN-ER-EDC ヨ, BAT-DEP-3HR, DGHWNR3HR, ESW-CKV-CB-C515A, HCI-TDP-FS-20S37, LOSPNR9HR
170	35.7	. 1	1.7E-010	BAT-DEP-3HR, BETA-3AOVS, ESW-AOV-CC-CCE, HCI- IA-20S37, LOSPNR5HR
171	35.8	. 1	1.7E-010	$A C P-\angle \exists N-F R-E D G B, A C P-D G N-M A-E D G C, B A T-D E P-7 H R$, DGMANR7HR, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR14HR
172	85.0	. 1	1.7E-010	ACP-DGN-FR-EDGC, ACP-DGN-MA-EDGB, BAT-DBP-7HR, DGMANR 7HR, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR 14 HR
173	86.1	. 1	1.6E-010 A	ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGH $\sim N R 5 H R$, ESW-CKV-CB-C515B, HCI-TDP-FR-20S37, LOSPNR12HR
174	86.2	. 1	$1.6 \mathrm{~B}-010 \mathrm{~A}$	ACP-DGN-FR-EDGB, BAT-DEP-5HR, DGHWNR 5 HR, ESW-CKV-CB-C515A, HCI-TDP-FR-20S37, LOSENR12HR

	175	86.3	. 1	1.6E-010	ACP-DGN-FR-EDG3, BAT-DEP-3HR, DGHWNR 3HR, ESW-PTF-RE-DGC, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR9HR
	176	86.5	. 1	1.6E-010	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR3HR, ESW-PTF-RE-DGB, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR9HR
	177	86.6	. 1	1.6E-010	BAT-DEP-7HR, BETA-6AOVS, EHV-AOV-CC-CCF, HCI-TDP-FS-20S37, LOSPNR9HR
	178	86.7	. 1	1.6E-016	BAT-DEP-9HR, BETA-3AOVS, ESW-AOV-CC-CCF, HCI-TDP-MA-20S37, LOSPNR12HR
	179	85.8	. 1	1.5E-010	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-XHE-FO-BHS, HCI-TDP-MA-20SJ7, LOSPIRR12HR
	180	86.9	. 1	1.5E-010	ACP DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR3HR, ESW-MDE-FS-MDPB, ESW-XHE-FO-BHS, HCI-TDP-ES-20S37, LOSPNR9HR
	181	87.0	. 1	1.5E-010	ACP-DGN-ER-EDGC, BAT-DEP-3HR, DGHWNR3HR, ESW-MDP-FS-MDPA, ESW-XHE-FO-EHS, HCI-TDF-FS-20037, LOSPNR9HR
$\begin{gathered} \text { n } \\ \substack{10 \\ e n} \end{gathered}$	182	87.2	. 1	1.5E-010	ACP-DGN-FR-EDGB, BAT-DEP-5HR, DGHWNR5HR, ESW-PTF-RE-DGC, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR12HR
	183	87.3	. 1	1.5E-C10	ACP-DGN-ER-EDGC, BAT-DEP-5HR, DGतWNR5HR, ESW-PTF-RE-DGB, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR12HR
	184	87.4	. 1	1.5E-010	ESW-CKV-CB-C515B, ESW-MDP-MA-MDPB, HCI-TDP-FR-20S37, INJ-EATLS, LOSPNR13HR
	185	87.5	. 1	1. 5E-010	ESW-CKV-CB 515A, ESW-MDP-MA-MDPA, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR13HR
	186	87.6	. 1	1. 5B-010	ACP-DGN-FR-EDGC, ACP-DGN-MA-BDGB, BAT-DEP-5HR, DGMANR 5 HR, BSW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR12HR
	187	87.7	. 1	1. 5E-010	ACP - DGN- FR-EDGB, ACP-DGN-MA-EDG ?, BAT-DEP-5HR, DGMANR5HR, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR12HR
	188	87.8	. 1	1.4E-010	ACP-DGN-FR-EDGB, BAT-DEP-5HR, DGHWNR5HR, ESW-MDP-FS-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSENR12HR

204	89.5	. 1	1.3E-010	ACP-DGN-FR-BDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-CKV-CB-C515B, HCI-TDP-FS-20S37, LOSPNR17HR
205	89.6	. 1	1.3E-010	ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNk 9 HR, ESW-CKV-CB-C515A, HCI-TDP-FS-20S37, LOSPNR17HR
206	89.7	. 1	1.3E-010	BAT-DEP-9HR, ESW-CKV-CB-C515B, ESW-MDP-FS-MDPB, HCI-TDP-FR-20S37, LOSPNR12HR
207	89.8	. 1	1.3E-010	BAT-DEP-9HR, ESW-CKV-CB-C515A, ESW-MDD-FS HCI-TDP-FR-20S37, LOSPNR12HR
208	89.9	. 0	1.2E-010	ACP-DGN-FR-BDGB, BAT-DBP-5HR, DGHWNR5HR, ESW-MDP-FR-MDPB, ESW-XHE-FO-BHS, HCI-TDP-FR-2 1 S37, LOSPNR7HR
209	90.0	. 0	1.2E-010	ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-MDP-FR-MDPA, BSW-XHE-FO-EHS, HCI-TDP-FR-, 0 S 37 , LOSPNR7HR
210	90.1	. 0	1. $2 \mathrm{E}-010$	ACP-DGN-FR-EDGB, BAT-DEP-5HR, DGHWNR5HR, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR7HR
211	90.2	. 0	1. $2 \mathrm{E}-010$	ACP-DGN-FR-EDGC, BAT-DEF-5HR, DGHWNR5HR, ESW-MDP-MA-MDPA, ESW-XHE-FO-EHS, HCI-TDP-ES-20S37, LOSPNRTHR
212	90.2	. 0	1.2E-010	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-PTE-RE-DGB, ESW-XHE-FO-EHS, HCI-TDP-FS-20537, LOS PNR17HR
213	90.3	. 0	1.2E-010	KCP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-PTE-RE-DGC, ESW-XHE-FO-BHS, HCI-TDE-FS-20S37, LOSPNR17HR
214	90.4	. 0	1.2E-010	ACP-DGN-FR-EDGB, BAT-DEP-3HR, ESW-CKV-CB-C515A, HCI-TDP-MA-20S37, LOSPNR5HR
215	90.5	. 0	1.2E-010	ACP-DGN-FR-BDGC, BAT-DEP-3HR, DGEWNR3HR, ESW-CKV-CB-C515B, HCI-TDP-MA-20S37, LOSPNR5HR
216	90.6	. 0	1. $2 \mathrm{E}-010$	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR, BSW-MDP-FS-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR17HR
217	90.7	. 0	1.2E-010	ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-MDP-FS-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR17HR
218	90.8	. 0	1.2E-010	ACP-DGN-MA-BDGC, BAT-DEP-9HR, DGMANR9HR, RCW-CKV-CB-C515B, HCI-TDP-FR-20S37, LOSPNR12HR

219	90.9	. 0	1. $2 \mathrm{E}-010$	ACP-DGN-MA-EDGB, BAT-DBP-9HR, DGMANR9HR, ESW-CKV-CB-C515A, HCI-TDP-FR-20S37, LOSPNR12HR
220	91.0	. 0	1.1E-010	ACP-DGN-MA-EDGB, BAT-DEP- 3HR, DGMANR3HR, ESW-CKV-CB-C515A, HCI-TDP-FS-20S37, LOSPNR5HR
221	91.0	. 0	1.1E-010	ACP-DGN-MA-BDGC, BAT-DEP- JHR, DGMANR3HR, ESW-CKV-CB-C515B, HCI-TDP-FS-20S37, LOSPNR5HR
222	91.1	. 0	1.1E-010	ACP-DGN-FR-EDGB, ACP-DGN-TE-EDGC, BAT-DEP-9HR, DGMANR9HR, ESW-XHE-FO-8H5, HCI-TDP-ER-20S37, LOSPNR17HR
223	91.2	. 0	1.1E-010	ACP-DGN-FR-BDGC, ACP-DGN-TE-EDGB, BAT-DEP-9HR, DGMANR9HR, ESW-XHE-FO-BHS, HCI-TDP-FR-20S37, LOSPNR17HR
224	91.3	. 0	1.1E-010	BAT-DEP-5HR, BETA-3AOVS, ESW-AOV-CC-CCF, HCI -TDP-MA-20S37, LOSPNR 7HR
225	91.4	. 0	1. 1E-010	ACP-DGN-PR-EDGC, ACP-DGN-MA-BDGB, BAT-DEP-9HR, DGMANR9HR, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, LOSPNR12HR
226	91.5	. 0	1.1E-010	ACP-DGN-FR-EDGB, ACP-DGN-MA-EDGC, BAT-DEP-9HR, DGMANR9HP, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, LOSPNR12HR
227	91.6	. 0	1.18-010	ACP-DGN-FR-EDGC, ACP-DGN-TB-EDGB, DGMANR12HR, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR18HR
228	91.6	. 0	1. $1 \mathrm{~B}-010$	ACP-DGN-FR-EDGB, ACP-DGN-TE-EDGC, DGMANR12HR, ESW-XHB-FO-EHS, HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR18HR
229	91.7	. 0	1. J.E-010	ACP-DGN-ER-EDGC, DGHWNR12HR, ESW-AOV-CC-0241B, BSW-XHE-FO-EHS, HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR18HR
230	91.8	. 0	1.1E-010	ACP-DGN-FR-EDGB, DGHWNR12HR, BSW-AOV-CC-0241C, ESW-XHE-FO-BHS, HCI-TDP-FR-20S37. INJ-FAILS, LOSPNR18HR
231	91.9	. 0	1.18-010	ACP-DGN-MA-BDGC, BAT-DEP-5HR, DGMANR 5 HR, ESW-CKV-CB-C515B, HCI-TDP-FR-20S37, LOSPNR7HR
232	92.0	. 0	1.1E-010	ACP-DGN-ER-EDGB, BAT-DEP-7HR, DGHWNR7HR, ESW-CKV-CB-C515A, HCI-TDP-FR-20S37, LOSPNR1\&HR
233	92.1	. 0	1.1E-010	ACP-DGN-MA-EDGB, BAT-DEP-5HR, DGMANR $5 H R$, ESW-CKV-CB-C515A, HCI-TDP-FR-20S37, LOSPNR7HR

234	92.1	. 0	1.1B-010	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-CKV-CB-C515B, HCI-TDP-FR-20S37, LOSPNR14HR
235	92.2	. 0	$1.1 \mathrm{E}-010$	BAT-DEP-3HR, BETA-6AOVS, BHV-AOV-CC-CCF, HCI-TDP-MA-20S37, LOSPNR5HR
236	92.3	. 0	1. $1 \mathrm{~B}-010$	ACP-DGN-MA-EDGC, DGMANR12HR, ESW-CKV-CB-CS15B, HCI-TDP-ES-20S37, INJ-FAILS, LOSPNR13HR
237	92.4	. 0	1.1E-010	ACP-DGN-MA-EDGB, DGMANR12HR, ESW-CKV-CB-HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR13HR
238	92.5	. 0	$1.1 \mathrm{E}-010$	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-XHE-FO-BHS, HCI-MOV-CC-MV19, INJ-FAILS, LOSPNR18HR
239	92.5	. 0	1.18-010	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, DGHWNR-2HR, ESW-XHB-FO-BHS, HCI-MOV-CC-MV14, INJ-FAILS, LOSPNR18HR
240	32.6	. 0	1.0B-010	$A \subset P-D G N-F R-E D G B, A C P-D G N-P R-E D G C, B A T-D E P-7 H R$, DGHWNR 7 HR, ESW-XHE-PO-BHS, HCI-TDP-MA-20S37, LUSPNR 14 HR
241	92.7	. 0	1. OE-010	ACP-DGN-FR-EDGC, ACE-DGN-MA-BDGB, BAT-DEP-5HR, DGMANR5HR, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, LOSPNRTHR
242	92.8	. 0	1.03:010	ACP-DGN-FR-FDGB, ACP-DGN-MA-EDGC, BAT-DBP-5HR DGMANR5HR, BSW-XHB-FO-BHS, HCI-TDP-MA-20S37, LOSPNR7HR
243	92.9	. 0	1.0E-010	ACP-DGN-FR-EDGC, BAT-DBP-5HR, DGHWNR $5 H R$, ESW-P TF-RE-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR12HR
244	92.9	. 0	1.0B-010	ACP-DGN-FR-BDGB, BAT-DBP-5HR, DGHWNR5HR, ESW-PTF-RE-MDPB, ESW-XHB-FO- BHS, HCI-TDP-FR-20S37, LOSPNR12HR
245	93.0	. 0	1.0B-010	ACP-DGN-ER-EDGB, BAT-DEP-7HR, DGHWNR 7HR, BSW-PTF-RE-DGC, ESW-XHE-FC-BHS, HCI -TDP-FR-20S37, LOSPNR14HR
246	93.1	. 0	1.0E-010	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-PTF-RE-DGB, ESW-XHB-FO-BHS, HCI-TDP-FR-20S37, LOSPNR14HR
247	93.2	. 0	1.0B-010	BAT-DBP-9HR, BETA-6AOVS, BHV-AOV-CC-CCF, HCI-TDP-MA-20S^7, LOSPNR12HR

262	94.3	. 0	9.4B-011	BAT-DEP-5HR, BSW-CKV-CB-C515A, ESW-MDP-FS-MDPA, HCI-TDP-FR-20S37, LOSPNR7HR
263	94.4	. 0	$9.4 \mathrm{E}-011$	BAT-DEP-3HR, BSW-CKV-CB-C515A, ESW-MDP-MA-MDPA, HCI-TDP-FR-20S37, LOSPNR5HR
264	94.4	. 0	$9.3 \mathrm{E}-011$	ACP-DGN-FR-EDGB, BAT-DEP-5HR, DGHWNR5HR, ESW-PTP-RE-DGC, BSW-XHB-FO-EHS, HCI-TDP-FS-20S37, LOSPNR12HR
265	94.5	. 0	9.3E-011	ACP-DGN-ER-BDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-PTF-RE-DGB, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR12HR
266	94.6	. 0	8.98-011	ACP-DGN-FR-BDGC, DCHWNR18HR, DCP-BAT-LP-B2, ESW-XHB-FO-BHS, INJ-FAILS, LOSPNR18HR
267	94.6	. 0	8.9E-011	ACP-DGN-FR-EDGB, BAT-DEP-5HR, DGHWNR $5 H R$, ESW-MDP-FS-MDPB, BSW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR12HR
268	94.7	. 0	8.9E-011	ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR $5 H R$, ESW-MDP-FS-MDPA, BSN-XHB-FO-EHS, HCI-TDP-FS-20S37, LOSPNR12HR
269	94.7	. 0	8.8E-011	BAT DSP-9HR, BSW-CKV-CB-C515B, ESW-MDP-MA-MDPB, HCI-TDP-FR-20S37, LOSPNR12HR
270	94.8	. 0	8.8E-011	BAT-DBP-9HR, ESW-CKV-CB-C515A, BSW-MDP-MA-MDPA, HCI-TDP-FR-20S37, LOSPNR12HR
271	94.9	. 0	8.7E-011	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-AOV-CC-0241B, ESW-XHB-FO-EHS, HCI-TDP-FR-20S37, LOSPNR9HR
272	94.9	. 0	8.7E-011	ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR3HR, BSW-AOV-CC-0241C, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR9HR
273	95.0	. 0	8. 5B-011	BAT-DEP-3HR, BSW-CKV-CB-C515A, ESW-MDP-FS-MDPA, HCI-TDP-FS - 20S37, LOSPNR5HR
274	95.1	. 0	8.5B-011	RAT-DBP-3HR, ESW-CRV-CB-C515B, ESW-MDP-FS-MDPB, HCI-TDP-FS-20S37, LOSPNR5HR
275	95.1	. 0	8.4E-011	BETA-3AOVS, BSW-AOV-CC-CCF, HCI-MOV-CC-MV14, INJ-FAILS, LOSPNR13HR
276	95.2	. 0	8. 4B-011	BETA-3AOVS, ESW-AOV-CC-CCF, HCI-MOV-CC-MV19, INJ-FAILS, LOSPNR13HR
277	95.3	. 0	8.3E-011	ACP-DGN-FR-EDGB, ACP-DGN-FR-BDGC, BAT-DEP-3HR, DGHWNR3HR, BSW-XHE-FU-BHS, HCI-MOV-CC-MV19, LOSPNR9HR

