TRAC-BF1/MOD1 Models and Correlations

```
Firted by
1. A. Bogkon 1 - wade
```

Idaho National Engineering Laborytory EG\&G Idaho, Inc.

Prepares
U.S. Now, ar Regulatory Commission

TRAC-BF1/MOD1 Models and Correlations

```
Manuscrip4 Completed: July 1992
Date Pubishej: August }199
Fdited by
J. A. Borkownki.N. I. Wade
Contributing Authors
S. Z. Rouhant, R. W. Shumway, W. L. Weaver, W. H. Rettig*, C. L. Kullberm
Idaho National Engincering Laboratory
Managed by the U.S. Department of Enery
EGd&G Idaho, Inc
Idaho Falls, ID 8341%
Prepared for
Division of Systems Research
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555
NRC FIN 12031
Under DOE Contract No, DE-AC07-76ID01570
```

[^0]
AVAILABILITY NOTICE
 Avalability of Fieference Materias Cred in NFRC Puthications

Most documents olted in NRC eliblications will be avaliable from one of the following sources

2. The Superintendent of Oocuments US Qovernment Printing Office, P Q Box 37082, Washington DC 20013-7082

3 The National Technical Information Scrvice. Springfieid, VA 22164
Although the listing that foliows represents the majority of documents ofted in NRC publications it is not intended to be exhastive

Feferenced documents avakable for insgection and copying for a fee from the NRC Public Document Room inolude NRC correspondence and internal NAC mamoranda; NAC bulletins, circulats, information notices. inspection and investigation notices licensee event roports, vendor reports and correspondence Commission papers: and applicant and licensee documents and correspondence

The following documents in the NUREG series are avallable for purchase from the QPO Sales Program tormal NAC staff and contractor reperts. NAC-sponsored conterence proceedings. international agreement reports, grant publichtions, and NAC booklets and broohures. Aiso avaiable are regulatory guides fNAC regulations in the Oode of Federal fiegulations, and Nuctear Regulatory Oommission Issuances

Documents available from the National Technical Intormation Service include NuREG-series reports and technical reports prepared by other Federal agencies and reports prepa ed by the Atomic Energy Commis. sion forerunnet agency to the Nuclear Regulatory Commission

Decuments avaliable from public and special technical fibraries include all ppen lierature liems, such as bociks. lournal acticies, and transactions. Federal Register notices. Federa and State iegisiation, and congressional reports can usually be obtained from these tibrarlea

Documents such as theses, dissertations, foreign reports and transiations, and non-NFR conterence proceedings ara available for purchase from the organization sponsoring the purblication oited

Single copies of NAC araft peports are avalable free. to the extent of supply upon writien request is the Offe of Administration. Distribution and Mit Services Section. D. 5 . Nucipat Regulatory Commiasion. Washington. DC 20555

Copies of industry codes and standards used in a substantive manner in the NAC regulatory mrocess are maintained at the NRC Library. 7320 Norfoik Avenve. Bethesda. Maryland. for use by the public. Codes and standards are usually copyrighted and may be purchasod from the originating organization of, they are American National Stangards. Trom the American National Stanctards Institute, 1430 Broadway. New York. NY 1001.

DISCLAIMER NOTICE

This report was prepared as an accourt of work sponsored by an agency of the United States Goverriment Neither the United States Government no any agency thereof, or any of their empioyees, makes any warranty. expressed or implied, or assumes any legut liability of resr nsibility tor any thirc party's use, or the results of such use, of any information, apparatus, prozuct or process disclosed in this report, or represents that its use by such third party would not intringe private v owned rights.

ABSTRACT

The TRAC-BWR code development program at the Idaho Nattonal Engineering Laboratory has developed versions of the Transient Reactor Analysis Code (TRAC) for the U.S. Nuclear Regulatory Commission and the public. The TRAC-BF1/MODI version of the comiputer code provices a best-estimate analysis capability for analyzing the full range of postulated accidents in boiling water reactor (BWR) systems and related facilities. This version provides a consistent and unified analysis capability for analyzing all areas of a large- or small-break loss-of-coolant accident (LOCA), beginning with the blowdown phase and continuing through heatup, reflood with quenching, and, finally, the refill phase of the accidert. Also provided is a basic capability for the analysis of operational transients up to and includilig anticipated transients Without scram (ATWS). The TRAC. BFI/MOO1 version produces results consistent with previous versions. Assessment calculations using the two TRAC-BFI versions show overall improvements in agreement with data and computation times as compared to earlier versions of the TRAC-BWR 5लHfer of computer codes

CONTENTS

ABSTRACT i110
FItURES x
TABLES xiv
SUMMARY x x)
ACKNOWLEDGMENTS $x i x$
NOMENCL ATURE xX

1. INTRODUCTION 1-1
1.1. References 1-4
2. FIELD EQUATIONS 2.1.1
2.1. Fluid Fietd Equations 2.1-1
2.1.1 Nomenclature 2.1-1
2.1.2 Gas-Liquid Equations 2.1-2
2.1.3 Noncondensable Gas $2.1-4$
2.1.4 Liquid Solute 2.1-5
2.1.5 One-Dimenstonal Finite-Difference Methods 2.1-6
2.1.6 Thr se-Dimensional Finite Difference Methods 2.1-16
2.1 .7 Modifications to the Field Equation Set 2. 1-25
2.2 Heat Conduction in Solid Materials 2.2-1
3. FLOW RFGIME MAP 3-1
3.1 Basis for Flow Regime Map in TRAC-BFI 3-1
3.2 Implementing Assumptions 3-2
3.3 Constant Void Fraction Interval for Transition Region 3-2
3.4 As-Coded Flow Regime Map $3-2$
3.5 Variations in Application 3-3
3.5.1 Bubbly/Churn to Annular Transition in Interfacial Heat Transfer 3-3
3.5.2 Bubbly/Churn to Annular Transition in Interfactal Shear $3-4$
3.6 Assessment 3. 4
3.7 Scaling Considerations 3-4
3.8 Conchusions Regarding Now-Regime Map and Implementation 3-5
3.9 References 3-5
4. CLOSURE RELATIONS REQU!RED GY FLUID-ENERGY FIELD EQUATIONS 4.1-1
4.1 Interfacial Heat Transfer 4.1-1
4.1.1 Background 4.1.1
4.1.2 Components of the Interfacial Heat and Mass Transfer 4.1-1
4.1.3 Flow Regime Transitions 4.1-2
4.1.4 Data Base for Interfaci 1 Heat Transfer. 4.1-4
4.1.5 Entraliment. $4.1-5$
4.1.6 Interfacial Area 4.1-7
4.1.7 Interfacial Heat Transfer Coefficient. 4. 1-12
4.1.8 Effect of Noncondensable 4. 1-18
4.1.9 Effect of HorizontaTly Si fied Liquid Interface 4. 1-19
4.1.10 Implementation in Coding 4.1-20
4.1.11 Mass Exchange Across the Interface 4.1-29
4.1.12 Summary and Conclusions 4.1-29
4.1.13 References 4.1-30
4.2 Wall Heat Transfer 4.2-1
4.2.1 Background 4.2-1
4.2.2 Different Modes of Heat Transfer in HTCAR 4.2-3
4.2.3 Effect of Flow Regimes on Heat Transfer 4.2-3
4.2.4 Determination of Heat Transfer Mode 4. 2-5
4.2 .5 Mode 0 Vapor Condensation 4.2-9
4.2.6 Mode 1 - Convection to Liquid 4.2-14
4.2.7 Mode 2-Nucleate Boiling 4.2-16
4.2.8 Mode 3-Transition Boiling 4. 2-23
4.2.9 Mode 4--Film Boiling 4.2-27
4.2.10 Mode 5--Single-Phase Vapor 4.2-27
4.2.11 Mode 7-simple Bolling Curve 4. 2-27
4.2.12 Nucleate Boiling Transition 4.2-33
4.2.13 References 4.2-37
4.3 Radiation Heat Transfer 4.3-1
4.3.1 Radiation Heat Transfor Model 4.3-1
4.3.2 Implementation in Coding 4.3-9
4.3.3 Assessmient 4. 3-12
4.3.4 References 4.3-14
5. CLOSURE RELATIONS REQUIRED BY FLUID-MASS-CONSERVATION EQUATIONS 5-1
6. CLOSURE RELATIONS REQUTRED BY FLUTD-MOMENTUM FIELD EQUATIONS 6.1-1
6.1 Interfacial Shear $6.1-1$
6,1,1 Background 6.1-2
6.1.2 Flow Regime Transitions. 6.1-2
6.1.5 Correlations for Interfacial Drag. $6.1-9$
6.1.6 Drag Coefficient and Interfacial Area Relations. 6.1-10
6.1.7 Data Base for Interfacial Friction 5. 1-12
6.1.8 Drift Velocity and Distribution Parameters to Different Fiow Regimes 6.1-12
6.1 .9 Calculation of $C_{0}+C_{1}$, and C_{1} Parameters 6.1-21
6.1 .10 Implementation in Coding 6.1-29
6.1.11 References 6.1-38
6.2 Wall Friction Correlations $6.2-1$
6.2.1 Single-Phase Friction Correlation 6.2-1
6.2.2 The Basis of Pfann Friction Correlations 6.2-2
6.2 .3 The Data Base and Range of Applications of Nikuradse Friction Fornulas. 6.2-3
6.2.4 Comparison of Pfann's Correlwions with Other Forms of Friction Factor Formulas 6.2.4
6.2.5 Local Friction Losses 6.2.-8
6.2.6 Two-Phase Friction Factor Multipliens 6.2-8
6.2.7 Implementation ir. Coding 6.2-10
6.2.8 Conclusions 6.2-17
6.2.9 References 6.2-18
6.3 Level Tracking Model 6.3-1
6.3.1 Summary of Level Tracking Methodology and Implementation 6.3-1
6.3.2 Criteria for Calculating Cell Mixture Level. 6.3-2
6.3.3 Models and Correlations Used to Calculate a CellTwo-Phase Mixture Level Location6.3-5
6.3.4 Criteria for Calculating Cell Mixture Level Velocities and Cell Boundary Crossings. 6.3-14
6.3.5 Conclusions 6.3-17
6.3.6 References 6.3-17
7. FLOW PROCESS MODELS 7.1-1
7.1 Pressure Drop Due to Area Changes 7.1 -
7.1.1 Velocity Divergence 7.1-1
7.2 Gritical Flow 7.2 .1
7.2.1 Background 7.2-1
7.2.2 Methodology for the Calculation of Choke Plane Thermodynamic Properties 7.2 .6
7.2.3 Two-Phase/Two-Component Critical Flow Models 7. 2-9
7.2.4 Single-Phase One- or Two-Component Vapor Choking Models 7.2-15
7.2.5 Single-Phase Liquid Critical Flow Model 7.2-18
7.2.6 Choking Criteria and Phasic Velocity Formulation Implementation into TRAC-BF1/MOD1 7.2-21
7.2.7 Conclusions 7.2-22
7.2.8 References 7.2-23
7.3 Countercurrent Flow Limitation (CCFL) 7.3-1
7.3.1 The CCHL Modet 7.3-1
7.3.2 Distribution Paramet.r for CCFL 7.3-2
7,3.3 Data Base for the CCFL Mode? 7.3-5
7.3.4 User-Defined CCFL Application. 7.3-6
7.3.5 Description of the CCFLCK Subroutine 7.3-7
7.3.6 References 7.3-9
8. SPECIAL COMPONENT MODELS 8.1-1
8.1 PUMP Component 8.1-1
8.1.1 Pump Governing Equations 8.1-3
8.1.2 Pump Head and Torque from Homblogous Curves 8.1-4
8.1.3 Pump Speed $8.1-7$
8.1. 4 Pump Homolagous Curves 8.1-8
8.1.5 Pump Conclusions 8.1-14
8.1.6 References 8. 1-14
8.2 Jet Pump Model 8.2-1
8.2.1 alet Pump Momentum Source Term 8. 2-1
8.2.2 Jet Pump Sirgular Loss Coefficients 8.2-7
8.2.3 References $8.2-12$
8.3 Steam/Water Separator and Dryer 8.3-1
8.3.1 Model Description 8.3-1
8.3.2 Model Equations 8.3-3
8.3.3 Oryer Vofd Fraction 8. 3-3
8.3.4 Separator Void Fraction 8.3-5
8.3.5 Implicit Portion of Separator Solution 8.3-5
8.3.6 Separator Velocity Solution 8.3-9
8.3.7 References 8.3-10
8.4 Inplicit Turbine Mode? 8.4-1
8.4.1 Physical Model of Turbine 8.4-1
8.4.2 Numerical Model. 8. 4-2
8.4.3 Momentum Equation 8. 4-3
8.4.4 Continuity Equation 8.4-7
8.4.5 Energy Equation 8.4-9
8.4.6 Critical Flow 8. 4-11
8.4.7 References 8. 4-12
9. HEAI STRUCTURE PRUCESS MODELS 9-1
9.1 Cylindrical Wall Heat Conduction 9.1-1
9.1.1 Reference 9.1-3
9.2 Cartesian Heat Conduction for Vessel STabs $9.2-1$
9.3 Fuel Rod Heat Conduction 9.3.1
9.3.1 Cylindrical Model 9. 3-1
9.3.2 Rectangular Model 9.3-3
9.3.3 Metal-Water Reaction 9.3.5
9.3.4 References 9.3-6
9.4 Core Power Models 9.4-1
9.4.1 Preliminary Definitions 9.4.1
9.4.2 Space-Indopendet.t Reactor Kinetics and Core Decay Models 9.4-3
3.4.3 One-Dimensional Kint.tics Mode 9.4-16
9.4.4 Conclusions 9.4-32
9.4.5 References 9.4-33
Appendix A--Thermodynamic Properties A-1
Appendix B--Material Droperties B-1
Appendix C--Data Base Used by M. Ishii for Verification of Drift Flux Models C-1
Appendix D--Derivation of the Isentropic Sound Speed as a Function of Pressure and Temperature for a Single-Component, Single-Phase Substance, D-1
Appendtx E-Dertvation of the Two-Phase, Two-Component HEM Sonic Velocity E-1
Appendix F-Derivation of the Drift Flux Equation F-I
Appendix G--Moving Mesh Reflood Model G-1
Appendix H-Analytic Noda? Model Routines in TRAC-BF1/MOD1 H-1

FIGURES

2.1-1. Void gradient gravity heat term schematic 2.1-15
4.1.1. Comparison of flow reginie boundaries between bubbly/churn and annular patterns in the interfacial shear and the interfacial heat transfer models for a hydraul ic diameter of 0.0145 m 4.1-4
4.1-2. Variations of the interfactal area per untt volume in bubtly flow $\left(p=6.81 \mathrm{MPa}\right.$; mass velocities in $\mathrm{kg} / \mathrm{m}^{2}$. s 4.1-9
4.1-3. Variations of the interfacial area per unit volume in droplet flow ($p=6.81 \mathrm{MPa}$; mass velocities in $\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~s}$. 4.1-11
4.1-4. Variations of the interfactal area per unit volume in film flow ($\mathrm{p}=6.81 \mathrm{MPa}$; mass velocities in $\mathrm{kg} / \mathrm{m}^{2}=\mathrm{s}$ 4.1-13
4.2-1. TRAC-BF1/MOO1 botling curve 4.2 .2
4.2-2 Heat transfer mode selection logic 4. 2-6
4. 2-3 Mode Q-vapor condensation 4.2-10
4.2- Mode 1-convection to single-phase liquid 4.2-15
$4 \cdot 2 \cdot 5$ "ode 2 -nut 1 eate bolling 4.2-17
$4 \cdot 2 \cdot 6$ Chen model for nucleate boiling 4.2-18
$4 \cdot 2 \cdot 7$ Mode 3-transition boiling 4.2-24
$4.2-8$ Minimum stable film botling temperature 4.2-25
4.2-9 Mode 4--film boiling $4 \cdot 2 \cdot 28$
4.2-10 Mode 5 - forced convection to vapor. 4. 2-29
$4 \cdot 2 \cdot 11$ Mode 7 --simple boiling curve 4.2-30
$4.2-12$ Critical heat flux calculation 4. 2-38
$4 \cdot 2-13$ Biasi critical heat flux correlation 4.2 .39
4.3.1 Enclosure of N discrete surfaces 4.3-2
4.3-2 Radiation energy leaving surface k 4.3-2
4.3-3 Radtation energy inteddent on surface is 4.3-2
4.3.4 Water vapor amissivity 4.3-10
4.3-5 corA radiation test data comparison4. 3-13
6.1-1. Flow regime map for a mass velocity of $500 \mathrm{~kg} / \mathrm{m}^{2}$-s at $p=7 \mathrm{MPa}$, showing the void-dependent limits of different flow patterns, the void-dependent interpolation factor x^{2}, and liquid entrainment 6. 1-3
6.1-2. Relationship between mass velocity and void fraction at transition from bubbly/churn to annular-dispersed liquid flow. 6.1-8
6.1-3. Variations of entrainment (Ent) with void fraction at different mass velocities 6.1-16
6.1-4. Variations of modified entrainment (Ex2) with void fraction at different mass velocities 6. 1-19
6.1-5. Schematic of interpolations for C_{0} with respect to x^{2} and Ex2 in the transition region 6.1-22
6.1-6. Variations of the distribution parameter $\left(C_{0}\right)$ with void fraction at different mass velocities, as calculated in the FRCIF subrout ine 6.1-30
6,1,7. Variations of the vapor velocity distribution parameter $\left(C_{1}\right)$ with void fraction at different mass velocities, as calculated in the freft subroutime 6. 1-30
6.1-8. Variations of the linearized interfacial friction coefficient $\left(C_{1}\right)$ with void fraction at different mass velocities, is catcutated in the FRTIF subrout ine 6. 1-31
6.2-1. Fanning friction factors 6.2-6
$6.2-2$ Compartson of pfanth cormelations and Colebrook formula with Adorni's wall friction data from Reference 6.2 -5 6.2-7
$6.2-3$. Single phase friction factors according to the Pfann correlations as modified in TRAC-BF1/M0D1 (solid lines). Colebrook friction factors are shown with dashed lines for comparison. 6.2-12
6.3-1. Two-phase level with normal void profile 6.3.4
6.3-2. Level detectioa logic diagram 6.3-6
6.3-3. Levet detection Togic diagramin for cell 3 ? bove an inverted profile 6.3-7
6.3-4, Level detection logic diagram for cell j below an inverted profile 6.3-8
6.3-5. Level detection logic diagram for normal profile 5.3 .9
6.3-6 Rising two-phase level at a cell boundary 6.3-16
6.3.7 Palllng two-phase level at a cell boundary 6.3-16
7.2-1. TRAC-BF1/MOD1 choke logic 7.2-3
7.2-2. Choking cell configuration 7.2.7
7.3-1. Drift fluis correlation and CCFL. 7.3-3
7.3-2. The logtc dfagram of the CCFICK subrout ine 7.3-8
8.1-1. Semiscale single-phase homologous head curves 8.1-9
8.1-2. Sentscale fully degraded homologous head curves 8.1-10
8.1.3. Semiscale head degradation multiplier curve. 8.1-11
8.1.4. Semiscale stngle phase homologous torque curves 8.1-12
8.1-5. Semiscale torque degradation multiplier curve 8.1-13
8.2-1. Jet pump mixing cel? 8.2-1
8.2-2, Jet pump model momentuni equation diagram 8.2-3
8.2-3. TRAC-8F1/mol jet pump results compared to data for $1 / 6$ scale INEL test 8.2-8
8.2-4. Comparisons of predicted versus measured MN curves for INEL jet pump 8.2-8
8.2-5. Jet pump flow regimes 8.2-11
8.3-1 Diagram of combined separator/dryer 8.3-2
8.3-2 Separator phase separation 8.3-3
8.3-3 Dryer efficiency summary 8.3-6
8.4.1. Idealized turbtre mode? 8.4-1
8.4-2 Schemasic of numerical model for turbine 8.4-3
9-1. Semi-impltcit couplthy between hydrodynamtes and structural heat transfer 9-2
9.1-1. Cylindrical wall geometry 9.1.2
9.3-1 Nodalization for fuel rod heat conduction 9.3-2
9.3-2 Nodalization for CHAN wall heat conduction 9.3-4
9.4-1 Control rod locations and correstonding control fractions 9. 4-21
B-1. Materia? p.operties code organization B-4
G-1. Prevtous fuet rod coarse-mesh modalization G-6
G-2. Previous fuel rod fine-mesh nodalization G- 6
Q-3, Revised fuel rod coarse-mesh nodalization G. 7
G.4. Revised fuel rod fine-mesh nodalization G-7
Q.5. Nodalization for fuel rod conduction equations G-11
G.6. CHAN wall fine-mesh nodalization scheme and relationship to adjacent fluid cells G-13
Q-7. Logic for addition of a fine-mesh channel wall node and redefinition of node overlap parameters G-14
G-8. Logis for removal of a fine-mesh channel wall node and redefinition of node overlap parameters G-15
$\mathrm{H}-1$ Subroutine diagram for the TAAC-BFI/MODI analytic nodal neutronics routines H-4

TABLES

1-1. Previously released versions of TRAC-BWR 1-1
4.1-1. Data base for heat iransfer correlations 4.1-6
4.2-1. Modes of heat transfer in subroutine HTCOR 4.2-3
4.2-2. Critical quality correlation options 4.2.34
4.3-1. Water vapor absorption data 4.3-9
6.2-1. Range of variables in Nikuradse experiments on friction factors 6.2-4
6.2-2. Comparison of Pfann fricton factors with Nikuradse and Von Karman equations for smooth pipes 6.2-4
6. -3. Comparison of Pfann correlation with Moody's chart (or the Colebrook formula) for rough tubes with relative roughnesses $\xi_{1}=E \cdot 3$ and $\xi_{2}=E-4$. 6.2-7
6.2-4. Ranges of data used in the derivetion of the Hancox two-phase multiplier 6. 2-10
6.3-1. Summary of input and output parameter's for TRAC-BF1/MOD1 level-tracking routines 6.3-3
6.3-2. User-spectified level-tracking parameters 6.3-4
$7.2-1$ Equilibrium critical flow regimes 7.2-2
7.2-2. Input call parameters to subrout ine CHOKE 7.2-5
7.2-3. Output to subroutine CHOKE 7.2-6
7.2.4. Summary of choking correlations and throat conditions 7.2-10
7.3-1. BWR fuel burdle flooding data base 7,3-6
8.1-1, Definitions of the four curve segments that describe the homologous pump curves 8.1-5
8.2-1 Jet pump flow regimes 8.2:12
$8.2-2$ Flow-regime-dependent loss coefficients 8.2-12
9.4-1. Default values for key reactor kinetics constants 9.4 .5
9.4-2. Default values for key feedback phenomena 9.4-11
$A-1$. Miscellaneous constants A-4
A. 2 . Constants for steam internal energy function A. 5
A. 3. Constants for gamma function A. 6
A- 4 Constants for steam heat capacity function A-7
A. 5 Constants for itquid internal energy func ion A- 8
A. 6 Miscellaneous liquid property constants A-9
A. 7 conetants in liquid specifte volume function A. 10
A. 8 Constants in liquid specific volume correction factor A-11
8.1. Specific heat versus temperature for Ts 1248 K 8-8
B. 2 Structural materials properties. B-13
c-1 Experiments used to check the dtstribution parameter C. 6
C-2 Experiments used to check drift velocity formulas C-8

SUMMARY

The TRAC - BWR Code Development Progran at the Idaho National Engineering Iaboratory (INEL) is developing verstons of TRAC (Transient Reactor Analysis Code) to provide the U.S. Nuclear Regulatory Commission (NRC), and the public, a best-estimate capability for the analysis of postulated accidents and transients in boiling water reactor (BWR) systems and related experimental facilities. The first publicly released verston of the code, IRAC-BD1. provided a basic capability for the analysis of design basis loss-of-coolant accidents (DBLOCAS). The second publicly released version of the code, TRAC. BUI MODI, was developed to provide an analysis capability for operational transients, including anticipated transients without scram (ATWS), as well as to provide an improved analysis capability for both large and small-break LOCAs. The third release, TRAC-BFI, is a further improvement, particularly in the areas of computational speed and space-dependeni (one-dimensional) neutron kinetics modeling capability. The fourth release, TRAC-BF1/MODI, again improves the calculational speed, provides an in proved steam separator-dryer model, and corracts many errors or omissions.

The code provides a consistent and unified analysis capability for an entire accident sequence. For a large break LOCA, this includes the blowdown phase, heatup, reflood with quenching, and, finally, the refill phase of the LOCA accident sequence. For an ATWS event initiated by the closure of the ina in steam isolation valve, the sequence includes the initiating event, the reactor power excursion caused by void collapse and terminated by reactivity feedback, periodic power excursion caused by cycling of the safety relief valves, and ult imate reactor shutdown though the injection of soluble boron potson:

Unique features of the code include (a) a full nonhomogeneous, nolequilibrium, two-fluld, thermal hydraulic model of two-phase flow in all portions of a GWR systom, including a three-dimensional thermal-hydraulic treatment of a BHR vessel; (b) detailed modeling of a BWR fuel bundle, including a themal radiation heat transfer model for radiative heat transfer between multiple fuel rod groups, liquid and vapor phases, and the fuel channel wall, with quench front tracking on all fuel rod surfaces and inside and Dutside of the fuel channel wall for both bottom flooding and falling film quench fronts. (c) detafled models of BWR hardware. such as jet pumps and separator-dryers; and (d) a countercurrent flow Timiting model for BWR-1ike geometries.

Other features of the code include a nonhomogeneous, thermal equilibrium citical flaw model and flow regime-dependent constitutive relatisns for the interchanges of mass, energy, and momentum between the fluid phases and between the phases and structure.

TRAC - BOI/WODL contained several upgrades and component enhancements These include:

- Balance of plant component models, such as turbines, feedwater heaters, and steam condensers
- A simple lumped parameter containment model
- A comprehensive controt system model
- Reactivity feedback model, including the effect of soluble boron
- Boron transport model
- Noncondensable gas transport model, including the effects of noncondensable gas on heat transfer
- Mechanistic separator-dryer model
- Two-phase level tracking model
- Generalized component-to-component heat and mass transfer models
- Moving mesh quench front tracking mo 1 for fuel rods and both inside and outside surfaces of fuel ''annel wall
- Improved constitutive relations for heat, mass, and momentum transfer between the fluid phases and between the fluid phases and structure
- A free-format input processor with extensive error checking.

New features of TRAC-BFI/MOUL not available in the previousty released version of the code include:

- Courant-limit-violating (fast-running) numerical solution for all one-dimensional hydraulic components
- Implicit steam separator/dryer model
- Implicit turbfne model
- limproved interfacial package
- Condensation model for stratified vertical flow for realistic prediction of condensation in such cases
- One-dimensional neutron kinetic model (for space-der andent variations of power in ATWS-type transients)
- Improved control system solution logic
- Preload processor
- Conversion to ANSI standard FORTRAN 77.

From the very beginning of the TRAC-BF1/MODI development, adherence to a sthict quality control program ensured that a well-documented, working version of the code would be available at all times. All changes to the code, however small, are given a program change label that appears on the modified fORTRAN statements and on all documentation that accompanies the changes. This ensures that all changes are traceable to documents that describe the basis for the change and the model developer making the change. A set of test cases was developed and executed after each successive working version of the code was assembled to ensure that recent changes did not affect changes or models inserted into previous versions of the code

After the final working version of TRAC-BF1/MOD1 was assembled, a series of develonmental assessment test cases was executed. These test cases prosided insight into the code simulotion capabilities for various separate effects hydrodynamic lests, separate effects heat transfer tests, and integral system effects tests. On the whole, agrgement b ieen the TRAC-BFI/MODI simulation of the various problems and measured test data is excellent.

The TRAC-BFI/MODI code is described by three documents: TRAC-BF1/MOD1: An Advanced Best.Estimate Computer Program for Boiling Water Reactor Accident Analysis, Volumes 1 and 2, and TRAC-BFI/MODI Models and Correlations. Volume 1. Nodel Description describes the thermal-hydraulic models, numerical nethods, and component models available. Volume 2: User's Guide describes the input and output of the TRAC-8F1/M001 code and provides guidelines for use of the code modeling of BWR systems. TRAC-BFI/MODI Nodels and Correlations is designed for those users wishing a detailed mathematical description of each of the models and correlations available in TRAC-BF1/MOD1. This document reflects the as-coded configuration of the descriptive information provided in Volume 1

ACKNOWLEDGMENT

This report has been prepared in response to and under the sponsorship of the Office of Nuclear Regulatory Research of the U. S. Nuclear Regulatory Commission. The authors wish to acknowledge the privilege of having the opportunity to contribute to chis development. Also, the contributions of Dr. J. G. M. Andersen, of the General Electric Company, in clarifying several aspects in various sections of this document are sincerely appreciated.

NOMENCLATURE

A	flow area; interfacial area (Sections 4.1 and 6.1)
A_{1}	interfacial area between the liquid and gas phases
A_{j}	Flow area of cell j
$A_{j-1 / 2}$	Flow area at the junction (cell-edge) upstream of cell j
$A_{j+1 / 2}$	Flow area at the junction (cell-edge) downstream of cell j
A	Variable combination (Section 7.3)
A	geometric wall area
a	absorptivity
$\mathrm{a}_{\text {HEE }}$	homogeneous eqtilibrium mixture sound speed
a_{8}	sonic velocity
B	radiosity
B_{k}	radiation erargy leaving surface k per unit area per unit time
B2	buckling squared
b	boron concentration
C	virtual mass coefficient (Section 7.2); reactivity coefficient (Section 9.4)
$c_{b i}$	Local average interfacial drag per unit volume
c_{f}	control rod fraction
C_{i}	Drag coefficient (dimensionless)
C	drift-flux model distribution parameter
c_{p}	specific heat constant pressure
c_{v}	specific heat constant volume

Total mass flux $=j_{g}+j_{e}$
Vapor volumetric fiux density $=a V_{0}$

The 1 imiting value of $j_{g}\left(\right.$ for $\left.J_{e}=0\right)=\frac{(g \text { a } \Delta 0)}{\sqrt{\rho_{g}}} 0.25$

Liquid volumetric flux density $=(1-a) V_{t}$
The 1 intiting value of $y_{t}\left(\right.$ for $\left.g_{8}=0\right)$ -
${\frac{(9 a \Delta)}{\sqrt{A_{2}}}}^{0.25}$
utateladze number in the CCFL correlation (Section 7.3)
radiation absorption coefficient per unit length for droplets (Section 4.3)
radiation absorption roefficient per unit length for vapor (Section 4.3); vapor Kutateladze number (Section 7.3)
liquid Kutateladze number (Section 7.3)
hydraulic loss coafficient (Section 6.2); neutron multiplication (Section 9.4)
thermal concuctivity of vapor
thermal conductivity of water
virtual máss coefficient
hydraulic cell length
Tength along the path kJ
solute concentration in the liquid (mass of solute per unit mass of liquid); constant in CCFL correlation (Sections 5.1 and 7.3)
total mass flow
(7)

N

Nu
n
n
p
$P_{d}(z)$
P_{*}
P
p

96

Pq
q

9 da
$90 t$
9_{18}

Re
Re_{9}
sulute weight concentration in liquid (mass of solute per unit mass of mixture)
number of surfaces
Nusselt number \& h / kD
neutron density
nuclei density
pressure (Section 7.3); power density
probability of absorption per unit length
Wetted perimeter

Dimensionless variable defined in Section 7.3
flutd pressure, or equivalently, total pressure
partial pressure of the noncondensable gas
partial pressure of the vapor
core property, fuel temperature, moderator temperature, or moderator void, etc.
power deposited directly in the gas (without heat-conduction pracess)
power deposited directly in the liquid (without haat-conduction process)
total heat transfer across liquid-vapor interface
interfacial heat transfer to the gas
interfacial heat transfer to the liquid
wall heat transfer to the gas
wall heat transfer to the liquid
Reynolds number
Reynoids number for vapor

```
Regf Reynolds number for vapor in film flow
    Reynolds number for liquid
    Reynolds number for liquid in film flow
    spatial location
    vapor entropy
    liquid entropy
    Std.rton number = h/GC
    plated-out solute density (mass of plated solute
    divided by cell volume)
    source term in the solute-mass differential equation
    temperature
    gas temperature
    liquid temperature
    saturation temperature corresponding to the vapor
    partial pressure
    time
    volume
    Yelocity of dispersed phase
    gas velocity vector
    cross-sectional average vapor velocity
    cross-sectional average vapor drift velocity
V
V
Ven
V
```



```
Vol, vol hydrodynamic-cell volume
W
    weighting factor
    Weber number = pDV'/}/
    steam rality = A & \rhog Vg
    an interpolation variable defined in Section 4.1
    steam quality
    length in axial direction
    len-zth in vertical direction
```

Greek Letters:
\approx
gas volume fraction or void fraction
$a_{9} \quad$ vapor void fraction
a. 1iquid void fraction
a) void volume fraction in cell j
$a_{\text {tran }}$ void fraction at transition from bubbly/churn to
annula flow
ΔP pressure difference across a junction
Δx
axial length
Δp
ε
$\varepsilon_{g k j} \quad$ emissivity of the vapor phase along the path k to j
© 9 ghissivity of the tio-phase mixture along the path k
to j
absolute wall roughness height
variable defined in Section 6.1
direct neutron flux

Superscripts

$$
1
$$

n
$n+1$
$+$

Subscripts

a
shear stress at the wall
transmissivity of the vapor phase along path k to j transmissivity of the two-phise mixture along path k to j
transmissivity of the liquid phase along path k to j relative roughness in relation to channel radius $=2 e / D_{n}$
defined in Section 6.1
an interpolation variable defined in Section 4.1
transpose of vecton or matrix
old time
neat time
above two-phase level
below two phase level
air or nencondensable gas (Section 2); absorption (Section 9.4)
boron
bubble
cell center
droplet
direct moderator heating
Doppler
effective value

total (Section 4.3); throat
constant temperature
fuel temperature
moderator temperature
upstream
water vapor
void
wall
infinite lattice or infinite reactor
fast and thermal neutron groups, respectively
neutron downscatter from fast into thermal group

TRAC-BF1/M0D1 Models and Correlations

1. INTRODUCTION

Abstract

The transient reactor analysis code for bolling water reactors $\left(1\langle A C-B)^{1-4, t^{1-2}}\right.$ is a large and complex computer program for analyzing thermal hydrabilic transients in botling water reactor (BWR) systems Development of this code was initiated at the Idaho National Engineering Laboratory (INEL) in 1979 under the sponsorship of the U.S. Nuclear Regulatory Commission (NRC). The starting point for this development was an early version pt the transient reactor analysis code for pressurized water reactors (TRAC-P) ${ }^{1 / 3}$ developed at Los Alamos National Laboratory (LANL). For this reason, the basic equation system and the principal coding structure of TRAC-BF1/MOD1 are the same as in TRAC PF1. However, many of the models representing physical phenomena or performance of certain components unique to BWRs are different in TRAC-BF1/MODI. Furthermore, a number of programming changes that have been included in the evolving versions of TRAC-B, over severd years, hare made TRAT BFI/MODI considerably different than TRAC PTI Table 1-1 gives a list of the released versions of TRAC- 8 and their main

 rapabilities.Because of basic differences between fiWRs and pressurized water reactors (PWRs), specific models have been included in TRAC B for treatment of important BWR components, such as fuel bundles with canisters, jet pumps, steam separators, and dryers. ${ }^{-4}$. The differences between the fredecessor TRAC-P version and TRAC-B have increased in many respects with each few version. Two of the most important differences from the user s point of view are the input and output data structures. These are considerably different between TRAC BF1/MODI and TRAC-PFI

In spite of the many dilferences, there are still fundamental shimfarities between TRAC-BFI/MODI and TRAC-PFI in the use of the two-flutd six-equation system, the discretization of the partial differential equations and, to a large extent, the numerical solution schemes, For this reason, a detalled description of these aspects of TRAC.PFI is equally descriptive of the similar aspects of TRAC-BF1/MODI, and a number of these features are identified in the following sections of this report. Typical examples of these are the basic set of one and three-dimensional flow equations, steam water properties, and remedies for water packing problems.
from the start, development of TRAC-B was technically coordinated with a similar development at General Electric (GE) in San Jose, California. Several models, solution approaches, and whote subroutines for TRAC B versions have been exchanged between GE and INEL in this collaboration. Major examples of GE's contributions are the interfacial shear, jet pump, and interfacial heat transfer models that are described later. It may be observed that TRAC-B1 $1 / \mathrm{MODI}$ contains many models and features that were developed outside of

INTRODUCTION

Table 1-1. Previously released versions of TRAC-BWR.

Code version	Release date	Major new (ar improved capabilities Reference
TRAC-BDI	February 1981	Basic large break LOCA a
$T \mathrm{RAL}-\mathrm{BD}) 1 / \mathrm{V} 12$	June 1982	```Improved Iarge and small breaks, bastc compatibility for operational transients and ATWS```
TRAC-BD1/MOOI	November 1983	Large and small breaks, balance of plant modeling, operational transient and ATWS (with point kinetics)
TRAC-BFI (interim)	Jafuary 1985	Basic fast running numerics, one-dimensiona! neutron kinetics
TRAC-BFI	August 1986	Compleie one-dimensional fast numerics, d upgraded control system; improved hydraulics and heat transfer

a. J. Spore, TRAC-BDI; An Advanced Best Estimate Computer Program for
Boiling Water Reactor Loss-of-Coolant Analysis, NUREG/CR-2178, Ortober 1981
b. D. D. Tdylor Ut al MOAC phi Monl: An Advanced Best Fetimata Commutar Program for Boiling kater Reactor Transient Analysis, NUREG/CR-3633, EGG-2294, April 1984
C. Unpubitished EG\&G report, ThAC-BFI Manual: Extensions to TRAC-BO1/MOD1 (Draft). August 1985.
d. W. L. Weaver et al.. TRAC-BEI Manual: Extensions to TRAC-BDI/MOD1, EGG 2417. August 1986 (available from EG\&G Technical Library).
the INEL. The aim of this report is to give a detailed documentation of all important features of TRAC-BF1/MOD1, regardless of their source of development. In particular, it is important to note that niodels and features received from other sources have often been revised, modified, or reprogrammed before inclusion in TRAC-B.

The code manulis published with different versions of TRAC-B include adequate descriptions of many models introduced in each version. However, a complete and detailed documentation of all features of TRAC-BF1/MODI has not been available in one publication. The present report is intended to fill
this gap.
The approach taken in preparation of this document has been guided by the following process:

1. Review the coding of different models
2. Identify the source of models and formulations used in the coding.
3. Identify the data base used in the derivation of models or correlations
4. Provide a thorough sequence of equations leading to the programmed equations.
5. Ident. fy and explain any limitations, modifications, interpg ations, or other treatments imposed in the coding.
6. Comment on the implementation of each model in the coding; in particular, on the numerical procedures in the greparation of inputs and numerical treatments of the calculation results when they are used in the main equations.
7. Identify errors, inconsistencies, or other shortcomings.

Due to imitations in time and resources, this report does not include any systematic assessment of the individual models. Only some specific model assessments that were found in earlier publications have been included in a few cases. The absence of some necessary assessments is also pointed out in several places. Although general assessment of TRAC-B versions with the use of system data (see Reference 1-5) have indicated good predictive capabilities, it is probable that a systematic assessment of individual models, followed by subsequent refinements in the code, would enhance the accuracy of TRAC-BF1/MODI for actual BWR transient analysis.

Adoption of the title "Quality Assurance Report" for thit document has been avoided on the grounds that the identified inconsistencies and the systematic assessment of the models must be performed before such a report can be produced. The structure of this report has been coordinated as far as possible with similar documentayion for TRAC-PF1.6 and RELAP5/MOD2. 1.7 The initial work on detailed documentation of TRAC-BF1/MOD1 models beqan earty in FY-1987, and was intended to focus on the interfacial package and s me other features that users had found influence reactor analysis calculations musi significantly, towever, the focus and extent of this documentation was later changed to achieve the above mentioned coordination.

A basic outline for the contents of the documentation of these codes was sugqested by the Safety Code Development Group, Nuclear Technclozy and Engineering Division, LANL. This outline was slightly modified by inputs from

Introduction

the INEL and the NRC and was finalized in July 1987. "The adopted outline was to a large extent oriented towards TRAC.-PF1 features. for this reason. some of the math chaptor headings ate not quite relerant io a descruption of TRAC-BF 1, and there are some additional features in the latter code that would require separate sections of their own. On this account. Sections 3 and 5 in this report are very brief because there is no centralized determination of How regime in TRAC BH) (subject of Section 3) and the different aspects of fluid mass conservation (subject of Section 5) are no different than those described in the interfacial heat transfer section (4.1) or wall heat transfer section $(4: 2)$, The same argument applies to many other sections, yet for consistency, A Att 2 suggested outlthe is preserved. firtef comments under some of the headings are included to lead the reader to where the relevant details are found in the report

Coordinatlon of documentation allowed exchanging write-ups of some identical features in TRAC-BF1/MODI and TRAC-PF1. On this basis, the contents of Section 2 (Field Equations) is to a large extent a reproduction of the same chapter in Reference 1-3. However, many changes and alterations have been inctuoed to describe the fletd equitions, which are different in detall in TRAC-BF1 from those in TRAC-PF1. Several ather sections from Reference 1.3 are used in the same manner. Each of these sections is identified appropriately with an acknowladgment of the source.

This report includes, also, some isolated sections from different TRAC-B manuals and completion reports, which were found to give an adequate description of the specific models. These insertions are identified with appropilate references

1.1 References

1-1. 3. Spore et al.a TRAC-BDI: An Advanced Best Estimate Computer Program for Boiling water Reactor Loss-of-Coolant Analysis, NUREG/CR-2178, actubet 1981

1-2. D. D. Taylor et a1., TRAC-BD1/MOD1: An Advanced Best Estimate Computer Program for Boiling Water Reactor Transient Analysis, Volurss I through 4. Nutt 4 CR 3633, FGCi-2294, April 1984

1-3. D. R. Liles et al., TRAC-PFI/MOD1: An Advanced Best Estimate Computer Program for Pressurized Water React ." Thermal-Hydraulic Analysis, turttaten 3858, AA 10157 M5, fuly 1986

1-4. W. H. Rettig and N. L. Wade, Eds., TRAC-BF 1/MOD1: An Ajvanced Best Estimate Computer Program for Boiling water neactor Accident Analysis, Volume 2 : User's futde, NuRFG/CR 4356; EGG-2626; June 199 ?
a. T. D. Knight, "Models and Correlations Document, An Out line, ${ }^{\circ}$ Memorandum, Los Alamos National Laboratory, July 28, 1987

Introduction

1-5. B. L. Charboneau, Overview of TRAC-BDI/MODI Assessment Studies, NUREG/CR-4428, EGG-2422. November 1985

1-6. Safety Code Development Group, TRAC-PFI/MODI Correlations and Models, NUREG/CR-5069, LA-11208-MS, December 1988.

1-7. R. A. Dimenna et al., RELAP5/MOD2 Models and Correlations, NUREG/CR5194, EGG-2531, August 1988.

Fluid Field Equations

2. FIELD EQUATIONS

The main purpose ,i the 1RAC-BF1/MOD1 code is to solve a coupled sat of field equations describing the thermal-hydraulic behavior of the fluid coolant in the purs systam, the flow of eneryy try the fuel and the structurdt components of the reactor, and the generation of the nuclear power in the reactor core. The following subsections bricfly describe those field equations. The most difficult part of the solution is to solve the thermal tydraulte behavior of the fluld and the coupltng to the fuel/structural heat transfer through the heat transfer coefficients (HTCs) ; the code devotes most of the programming and most of the amouter time to solving this part of the problen. This area is more complex tecause there are more coupled field equat tons assoctated with descritfing the flutd (more independent variables), more phenomend to be considered, and the HTCS are very dependent on the fluid properties and velocities. On the other hand, the ficld equations describing the energy field in the solid structures and the nuctear reaction are much simpler and fnvolve fewer variables, although this statement is not intended to indicate that these fields are not as important as the thermal-hydraulic model to the overall solution of the problem.

We present the ffeld equat fons here almost solely to provide a basis for understanding the required closure relations incorporated into TRAC-BF1/M001, although the equations help to express the coupling among the different parts of the overall code. Also, the discussion of the flotd field equations provides an indication of avpraging processes and the time levels at which the variables are evaluated

2.1 Fluis Field Euuations

TRAC-BF1/MODI uses a two fluid model for fluid flow in both the one- and three-dimensional components. These equat foas were derived at LANL and were codet into a developmental verston of the TRAC mfl code, whtch was the code from which TRAC RF1/MODI was developed (see Section 1).

There have been two additional terms added to the original equations of motion (momentum equations), winch represent the virtual mass force and a pressume dorce due to the potd fractuon quadtent betwen adtacent cells tn the horizontal direction.

2.1.1 Nowenclature

Before presenting the fluid field equations, we need to define certain terminology. In our nomenclature, the term gas implies a general mixture of wator 1 apory and the montondensable gess, the subsertpt q will denote a property or parameter applying to the gas mixture; the subscript \underline{v} indicates a

Fluid Field Equations

quantity applying specifically to water vapor (referred to as simply vapor): and the subscript a (for air) signifies a noncondensable-gas quantity. The term liquad implas pure tiquid water, and the subscript if denotes a quattity applying specifically to liquid water. In the discussion of the finte-difference equations, all quantities excent for the velocities are centered in the hydrodynamic cell (cell-centered); the velocities are cetl-edge quantities.

2.1 .2 Gas/Liquid Equations

The basic two phase two-fluid mesici consists of six partial differential equations.

Mixture Thermal Energy Equation

$p \nabla \cdot\left[(1-\alpha) \vec{V}_{t}+\alpha V_{g}\right]+q_{s t}+q_{s p}+q_{s t}+q_{d g}$

Combined-Gas Thermal Energy Equation

$$
\begin{equation*}
\frac{\partial\left(\omega e_{0} e_{0}\right)}{\partial t}+\nabla \cdot\left(\alpha p_{8} e_{8} \vec{V}_{8}\right)=p \frac{\partial \pi}{\partial t}-p \nabla \cdot\left(\vec{v}_{g}\right)+q_{v g}+q_{d g}+q_{1 g}+\Gamma h_{x} \tag{2.1-i}
\end{equation*}
$$

Liquid Mass Equation

$$
\begin{equation*}
\frac{\partial\left[(1-\alpha) P_{t}\right]}{\partial t}+\nabla,\left[(1-a) \rho_{t} \vec{V}_{\ell}\right]=-\Gamma \tag{2.1-3}
\end{equation*}
$$

Combined-Gas Mass Equation

$$
\begin{equation*}
\frac{\partial\left(\alpha \rho_{9}\right)}{\partial t}: V \cdot\left(\alpha \rho_{9} \vec{V}_{9}\right)=\Gamma \tag{2.1-4}
\end{equation*}
$$

Liguid Equation of Motion

$$
\frac{\partial V_{t}}{\partial t}, \vec{\rightharpoonup}_{2}, \vec{V}_{c}+\star=\frac{P_{c}}{(1)} \frac{\partial) \rho_{c} \partial t}{\partial t}\left(\vec{V}_{t}-\vec{V}_{0}\right)=\frac{1}{\rho_{t}}
$$

$$
\begin{align*}
& \frac{c_{1}}{(1-\alpha) \rho_{t}}\left(\vec{v}_{9}-\vec{v}_{2}\right) \cdot\left[\vec{v}_{g}-\vec{v}_{2}\right]-\frac{c_{\alpha t}}{(1-\alpha) \rho_{t}} \vec{v}_{\ell}\left|\vec{v}_{t}\right|+\vec{g} \\
& k_{\text {van }} \frac{\rho_{c}}{(1-\alpha) \rho_{t}} \nabla_{t} \nabla\left(\vec{V}_{t}-\vec{V}_{y}\right)+\frac{\bar{p}_{y}}{(1-\alpha) \rho_{t}} \tag{2.1-5}
\end{align*}
$$

Combined-Gas Equation of Motion

$$
\begin{align*}
& \frac{a \vec{v}_{t}}{\partial t}+\vec{v}_{2} \cdot \vec{\nabla}_{t}+k=\frac{\rho_{c}}{(1-\alpha) \rho_{l}} \frac{\vec{\partial}}{\partial t}\left(\vec{v}_{2}-\vec{v}_{0}\right)=-\frac{1}{\rho_{e}} \nabla p=\frac{c_{9}}{\alpha \rho_{g}}\left(\vec{v}_{g}-\vec{v}_{e}\right)\left|\vec{v}_{g}-\vec{v}_{t}\right| \\
& \frac{c_{v g}}{\alpha p_{g}} \vec{V}_{g}\left|\vec{V}_{g}\right|+\vec{g}=k_{v m} \frac{P_{c}}{c_{c}} \vec{V}_{0} \nabla\left(\vec{V}_{g}-\vec{V}_{l}\right)+\frac{\nabla p_{s}}{\alpha p_{2}} \tag{2.1-6}
\end{align*}
$$

An alternative to solving one of the phasic mass equations is to soive the total mass equation, which is obtained by sumning Equations (2.1-3) and (2.1.4)

Total Mass Equation

$$
\begin{equation*}
\frac{\partial\left[(1-\alpha) \rho_{\ell}+\alpha \rho_{2}\right)}{\partial t}+\nabla \cdot\left[(1-\alpha) \rho_{\ell} \vec{V}_{\ell}+\alpha \rho_{0} \vec{V}_{\theta}\right]=0 \tag{2.1-7}
\end{equation*}
$$

Solving either Equation (2.1-3) or (2.1-4) together with Equation (2.1-7) is compleiely equivalent to solving both Equations (2.1-3) and (2.1-4).

The mass equations are written in fully conservative form to permit the construction of a numerical scheme that rigorously conserves some measure of the system mass. The energy equations are written in a partially conservative form to make numertcal solution sfmpler than would be posstble if the fully conservative form (bulk kinetto energy terms included) were used. The nonconservative form of the momentum equations also permits simpler numerical solution strategies and can generally be justifted because the presence of wall frlctlon makes the fully conservative form of the momentum equation far less useful. However, when sharp void fraction changes exist, numerical solution of the nonconservative motion equations can produce significant errors. In such instances, a version of the fully conservative momentum equation must be solved (see Section 2.1.7.2.).

Closure is obtained for these equations with normal thermodynamic relations, which for water are described in Appendix A, together with the tranoport proparties and specifications for the interfactal drag coeffictents $\left(c_{i}\right)$, the interfacial heat transfer $\left(q_{i g}\right.$ and $\left.q_{i \ell}\right)$, the phase change rate (Γ),

f uid Field Equations

the wall-shear coefficients ($c_{\text {wy }}$ and $c_{\text {ct }}$), and the wall heat flows ($q_{\text {wg }}$ and $q_{k e}$). The phase-change rate is evaluated from a simple thermal-energy jump relathon

$$
\begin{equation*}
\Gamma=\frac{\left(q_{i 0}+q_{i x}\right)}{n_{y}-n_{i}} \tag{2,1-8}
\end{equation*}
$$

where

$$
a_{i g}=h_{i g} A_{i} \frac{\left(T_{\mathrm{sx}}=T_{g}\right)}{v o l}
$$

and

$$
\begin{equation*}
q_{i t}=h_{18} A_{i} \frac{\left(7_{\mathrm{sv}}-T_{i}\right)}{v o l} \tag{2.1-10}
\end{equation*}
$$

Here, A and the h, terms are the interfacial area and HTCs, and T is the saturation temperature corresponding to the partial steam pressure. The quantities h_{v} and h_{c} are the appropriate enthalpies of the vapor and liquid, respectively: these enthalpies are the bulk fluid enthalpy for the phase moving to the interface and the saturation enthalpy for the product of the phase change

$$
\begin{align*}
& \text { Wall heat-transfer terms as } \text { ie the form } \\
& Q_{N g}=h_{N g} A \frac{\left(T_{N}-T_{0}\right)}{v o l} \tag{2.1-11}
\end{align*}
$$

and

$$
\begin{equation*}
q_{w e}=h_{*} i \frac{\left(T_{*}-T_{\ell}\right)}{\text { vol }} . \tag{2,1-12}
\end{equation*}
$$

where A_{s} is the actual heated surface area. The $h_{\text {wg }}$ and hre of the cell include "the information necessary for partitioning the wall heat transfer between the gas and the 1 qutid

2.1.3 Noncondensable Gas

A single noncondensable gas field may be followed with TRAC-BF1/MODI. It is assumed to be in thermal equilibrium with any stean that is present and to

Fluid Field Equations

move with the same velocity as the steam. Hence, only a single field equation is needed to track the noncondensable gas

Noncondensable Gas Mass Equation

$$
\frac{\partial\left(\alpha \rho_{a}\right)}{\partial t}+\nabla \cdot\left(\alpha \rho_{a} \vec{v}_{0}\right)=0
$$

With this field present, the total gas density and energy are sums of the vapor and the noncondensable components

$$
\begin{equation*}
P_{\mathrm{g}}=P_{\mathrm{v}}+P_{\mathrm{B}} \tag{2.1-14}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{y} e_{i}=P_{y} e_{y}+\rho_{0} e_{z} \tag{2.1-15}
\end{equation*}
$$

We assume Dalton's law applies; thereiore,

$$
\begin{equation*}
P=P_{0}+P_{0} \tag{2.1-16}
\end{equation*}
$$

The subscripts v and a indica*e, respectively, the steam and air properties; the code normally applies the thermodynamic properties for air to the noncondensable gas.

2.1.4 Liquid Solute

TRAC-BFI/MODl includes a mass continuity equation for a solute moving with the 1 iquid field

Liquid-Solute Mass Equation

$$
\frac{\partial\left[(1-\alpha) m p_{t}\right]}{\partial t}+\nabla \cdot(1-\alpha) m p_{t} \vec{V}_{e}=S_{m} .
$$

where m is the solute concentration (mass of solute/unit mass of liquid water) in the liquid phase.

This mass continuity equation is converted into a weight concentration equation by assuming that the mixture of liquid and solute is a dilute mixture. The assumption of a dilute mixture is appropriate for the boron concentration, which is measured in parts per million by weight. The weight

Fluid Field Equations

```
concentration is given by
    (in) mass of solute mass of ligurd
                \(\frac{m(1-\alpha) P_{l}}{m(1-\alpha) \rho_{l}+(1-\alpha) P_{l}}\)
                \(\frac{m}{1+m}\) at if \(m<1\).
```

 Using this approximation, the liquid-solute concentration equation is
 Using this approximation, the liquid-solute concentration equation is

$$
\begin{equation*}
\frac{\left.\partial_{i}^{L}(1-\alpha) p_{e} m^{2}\right]}{\partial t}+\nabla \cdot\left[(1-\alpha) p_{e} m^{\prime} \vec{\nu}_{\ell}\right]=\$_{10 t} \tag{2.1-19}
\end{equation*}
$$

where m^{\prime} is the weight concentration of solute (mass of soiute/mass of

The solute does not affect the hydrodynamics directly. If we assume that the solute represents boron, the amount of the dissolved and the plated-out boron in the core may affect the hydrodynamics indirectly through reactivity feedback. If the solute concentration exceeds the orthoboric-acid solubility at the liquid temperature in a specifis hydrodynamic cell, we assume that the solute in that cell plates out. Plating can occur if the cell flutd flashes or boils and increases the concentration beyond the solubility limit. We also assume that any plated-out solute instantanezusly redissolves to the maximum allowable concentration if more liquid enters the cell. Because the solute does not affect the hydrodynamics directly, the solute variable may be used as a tag to track the movement of flutd fre a specific source through the system.

2.1.5 One-Dimensional Finite-Difference Methods

For the one-dimensional components, the cude solves Equations (2.1-1) through $(2,1-6),(2,1-12)$, and $(2.1-16)$ to provide a complete description of the flutd field, although Equation (2.1 12) and/or (2,1 if) can be turtied oft through input. The spatial mesh used for the difference equations is staggered with thermodynamic properties evaluated at the cell centers and velocities evaluated at the cell edges. For stability, flux terms at cell edges require donor-ce! 1 averages of the form

$$
(F V)_{j+1 / 2}= \begin{cases}y_{j} V_{j+1 / 2}, & \text { if } V_{j+1 / 2} \geq 0 \tag{2.1-20}\\ y_{j+1} V_{j+1 / 2,}, & \text { if } V_{j+1 / 2}<0\end{cases}
$$

where y can be any cell-center state variable or a combination of such variables, and V is either the liquid or vapor velocity, as appropriate. The subseript $f+1 / 2$ potnts to decels interface, and the sutscripts f and $f+7$ indicate the hydrodynamic cells on each side of the cell interface. With this notation, the finite-difference divergence operator for one-dimensional calculations is

$$
\begin{equation*}
\nabla_{j} \cdot(Y V)=\frac{\left\{A_{j+1 / 2}(Y V)_{j+1 / 2}-A_{j-1 / 2}(Y V)_{j-1 / 2}\right\}}{v o]_{j}} \tag{2.1-21}
\end{equation*}
$$

where A is the local cell-interface cross-sectional area (flow area) and vol, is the volume of the $J t h$ cell. For the equations of motion, the donor-cell forin of any V, V terin is

$$
\begin{equation*}
\frac{\Delta V_{j+1 / 2}\left(E+V_{i+3 / 2}-F \cdot V_{1+1 / 2}\right)}{\Delta Y_{j+1 / 2}} \text {, if } V_{j+1 / 2}<0 \tag{2.1-22}
\end{equation*}
$$

where $\Delta X_{y+1 / 2}$ is half the sum of ΔX_{f} and $\Delta X_{2 \cdot 1}$, respectively the cell lengths of cells j and $j+1$, and

$$
\begin{align*}
& D=\frac{A_{j+1 / 2}}{A_{j+1}}+\frac{A_{j+1 / 2}}{A_{j}} \tag{2.1-23}\\
& E=\left\{\begin{array}{l}
\frac{A_{j-1 / 2}}{A_{j+1}} ; V_{j+1 / 2} \times 0 \\
\frac{A_{j+3 / 2}}{A_{j+1}} ; V_{j+1 / 2}<0
\end{array}\right.
\end{align*}
$$

Fluid Fielo Equations

$$
\begin{align*}
& F=\frac{A_{j+1 / 2}}{A_{j}} \tag{2.1-25}\\
& A_{j}=\frac{v 0 l_{j}}{\Delta r_{j}} \tag{2,1-26}\\
& A_{j+1}=\frac{v 0 t_{j+1}}{\Delta r j+1}
\end{align*}
$$

The factors 0, E, and F are used to obtain the correct Bernoulli (or reversible) pressure loss (gain) through area reductions (expansions). The formulations for $\mathbb{D}_{,}$[, and yield exact results for singlephase flow and approximately correct rasults if the change in the void fraction through the area change is small. The derivation of the factors D, E, and F can be found in Section 7.1.