$2 \% 8$	95.3	. 0	B. 3E-011	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHE-FO-EHS, HCI-MOV-CC-MV14, LOSPNR9HR
279	95.4	. 0	8.3E-011	BAT-DEP-7HR, BETA-3AOVS, ESW-AOV-CC-CCF, HCI-TDP-MA-20537, LOSPNR9HR
280	95.4	. 0	8. 2E-011	ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-CKV-CB-C515A, YCI-TDP-MA-20S37, LOSPNR12HR
281	95.5	. 0	8.2E-011	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-CKV-CB-C515B, HCI-TDP-MA-20S37, LOSPNR12HR
282	95.6	. 0	8.2E-011	ACP DGN-FR-EDGB, DGHWNR $12 H R$, ESW-MDP-FR-MDPB, , ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR18HR
283	95.6	. 0	8.2E-011	ACP-DCN-FR-EDGC, DGHWNR 12 HR , ESW-MDP-FR-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR18HR
284	95.7	. 0	8.0E-011	BAT-DEP-9HR, ESW-Cथy-CB-C515B, ESW-MDP-FS-MDPB, HCI -TDP-FS-20S37, \quad OSPNR12HR
285	95.7	. 0	$8.0 \mathrm{E}-011$	BAT-DEP-9HR, BSW-CKV-CB-C515A, ESW-MDP-FS-MDPA, HCI-TDP-FS-20S37, LOSPNR12HR
286	95.8	. 0	$7.8 \mathrm{~B}-011$	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR7HR, ESW-MDP-FR-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR9HR
287	95.8	. 0	7.8E-011	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR $7 H R$, ESW-MDP-FR-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR9HR
288	95.9	. 0	7.8E-011	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR 7HR, ESW-MDP-MA-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR9HR
289	96.0	. 0	7.8E-011	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR $7 H R$, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR9HR
290	96.0	. 0	7.6E-011	ACP-DGN-T - EDGB, BAT-DEP-3HR, DGMANR3HR, BSW-CKV-CB-C515A, HCI-TDP-FR-20S37, LOSPNR5HR
291	96.1	- 0	7.6E-011	ACP-DGN-TE-EDGC, BA ${ }^{-}$-DEP-3HR, DGMANR 3HR, ESW-CKV-CB-C515B, HCI-TDP-FR-20S37, LOSPNR5HR
292	96.1	. 0	7.5E-011 ${ }^{\text {H }}$	BAT-DEP-5HR, BETA-6AOVS, EHV-AOV-CC-CCF, HCI-TDP-MA - 20S37, LOSPNR7HR

293	96.2	. 0	7.4E-011	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR $7 H R$, ESW-PTF-RE-MDPB, ESW-XHE-FO EHS, HCI-TDP-FR-20S37, LOSPNR14HR
294	96.2	. 0	7.4E-011	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR 7 HR, ESW-PTF-RE-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37,
				LOSPNR 14 HR
295	96.3	. 0	7.2E-011	ACP-DGN-MA-EDGB, BAT-DEP-9HR, DGMANR9HR, ESW-CKV-CB-C515A, HCI-TDP-FS-20S37, LOSPNR12HR
296	96.3	. 0	7.2E-011	ACP-DGN-MA-EDGC, BAT-DEP-9HR, DGMANR9HR, ESW-CKV-CB-C515B, HCI-TDP-FS-20S37, LOSPNR12HR
297	96.4	. 0	7.1E-011	ACP-DGN-FR-EDGB, ACP-DGN-TE-EDGC, BAT-DEP-9HR, DGMANR9HR, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR17HR
298	96.5	. 0	7.18-011	ACP-DGN-FR-EDGC, ACP-DGN-TE-EDGB, BAT-DEP-9HR, DGMANR9HR, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR17HR
299	96.5	. 0	7.OE-011	ACP-DGN-TE-EDGC, DGMANR12HR, ESW-CKV-CB-HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR13HR
300	96.6	. 0	7.0E-011	ACP-DGN-TE-EDGB, DGMANR12HR, ESW-CKV-CB HCI-TDP-FR-20S37, INJ-FAILS, LOSPNR13HR
301	96.6	. 0	7. OE-011	ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-CFV-CE-C515B, HCI-TDP-MA-20S37, LOSPNR7HR
302	96.7	. 0	7.0E-011	ACP-DGN-FR-BDGB, BAT-DEP-5HR, DGHWNR 5HR, ESW-CKV-CB-C515A, HCI-TDP-MA-20S37, LOSPNR 7 IIR
303	967	. 0	7.0E-011	ACP-DGN-FR BDGC, BAT-DEP-3HR, DCHWNR9HR, DCP-BAT-LP-32, ESW-XHE-FO-EHS, LOSPNR9 9 IR
304	96.8	. 0	6.8E-011	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, INJ-FAILS, LOSPNR18HR
305	96.8	. 0	6.8E-011	ACP-DGN-קR-EDGC, DGHWNR12HR, ESW-MDP-FS-MDPA, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, INJ-FAILS, LOSPNR18HR
306	96.9	. 0	6.8E-011	ACP-DGN-FR-EDGB, DGHWNR12HR, ESW-MDP-FS-MDPB, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, INJ-FAILS, LOSPNR18HR
307	96.9	. 0	6.8B-011	ACP-DGN-FR-EDGB, DGHWNR12HR, ESW-AOV-CC-0241C, ESW-XHE-FO-EHS, HCI-TDP-ES-2CS37, INJ-FAILS, LOSPNR18HR

308	97.0	. 0	6.8E-011	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-MDP-MA-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR14HR
309	97.0	. 0	6.8E-011	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR $7 H R$, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR14 1 R
310	97.1	. 0	$6.8 \mathrm{E}-011$	ACP-DGN MA-EDGC, BAT-DEP-5HR, DGMANR $5 H R$, ESW-CKV-CB-C515B, HCI-TDP-FS-20S37, LOSPNR7HR
311	97.1	. 0	6.8E-011	ACP-DGN-FR-EDGC, $A T-D B P-7 H R$, DGHWNR7HR, ESW-CKV-CB-C515B, HCI-TDP-FS-20S37, LOSPNR142.
312	97.2	. 0	6.8E-011	ACP-DGN-MA-EDGB, BAT-DEP-5HR, DGMANRSHR, ESW - CKV - CB-C5 5A, HCI-TDP-FS-20S37, LOSPNR7HR
313	97.2	. 0	6.8E-011	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR 7HR, ESW-CKV-CB-C515A, HCI-TDP-FS-20S37, LOSPNR14HR
314	97.3	. 0	6.8E-011	ACP-DGN-MA-EDGB, BAT-DEP-7HR, DGMANR7HR, ESW-CKV-CB-C515A, HCI-TDE TR-20S37, LOSPNR9HR
315	97.3	. 0	6.8E-011	BAT-DEP-7HR, ESW-CKV-CB-C51. 3, ESW-MDP-FS-MDPB, HCI-TDP-FR-20S37, LOSPNR9HR
316	97.4	. 0	6.8E-011	BAT-DEP-7HR, ESW-CKV-CB-C515A, ESW-MDP-FS-MDPA, HCI - TDP - FR-20S37, LOSPNR9HR
317	97.4	. 0	$6.8 \mathrm{E}-011$	ACP-DGN-MA-EDGC, BAT-DEP-THR, DGMANR7HR, ESW-CKV-CB-C515B, HCI-TDP-FR-20S37, LOSPNR9HR
318	97.5	. 0	6.6E-011	ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNR 9 HR , ESW-AOV-CC-0241C, ESW-XHE-FO-BHS, HCI-TDP-FR-20S37, LOSPNR17HR
319	97.5	. 0	$6.6 \mathrm{~B}-011$	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR 9 HR, ESW-AOV-CC-0241B, ESW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNRITHR
320	97.6	. 0	6.5E-011	ACP-DGN-FR-EDGB, ACP-DGN-MA-EDGC, BAT-DEP-7HR, DGMANR 7HR, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, LOSPNR 9 HR
321	97.6	. 0	6.5E-011	ACP-DGN-FR-EDGC, ACP-DGN-TE-EDGB, BAT-DBP-7HR, DGMANR7HR, ESW-XHE FO-EHS, HCI-TDP-FR-20S37, LOSPNR14HR
322	97.7	. 0	6. 5E-011 ${ }^{\text {A }}$	ACE-DGN-FR-EDGC, ACP-DGN-MA-EDGB, BAT-DEP-7HR, DGMANR 7HR, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, LOSPNR9HR

323	c.7.7	. 0	6.5B-011	ACP-DGN-FR-BDGB, ACP-DGN-TE- ETGC, BAT-LEP- 7 IRR, DGMANR 7HR, RSW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR 14 HR
324	97.7	. 0	6. $4 \mathrm{E}-011$	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-9HR, LGHWNR 9 HR , ESW-XHE-FO-EHS, HCI-MOV-CC-MV19, OSPNR17HR
325	97.8	. 0	6. $4 \mathrm{~B}-011$	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR 9 HR, ESW-XHE-FO-EHS, HCI-MOV-CC-MV14, LOSPNR17HR
326	97.8	. 0	6. $4 \mathrm{E}-011$	ACP-DGN-FR-EDGC, BAT-DEP-7CR, DGHWNR7HR, ESW-PTF-RE-DGB, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR14HR
327	97.9	. 0	6.4E-01?	ACP-DGN-FR-BDGB, BAT-DEP-7HR, DGHWNR 7 HR, ESW-PTF-RE-DGC, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37 LOSPNR 14 HR
328	97.9	. 0	6. 3E-011	BAT DEP-5HR, ESW-CKV-CB-C515B, ESW-MDP-MA HCI-TDP-FR-20S37, LOSPNR7HR
323	98.0	. 0	6. $3 \mathrm{E}-011$	BAT-DBP-5HR, ESW-CKV-CB-C515A, ESW-MDP-MA-MDPA, HCI-TDP-FR-20S37, LOSPNR 7 HR
530	98.0	. 0	6. $2 \mathrm{E}-011$	ACP-DGN-FR-BDGB, BAT-DEP-3HR, DGHWNR 3HR, BSW-MDP-FR-MDPB, ESW-XHE-FO-BHS, HCI-TDP-FS-20S 37 , LOSPNR9HR
331	98.1	. 0	6.2B-011	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, BSW-MDP-FR-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR9HR
332	98.1	. 0	6. $2 \mathrm{E}-011$	ACP-DGN-FR-EDGC, BAT-DBP-9HR, NCHWNR17HR, D. "-BAT-LP-B2, ESW-XHE-FO-BHS, LOSPNR17HR
333	38.2	. 0	6.1E-011	ACP-DGN-ER-EDGB, BAT-DEP-7HR, DGHWNR 7 HR, ESW-MDP-FS-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, TOSPNR14HR
334	98.2	. 0	6.1E-011	ACP-DGN-FR-BDGC, BAT-DEP-7HR, DGHWNR 7 HR, ESW-MDP-FS-MDPA, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37 LOSPNR14HR
335	98.3	. 0	5.8E-011	ACP-DGN-FR-EDGC, ACP-DGN-TE-EDGB, BAT-DEP-5HR, DGMANR5HR, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR 12 YR
336	98.3	. 0	5.8E-011	ACP-DGN-FR-EDGB, ACP-DGN-TE-EDGC, B IT-DEP-5HR, DGMANR5HR, ESW-XHE-FO-EHS, HCI-TDP- تS-20S37, LOSPNR $12 H R$

352	98.9	. 0	4. 7E-011	ACP-DGN-FR-EDCB, ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-XHE-FO-EHS, HCI-MOV-CC-MV14, LOSPNR 12 HR
353	98.9	. 0	4. 7E-011.	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWIVR5HR, ESW-XHE-FO-EHS, HCI-MOV-CC-MV19. T.OSPNR12HR
354	99.0	. 0	4.6E-011	ACP-DGN-FR-EDGC, BAT-DEP-5HR, DCHWNR $12 H R$, DCP-BAT-LP-B2, ESW-XHE-FO-BHS, LOSPNR12HR
355	99.0	. 0	4. 6B-011	ACP-DGN-TE-EDGC, BAT-DEP-9HR, DGMANR9HR, ESW-CKV-CB-C515B, HCI-TDP-FR-20S37, LOSPNR12HR
355	99.0	. 0	4.6B-011	ACF-DGN-TE-EDGB, BAT-DBP-9HR, DGMANR9HR, ESW-CKV-CB-C515A, HCI-TDP-FR-20S37, LOSPNR12HR
357	99.1	. 0	4.5E-011	BAT-DEP-7HR, ESW CKV-CB-C515B, ESW-MDP-MA-MDPB, HCI-TDP-FR-20S37, LOSPNR 9 HR
358	99.1	. 0	4. 5E-011	BAT-DEP-7HR, ESW-CKV-CB-C515A, ESW-MDP-MA-MDPA, HCI-TDP-FR-20S37, LOSPNR9HR
359	99.1	. 0	4.3B-011	ACP-DGN-TE-EDGB, BAT-DEP-5HR, DGMANR5HR, ESW-CKV-CB-C515A, HCI-TDP-FR-20S37, LOSPNR7HR
360	99.2	. 0	4.3B-011	ACP-DGN-TE-EDGC, BAT-DEP-5HR, DGMANR5HR, ESW-CKV-CB-C515B, HCI-TDP-FR-20S37, LOSPNR7HR
361	99.2	. 0	4.3E-011	ACP DGN-FR-EDGB, BAT-DEP-7HR, DGHWNRTHR, ESW-CKV-CB-C515A, HCI-TDP-MA-20S37, LOSPNR9HR
362	99.2	. 0	4.3E-011	ACP-DGN-FR-BDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-CKV-CB-C515B, HCI-TDP-MA-20S37, LOSPNR9HR
363	99.3	. 0	4.02-011	ACP-I N-MA-EDGB, BAT-DBP-7HR, DGMANR7HR, ESW-CKV-CB-C515A, HCI-TDP-FS-20S37, LOSPNR9HR
364	99.3	. 0	4. 0B-011	ACP-DGN-MA-EDGC, BAT-DEP-7HR, DGMANRTHR, ESW-CKV-CB-C515B, HCI-TDP-FS-20S37, LOSPNR9HR
365	99.3	. 0	4. OE-011	BAT-DEP-7HR, ESW-CKV-CB-C515A, ESW-MDP-FS-MDPA, HCI-TDP-FS-20S37, LOSPNR9HR
366	99.3	. 0	4. OB-011	BAT-DBP-7HR, ESW-CKV-CB-C515B, ESW-MDP-FS-MDPB, HCI-TDP-FS-20S37, LOSPNR9HR
367	99.4	. 0	4. OB-011	ACP-DGN-FR-BDGB, BAT-DEP-9HR, DGHWNR9HR, BSW-MDP-FS-MDPB, ESW-XHE-FO-BHS, HCI-TDP-MA-20337. LOSPNR17HR
368	99.4	. 0	4. OE-011	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR, BSW-MDP-FS-MDPA, ESW-XHE-FO-EHS, HCI-TDP-MA-20S37, LOSPNR17HR