The code uses the following finite-difference equations. In these equations, the superscripts n and $n+1$ indicate current-time and new-time quantities respeciivety. A tilde () above a variable indicates that it is the result of an intermediate step and not a final value for the end of the time step. A horizontal line (${ }^{-}$) above a quantity indicates that it is obtained from the arithmetic average of values at adjacent cells. If there are ne subscripts denoting cell location, we assume subscript j for mass and er argy equat ons and subscript $j+1 / 2$ for equations of motion. Finally, θ is if angle between a vector from the center of cell j to the center of cell $\mathrm{j}+1$ and a vector directed against gravity; in the application of the code, θ is more generally the inverse cosine ($\cos ^{-1}$) of the change in elevation between cell centers divided by the flow length between cell centers.

The source terms on the right-hand sides of the stabilizer mass and stabilizer eriergy equations have been eliminated by subtracting the basic equations from the stabilizer equations. This elfminates the recomputation of the source terms in the stabilizer phase of the time advancement.

2.1.5.1 Basic Equations of Motion

Combined Gas

$$
\begin{align*}
& \frac{\left(V_{0}^{n+1}-V_{g}^{n}\right)}{\Delta t}+V_{g} \nabla_{j+1 / 2} V_{g}+k_{v m} \frac{P_{c}+1 / 2}{\left(a \rho_{9}\right)^{n}+1 / 2} \frac{\left(V_{\theta}^{n+1}-V_{\ell}^{n+1}\right)-\left(V_{9}^{n}-V_{i}^{n}\right)}{\Delta} \\
& +\frac{c_{i}^{n}\left|V_{\theta}^{n}-V_{e}^{n}\right|\left(V_{g}^{n+1}-V_{e}^{n+1}\right)}{\left(\overline{\alpha p_{g}}\right)_{j+z}^{n}}+\frac{p_{j+1}^{n+1}-p_{i}^{n}}{\left(\overline{\rho_{g}}\right)_{j+1 / 2}^{n} \overline{\Delta P}_{i+1 / 2}} \\
& \left.+\frac{c_{\mathrm{wg}}\left|V_{\mathrm{g}}^{n}\right| V_{\theta}^{n+1}}{\left(\overline{\alpha \rho_{g}}\right)_{j+1 / 2}^{n}}+g \cos \theta+\frac{k_{v m p} \rho_{\mathrm{j}}^{\mathrm{j}} \mathrm{j} 1 / 2}{} \overline{\bar{\alpha}}_{(\bar{\rho} g}\right)_{j+1 / 2}^{n} V_{D}^{n} \nabla_{j+1 / 2}\left(V_{0}+V_{\ell}\right) \\
& +\frac{\nabla p_{s}^{n}}{\overline{u p_{g_{j+1 / 2}}^{n}}}=0
\end{align*}
$$

Liquid

$$
\begin{aligned}
& \frac{v_{l}^{n+1}-V_{l}^{n}}{\Delta}+V_{t} \nabla_{j+1 / 2} V_{l}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{c_{1}\left(V_{0}^{n}-V_{i}^{n}\right)\left(v_{p}^{n+1}-v_{0}^{n+1}\right)}{(1-\alpha) p_{\ell+1 / 2}^{n}}+\frac{p_{j+1}^{n+1}-p_{j}^{n}}{\bar{P}_{\ell+1 / 2}^{n}-X_{j+1 / 2}} \\
& \frac{c_{w l}\left|V_{\ell}^{n}\right| V_{\ell}^{n+1}}{(1-\alpha) P_{e_{j+1 / 2}}}+g \cos \theta
\end{aligned}
$$

Fluid Field EQvations

$$
\begin{align*}
& V_{\text {Nit }} \frac{P_{f j+1 / 2}^{n}}{(1-\alpha) P_{\ell+1 / 2}^{n}} \\
& \frac{\nabla_{p}^{n} \nabla_{i+1 / 2}^{n}\left(V_{2}-V_{4}\right)}{(!-\alpha) \rho_{f+1 / 2}^{n}}=0 \tag{2.1-29}
\end{align*}
$$

2.1.5.2 Basic Mass Equations

Combined Gas

$$
\begin{equation*}
\frac{f_{\Delta p_{0}}-\left(a p_{0}\right)^{n-1}}{\Delta t}+\nabla_{j}\left(a p_{0} v_{0}^{n+1}\right)=\Gamma \tag{2.1-30}
\end{equation*}
$$

Noncondensable Gas

$$
\begin{equation*}
\frac{\left[\alpha \hat{\rho}_{a}-\alpha p_{b}^{n}\right]}{\Delta}+\nabla_{j}\left(\alpha p_{a} \nu_{a}^{n+1}\right)=0 \tag{2.1-31}
\end{equation*}
$$

Liguid
i. 1.
(स) \dot{p}_{ℓ}
(1)
a) $\left.\mathrm{pe}_{\mathrm{e}} \mathrm{J}^{n}\right\}$
∇_{1} [1
a) $\left.P_{l} V_{l}^{n \cdot 1}\right]=-\Gamma$
(2.1-32)
2.1.5.3 Basic Energy Equations

Combined Gats

$$
\begin{align*}
& \frac{\left[\alpha p_{e} e_{g}-\left(\alpha \rho_{g} e_{g}\right)^{n}\right]}{\Delta}+\nabla_{f}\left[\left(\alpha \rho_{p} e_{g}\right) V_{\theta}^{n+1}\right] \\
& +p\left[\frac{\left(\alpha-\alpha \alpha^{n}\right)}{v}+\nabla_{j}\left(\alpha^{n} V_{g}^{n-1}\right)\right]=\phi_{\alpha g}+\dot{q}_{d g}+\dot{q}_{i g}+\Gamma \bar{h}_{s g} \tag{2.1-33}
\end{align*}
$$

Total

$$
\begin{align*}
& \frac{\left.\left\{\alpha \hat{e}_{g} \hat{e}_{y}+(1-\alpha) \hat{p}_{z} \varepsilon_{t}-\left(x \rho_{g} e_{9}\right)^{n}-[11-\alpha) p_{t} e_{t}\right\}^{n}\right\}}{\Delta} \\
& +\nabla_{1}\left\{\left(\alpha_{9} e_{2}\right) V_{9}^{n+1}+(1-\alpha) \eta_{2} e_{2} V_{l}^{n+2}\right\} \\
& \left.\theta \nabla\left[f_{i}-\alpha^{n}\right\rangle V_{t}^{n+1}+\alpha V_{g}^{n+1}\right]=\bar{q}_{w g}+q_{k t}+\dot{q}_{d t}+\bar{q}_{d g} \tag{2.1-34}
\end{align*}
$$

2.1.5.4 Stabilizing Mass Equations

Combined Gas

$$
\begin{equation*}
\frac{\left[\left(\alpha \rho_{g}\right)^{n+1}-\dot{\alpha} \bar{p}_{g}\right]}{\Delta t}+\nabla\left\{\left[\left(\alpha \rho_{g}\right)^{n+1}-\alpha \rho_{g}\right] V_{g}^{n+1}\right\}=0 \tag{2.1-35}
\end{equation*}
$$

Noncondersable Gas

$$
\begin{equation*}
\frac{\left.\left(\alpha \rho_{0}\right)^{n+1}-\alpha \rho_{0}\right)^{1}}{\Delta t}+\nabla_{j}\left\{\left[\left(\alpha p_{0}\right)^{n+1}-\alpha p_{0}\right] v_{5}^{n+1}\right\}=0 \tag{2.1-36}
\end{equation*}
$$

Liquid

$$
\begin{align*}
& \frac{\left.\left.\{x+1-\alpha) p_{e}\right\}^{n+1}-\left[(1-\bar{a}) p_{l}\right]\right\}}{\Delta}+\nabla \int\left\{\left[(1-\alpha) p_{e}\right\}^{n+1}\right. \\
& \left.\left.\left\{(1-\alpha) p_{l}\right]\right\} V_{l}^{n+1}\right)=0 \tag{2.1-37}
\end{align*}
$$

Liquid Solute

$$
\begin{align*}
& \frac{\left\{[1-\alpha) p_{\ell} m^{7}\right]}{\{1}-\left((1-\alpha) p_{\ell} n^{n} m^{\prime n}\right\} \\
& \Delta t \tag{2.1-38}\\
& +\nabla_{j}\left\{\left[(1-\alpha) p_{\ell} m^{\prime}\right] v_{\ell}^{n+1}\right\}=0
\end{align*}
$$

and

Fluid Field Equations

$$
\begin{align*}
& \left(m^{\prime}\right)^{n+1}=\min \left\{\frac{\frac{\left.(1-\alpha) p_{\ell} m^{\prime}\right]}{\left[(1-\alpha) p_{\ell}\right]^{n+1}}+S_{c}^{n}}{\frac{1}{1}}+m_{\max }^{\prime}\right\} \tag{2.1-39}\\
& S_{c}^{n+1}=S_{c}^{n}+\left[(1-\alpha) p_{\ell} m^{\top}\right]-\left(m^{\prime}\right)^{n+1}\left[(1-\alpha) p_{\ell}\right]^{n+1} \tag{2.1-40}
\end{align*}
$$

2.1.5.5 Stabilizing Energy Equations

Com: inted gas

$$
\begin{equation*}
\frac{\left\{\left(\alpha p_{g} e_{g}\right)^{n+1}-\widetilde{\alpha} \dot{p}_{g}^{3} g_{g}\right]}{\Delta t}+\nabla\left\{\left[\left(\alpha p_{g} e_{g}\right)^{n+1}-\alpha p_{g} e_{g}\right] V_{g}^{n+1}\right\}=0 . \tag{2.1-41}
\end{equation*}
$$

Liquid
[1]
 $v_{j}[\{11$
a) $\left.p_{e} e_{e}\right]^{n+1}$

$$
\left.\left.(1-\alpha) p_{\ell} e_{t}\right\} \cdot V_{t}^{n-1}\right]=0
$$

Time levels are omitted from some flux terms in Equations (2.1-30) through (2.1-42) because these terms contain both old and new time quantities. If x is a combination of state variables without a time supenseript, then the correct definition for the divergence term in the mass and energy equations in which it appears is

$$
\begin{align*}
\nabla_{i}(X V) & =\left\{\frac{1}{v a]_{j}}\right)^{\left.\left\{A_{1+1 / 2} V_{j+1 / 2}^{n+1}[f)+1 / 2^{X}\right)+\left(1-f_{j+1 / 2}\right) x_{j+1}^{n}\right\}} \\
& =\left\{A_{i-1 / 2} V_{j-1 / 2}^{n+1}\left[f_{j-1 / 2} X_{j-1}^{n}+\left(1-f_{j-1 / 2}\right) X_{j}\right]\right\} \tag{2.1-43}
\end{align*}
$$

where

$$
\begin{equation*}
x_{1}=g^{\prime} x^{n}+\left(1-g^{\prime}\right) \dot{x} \tag{2.1-44}
\end{equation*}
$$

The factor $f_{j+1 / 2}\left(f_{j-1 / 2}\right)$ is used to obtain donor-cell averaging (defined

In Equation $\{2.1-20)\}$ and has the value 1 when $V_{j-1 / 2}^{n+1}\left(v_{j+1 / 2}^{n+1}\right)$ is zero or positive and 0 when the velocity is negative. The weighting factor g^{2} depends on the rate of phase change and goes to unity as the phase change disappears and to zero as the phase change approaches the total outflow of the phase created in the cell. For nonzero g^{\prime}, this form of the divergence operator is nonconservative, but total conservation is maintained by the stabllizer step.

The divergence operator for the equations of motion (i.e.., momentum equations) uses a mixed tife level so that the Courant stability limit may be exceeded without the use of the predtctor and stabtilizer equations of motion found in TRAC-PFI/WoD1. The dfvergence operat or is

$$
V \nabla V V_{1+1 / 2}=\left\{\begin{array}{l}
\frac{D V_{j+1 / L^{n}} E V_{1+1 / 2}^{n+1}-F V_{j-1 / 2}^{n}}{\Delta L_{1}} ; V_{1+1 / 2}=0 \tag{2.1-45}\\
\frac{D V_{1+1 / 2}^{n} E V_{13 / 2}^{n}-F V_{j+1 / 2}^{n+1}}{\Delta_{j+1}} ; V_{j+1 / 2}<0
\end{array}\right.
$$

The modifying coefficients are $D=E=F=1$ in the diveramse of the relative velocity found in the virtual mass terms
2.1.5.6 Additional Force Terms in Momentum Equations. In addition for the forces represented by wall friction, terfacial friction, gravity, and
 been added to the me-dimensional momentum equatians. The two additional terms represent the virtual mass force and an additional gravity force due to the void gradient between cells.
2.1.5.7 Formulation of the Virtual Mass Term. A virtual mass force term has been included in the one-dimensional momentum equations. The magnitude of this tento is smath and does not affert the sol uttorn very much However, it does affect the coupliaz between the phases and adds damping to the solution procedure, leading to a smoother and faster-running code. The product of the virtual mass coefficient and the continuous phase density is given by
$0.5 a\left(\frac{1+2 \alpha}{1-\alpha}\right) p_{i} ; 0<\alpha<\alpha_{1}$
$k_{\mathrm{cm}} \mathrm{P}_{\mathrm{c}}$

$$
\begin{equation*}
0.5(1-\alpha)\left(\frac{2-2 \infty)}{\alpha}\right)_{0}+\left(\frac{1}{P_{1}}-p_{0}\right)\left(\frac{1-\alpha}{1-a_{1}}\right)^{3}+1>\alpha>\alpha_{1} \tag{2,1-46}
\end{equation*}
$$

Fluid Field Equations

$$
\begin{align*}
& \rho_{\ell}^{v e}=0.5 \alpha_{t r}\left(\frac{1+2 \alpha_{t r}}{1-\alpha_{r r}}\right) \rho_{t} \tag{2.1-47}\\
& \rho_{v}^{v m}=0.5\left(1-\alpha_{t r}\right)\left(\frac{3-2 \alpha_{4 r}}{\alpha_{t r}}\right) \rho_{v}
\end{align*}
$$

where $\alpha_{4 t}$ represents the transition between liquid continuous flow regime and the vapor continuous flow regime. For simplicity, this transition void fraction is :aken as

$$
\begin{equation*}
a_{1,}=0.5 \tag{2.1-49}
\end{equation*}
$$

The formulation of the virtual mass coefficient is in agreement with Zuber's recommendation. The velocity of the dispersed phase is given by

$$
\begin{equation*}
V_{2} \Rightarrow(1-\alpha) V_{g}+\alpha V_{\ell} \tag{2.1-50}
\end{equation*}
$$

This formulation gives the correct limits for single-phase flows (i.e.. $V_{p}=V_{1}$ at $a=1$ and $V_{p}=V_{0}$ at $a=0$). The velocity of the dispersed phase V_{0} shoula more rightly be the kinematic velocity associated with the virtual mass force. In the absence of a definitive derivation of this kinematic velocity, the simple form shown above was adopted, since it has the correct limits.
2.1.5.8 Void Gradient Gravity Head Term. The other term added to the momentum equation represents information lost in the derivation of the one-dimenstomal momentum equat ions by the integration over the cross-sectional area perpendicular to the flow direction. In a horizontal flow path at low flow rates, a horizontally stratified flow will develop with a force resulting from the difference in the hydrostatic heads in adjacent computational cells. This force term is given by

$$
\begin{equation*}
\nabla p_{s}=p_{1}-p_{2}=\left(\rho_{2}-p_{8}\right) \rho_{c} \Delta z\left(\alpha_{2}-\alpha_{1}\right) \tag{2.1-51}
\end{equation*}
$$

where the subscripts 1 and 2 refer to the diagram in Figure 1-1.
This force is added to the 1 toutd phase momentum equatton (the liquid phase has the highest inertia) in such a way as to equalize the 1 fquid levels between the two cells and is computed based an beginning of time step void fractions. The explicit formulation of this force term can result in the momentum equattont being unstable if too large a time step is taken during the time advancement. The time step used by the stratifical force is given by

Fluid Fielo Equations

Figure 2.1-1. Void gradient gravity head term schematic.

$$
\begin{equation*}
\Delta t_{s}=\min \left\{\Delta t, \frac{0.25}{\left\{\overline{\Delta x} \sqrt{g_{c} \Delta z\left[1-0.5\left(\alpha_{1}+\alpha_{2}\right)\right]}\right\}}\right] \tag{2.1-52}
\end{equation*}
$$

where the time step associated with horizontal stratification force is determined by analyzing the flow between the two adjacent cells as if they were the two legs of a manometer. The stability 14mit for explicit integration of the manometer equations is given by

$$
\Delta v=\frac{1}{\left\{\Delta x g_{c} \Delta x\left[1-0.5\left(\alpha_{1}+\alpha_{2}\right)\right]\right\}^{1 / 2}},
$$

The time step used by the code is one-fourth of the stablity limit, Final, y, the stratification force varies with the orientation of the flow path so that the find formi of the horizontal stratification or vold gradient force term is

$$
\begin{equation*}
\nabla p_{s}=\left(p_{2}-\rho_{g}\right) g_{c} \Delta z\left(\alpha_{2}-\alpha_{1}\right) \sin \theta . \tag{2.1-54}
\end{equation*}
$$

Equations (2.1-28) through-(2-34), combined with the necessary thermodynamic and constitutive equations, form a coupled system of nontinear equations. Equations $(2-28)$ and $(2-29)$ are solved directly to obtain V_{g}^{n+1} and V_{ℓ}^{n+1} as dependent variables. After substituting these equations, or velocity into Equations (2.1-30) through (2.1-34), the resulting system is solved for the independent variables $\hat{p}^{n+1}, \hat{P}_{g}^{n+1}, T_{g}^{n+1}$, and $\tilde{\alpha}^{n+1}$
with a standard Newton iteration, including all coupling between cells. In pracicice, the linearized equations solved during this iteration can be reduced easily to a tridiagonal system involving only total pressures. The final six stabilizing equations (Equations (2.1-35) through (2.1-42)] also are simple

Flutd firlo Equations

tridiagonal Inear systems because V_{8}^{n+1} and V_{i}^{n+1} are known after solving Equations (2.1-23) through (2.1-34). Because the pressure and fluid temperatures are used mainly as the starting point for the next iteration, the start of time-step values for these quantities are the tilde values from the end of the previous basic step. This approximation prevents an extra evalation of the thermodynatic and transport properties. A void fraction consistent with the stabilizer mass and energy quantities is calculated by a simple linearization

The basic momentum equations are set up in TFIE. Subrout ine If11 sets up the solution of the basic mass and energy equation, and FF10 completes the solution of the full basic equation set within a Newton iteration driven by subrouthe outth the stabllizer mass and energy equations are solved in STBME and BKSSTB

2.1.6 Three-Dimensional Finite-Difference Methods

In the three-dimensional VESSEL component, the code solves the conbined-qas mass equation (Equation (2.1-4)] and the total mass equation (tquation $(2.1-7)]$ instead of the individud phasic mass equations solved in the one-dimensional components. However, for the three-dimensional component the code solves the momentum and energy equations in the same form as for the one-dimenstonal components; i.e.. individual liquid and combined-gas equations of motion (fquations (2.1-5) and (2.1-6)], and total and combined-gas energy equations (Lquations (2,1-1) and $(2,1-2)]$. The momentum equations separate into three orthogonal-coordinate components. We discuss only the gas-phase equations, with the understanding that the liquid equations are treated analogousty. For an orthogonal, right handed cylindrical coordinate system in which the z axis is oriented vertically upwards, the three components of the vapor-momentumi differentlal equation follow

Monentum Equation Axial (2) Component

$$
\begin{align*}
& \frac{\partial V_{q z}}{\partial t}-\left(+\frac{\partial V_{q 2}}{\partial r}+\frac{V_{q e}}{\partial r} \frac{\partial V_{q z}}{\partial \theta}+V_{g z} \frac{\partial V_{q z}}{\partial z}\right)-\frac{1}{\rho_{g}} \frac{\partial p}{\partial z} \\
& \frac{C_{i z}}{\alpha_{i}}\left(V_{a z}-V_{t x}\right)\left|\vec{V}_{B}-\vec{V}_{t}\right|=\frac{C_{\text {waz }}}{\alpha_{g}} V_{92}\left|\vec{V}_{g}\right|=9
\end{align*}
$$

Momentum Equation Radial (r) Component

$$
\begin{equation*}
\frac{e_{i r}}{\alpha_{p}}\left(V_{g r}-V_{e r}\right)\left|\vec{V}_{g}-\vec{V}_{t}\right|-\frac{C_{u g r}}{\alpha p_{g}} V_{g r}\left|\vec{V}_{g}\right|+\nabla p_{s, r} \tag{2,1-56}
\end{equation*}
$$

$$
\frac{\partial V_{\mathrm{gr}}}{\partial t}=-\left(V_{g r} \frac{\partial V_{g r}}{\partial r}+\frac{V_{g \theta}}{r} \frac{\partial V_{g r}}{\partial \theta}-\frac{V_{g \theta}^{2}}{r}+V_{g 2} \frac{\partial V_{g r}}{\partial z}\right)-\frac{1}{\rho_{g}} \frac{\partial p}{\partial r}
$$

Momentum Equation Azimuthal (θ) Component

$$
\begin{gather*}
\frac{\partial V_{g \theta}}{\partial \theta}=-\left(V_{g r} \frac{\partial V_{g \theta}}{\partial r}+\frac{\partial V_{g \theta}}{r} \frac{\partial V_{g \theta}}{\partial \theta}-\frac{\bar{V}_{g r} \dot{V}_{g \theta}}{r}+V_{g z} \frac{\partial V_{g \theta}}{\partial z}\right)=\frac{1}{\rho_{g r}} \frac{\partial \rho}{\partial \theta} \\
-\frac{C_{i \theta}}{\alpha p_{g}}\left(V_{g \theta}-V_{\epsilon \theta}\right)\left|\bar{V}_{g}-\bar{V}_{t}\right|-\frac{C_{\alpha g \theta}}{\alpha p_{g}} V_{g \theta}\left|\bar{V}_{g}\right|+\nabla p_{\mathrm{s}, \theta} .
\end{gather*}
$$

TRAC-BF1/M001 uses a staggered-mesh scheme in which the velocities V are defined at the mesh-cell surfaces as opposed to the volume properties of pressure p, gas volume fraction a, temperature 1 , internal energy e, and density p, which are defined at the mesh-cell center. The scalar field equations (mass and energy) apply to a given mesh cell, whereas the momentum equations apply at the interfaces between mesh cells, a staggered mesh, in the three component directfons.

The difference scheme for each of the momentum equations is lengthy because of the cross-derivative terms. Therefore, to illustrate the procedure, we describe onty the gas z-dfrection momentum finfte-dffference equation for a typical mesh-cell interface, together with the gas mass and energy equations for a typical mesh cell. The gas component momentum equations in the r and r directions along with the all of the liquid equations are sinilar in form. The superscript n indicates a current-time quantity; the superscript $n+1$, a new-time quantity. The functional dependence (r, θ, z) points to the cell center. By incrementing r or θ or z by ± 1, one moves to the adjacent cell in the direction based on which coordinate is incremented and on the sign of the increment. The functiomal dependenctes ($r-1 / 2, \theta, z$) and $(r+1 / 2, \theta, z)$ point to the inside and outside radial faces of the cell, respectively; $(r, \theta-1 / 2, z)$ and $(r, \theta+1 / 2, z)$, the right and left azimuthal faces of the cell (based on a perspective of looking radially out of the cell), respectively; $(r, \theta, z, 1 / 2)$ and $(r, \theta, z+1 / 2)$, the Lottom and top axia) faces of the cell, respectively. lue subscript g (for gas) is dropped unless it is needed for clarity. The three-dimensional finite-difference equations do not contain stabilizer steps and are simple generalizations of the one-dimensional basic equations.
2.1.6.1 Gas Monentum Equation in the z Direction, lising these conventions, the finite-difference gas-momentum equation in the z direction is where Δt is the time-step size.

Fluid Fielo Equations

$$
\begin{align*}
& V_{z}^{n \cdot 1}(r, \theta, z+1 / 2)=V_{z}^{n}(r, \theta, z+1 / 2)-\Delta^{\prime} \frac{\overline{V_{x} \Delta V_{z}^{n}}}{\Delta r}+\frac{\overline{V_{r} \Delta_{i} V_{i}^{n}}}{r \Delta \theta} \\
& \frac{\Delta V_{z}^{n}(r, \theta, z+1 / 2)}{\Delta}\left[V_{2}(r, \theta, z+1)-V_{2}(r, \theta, z)\right]^{n} \\
& \frac{p(r, \theta, z+1)-p(r, \theta, z)^{n+1}}{\rho^{n}(r, \theta, z+1 / 2) \Delta} \\
& \frac{C_{i z}^{n}(r, \theta, z+1 / 2)}{\alpha^{n}(r, \theta, z+1 / 2) p^{n}(r, \theta, z+1 / z ;}\left\{\mid V_{\theta}^{n}(r, \theta, z+1 / 2)\right. \\
& \left.{ }^{4 \prime \prime}(r, \theta, z+1 / 2) \mid\left[V_{9}^{n+1}(r, 6, z+1 / 2)-V_{t}^{n+1}(r, \theta, z+1 / 2)\right]\right\} \\
& \frac{C_{z z}^{n}(r, \theta, z+1 / 2)}{\alpha^{n}(r, \theta, z+1 / 2) \rho^{n}(r, \theta, z+1 / 2)}\left|\left|v_{t}^{n}(r, \theta, z+1 / 2)\right|\right. \\
& \left.V^{n+1}(r, \theta, z+1 / z)-g+\Delta p_{s}\right] \tag{2.1-58}
\end{align*}
$$

Any finite-difference scheme requires certain quantities at locations where they are not defined formally; therefore, additional relations are needed. TRAC-BFI/MODI obtains the volume properties a and poat the cell axial interface from a cell-level weighted average. For example,

$$
\begin{equation*}
\alpha(r, \theta, z+1 / 2)=\frac{\Delta z(z) \alpha(r, \theta, z)+\Delta z(z+1) \alpha(r, \theta, z+1)}{\Delta z(z)+\Delta z(z+1)} \tag{2.1-59}
\end{equation*}
$$

This averagirig is necessary to compute arcurately the gravitational pressure heads.

The cross derivative term $\bar{V}_{1} \Delta V_{2}$ reflects a donor-cell average

$$
\overline{V_{1}} \frac{\Delta V_{2}}{} \quad V_{1}\left(r+1 / 2, \theta_{1} z+1 / 2\right)\left[V_{2}(r+1, \theta, z+1 / 2)-\gamma_{2}(r, \theta, z+1 / 2)\right]
$$

Fluid Field Equations

$$
+V_{t}(r-1 / 2, \theta, z+1 / 2)\left[V_{2}(r, \theta, z+1 / 2)-V_{2}(r-1, \theta, z+1 / 2)\right]
$$

where

$$
V_{\mathrm{p}}(r+1 / 2, \theta, z+1 / 2)=\min \left[\frac{V_{f}(r+1 / 2, \theta, z+1) \Delta(z)+V_{r}(r+1 / 2, \theta, z) \Delta(z+1)}{\Delta(z)+\Delta(z+1)}, 0\right]
$$

and

$$
V_{r}(r-1 / 2, \theta, z+1 / 2)=\max \left[\frac{v_{r}(r-1 / 2, \theta, z+1) \Delta z(z)+V_{r}(r-1 / 2, \theta, z) \Delta z(z+1)}{\Delta(z)+\Delta(z+1)}, 0\right]
$$

In the above equations, min and max are the mathematical functions of mimimum and maximm of the terms inside the brackets. An analogous expression holds for the $V_{6} \Delta_{i} V_{i}$ term. The usage of central differences was dropped because of problems with numerical instabilities.

The radial component of the velocity at the axial location $(z+1 / 2)$ is obtained from

$$
V_{t}(r, \theta, z+1 / 2)=\frac{1}{4}\left[V_{1}(r+1 / 2, \theta, z)+V_{r}(r-1 / 2, \theta, z)\right.
$$

$$
\begin{equation*}
\left.+V_{f}(r+1 / 2, \theta, z+1)+V_{f}(r-1 / 2, \theta, z+1)\right] ; \tag{2.1-63}
\end{equation*}
$$

a similar expression applies to $V_{0}(r, \theta, z+1 / 2)$.
The arial differance of $y_{\text {u }}$ includec come cmoss-sectional area weighting to eliminate problems with pressure drops across area changes and is similar to the grajient terms in the one-dimenstonal component.

Fluig Field Equations

$$
V_{2}(r, \theta, z+1)-V_{2}(r, \theta, z)=\left\{\begin{array}{l}
\frac{V_{2}(r, \theta, z+1 / 2) F A_{z+1 / 2}}{F A_{z+1}} \tag{2.1-64}\\
-\frac{{ }_{2}(r, \theta, z-1 / 2) F A_{2-1 / 2}}{F A_{z}} \text { if } V_{z}(r, \theta, z+1 / 2) \geq 0 ; \\
\frac{V_{2}(r, \theta, z+3 / 2) F A_{2+3 / 2}}{F A_{z+1}} \\
-\frac{V_{2}(r, \theta, z+1 / 2) F A_{z+1 / 2}}{S_{z}} \text { if } V_{z}(r, \theta, z+1 / 2)<0
\end{array}\right.
$$

where

$$
\begin{equation*}
F A_{z+1}=\frac{\left.v_{0}\right\rangle(r, \theta, z+1)}{\Delta(z+1!} \tag{2.1-65}
\end{equation*}
$$

and

$$
\begin{equation*}
F A_{z}=\frac{\operatorname{vol}(r, \theta, z)}{\Delta(z)} \tag{2.1-66}
\end{equation*}
$$

The spatial differences for V_{z} are, in the r direction,

$$
V_{z}(r+1 / 2, \theta, z+1 / 2)-V_{2}(r-1 / 2, \theta, z \cdot 1 / 2)=\left\{\begin{array}{l}
V_{z}(r, \theta, z+1 / 2) \\
\left.-V_{z}(r-1, \theta, z+1 / 2) \text { if } V_{r}: r, \theta, z+1 / 2\right) \geq 0 \\
V_{z}(r+1, \theta, z+1 / 2) \\
-V_{z}(r, \theta, z+1 / 2) \text { if } V_{r}(r, \theta, z+1 / 2<0
\end{array}\right.
$$

and, in the θ direction,

Fluid Field Equations

$$
V_{2}(r, \theta+1 / 2, z+1 / 2)-V_{2}(r, \theta-1 / 2, z+1 / 2)=\left\{\begin{array}{l}
V_{2}(r, \theta, z+1 / 2) \\
V_{2}(r, \theta-1, z+1 / 2) \text { if } V_{\theta}(r, \theta, z+1 / 2) \geq 0 \\
V_{2}(r, \theta+1, z+1 / 2) \\
-V_{2}(r, \theta, z+1 / 2) \text { if } V_{\theta}(r, \theta, z+1 / 2<0
\end{array}\right.
$$

Note that the V, differences in the r and θ directions do not contain the flow-area weighting of the z-direction difference.
2.1.6.2 Combinec-Gas Mass Equation. The convective terms in the finite-difference relations for the scalar field equations are in conservative form. The finite difference form of the combined-gas mass equation is

$$
\alpha^{n+1} p_{g}^{n+1}=\alpha^{n} p_{g}^{n}-\left(\frac{\Delta t}{v 01}\right)\left[F A_{2+1 / 2}\left(\alpha^{n} p_{g}^{n} V_{g 2}^{n+1}\right)_{z+1 / 2}-F A_{z-1 / 2}\left(\alpha^{n} p_{g}^{n} V_{g 2}^{n+1}\right)_{z-1 / 2}\right.
$$

$$
+F A_{r+1 / 2}\left(\alpha^{n} \rho_{g}^{n} V_{g r}^{n+1}\right)_{r+1 / 2}-F A_{r-1 / 2}\left(\alpha^{n} \rho_{g}^{n} V_{g r}^{n+1}\right)_{r-1 / 2} \quad F A_{\theta+1 / 2}\left(\alpha^{n} \rho_{g}^{n} V_{g \theta}^{n+1}\right)_{\theta+1 / 2}
$$

$$
\begin{equation*}
\left.F A_{\theta-1 / 2}\left(\alpha^{n} p_{g}^{n} V_{g \theta}^{n+1}\right)_{\theta-1 / 2}\right]+\Delta \Delta \Gamma^{n+1}+S M_{g}^{n+1} \tag{2.1-69}
\end{equation*}
$$

where vol is the hydrodynamic cell volume, FA is the flow area at the mesh-ceil edge, and $S M_{g}$ is the gas source term for all one-dimensional components connected $t 8$ the cell.
2.1.6.3 Combined-Gas Energy Equation. The combined-gas energy equation is

$$
\begin{aligned}
& \alpha^{n+1} P_{g}^{n+1} e_{g}^{n+1}=\alpha^{n} P_{g}^{n} e_{g}^{n}-\left(\frac{\Delta}{V o l}\right)\left[F A_{2+1,2}\left(\alpha^{n} P_{g}^{n} e_{g}^{n} V_{g}^{n+1}\right)_{2-1 / 2}\right. \\
& \quad-F A_{2-1 / 2}\left(\alpha^{n} P_{g}^{n} e_{9}^{n} V_{g}^{n+1}\right)_{2-1 / 2}+F A_{r+1 / 2}\left(\alpha^{n} F_{g}^{n} e_{g}^{n} V_{g}^{n+1}\right)_{r+1 / 2}-F A_{r-1 / 2}\left(\alpha^{n} P_{g}^{n} e_{g}^{n} V_{j}^{n+1}\right)_{r-1 / 2}
\end{aligned}
$$

Fluid Field Equations

$$
\begin{align*}
& \left.-F A_{\theta-1 / 2}\left(\alpha^{n} P_{g}^{n} e_{g}^{n} V_{g}^{n+1}\right)_{\theta+1 / 2}-F A_{\theta-1 / 2}\left(\alpha^{n} \rho_{g}^{n} e_{\theta}^{n} V_{\theta}^{n+1}\right)_{\theta-1 / 2}\right]-p^{n+1}\left(\alpha^{n+1}-\alpha^{n}\right) \\
& -\left(\frac{p^{n+1} \Delta t}{V 0 l}\right)\left[\left(F A \alpha^{n} V_{g}^{n+1}\right)_{2+1 / 2}-\left(F A \alpha^{n} V_{y}^{n+1}\right)_{z-1 / 2}+\left(F A \alpha^{n} V_{g}^{n+1}\right)_{r+1 / 2}-\left(F A \alpha^{n} V_{g}^{n+1}\right)_{r-1 / 2}\right. \\
& \left.+\left(F A \alpha^{n} V_{g}^{n+1}\right)_{\theta+1 / 2}-\left(F A \alpha^{n} V_{9}^{r+1}\right)_{\theta-1 / 2}\right]+\Delta t\left(q_{w 9}^{n+1}+q_{i g}^{n+1}+\Gamma^{n+1} h_{r}^{n+1}\right) \tag{2.1-70}
\end{align*}
$$

The diffe sncing of the other scalar equations (the total mass and energy equations, the noncondensable-gas mass equation, and the liquid-solute mass equation) is similar.

2.1.6.4 Source Terms. All of the field equations in the three-

 dimensional VESSEL can have additional source terms to allow piping to be connected anywhere in the three-dimenstonal mesh. The source terms in the mass and energy equations follow below. The subscripts 10 and VESSEL indicate that quantities are obtained from the attached 10 components and the VESSEL, respectively; the subscript D represents the donor based on the velocity g; and the summation is over all one-dimensional components connected to a given vessel cell.Overall Mass-Continuity Source Term

$$
\begin{equation*}
S M_{7}^{n+1}=\sum_{k=1}^{k}\left(\alpha p_{g}\right)_{0}^{n}\left(V_{g}^{n+1} F A\right)_{10}+\left[(1-\alpha) p_{t}\right]_{0}^{n}\left(V_{l}^{n+1} F A\right)_{10} \tag{2.1-71}
\end{equation*}
$$

Combined Gas Mass Continuity Source Term

$$
\begin{equation*}
S M_{s}^{n+1}=\sum_{k=1}^{k}\left(\alpha p_{g}\right)_{0}^{n}\left(v_{g}^{n+1} F A\right)_{10} \tag{2.1-72}
\end{equation*}
$$

Overall Energy Source Term

$$
\begin{align*}
S E_{\mathrm{T}}= & \sum_{\mathrm{k}=1}^{x}\left[(1-\alpha) p_{\ell} e_{l}\right]_{0}^{n}\left(V_{l}^{n+1} F A\right)_{10}+\left(\alpha p_{9} e_{9}\right)_{0}^{n}\left(V_{9}^{n+1} F A\right)_{10} \\
& +p_{\text {vessel }} \cdot\left[\left(\alpha_{0}^{n} V_{9}^{n+1} F A\right)_{10}+\left(1-\alpha_{0}\right)^{n}\left(V_{\ell}^{n+1} F A\right)_{10}\right] \tag{2.1-73}
\end{align*}
$$

$$
\begin{equation*}
S E_{g}^{n+1}=\sum_{k=1}^{k}\left(\alpha \rho_{g} e_{g}\right)_{D}^{n}\left(V_{g}^{n+1} F A\right)_{10}+P_{V E S S E L} \alpha_{p}^{n}\left(V_{g}^{n+1} F A\right)_{10} \tag{2.1-74}
\end{equation*}
$$

Noncondensable Gas Mass Continuity Source Term

$$
\begin{equation*}
s A^{n+1}=\sum_{k=1}^{k}\left(\alpha \rho_{0}\right)_{0}^{n}\left(V_{0}^{n-1} F A\right)_{10} \tag{2.1-75}
\end{equation*}
$$

Liquid Solute Mass Continuity Source Term

$$
\begin{equation*}
S C^{n-1}=\sum_{k=1}^{k}\left[(1-\alpha) P_{l} m^{m^{m}}\right]_{0}^{n}\left(V_{l}^{n+1} F A\right)_{10} \tag{2.1-76}
\end{equation*}
$$

The momentum source terms are complicated by the staggered differencing and by the fact that allowable one-dimensional components may enter at an arbitrary angle. For TRAC-BF1/MOD1, we have assumed that the one-dimensional component attaches normal to the VESSEL mesh-cell face. The basic forms for the liquid and vapur momentum source terms follow.

Liquid-Momentum Source Term

$$
\sum_{k=1}^{k} \frac{\left[(1-\alpha) \rho_{2} V, F A\right]_{10, k}^{n}}{\left.(1-\alpha) \rho_{\ell}\right]_{V E S S E L}^{n}} \cdot \frac{(V, F A)_{10, k}^{n}+\left(V_{\ell} F A\right)_{V E s s e L}^{n}}{\left(\frac{v 07}{\Delta z}\right)_{V E S S E L}^{2} \overline{\Delta z}}
$$

Vapor-Momentum Sou'ce Term

The $\overline{\Delta z}$ in the two previous terms is the distance between the centers of the two cells separated by the mesh-cell face under consideration. The (V FA) vessei is the product of the velocity and the flow area at the cell face opposite to the one of attachment, and these momentum source terms are applied to the momentum equations written at this opposite face.

The extstence of the momentum source terms is dependent on the sign of the velocities in the VESSEL to keep the VESSEL donor-cell momentum equations consistent. For example, if the nearest VESSEL liquid velocity indicates that the flow is into the one-dimensional component from the VESSEL, then the source term is set equal to zero.

Fluid Field Equations

The finite-difference equations thus formed for the VESSEL component are semi-implicit, because the pressure gradient terms in the vapor and liquid momentum equations are treated at the new time. A Courant stability criterion,

$$
\begin{equation*}
\Delta t<\frac{L}{V}=\min \left[\frac{\Delta z}{V_{92}}, \frac{r \Delta \theta}{V_{g r}}, \frac{\Delta x}{V_{\ell 2}}, \frac{r \Delta \theta}{V_{\ell r}}, \frac{\Delta r}{V_{\ell r}}\right] \tag{2.1-77}
\end{equation*}
$$

is necessary

If hardwate structure exists in the mesh cell, the hydrodyiamic FA and vol are reduced from their geometric mesh-cell values. Thus, FA may be less than or equal to the geometric mesh-cell area, and vol may be less than or equal to the geometric mesh-cell volume. When FA is zero, a.l fluxes across that plane, as well as the indtvidual veloctties of each phase, are suppressed. This procedure allows large obstacles, such as the downcomer walls, to be modeled properly. The user specifies the flow and volume restrictions. (There are no constraints in the code to restrict $F A$ and vol to be less than or equal to the geometric values, although the code user should adhere to such constraints.)

The number of independent variables is limited to $V_{\ell}, V_{g}, T_{\ell}, T_{g}$, a, and p by using the thermal equations of state,

$$
\begin{equation*}
P_{l}=P_{l}\left(p, T_{l}\right) \tag{2.1.78}
\end{equation*}
$$

$$
\begin{equation*}
P_{v}=P_{v}\left(P_{v}, T_{g}\right) \tag{2,1-79}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{0}=\rho_{\mathrm{a}}\left(D_{\mathrm{a}}, T_{\mathrm{g}}\right) \tag{2.1-80}
\end{equation*}
$$

the caloric equations of state,

$$
\begin{equation*}
e_{2}=e_{2}\left(n, T_{l}\right) \tag{2.1-81}
\end{equation*}
$$

$$
\begin{equation*}
e_{v}=e_{v}\left(p_{v}, T_{q}\right) \tag{2.1-81}
\end{equation*}
$$

$$
\begin{equation*}
e_{\mathrm{a}}=e_{\mathrm{g}}\left(p_{\mathrm{a}}, T_{\mathrm{g}}\right) \tag{2.1-83}
\end{equation*}
$$

and the definitions for P_{g}, e_{g}, and p (Equations (2.1-14), (2.1-15), and

Fluid Field Equations

(2.1-16)].

The homizontal stratification or vold gradient force in the radial and azimuthal momentum equations is computed in the same way as in the one-dimensional components. The force is partitioned between the two phase based on the relative inertias of the phases rather than being added to the liquid momentum equation as in the one-dimensional components.

The full set of momentum equations is evaluated in subroutine TF3E. The mass and energy equations are set up and linearized in TF31. Final solution of the equations occurs in FF30.

2.1.7 Modifications to the Field Equation Set

Because of the choice of independent variables in the solution of the one-dimensional field equations (total pressure, air partial pressure, void fraction, and 7 quid and vapor temperatures), the basic equation set becomes singular at void fractions of 0 and 1 . To avoid this problem, we replace the liquid mass equation with a mean mass equation at these extremes. At a void fraction of zero, the gas mass and energy equations are replaced with equations setting the void fraction equal to zero and the gas temperature equal to the saturation temperature based on the total pressure. At the other extreme, the replacement equations set void fraction equal to one and the liquid temperature to the saturation temperature based on the partial pressure of the water vapor. When a transition first occurs from pure gas to a two-phase mixture, the proper mass equations are used; but the replacement of the vapor energy equations is maintained for one time step to avoid numerical problems.

These equation replacements are avoided in the three-dimensional formulation by using $\alpha^{n+1}, p^{n+1},(1-\gamma)^{n+1}, T_{\ell}^{n+1}$, and $\alpha^{n+1} T_{9}^{n+1}$ as independent variables in the solution procedure. However, this approach was found to be inadequate when applied to the iterative equation solution used for onedimensional flow.

When the pressure exceeds the critical point, the field equations are also singular, and a replacement might be expected. However, to model this regime with minimal code changes, we have chosen to slightly modify the thermal properties of steam. The code limits the calculated steam density to never exceed 0.999 times the liquid density, thus preventing a singularity from arising. Also, at pressures above the critical point, the calculated saturation temperature is forced quickly to a high value to drive a phase change to a pure liquid system.
2.1.7.1 Modifications to the Regular Momentum Solution. There are many situations and places in the code where the regular momentum equations as discussed in the previous sections are modified or are not used. These

fluid Field Equations

situations and places are

- Water packing
- Counter-current flow limiting (CCFL)
- Choking
- First face in separator component side arm
* Location of turbine blades in turbine component
- Turbine separator
* Pump impeller
- Leak pailis
- TEE component joining cell.

Most of these situations will be discussed in subsequent sections of this report. The water packing modifications will be discussed here, since the modifications to the regular momentum solution are the same in the one-dimensional and three-dimensional component models.
2.1.7.2 Water Packing. The water-packing logic in the code is triggered under certain conditions (but not all conditions) when the code attempts during a time step to overfill (pack) a liquid-full finite-difference mesh cell or to over-extract (stretch) liquid from a liquid-full cell. The physical analog to water packing is a water hammer; when cold 'ater surges down a dead-end pipe filled with steam, a large pressure spike occurs when the last steam col?apses and the water fills the pipe. Because of the low compressibility of liquid water, the spike has a very short duration.

In any Eulerian finite-difference scheme, the boundary of a mesh cell behaves like the dead end of a pipe in a water hammer. This is especially true when condensation is present. Consider a one-dimensional mesh cell with pure liquid entering from the left and pure vapor flowing in from the right to condense on the liquid. It is not possible for a standard finite-difference momentum equation to produce a liquid mass flow out of the right cell face that exactly balances the flow in the left cell face at the instant when the cell fills with liquid. In fact, when strong condensation is present, the momentum equation generally will predict a liquid velocity into the cell on the right face. This circumstance produces a numerical dead end for the liquid. Unlike the water hammer, the final solution is not to halt the flow but to push the liquid on through the right cell face. As with a hammer, this is accomplished with an abrupt increase in pressure.

The simpiest way to remove these packing spikes is to run with a higher time-step size. The large time-step size helps, because the change in momentum in a time step is the product of the time-step size and the change in

Fluid Fielo Equations

the pressure. At larger time steps, the same change in momentum can be accomplished with a proportionally smaller change in pressure.

During the calculation of a reactor transient, it is often not possible to force the time step to high enough values to solve the packing problem. In TRAC-BF1/MOD1, we have adopted a method for mitigating water-packing, which is sfmflar in spirit to shock-fttting techntques. Logtc has been installed that detects pressure excursions caused by water packing. When they occur, it is clear that the finite-difference momentum equation is producing invalid results. Therefore, we modify the equation at those locations and times to obtain a better solution. A standard motion equation at a cell edge can be written as

$$
\begin{equation*}
V_{j+1: 2}^{n+1}=V_{j+1 / 2}^{n}+a+b\left(p_{j}^{n+1}-p_{j+1}^{n+1}\right) . \tag{2.1-84}
\end{equation*}
$$

Additional force terms are incorporated in the term a, and b includes the time-step size and inverse of mesh length and density. If packing is detected in cell the the equation is modtfied to the form

$$
\begin{equation*}
V_{j-1 / 2}^{n+1}=V_{j+1 / 2}^{n}+a+b\left(c p_{j}^{n+1}-p_{j+1}^{n+1}\right) \tag{2.1-85}
\end{equation*}
$$

The constant c multiplying ρ_{j}^{n+1} is taken to be a large number $\left(10^{6}\right)$ so that only small changes in the pressure of the $j^{\text {th }}$ cell are required to obta in the appropriate velocity for the liquid outflow. To prevent excessively large vapor velocities, the value of the coefficient b in the vapor equation is set equal to the corresponding coefficient in the liquid equation.

In a given cell of a component (either one- of three-dimensional), the code does not consider the water-packing logic if the cell vold fraction is greater than 0.15 , if the liquid in the cell is superheated, or if the net mass flow is out of the cell. Also, the code cannot make adjustments at a cell interface or test across that interface if the associated flow area is less than or equal to $10^{-10} \mathrm{~m}^{2}$. Further, the code does not consider adjacent cells in which the void fraction is less than 0.1 . The code predicts the change in the current cell pressure to give a new pressure; if the predicted pressure change is negat ive, the code transfers to logic to detect stretching. If the pressure rise is greater than or equal to 0 . then the new pressure is compared to a maximum value $P_{\text {max }}$ which is computed as

$$
\begin{equation*}
p_{\max }-\max \left[p^{n}, p_{0}^{n}\right]+\max \left[p_{1}^{n}, p_{0}^{n}, 0.02 p^{n}\right] \tag{2.1-86}
\end{equation*}
$$

where p_{a}^{n} equals the pressures in all adjacent cells. If the new pressure is greater than $P_{\text {mas. }}$, the momentum equation for the face meeting the void fraction tests is modified, as shown in Equation (2.1-85).

The void fraction tests ensume that the water-packing logic will not

Fluid rield Equations

smooth out a true water-hammer-type phenomenon in the calculation, while the pressure checks prevent the logic from being triggered too often. If, through the tests, more than one interface of a given cell permits the water-packing correction, the code applies the correction only at the interface across which tiee void fraction difference is highest. The code does not permit the wator-packing correction at the interface opposite a FILL component if the velocities at both interfaces have the same sign or at the interface at which the PUMP component source is applied.

The stretching logic is similar, although the code looks for a pressure drop in the current cell that reduces its pressure to less than
$P_{\text {min }}$
where

$$
\begin{align*}
& P_{\min }=\max \left(1, P_{\mathrm{s}}^{n+1}, P\right) \tag{2.1.87}\\
& P_{\mathrm{s}}^{n+1}=\text { saturation pressure based on } T_{l}^{n+1}-5 K \tag{2.1-88}\\
& P=\min \left(P_{j}^{n}, P_{\mathrm{a}}^{n}\right)-\max \left(P_{j}^{n}-P_{\mathrm{a}}^{n}, 0.02 P_{j}^{n}\right) \tag{2.1-89}
\end{align*}
$$

with the additional constraint that the prsjected pressure must be less than the saturation pressure corresponding to the current liquid temperature minus 5 K . The final constraint for stretching is that the test pressure cannot be below the lower pressure limit for the equation of state (see Appendix A). For a stretch, the code does not make an adjustment at a given interface if the void fraction on the other side of the interface is less than or equal to 0.1, if the liquid velocity at the interface is into the cell in which the stretch is detected, or if the PIMMP component source is applied at the interface

The first criteria ensures that the test pressure will not be lower than the lower pressure limit for the equation of state, while the second criterion ensures that the test pressure will be no lower than the estimated saturation pressure in the cell based on the liquid temperature minus 5 K .

The search over a ${ }^{71}$ adjacent cells and the use of the maximum pressure difference between adjacent cells in aetermining $P_{\max }$ and $P_{\text {pin }}$ attempts to defermine if the pressure in the cell sticks out refative fo the cells around it.

2.2 Heat Conduction in Solid Materials

Because the nuclear reaction in the core of a PWR generates energy inside the fuel, which moves to the primary fluid and crosses the steam-generator tubes to the secondary fluid, the code must calculate the heat conduction in the fuel and the steam-generator tubes to simulate correctly the heat transfer processes involved in thermal energy transport. Also, the passive solid structures, such as piping walls, vessel walls, and the internal vessel structures, represent signtficant metal masses that either can store or release large amounts of thermal energy, depending upon the reactor coolant temperature. Therefore, the code needs to model these additional structures, al so.

Because the heat flux in a solid material is a vector quantity, the following general equation describes the heat conduction process in an arbitrary geometry:

$$
\begin{equation*}
\frac{\partial\left(\rho c_{p} T\right)}{\partial t}+\nabla \cdot \vec{q}=q^{\prime \prime \prime} \tag{2.2-1}
\end{equation*}
$$

where p is the local density of the solid; c_{p}, the specific heat at constant pressure of the material; T, the local temperature; \bar{q}, the heat flux: $q^{\prime \prime \prime}$, the local volumetric heat generation rate; and t, timo. In practice, the product $p C_{p}$ is assumed to be constant for purposes of taking the time derivative.

The heat flux \bar{q} can be expressed in terms of the temperature gradient by Fourier's law of conduction:

$$
\begin{equation*}
\bar{q}=-k \nabla T \tag{2.2-2}
\end{equation*}
$$

where k is the thermal conductivity of the material. Thereiore, Equation (2.2-1) becomes

$$
\rho c_{p} \frac{\partial T}{\partial t}=\nabla(k \nabla T)+q^{\prime \prime \prime} .
$$

Writing this equation for one ur two dimensions in Cartesian and cylindrical coordinates is a straightforward task described in section 9. The code solves the one-dimensional conduction equation implicitly, although the solution of the two-dimensional cylindrical conduction equations for the fuel rod modeling is implicit in the radial direction and explicit in the axial direction. This explicit solution of the axial conduction in the fuel rod introduces an additional time-step ifmit for the code, which generally is important only when the axial increments in the conduction mesh become small. We will not discuss here tiee finite-difference forms of these equations, because they shed little light on the main purpose of this document.

Heat Conduction

Equation $(2.2-3)$ does require boundary conditions on the inside and outside surfaces of the heat structure. The code permits two types of boundary conditions. The first is an adiabatic bundary

$$
\begin{equation*}
\left.\frac{\partial T}{\partial \zeta}\right|_{\text {surtace }}=0 \tag{2.2-4}
\end{equation*}
$$

where ζ is length measured in the direction normal to the surface. The second boundary condit in permits active heating or cociing of the surface by convection

$$
\begin{equation*}
-\left.k \frac{\partial i}{\partial \zeta}\right|_{\text {surface }}=h\left(T_{\text {surface }}-I_{\text {fivid }}\right) \tag{2.2-5}
\end{equation*}
$$

where Newton's law of cooling is used to describe the convective transpurt of thermal energy into the fluids.

Appendix B discusses the salid material properties required by the heat conduction equation.

Flow Regime Map

3. FLOW REGIME MAP

The two-fluid madel used in TRAC-BF1/MOD1 requires using some auxiliary relations for the source terms in the basic six equations. The auxiliary relations that express the rates of exchange of mass, momentum, and energy between each phase and its surroundings take on different forms for different flow patterns. As an example, two-phase flow patterns affect the rate of vapor generation in direct contact with the walls, and this term is important in determining mass exchange between liquid and vapor. Both the exc' ange of energy and momentum at the interface between vapor and liquid depend on the interfacial area per unit volume and the topology of the two-phase flow. For these reasons, it is important to identify the flow regime in each hydraulic cell before proceeding with the solution of the flow equations for that cell.

3.1 Basis for Flow Regime Map in TRAC-BF1/M0D1

The interfacial package and wall heat transfer routines of TRAC-BF1 use a relatively simple flow regine map, which consists basically of two distinct patterns- 11 quid-cont inuous at low vold fract fons and vapor-continuous at high void fractions--with a transition zone in between. The liquid-continuous regime applies to the single-phase liq:id flow, bu'ubly/churn, and inverted annular flows. The vapor-continuous t. ime applies to the dispersed droplet flow and single phase vapor flow. The transition regime tnvolves annuler-droplet and film flow situations, depending on the void fraction and other flow variables.

The criterion for transition from the liquid-continuous zone is defined in terms of a transition void fraction, a ran, that is a function of flow conditions and channel geometry. The criterion for transition to dispersed droplet flow is a void fraction that is 25% above a tran

This flow regime map is based on Andersen and Chu's wor . It is a modified flow regime map that was originally suggested by Ishii, inz In his derivations of the drift-flux model, Ishifs suggested two simple flou regime transition criteria that, in his words, "are based on the relative nntion between phases and are consistent with the concept of drift-flux model ${ }^{n}$.

Andersen and Chu modified Ishit's criteria for transition between the different regime and stated its basis in the following terms:

- Transition between bubbly/churn and annular flow takes place when the liquid in the film (or entrained droplets) can be lifted relative to the liquid velocity in the bubbly/churn flow regime This criterion is mathematically expressed as a relationship between void fraction, α, the distribution parameter, C_{0}, and the density rat io of liquid and vapor.
- Transition between annular flow and dispersed droplet flow is given

Flow Regime Map

by the onset of entrainment. This is expressed mathematically by the entrainment correlation, in terms of the superficial phasic velocities, f_{9} and j_{e}, hydraulic diameter, O_{n}, and physical properties.

3.2 IMPLEMENTING Assumptions

The flow regime map that was originally developed for vertical flow is assumed to be usable for both vertical and horizontal flow components. Hence, the same set of flow transition criteria are used for all flow directions with. no variation.

While the interfacial package and wall heat transfer calculations use simtlar logic for flow regime identification (with the exception of the (interfacial shear model), the wall friction calculation uses a different logic that is an integrel part of the Hancox ${ }^{5+3}$ two-phase flow multiplier.

3. 3 Constant Void Fraction Interval for Transition Region

The criterion for transition between annular-dispersed and dispersed droplet flows is not observed strictly in the coding. Instead of using the onset of entrainment as the criterion for this transition, a 25% window of void fraction above the transition from bubbly/churn to annular flow is used for indication of complete transition to dispersed droplet flow. This approach is based on the assumption that droplet entrainment may exist even in the bubbly/churn flow regime, and certainly will exist as soon as annular flow is initiated. As the void fraction increases, the intensity of entrainment will also increase and, at the end of the transition region, droplet entrainment becomes 100%. This is a helpful assumption in the calculations, and it appears to be logically reasonable. However, no assessment has been made of the effect of changing the 25% void window to another value.