369	99.4	. 0	4.0E-011	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9IR, ESW-AOV-CC-0241B, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR17HR
370	99.5	. 0	4.0E-011	ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-AOV-CC-0241C, ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR17HR
371 372	99.5	. 0	$3.9 \mathrm{E}-011$	ACP-DGN-FR-EDGC, ACP-DGN-TE-EDGB, BAT-DEP-7HR, DGMANR 7HR ESW-XHE-FO-EHS, HCI-TDP-FS-20S37, LOSPNR14H2
372	99.5	. 0	3.9E-011	ACP-DGN-FR-EDGB, ACP-DGN-TE-EDGC, BAT-DEP-7HR, DGMANR7HR, ESW-XHE-FO-BHS, HCI-TDP-FS-20S37, LOSPNR14HR
373	99.5	. 0	3. $5 \mathrm{c}-011$	ACP-DGN-FR-BDGC, BAT-DEP-5HR, DGHWNR $5 H R$, ESW-MDP-FR-MDPA, ESW-XHE-FO-EHS, HCI-TDP-ES-20S37, LOSPNR12HR
374	99.6	. 0	3.5B-011	ACP-DGN-FR-EDGB, BAT-DEP-5HR, DGHWNR $5 H R$, ESW-MDP-FR-MDPB, ESW-XHE-FO-EHS, HCI-TDP-FS-20537, LOSPNR12HR
375	99.6	. 0	3.4E-011	BAT-DEP-5HR, BETA-3AOVS, ESW-AOV-CC-CCF, HCI-MOV-CC-MV14, LOSPNR7HR
376	99.6	. 0	3. $4 \mathrm{E}-011$	BAT-DEP-5HR, BETA-3AOVS, BSW-AOV-CC-CCF, HCI-MOV-CC-MV19, LOSPNR7HR
377	99.7	. 0	3.4B-011	ACP-DGN-FR-EDGC, BAT-DBP-7HR, DGHWNR7HK, ESW-AOV-CC-0241B, BSW-XHE-FO-EHS, HCI-TDP-FR-20S37, LOSPNR14HR
378	99.7	. 0	3.4B-011	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR 7HR, ESW-AOV-CC-0241C, ESW-XHE-FO-BHS, HCI-TDP-FR-20S37. LOSPNR14HR
379	99.7	. 0	3.2E-011	$A C P-D G N-F R-E D G B, A C P-D G N-F R-E D G C, ~ B A T-D B P-7 H R$, DGHWNR7HR, BSW-XHE FO-BHS, HCI-MOV-CC-MV19, LOSPNR14 HR
380	99.7	. 0	3. 2E-011	ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-7IIR, DGHWNR 7HR, ESW-XHE-FO-BHS, HCI-MOV-CC-MV14, LOSPNR14HR
381	99.7	. 0	3.0E-011	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DCHWNR $14 H \mathrm{HR}$,
382	99.8	. 0	2.9E-011	DCP-BAT-LP-B2, ESW-XHE-FO-EHS, LOSPNR14HR ACP-DGN-FR-EDGB, BAT-DEP-5HR, DGI WNR 5HR, ESW-AOV-CC-0241C, ESW-XHE-FO-EHS, HCI-TDP-ES-20S37, LOSPNR12HR

Table F. 3
Accident Sequence T1-P1BNU11 Cut Sets

SEQUENCE CUT SETS (QUANTIFICATION) REPORT
Family: PEACHBOT
Event Tree: T1
Sequence: $T 1$-P1BMTII
Init. Event IE-T1
Mincut Upper Bound

1. 625E-007

Cut	Accum of Total	\% Cut	Prob/	ALTERNATE CUT SETS
1	5.0	5.0	8.2E-009	ACP-DGN-LP-CCF, BAT-DEP-3HR, BETA-4DGNS, DGCCFNR 3HR, LOSPNR5HR, P1
2	9.8	4.7	7.6E-009	ACP-DGN-LP-CCF, BETA-4DGNS, DGCCFNR 12 HR , INJ-FAILS, LOSPNR13HR, P1
3	13.8	4.0	6. 5E-009	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, DGHWNR12HR, ESW-XHE-FO-BHS, INJ-FAILS, LOSPNR18HR, P1
4	17.9	4.0	6. 5R-009	ACP-DGN-FR-EDGB, ACP-DGN-LP-EDGC, DGHWNR $12 H R$, ESW-XHE-FO-EHS, INJ-PAILS, LOSPNR18HR, P1
5	21.0	3.0	5.0E-009	ACP-DGN-FR-BDGB, ACP-DGN-LP-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHE-FO-BHS, LOSPNR9HR, P1
6	24.1	3.0	5.0E-009	ACP-DGN-FR-EDGC, ACP-DGN-LPP-BDGB, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHE-FO-BHS, LOSPNR9HR, PI
7	27.1	3.0	4.9B-009	ACP-DGN-LP-CCF, BAT-DEE-9HR, BETA-4DGNS, DGCCFNR9HR, LOSPNR12HR, P1
8	30.0	2.9	4.7B-009	ACP-DGN-LP-CCF, BAT-DEP-5HR, BETA-4DGNS, DGCCFNR5HR, LOSPNRTHR, P1
9	32.4	2.3	$3.8 \mathrm{E}-009$	ACP-DGN-FR-EDGB, ACP-DGN-LP-BDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-XHB-FO-BHS, LOSPNR17HR, P1
10	34.8	2.3	$3.8 \mathrm{~B}-009$	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, BAT-DBP-9HR, DGHWNR9HR, ESW-XHE-FO-EHS, LJSPNR17HR, P1
$4>21$	36.9	2.1	3.5E-009	ACP-DGN-FR-BDGB, ACP-DGN-FR-EDGC, DGFWNR12HR, ESW-XHE-FO-BHS, INJ-FAILS, LOSPNR18HR, P1
12	33.7	1.7	2.8E-009	ACP-DGN-FR-BDGB, ACP-DGN-LP- BDGC, BAT-DEP-5HR, DGHWNR 5HR, BSW-XHE-FO-EHS, LOSPNR12HR, P1
13	40.5	1.7	2. $5 \mathrm{BE}-009$	ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, BAT-DEP-5HR, DGHWNR $3 H R$, ESW-XHE-FO- $3 H S$, LOSPNR $12 H R$, P1
14	42.2	1.7	2.8B-009	ACP-DGN-LP-CCF, BAT-DBP-7HR, BBTA-4DGNS, DGCCFNR7HR, LOSPNR9HR, P1
15	43.3	1.6	2.7B-009	BETA-3AOVS, BSW-AOV-CC-CCF, INJ-FAILS, LOSPNR13HR, P1

16	45.5
17	47.0
18	48.5
19	49.9
20	51.2
21	52.5
22	53.7
23	54.9
24	56.0
25	57.0
26	58.0
27	58.9
28	59.8
29	60.7
30	61.5
31	62.3
32	63.0
33	63.7
34	64.3
20	

```
1.6 2.6B-009 ACP-DGN-PR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-3HR,
DGHWNR3HR, ESW-XHE-PO-EHS, LOSPNR9HR, P1
1.5 2.4E-009 ACP-DGN-LP-EDGE, DGHWVR12HR, ESN-CTV-CE-C515A,
TNJ-FAILS, LOSPNR13HR, P1
1.5 2.4B-009 ACP-DGN-LP-EDGC, DGHWNR12HR, ESW-CKV-CB-C515B, INJ-FAILS, LOSPNR13HR, P1
1.3 2.1E-009 ACP-DGK-TP-EDGC, BAT-DEP-3HR, DGHWNR 3HP, ESW-CKV-CB-C515B, LOSPNR5HR, P1
1.3 2.1E-009 ACP-DGN-LP-EDGB, BAT-DEP-3HR, DGHWNR 3KR, ESW-CKV-CB-C515A, LOSPNR5HR, P1
2.2 2.0E-009 ACP-DGN-FR-EDGB, ACP-DGN-FR-BDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-XHE-FO-EHS, LOSPNR17HR, P1
\(1.21 .9 \mathrm{E}-009\) ACP-DGN-FR-EDGC, ACP-DGN-LP-EDGB, BAT-DBP-7HR, DGHWNR7IIR, BSW-XHE-FO-BHS, LOSPNR14ER, P1
\(1.21 .9 \mathrm{E}-009\) ACP-DGN-FR-EDGB, ACP-DGN-LP-RDGC, EAT-DEP-7HR, DGHWNRTHR, RSW-XHE-PO-BHS, LOSPNR14HR, P1
1.0 1.7B-009 P1
\(1.01 .6 \mathrm{~B}-009\) BAT-DBP-3HR, BETA-3AOVS, ESW-AOV-CC-CCF, LOSPNR5HR, P1
1.5E-009 BAT-DEP-9HR, BBTA-3AOVS, BSW-AOV-CC-CCF, LOSPNR12HR, P1
1.5B-009 ACP-DGN-FR-EDGB, ACP-DGN-FR-BDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-XHE-FO-BHS, LOSPNR12HR, P1
1. 4E-009 ACP-DGN-LP-EDGB, BAT-DEP-9HR, DGHWNR9HR, BSW-CKV-CB-C515A, LOSPNR 12 HR, P1
1.4B-009 ACP-DGN-LP-RDGC, BAT-DBP-9HR, DGHWNR9HR, ESW-CKV-CB-C515B, LOSPNR12HR, P1
7 1.2B-009 ACP-DGN-LP-BDGB, BAT-DBP-5HR, DGHWNRSHR, ESW-CKV-CB-C515A, LOSPNR7HR, P1
7 1.2B-009 ACP-DGN-LP-EDGC, BAT-DEP-5HR, DGHWNR \(5 H R\), BSW-CKV-CB-C515B, LOSPNR7HR, P1
\(.61 .1 \mathrm{~B}-009\) BAT-DEP-5HR, BETA-3AOVS, ESW-AOV-CC-CCF, LOSPNR7HR, P1
. 6 1. OB-009 BAT-DEP-3HR, BETA-6AOVS, BHV-AOV-CC-CCF, LOSPNR5HR, P1
. 6 1.0B-009 ACP-DGN-FR-BDGB, ACP-DGN-FR-BDGC, BAT-DEP-7HR, DGHWNR7HR, BSW-XHE-PO-BHS, LOSPNR14HR, P1
```

F-70

35	64.9	. 6	1.08-009	BAT-DEP-9HR, BETA-6AOVS, BHV-AOV-CC-CCF, LOSPNR12HR, P1
36	65.5	. 5	9.53-010	ACP-DGN-FR-BDGC, ACP-DGN-MA-EDGB, DGMANR12HR, ESW-XHE-FO-EHS, INJ-HAILS, LOSPNR18HR, P1
37	66.1	. 5	9.5E-010	ACP-DGN-FR-EDGB, ACP-DGN-MA-EDGC, DGMANR $12 H R$, ESW-XHE-FO-BHS, INJ-FAILS, LOSPNR18HR, P1
38	66.7	. 5	8. 7E-010	ACP-DGN-FR-EDGB, ACP-DGN-MA-EDGC, BAT-DEP-3HR, DGMANR 3HR, ESW-XHE-FO-BHS, LOSPNR9HR, P1
39	67.2	. 5	8. 7E-010	ACP-DGN-FR-BDGC, ACP-DGN-MA-SDGB, BAT-DEP-3HR, DGMANR3HR, ESW-XHE-FO-EHS, LOSPNR9HR, P1
40	67.7	. 4	7.9E-010	BAT-DEP-7HR, BETA-3AOUS, ESW-AOV-CC-CCF, LOSPNR9HR, P1
41	68.2	. 4	$7.8 \mathrm{E}-010$	ACP-DGN-LP-EDGC, BAT-DBP-THR, DGHWNR $7 H R$, BSW-CKV-CB-C515B, LOSPNR9HR, P1
42	68.7	. 4	7.8E-010	ACP-DCN-LP-EDGB, BAT-DBP-7HR, DGHWNR $7 H R$, ESW-CKV-CB-C515A, LOSPNR9HR, P1
43	69.1	. 4	7.3E-010	ACP-DGN-LP-BDGB, DGHWNR12HR, ESW-ADV-CC-0241C, BSW-XHE-FO-EHS, INJ-FAILS, LOSPNR13HR, P1
44	69.6	. 4	7.3E-010	ACP-DGN-LP-EDGC, DGHWNR12HR, ESW-AOV-CC-0241B, ESW-XHE-PO-BHS, INJ-FAILS, LOSPNR13HR, P1
45	70.0	. 4	7.3E-010	ACP-DGN-FR-EDGB, DGHWNR12HR, ESW-CKV-CB-C515A, INJ-FAILS, LOSPNR18HR, P1
46	70.5	. 4	7.3E-010	ACP-DGN-FR-BDGC, DGHWNR12HR, ESW-CKV-CB-C515B, INJ-FAILS, LOSPNR18HR, P1
47	70.9	. 4	7.2B-010	BAT-DEP-5HR, BETA-6AOVS, BHV-AOV-CC-CCF, LOSPNR7HR, P1
48	71.3	. 4	6.8E-010	ACP-DGN-FR-BDGC, DGHWNR12HR, ESW-PTF-RE-DGB, ESW-XHE-FO-BHS, INJ-FAILS, LOSPNR18HR, P1
49	71.8	. 4	6. $8 \mathrm{E}-010 \mathrm{~A}$	ACP-DGN-FR-EDGB, DGHWNR $12 H R$, ESW-PNF-RE-DGC, ESW-XHE-FO-BHS, INJ-FAILS, LOSPNR18HR, P1
50	72.2	. 4	6.5B-010	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-MDP-FS-MDPA, BSW-XHB-FO-BHS, INJ-FAILS, LOSPNR18HR, P1
51	72.6	. 4	6.5E-010	ACP-DGN-FR-EDGB, DGHWNR12HR, ESW-MDP-FS-MDPB, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR18HR, P1
52	73.0	. 4	6.5E-010	ACP-DGN-LPP-EDGB, BAT-DBP-3HR, DGHWNR 3HR, ESW-AOV-CC-0241C, ESW-XHE-FO- BHS, LOSPNR5HR,
53	73.4	. 4	6.5B-010	ACP-DGN-LP-EDGC, BAT-DEP-3HR, DGHWNR 3HR,

5	73.7	3	$5.9 \mathrm{E}-010$	ACP-DGN-FR-EDGC, ACP-DGN-MA-BDGB, BAT-DEP-9HR, DGMANR9HR, ESW-XHE-FO-EHS, LOSENR17HV, P1
55	74.1	. 3	5.98-010	ACP-DGN-FR-EDGB, ACP-DGN-MA-EDGC, BAT-DEP-9HR, DGMANR9HR, ESW-XHE-FO-BHS, LOSPNR17HR, P1
56	74.4	3	5.5E-010	ACP-DGN-FR-EDGC, BAT-DRP-3HR, DGHWNR 3HR, BSW-CKV-CB-C515B, LOSPNR9HR, P1
57	74.8	. 3	5.5E-010	ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR 3HR, RSW-CKV-CB-C515M -TOSPNR9HR P1
58	75.1	. 3	5.2E-010	ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR 3HR,
59	75.4	. 3	5.2E-010	BSW-PTF-RE-DGC, BSW-XEE-FO-BHS, LOSPNR9HR, P1 ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-PTF-RB-DGB, ESW-XHE-FO-BHS, LOSPNR9HR, P1
60	75.8	. 3	5.2E-010	BAT-DEP-7HR, BETA-6AOVS, BHV-AOV-CC-CCF, LOSPNR9HR, P1
61	76.1	. 3	5.0E-010	ACP-DGN-FR-EDGC, ACP-DGN-TE-EDGB, DGHWNR12HR, ESW-XHE-FO-EHS, INJ-FAILS, LOSPNR1 4 HR
62	76.4	.3	5.08-010	ACP-DGN-FR-BDGB, ACP-DGN-TE-EDGC, DGHWNR $12 H R$, ESW-XHE-FO-BHS, INJ-FATLS, LOSPNRT\&HR, P1
63	76.7	.3	5.03-010	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR,
64	77.0	.3	5.08-010	ESW-MDP-FS-MDPA, ESW-XF'E-FO-BHS, LOSPNR9HR, P1 ACP-DGN-FR-EIKGB, BAT-DEP-3HR, DGHWINR 3HR,
65	77.3	. 3	4.9B-010	BSW-MDP-PS-MDPB, ESW-XHB-FO-BHS, LOSPNR9HR, P1 ACP-DGN-FR-EDGB, ACF DGN-MA-BDGC, BAT-DEP-5HR,
66	77.6	. 3	4.9E-010	DGMANR $5 H R$, ESW-XHE-E J-BHS, LOSPNR $12 H R$, P1 ACP-DGN-FR-EDGC, ACP-DGN-MA-EDGB, BAT-DEP-5HR,
67	77.9	.3	4.8B-010	DGMANR 5HR, ESW-XHE-FO-EHS, LOSPNR12HR, P1 ACP-DGN-FR-EDGB, DGHWNR12HR, BSW-PTF-RE-MDPB, BSW- $\mathrm{AHE}-\mathrm{FO}-\mathrm{BH} 3$, INJ-FATLS, LOSPNR18HR
68	78.2	. 3	4.8E-010	ACP-DGN-FR-RDGC, DGHWNR12HR, ESW-PTE-RZ-MDPA, RSW- XHE - FO - BH ,
69	78.5	. 2	4.68-010	ESW-CKV-CB-C51.5A, BSW-PTF-RE-DGB, INJ-PAILS, LOSPNR13HR, P1
70	78.8	. 2	4.6B-010	ESW-CKV-CB-C515B, ESW-PTF-RE-DGC, INJ-FAILS, LOSPNR13HR, P1
71	79.0	. 2	4.4B-010	ACP-DGN-LP-EDGB, BAT-DEP-9HR, DGHWNR9HR,
72	79.3	. 2	4. 4E-010	ACP-DGN-IP-EDGC, BAT-DBP-9HR, DGhwNR9HR, ESW-ACV-CC-0241B, BSW-XHR-PO-RHS, LOS: NR12HR, P1