The 25\% void fraction window used in TRAC-BFI/MOD1 is different than the 10% void window implied in Reference $3-1$. Repeated calculations in oifferent cases have shown that the 25% window provides a smoother changeover and less discontinuity in computations.

3.4 As-Coded Flow Regime Map

TRAC-BF1/MOD1 does not feature a central and separate flow regime calculation scheme. Instead, the subroutines dealing with interfacial heat transfer, wall heat transfer, and ititerfactal frtction tnclude similar coding for determining flow regimes internally.

The prevailing range of the different flow regimes and the identical
features of the flow regime determination logic in different subroutines of TRRS-BF1/MOD1 are the following (see Reference 3-1):

- Bubbly/churn flow for $a<a_{\text {tran }}$
- Annuiar flow for $a_{\text {tran }}<a<a_{\text {tran }}+0.25$, and
- Dispersed droplet flow for $a>a_{\text {tran }}+0.25$.
where

$$
\begin{equation*}
\alpha \text { eran }=\left(1+\frac{4}{y}\right) \frac{1}{c_{0}}+\frac{4}{y}-0.15 \tag{3-1}
\end{equation*}
$$

in which

$$
\begin{equation*}
y=\sqrt{\frac{P_{\ell}}{P_{\theta}}} \tag{3-2}
\end{equation*}
$$

$$
\begin{equation*}
C_{0}=C_{\infty}-\frac{C_{\infty}-1}{\gamma} \tag{3-3}
\end{equation*}
$$

The C_{∞} factor is calcuiated differently in different routines, as will be discussed in the niaxt section. Further remarks regarding the actual coding of the flow regime transition criterta are discussed in the sections for the models where the criteria are applied.

3.5 VARIATIONS IN APPLICATION

Calculations of C_{∞} are done identically in the interfacial heat transfer and in the wall heat transfer models, while a different formula is used in the interfactal shear model.

3.5.1 Bubbly/Churn to Annular Transition in Interfacial Heat Transfer

In interfacial and wall heat transfer calculations, the C_{∞} in Equation $(3-3)$ is calculated by using Nikuradse's s^{3-4} correlation for peak-to-average velority ratio in single phase flow (see Deferences 3-1 and 3-2). This correlation gives
$C_{\alpha}=1.393-0.0155 \quad \log (R e)$

Flow Regime Map

where

$$
\begin{equation*}
R e=\frac{G D_{n}}{H_{y}} \tag{3-5}
\end{equation*}
$$

As may be seen, Equation (3-4) is a weak function of the Reynolds number; this makes the flow transition criterion almost indepandent of flow velocity and hydratlic diameter.

3.5.2 Bubbly/Churn to Annular Transition in Interfacial Shear.

In the interfacial shear model, C_{∞} is calculated with the following equation

$$
\begin{equation*}
C_{m}=1.0+0.2\left[\frac{\rho_{\ell}}{G} \sqrt{g Q_{n}}\right]^{0.5} \tag{3-6}
\end{equation*}
$$

This is a slightly modified version of the C_{0} correlation suggested by Rouhani. The original correlation was based on a wide range of experimental data from void measurements in different geometries, including several rod bungles. Equation (3-6), which is derived from two-phase flow data, gives better agreement of the overall computation results with data when compared to the same computations performed with Nikuradse's single-phase velocity ratio

It may be observed that, according to Equation $(3-6), C_{\infty}$ has a stronger dependence on flow velocity and hydraulic diameter than is indicated by Equation $(3-4)$. This difference in C_{0} calculations leads to noticeably different trends of void fraction at the transition from bubbly/churn to annular flow regimes. Equation (3-4), which is used in interfacial heat transfer, makes a almost independent of mass velocity, while Equation (3. 6), which is used in the interfacial shear model, shows a considerable variation of mass velocity with $a_{\text {tran }}$ or vice-versa.

3.6 Assessment

No isolated assessment of the flow regime maps in TRAC-BF1/MOD1 has yet been performed.

3.7 Scaling Considerations

The rationale used for calculating void fraction at transition between

Flow Regime Map

bubbly/churn and annular flow is based on using the non-dimensional quantities y and C_{0}. The density ratio, γ, is quite independent of geonetric scale; and t_{0} has been correlated in terms of flow and hydraulic diameter. The data base used by Ishii ${ }^{3-2}$ for comparing his derivations for C_{0} with experiments, covers a range of hydraulic diameters from 0.006 to 0.168 m (see Appendix C) Howevar, as will be shown in Section 6.1, the procedures for C_{0} calculations are based on logical derivations and non-dimensional quantities and not on any set of experimental data. With these considerations, it may be claimed that the flow regime transition criteria in TRAC-BF1/M~ク1 have no scale-dependent Timitations

3.8 Conclusions Regarding Flow Regime Map and Implementation

A single flow regime map is used for all flow directions in
TRAC-BFI/MOD1. This flow regime map considers only three zones, namely, a ligutd-continuous region, a transition zone, and a vapor-continuous zone. The continuous-liquid and continuous-vapor flow zones are clearly definable in terms of phasic drift velocities and the distribution parameter. A mathematical relationship between these parameters gives the void fraction for transition between bubbly/chum and annular flow regimes. The onset of dispersed droplet flow is also defined with the entrainment correlation. Although the extent of the transition zone is taken arbitrarily to exist over a range of 25% in void fraction, the overall scheme seems to provide logically acceptable results with simple computational steps. Due to the use of different correlations for C_{0}, there is considerable difference among the transition void fractions calculated in the interfacis? i-iction model and in other routines that use these transition criteria. No assessment has been made to determine which one of the two C_{0} equations provides a better match to experimental data regarding heat transfer.

3.9. References

3-1. J. G. M. Andersen and K. H. Chu, BWR Refill-Reflood Program, Task 4.7 Constitutive Correlations for Shear and Heat Iransfer for the BWR Yersion of TRAC, NUREt/CR-2134, EPRI NP-1582, GEAP-24940, December 1981

3-2. M. Ishii, One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes, ANL - 77 47, October 1977

3-3. W. T. Hancox and W. B. Nicoll, "Prediction of Time Dependent Diabatic Two-Phase Water Flows, "Progress in Heat and Mass Transfer, 6, Pergamon Press 1972, एP. 119-135.

3-4. J. Nikuradse, "Principles of Turbulent Flow in Smooth Tubes," "orschung
auf den Gebeite des Ingenieurwesens (Research at the Request of
Engineers), 3, September-October 1932, p. 356 .

Flow Regime Map

3-5. S. 2. Rouhani, Modified Correlations for Void and Pressure Drop, AE-RTV 841, March 1969

4. Closure Relations Required by Fluid-Energy Field Equations

Closure relations required by the fluid-energy field equations are described in the following sections.

4.1 Interfacial Heat Transfer

Interfacial heat transfer calculation is a necessary part of the two fluid equation system solution. The particular focus of the models used for these calculations is to obtain the variable products (hA) ie and (hA) ig, which are the liquid and vapor heat transfer coefficient times interfacial area, respectively. As in the case of interfacial friction in TRAC-BF1/MOD1, the interfacial heat transfer variables are dependent on flow regime and local void fraction.

The interfacial heat transfer calculations, for both one- and three-dimensional components, are performed in the HEATIF subroutine of TRAC BF1/MOD1. This section describes the correlations used in HEATIF, their basis, and their relationship to the interfacial friction model.

4.1. Background

The interfacial heat transfer model of TRAC-BF1/MOO1 is closely related to the interfacial friction model described in Section 6.1, and it is based on the derivations of Tshif 1.1 and Andersen and Chu ${ }^{4,2,3}$, which are discussed in that section. The data base for the working correlations, regarding drift flux parameters and interfacial area, are basically the same as for interfansel fut tion. Dus to the logical relation of these two models and identical derivations, some of the equations derived in Section 6.1 are reproduced here with only a reference to their derivation. Each equation that is used in the coding is marked with an asterisk $(*)$, followed by the variable name used for the left-hand side of that equation in the coding.

4.1.2 Components of the Interfacial Heat and Mass Transfer

The basic assumptions in the calculatious of interfacia? heat and mass transfer are

- The interface is always at saturation temperature corresponding to the local pressure
- Steam and water exchange energy with the interface at a rate which

Interfacial Heat Transfer

defines any necessary mass exchange for maintaining the interface at saturation temperature.

The total rate of heat exchange at the interface is

$$
\begin{equation*}
q_{i}=(h A)_{i \ell}\left(T_{l}-T_{\mathrm{s}}\right)+(h A)_{i g}\left(T_{g}-T_{\mathrm{s}}\right) \tag{4,1,1}
\end{equation*}
$$

and the net mass transfic rate in a hydraulic cell is

$$
\Gamma=\Gamma_{\text {wati }}+\frac{a}{h_{s g}-h_{s t}}
$$

where $\Gamma_{\text {wall }}$ is the rate of mass exchange produced at the channel walls.
According to Equation (4.1-1), the components of interfacial heat transfer are the interfacial area and the heat transfer coefficients between each phase and the interface. The temperature differences are obtained from the reat balance for each pha e.

4.1.3 Flow Regime Transitions

As in the case of interfacial friction, the interfacial heat transfer model recognizes three different flow regimes--namely bubbly/churn, arinular (transition), and dispersed droplet flows. This scheme of flow patterns and the criteria for transitions between them are according to the works of Ishifi.1-1 and Andersen and Chu. ${ }^{4 \cdot 1 \cdot 2,3}$ Different correlations for the interfacial area and heat transfer coefficients are used in different flow regimes. The transitions between different flow regimes are defined in terms of void fraction:

- Bubbly/churn flow for a atran
- Annular flow for 0 tran $<\pi<\pi e_{\text {tran }}+0.25$, and
- Dispersed droplet flow for $\alpha>a_{\text {tran }}+0.25$.
where

$$
\begin{array}{ll}
\alpha_{\text {ran }}=\left(1+\frac{4}{\gamma}\right) \frac{1}{C_{0}}-\frac{4}{\gamma}-0.15 & *, \text { ACA }(4.1-3) \\
\gamma=\sqrt{\frac{P_{\ell}}{P_{9}}}
\end{array}
$$

$$
\begin{array}{lll}
C_{0}=C_{*}-\frac{C_{*}-1}{y} & *, C 0 \\
C_{*}= & 1.393-0.0155 \log (R e) & *, C O I N F \tag{4,1-6}\\
R e & =\frac{G D_{n}}{H_{e}} . & *, R E
\end{array}
$$

A few points may be observed considering the actual coding of these equations. Firstly, Re in Equation (4.1-6) is redlaced by $1+\operatorname{Re}$ to make sure that the logarithm is always posittve. Then, C_{0} is 1 imited to a lower bound of 1.0 ; and, finally, C_{0} is limited to an upper bound of 1.3333 , which is the experimentally observed maximum value of this variabie (see Reference 4.1-1).

Note that the transition void fraction, $\pi_{\text {tran }}$ is calculated in a manner similar to that of the interfacial friction case. However, in this model, C_{0} is calculated according to Nikuradse's ${ }^{4,1-4}$ equation for the maximum-to-average velocity ratio in single-phase flow. This is different than the equation used in the case of interfacial friction. As a result, transitions between different flow regimes are at different void fractions for interfacial shear and interfacial heat transfer models. For heat transfer, $\alpha_{\text {tran }}$ changes very slightly with pressure, mass velocity, or hydraulic diameter. But, in the shear model, atran shows a strong dependence on these variables. An example of the different trends of atran in the shear and heat transfer models is given in Figure 4.1-1.

In the transition region, where $\alpha_{\text {tran }}<\alpha<\alpha_{\text {tran }}+0.25$, an interpolation variable, X_{2}, is used for interpolating drift flux variables between bubbly and dispensed droplet conditions. This variable, which depends on void fraction, is calculated according to the following:

$$
\begin{equation*}
x 2=\xi_{2}\left(3 \xi_{2}-2 \xi_{2}^{2}\right) \tag{4.1-8}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{2}=\frac{\alpha-\alpha_{\text {tran }}}{0.25} \tag{4.1-9}
\end{equation*}
$$

Note that Equation ($4.1-5$) is different than the simple relation used for the same variable in FRCIF (Section 6.1). The advantage of this formulation is in providing a smooth changcover of varfables at both ends of the transition region, as the derivative of X 2 with respect to ξ_{2} (or a) vanishes at $a=a_{\text {tran }}$ and at $a=\left(a_{\text {tran }}+0.25\right)$. For consistency, it is advisable to

Interfacial Heat Transfer

Figure 4.1-1. Comparison of flow regime boundaries between bubbly/churn and annular patterns in the interfacial shear and heat transfer models for a hydraulic diameter of 0.0145 m .
implement Equation (4.1-8) in the interfacial shear model.

4.1.4 Data Base For Intenfacial Heat Transfer

The phenomena related to the interfacial heat transfer, such as the extent of interfacial area in each flow regime or the local rates of phasic heai transfer at the interface, are not measurable, thus, there are no data available for a direct comparison with theories or correlations. The different formulas presented in this chapter, particularly those concerning the interfacial areas, are derived on theoretical basis, using the same arcoments that were employed in the case of interfacial friction. For this reason, as far as the interfacial areas are concerned, the data base that was used to confirm the drift flux parameters for the interfacial shear model (Section 6.1) is applicable to the interfacial heat transfer model as well. The heat transfer correlations for different flow geometries are based on data from reasurements performed on heat transfer between similar solid geometries and a fluid. In some cases, additional numerical multipliers are introduced to take into account the difference between rigid and fluid particles. These
multipliers are identified following the equations where they are introduced. The data base for some of the heat transfer correlations that are not yet a part of the classtcal literature in this field are given in Tabla 4.1-1.

4.1.5 Entrainment

In the interfacial heat transfer model, a contribution of droplet entrainment to the interface is a considered in all flow r. mes, including bubbly/churn flow. The extent of entrainment changes with pulasic velocities and void fraction. The entrainment calculation in this model is done according to the same procedure that is described for the interfacial friction model [Equations (6.1,43) through (6.1.50) in Section 6.1.8]. These equatioas are

$$
E=\left(x_{E}-0.03\right)\left[1+\left(x_{E}+0.1\right)^{2}\right]^{-0.5} \quad * \text {, ENT (4.1-10) }
$$

where

$$
\begin{align*}
& x_{E}=10^{* *}\left(J_{9}^{*}\right)^{2.5}\left(0^{*}\right)^{1.25} R e_{l}^{0.25} \quad * \text {, XE }(4.1-11) \\
& J_{0}^{*} \\
& \frac{J_{9}}{\left[\frac{\sigma \Delta p g}{\rho_{9}^{2}}\left(\frac{\rho_{9}}{\Delta p}\right)^{2 / 3}\right]^{1 / 4}} \\
& \text { *, XJGS (4,1-12) } \\
& E^{*}=a_{n} \sqrt{\frac{g \Delta \varphi}{\sigma}} \quad *, D S \\
& R e_{e}=\frac{\rho_{e} J_{e} D_{h}}{H_{2}} \tag{4.1-14}
\end{align*}
$$

As in the interfacial shear model, the calculated entrainment is modified in two occasions--when $X_{\varepsilon}<0.03$ and when there are some wetted walls and some dry walls in the same cell. These modifications are

$$
\begin{equation*}
E n t=0.1 \text {, if } X_{E}<0 . C^{2} \quad * \text {, ENT } \tag{4,1-15}
\end{equation*}
$$

Interfacial Heat Transfer

Table 4.1-1. Data base for heat transfer correlations.

Test apparatus	Horizontal glass fiber in a horizontal duct	Vertical rectangular channel
Dimensions:		
Cross section (m)	0.025×0.025	0.381×0.038
length (π)	0.229	
Height (m)	-	0965
Droplet diameter ($\mu \mathrm{m}$)	$230-1126$	
Droplet Reynolds number	$64=250$	
Pressure (Mpa)	$0.1-0.2$	Slightly above atmospheric
Steam superheat (${ }^{\circ} \mathrm{C}$)	$2.8-83.9$	*
Inlet steam velocity (m / s)	$2.68-11.95$	-
Inlet mass flow rate (kg / s)		
Water		$0.8 \cdot 1.78$
Steam	-	$0.066-0.104$
Inlet temperature (${ }^{\circ} \mathrm{C}$)		
Water		$73-94$
Steam		$130-141$
$E n t=E+(1-E)\left(1-W_{\text {vet }}\right)$		*, ENT (4.1-16)
Here again, as in FRCIF, $W_{\text {wet }}=W A_{*} / W A_{\text {got }}$ is the fraction of the channel walls that ace in contact with a liquid film, If all the walls are wet, Ent E; if all the walls are dry, Ent $=100 \%$, which means all the liquid phase is entrained as droplets.		
Note that in the coding of HEATIF, no void-dependent restriction is imposed on entrainment. While in FRCIF (for interfacial friction), the		
calculated entrainment was modified by using the void-dependent χ^{2} multiplier		
[see Equations (6.1.51) and (6.1.61)]. As a result, there is no entrainment		
in the bubbly/churn flow regime for interfacial friction, while some entrainment is considered in the same flow regime for interfacial heat		
transfer. Although this appears to be a discrepancy between the two models,		
its effect on the results is not expected to be considerable, as the		

bubbly/churn flow.

4.1.6 Inter cial Area

The relationship between interfacial area and relative phasic velocity in different flow regimes is discussed in Section 6.1.6. The resulting equations from that section are employed here for the interfacial heat transfer. However, for heat transfer, one should consider the entire interfacial contact ares. In the case of friction, only the projected area of the particles had to e considered.) This has particular bearing in bubbly and droplet flows. but it makes no difference in the case of annular (or film) flow.
4.1.6.1 Interfacial Area in Bubbly/Churn Flow. Equation (6.1.33) of Section 6.1 .6 is employed, with a critical Weber number of $W e=6.5$ for bubbly flow, to calculate the average bubble size, interfacial area, and the number of bubbles per unit volume (see Reference 4.1-3). These calculations begin with determining the relative phasic velocity in each flow regime. In bubbly/churn flow.

$$
\bar{V}_{\text {rob }}=\frac{1.53}{1-\alpha}\left[\frac{g \Delta p \sigma}{p_{e}^{2}}\right]^{0.25}
$$

*, VROB (4.1-17)
[Note that in the interfacial shear model, an exact equivalent of Equation (4.1-17) is used for bubbly/churn flow in pipes, while Equation (6.1.40), with a (1 a) divider, ts used for rodded bundles.]

Substitting V_{r} with $V_{\text {rob }}$ from Equation $\left(4.1-17\right.$) and using We $_{c}=6.5$ (see Reference $4.1-2$) yields the inversed bubble diameter as

$$
\frac{1}{d_{i b}}=\frac{P_{e} \bar{V}_{\mathrm{rob}}^{2}}{6.5 a}
$$

*, DIAB (4.1-18)

This inversed diameter is limited to $10^{-1} \mathrm{~m}^{-1}$ in the coding, and an avaraçe huhhle diameter is calculated, using the largest of d^{-1} or 10^{-1}. (Normally, $d_{i b}^{-1}$ is very large compared to 10^{-1}, and $d_{i b}$ turns out to be a small number.)

$$
\begin{equation*}
d_{i b}=\frac{1}{\operatorname{Max}\left[d_{i b}^{-1}, 10^{-1}\right]} \tag{4.1-19}
\end{equation*}
$$

This bubble diameter is checked against three criteria and adjusted, if

Interfacial heat Transfer

necessary, in order to keep its value within physically meaningful bounds.
The 1 imiting values are a minimum diameter of 0.0005 m , an upper 1 imit of 0.5 D_{h}, and a void dependent maximum average diameter of

$$
\begin{equation*}
d_{\mathrm{brxx}}=\left(\frac{6 \alpha}{10^{7} \pi}\right)^{1 / 3} \tag{4.1-20}
\end{equation*}
$$

*, DIABMY.

This maximum diameter is based on assuming a limit of 10^{7} bubbles per unit volume $\left(\mathrm{m}^{3}\right)$. Hence,

$$
\begin{aligned}
& \text { if } d_{\text {ib }}<0.0005 \text {, then } d_{i b} \text { is reset to } 0.0005 \text {; } \\
& \text { if } d_{\text {ib }}>0.5 D_{n} \text {, then } d_{i b} \text { is reset to } 0.5 D_{n} \text {, and } \\
& \text { if } d_{\text {ib }} \text { (or } 0.5 D_{n} \text {) }>d_{b m a x} \text {, then } d_{i b} \text { is reset to } d_{\text {bnxa }} \text {. }
\end{aligned}
$$

The final d_{b} is used to calculate the interfacial area of bubbles per unit volume of the hydraulic cell

$$
\begin{equation*}
A_{i b}=\frac{6 \alpha}{d_{i b}} \tag{AREAB}
\end{equation*}
$$

This final $d_{i o}$ is also used to obtain a corresponding number of average bubbles per unit volume

$$
\begin{equation*}
N_{b}=\frac{6 a}{\pi d_{i b}^{3}} \tag{4.1-22}
\end{equation*}
$$

Variations of $A_{i b}$ with void fraction for three different mass velocities at a pressure of 7.0 MPa are shown in Figure $4.1-2$. There is no effect of mass velocity on the interfacial area of the bubbles, as might be expected, since the bubble diameter is not affected by this variable.
4.1.6.2 Interfacial Area in Annular Droplet Flow. The interfacial area in this flow regime may include contributions from a liquid film on the walls and from droplets in the gaseous core. Each of these areas is used with a different heat transfer coefficient that is relevant to its regime

The interfacial area per unit cell volume for the droplets is calculated in a manner analogous to that of the bubbles.

$$
\begin{equation*}
A_{i d}=\frac{6\left(1-\alpha_{d}\right)}{D_{\mathrm{d}}} \tag{4.1-23}
\end{equation*}
$$

$$
\star \text {, AREAD }
$$

Figure 4.1-2. Variatione f the interfacial area per unit volume in bubbly flow $\left(p=6.81 \mathrm{MPa}\right.$; mass vocities in $\left.\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)$.
where a_{d} is the void fraction corresponding to the annular core of vapor and droplets
$\alpha_{0}=1 .-(1$
a) Ent
*, ALPD
and D_{d} is the average droplet diameter calculated from

$$
\begin{equation*}
D_{d} \frac{d / e_{d}}{P_{9} M a x\left[V_{r o d}^{2}, j^{2}\right\}} \tag{4.1-25}
\end{equation*}
$$

We in Equation $(4.1-25)$ is the critical Weber number for droplets; its numerical value is set at 2.7 for these calculations. ${ }^{4}$
$V_{\text {rod }}$ is the relative droplet velocity that is calculated according to one of the following equations:

Interfacial Heat Transfer

$$
\begin{equation*}
V_{t o d}=1.414\left(\frac{g \sigma \Delta p}{p_{g}^{2}}\right)^{0.25} \tag{4.1-26}
\end{equation*}
$$

or

$$
\begin{equation*}
V_{r o d}=\frac{3 \sigma}{\rho_{s}}\left[\frac{(g \Delta)^{2}}{\mu_{3} \rho_{g}}\right]^{0.333} j^{-2} \tag{4.1-27}
\end{equation*}
$$

Equation (4.1-27) is used only if the following condition is satisfied:

$$
1.456\left(\frac{g \sigma \Delta p}{p_{g}^{2}}\right)^{0.25}\left(\frac{\mu_{s}^{2}}{a p_{g} \sqrt{\frac{0}{g \Delta \varphi}}}\right)^{-1 / 12}<j
$$

$$
\star, X J C D \quad(4.1-28)
$$

Equations (4.1-26) through (4.1-28) are based on Ishij's work ${ }^{4.1-1}$ and represent $V_{5}=V_{i g} /(1-a)$ for dispersed liquid flow. Figure $4 \cdot 1 \cdot 3$ shows typtcal variations of the droplet interface area per unlt volume as a function of void fraction. In comparison with the interface area per volume for ihe bubbles, the droplet interface has a much stronger dependence on the mass velocity, and peaks at higher void fractions, where the entrainment is at its maximum.

Note that although $V_{\text {rod }}$ should be identical for interfacial heat and interfacial shear calculations, Equations (6.1.55) through (6.1.59), which are used for calculating this variable in the shear model, are somewhat different as they include a a multiplier and some dependence on $R e_{g}$. Since those equations are the result of a more recent development, it might be advisable to change $V_{\text {rod }}$ calculations in HEATIF to match those in FRCIF.

In the HEATIF cooing, a number of 1 imitations are imposed on D_{d} to make sure its ca. sulated value is within physically meaningful limits. The droplet diameter is cound between a minimum limit of 0.2 mm and a maximum limit that is the least of $0.25 \mathrm{D}_{\mathrm{h}}$, or a droplet dfameter calculated for the given vold and the assumption of 10^{6} dropiets per m^{3} of the vapor phase, which yields

$$
D_{d, \max }=\left[\frac{6(1-\alpha)}{\left(10^{6} \pi+1\right)}\right]^{0.333}
$$

$$
\text { *, DIADMX } \quad(4.1-29)
$$

Contribution of the liquid fii, to the interfacial area is described in the following.

Figure 4.1-3. Variations of the interfacial area per unit volume in droplet flow ($p=6.81 \mathrm{MPa}$; mass velocities in $\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~s}$).
4.1.6.3 Interfacial Area in Annular Film Flow. The interfacial area per unit volume due to the liquid film depends on the film thickness, which is obtained from the film liquid fraction, $l-a_{f}$, in wilich α_{f} is the fract on of liquid flow area that is not occupied by the liquid film.
$\alpha_{4}=1$
(1
a) $(1-\varepsilon)$
*, ALPF (4.1-30)

In terms of this void fraction, the average film thickness may be expressed as

$$
\begin{equation*}
\delta_{1}=0.5 D_{n}\left(1-\sqrt{\alpha_{i}}\right) \tag{4.1-31}
\end{equation*}
$$

A minimum film thickness is established from a force bilance on the creeping film, which yields

Interfacial Heat Transfeq

$\delta_{i, \text { min }}=\left(\frac{18 \sigma \mu_{\ell}^{2}}{g^{2} p_{\ell}^{3}}\right)^{0.2}$
*, DIAFMN (4.1-32)

In the coding, the film thickness is chosen as the larger of 8 , and $8_{1, \text { min }}$

The core void fraction corresponding to the minimum film thickness is
$\alpha_{4, \min }=\left(1-\frac{2 \delta_{1, \min }}{a_{h}}\right)$

* ALPFMN

It should be noted that if there is any liquid entrainment in the vapor core, $a<a_{1, \text { ain }}$ and if the liquid film is thick, then $a>a_{f}$ ain. With these constaerattorns, the filt-vapor interfactal area per untt voltame is
$A_{14}=\left\{\begin{array}{ll}\frac{4}{a_{1}} \sqrt{\alpha_{4}} & \text { for } \alpha \leq \alpha_{4, \text { min }} \\ \frac{4}{a_{1}} \sqrt{\alpha_{4}} & \frac{1-\alpha_{4}}{1-\alpha_{4, \text { min }}}\end{array}\right.$ for $\alpha>\alpha_{4, \text { min }}$
*, APEAF (4.1-34)

Figure 4.1-4 shows variations of the nterfacial area per unit volume in film flow for three different mass velocitiez -t 6. 81 MPa pressure. As Equation (4:1-34) indtcates, the fnterfaciz' atres ithis flow regitme is insensitive to the variations in mass vel- -ity,

4.1.7 Interfacial Heat Transfer Coefficients

The heat transfer coefficients for liquid to interface and vapor to interface are dependent an the flow topc " $2 g y$, and difforent correlations are used for the different ftow components i each flow regime.
4.1.7.1 Heat Transfer in Bubbly/Churn Flow. For heat transfer between the continuous liquid phase and the interface with bubbles, the Lee-Ryley ${ }^{4.1-5}$ cortelation for Nusselt number is used.

$$
\begin{equation*}
\left.N u_{t \mathrm{~b}}=2.0+0 . i\right) \sqrt{\frac{P_{\ell} D_{\mathrm{t}} V_{r \mathrm{~b}}}{\mu_{2}}} . \tag{4.1-35}
\end{equation*}
$$

Note that a factor of $\mathrm{Pr}^{0.33}$ that should be a part of this correlat on (after

Interfacial Heat Transfer

Figure 4.1-4. Variations of the interfacial area per unit volume in film flow ($p=5.81 \mathrm{MPa}$; mass velocities in $\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~s}$).
the square root) is left out in the coding. The impact of this omission is an underestimation of the Nusselt number by a maximum of about 50% for very low water temperatures faround 50 Kt and an overestlmat fon of the same varfable by about 5\% in the extreme cases. The liquid-to-interface heat transfer rates calculated on the basis of these Nusselt numbers will be off by the same fractions.

This correlation is based on data from measured rates of evaporation on the surface of small droplets, due to heat transfer from hot air or superheated steam. A summary of Lee-Ryley's test conditions is given in Table 4.1.1.