	73	79.6	. 2	4. $4 \mathrm{E}-010$	BSW-CKV-CB-C515B, ESW-MDP-PS-MDPB, INJ-FAILS, LCSPNR13HR, P1
	74	79.9	. 2	4. 4 E-010	BSW-CKV-CB-C515A, ESW-MDP-PS-MDPA, INJ-FAILS, LOSPNR13HR, P1
	75	80.1	. 2	4. 3B-010	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-MDP-MA-MDPA, ESW-XHE-FO- BHS, INJ-FAILS, LOSPNR18HR, P1
	76	80.4	. 2	4.3E-010	ACP-DGN-FR-EDGB, DGHWNR12HR, FSW-MDP-MA-MDPB, ESW-XHB-FO-EHS, INJ-FAILS, LOSPNR18HR, P1
	77	60.7	. 2	4. $2 \mathrm{~B}-010$	ACP-DGN-FR-BDGB, BAT-DBP-9HR, DGHWNR9HR, ESW-CKV-CB-C515A, LOSPNR17HR, P1
	78	80.9	. 2	4.2B-010	ACP-DGN-FR-BDGC, BAT-DER-9HR, DGHWNR9HR, ESW-CKV-CB-C515B, LOSPNR17HR, P1
	79	81.2	. 2	4.0E-010	ACP-DGN-FR-EDGB, BAT-DER-9HR, DGHWNR9HR, ESW-PTF-RE-DGC, ESW-XHE-FO-BHS, LOSPNR17HR, P1
	80	81.4	. 2	4.0E-010	ACP-DGN-ER-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-PTF-RB-DGB, ESW-XHE-FO-BHS, LOSPNR17HR, P1
	81	81.6	. 2	$3.8 \mathrm{E}-010$	ACP-DGN-FR-EDGC, ACP-DGN-TE-EDGB, BAT-DEP-3HR, DGHWNR $3 H R$, BSW-XHE-FO-BHS, LOSPNR $9 H R$, PI
	82	81.9	. 2	3.8B-010	ACP-DGN-FR-BDGB, ACP-DGN-TB-BDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-XHE-FO- YHS, LOSPNR9HR, PI
$\underset{\omega}{*}$	83	82.1	.2	3.8B-010	ACP-DGN-FR-EDGC, BAT-D D 9HR, DGHWNR 9 HR, ESW-MDP-FS-MDPA, ESW-XFE-FO-EHS, LOSPNR17HR, P1
	84	32.4	. 2	3.8B-010	ACP-DGN-FR-BDGB, BAT-F BP-9HR, DGHWNR 9 HR, ESW-MDP-FS-MDPB, ESW-XHE-FO-BHS, LOSPNR17HR, P1
	85	82.6	. 2	3. $8 \mathrm{~B}-910$	ACP-DGN-LP-EDGB, BAT-DEP-5HR, DGHWNR5HR, BSW-AOV-CC-0241C, BSW-XHE-PO-BHS, LOSPNR7HR, P1
	86	82.8	. 2	3. 8B-010	ACP-DGN-LP-BDGC, BAT-DBP-5HR, DGHWNR5HR, BSW-AOV-CC-0241B, BSW-XHE-FO-EIIS, LOSPNR7HR, I1
	87	83.1	. 2	3. 8E-010	ACP-DGN-MA-EDGB, BAT-DEP-3HR, DGMANR 3HR, ESW-CKV-CB-C515A, LOSPNR5HR, P1
	88	83.3	. 2	3 3 8B-010	ACP-DGN-MA-BDGC, BAT-DEP-3HR, DGMANR 3HR, ESW-CKV-CB-C515B, LOSPNR5HR, P1
	89	83.5	. 2	3. $6 \mathrm{E}-010$	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-PTF-RE-MDPA, BSW-XHE-FO-EHS, LOSPNR9HR, P1
Z	90	83.8	. 2	$3.6 \mathrm{E}-010$	ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR 3HR, ESW-PTF-RE-MDPB, ESW-XHE-FO-EHS, LOSPNR9HR, P1
\%	91	84.0	. 2	3.5B-010	ACP-DGN-MA-BDGC, DGMANR12HR, ESW-CKV-CB-C515B, INJ-FAILS, LOSPNR13HR, P1

92	84.2
93	84.4
94	84.6
95	84.8
96	85.0
97	85.2
98	85.4
99	85.6
100	85.8
101	86.0
102	86.2
103	86.3
104	86.5
105	86.7
106	86.9
107	87.1
108	87.2
109	87.4
110	87.6
10.4	

[^9]F-74
$110 \quad 87.6$

111	87.8	. 1	2.8E-010	ACP-DGN-FR-BDGB, BAT-DBP-9HR, DGHWINR9HR, ESW-PTF-RB-MDPB, ESW-XHE-FO-BHS, LOSPNR17HR, P1
112	87.9	. 1	2.83-010	ACP-DGN-FR-BDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-PTF-RE-MDPA, ESW-XHE-FO-EHS, LOSPNR17HR P1
113	88.1	. 1	2.7B-010	BAT-DEP-3HR, ESY-CKV-CB-C515A, BSW-MDF-PS-' \& 'A, LOSPNR5KR, P1
114	88.3	. 1	2.7B-010	BAT-DEP-3HR, BSW-CEV-CB-C515B, ESW-MDP-FS-MDPB, LOSPNR5HR, P1
115	88.4	. 1	2. 6B-010	BAT-DEP-9HR, ESN-CKV-CB-C515A, BSW-PTF-RE-DGB, LOSPNR12HR, P1
116	88.6	. 1	2.6E-010	BAT-DEP-9HR, ESW-CKV-CB-C515B, BSW-PTF-RE-DGC, LOSPNR12HR, P1
117	88.8	. 1	2.6B-010	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-MDP-FR-MDPA, BSW-XHB-FO-BHS, INJ-FAILS, LOSPNR18HR, P1
118	. 9	. 1	2. 6B-010	ACP-DGN-FR-EDGB, DGHWNR12HR, BSW-MDP-FR-MDPB, BSW-XHE-FO-BHS, INJ-FAILS, LOSPNIC18HR, P1
119	39.1	. 1	2.5E-010	ACP-DGN-FR-BDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-MDP-MA-MDPA, ESW-XHE-FO-BHS, $\omega O S P N R 17 H R, ~ P 1$
120	89.2	. 1	2.5B-010	ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-MDP-MA-MDPB, ESW-XHE-FO-EHS, LOSPNR17HR, P1
121	89.4	. 1	$2.5 \mathrm{E}-010$	BAT-DBP-9HR, ESW-CKV-CB-C515A, ESW-MDP-FS-MDPA, LOSPNR12HR, P1
122	89.6	. 1	2.5B-010	BAT-DBP-9HR, ESW-CKV-CB-C515B, ESW-MDP-FS-MDPB, LOSPAR12HR, P1
123	89.7	. 1	2.3E-010	ACP-DGN-LP-EDGB, BAT-DEP-7HR, DGHWNR7HR, ESW-AOV-CC-0241C, BSW-XHB-FO-BHS, LOSPNR9HR, P1
124	8 ?	. 1	2.3E-010	ACP-DGN-LP-EDGC, BAT-DBP-7HR, DGHWNR 7 BR, ESW-AOV-CC-0241B, BSW-XHB-FO-BHS, LOSPNR 9 HR, P1
125	90.0	. 1	2.3E-010	ACP-DGN-MA-BDGC, BAT-DEP-9HR, DGMANR9HR, ESW-CKV-CB-C515B, LUSPNR12HR, P1
126	90.1	. 1	2. 3B-010	ACP-DGN-MA-EDGB, BAT-DBP-9HR, DGMANR9HR, ESW-CKV-CB-C515A, LOSPNR12HR, P1
127	90.3	-1	2.2B-010	ACP-DGN-FR-BDGB, ACP-DGN-TE-EDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-XHE-FO-BHS, LOSPNR12HR, P1
128	90.4	. 1	2.2E-010	ACP-DGN-FR-EDGC, ACP-DGN-TE-EDGB, BAT-DEP-5HR, DGHWNR5HR, ESW-XHS-FO-BHS, LOSPNR12HR, P1
129	90.5	. 1	2.18-010	ACP-DGN-FR-EDGB, DGLWNR12HR, ESW-AOV-CC-0241C, ESW-XHB-FO-EHS, INJ-FAILS, LOSPNR18HR, P1

130	90.7	. 1	2.1E-010	ACP-DGN-FR-EDGC, DGHWNR12HR, ESW-AOV-CC-0241B, ESW-XHB-FO-EHS, INJ-FAILS, LOSPNR18HR, P1
131	90.8	. 1	$2.1 \mathrm{~B}-010$	ACP-DGN-MA-EDGB, BAT-DEP-5HR, DGMANR5HR, ESW-CKV-CB-C515A, LOSPNR7HR, P1
132	90.9	. 1	2.1E-010	ACP-DGN-MA-EDGC, BAT-DEP-5HR, DGMANR5HR, ESW-CKV-CB-C515B, LOSPNR7HR, P1
133	91.1	. 1	2.1E-010	ACE-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-CKV-CB-C515B, LOSPNR14HR, P1
134	91.2	. 1	2.2E-010	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR7HR, ESW-CKV-CB-C515A, LOSPNR14HR, P1
135	91.3	. 1	2.0E-010	ACP - DGN-ER-EDGB, BAT-DEP-5HR, DGHWNR $5 H R$, ESW-PTF-RE-MDPB, ESW-XHE-FO-BHS, LOSPNR12H
136	91.5	. 1	2.0B-010	ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR5HR, ESW - PTF -RE-MDPA, ESW-XHE-FO-BHS, LOSPNR 12
137	91.6	. 1	2. $0 \mathrm{E}-010$	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-PTE-RE-DGB, ESW-XHE-FO-EHS, LOSPNR14HR, P1
138	91.7	. 1	2.0E-010	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR 7 HR, ESW-PTF-RE-DGC, ESW-XHE-FO-EHS, LOSPNR14HR, P1
139	91.8	1	2.0E-010	ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-MDP-FR-MDPA, ESW-XHE-FO-EHS, LOSPNR9HR, P1
140	92.0	. 1	2.08-010	ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWMR 3HR, ESW-MDP-FR-MDPB, ESW-XHE-FO-EHS, LOSPNR9HR, P1
141	92.1	. 1	$1.9 \mathrm{~B}-010$	BAT-DEP-3HR, ESW-CKV-CB-C515B, ESW-PTF-RE-MDPB, LOSPNR5HR, P1
142	92.2	. 1	$1.9 \mathrm{~B}-010$	BAT-DEP-3HR, ESW-CKV-CB-C515A, ESW-PTE-RE-MDPA, LOSPNR5HR, P1
143	92.3	. 1	1.98-010	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR 7HR, ESW-MDP-FS-MDPB, ESW-XHE-FO-BHS, LOSPNR14HR, P1
144	92.5	. 1	$1.9 \mathrm{E}-010$	ACP-DGN-FE-EDGC, BAT-DEP-7HR, DGHWNR7HP, ESW-MDP-FS-MDPA, ESW-XHE-FO-EHS, LOSPNR14HR, P1
145	92.6	. 1	$1.9 \mathrm{E}-010$	ACP-DGM-FR-RDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-MDP-MA-MDPA, ESW-XHE-FO-EHS, LOSPNR12HR, P1
146	92.7	. 1	$1.9 \mathrm{~B}-010$	ACP-DGN-FR-BDGB, BAT-DEP-5HR, DGHWNR $5 H R$, 2.. MDP-MA-MDPB, ESW-XHE-FO-EHS, LOSPNR12HR, P1
147	92.8	. 1	1.9E-010	BAT-DEP-5HR, ESW-CKV-CB-C515B, ESW-PTF-RB-DGC, LOSPNR7HR, P1
148	92.9	. 1	$1.9 \mathrm{E}-010$	BAT-DAP-5HR, ESW-CKV-CB-C515A, ESW-PTF-RE-DGB, LOSPNE.7HR, P1

	149	93.0	. 1	1.8E-010	BAT-DEP-9HR, こSW-CKV-CB-C515A, ESW-PTF-RE-MDPA, LOSPNR12HR, P1
	150	93.2	. 1	1.8E-010	BAT-DEP-9HR ESW-CKV-CB-C515B, ESW-PTE-RE-MDPB, LOSPNR12HR, P1
	151	93.3	. 1	1. $8 \mathrm{E}-010$	BAT-DEP-3HR, ESW-CKV-CB-C515B, ESW-MDP-MA-MD2B, LOSPNR5HR, P1
	152	93.4	. 1	1.8E-010	BAT-DEP-3HR, ESW-CKV-CB-C515A, ESW-MDP-MA-MDPA, LOSPNR5HR, P1
	153	93.5	. 1	1.8E-010	BAT-DEP-5HR, ESW-CKV-CB-C515A, ESW-MDE-FS-MDPA, LOSPNR7HR, P1
	154	93.6	. 1	1. 8E-010	BAT-DEP-5HR, ESW-CKV-CB-C515B, ESW-MDP-FS-MDPB, LOSPNR7HR, P1
	155	93.7	. 1	1.7E-010	$\begin{aligned} & \text { BAT-DEP-9HR, ESW-CKV-CB-C515A, ESW-MDP-MA-MDPA, } \\ & \text { LOSPNR12HR, P1 } \end{aligned}$
	156	93.8	. 1	1.7E-010	BAT-DEP-9HR, BSW-CKV-CB-C515B, ESW-MDP-MA-MDPB, LOSPNR12HR, E1
	157	93.9	. 1	$=.6 \mathrm{E}-010$	ACP-DGN-FR-EDGB, BAT-DEP-3HR, DGHWNR3HR, ESW-AOV-CC-0241C, ESW-XHE-FO-EHS, LOSPNR9HR, P1
1	158	94.0	. 1	1.6E-610	ACP-DGN-FR-BDGC, BAT-DEP-3HR, DGHWNR 3HR, ESW-AOV-CC-0241B, BSW-XHE-FO-EHS, LOSPNR9HR, P1
$\vec{\square}$	159	34.1	. 0	1.5E-010	ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-MDP-FR-MDPA, ESW-XHE-FO-EHS, LOSPNR17HR, P1
	160	94.-	. 0	1. $5 \mathrm{E}-010$	ACP-DGN-FR-BDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-MDP-FR-MDPB, ESW-XHB-FO-EHS, LOSPNR17HR, P1
	161	94.3	. 0	1. 5E-010	ACP-DGN-FR-EDGC, ACP-DGN-TE-EDGB, BAT-DEP-7HR, DGHWNRTHR, ESW-XHE-FO-BHS, LOSPNR14HR, P1
	162	94.4	. 0	1. 5E-010	ACP-DG\%-ER-BUGB, ACP-DGN-TE-SDGC, BAT-DEP-7HR, DGHWNR7HR, ESW-XHE-FO-BHS, LOSPNR14HR, P1
	163	94.5	. 0	1. $4 \mathrm{E}-010$	BSW-ACV-CC-0241B, ESW-CKV-CB-C515A, INJ-FAILS, LOSPNR13HR, P1
	164	94.6	. 0	1. $4 \mathrm{~B}-010$	ESW-AOV-CC-0241C, ESW-CKV-CB-C515B, INJ-FAILS, LOSPNR13HR, P1
	165	94.7	. 0	$1.4 \mathrm{~B}-010$	ACP-DGN-TE-EDGC, BAT-DEP-3HR, DGMANR 3HR, ESW-CKV-CB-C515B, LOSPNR5HR, P1
¢	166	94.8	. 0	1.4E-010	ACP-DGN-TE-EDGB, BAT-DEP-3HR, DGMANR $3 H R$, ESW-CKV-CB-C515A, LOSPNR5HR, P1
0	167	94.8	. 0	1.4E-010	ACP-DGN-PR-EDGB, BAT-DEP - 7 HR , DGHWNR 7 HR ,
0					ESW-PTE-RE-MDPB, ESW-XHE-FO-EHS, LOSPNR14HR, P1

168	94.9	. 0	1. $4 \mathrm{~B}-010$	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DCHWNPT:IR, ESW-PTF-RE-MDPA, BSW-XHE-FO-BHS, LOSPITR14HR P
169	95.0	. 0	1. 3E-010	BAT-DBR-7HR, ESW-CKV-CB-C515B, ESW-PTF-RE-DGC, LOSPNR9HR, P1
170	95.1	0	1. 3E-010	BAT-DEP-7HR, ESW-CKV-CB-C515A, ESW PTF-RE-DGB, LOSPNR9HR, P1
171	95.2	. 0	1. $3 \mathrm{E}-010$	ACP-DGN-TE-EDGB, DGMANR12HR, ESW-CKV-CB-C515A, INJ-FAILS, LOSPNR13HR, P1
172	95.3	. 0	1.3E-010	ACP-DGN-TB-BDGC, DGMANR12HR, BSW-CKV-CB-C515B, INJ-FAILS, LOSPNR13HR, P1
173	95.3	. 0	1. 3E-010	ESW-AOV-CC-0241B, ESW-MDP-FS-MDPB, ESW-XHE-FO-EHS , INJ-FAILS, LOSPNR13HR, P1
174	95.4	. 0	1. 3E-010	ESW-AOV-CC- $02^{\circ} 1 \mathrm{C}$, BSW-MDP-PS-MDPA, BSW-XHE-PO-EHS, INJ-FAILS, LOSPNR13HR, P1
175	95.5	. 0	1.3E-010	BAT-DEP-5HR, ESW-CKV-CB-C515A, BSW-PTF-RE-MDPA, LOSPNRTHR, P1
176	95.6	. 0	1. 3E-010	BAT-DEP-5HR, ESW-CKV-CB-C515B, ESW-PTF-RE-MDPB, LOSPNRTHR, P1
177	95.7	. 0	1. 3E-010	ACP-DGN-FR-BDGB, BAT-DEP-7HR, DGHWNR7HR, ESW-MDP-MA-MDPB, BSW-XHE-FO-BHS, LOSPNR14HR, P1
178	95.8	. 0	1.3E-010	ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGHWNR7HR, BSW-MDP-MA-MDPA, ESW-XHE-FO-EHS, LOSPNR14HR, P1
179	95.8	. 0	1. 3E-010	ACP-DGN-MA-EDGC, BAT-DEF-7HR, DGMANR $7 H R$, ESW-CKY-CB-C515B LOSPNR9HR, P1
180	95.9	. 0	1.3E-010	BAT-DBP-7HR, ESW-CKV-CB-C515B, ESW-MDP-FS-MDPB, LOSPNR9HR, P1
181	96.0	. 0	1. $3 \mathrm{E}-010$	ACP-DGN-MA-EDGB, BAT-DEP-7HR, DGMANR 7 HR, BSW-CKV-CB-C515A, LOSPNR9HR, P1
182	96.1	. 0	1. $3 \mathrm{E}-010$	BAT-DEP-THR, ESW-CKV-CB-C515A, ESW-MDP-FS-MDPA, LOSPNR9HR, P1
183	96.2	. 0	1. $2 \mathrm{~B}-010$	ACP-DGN-FR-EDEB, BAT-DBP-9HR, DGHWNR9HR, ESW-AOV-CC-0241C, BSW-XHE-FO-BHS, LOSPNR17HR, P1
184	96.2	. 0	1. 2B-010	ACP-DGN-FR-BDGC, BAT-DBP-9HR, DGHWNR9HR, ESW-AOV-CC-0241B, ESW-XHE-FO-EHS, LOSPNR17HR, P1
185	96.3	. 0	1.2E-010	BAT-DEP-5HR, ESW-CKV-CB-C515A, ESW-MDP-MA-MDPA, LOSPNR7HR, P1
186	96.4	. 0	1. $2 \mathrm{E}-010$	BAT-DEP-5HR, ESW-CKV-CB-C515B, BSW-MDP-MA-MDPB, LOSPNR7HR, P1

187	96.5
188	96.5
189	96.6
199	96.7
191	96.7
192	96.8
193	96.9
194	96.9
195	97.0
196	97.0
197	97.1
198	97.2
199	97.2
200	97.3
201	97.3
202	97.4
203	97.4
204	97.5
205	97.5

206	97.6	. 0	B. 8E-011	ACP-DGN-TE-EDGC, BAT-DEP-9HR, DGMANR9. R, BSW-CKV-CB-C515B, LOSPNR12HR, P1
207	97.6	. 0	8.7E-011	BAT-DEP-7HR, ESW-CKY-CB-C515A, ESW-MDP-MA-MDPA, LOSPNR9HR, P1
208	97.7	. 0	8.7E-011.	BAT-DEP-7HR, ESW-CKV-CB-C515B, ESW-MDP-MA-MDPE, LOSPNR9HR, P1
209	97.8	.0	8. 5E-011	BAT-DEP-9HR, ESW-AOV-CC-0241C, ESW-CKV-CB-C515B, LOSPNR12HR, P1
210	97.8	. 0	8. 5B-011	BAT-DEP-9HR, BSW-AOV-CC-0241B, ESW-CKV-CB-C515A, LOSPNR12HR, P1
211	97.9	. 0	8. 3B-011	ACP-DGN-TE-EDGC, BAT-DEP-5HR, DGMANR5HR, ESW-CKV-CB-C515B, LOSPNR7HR, P1
212	97.9	. 0	8 7E-011.	ACP-DGN-TE-EDGB, BAT-DEP-5HR, DGMANR5HR, BSW-CKV-CB-C515A, LOSPNRTHR, P1
213	93.0	. 0	8.18-011	BAT-DEP-3HR, ESW-AOV-CC-0241B, ESW-MDP-FS-MDPB, ESW-XHE-FO-BHS, LOSPNR5HR, P1
214	98.0	. 0	8.18-011	BAT-DEP-3HR, ESW-AOV-CC-0241C, ESW-MDP-FS-MDPA, ESW-XHE-FO-EHS, LOSPNR5HR, P1
215	98.1	. 0	7.8E-011	ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGHWNR 7HR, ESW-MDP-FR-MDPB, ESW-XHE-FO-EhS, LOSPNK14HR, P1
23.6	98.1	. 0	$7.8 \mathrm{E}-011$	ACP-DGN-FR-EDGC, BAT-DER-7HR, DGHWNR7HR, ESW-MDP-FR-MDPA, ESW-XHE-FO-BHS, LOSPNR14HR, P1
217	98.2	. 0	7. $6 \mathrm{~B}-0.11$	BAT-DEP-9HR, BSW-AOV-CC-0241B, ESW-MDP-FS-MDPB, ESW-XHB-FO-EHS, LOSPNR12HR, P1
218	98.2	. 0	7.6E-011	BD:T-DEP-9HR, BSW-AOV-CC-0241C, RSW-MDP-ES-MDPA, BSW-XHB-FU-EHS, LOSPNR12HR, P1
219	98.2	. 0	$6.9 \mathrm{~B}-011$	ACP-DGN-MA-BDGB, BAT-DEP-9HR, D MANR9HR, BSW-AOV-CC 0241C, ESW-XHB-FO-BHS, LOSENR12HR, P1
220	98.3	. 0	$6.9 \mathrm{E}-011$	ACF - DGN-MA-BDGC, BAT-DBP-9HR, DGMANR9FR, ESW-AOV-CC-0241B, BSW-XHE-FO-BHS, LOSPNR12HR, P1
221	98.3	. 0	6.5B-011	ACP-DGN-FR-EDGC, DGHFNR12HR, BHV-SRV-CC-RV2, BSW-XHB-FO-EHS, INJ-FAILS, LOSPNR18HR, P1
222	98.4	0	6.55-011	ACP-DGN-FR-EDGB, DGHWNR12HR, EHV-SRV-CC-RV3, BSW-XHE-FO-EHS, INJ-FATLS, LOSPNR18HR, P1
223	98.4	. 0	$6.5 \mathrm{~B}-011$	ACP-DGN-FR-BDGC, BAT-DEP-7HR DGHWNR7HR, ESW-AOV-CC-0241B, ESV-XHB-FO-EHS, LOSPNR14HR, P1
224	98.4	. 0	6.5B-011	ACP-DGN-MA-EDGC, BAT-DEP-5HR, DGMANR $5 H R$, ESW-AOV-CC-0241B, ESW-XHE-FO-BHS, LOSPNR7HR, P1

[^10]| | 263 | 99.6 | . 0 | 3. $4 \mathrm{E}-011$ | BAT-DEP-5HR, ESA-CKV-CB-C515A, ESW-MDP-FR-MDPA, LOSPNR12HR, PI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 264 | 99.6 | . 0 | 3.3E-011 | BAT-DRP-9HR, \& ड ${ }^{\prime}$-MDP-FR-MDPB, ESW-MDP-MA-MDPA, ESW-XHB-FO-BHS, LOSPNR17HR, P1 |
| | 265 | 99.7 | . 0 | 3.3E-011 | BAT-DEP-9HR, ESW-MDP-FR-MDPA, ESW-MDP-MA-MDPB, ESW-XHB-FO-E4.3, LOSPNR17HR, P1 |
| | 266 | 99.7 | . 0 | 3.1E-011 | BAT-DBP-3HR ESW-MDP-FR-MDPA, RSW-MDP-MA-MDPB, ESW- XHB-FO- \&HS, LOSPNR9HR, P1 |
| | 267 | 99.7 | . 0 | 3.1B-011 | BAT-DEP-3HK, ESW-MDP-FR-MDPB, BSV-MDP-MA-MDPA, ESW- XHE-FO- $3 H S$, LOSPNR9HR, P1 |
| | 268 | 99.7 | . 0 | 3. $9 \mathrm{E}-011$ | BAT-DBP-5HR, BSW-MDP-FR-MDPA, ESW-MDP FS-MDPB, ESW-XHB-FO-EHS LOSPNR12HR, P1 |
| | 269 | 99.7 | . 0 | 3.0B-011 | BAT-DEP-5HR, BSW-MDP-FR-MUPB, ESW-MDP-FS-MDPA, ESW-XHE-PO-BHS, LOSPNR12Hic, P1 |
| | 270 | 99.8 | . 0 | 2.8E-011 | ACP-DGN-FR-BDGZ, BAT-DEP-5HR, DGEWNR 5HR, EHV-SRV-CC-RV3, ESW-XHB-FO-BHS, LOSPNR12HR, P1 |
| | 271 | 99.8 | . 0 | 2.8B-011 | ACP-DGN-FR-BDGC, BAT-DEP-5HR, DGHWNR5HR, EHV-SRV-CC-RV2, ESW-XHE-FO-EHS, LOSPNR12HR, P1 |
| T | 272 | 99.8 | . 0 | 2.7B-011 | BAT-DEP-7HR, ESW-CKY-CB-C515B, ESW-MDP-FR-MDPB LOSPNR14HR, PI |
| ω | 273 | 99.8 | . 0 | 2.7E-011 | BAT-DEP-7HR, ESW-CKV-CB-C515A, ESW-MDP-FR-MDPA, LOSPNR14HR, P1 |
| | 274 | 99.8 | . 0 | 2.7E-011 | ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, ACP-DGN-FR-EDGD, BAT-DER-5HR, DGHWIR 5 HR, LUSPNR12HR, P1 |
| | 275 | 99.8 | . 0 | 2.6E-011 | BAT-DEP- THR, BSW-AOV-CC-0241C, BSW-MDP-MA-MDPA, ESW-XHE-FO-BhS, LOSPNR9HR, P1 |
| | 276 | 99.9 | . 0 | 2.6E-011 | BAT-DEP-7HR, ESW-AOV-CC-0241B, ESW-MDP-MA-MDPB, ESW-XH8-FO-BHS, LOSPNR9HR, P1 |
| | 277 | 99.9 | . 0 | 2.4E-011 | BAT-DEP-7HR, BSW-MDP-FR-MDPB, ESW-MDP-FS-MDPA, ESW-XHE-FO- BHS, LOSPNR14HR, P1 |
| | 278 | 99.9 | . 0 | 2.4E-011 | BAT-DEP-7HR, BSW-MDP-FR-MDPA, BSW-MDP-FS-MDPB, ESW-XHE-FO-EHS, LOSPNR14HR, P1 |
| | 279 | 99.9 | . 0 | 2.0E-011 | BAT-DBP-5HR, BSW-MDP-FR-MDPB, ESW-MDP-MA-MDPA, BSW-XHB-FO-BHS, LOSPNR12HR, P1 |
| $\underset{\sim}{z}$ | 280 | 99.9 | . 0 | 2. OE-011 | BAT-DEP-5HR, BSW-MDP-FR-MDPA, BSW-MDP-MA-MDPB, ESW-XHB-FO-BHS, LOSPNR12HR, P1 |
| $\tilde{\sim}$ | 281 | 99.9 | . 0 | 1.9B-011 | ACP-DGN-FR-BDGB, BAT-DBP-7HR, DGHWNR7HR,
 BHV-SRV-CC-RV3, ESW-XHB-FO-RHS, LOSPNR14HR, P1 |

282	99.9	. 0	2.9E-011	ACP-DGN- FR-EDGC, BAT-DER-7HR, DGHWNR7HR, BHV-SRV-CC-RV2, ESW-XHE-FO-EHS, LOSPNR14HR, P1
283	99.9	. 0	1.8B-011	$A C P-D G N-F R-E D G B, \quad A C P-D G N-F R-E D G C, \quad A C P-D G N-F R-B D G D$, BAT-DEP-7HR, DGHWNR7HR, LOSPNR14HR, P1
284	100.0	. 0	1. 6B-011	BAT-DEP-7HR, ESW-MDP-FR-MDPB, ESW-MDP-MA-MDPA, ESW-XHE-FO-EHS, LOSPNR14HR, P1
285	100.0	. 0	$1.6 \mathrm{E}-011$	BAT-DEP-7HR, ESW-MDP-FR-MDPA, ESW-MDP-MA-MDPB, ESW-XHB-FO-EHS, LOSPNR14HR, P1

Table F. 4 Accident Sequence T1-BUliv2. Cut Sets

SEQUENCE CUT SETS (QUANTIFICATION) REPORT Painily: PRACHBOT Byent Tree: Tl Sequence: T1-BC1IU21 Init. Bvent: IB-T1 Mincut Upper Bound 1.7775-007

Cut No.	$\begin{aligned} & \text { Accum } \\ & \text { Total } \end{aligned}$	* Cut Set	Prob/ Freq.	ALTERNATB CUT SETS
	100.0	100.0	7B-00	BAT-LF-CCF, NR

Table F. 5 Accident Sequence T1-C-SLC Cut Sets

SBQUENCE CUT SETS (QUANTIFITATION) RBPORT

Family: PBACHBOT	Event Tree: T1
Sequence: T1-C-SLC	Init. Event: IB-T1
Mincut Upper Bound	$4.418 \mathrm{~B}-008$

Table F. 6 Accident Sequence T1-P1BU11U21 Cut Sets

SEQUENCE CUT SETS (QUANTIFICATION) REPORT
Family: PRACHBOT
Event Tree: T1
Sequence: T1-p1pण11ण21 Tnit. Event: TE-T1
Mincut Upper Bound $1.706 \mathrm{E}-008$

Table F. 7 Accident Sequence T1-P2V234NU11B-1

SEQUENCE CUT SETS (QUANTIFICATION) RBPORT
Family: PEACHBOT
Bvent Tree: T1
Sequence: T1-P2V234NU11B-1 Init. Event: IB-T1
Mincut Upper Bound $5.530 \mathrm{E}-009$

Table F. 8 Accident Sequence T1-P2V234NU11B-2

SBQURNCB CUT SETS (QUANTIFICATION) REPORT

Family: PRACHBOT	Event Tree: T1
Sequence: T1-P2V234NU11B-2	Init. Bvent: IE- II
Mincut Upper Bound	$8.437 \mathrm{~B}-008$

Table F. 10 Accident Sequence S1-V234NU11

Table F. 11 Accident Sequence A-V2V3

SEQUENCE CU' SETS (QUANTIFICATIOR; REPORT

Family: PBACHBOT	Event Tree: A
Sequence: A-v2V3	Init. Event: IB-A
	Mincut Upper Bound
	$5.340 \mathrm{E}-008$

Table F. 12 Accident Sequence T3A-C-SLC

SBQURNCB CUT SBTS (QUANTIFICATION) REPORT	
Family: PRACHBOT	Bvent Tree: T3A
Sequence: T3A-C-SLC	Init. Bvent: IE-T3A
	Mincut Upper Bound
	$1.406 \mathrm{~B}-006$

Table F. 13 Accident Sequence T3A-CU11X

SEQUENCE CUT SETS	(QUANTIFICATION) REPORT	
Family: PEACHBOT	Event Tree: TSA	
Sequence. T3A-CU11x	Init. Event: IE-T3A	
	Mincut Upper Bound	$2.621 \mathrm{E}-007$


```
Table F.14 Accident Sequence T3A-P2V234NU11
                    SEQUENCB CUT SETS (QUANTIFICATION) REPORT
            Family: PEACHBOT Event Tree: T3A
                Sequence: T3A-P2V234NU11 Init. Event: IB-T3A
                    Mincut Upper Bound 2.660B-008
```

 Accum
 Cut \& \& Cut Prob/
 No. Total Set Freq. ALTERNATB CUT SETS
 \(1100.0 \quad 100.0 \quad 2.6 \mathrm{~B}-008 \mathrm{ESF}-\mathrm{XHB}-\mathrm{MC}-\mathrm{PRES}, \mathrm{NR}, \mathrm{P} 2, \mathrm{Q}\)
 Tabje F. 15 Accident Sequence T2-C-SLC
SBQUENCE CUT SETS (QUANTIFICATION) RBPORT
Family: PRACHBOT
Sequence: T2-C-SLC
Erent Tree: Tz
Init. Event: IB-T2
Mincut Upper Bound $2.796 \mathrm{~B}-008$

Tabje F. 15 Accident Sequence T2-C-SLC

SBQUENCE CUT SETS (QUANTIFICATION) REPORT
Sequence: T2-C-SLC
Mincut Upper Bound
Init. Bvent: IB-T2
2.796B-008

Table F. 16 Accident Sequence T2-P2V234NU11

SEQUENCE CUT SETS (QUANTIFICATION) REPORT Family: PEACHBOT

Event Tree: T2
Sequence: T2-P2V234NU11 Init. Event: IB-T2
Mincut Upper Bound $5.320 \mathrm{~B}-008$
Accum
Cut Cut Prob/
No. Total Set Freq.