Equation (4.1-35) is used to obtain the heat transier coefficient in the following form:

$$
\begin{equation*}
h_{i t 0}=\frac{N u_{i 0} k_{t}}{D_{0}} . \tag{4.1-36}
\end{equation*}
$$

For the heat transfer between the vapor-phase and bubble surface, the following correlation is employed:

Interfacial heat Transfer

$$
\begin{equation*}
h_{1 y b}=\frac{i}{3} \pi^{2} \frac{k_{0}}{b_{b}}\left(2.7 \frac{H_{2}}{H_{0}}\right) \tag{4.1-37}
\end{equation*}
$$

This equation is suggested by Andersen and Abe' Larsen, ${ }^{4.1 .6}$ based on CORECDOL-11 code development wori. The factor $2.7 \mu_{8} / \mu_{y}$ is used for the effect of tnternal ctrculation tristae the bubbles on heat convectlon to the surface.

As stated earlier, the interfacial heat transfer model assumes the existence of some entrainment even in bubbly/churn flow. Heat transfer coeffictents for vapor to-drop?et surfaces are calculated according to the Lee-Ryley correlation ${ }^{4.5}$ in the following forms

$$
\begin{array}{ll}
N u_{i g d}=2.0+0.74 \sqrt{\frac{P_{g} D_{d} V_{\mathrm{rod}}}{H_{\mathrm{g}}}} P r_{\mathrm{g}}^{0.333} \\
h_{i g d}=\frac{k_{\mathrm{g}} N u_{i g d}}{D_{d}} . & \\ \tag{4.1.39}
\end{array}
$$

For heat transfer between liquid and droplet surface, the following correlation, which is a modified iorm of Equation (4.1.37), is used: *.1.6

$$
\begin{equation*}
h_{i t d}=\frac{2}{3} \pi^{2} \frac{k_{t}}{D_{d}}(2.7) \tag{4.1-40}
\end{equation*}
$$

The numerical factor of 2.7 is used for the effect of internal turbulence inside the droplet. The overall heat transfer ccefficient in bubbly/churn flow for each phase in the cell volume is obtained from the individual interfacial areas per unit volume and their specific heat transfer coefficients. For the liquid phase,

$$
\begin{equation*}
(h A)_{\text {tet }}=\operatorname{Vol}\left(A_{10} H_{i+t}+A_{t+0} h_{i+t}\right) \tag{4.1-41}
\end{equation*}
$$

*, HAIL
and, for the vapor phase,

$$
\begin{equation*}
(h A)=V o l\left(A A_{i d}+A_{i d} h\right) \quad * \text { HAIV } \tag{4.1-42}
\end{equation*}
$$

4.1.7.2 Heat Transfer in Dispersed Droplet Flow Regime. In this regime (for $a>a_{2}+0.25$), the interface is only between droplets and vapor. The heat transfor moeffictent fou yaper to intanface is ealculated with the

Interfacial heat Transfer

Lee-Ryley correlation ${ }^{6.1-5}$ in the following form:

$$
\begin{equation*}
h_{\mathrm{lgd}} \frac{k \mathrm{Nu}}{\mathrm{D}_{\mathrm{d}}} \tag{4.1-43}
\end{equation*}
$$

where

$$
\begin{equation*}
N u_{\mathrm{gd}}=2.0+0.74 \sqrt{\frac{\rho_{\mathrm{g}} D_{\mathrm{d}} M a x\left[V_{\text {rodi }} j\right]}{\mu_{\mathrm{s}}}} P r_{\mathrm{s}}^{0.333} \tag{4.1-44}
\end{equation*}
$$

and Equation (4.1-40) is used again for droplet-to-interface heat transfer.
The overall heat transfer rate for eath phase in the cell volume is given by
(hA) ired Vol Aldired
*, HAILD
$(h A)_{\text {igd }}=V_{0} A_{i d} h_{\text {igd }}$
*, HAIVD
4.1.7.3 Heat Transfer in Film Flow Region. The interface between yapor and liquid film is defined in terms of the film thickness and hydraulic diameter of the chanmel

$$
\begin{equation*}
0_{i f}=a_{n}-28_{+} \quad * \text { HDMID } \tag{4.1-47}
\end{equation*}
$$

In the HEAIIF coding, a minimum limit of 10^{-6} (m) is imposed on D.. This diameter is then used in the well-known Dittus-Boelter correlation for heat. transfer between vapor and interface

$$
\begin{equation*}
h_{i g t}=0.023 \frac{k_{g}}{D_{i f}} R e_{g t}^{0.8}{P r_{\mathrm{g}}}_{0.333} \tag{4.1-48}
\end{equation*}
$$

where

$$
\begin{equation*}
R e_{g t} \quad \frac{\rho_{9} V_{g} D_{i t}}{H_{9}} \tag{4.1-49}
\end{equation*}
$$

Equation (4.1-48) is used for turbulent vapor flow. However, if D is is very small, vapor flow may be laminar. In lieu of checking the Reynolds number for laminar ftow end then using the Taminar flow heat trensfer, the vapor-ty-interface heat transfer is set as follows:

Interfacial heat Transfer

$$
h_{\text {igf }}=N a x\left[h_{i g!}+4.0 \frac{k_{9}}{D_{i f}}\right]
$$

in which the term $4.0 \frac{k_{9}}{D_{i f}}$ is the heat transfer for 1 aminar vapor flow. This
is based on the classical heat transfer reiation in laminar flow (see Kays ${ }^{(2)}$) that is expressed as $\mathrm{Nu}=4.364$, with the constant value reduced from 4.364 to 4

The liquid film-to-interface heat transfer is calculated according to a correlation suggested by Megahed. 4 . If the ilquid is sutcooled, then the loeal film-tn-interface heat tranefor is

$$
\begin{equation*}
h_{i t f}=\frac{0.771 c_{p t} m\left(9 v_{t}^{-2}\right)^{1 / 3}}{12)_{i}\left(\operatorname{Jax} R e_{e f}\right)^{2 / 3}} \tag{4.1.51}
\end{equation*}
$$

where m_{l} is the total mass flow rate of the liquid film given by

$$
\begin{align*}
& \text { *, FLOFLM (4.1-52) } \\
& J d x=\left|\frac{C_{p l}\left(T_{k}-T_{t}\right)}{h_{i_{0}}} \sqrt{\frac{P_{t}}{P_{0}}}\right|^{2 / 3} \tag{4.1-53}\\
& \text { *, XJACOB } \\
& R e_{e_{1}}=\frac{4 m_{\ell}}{4 \pi \pi)_{h}} \tag{4.1-54}
\end{align*}
$$

However, if $\left(T_{s}-T_{t}\right)=0$ or $R e_{t,}=0$, then the above calculation is skipped and a constant heat transfer rate of 10^{8} is used (based on the experimental value of condensation heat tramsfer)

Equation (4.1-51) is based on Megahed's derivation of the heat transfer between steam and water in countercurrent flows. ${ }^{6,1.8}$ His derivations suggest a Stanton number that is given as

$$
\begin{equation*}
S t=0.0922\left(\lambda R e_{\ell t}\right)^{-0.6}\left(\frac{g L^{3}}{v^{2}}\right)^{0.3} \tag{4.1-55}
\end{equation*}
$$

where L is the length (height) of the channel,

$$
\begin{equation*}
\lambda=J_{d}\left(\frac{P_{t}}{P_{0}}\right)^{1 / \hbar}=C_{p t}\left(T_{s}-T_{t}\right)\left(\frac{P_{t}}{P_{p}}\right)^{1 / 2} \tag{4.1-56}
\end{equation*}
$$

$$
\begin{equation*}
v=\frac{H_{l}}{P_{\ell}} . \tag{4.1-57}
\end{equation*}
$$

The numerical constant 0.0771 that is used in Equation (4.1-51) was obtained from experimental data by Cook et al. 4.1.9 The data were obtained from measured rates of steam condensatton in countercurrent flow instde a vertical test section with rectangular cross sectinn. A summary of the test conditions of cook et al. was given i. Table 4.1-1.

It should be moted that, 1π implementing Fquat fon ($4.1-55$) in the code, the height dimension, L, has been replaced by πD_{h}, which is the periphery of the channel. The correct application of the original equation would require a lengthy logic to reevaluate the effective height of the channel for the f4lm-to-interface heat transfer calculation, regardless of nodalization changes and changes in the actual zone of film flow, from one time-step to the next. Without such loqic, the calculation results would be unnecessarily sensitive to the nodalization changes and the course of the transient.

Having established the local heat transfer coefficients for vapor and liquid in the film flow regime, the total rates of heat transfer for the cell volume are given by

$$
\begin{equation*}
(h A)_{i \ell f}=\operatorname{Vol} A_{4} h_{i t i} \tag{4.1-58}
\end{equation*}
$$

*, HAILF

$$
\begin{equation*}
(h A)_{\text {igt }}=V 01 A_{t} h_{\text {igt }} . \quad * \text { HAIVF } \tag{4.1-59}
\end{equation*}
$$

The overall liquid-to-interface heat transfer in the cell volume is then obtained by adding the contributions fron the droplet and the film components

$$
\begin{equation*}
(h A)_{i e d t}=(h A)_{i t d}+(h A)_{i e t} \tag{4,1-60}
\end{equation*}
$$

*, HAIL

Interfacial Heat Transfer

$$
(h A)_{i g d t}=(h A)_{i g d}+(h A)_{i g t}
$$

*, HAIV (4.1-61)
4.1.7.4 Heat Transfer in the Transition Zone. A final interpolation procedire is employed to cover the variations in the overall interfacial heat transfer from bubbly/churn and annular-droplet to the dispersed droplet flow regimes. This interpolation is done with the void-dependent $x 2$ variable that was defined by Equation (4.1-8). This interpolation takes into account the fractions of each phase that are present in any of the named flow regimes. The overall interfacial heat transfer coefficient for the liquid phase is
and the correspondiny coefficient for the vapor phase is

In the transition region, where $a_{\operatorname{tran}} \leqslant a<a_{\text {tran }}+0.25$, the $\times 2$ variable chinges from 0 to 1 ; and this interpolation scheme adjusts the heat transfer rates accordingty

4.1.8 Effect of Noncondensable Gas

Presence of a noncondensable gas, such as air, affects the heat transfer coafficient in condensation. The HEATIF subroutine includes some logic for this purpose. If the logic indicates presence of air (noncondensable), the following modification is made on the liquid-side heat transfer, (ha) if:
(hA) iete Ence $(h A)$ iat

+ HAIt
where

$$
\begin{aligned}
& C_{\text {ner }} \quad 0.168\left(\frac{C_{\text {neg }}}{C_{n}}\right)^{0.1} \quad *, C N C B \\
& \text { (EXY) }=\operatorname{Nax}\left[10^{8}, \text { api }^{2}\right] \\
& \text { *, CNCG1 (4.1-67) }
\end{aligned}
$$

$$
\begin{array}{ll}
C_{\text {nag? }}=\operatorname{Max}\left[10^{-6},(1-\alpha) P_{\mathrm{e} \ell}\right] & *, \operatorname{CNCG2}(4.1-68) \\
P_{v} & =P_{\mathrm{g}}-P_{e}
\end{array} \quad \text { *, ROS }(4.1-69)
$$

Pa is the local density of the noncondensable gas that is a component in the total vapor density, P_{8}.

The logic for correction of heat transfer due to noncondensable gas was introduced in TRAC- $p^{6 \cdot 1+10}$ at LANL. It has not been possible to find the original source of these equations in the technical literature. Furthermore, one may argue that the presamce of moncondensathe gaas should affect the vapor-side heat transfer, (hA) igt, rather than the liquid-side hat transfer, as is done in the coding. However, this may be a more cffective way of adequately reducing the overall heat transfer across the interface.

4.1.9 Effect of Horizontally Stratified Liquid Interface

In situations where vapor and liquid are separated due to gravity (at vecy low axial phasic velocities) the interfacial contact area may be limited to the qufescent 14 quid surface and the heat exchange may be restricted, regardless of void fraction in that volume. The existence of such a separated liquid level in a volume is detected independently by the level tracking model in the code. In these situations, when the vold fraction above the liquid level is >0.909, interfacial heat transfor in the steam volume above the level is ignored, the (hA) and (hA) iet terms are proportioned to the liquid height in the volume, and the contribution of the heat exchange over the liquit level is added to these components.

Calculation of the inierfacial heat transfer components across the liquid level is based on a correlation given by Holman ${ }^{6 / 11}$ fon free natural convection in air above a horizontal surface. The original form of this correlatton, given in British unlts, is

$$
\begin{equation*}
h_{51}=0.22(\Delta)^{1 / 3} \tag{4.1-70}
\end{equation*}
$$

This correlation was converted to $\$.1$. units and modified by Chu to take into account the heat conductivity of vapor instead of air, for which the correlation was suggested, by using the ratto of the two conductivittes. The result is
a. Private communication, K. H. Chu, General Electric Cotmpany, San Jose, CA, October 7, 1987

Interfacial Heat Transfer

$$
\begin{equation*}
t_{81}=1.027\left(\frac{k_{4}}{0.0305}\right)(\Delta)^{1 / 3} \tag{4.1-71}
\end{equation*}
$$

in which k is the local heat conductivity of the vapor and 0.0305 is the heat conductivily of air at standard conditions.

The averall interfacial heat transfer rates for liquid and vapor in a volune with stratified liquid level are then calculated as
and

$$
\text { (htl }\left[\text { (hat) } 0_{0} 0_{2}+1.027 k_{0} 32.79\left(17,-7_{0} 1\right)^{1 / 3}\right]_{02} \quad * \text { HAIV }(4.1 .73)
$$

for liquid and vapor, respectively, In these equations, (hA) ifo and (hA) igo represent the overall heat transfer rates for liquid and vapor that may imclude montribution from differant flow ranimes, Dz, is the height af the stratified liquid in the volume, 32.79 is $1 / 0.305$, and $0 Z$, is the area per unit volume of the cell

4.1.10 Implementation in Coding

The cading of the HEATIF subroutine is very close to the equations described in Sections 4.1.3 through 4.1.9. Most of the numerical values or lants 4 mposed on the yartables have been fadteated in connect ton with the equations to which they apply. There are, however, two sets of adjustments made near the end of the HEAT If subroutine to the calculated overall rates of heat transfer, that should be discussed here. In addition, the procedures invotved in calculating the inttial variables before HtATl is calted are described below.
4.1.10.1 Volume-Dependent Limits. Before the modifications of (ha) ito and (hA) for stratified liquid level (described in Section 4.1.9), the catculated values of these vartables are compared to the cell volume for which they have been eval rated (Vol) and the larger of the two numbers is chosen as the minimum rate of phasic heat transfer to the interface; i.e.,
(hA) ${ }_{\text {to }}$ Max $\left[(\mathrm{hA})_{\text {ter }} \mathrm{Vol}\right]$
*, HAll
(4.1-74)

$$
\begin{equation*}
\left.(h A)_{\text {igo }} N a x\left[(h A)_{\text {igot }}, V_{0}\right]\right] . \tag{4.1-75}
\end{equation*}
$$

* HAIV

The logical meaning of these operations is simply setting the minimum rate of heat transfer per unit volume equal to 1.

In ordor to cover the other extrome, maximum $14 m i t s$ of $2 \times 10^{8}, ~ V o l$ and 10^{8} Vol are imposed on the (hA) ito and (hA) igo terms, respectively. These upper numerical limits have been found adeguate in preventing disruption of compth at dons $^{\text {due to occurrence of some atmorntally high numbers for the rate of }}$ heat cransfer during iterations
4.1.10.2 Adjustments for Metastable States. A correction in (hA) is made if the liquid is superheated. Similarly, (hA) is corrected if the vapor is sutoobled. These correct lans are simpty a cen fold increase in the calculated value for the phase that is in the metastable state, if the temperature differencs exceeds one degree, and proportionally less if the temnerature excess is below one degree. These operations are expressed by the following relat lons:

If $T_{t}>T_{s}$, the fiquid is superheated: hence.
(1 A$)_{16}$

9. $x_{11}^{2}+3$
$2,(12)^{2}$

* HA1L
where
(hA) iftin $=$ modified rate of liquid heat tr-isfer in metastable state.

$$
\text { A, } \operatorname{Hin}\left[\left(T_{1},-T_{8}\right), 1.0\right] . \quad \pm, X 1(4.1-77)
$$

If $T_{0}<T_{s}$, the vapor is subcooled; hence,

*, HAIV
where

$$
\begin{aligned}
& \text { (hA) } \left.\begin{array}{l}
\text { modified rate of vapor heat transfer in metastable state, } \\
\text { and } \\
X_{10} \\
\operatorname{Min}\left[\left(T_{s}-T_{g}\right), 1.0\right] .
\end{array} \quad *, X\right] \quad(4.1 .79)
\end{aligned}
$$

There are no comparisons of these modified correlations with data, and thare are no known data from any measurements of the interfacial heat transfer in metastable conditions

Interfacial Heat Transfer

4.1.10.3 Calculation of Inttial Variables. The interfacial heat transfer subroutine HEATIF computes the two cell-centered interfacial heat transfer coefftectents and the cell centered interfactal area usfing a combination of cell-centered variables, edge-centered variables, and mixed variables that are products of cell-centered and edge-centered variables. All but one of the cell-centered variables, as computed by the numerical solution scheme, can be used directly to calculate several themmodymantc and transport properties, such as density and viscosity; cell geometry (i.e., cell volume and length) ; and stratified level parameters. The void fraction used in the calculation of the interfacial heat transfer parameters is the cell-centered value but is subject to modiftcation, as discussed below. the other vartables that are input to subroutine HEATIF are variables whose values are computed by the numerical solution scheme at the cell edges or are variables that are products of cell-centered and edge-centered variables.

The values of these variables are computed for each cell by subroutines IIIE and TF $3 E$ before subroutine HEATIF is called to determine the interfacial heat transfer parameters for cells in the one- and three-dimensfonal components, respective1y. The variables whose value at the cell center must be computed from edge-centered values include hydraulic diameter, phasic velocities, and phasic mass fluxes. Because the calculation of the unknown cell-centered varfables is somewhat different in the one-d4mensfonal and threedimensional components, they will be discussed separately.

4.1.10.3.1 Computation of Cell-Centered Variables for

 One-Dimensional Components - As stated above, the void fraction (which is a cell-centered varfalite) is modifled from the value computed by the numerical solution scheme in several special circumstances. These circumstances are (a) presence of stratified mixture level, (b) presence of subcooled vapor at high void fraction, (c) presence of superheated liquid at low void fraction, and (d) presence of subcooled botling tn the cell. The code first sets the void fractions to be used in the computation of the interfacial heat transfer parameters equal to the cell-centered vold fraction$$
\begin{equation*}
\alpha=a \tag{4.1-80}
\end{equation*}
$$

where
$\alpha^{\prime}=$ void fraction to be used in computation of interfacial heat transfer parameters in cell j, and
a $=$ void fraction in cell j computed by numerical solution scheme
Next, the code tests the above-level void fraction variable to determine the presence of a highly stratified, two-phase mixture level in the cell. If a highly stratiffed mixture tevel is present, the void fraction to be used inf the calculation of the interfacial paraneters is set equal to the below-level

Interfacial Heat Transfer
void fraction

$$
\alpha_{j}^{1}=\bar{\alpha}_{j, b} \text { if } \alpha_{j, A}>0.999
$$

where

The above-level void fraction a will be identically zero if no two-phase mixture level exists in the cell?:

The next modification is made if the cell-centered void fraction is less than 0.5 and the liquid temperature is above the local saturation temperature. The void fraction to be used in the calculation of the interfacial heat transfer parameters is the maximum of the previously selected void fraction and a void fraction based on the amount of 1 iquid superheat

$$
\begin{equation*}
\alpha_{j}^{i}=\operatorname{Max}\left[\alpha_{i}^{1}, 0.001 \cdot\left(T_{\ell j}-T_{8 j}\right)\right] \tag{4.1-82}
\end{equation*}
$$

where
$T_{\text {ej }}=$ liquid temperature in cell 3 , and
$T_{s j}=$ saturation temperature in cell j.
This modification is an attempt to limit the amount of superheat in the liquid phase at low void fraction by increasing the interfacial heat transfer area if superheat exists. The coefficient 0.001 was chosen from experience.

The next mindfefeation ts made if the cell cantered vaid fraction is less than 0.5 and saturated or subcooled liquid and subcooled boiling are present in the cell.

The attount of vapor that will be created by subcooled boiling during the time step is estimated from

$$
\begin{equation*}
\Delta x_{j}=\frac{Q E V A P_{j} \cdot D E L T}{H_{t 0 i} \cdot V_{0} l_{j} \cdot R_{v j}} \tag{4,1-83}
\end{equation*}
$$

where
La \quad change in void fraction due to subcooled bolling in cell j
QEVAP $=$ subcooled boiling power in cell j
DELT $=$ time step

Inyerfacial Heat Transfer

$$
\begin{aligned}
& \text { Hei } \quad=\text { heat of vaporization based on pressure in cell } \mathrm{j} \\
& \text { Vol, volume of cell } \mathrm{j} \\
& P_{x]} \quad=\text { vapor density in cell } \mathrm{j} .
\end{aligned}
$$

The estimated void fraction change due to subcooled boiling is limited by tha maximum change in void fraction allowed during a time step (which is based on the vold fraction in the cell)

$$
\begin{equation*}
\Delta x_{j}=\operatorname{Min}\left[\Delta x_{j}, \Delta x_{m_{1}}\right] \tag{4.1-84}
\end{equation*}
$$

where $\Delta a_{k,}$ is the maximum allowed change in void fraction during a time step.
The void fraction used for the catculation of the interfaciat heat transfer parameters is the maximum of the void fraction chosen on the basis of the previous modifications and the void fraction in the cell at the end of the time step fredicted from the production of vapor due to subcooled bofling,

$$
\begin{equation*}
\alpha^{1}=\operatorname{Max}\left[\alpha_{j}^{\prime},\left(\alpha_{1}+\Delta x\right)\right] \tag{4,1-85}
\end{equation*}
$$

The subcooled boiling modification was implemented to cover the case where void first appears in a cell. In this situation, the unmodified vold fraction used to compute the interfacial heat transfer parameters would be zero, leading to a saturation where the interfacial area would be zero but the void fraction would be non-zero due to the production of vapor by subcoolsd boiling. The inconsistency between the vold fraction and interfacial area causes the solution procedure to fail due to excessive iterations or leads to incorrect phasic temperatures due to the lack of an interfacial energy exchange mechanism. The modification anticipates the creation of void due to subcoofed boiling and ofjusts the interfacial area accordingly.

The final modiifcation to the void fraction used to compute the interfacial heat traisfer parameters is activated whenever the cell-centered void fraction is gre. ter than 0.5 and the vapor temperature is below the saturation temperatul based on the pressure in the cell. In this situation, the liquid fraction, which is defined as one minus the void fraction, is set to the maximum of the liquid fraction, as computed using the vold fraction obtained using the previous steps, and a liauid fraction based on the vapor subcooling

$$
\begin{equation*}
c_{\mathrm{c}, 1}^{i} N a \times\left[1,-\alpha, 0,0001\left(T_{\mathrm{s}, i}+T_{\mathrm{v}, i}\right)\right] \tag{4,1-86}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{e, j}= & \text { liquid fraction to be used in the calculation of } \\
& \text { interfacial parameters for cell } \mathrm{j}
\end{aligned}
$$

$T_{s, j}=$ saturation temperature in cell j, and
$T_{\mathrm{v}, \mathrm{L}}=$ vapor temperature in cell f .
The vold fraction used in the computation of the interfacial heat transfer parameters is computed from the liquid fraction as

$$
\begin{equation*}
a^{1}=1 \cdot a_{k j}^{1} \tag{4.1-87}
\end{equation*}
$$

This final modification attempts to 1 imit the amount of vapor subcooling at high void fractions. The factor 0.0001 in the expression for the liquid fraction was chosen based on experfence with the interfactal heat transfer model at high void fraction. This completes the computation of the void fraction for use by subroutine HEATIF.

The edge-centered properttes whose values must be computed at the cell center for use in subroutine HEATIF are the hydraulic diameter, the phasic velocities, and the phasic mass fluxes. The computation of these parameters depends upon whether a highly stratified, two-phase mixture level exists in the coll [see Equation $(4: 1-81)]$. If no two-phase level extsts 4π the cell or If the above level void fraction does not satisfy the criterion, then the cell-centered parameters are computed by

$$
\begin{equation*}
H D_{1}=0.5\left[H D_{1+2}+H D_{1+12}\right] \tag{4.1-88}
\end{equation*}
$$

and the average liquid and mixture mass velocities are calculated by

$$
\begin{equation*}
G L=\left(1-\alpha_{j}\right) p_{\ell} \bar{\varphi} I \tag{4.1-89}
\end{equation*}
$$

for the liquid, and

$$
\begin{equation*}
Q_{M}-\alpha_{1} \rho_{V} \overline{\nu \bar{\varphi}}+\left(1-\alpha_{j}\right) p_{l} \bar{D} L_{1} \tag{4.1-90}
\end{equation*}
$$

for the mixture, In these equations,
and

Interfactal Heat Transfer

$$
D L_{j}=\left\{\begin{array}{l}
\left.\left.\frac{0.5}{A_{j}} \right\rvert\, A_{j-1 / 2}+V L_{j-1 / 2}+A_{j+1 / 2} \cdot V L_{j+1 / 2}\right] \text { if } V L_{j-1 / 2} \cdot V L_{i+1 / 2}=0 \tag{4.1-92}\\
\frac{A_{j-1 / 2}}{A_{j}} \cdot M i n\left[\left|V L_{j-1 / 2}\right|,\left|V L_{j+1 / 2}\right|\right] \text { if } V L_{j-1 / 2} \cdot V L_{j+1 / 2}<0
\end{array}\right.
$$

where

$$
\begin{equation*}
A_{1}=\frac{V 0 I_{3}}{D X_{1}} \tag{4.1-93}
\end{equation*}
$$

The linear phasic velocities are calculated with the following relations;

$$
\begin{equation*}
V_{1}=\operatorname{Nax}\{0.1 \mathrm{~m} / \mathrm{s}, \mid 0 t, 1\} \tag{4.1-94}
\end{equation*}
$$

$$
V V_{i}=\operatorname{Max}\left[0.1 \mathrm{~m} / \mathrm{s},\left|D V_{j}\right|\right]
$$

The cell-centered hydraulic diameter is computed as the average of the edge-centered hydraulic diameters at the two edges of the cell. The cell-centered phaste veloctties depend upon whether the velocities at the two ends of the cell are in the same direction or not. If the velocities are in the same direction, then a simple edge flow area weighted average is computed, where the cell centered flow area is computed as the ratio of the cell volume to the cell length. If the velocities at the two ends of the cill are in opposite directions, the velocity that has the lowest absolute value is multiplied by the ratio of the flow area at the low numbered edge of the cell to the cell-centered flow area.

Note that the method used to compute the phase velocity wien the velocities at the two edges of the cell are in opposite directions is inconsistent with the method used when the edge velocities are in the same direction. for total accuracy, the method for the case of opposite drections should be changed to

$$
\begin{array}{r}
V L_{j}=\operatorname{Min}\left[A_{j-1 / 2}\left|V L_{j-1 / 2}\right|, A_{j+1 / 2}\left|V L_{j+1 / 2}\right|\right] \frac{1}{A_{j}} \tag{4,1-95}\\
\text { for } V L_{j-1 / 2} \cdot V L_{j+1 / 2}<0
\end{array}
$$

and
$V V_{j}=\operatorname{Min}\left[A_{j-1 / 2}\left|V_{j-1 / 2}\right|, A_{j+1 / 2}\left|V_{j+1 / 2}\right|\right] \frac{1}{A_{i}}$(4.1-97)for $V V_{1 / / 2} \cdot V V_{i / 1 / 2} \leq 0$
so that the minimum function chooses the smallest area-weighted velocityrather than the smallest velocity. This is a small point, which would onlychange the results of the computation if the three flow ameas associated withthe cell have very different values.
Once the cell-centered phasic velocities are computed, the phasic mass fluxes are computed using the cell-contered void fraction and phasic denstites
If the highly stratified, two-phase level criterion is satisfied, the cell-centered phasic velocities and mass fluxes are computed as

$$
\begin{equation*}
H D_{1} \quad H D_{1}=12 \tag{4.1-98}
\end{equation*}
$$

$V V_{1}=\left|V V_{\mid-1 / 2}\right|$(4.1-99)
$V L_{1}=\left|V L_{j+1 / 2}\right|$(4.1-100)
$6 L_{1}=\left(1 . \quad \alpha_{1,6}\right) P_{\ell} V L$(4.1-101)
$V M_{j}=\alpha_{1,8} P_{1} V V_{j}+\left(1,-\alpha_{i, 8}\right) P_{e} V L_{j}$(4.1-102)
This computation uses the edge-centered values at the low-numbered edge of the cell as the cell-centered value that is appropriate if the component is upritht with the low numbered and of the component at a lower eleyation than the high-numbered and of the component. The cell-centered velocities and mass flaxes are then computed from the cell edge below the stratified mixture level. However, the model for the computation of the phasic velocities in the presence of a stratified two-phase level appears inappropriate when the user has ortented the component with the high-numbered end at the lowet elevation In that event, the cell-centered phasic velocities will be computed from the values at the cell edge above the stratified mixture level, while the void fraction used in the computation of the interfacial heat transfer parameters will be the below-level void fraction. The model should be chanoed so that the closest edge values below the two-phase level are used regardless of the orientation of the component.

Interfacial Heat Transfer

One final comment is appropriate. The ceil-centered phase velocitles are conputed as positive values to be consistent with the correlations used in subroutine $1!$ ATIF, which wore all developed from upflow data, and are limited to be greater in magnitude than $0.1 \mathrm{~m} / \mathrm{s}$ to give finite values of the interfacial heat transfer parameters at low flows

4.1.10.3.2 Computation of Cell-Centered Variables for Three-

 Dimensional Components. The computation of the vold fraction to be used in the computatiun of the interfacial heat transfer parameter is the same in three-dimenstonal fomponents except that there is no modification for subcooled boiling since subcooled boiling is not allowed in three-dimensional componentsThe computation of the cell-ceatered phase velocities is quite different In three-dimenstonal components. First, average velocities are computed for each of the three coordinate directions

$$
\begin{align*}
& V_{2, i, k}=\left\{\begin{array}{l}
V_{(i+1 / 2) i k} \text { if } A_{2, i+1 / 2}=10^{-10} \mathrm{~m}^{2} \\
V_{(1, y / 2), k} \text { if } A_{2,1+1 / 2}<10^{-10} \mathrm{~m}^{2}
\end{array}\right. \tag{4.1-103}\\
& V_{k, i, k}=0.5\left[V_{16)-v 2) k}+V_{1(j+1 / 2) k}\right] \\
& V_{1, f i k}=0.5\left[V_{4 i(k-1 / 2)}+V_{1,(k+1 / 2)}\right] \tag{4,1-105}
\end{align*}
$$

where

$V_{(i+1 / 2)}$	$=$	velocity in axial (z) directions on upper axial face of cell ijk
$V_{41-1 / 2 s)}$		velocity in axial direction (z) on lower axial face of cell ijk
$V_{\text {, , i, ik }}$	*	average velocity in axial (z) direction for cell i, ik
$V_{K, 1 i k}$	*	average velocity in radial (R) direction for cell ijk
$V_{1, i, k}$	*	average velocity in azimuthal (θ) direction for cell ijk

and the other velocities with half integer subscripts have their asual definitions

The cell-centered phase velocity is the maximum of $0.1 \mathrm{~m} / \mathrm{s}$ and the vector
sum of the three average velocities in the individual directions, i, e.,

$$
\begin{equation*}
\bar{V}_{i, k}=\operatorname{Max}\left[0,1 \mathrm{~m} / \mathrm{s},\left(V_{2,1 j k} \cdot \bar{V}_{2,1 j k}+\bar{V}_{R, 1 / k} \cdot \bar{V}_{k, 11 k}+\bar{V}_{1,1 j k} \cdot \bar{V}_{1, i j k}\right)^{1 / 2}\right] \tag{4.1-106}
\end{equation*}
$$

This algorithm is used for both the liquid and vapor velocities.
The celn-contered mass faxes are them computed as
$G_{\ell, 1 j k}=\left(1-\alpha_{i j k}\right) P_{t, 1 j k} V_{t, i j k}$

$$
\begin{equation*}
G_{m, 1 j k}=\alpha_{j j k} P_{g, i j k} \bar{V}_{g, 1 j k}+G_{\ell, 1 j k} \tag{4,1-108}
\end{equation*}
$$

where $\alpha_{i j}$ is the cell-centered void fraction to be used in the calculation of the interfacial heat transfer parameters.

4.1.11 Mass Exchange Across the Interface

Calculations of the heat and mass exchanges across the interface, according to [quations $(4.1 .1)$ and $(4.1-2)$, are performed in the TFIE and TF $3 E$ subroutines of TRAC-BF1/MODI for one- and three-dimensional components. respectively.

4.1.12 Summary and Conclusions

The interfacial heat transfer calculation in TRAC-BF1/MODI is based on a mechanistic model that calculates the interfacial contact areas for vapor and liquid in different flow regimes and applies appropriate heat transfer correlations for heat exchange between each phase and the interface over those areas. The flow regime map for this model consists mainly of two distinct regions, bubbly/churn and dispersed droplets, with a transition zone, called annular-droplet, between them.

The boundary between bubbly/churn and annular-droplet flows is identified with a transition void fraction, a tran: which is calculated as a function of the flow, pressure, and system variables. The dependence of a ran on these variables in this model is much weaker compared to a tren in the interfacial shear model. The transition from annular-droplet to fully dispersed droplets is set arbitrarily at a void fraction of $0.25+\alpha_{\text {tran }}$. This is the same as in the interfacial shear mode?.

Calculation of the interfacial area for each flow pattern is according to the drift flux formulas suggested by lshil, with some variations according

Interfacial heat Transfer

to Andersen et a). $4 \cdot 1 \cdot 2,3$. There are some minor differences in the correlations used for bubhle drift velocity in fuel bundles and for droplet dift velocity th gentera? between this mode? and the interfactal shear model The ionact of these differences has not been evaluated. There are also some other minor differences between these two models that may need to be harmonized in the future

Calculations of the heat transfer coefticients are based on published correlations for overall heat transfer obtained from studies of heat transfer on solid geometries of different kinds. In some cases, such as in heat transfer between a bubble or droplet and the interface, modifteations have been made to include the effects of local circulation inside the fluid particle.

Finatly, the effects of noncondensable gas and horizontal stratification of liquid ifi a volume on the condensation heat transfer have been considered.

4.1.13 References

4.1-1. M. ishii, One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Notion Between Phases in Various Two-Phase Flow Regimes, ANIL-77-47, Getober 1977
4.1-2. J. G. M. Andersen and K. H. Chu, Bn'R Refill-Reflood Program, Task 4.7 Constitutive Correlations for Shear and Heat Transfer for the BWR Version of TRAC, NURLG/CR-2134, APRI NP-1582, GEAP-24940, December 1981
4.1-3. 3. G. M. Andersen, K. H. Chu, J. C. Stiaug, BWR Refill-Reflood Program, Task 4.7 Model Development, Basic Models for the BWR Version of TRAC, NURTG/CR 2573, [PR1 NP-2375, GFAP 22051, September 1983.
4.1.4. 3. Nikuradse, "Principles of Turbulent Flow in Smooth Tubes," Forschung auf dem Gebeite des Ingenieunwesens (Research at the fiequest of (ngineers), 3, September.October 1932, p. 356.
4.1-5. K. Tee and D.3. Ryley, "The Evaporation of Water Droplets in Superheated Steam," Journal of Heat Transfer, November 1968, pp. 445 -451:
4.1-6. 3. G. M. Andersen and 4. Abel-Larsen, CORtCOOL.Model Description of the Program, RISO-M-21380, November 1980.
4.1-7. W. M. Kays, Convective Heat and Mass Transfer, New York: McGraw-Hill Book Company, 1966, pp. 109-110.
4.1-8. M. M. Megahed, Interfacial Heat Transfer in Countercurrent Flows of Steam and Water, EGG-RTH-2495, January 1987.
4.1-9. D. Cook et al., Countercurrent Steam-Water Flow in a Vertical Channe1, NUREG/CR-2056, April 1981.
4.1-10. Los Alames National Laboratory Safety Code Development Group, TRAC-PD2, An Advanced Best Estimate Computer Program for Pressurized Water Reactor Loss-of-Coolant Accident Analysis, NUREG/Cא-2054. LA 8709 -MS, April 1981.
4.1-11. J. P. Holman, Heat Transfer, 3rd Ed, New York: McGraw-Hil1, Inc., 1972, Table 7-2.

Interfacial Heat Transfer

4. 2 Wall heat Transfer

Wall heat transfer in TRAC- $\mathrm{Br}^{-1 / M 0 D 1}$ involves all processes of energy exchange between the fluid and the solid walls of each hydraulic volume. The calculation results from wall heat tratisfer provide the $Q_{v o}$ and $Q_{\mu e}$ terims that are used in the energy balance equations for the mixture and vapor. The main part of wall heat transfer calculations in TRAC-BF1/MOD1 is performed by the HTCOR subroutine. This subroutine was originally developed as a part of TRAC P02 at Los Alamos Nat lonal laboratory, but it tneludes a number of modifications that were introduced in the course of TRAC-BWR development at the INEL

HTCOR is called within nine different subroutines in TRAC-BF1/MOD1; and, in turn. HTCOR calls a few other subroutines for some specific calculations that will be discussed later. This section describes the correlations used in HTCOR and its related subroutines, their basis, and the situations in which they apply. In the following sections, each equation that is actually used in the coding is marked with an asterisk $(*)$, followed by the variable name used in the code for the left-hand side of that equation.

4.2.1 Background

Numerous experimental studies have shown that the mechanism of heat transfer from a solid wall to a mass of water and steam varies as the temperature difference between the wall and the bulk of Muld passes trough some certain limits. The intensity of heat transfer, known as heat flux, shows dranatic variations with changes in the temperature difference between the wall and fluid. The diagram showing these variations is known as the bolltig curve, an example of which is shown in flgure 4.2-1

In general, the boiling curve displays the following modes of heat transfer:
. Forced or natural convection to single-phase (sub-cooled) Iiquid
. Nucleate bofling, up to the point of departure from nucleate boiling (DNB), or critical heat flux (CHF), at which the heat flux passes a maximuin and begins to drop

- Transition boiling, with reduced heat flux, as intensive evaporation prevents adequate contact between the wall and liqaid
- Film boiling, where thermal radiation from the wall to the two-phase mixture begins to enhance the hat transfer
- fored or maturnl convect4on to stngle phase (super heated) steam.

Wall heat Transfer

Boiling curve

Figure 4.2-1. TRAC-BF1/M001 boiling curve.

The true shape of the boiling curve in each case will depend on the channel geometry, mass velocity and fluid properties.

Wall heat transfer may also involve cooling of the fluid through the walls. Heat transfer from the fluid to a solid wall may involve one of the following processes:

- Forced or natural convection in single-phase water
- Condensation of vapor or two-phase mixture
: Forced or matural convection in single-phase vapor.
The overall structure of the wall heat transfer model in TRAC-BF1/MOD1 is based on the processes involved in the boiling curve and flow cooling.

4.2.2 Different Modes of Heat Transfer In HTCOR

The wall heat transfer calculations in TRAC-BF1/MODI include all phases of the boiling curve and fluid cooling processes. In order to apply proper corretations for heat transfer coefficients in different situations, each phase is identified with a mode number that will direct the path of calculations to the right correlation. The mode numbers and their interpretations are given in Table 4.2-1.

Table 4.2-1. Modes of heat transfer in subroutine HTCOR.

Mode No.	Heat transfer calculation form
0	Vapor condensation (if $a>0.5$)
1	Convection to single-phase liquid
2	Nucleate bofling (both subcooled and quality boiling)
4	Fransition boiling (both subcooled and quality boiling)
5	Convection to single-phase vapor 6
7	Not used for any mode Convection to two-phase mixture with no detallea . HF

Each of these modes comprises a number of subsets, representing different flow or system conditions, which require application of sperific heat transfer compelations. Example of these subsets are single phase convection in laminar or turbulent flows, each one to be calculated with a different correlation. The subsets of each mode are identified by a combination of the mode number and some decimal points, such as 1.0 for convection in laminar flow and 1.1 for hatural convectom

4.2.3 Effect of Flow Regimes On Wall Heat Transfer

Two-phase flow patterns affect the rate of vapor generation in direct contact with the walls, and this term is important in determining nass exchange between liquid and vapor, vartattons in two-phase flow regtress are considered in nucleate boiling and in transition boiling modes, as the steam quality and void fraction experience their widest range of variations in these

Wall heat Transfer

two modes of heat transfer,
4.2.3.1 Flow Regime Transitions. As in the cases of interfacial shear and interfacial heat transfer, three flow patterns are considered--namely, bubbly/churn, annular (transition), and dispersed droplet. The transitions between these flow regimes are defined in terms of void fraction. This scheme of flow pattern definition is based on the derivations of 1 shifis.2.1 and Andersen and Chut with a sight modification. The transition range is expanded from 10% in void to 25% in void (for a more smooth change). The prevailing range of the different flow regimes are:

* Bubbly/churn flow for $a \leqslant a_{\text {tran }}$
* Annular flow for atran ${ }^{\text {a }}<a_{\operatorname{tran}}+0.25$, and
* Dispersed droplet flow for $a>\alpha_{\text {uan }}+0.25$
where

$$
\begin{aligned}
& \alpha_{\text {tran }}=\left(1+\frac{4}{y}\right) \frac{1}{C_{0}}=\frac{4}{y}-0.15 \quad \text { *, ACA } \\
& y=\sqrt{\frac{P_{\theta}}{\rho_{g}}} \\
& C_{0} \quad C_{e}-\frac{C_{e}-1}{\gamma} \\
& C_{0} \quad 1.393=0.0155 \log (R e) \\
& R e=\frac{\hat{U} H_{d}}{H_{e}} \\
& \text { *, GAMMA (4.2-2) } \\
& \text { *, } \mathrm{CO}(4,2-3) \\
& \text { *, C01NF (4,2-4) }
\end{aligned}
$$

A few points may be observed considering the actual coding of these equations, First, Re in Equation (4.25) is replaced by $1+$ Re to make sure that the logarithm is always positive. Then, C_{e} is Timited to a lower bound of 1.0 ; and, finally, C_{0} is limited to an upper bound of 1.3333 , which. is the experimentally observed maximum value of this variable (see Reference 4.2-1).

Note that the transition void fraction, $a_{\text {tran }}$ is calculated in a manner
that is identical to that of the interfacial heat transfer and similar to that of the interfacial friction case. As explained in Sections 6 and 4.1 , there is an difference between foustion (4.2.4) and the formula used for calculating $C_{\text {e }}$ in the interfacial shear model. As a result, transitions between different flow regimes are at different void fractions for wall heat transfer and interfacial shear. An example of the difference in transition from bubbly/chum to annular flow is given in Section 6 .

4.2.4 Determ; ation of Heat Transfer Mode

Withi. su' routine HTCOR, a decision is made that determines the heat transfer mode chat will be used for the following time interval. This mode selection logte is shown to f figure 4.2.2.

First, certain conditions of the fluid are calculated. These include the velocities, slip, mass flux, and equilibrium qualit. The slip is set equal to one for countercurrent flow or hten elther phase velocity is zero.
4.2.4.1 Mode Selection in the Containment. Three modes can be chosen for a heat transfer surface in the containment ; subcooled convection (mode 1), forced convec*ion to vapor (mode 5), and f11m condensatton from two phase fluid (mode 0). Subcooled convection is chosen if the surface is below the water level. If the surface is above the water level, forced convection to vapor is chosen when the surface temperature is greater than or equal to saturation temperature. F 99 m condensat ton from two-phase is chosen when the surface temperature is less than saturation temperature

4.2.4.2 Mode 7--stmplified Bolling Curve, For each heat transfer

 surface, either the full-selection logic (modes 0 through 5) or the simpliiled botling curve (mode 7) will always be used as preselected by the user. For surfaces where an accurate prediction of transition boiling is required, the full-selection logic should be chosen. The full-selection logic is recommended for fuel elements and heated structures that are likely to develop cintical heat fluxes. "Ising the simplified bolling curve will result in faster calculations and is recommended for the heat transfer calculations from surfaces such as piping or unheated structures.4.2.4.3 Mode 5--Convection to Vapor. The forced convection to vapor correlations (mode 5) are selected whenever the fluid contains little or no ligutd and the wall temperatume is greater than the sattration temperature. Under these conditions, wall condensation cannot occur,
4.2.4.4 Mode 4- Film Boiling. The first way in which the film boiling correlations (mode 4) are selected is if the wall temperature is greater than minfmum stable film bolling temperature: If the wall temperature is less than

Wall heat Transfer

Figure 4.2-2. Heat transfer mode selection logic.

M5/8 IN 0592 42

Figure 4.2-2. (cont inued)

Wall Heat Transfer

minimum stable film boiling temperature, the selection procedure continues

4.2.4.5 Mode 0--Film Condensation from Two-Phase Fluid The correlations for film condensation from two-phase flut mode 0) are selected if the wall temperature is less than saturation temper re and the void fraction is greater than 0.5 .

4.2.4.6 Mode 1--Convection co Liquid. The correlations for subcooled convection are used when either (a) the wall tempe is less than saturation temperature and the void fraction is le. , or equal to 0.5 ; or (b) the wal? temperature is less than or equal to ? id temperature

4.2.4.7 Mode 2--Nucleate Bolling (Path 1). There are two paths that lead to using the chen ${ }^{4,2}$ corre?ations for the nucleate boiling reaime. The first is simply that tie user has determined that the chance of got. into transition boiling or film boiling can be ruled out for this particular heat transfer surface and transient. Using the option to not calculate a bolling transition will result in faster calculations and is recommended for the heat transfer calculations from surfaces such as piping or unheated structures This choice should definitely be made for calculations that are being performad to establish a reactor steady state, since even the heated structares are known to be below the critical heat flux point. If this choice
not made in attempting to reach steady state, it is possib7e that the TRAC-BF1/MOD1 calculation will undergo a transient that enters transition bolling and then film bolling before recovering or attempting to recover.
4.2.4.8 Calculation of the Critical Heat Flux. The boiling length is initialized to zero. For each cell thereafter, the length of the cell is added :o the boiling length if the cell quality is greater than 0.0 and if the usor has chosen to use a critical quality correlation. If a cell quality is less thar quial to 0.0 or the user has chosen not to use a critical quality correlat boiling length is reinitialized to zero.

A critical heat flux (departure from nacleate boiling) calculation is nerformed to establish the heat flux, wall temperature, and fluid quality at the point of maxfmum heat transfer during nuclezte bolling and beyond which transition bniling ocrurs.
4.2.4.9 Mode 4--Film Boiling. If the fluid quality is greater than the critical quality and the mass and the bolling length are within the correlation bounds $\left(200 \mathrm{~kg} / \mathrm{m}_{2} \mathrm{~s}\right.$, and 1 m , respectively), the film boiling heat transfe crirelations are chosen. In order to reduce hunting between the film boiling, transition boiling, and nucleate boiling regimes, a hysteresis factor of 0.05 is applied to the calculated critical quality when the previously determinod heat transfer regime was either film boiling or transition boiling.

If film boiling is eliminated as a possibility by one of the above tests, either transition boiling or nucleate boiling is selected by testing the old wall temperature against the wall temperature at critical hect flux.
4.2.4.10 Mode 3--Transition Boiling. If, after eliminating film boiling from consideration, the wall temperature is greater than or equal to the wall temperature at critical heat flux, the transition bolling correlations are selected
4.2.4.11 Mode 2--Nucleate Boiling (Path 2). If, after eliminating film boiling from consideration, the wall temperature is less than the wall temperature at critical heat flux, the chen ${ }^{4 / 2-3}$ nucleate boil ig correlations are -lected.

4.2.5 Mode 0--Vapor Condensation

Figure 4.2-3 shows the logic used to select among four models that are used in the vapor condensation regime of surface heat transfer. The four models that are possible are the Nusselt $t^{4.2-4}$ horizontal tube equation, the Dittus-Boelter ${ }^{2 \cdot 5}$ correlation, the McAdams ${ }^{6 \cdot 2 \cdot 6}$ turbulent natural convection mode1, and the chen $n^{4 \cdot 2 \cdot 3}$ forced-convection model
4.2.5.1 Mode 0.2--Nusselt Horizontal Tube Equation. As shown in Cigure $4.2-3$, the Nusselt ${ }^{4.2 .4}$ horizontal tube equation is always used to get in'tlal value for the 14 quid and vapor heat transfer coeffictents

$$
\begin{equation*}
H_{e}=0.725\left[\frac{\rho_{e}^{2} g_{c} h_{f g} K_{e}^{3}}{H_{e} D_{H}\left(T_{\mathrm{s}}-T_{\mathrm{s}}\right)}\right]^{1 / 4} \tag{4,2-6}
\end{equation*}
$$

$H_{v}=0.0$
*, HV (4.2-7)

If the quality is less than 0.71 , these coefficients will be used unless adjusted for a high void fraction, as discussed in Sections 4, 2, 5, 4 and 4.2.5.5.
4.2.5.2 Mode 0.4, Dittus-Boelter, McAdams, or Modified Kays. At higher qualities (greater than 0.71), the liquid film becomes thin and H_{g} from the Nusselt equatioll above is linearly decreased from tts value calculated at $X=0.71$ to zero at $X=0.999$. For these high qualities, HV is obtained by interpolation between zero at $X=0.71$ and the maximum of the Dittus-Boelter, ${ }^{4,2 \cdot 5}$ McAdams, ${ }^{4.2-6}$ and modified Kays ${ }^{4.2-7}$ correlations at $x=0.999$. The equations for the three correlations are

Wall heat Transfer

Figure 4.2-3, Mode 0-vapor condensation

$$
\begin{array}{ll}
H_{v, \text { turb }}=0.023 \frac{k_{v}}{D_{H}} R e_{v}^{0.8} P r_{v}^{1 / 3} & *, H V(4.2-8) \\
H_{v, n c}=0.13 \frac{k_{v}}{D_{H}}\left(\frac{G r_{v}}{P r_{v}}\right)^{1 / 3} & *, H V(4.2-9) \\
\\
H_{v, \text { lam }}=4 \frac{k_{v}}{D_{H}} & \\ \tag{4.2-10}
\end{array}
$$

where

$$
\begin{align*}
& R e_{v}=\frac{P_{v} \alpha v D_{n}}{\mu_{v}} \tag{4,2-11}\\
& P r_{v}=\frac{H C_{p v}}{k} \\
& G r_{v}=\frac{g_{c} R_{v}^{2}\left|T_{v}-T_{v}\right| D_{n}^{3}}{\mu^{2} T_{v}} \tag{4,2-13}
\end{align*}
$$

and $1 / T_{v}$ approximates the coefficient of thermal expansion. Note that the power on the Prandtl number in the Dittus-Boe7ter ${ }^{4.2-5}$ correlation has been decreased to $1 / 3$ from the original value of 0.4 .
4.2.5.3 Isachenko's Jet Data Correction. If any noncondensables are present, the heat transfer coefficients are reduced by multiplying by a factor based on the Russtan jet data expression by I sachenko. 4.2-8 the factor is

$$
\begin{equation*}
F_{15 A}=0.168\left[\frac{\alpha\left(p_{\mathrm{v}}-p_{\mathrm{a}}\right)^{2}}{1-\alpha) p_{\mathrm{a}} p_{2}}\right]^{0.1} \tag{4,2-14}
\end{equation*}
$$

4.2.5.4 Chen Forced Convicion. If the particular fluid volume represents the containment, the neat transfer coefficients calculated above are used with no further tests or corrections applled. For normal fiu'd

Wall heat Transfer

volumes, assuming that the void fraction is greater than 0.05 and the quality is greater than 10^{-5}, the Chen ${ }^{4,2-3}$ forced convection correlations are used. In order to begin this calculation, the Lockhart-Martinel7i ${ }^{4.2 \cdot 9}$ factor is first calculated as follows:

$$
\begin{equation*}
x_{\mathrm{T}}^{-1}=\left(\frac{x}{1-x}\right)^{0.9}\left(\frac{\rho_{\ell}}{\rho_{\mathrm{g}}}\right)^{0.5}\left(\frac{\mu_{g}}{\mu_{\ell}}\right)^{0.1} \tag{4.2-15}
\end{equation*}
$$

The Lockhart-Martinelli factor is limited to the range $0.10 \leq x_{\pi i}^{-1} \leq 100$. A Reynolds number factor is then cal-ulated as

$$
\begin{equation*}
F=2.35\left(x_{11}^{-1}+0.213\right)^{0.736} \tag{4,2-16}
\end{equation*}
$$

The three correlations (Dittus-Botlter, ${ }^{4.2-5}$ McAdams, ${ }^{4.2-6}$ and modified $K_{a y}{ }^{6.2 .7}$; the then used to calculate three heat transfer coefficients:

$$
\begin{equation*}
H_{\ell, \text { turb }}=0.023 \frac{K_{\ell}}{D_{H}}\left(F^{1.25} R e_{\ell}\right)^{0.8} p_{\ell}{ }^{1 / 3} \tag{4.2-17}
\end{equation*}
$$

$H_{t, n c}=0.13 \frac{k_{t}}{D_{H}}\left(\frac{G r_{t}}{P r_{t}}\right)^{1 / 3}$
*, HL (4.2-18)

$$
\begin{equation*}
H_{t, \text { lam }}=4 \frac{k_{t}}{D_{H}} \tag{4.2-19}
\end{equation*}
$$

where

$$
\begin{align*}
& R e_{\ell}=\frac{P_{l} \alpha V_{l} D_{l}}{\mu_{\ell}} \tag{4.2-20}\\
& P r_{\ell}=\frac{\mu_{l} C_{p l}}{k_{t}} \tag{4.2-21}\\
& G r_{\ell}=-g_{c} P_{l}\left(\frac{d p_{l}}{d T}\right)\left|T_{w}-T_{l}\right| \frac{D_{H}^{3}}{\mu^{2}}
\end{align*}
$$

The highest of the three heat transfer coefficients is then chosen as $\mathrm{H}_{\text {forc }}$. $H_{\text {forg }}$ and $H_{\text {fold, }}$ the liquid heat transfer coefficient calculated from section $4.5 .2 .1,4.5 .2 .2$, or 4.5 .2 .3 , as appropriate, are then used to calculate a modified liquid heat transfer coefficient

$$
H_{e}=\left\{\begin{array}{l}
(1-\alpha) H_{\text {forc }}+\alpha H_{e, \text { old }} \text { for } T_{s}-T_{*} \geq 5 \tag{4.2-23}\\
\frac{1-\alpha\left(T_{s}-T_{*}\right)}{5} H_{\text {forc }}+\frac{\alpha\left(T_{s}-T_{*}\right)}{5} H_{l, \text { old }} \text { for } T_{s}-T_{*}<5
\end{array}\right.
$$

The second equation for the modified H_{l} is a linear interpolation between the first equation at $T_{s}-T_{*}=5$ and $H_{\text {tore }}$ at $T_{s}-T_{*}=0$.

The vapor heat transfer coefficient, H_{v}, from Section 4.2.5.1, 4.2.5.2, or $4.2 \cdot 5 \cdot 3$ is unmodified.

4,2.5.5 Void Fraction Range Corrections. The correlations used in Saction 4.2 .5 .4 above are applied when the void fraction is in the range 0.75 $\leq \pi \leq 0.99$. Above and below this range, the heat transfer coefficients are modified to match correlations usec. Fur $0.99<\alpha \leq 0.999$ and for $0.5 \leq a<$ 0.75. The modifications to the 1 quid-to-wall heat iransfer coefficient are

$$
H_{l}=\left\{\begin{array}{l}
\left(\frac{0.999-\alpha}{0.009}\right) H_{l, \text { old }} \text { for } 0.95<\alpha \leq 0.999 \tag{4,2-24}\\
1.0 H_{l, \text { old }} \text { for } 0.75 \leq \alpha \leq 0.99 \\
\left(\frac{\alpha-0.5}{0.25}\right)\left(\frac{0.999-\alpha}{0.009}\right) H_{l, \text { old }}+\left(\frac{0.75-\alpha}{0.25}\right) H_{\text {forc }}, \text { for } 0.50<\alpha<0.75
\end{array}\right.
$$

The wall-to-vapor heat transfer coefficient, $H_{v, i}$ calculated in Sections $4.2 .5 .1,4.2 .5 .2$, and 4.2 .5 .3 above, is used in the range $0.5<\alpha \leq 0.99$. The equat tons of Section 4.2 .5 .2 arc used to calculate the vapor-to-wal7 heat transfer coefficient, $H_{v, n}$, that would be used in the range $a \geq 0.999$. The resulting heat transfer coefficient, H_{q}, is

$$
H_{v}=\left\{\begin{array}{l}
H_{v, 10}, \text { for } 0.50<\alpha \leq 0.99 \\
\left(\frac{0.999-\alpha_{1}}{0.009} H_{v, 10}+\frac{\alpha-0.99}{0.009}\right) H_{v, n i} \text { for } 0.99<\alpha \leq 0.999
\end{array} \quad *, H V,(4.2-25)\right.
$$

Wall Heat Transfer

4.2.6 Mode 1-Convection to Liquid

Figure 4.2-4 shows the logic used to select among four models that are used in the convection-to-1iquid regime of surface heat transfer. The four models that are possithe are the olttus-Boelter ${ }^{2.2-5}$ turbilent flow correlation, the Chen ${ }^{4.28}$ forced convection model, the McAdams ${ }^{4,2 \cdot 6}$ natural convection model, and the modified Kays ${ }^{2 \cdot 2 \cdot}$ laminar flow equation.