Table F. 17 Accident Sequence T3B-C-SLC

SEQUENCE CUT SETS	(QUANTIFICATION) REPORT
Family: PEACHBOT	Event Tree: T3B
Sequence: T3B-C-SLC	Init. Event: IB-T3B
	Mincut Upper Bound


```
Table F.18 Accident Sequence T3B-P2V234NU11-1
```

SEQUENCE CUT SETS (QUANTIFICATION) REPORT

Family: PEACHBOT	Event Tree: T3B
Sequence: $:-\mathrm{B}-\mathrm{P} 2 \mathrm{~V} 234 \mathrm{NU} 11-1$	Init. Event: IE-T3B
Mincut Upper Bound $6.384 \mathrm{~B}-008$	

Cut | Accum |
| :--- |
| \% |
| No. Cut Prob/ |
| Notal | Set

Freq.

Table F. 19 Accident Sequence T3B-P2V234NU11-2

SEQUENCE CUT SBTS (QUANTIFICATION) REPORT
Family: PEACHBOT Event Tree: T3B Sequence: T3B-P2V234NU11-2 Init. Event: IE-T3B

Mincut Upper Bound $3.000 \mathrm{~B}-010$

SEQUENCE CUT SETS	(QUANTIFICATION) REPORT
Family: PRACHBOT	Event Tree: T3C
Sequence: T3C-C-SLC	Init. Event: IE-T3C
Mincut Upper Bound	$1.066 \mathrm{~B}-007$

Cut No.	Accum \% Total	* Cut Set	Prob/ Freq.		ALTERNATE CUT SETS
1	56.8	56.8	6. $0 \mathrm{E}-008$	NR, RPSM,	SLC-XHB-RE-DIVER
2	92.5	35.6	3.8E-008	NR, RPSM,	SEC-XHE-FO-SLC
3	98.5	6.0	$6.4 \mathrm{E}-009$	NR, RPSM,	SLC-SYS-TE-SLC
4	99.6	1.1	1.2E-009	BETA-2SIP	MPS, NR, RPSM, SLC-MDP-FS-CCF
5	99.8	. 1	1.9E-010	NR, RPSM,	SLC-CKV - HW-CV16
6	100.0	. 1	1.9E-010	NR, RPSM,	SLC-CKV-HW-CV17

Table F. 21 Accident Sequence T3C-CU11X

SEQUENCB CUT SETS (QUANTIFICATION) REPORT
Family: PRACHBOT Event Tree: T3C
Sequence: T3C-CU11X Init. Event: IE-T3C
Mincut Upper Bound $1.938 \mathrm{E}-008$

Cut No.		\% Cut Set	Prob/ Freq.	ALTERNATE CUT SETS			
1	58.8	58.8	1. 1E-008	ESE-XHE - PO-DATWS	HCI -TDP - FS-20537,	NR,	RPSM
2	78.4	19.6	3.8E-009	ESF-XHE-FO-DATWS	HCI-TDP-MA -20S37,	NR,	RPSM
3	88.2	9.8	1.9E-009	ESF-XHE-FO-DATWS	HCI-TDP-FO-20537,	NR	RPSM
4	94.1	5.8	1.1E-009	ESE-XHE-FO-DATWS	HCI-MOV-CC-MV19.		RPSM
5	100.0	5.8	1.1E-009	ESF-XHE-FO-DATWS	HCI-MOV-CC-MV14,		RPSM

APPENDLX G

RISK CALCULATIONS

Appendix G

The risk calculation is essentially a mapping of an accident sequence or plant damage state (PDS) to a consequence. This includes the accident phenomenology, source term, containment failure, release of radioactive material, propagation to the affected population and the affects on the public of that release (consequence). In this study that mapping is simply a conversion factor for each affected PDS that was calculated from the NUREG/CR-4551 back end analysis (Table D.1) ${ }^{1}$.

These factors could be determined more accurately by rerunning parts of the back end analysis, since the weighting of various outcomes from any plant damage state change when the frequency of the PDS changes. Our estimate is that the factor used is within ± 2 times the number if rerun, and not rerunning saves resources. Only PDS-5 is of interest. Its value is $2.23 \mathrm{E}+06$. If one compares the corresponding Cooper PDS from the TAP A-45 analysis which used WASH-1400 as a basis, the value is $5.26 \mathrm{E}+05$ (Table D.2), which is a factor of 4 different given a different plant and location.

Table D. 2 Cooper TAP A- 45 PDS to Consequence Mapping

Cooper TAP A-45		Release Category	WASH 1400 = Upper Estimate	Producr
Accident Sequence Type 1	$\alpha=1.0 \mathrm{E}-02$	$\mathrm{C}-1$	4.3 E 05	4.30 E 03
LOCA \& Loss of Inj. $/$	$\gamma=7.0 \mathrm{E}-02$	$\mathrm{C}-2$	6.2 E 05	4.34 E 04
SBO	$\gamma=1.8 \mathrm{E}-01$	$\mathrm{C}-2$	6.2 E 05	1.12 E 05
	$\gamma=7.3 \mathrm{E}-01$	$\mathrm{C}-3$	5.0 E 05	3.65 E 05
	$\delta=1.0 \mathrm{E}-02$	$\mathrm{C}-4$	9.2 E 04	220 E
	$\epsilon=1.0$			$\underline{5.26 \mathrm{E} 05}$

[^11]Table D. 1 Peach Bottom NUREG/CR-4550 PRA Consequences

The following calculations give the $\triangle C D F$ and \triangle Risk for all alternatives.

Base Case: Risk Calculation

		Population Dose	Risk
Accident	Core Damage	So Miles	Person
Sequence	Frequency	Consequence	REM/R yr.

Appendix G

T1-BNU11	$1.83 \mathrm{E}-06$		
T1-P1BNU11	$1.62 \mathrm{E}-07$		
T1-BU11NU21	$1.36 \mathrm{E}-07$		$=4.75$
PDS $-5=$ SUM	$\overline{2.13 \mathrm{E}-06}$	$* 2.23 \mathrm{E} 06$	

Alternative 1: Risk Calculation

Accident Sequence	Core Damage Frequency	Population Dose 50 Miles Consequence	$\begin{gathered} \text { Risk } \\ \text { Person } \\ \text { - REM/R yr. } \\ \hline \end{gathered}$
T1-BNU11	$1.41 \mathrm{E}-06$		
T1-PIBNU11	$1.24 \mathrm{E}-07$		
T1-BU11NU21	$1.12 \mathrm{E}-07$		
PDS - $5=$ SUM	$\overline{1.65 E-06}$	* 2.23E06	$=3.68$

Alternative 2: Risk Calculation

Accident Sequence	Core Damage Frequency	Population Dose 50 Miles Consequence	Risk Person REM/R yr.
T1-BNU11	$1.33 \mathrm{E}-06$		
T1-P1BNU11	$1.17 \mathrm{E}-07$		
T1-BU11NU21	$1.07 \mathrm{E}-07$		
PDS $-5=$ SUM	$\overline{1.55 E-06}$	$* 2.23 \mathrm{E06}$	$=3.46$

$$
\begin{aligned}
& \Delta C D F=(2.13 \mathrm{E}-06)-(1.55 \mathrm{E}-06)=5.80 \mathrm{E}-07 \\
& \Delta \text { Risk }=4.75-3.46=1.29
\end{aligned}
$$

Alternative 3: Risk Calculation

Accident Sequence	Core Damage Frequency	Population Dose 50 Miles Consequence	$\begin{gathered} \text { Risk } \\ \text { Person } \\ \text { - REM/R yr. } \end{gathered}$
Tl-BNU11	5.01E-07		
T1-P1BNU11	4.60E-08		
T1-BU11NU21	4.04E-08		
PDS : $5=S U M$	$\overline{5.87 E-07}$	* 2.23E06	$=1.31$
$\triangle \mathrm{CDF}=(2.13 \mathrm{E}-06)-(5.87 \mathrm{E}-07)=1.54 \mathrm{E}-06$			
Δ Risk $=4.75-1.31=3.44$			

Alternative 4: Risk Calculation

		Population Dose	Risk
Accident	Core Damage	50 Miles	
Sequence	Frequency	Consequence	Person
REM/R yr.			

Appendix G

T1-BNU11	$5.70 \mathrm{E}-07$		
T1-P1BNU11	$5.24 \mathrm{E}-98$		
T1-BU11NU21	$4.51 \mathrm{E}-08$		
PDS $-5=$ SUM	$\overline{6.68 \mathrm{E}-07}$	$* 2.23 \mathrm{E} 06$	$=1.49$

$$
\begin{aligned}
& \Delta C D F=(2.13 \mathrm{E}-06)-(6.68 \mathrm{E}-07)=1.46 \mathrm{E}-06 \\
& \Delta \text { Risk }=4.75-1.49=3.26
\end{aligned}
$$

Alternative 5: Risk Calculation

Accident Sequence	Core Damage Frequency	Population Dose 50 Miles Consequence	Risk Person REM/R yr.
T1-BNU11	$9.21 \mathrm{E}-07$		
T1-PIBNU11	$8.10 \mathrm{E}-08$		
T1-BU11NU21	$\frac{6.79 \mathrm{E}-08}{}$		
PDS $-5=$ SUM	$\frac{1.07 \mathrm{E}-06}{}$	$* 2.23 \mathrm{E} 06$	$=2.39$

$$
\begin{aligned}
& \Delta \mathrm{CDF}=(2.13 \mathrm{E}-06)-(1.07 \mathrm{E}-06)=1.06 \mathrm{E}-06 \\
& \Delta \mathrm{Risk}=4.75-2.39=2.36
\end{aligned}
$$

While only the cut sets in each of the three contributing accident sequences in PDS 5 that relate to service water should change, the Δ Risk should be the same for the total as if only the service water related cut sets were considered since the non-service water cut set's contribution should
not change.

APPENDLX H

PILOT PLANT MODIFICATION COST ESTIMATES

Appendix H

The method used is to examine comparable modifications from TAP A-45 to those being proposed for the vilot plant and any other pertinent information to determine an estimate of total one time cost, operational and mainternance cost/year, and replacement power cost. We will assume the replacement power cost will be zero in that all work that needs to be done with the plant shutdown will be done during normal outages. Tat le H 1 presents those TAP A-45 modifications that are relevant to the pilot plant modifications. Most are similar in requirements and should provide reasonable estimates. Neither Turkey Point nor St. Lucie had any modifications that related to the pilot plant. The numbers and letters 0.8., 803-C represent the modificatiou number used by the architect engineer in TAP A-45 and the applicable "appendix" of Appendix J. Since the TAP A-45 studies were based on January 1985 dollars we will use a fector for January 1992 dollars based on the consuiner price index (CPI) although we realize construction costs may have gone up more or less than this amount. This is shown in Table H. 2.

The following estimates include the basic characteristics of the pilot plant modification, the chrracteristics of the comparable modification, costs of the comparable modification, and major differences between than. The conclusion of each modification cost eatimste gives the rativnal for using the comparable modification cosis and any other information used to batimate the modification costs * w used in the value/impact analysis.

Table H. 1
Relevant TAP A-45 Modification Cost Estimates.

	Filot Plant Modifications	Qua. Cities	Cooper	Point Beech	ANO-1
1.	3rd ESW Trin pump-cv-mv	$\begin{aligned} & \text { BCW Train } \\ & 803-\mathrm{C} \end{aligned}$		RHR Pump 816-L	$\begin{aligned} & \text { DHR Pump } \\ & 804-\mathrm{C} \end{aligned}$
2.	Auto-Actuation Logic	Auto-Trensfer 304-D	Auto-Act. 506-F		
3.	Operator training, procedures - no credit taken for this potential modification so no cost estimates were made				
4.	Add additional putap discharge check valve (2 each)		$\begin{aligned} & \text { Isolation MOV } \\ & 805-\mathrm{E} \end{aligned}$	$\begin{array}{r} \text { Parailel MV } \\ 803-\mathrm{C} \end{array}$	$\begin{aligned} & \text { Paraliel AOV } \\ & 805-\mathrm{D} \end{aligned}$
5.	Increase Test Frequency of ESW Discharge check valves				
6.	Check valve in series with AOVs (4 esch)		Isolation MOV 805-E	Parallel MV 803-C	$\begin{gathered} \text { Parallel AOV } \\ 805-D \end{gathered}$
7.	Swing EDG, self cooled with battery	$\begin{aligned} & \text { EDG } \\ & 301-A \end{aligned}$	$\begin{aligned} & \text { EDG } \\ & 301-A \end{aligned}$	$\begin{gathered} \text { TD Gen. } \\ 815-\mathrm{K} \end{gathered}$	$\begin{aligned} & \text { TD Gen. } \\ & 303-B \end{aligned}$

Appendix H

Table H. 2 .
Inflation Between 1/85 and 1/92.

Year	Percent Inflation	Multiplier
1985	3.6	1.036^{*}
1986	1.9	1.019^{*}
1987	3.6	1.036^{*}
1988	4.1	1.041^{*}
1989	4.8	$1.048 *$
1990	5.4	1.054^{*}
1991	-5.5	$1.055^{*}=1.327^{\prime}$ factor for $1 / 92$

These values come from the consumar price index perventages given in the 1992 World Almenac.

Appendix H

PILOT PLANT MODIFICATION NO, 1

Addition of \& Third ESW Pump

- 100% Flow Capacity 8000 gpm
- Separate Suction Line to Water Source
- One Manual Valve and One Check Valve in Pump Train
- Power From Diesel Generator D - Different Than Two Existing ESW Pumps
- Same Actuation as Existing Purrps
- Extra Building Space Required

Reiated TAP A - 45 Modification - Quad Cities 1/1985 Dollars

- Add Cooling Water Pump for Diesel Generators - Mod. 803, App. C
- Flow Capacity 900 gpm
- Lacated in Existing Building
- Two Manual Valves, Two Motor Operated Valves, and Two Check Valves
- Coatrol, Power, and Actuation Costed

Generic Costs From Quad Cities Alt. 2, p. J-36, 37:

Direct	2613 K
Indirect $(2613 / 3097) * 1941$	$=1638 \mathrm{~K}$
Contingency and Owner's Costs $(2613 / 3097) * 1764$	$=1488 \mathrm{~K}$
\quad Total One Time Cost of Modification	$\$ 5739 \mathrm{~K}$
Operations and Maintenance Costs Per Year	6 K

Major Differeaces:

- Pump Capacity 8000 gpm Verses 900 gpm
- Number o. Valves 2 Verses 6
- Building Space/Construction Uncertain

Estumated Costs Based on Comparison With Quad Cities Mod. 803 in 1/1992 Dollars
Total One Time Cost $5739 * 1.327 \quad=7616 \mathrm{~K}$
Operations and Maintenance Costs Por Year 6*1.327 $=8 \mathrm{~K}$
Related TAP A-45 Modification - Point Beach 1/1985 Dollars
(Add RHR Pump - Mod. 816, App. :

- Flow Capacity 1560 gpm
- Located in Existing Building
- Two Manual Valves
- Control, Power, and Actuation Costed

Generic Costs From Point Beach Alt. 3, p. J-46, 47
Direct
1161 K
Indirect $(1161 / 12487) * 8375$
$=779 \mathrm{~K}$
Contingency and Owner's Cost $\left(1161 / 1248 \%^{\prime}\right) * 7300$
$=679 \mathrm{~K}$
Total One Time Cost of Modification
$\$ 2619$ K
Operations and Maintenance Costs Per Year (1i61/12487) * 235
$=22 \mathrm{~K}$

Major Differences:

- Pump Capacity 8000 gpm Versus 1560 gpm
- Building Space/Construction Uncertain

Estimated Costs Based on Comparison With Point Beach Mod. 816 in 1/1992 Dollars

```
Total One Time Cosi 2619 * 1.327
\(=3475 \mathrm{~K}\)
Operations and Maintenance Costs Per Year \(22 * 1.327\)
\(=29 \mathrm{~K}\)
```

Related TAP A-45 Modification - ANO-1

- Addition of a Third DHR Pump - Mod. 804, App. C
- Flow Capacity 2500 gpm
- Located in Existing Building
- Four Manual Valves
- Control, Power, and Actuation Costed

Generic Costs From ANO-1 Alt. 1, p. J-30, 31:

Direct	2665 K
Indirect $(2665 / 6747) * 5221$	$=2062 \mathrm{~K}$
\quad Total One Time Cost of Modification	$\$ 4727 \mathrm{~K}$
Operations and Maintenance Costs Per Year $(2665 / 6747) * 114$	$=45 \mathrm{~K}$

Major Differences:

- Pump Capacity 8000 gpm Versus 2500 gpm
- Number of Valves 2 Versus 4
- Building Space/Construction Uncertain

Estimated Costs Based on Comparison With ANO-1 Mod. 804 in 1/1992 Dollars

- Total One Time Cost $4727 * 1.327 \quad=6273 \mathrm{~K}$
- Operations and Maintenance Costs Per Year 45*1.327 $=60 \mathrm{~K}$

In summary, the average of three estimates $(\$ 7.6 \mathrm{M}, \$ 3.5 \mathrm{M}$, and $\$ 6.3 \mathrm{M})$ is $\$ 5.8 \mathrm{M}$. This is iow 'ecause the ESW pump to be estimated here is a much larger pump, the piping lengths should be longer and there may need to be modifications to the service water building and intake structures. NUREG/CR- 5526 uses a data base of three estimates ($\$ 12.5 \mathrm{M}, \$ 37.5 \mathrm{M}$, and $\$ 7.0 \mathrm{M}$) averaging to $\$ 19 \mathrm{M}$ for a swing service water pump as a per unit cost. Clearly such a modification cost will be in the $\$ 5 \mathrm{M}$ to $\$ 20 \mathrm{M}$ range. Considering the accuracy of our estimates without any detailed examination and evaluation of the plant, our engineering judgement of the zx timated one time cost for this modification is $\$ 12.4 \mathrm{M}$. We believe this is within a factor of two of a more accurate estinite and should not affect the results significantly.

Similarly, the O \& M costs $(\$ 8 \mathrm{~K}, \$ 29 \mathrm{~K}$, and $\$ 60 \mathrm{~K}$) need to be combined. The average value of $\$ 32 \mathrm{~K}$ will be used.

Appendix H

PHLOT PLANT MODIFICATION NO. 2

Addition of a Standby Auto Actuation Logic for the ECW Pump

* Change Pump Control Logic
- No New Sensors or Power Supplies Required

Related TAP A-45 Modification - Quad Cities 1/1985 Dollars

- Add Automatic Transfer ECCS DC Control Logic to Active DC Bus if Original Bus Fails - Mod. 304, App. D

Three terminal boxes and two junction boxes
Automatic Transfer Switches, Conduit and Cable
Generic Costs From Quad Cities Alt. 1, p. J.30, 31
Direct
224 K
Indirect $(224 / 6568) * 5502 \quad=188 \mathrm{~K}$
Contingency and Owner's Costs (224/6568) * 4225
$=144$ K
Total One Time Cost of Modification $\$ 556$ K
Operations and Maintenance Cost Per Year (224/6568) * 137 $=5 \mathrm{~K}$

Major Differences:

- Less Logic Circuitry
* Much More Electrical Equipment

Estimated Costs Based on Comparison With Quad Cities Mod. 304 in 1/1992 Dollars

- Total One Time Cost 556 * 1.327
$=738 \mathrm{~K}$

Related TAP A-45 Modification - Cooper 1/1985 Dollars
Automatic Closure of Reactor Building Service Water Isolation Valve MOV-37 - Mod. 506 App. F - Modify Control Circuit for MOV to Add Close Signal on Receipt of an Accident Signal Install Necessary Conduit and Cable

Generic Costs From Cooper Alt. 1, p. J-30, 31
Direct
Indirect $(91 / 10267) * 8264 \quad 91 \mathrm{k}$
$=73 \mathrm{~K}$
Contingency and Owner's Costs Per Year (91/10267) * 6485
Total One Time Cost of Modification
$=57 \mathrm{~K}$
Operations and Maintenance Costs Per Year (91/10267) * $171 \sim$ _ $\$ 221 \mathrm{~K}$
Operations and Maintenance Costs Per Year (91/10267)*171 $=2 \mathrm{~K}$
Major Differences:

- Control Circuits Verses Logic Circuits
- Much More Cable and Conduit

Estimated Costs Based on Comparison With Mod. 506 in 1/1992 Dollars
Total One Time Cost $221 * 1.327$

Appendix H

Operations and Maintenance Costs Per Year 2* 1.327

$=3 \mathrm{~K}$

The relatively comparable TAP A 45 modifications are considerably more involved than the proposed modification for the pilot plant. The two one time costs are $\$ 738 \mathrm{~K}$ and $\$ 253 \mathrm{~K}$. Our engineering judgement is that this modification would cost less than the Cooper modification. The estimates are $\$ 150 \mathrm{~K}$ for one time costs and $\$ 5 \mathrm{~K}$ for operations and maintenance costs.

Appendix H

PLLOT PLANT MODIFICATION NO. 4

Addition of a Second Pump Discharge Check Valve

- Add Two Check Valves to ESW Pump Discharge Lines for Improved Back-Leakage Isolation

Related TAP A-45 Modification - Cooper 1/1985 Dollers

- Redundant RBCCW Isolation Valve - Mod. 805, App. E
- Single Motor Operated Valve to Isolate Non-Essential Loads
- Junction Box, Condurt, Cable, and Controls

Generic Costs From Cooper - Alt. 1, p. J. 30,31
Direct

Indirect $(197 / 10267) * 8264$	
Contingency and Owner's Costs Per Year $(197 / 10267) * 6485$	
Total One Time Cost of Modification	$=197 \mathrm{~K}$
Operations and Maintenance Costs Per Year $(197 / 10267) * 171$	$\$ 480 \mathrm{~K}$

Major Differences:
6 Two Check Valves Versus One Motor Operated Valve

- Much More Installation Work

Estimated Costs Based on Comparison With Mod. 805 in 1/1992 Dollars
$\begin{array}{ll}\text { Total One Time Cost } 480 * 1.327 & \\ \text { Operations and Maintenance Costs Per Year 3*1.327 } & =637 \mathrm{~K} \\ & =4 \mathrm{~K}\end{array}$
Related TAP A-45 Modification - Point Beach 1/1985 Dollars

- Redundant RHR Pump Cooler Outlet Valves - Mod. 803, App. C
- Parallel Manual Vaives in Two RHR Pump Oil Cooler CCW 2^{*} Return Lines

Generic Costs Frompoint Beach Alt. 1. p. J-33, 34
Direct
Indirect $(16 / 4419) * 275$
16 K
Contingency and Owner's Costs Per Year (16/4419) * 2510
Total One Time Cost of Modification
$=10 \mathrm{~K}$

Operations and Maintenance Costs Per Year $(16 / 4416) * 13 \quad \$ 35 \mathrm{~K}$
$=9 \mathrm{~K}$

Major Differences:

- Much Larger Pipe Size
- Check Valve Verses Manual Valve

Estimated Costs Based On Comparison with Mod. 803 in 1/1992 Doilars

- Total One Time Clist 35 * 1.327

Related TAP A-45 Modification - ANO-1 1/1985 Dollars

- Addition of Redundant BWST Supply Valves - Mod. 805, App. D- Parallel Air Operated Ve've in Each of Two Suction LinesGeneric Costs From ANO-1 Alt. 1, p. J-30, 31
Divect 1345 K

Indirect $(1345 / 6747) * 5221 \quad=1041 \mathrm{~K}$

Contingency and Owner's Costs Per Year $(1345 / 6747) * 4189 \quad=835 \mathrm{~K}$

 Total One Time Cost of Modification

 \(\$ 3221\) K
 Cpernaions and Mainteannce Costs Per Year (1345/6747) * 114

 \(=23 \mathrm{~K}\)
 Major Differences:

- Two Air Operated Valves and One Manual Valve Versus Two Check Valves
- Smaller Pipe Size
Estimated Costs Based on Comparison With Mod. 805 in 1/1992 Dollars

```
Total One Time Cosi 3221 * 1.327
=4274 K
Operations and Maintenance Costs Per Year 23 * 1.327
    = 31 K
```

The total one time corts for the three roughly comparable TAP A-45 modifications are givea in Table H-3. A rough scaling for the number of valves is given chowing simular costs for the two motor operated valves versus the two manual valves which indicates the pipe sive is a significant factor as well as the type of valve. The Point Beach $\$ 92 \mathrm{~K}$ estimato is driven by the pipe siz.. The ANO-1 modification would logically appear to be low due to the pipe size and the Cooper modification high due to the cost of motor operated valves versus manual valves. Our engineering judgement is that a realistic cost is $\$ 1200 \mathrm{~K}$. The corresponding operations and maintenance cost eatimate is $\$ 10 \mathrm{~K}$.

Teble H-3
Mod, 4 Comparison Mod Cost Estimates.

Peach Bottom	Cooper	Point Beach	ANO-1
2 Check Valves Large Pipe	1 MOV	1 Manual Valve	2 AOV and 1 Manus
	Large Pipe	Small Pipe	Valve
			Medium Pipe
Rough Scaling	637 K	46 K	4274 K
	2 MOV	2 Manual Valves	2 Manual Valves ${ }^{(1)}$
		Small Pipe	Medium Pipe
	1274 K	92 K	1221 K

[^12]
Appendix H

PILOT PLANT MODIFICATION NO. 5

Encrease System Functional Testing Frequency for ESW Pump Discharge Check Valves

- Increase Test Freequency From Quarterly to Monthly

The operations and maintenance yearly costs for modifications 4 knd 6 respectively are $\$ 10 \mathrm{~K}$ and $\$ 20 \mathrm{~K}$ which is essentially $\$ 5 \mathrm{~K}$ per chock valve per year. Assuming most of this cost is incurred is testing, increasing the test frecjusncy from quarterly to monthly would increase the operations and maintenance costs from $\$ 5 \mathrm{~K}$ to $\$ 15 \mathrm{~K}$ por check valve for a catal of $\$ 30 \mathrm{~K}$. By comparison, NUREG/CR- 5526 ($\mathrm{p}, 157$) gives a value of $\$ 1 \mathrm{~K}$ per leak tert of isolation saives resulting in $\$ 1 \mathrm{~K} /$ valve test * 2 valves * 12 tests/year $=\$ 24 \mathrm{~K}$ per year. The one time cost of implementing this chatige in procedure is estimated to be $\$ 5 \mathrm{~K}$ (reference NUREG/CR-5526 p. 157).

PILOT PLANT MODIFICATION NO. 6

Addition of a Check Valve in Series to the Diesel Generator Air Operated Valves

- Add four Series Check Valves in the Diesel Generator Jackel Cooling Lines

This proposed modification is similes to motification 4 except that four check valves aro maryirod instesd of two. Our engineering judgement is that the cost of a motor operated valve versus a manual valve outweighe the cost of the large versus medium pipe size resulting in an extimate of $\$ 1800 \mathrm{~K}$ for modification 6. The corresponding ertir eted O \& M costs are $\$ 20 \mathrm{~K}$.

PLLOT PLANT MODIFICATION NO. 7

Addition of a Swing. Self-Cooled, Diesel Generator

- Self Contained Lube Oil System
- No External Power Required for Self Cooling Water System or Lube Cai System
- Includes Dedicated Batteries
- 2600 KW

Related TAP A-45 Modification - Quad Cities 1/1985 Dollars

- Addition of a Fourth Diesel Generator - Mod. 301, App. A
- Dedicated Cooling Water System
- New Building
- Includes Dedicated İatteries
- $\quad 2500 \mathrm{KW}$

Generic Costs From Quad Cities All. 1, p. J-30, 31
Direct
Indirect (6344/6568) * 5502 - 6344 K
Contingency and Owner's Costs Per Year (6344/6568) * 4225
Total One Time Cost of Modification
Operaticns and Maintenance Costs Per Yoas (6344/6568) * 137
$=5314 \mathrm{~K}$
$=4081 \mathrm{~K}$
$\$ 15,739 \mathrm{~K}$
$=132 \mathrm{~K}$
Major Differences:

- Assume Equal to the Basic Mod. 7 Requirements

Estimated Costs Based on Comparisot With Mod. 301 in 1/1992 Dollers
Total One Time Ccst 15,739 * 1.327
$=20,886 \mathrm{~K}$
Operations and Maintenance Costs Per Year 132 * 1.327
$=175 \mathrm{~K}$
Related TAP A-45 Modification - Cooper 1/1985 Dollars

- Addition of a Third Diesel Generator - Mod. 301, App. A
- Dedicated Cooling Water System
- New Building
- Includes Dedicated Batteries
- 4000 KW

Generic Costs From Cooper Alt. 1, p. J-30, 31

Direct

Indirect ($8960 / 10267$) * 8264
Contingency and Owner's Costs Per Year (8960/10267) * 6485
$=7212 \mathrm{~K}$
Totsi. One Time Cost of Modification
Operations and Maintenance Costs Per Year (8960/10267) * 171
$=5659 \mathrm{~K}$
$\$ 21,831 \mathrm{~K}$
$=149 \mathrm{~K}$

Major Differeaces:

- Assume Equal to the Besic Mod. 7 Requirements
- Larger Capacity 4000 KW verses 2600 KW

Appendix H

Estimated Costs Based on Comparison with Mod. 301 in 1/1992 Dollars
Total One Time Cost $21,831 * 1.327$
Operations and Maintenance Costs Per Year 149 * 1.327
$=28,970 \mathrm{~K}$
$=198 \mathrm{~K}$
Related TAP A-45 Modification - Point Beach 1/1985 Dollars

- Turbine Driven Generator - Mod. 815, App. K
- Enslosed in Existing Space
- Lube Oil and Jacket Cooling Unknown - Probably Self Sufficient
- 500 KW

Generic Costs From Point Beach Alt. 2, p. J-39, 40
Direct
Indirect $(2178 / 8074) * 5289 \quad 2178 \mathrm{~K}$
Contingezcy and Owner's Costs Per Year (2178/8074) 5289
Total Onc Time Cost of Modification
$=1427 \mathrm{~K}$
$=1261 \mathrm{~K}$
$\$ 4866$ K
Operations and Maintensace Costs Per Year (2178/8074) * 51
$=14 \mathrm{~K}$
Major Differences:

- Turbine Versus Diesel Driven
- 500 KW Versus 2600 KW
- No Now Building

Estimated Costs Based on Comparison With Mod. 515 in 1/1992 Dollars
$\begin{array}{ll}\text { Total One Time Cost } 4866 * 1.327 \\ \text { Operations and Meintenance Costs Per Year } 14 * 1.327 & =6457 \mathrm{~K} \\ & =19 \mathrm{~K}\end{array}$
Related TAP A-45 Modification - ANO-1 1/1985 Dollars

- Addition of a Turbine Driven Generator for Emergency Loads Mod. 303, App. B
- Enclosed in Existing Space
- Lube Oil and Jacket Cooling Unknown - Probably Self Sufficient
- 500 KW

Generic Costs From ANO-1 Alt. 1, p. J-30, 31
Direct
Iadirect $(1855 / 6747)$ * $5221 \quad 1855 \mathrm{~K}$
Contingency and Owner's Costs Per Yeer (1855/6747) * 4189
Total One Time Cost of Modification
Operations and Maintenance Costs Per Year (1855/6747) * 114
Major Differences:

- Turbine Versus Diesel Drivea
- 500 KW versus 2600 KW
- No Now Builaing

Estimated Costs Based on Comparison With Mod. 303 in 1/1992 Dollars

Total One Time Cost 4442 * 1.327
$=5895 \mathrm{~K}$
Operations and Maintenance Costs Per Year 31*1.327

$$
=41 \mathrm{~K}
$$

The results of the four comparable modifications costs estimated for the pilot plant modification No. 7 are very consistent based on capacity and requirements. Clearly the most representative estimate is that from Quad Cities; $\$ 20.9 \mathrm{M}$ one time cost of the modification and $\$ 175 \mathrm{~K}$ operations and maintenance cost per year.

The costs for the seven modifications are given in Table H.4. These numbers will be used in the value/impact analysis.

Table H. 4
Summary of Pilot Plant Best Estimate

	Mod. 1	Mod. 2	Mod. 3	Mod. 4	Mod. 5	Mod. 6	Mod. 7
Total One Time Cost	\$12.4M	\$150K	NA	\$1200K	-5K	\$1800K	\$20.9M
Operation and Maintenance Cost Per Year	\$32K	\$5K	NA	\$10K	530K	\$20K	\$175K
Replacement Power Cost	50	50	\$0	50	so	50	50

Distribution

Wallis R Cramond 3119 Teinessee NE Albuquerque, NM 87110

S. P. Miller
Science Applications International Corp
2109 Air Park Road SE
Albuquerque, NM 87106
J. L. Yakle
Science Applications International Corp. 2109 Air Park Road SE
Albuquerque, NM 87106
3141 S. A. I idenberger [5]
3151 G. C. Claycomb
5505 T. G. Priddy
6400 N. R. Ortiz
6403 W. A. von Riesemann
6404 D. A. Powers
6405 D. A. Dahlgren
6412 A. L. Camp
6412 S. L. Daniel
6412 S. E. Dingman
6412 D. B. Mitchell [15]
6412 A. C. Payne, Jr.
6412 B. D. Staple
6412 D. W. Whitehead
6412 G. D. Wyss
6413 F. T. Harper
6449 M. P. Bohn
6449 J. A. Lambright
7141 Technical Library [5]
7151 Technical Publications
7613-2 Document Processing for DOE/OSTI [10]
8523-2 Central Technical Files
8524 J. A. Wackerly

Federal Recycling Program
\square

[^0]: Key:
 C - Cooling Water System
 L - Emergency Cooling Loads
 S - Service Water System

[^1]: ${ }^{1} \triangle C D F$ calculated based on a base case CDF equal to 4.67E-06.

[^2]: $\mathrm{V}_{\mathrm{f}}=40090 \times \Delta \mathrm{p}_{\mathrm{k}} \times 16$
 $V_{V}=40000 \times \Delta p_{n} \times \$ 1000 \times 10.8$
 $\mathrm{V}_{2}=$ Averted Dose per Resctor Yeer $\times 16$
 V_{z}, Averted Dose per Resctor Year $x \$ 1000 \times 10 . \mathrm{s}$
 $A D R,=V_{1}+$ (Besecaso Devse $\times 16$)
 $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{v}}$
 $A D R_{3}=V_{2 x}+\left(\right.$ Brsectse Dose $\left.\times 16+V_{2}\right)$
 $\mathrm{v}_{\mathrm{a}}^{\prime}=\mathrm{V}_{1}+\mathrm{v}_{2}$

[^3]: ${ }^{*} \mathrm{O}=$ Operating
 $\mathrm{C}=\mathrm{Closed}$

[^4]: *O = Operating
 $\mathrm{C}=\mathrm{Closed}$
 $\mathrm{S}=$ Shutdown

[^5]: * $0=$ Operating
 $\mathrm{C}=$ Closed
 $\mathrm{S}=$ Shutdown

[^6]: ${ }^{*} 0=$ Operating
 $\mathrm{C}=$ Closed
 $\mathrm{S}=$ Shutdown

[^7]: 4.1E-07 Mean CDF

[^8]: . .0
 .0
 .0
 . 0 6.8E-011 ACP-DGN-MA-EDGB, BAT-DEP-5HR, DGMANR5HR, ESW-CKV -HW-C515B, ESW-XHE-FO-EHS, LOSPNR7HR
 6.2E-011 ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGD, BAT-DEP-3HR, DGHWNR 3HR, ESW-MDP-MA-MDPB, LOSPNR9HR
 . 6.2E-011 ACP-DGN-FR-EDGB, ACP-DGN-FR-BDGC, BAT-DEP-3HR, DGHWNR3I , ESW-MDP-MA-ECW, LOSPNR9HR
 .0 6.2E-011 ACP-DGN-FḰ-EDGC, ACP-DGN-FR-EDGD, BAT-DEP-3HR,
 DGHWNR 3HR, ESW-MDP-MA-MDPA, LOSPNR9HR
 .0 5.9E-011 ACP-DGN-MA-EDGD, BAT-DEP-5HR, BETA-2SWPS,
 5.9E-011 ACP-DGN-MA-EDGD, BAT-DEP-5HR, BETA-2SWPS,
 DGMANR5HR, ESW-MDP-FS-CCF, LOSPNR7HR
 $.05 .9 \mathrm{E}-011$ ACP-DGN-FR-EDGD, BAT-DEP-7HR, BETA-2SWPS, DGHWNR IHR, ESW-MDP-FS-CCF, LOSPNR14HR
 . $5.4 \mathrm{E}-011$ ACP-DGN-FR-EDGC, BAT-DEP-7HR, DGACTB, DGACTNR $7 H R$,
 ESW-XHE-FO-EHS, LOSPNR14HR ESW-XHB-FO-EHS, LOSPNR14HR
 . 5 . 4E-011 ACP-DGN-FR-EDGB, BAT-DEP-7HR, DGACTC, DGACTNR7HR, ESW-XHE-FO-EHS, T,OSPNR14HR
 .0 5.3E-G11 ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-XHE-FO-EHS, ESW-XVM-PG-X507B, LOSPNR17HR .0 5.3E-011 ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR,
 ESW-XHE-FO-EHS, ESW-XVM-PG-XV510, LOSPNR ESW-XHE-FO-BHS, ESW-XVM-PG-XV510, LOSPNR17HR
 .0 5.3E-011 ACP-DGN-FR-EDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-XHB - FO-BHS, BSW-XVM-PG-D505C, LOSPNR 17 HR
 .0 5.3E-011 ACP-DGN- FR- BDGC, BAT-DEP-9HR, DGHWNR9HR, ESW-XHE-FO-EHS, ESW-XVM-PG-D505B, LOSPNR17HR
 5. - 3-011 ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR,
 ESW-XHE-FO-EHS, ESW-XVM-PG-X507A, LOSPNR17HR

 ACP-DGN-FR-EDGC, BAT-DEP-9HR, DGHWNR9HR,
 ESW-XHE-FO-EHS, ESW-XVM-PG-X507A, LOSPNR17HR 5.3--011 ACP-DGN-FR-BDGB, BAT-DEP-9HR, DGHWNR9HR, ESW-XHE-FO-EHS, ESW-XVM-PG-XV509, LOSPNR17HR
 5.3E-011 ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGD, BAT-DEP-5HR, DGHWNR5HR, ESW-MDP-FS-MDPB, LOSPNR12HR ACP-DGN-MA-EDGC, BAT-DEP-5HR, DGMANR 5 FR , ESW-CKV-HW-C515A, ESW-XHE-PO-EHS, LOSPNR7HR
 ESW-CKV-HW-C515A, ESW-XRE-FO-EHS, LOSR
 6.2E-011 ACP-DGN-MA-EDGD, BAT-DEP-9HR, BETA-2SWPS, DGMANR9HR, ESW-MDP-FS-CCF, LOSPNR12HR
 6.2E-011 ACP-DGN-FR-EDGB, BAT-DEP-9HR, DCHWNR17HR, ACP-DGN-FR-BDGB, BAT-DEP-9HR, DCHWNR17HR,
 5. 3E-011
 .3E-011 ACP-DGN-FR-EDGB, ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR5HR, ESW-MOV-CC-M0841, LOSPNR12HR

[^9]: 2 3.5B-010 ACP-DGN-MA-BDGB, DGMANR12HR, BSW-CKV-CB-C515A, INJ-FAILS, LOSPNR13HR, P1
 3.3B-010 ACP-DGN-PR-RDGB, BAT-DRP-3HR, DGHMNR 3HR,

 ESW-MDR-MA-MDPB, ESW-XHE-FO-EHS, LOSPNR9HR, P1
 3.3E-010 ACP-DGN-FR-EDGC, BAT-DEP-3HR, DGHWNR 3HR,

 BSW-MDP-MA-MDPA, BSW-XHE-FO-BHS, LOSPNR9HR, P1
 3.2B-010 ACP-DGN-FR-BDGB, ACP-DGN-MA-EDGC, BAT-DBP-7HR, DGMANR 7HR, BSW-XHE-FO-BHS, LOSPNR14HR, P1
 3.2B-010 ACP-DGN-FR-BDGC, ACP-DGN-MA-EDGB, BAT-DBP-7HR, DGMANRTHR, BSW-XHE-FO-BHS, LOSPNR14HR, P1
 3.2E-010 BSW-CKV-CB-C515B, ESW-PTF-RE-MDPB, INJ-FATLS, LOSPNR13HR, P1
 3.2E-010 BSW-CKV-CB-C515A, BSW-PTE-RE-MDPA, INJ-FATLS, LOSPNR13HR, P1
 3.1E-010 ACP-DGN-FR-EDGB, BAT-DER-5HR, DGHWNR5HR, ESW-CKV-CB-C515A, LOSPNR12HR, P1
 3.1E- 010 ACP-DGN-FR-BDGC, BAT-DEP-5HR, DGHWNR $5 H R$,

 ESW-CKV-CB-C515B, LOSPNR12HR, P1
 ACP-DGN-FR-BDGC, BAT-DBP-5HR, DGHWNR5HR,
 ACP-DGN-FR-BDGB, BAT-DBP-5HR, DGHWNR5HR,
 ESW-PTF-RE-DGC, BSW-XHB-FO-BHS, LOSPNR $12 H R, ~ P 1$
 2.9E-010 ESW-CKV-CB-C515B, ESW-MDP-MA-MDPB, INJ-FAILS,
 TOSPNR13HR, P1 TOSPNR13HR, P1 TOSPNR13HR, P1
 . $12.9 \mathrm{E}-010$ ESW-CRV-CB-C515A, BSW-MDP-MA-MDPA, INJ-FAILS, LOSPNR13HR, P1
 .1 2.9B-010 ACP-DGN-FR-EDGC, ACP-DGN-TB-EDG8, BAT-DEP-9HR, DGHWNR9HR, ESW-XHE-FO-BHS, LOSPNR17HR, P1
 .1 2.9B-010 ACP-DGN-FR-EDGB, ACP-DGN-TR-BDGC, BAT-DBP-9HR, DGHINTR9HR, BSV-XYE-FO-BHS, LOSPNR17HR, P1
 .1 2.8B-010 ACP-DGN-FR-BDGB, BAT-DEP-5HR, DGHWNR5HR, BSW-MDP-FS-MDPB, ESW-XHE-FO-BHS, LOSPNR $12 H R$, P1
 2.8B-010 ACP-DGN-FR-EDGC, BAT-DEP-5HR, DGHWNR5HR, BSW-MDP-FS-MDPA, BSW-XHE-FO-BHS, LOSPNR $12 H R$, P1
 . $12.8 \mathrm{~B}-010$ BAT-DEP-3HR, ESW-CKV-CB-C515B, BSW-PTE-RE-DGC, LOSPNR5HR, P1
 . 1 2.8B-010 BAT-DRP-3HR, ESW-CKV-CB-C515A, BSW-PTF-RE-DGB, LOSPNR5HR, P1

[^10]: .0 5.0E-011 ACP-DGN-TB-EDGB, Za'i-DEP-THR, DGMANRTHR, ESW-CKV-CB-C515A, LOSPNR9HR, P1
 .0 5.0B-011 ACP-DGN-TE-EDGC, DAT-DEP-7HR, IGMANR7HR, ESW-CKV-CB-C515B, LOSFNRSHF, PK
 . 0 4.9B-011 BAT-DRP-9HR, BSN-VTP-FR-YDPB, ESW-MDP-ES-MDPA, BSW-XHE-FO-BHS, LOSPNR17HR, P1
 . 0 4.9E-011 RAT-DEP-9HR, BSW-NDF-EI-MDEA, ESW-MDP-ES-MDPB, ESW-XHE-FO-EHS, LOSPNR1THQ. F1
 . 0 4.7B-011 ACP-DGN-FR-EDGB, AC2-DG:-FR-3DGC, ACP-DGN-FP-BDGD, BAT-DEF-3HR, DGHWNR3HR, LOSPNR9HR, P1
 . $0 \quad$ 4. 7B-011 BAT-DEP-3HR, $\mathrm{BSW}-\mathrm{MDP}-\mathrm{FR}-\mathrm{MD} 2 \mathrm{~A}$, $\quad \mathrm{ISW}-\mathrm{MDP}-\mathrm{FS}-\mathrm{MDPB}$, ESW - XHB-FO- EHS, LOSPNR9HR, P1
 4. 7B-012 BAT-DBP-3HR, ESW-MDP-FR-MDPB,
 $.04 .3 \mathrm{~B}-011$ BAT-DEL-7HR, BSW-AOT-CC-0241B, ESW-CKV-CB-C515A, LOSPNR9IIR, P1
 . 0 4.3B-011 BAT-DEP-7HR, ESW-AOV-CC-0241C, ESW-CKV-CB-C515B, LOSPNR9HR, P1
 . 0 3.9E-011 BAT-DEP-7HR, ESW-AOV-CC-0241C, ESW-MDP-FS-MDPA, BSW-XHE-FO-BES, LOSPNR9HR, P1
 .0 3.5B-011 ACP-DGN-MA-EDGC, BAT-DEP-7HR, DGMANR7HR,
 EGW-AOV-CC-024iB, BEW-XHE-FO-BHS, LOSPNR9HR, P1
 . 0 3.9E 011 ACP-DGN-MA-EDGR, BAT-DEP-7HR, DGMANR7AR, BSW-AOV-CC-6241C, ESW- XHE-FO- BHS, LOSPNR 9 HR, P1
 $.03 .9 \mathrm{E}-011$ BAT-DBP- THR, BSW-AOV-CC-0241B, ESW-MDP-FS-MDPB, BSW-XHE-FO-EHS, LOSPNR $9 H R$, P1
 .0 3.8B-011 ACP-DGN-FR-EDGE, BAT-DEP-9HR, DGHWNR9HR, BHV-SRV-CC-RV3, ESW-XHB-PO-BHS, LOSPNR17HR, P1
 .0 3.8E-011 ACP-DGN-FR-BDGC, BAT-LBP-9HR, DGHWNR9HR, EHV-SRV-CC-RV2, ESW-XHE-FO-BHS, IOSRNR17HR, P1
 . 0 3.6E-011 ACD-DGN-FR-EDGB, ACP DGN-FR-EDGC, ACP-DGN-FR-EDGD, BAT- 工 $\mathrm{FP}-9 \mathrm{HR}$, DGHWाKR9HR, LOSPNR17HR, P1
 .0 3.6B-011 BAT-DBz-5HR, ESN-AOV-CC-C241R, ESW-MDP-MA-MDPB, ESW-XHE-b $)$-BHS, LOSPNR 7HR, P1
 $.03 .6 \mathrm{~B}-011 \mathrm{BAT}-\mathrm{DEP}-5 \mathrm{~A}^{\circ}$. ESW-AOV-CC-0241C, ESW-MDP-MA-MDPA, ESW-XHE-FO-BAS, LOSPNRTHR, P1
 $.03 .4 \mathrm{~B}-011$ BAT-DEP-5HR, BSW-CRV-CB-C515B, ESW-MDP-FR-MDPB, LOSPNR12HR, P1

[^11]: ${ }^{1}$ NUREG/CR-4551, Vol. 4, page $2.16(\mathrm{~A}), 5.38(\mathrm{~B})$, and $5.8(\mathrm{D})$.

[^12]: ${ }^{(1)}$ Assuming AOV to Manual Valve Cost Ratio is 3 i.e., $[4274+(2 * 3+1)] * 2$.