4.2.6.1 Lockhart-Martinelli Factor for Forced Convection, The quality

 and void fractions are tested to determine whether the chen ${ }^{4,2-3}$ forced convection heat transfor coeffictent with be calculated. If the votd fraction is greater than 0.5 or the quality is less than 10^{-5}, the unmodified DittusBoelter ${ }^{2 \cdot 2^{-3}}$ correlation will be used to obtain a turbulent flow heat transfer coefficient. If the void fraction is less than or equal to 0.5 and the quality ts greater than or equal to 10^{-5}, the Lockhar t Martinel1 4.2-9 factor will be used to modify the Dittus-Soelter correlation used in obtaining the turbulent flow heat transfer coefficient. When called for, the Lockhart-Martinelli factor is calculated by Equation (4,2-15). Since the Lockhart-Martinelli factor, $\chi_{T T}^{-1}$, is limited to be in the range $0.1 \leq \chi_{T T}^{-1} \leq$ 100, a Reynoids number factor is then calculated as$$
\left.\begin{array}{l}
2.35(0.2+0.213)^{0.736}=1.0, \text { for } \alpha \geq 0.05, x \geq 10^{-5}, \\
\text { and } x_{\pi 7}^{-1} \leq 0.1 \\
2.35\left(x_{\pi 1}^{-1}+0.213\right)^{0.736} \text {, for } \alpha \geq 0.05, x \geq 10^{-5,} \\
\text { and } 0.1 \leq x_{\pi 1}^{-1} \leq 100 \\
2.35(100+0.213)^{0.736}=69.8, \text { for } \alpha \geq 0.05, x \geq 10^{-5}, \\
\text { and } x_{\pi 1}^{-1} \geq 100
\end{array}\right\} .
$$

This factor will be used to modify the Reynolds number in the Dittus-Boelter turbulent flow heat transfer coefficient.
4.2.6.2 Liquid Heat Transfer Coefficients. The three correlations Dittus-Boelter,,$^{4.2-5}$ McAdams,,$^{4.2-6}$ and modified Kays ${ }^{4.2-7}$) defined as Equations $(4.2-17),(4.2-18)$ and (4.2-19) are then used to calculate three heat transfer coefficients. The highest of the three heat transfer coefficients is then chosen as $H_{e, \max }$. If the void fraction $<0.99, \mathrm{H}_{e, \text { max }}$ is used for the value of $\mathrm{H}_{\text {, }}$ with ho further modifications. If the void fraction $\geq 0.99, \mathrm{H}_{2}$ is decreased finearly with void fraction unt 11 reaching zero at a void fraction of 0.999

Figure 4.2-4. Mode 1-convection to single-phase liquid

Wall Heat Transfer

$$
H_{e}=\left\{\begin{array}{l}
H_{l, \max }, \text { for } \alpha<0.99 \tag{4.2-27}\\
\left(\frac{0.999-\alpha}{0.009}\right) H_{\ell, \max }, \text { for } 0.99 \leq \alpha \leq 0.999 \\
0, \text { for } \alpha>0.999
\end{array}\right.
$$

4.2.6.3 Vapor Heat Transfer Coefficients. For void fractions, $a \leq 0.9$, the heat transfer to the vapor is neglected by setting $H_{v}=0$ and only the heat transfor to the l4qutd ts constdered. for votd fractions, a ≥ 0.999, the vapor heat transfer coefficient is taken to be the highest of the turbulent flow, natural convection, and laminar flow heat transfer coefficients for vapor. For void fractions, $0.99<a<0.999$, the coefficient is varied Henearly between zem at $a=0.99$ and the highest of the turbulent flow, natural convection, and laminar flow heat transfer coefficients for the vapor at $\alpha=0.999$. The three correlations (Dittus-Boelter, ${ }^{4.2-5}$ McAdams, ${ }^{4.2-6}$ and modified Kays ${ }^{4.2-7}$) are defined by Equations (4.2-8) , (4.2-9), and (4.2-10).

The highest of the three heat transfer coefficients is then chosen as $H_{\mathrm{v}, \operatorname{mox}}$. If the void fraction < 0.99 , zerg is used for the value of H_{v} with no further modifications. If the void fraction $\geq 0.99, H_{v}$ is decreased linearly with void fraction unt $i 1$ reaching $H_{v, \max }$ at a vold fraction of 0.999

$$
H_{v}=\left\{\begin{array}{l}
H_{x, \text { max }}, \text { for } \alpha<0.99 \tag{4.2-28}\\
\left(\frac{\alpha-0.99}{0.009}\right) H_{4, \max }, \text { for } 0.99 \leq \alpha \leq 0.999 \\
0, \text { for } \alpha>0.999
\end{array}\right.
$$

4.2.7 Mode 2-Nucleate Bolling

Figure 4.2-5 shows the logic used to select among models that are used in the nucleate boiling regime of surface heat transfer. It also shows the order of the vartous test's and calculattons that need to be performed.
4.2.7.1 Chen Correlation for Nucleate Boiling. Figure 4.2-6 shows the logic used in the module to calculate the Chen ${ }^{2 \cdot 2 \cdot 3}$ model for nucleate boiling. The Chan correlation is comrosed of two parts; a forced convection term and a nucleate boiling term that contains a suppression factor, S.

As described in section 4.2 .6 .1 , the quality and void fractions are tested to determine whether the Chen ${ }^{4 \cdot 2 \cdot 3}$ forced convection heat transfer coeffictent w471 be calculated. If the vold fraction ts greater than 0.5 or the quality is less than 10^{-5}, the unmodified Dittus-Boelter ${ }^{4,2 / 5}$ correlation will be used to obtain a turbulent flow heat transfer coefficient. If the

MSTB WHTTSe2.45

Figure 4.2-5. Made 2-nucleate boiling.

Wall Heat Transfer

Figure 4.2-6. Chen model for nucleate bolling.
void fraction is less than or equal to 0,5 and the quality is greater than or equal to 10^{-5}, the Lockhart-Martinelli $1^{4.2-9}$ factor [Equation (4.2-15)] is used to modify the Dittus Boelter B $^{2-6}$ correlation used in obtaining the turbulent flow heat transfer coefficient. A Reynolds number factor is then calculated according to Equation (4.2-26). Two correlations (Dittus-Boelter and modified Kays ${ }^{4.2-7}$) are then used to calculate two heat transfer coefficients:

$$
\begin{array}{ll}
H_{\text {turb }}=0.023 \frac{k_{l}}{D_{H}} R e_{\text {tp }}^{0.8} P r_{l}^{0.4} & *, \operatorname{HTURB}(4.2-29) \\
H_{\text {tami }}=4 \frac{k_{l}}{D_{H}} & *, H L A M(4.2-30)
\end{array}
$$

where

$$
\begin{equation*}
R e_{t p}=R e_{e} F^{1.25} \tag{4.2-31}
\end{equation*}
$$

and $R e_{\ell}$ and $P r_{\ell}$ are as defined in Equations (4.2-21) and (4.2-22). The higher of the two heat transfer coefficients is then chosen as $H_{\text {forc }}$. If the wall temperature is less than or equat to saturation temperature, no nucteate botling can occur. In this case, the Chen ${ }^{2 \cdot-3}$ coefficient and the nuclear boiling coefficient are both set equal to zero and the calculation is ended. If the wall temperature is greater than saturation temperature, a suppression factor is calculated

$$
\begin{aligned}
& S=\left\{\begin{array}{l}
\frac{1}{1+0.12\left(R e_{t p} \times 10^{-4}\right)^{1.14}}, \text { for } R e_{t p}<32.5 \times 10^{4} \\
\frac{1}{1+0.42\left(R e_{t p} \times 10^{-4}\right)^{0.78}}, \text { for } 32.5 \times 10^{4} \leq R e_{t p}<70 \times 10^{-4}, * S,(4.2-32) \\
\frac{1}{1+0.42(70)^{0.78}}=0.0797, \text { for } 70 \times 10^{4} \leq R e_{t p}
\end{array}\right. \\
& \text { If the saturation pressure at the wall temperature is greater than the } \\
& \text { fluid pressure, the Chen }{ }^{4 \cdot 2 \cdot 3} \text { coefficient, } C_{p} \text {, and the nucleate boiling heat } \\
& \text { transfer coefficient, } H_{n b} \text {, are then calculated: }
\end{aligned}
$$

Wall Heat Transfer

$$
\begin{align*}
& C_{0}=\frac{0.00122 \mathrm{~S}\left(K_{t}^{0.79} C_{p e}^{0.45} P_{t}^{0.49}\right)}{6^{0.5} H_{t}^{0.29} h_{f g}^{0.24} P_{3}^{0.24}} \tag{4,2-33}\\
& H_{n b}=C_{0}\left(T_{w}-T_{s}\right)^{0.24}\left(\Gamma_{s w}-P\right)^{0.75}
\end{align*}
$$

, HNUCB (4.2-34)

If the safuratinn pressure at the wall temperature is less than the fluid pressure, hio nucleate boiling can occur.
4.2.7.2 Non-equilibrium Temperature Adjustment. The properties are evaluated at the l iquid and vapor temperatures; X_{ℓ} is the equilibrium quality and V, is the Tiquid quality paraltel to the surface. Because the nucleate boiling contribution to the Chen ${ }^{4 \cdot 2^{-3}}$ correlation was developed for saturated conditions, $H_{r i p}$ is multiplied by a temperature ratio to adjust the heat transfer coefficient to the actual Tiquid temperature, T, Since TRACBFI/M001 can tolerate superheated liquids, the adjustment factor is restricted a maximum value of 1.0 , restricting the adjustment to subcooled liquid.

For qualities less than or equal to 0.99 , the heat transfer to the vapor is ignored by setting the vapor heat transfer coefficient equal to zero, and the Chen calculation is used for the hiquid heat transfer coefficient

$$
H_{\ell}=\left\{\begin{array}{l}
H_{\text {tare }}+H_{n b} \frac{T_{v}-T_{s}}{T_{v}-T_{\ell}}, \text { for } T_{\ell} \leq T_{s} \\
H_{\text {forc }}+H_{n b}, \text { for } T_{\ell} \geq T_{s}
\end{array} \quad \star, H \mathrm{HL}(4.2-35)\right.
$$

$$
\begin{equation*}
H_{v} \equiv 0 \tag{4.2-36}
\end{equation*}
$$

For qualities greater than or equal to 0.999 , the heat transfer coefficient to the liquid is calculated using the Bromley ${ }^{4,2-10}$ correlation for film bolling, while the coefficient for vapor is chosen as the larger of that calculated using McAdams ${ }^{4 \cdot 2-7}$ natural convection and the modified Dittus-Boelter ${ }^{4 \cdot 2-5}$ turbulent flow. The Bromley correlation

$$
H_{e}=0.62\left[\frac{k_{v}^{3}\left(\rho_{e}-\rho_{v}\right) \rho_{v} g_{c} h_{f s}^{*}}{\mu_{v}\left(T_{w}-T_{s}\right) \lambda}\right]^{71 / 4}
$$

*) HL (4.2-37)
uses two expressions, a modified heat of vaporization, h_{fg}, and a
characteristic length, λ.

$$
\begin{aligned}
& H_{f g}^{\prime}=H_{i g}+0.5 C_{p v}\left(T_{v}-r_{s}\right) \\
& \lambda=2 \pi\left|\frac{\sigma}{g_{c}\left(P_{l}-R_{v}\right)}\right|^{1 / 2} .
\end{aligned}
$$

*, HFGP (4.2-38)
*, WL (4.2-39)

The modified Dittus-Boelter turbulep* flow and the McAdams natural convection correlations are defined by Equations (4.28) and (4.2-9).

For qualities between 0.99 and 0.999 , both the Chen ${ }^{4.2 \cdot 3}$ and Bromley $y^{4.2-10}$ calculations are performed; and H_{l} and H_{v} are linearly interpolated according to the fluid quality.
4.2.7.3 Flashing Energy using Lahey Mechanistic Model. The possibility of net vaper generation is considered even though the liquid may be subcooled. Accurate estimates of the axial core void proftle are needed for reactor transients without scram because core power is very sensitive to void changes. Estimates of the bulk enthalpy needed are suggested by the mechanistic model proposed by Lahey.

The enthalpy needed to produce net vapor is expressed as

$$
h_{l d}=\left\{\begin{array}{l}
h_{f}-N u^{\prime} \frac{C_{p l}}{455}, \text { for } P e s 70000 \tag{4.2-40}\\
h_{f}-S t \frac{C_{p l}}{0.0065}, \text { for } P e>70000
\end{array}\right.
$$

where the modified Nusselt, Peclet, and Stanton numbers ($\mathrm{Nu}^{\prime}, \mathrm{Pe}$, and St , respectively) are given by

$$
\begin{array}{ll}
N u^{\prime}=q \frac{D_{H}}{k_{e}} & *, \text { XNUMOD }(4.2-41) \\
P e=\frac{G D_{H} C_{p l}}{k_{e}} & *, P E(4.2-42) \\
S t=\frac{N u^{\prime}}{P e} . & *, \text { ST }(4.2-43)
\end{array}
$$

Wall Meat Transfer

The heat flux transferned to the liquid is approximated by

$$
\text { Q } \left.0.5\left(H_{l}+H_{l, 0 l d}\right)+T_{N}-T_{l}\right)
$$

*, QPPW (4.2-44)

The paraneter head is the smaller of the actual liquid enthalpy, he, and the saturated liquid enthalpy, h_{f}. When the net vapor generation enthalpy, $h_{\text {ed }}$, is greater \ln an $h_{\text {gog, }}$ no bubbles will be generated and the bubble generation flux, $q_{\text {evap }}$ used in the energy equation is zero.
4.2.7.4 Calculating the Wall Evaporation. When the net vapor generation enthalpy, h_{n}, is less than $h_{\text {ead }}$, bubbles will be generated. The heat flux used for bubble generation is

$$
q_{\mathrm{bc}}=q \frac{h_{\ell d \mathrm{da}}-h_{\ell d}}{h_{\mathrm{f}}-h_{l d}}
$$

When the quality is low enough, the bubbly churn flow is maintained and the Bromley ${ }^{6.290}$ correlation is used without modification. For high-quality flows, the flow will be annular and the bubble generation will be zero. Between these two extremes, $q_{\text {evap }}$ is interpolated using the quality in a spline function. The high-quality end of the bubbly churn regime and the low end of the transition to annular drop flow regime is calculated by

$$
\gamma=\left(\frac{\rho_{t}}{\rho_{v}}\right)^{1 / z}
$$

*, GAMMA (4, 2-46)
$R e_{\text {aifx }}=\frac{\left|G_{\text {mix }}\right| D_{H}}{H_{e}}$

$$
\begin{equation*}
C_{0, \infty}=\operatorname{Max}\left\{1,\left[1.393-0.155 \log \left(1+\operatorname{Re}_{\text {mix }}\right)\right]\right) \tag{CO}
\end{equation*}
$$

$$
C_{0}=\operatorname{Min}\left[1.33, C_{0, \infty}-\frac{C_{0, \infty}-1}{\gamma}\right]
$$

* REMIX (4.2-47)
*, $\mathrm{CO}(4.2-49)$

The low end of the annular drop flow regime and the high end of the transition regime is taken as 0.25 higher in quality unless this would be greater than 1 .

$$
\begin{equation*}
\alpha_{a d}=\operatorname{Min}\left[1,\left(\alpha_{b c}+0.25\right)\right] \tag{4.251}
\end{equation*}
$$

Finally, $q_{\text {evpp }}$ is fitted by a spline function from the bubbly churn correlation for $a \leq a_{\text {bc }}$ to zero for $a \geq a_{a d}$

$$
q_{\text {evap }}=\left\{\begin{array}{l}
q_{\text {bc }}, \text { for } \alpha \leq \alpha_{b c} \tag{4.2-52}\\
q_{\text {bx }}\left(3 x_{2}^{2}-2 x_{2}^{3}\right), \text { for } a_{\text {ac }}<\alpha<\alpha_{\text {ad }} \\
0, \text { for } \alpha_{\text {ad }} \leq \alpha
\end{array}\right.
$$

where

$$
\begin{equation*}
x_{2}=\frac{\alpha_{\mathrm{ad}}-\alpha}{\alpha_{\mathrm{ad}}-\alpha_{\mathrm{bc}}} \tag{4,2-53}
\end{equation*}
$$

4.2.8 Mode 3--Transition Boiling

Transition boiling may be considered as a combination of nucleate and film boiling. A given spot on the wall surface is wet part of the time and dry during the remainder of the time. Therefore, contributions to both the liquid and the vapor heat transfer coefficients exist for all conditions.

Figure 4.2-7 shows the logic used to calculate the transition boiling heat transfer coefficients. The logic diagram shows both the selection criteria and the correlations and models that are used for various combinations of fluid conditions and wall temperatures
4.2.8.1 Minimum Stable Film Boiling Temperature. The minimum stable film boiling temperature, $T_{\text {min }}$, is calculated using the TMSFB subroutine (see figure 4.2-8) whenever the W all temperature, T, is no more than 50 degrees above the saturation temperature, T_{s}. The user may choose to use either the homogeneous nucleation model, by setting ITMIN ≤ 0, or the Shumway ${ }^{4 \cdot 2^{\cdot 12}}$ model, by setting ITMIN >0

Wall Heat Transfer

MS/8.WHTL.5eg - 17

Figure 4.2-7. Mode 3--transition boiling

Figure 4.2-8. Minimum stable film boiling temperature.

$$
T_{\text {min }}=\left\{\begin{array}{l}
T_{\text {crit }}+\left(T_{\text {crit }}-T_{\ell}\right) \beta, \text { for ITMIN } \leq 0 \tag{4.2-54}\\
T_{\mathrm{s}}+3.7\left(\frac{P_{\ell}-p_{v}}{P_{\ell}+p_{v}}\right)\left(\frac{h_{\text {fg }} \beta}{C_{\text {pl }} P_{r_{l}}}\right) \\
{\left[1+(1-\alpha)^{2}\right]\left(1-\frac{p}{P_{\text {serit }}}\right)} \\
\left(1+1.5 \times 10^{\left.-5 R e_{\ell}\right)^{2.15}, \text { for ITNIN }>0}\right.
\end{array}\right.
$$

where

Wall Heat Transfer

$$
\begin{equation*}
\beta=\sqrt{\frac{\left(k \rho C_{p}\right)_{l}}{(k \rho C)_{k}}} \tag{4.2-55}
\end{equation*}
$$

4.2.8.2 Heat Transfer Coefficients at $T_{\text {min }}$. The heat transfer coefficient to the liquid at $T_{\min }$ is calculated using the Bromley ${ }^{\text {i }} \mathrm{Z}^{2-10}$ correlation for $f \pm 7 \mathrm{~m}$ botling, white the confficient for vapor is chosen as the larger of that calculated using McAdams ${ }^{4,2-6}$ natural convection and the Douga 11-Roserihow ${ }^{4 \cdot 13}$ turbulent flow correlations. The Bromley correlation uses two expressions, a modified heat of vaporization, $h_{\text {ig }}$, and a characteristic length, λ, as defined in Equations (4.2-38) and (4.2-39)

$$
H_{t \mathrm{~b}, \mathrm{~b}}=0.62\left[\frac{k_{\mathrm{v}}^{3}\left(p_{\varepsilon}-P_{v}\right) R_{v} g_{c} h_{f g}^{1}}{\mu_{\mathrm{f}}\left(T_{w}-T_{s}\right) \lambda}\right]^{1 / 4}
$$

$$
\text { *, } \operatorname{HFBB}(4.2-56)
$$

The Bromley heat transfer coefficient used for the liquid is limited to a value of 1000 , as spurious large values can sometimes be calculated when a volume becomes itquid filled after having been two phase.

$$
h_{\text {,tain }}= \begin{cases}(1 & -\alpha) h_{1 b, b}, \text { for } h_{1 b, b} \leq 1000 \tag{4.2-57}\\ (1 & \alpha) 1000, \\ \text { for } h_{t b, b} \geqslant 1000\end{cases}
$$

The Dougall-Rosenhow turbulent flow and the McAdams natural convection correlations are calculated for the "por

$$
\begin{array}{ll}
H_{v, d r}=0.023 \frac{k_{v}}{D_{H}} R e_{t p}^{0.8} P r_{v}^{1 / 3} & *, H V(4.2 .58) \\
H_{v, n c}=0.13 \frac{k_{v}}{D_{H}}\left(\frac{G r_{v}}{P r_{v}}\right)^{1 / 3} & *, H V(4.2-9)
\end{array}
$$

where

$$
\begin{equation*}
R e_{t p}=p_{v}\left[\alpha\left|V_{v}\right|+(1-\alpha)\left|V_{e}\right|\right] \frac{D_{H}}{\mu} \tag{4.2-59}
\end{equation*}
$$

Pr_{v} and $\mathrm{Gr} r_{v}$ are as defined in Equations (4.2-12) and (4.2-13), and $1 / \mathrm{T}_{v}$ approximates the coefficient of thermal expansion.

The higher of these two vapor heat transfer coefficients is used for the vapor at the minimum stable film boiling temperature

$$
H_{v, t \text { min }}= \begin{cases}H_{v, d s}, & \text { for } h_{v, d r} \geq h_{v, n c} \\ H_{v, n c}, & \text { for } h_{v, n c}>h_{v, d r}\end{cases}
$$

4.2.8.3 Chen Correlation for Nucleate Boiling. As shown in Figure 4.2-6 and described in Section 4.2.7.1, the Chen ${ }^{4,2^{-3}}$ model is used for nucleate bolling in the llquid phase.

4.2.9 Mode 4--Film Boiling

Film boiling is composed of a forced convection component, a pool boiling component, and transitional components. The logic is shown in Figure 4.2-9, The forced convection component is taken as the Taximum of the Dougall. Rohsenow ${ }^{4 \cdot 2-13}$ correlation and natural convection to steam, defined in Equations (4.2-58) and (4.2-9). The pool boiling component is taken from the Bromley correlation defined in Equation (4.2-55).

4.2.10 Mode 5--Single-Phase Vapor

Single-phase vapor is assigned a wall heat transfer coefficient equal to the maximum obtained from the laminar, turbulent, and natural convection complations defined in Equations (4.2.8), (4.2.9), and (4.2-10) The logic is shown in Figure 4.2-10.

4.2.11 Mode 7--Simple Boiling Curve

The seventh heat transfer mode is specifically for nonreactor core structures or for situations where accurate values of CHF are not desired. Thts stmpllfled logic atlo nucleate bolling up to a wall superheat of 25 K if the quality is not greater than one and the void fraction is not >0.999. This logic is shown in Figure $4 \cdot 2-11$. At very dry steam conditions, h_{2} is set to zero and h_{v} is the maximum of the natural convection, laminar flow, and tittus Boelten $4.2-5$ commelations given by Equations $(4.2 .8),(4.2 .9)$, and $(4.2$. 16), respectively. For nucleate boiling, the CHEN correlation is used; and transition boiling uses the Loomis-Shumway ${ }^{4.2-14}$ correlation

$$
h_{l}=H T B=2000(1-c)\left\{\left[62.35+8.804 \times 10^{-5}(p)\right]\right.
$$

Wall Heat Transfer

Figure 4.2-9. Mode 4-- film boiling.

M57a.WH- $362=3$

Figure 4.2-10. Mode 5-forced convection to vapor.

Wall Meat Transfer

Figure 4.2-11. Mode 7--simple boiling curve.

Figure 4.2-11. (cont inued)

$$
\left[11.3+1.59 \times 10^{-5}(P) \ln (N)\right]
$$

Figure 4.2-11 diagrams the condensation logic. Mode 7 through 7.5 follow clasely Mode 0 through Mode 5; Modes 7.8 and 7.9 ; ve been added for heat exchangers that have horizontal and vertical tubes, respectively. The equations used for horizontal and vertical tubes are related such that differences disappear as the steam flow increases. The equation is

$$
\begin{equation*}
N u=F l N u_{1}+(I-F L) N U_{2} \frac{T_{s}-T_{v}}{T_{L}-T_{N}} \tag{4,2-62}
\end{equation*}
$$

where FL is the fraction of tube surface beneath the water pool. Nu, is the Nusselt number ${ }^{2,2-15}$ below the pool surface.

$$
\begin{equation*}
N u_{1}=0.36 R e_{\ell}^{0.55} P r_{\ell}^{1 / 3} \tag{4,2-63}
\end{equation*}
$$

Nu_{2} is the Nusselt number in the steam region. For horizontal tubes ${ }^{2.2-16}$

$$
\begin{equation*}
N U_{2}=X F\left|1+\frac{0.276}{X F^{4} F r H F}\right|^{11 / 4} R e^{1 / 2} \tag{4,2-64}
\end{equation*}
$$

where

$$
\begin{align*}
& X F=\frac{0.9\left[1+\frac{1}{R F H F}\right]^{1 / 3}}{H F=\frac{K_{i}\left(I_{s}-T_{\mathrm{s}}\right)}{H_{e} h_{\mathrm{fg}}}} \\
& R F=\left(\frac{P_{e} H_{e}}{P_{v} H}\right)^{1 / 2} . \tag{4,2-66}
\end{align*}
$$

Fr is the Froude number basi j on the volumetric vapor velocity perpendicular to the tubes in the st a region

Vertical tubes use Equation (4.2-6) plus the first term in Equation (4.2. 63). The coefficient in Equation $(4.2-6)$ is 0.943 , as recommended by Chen ${ }^{2.2-17}$, and the length is the distance between baffle plates instead of the hydrautic diameter. The first term of Equation (4.2-63)

Wall heat Transfer

$$
N u_{2}=X F R e^{1 / 2}
$$

is the only velocity-drpendent term and becomes dominant at normal flow rates so that the tube orientation makes little difference.

4.2.12 Nucleate Boiling Transition

Pressurized water reactor safety codes have predicte/ the onset of nucleate boiling transition by using an empirical correl. tion to determine the local CHF. Using this transition criteria alone is in zquate for boiling water reactors since the high-quality, high-mass-fiux -onditions may introduce memory effects when the heat flux is nonuniform. ${ }^{4.2-18}$

Several methods exist for correlating CHF data for nonuniform heat fluxes. Perhaps the two most widely accepted for analyzing BWR like phenomena are the Tong F-factor and CISE critical quality correlations, ${ }^{4,2 * 9}$ Since the critical quality correlation is a simpler function to svaluate and has been used by General Electric Corporation (GE) to correlate CHF data in BWR rod bundle simulation, it has been chosen for use in TRAC-BFI/MOD1. The general form of the correlation is

$$
\begin{equation*}
x_{0}=\frac{A L_{B}}{B+L_{B}} \tag{4,2-69}
\end{equation*}
$$

where

$$
\begin{aligned}
& x_{c}=\text { critical quality } \\
& L_{8}=\text { boiling length }
\end{aligned}
$$

and A and B are functions of pressure and mass flux (see Table 4.2-2).
Implemented thto the code are two verstors of thts correlation as shown in Table $4,2-2$. The first is based upon the Biasi correlation ${ }^{4,2-20}$ originally used in TRAC.BFI/MOD1. This correlation has been converted from a local CHF to a critical quality correlation, as described in Reference 4.2-18. The second is the CISE-GE correlation derived from data taken from experiments performed at $G E$. The Biasi X_{c} correlation gives larger values than the CISE-GE correlation.

Both correlations are included, since each has distinctive advantages. The improved Biasi correlation is based on a broad data base of CHF experiments. It is, however subject to the assumptions used in converting to a critical quality. The CISE-GE correlation, on the other hand, is based on data from rod bundle experiments and includes effects of local peaking factors. The data base from which it is derived is limited to mass fluxes in

Table 4.2-2. Critical quality correlation options.
Improved Biasi
$(\mathrm{ICHF}=2)$
CISE-GE $(1 \mathrm{CHF}=3$)
$A_{1}=1.0$
$A=1.055 \cdot 0.013 \frac{\left(\mathrm{P} \cdot 4.137 \cdot 10^{6}\right)^{2}}{2.758 \cdot 10^{6}}$
$\mathrm{B}_{1}=1.048 \times 10^{8} \mathrm{G}^{1.6} \mathrm{D}_{\mathrm{h}}^{1.4} \mathrm{~h}_{\mathrm{fg}} / \mathrm{H}(\mathrm{P})$
$1.233\left(7.37 \times 10^{-4} \mathrm{G}\right)+0.907\left(7.37=10^{-4} \mathrm{G}\right)$
$X_{c r_{1}}=\frac{A_{1} L_{B}}{B_{1}+L_{B}} \frac{P_{h}}{P_{w}} \cdot R_{f}^{1 / 2} \quad-1.233\left(7.37 \times 10^{-4} \mathrm{G}\right)+0.907\left(7.37 \cdot 10^{-4} \mathrm{G}\right)^{2}$

$$
0.285\left(7.37 \cdot 10^{-4} \mathrm{G}\right)^{3}
$$

$A_{2}=F(P) / G^{1 / 6}$
$B=0.457+2.003(7.37=10 G)^{-4}$
$\mathrm{B}_{2}=\mathrm{G}^{7 / 6} \mathrm{D}_{\mathrm{n}}^{1 / 4} \mathrm{~h}_{\mathrm{fg}}\left(5.707 \cdot 10^{-8}\right)$
$0.901\left(7,37-10^{-4} \mathrm{G}\right)^{2}$
$X_{\mathrm{Cr}_{2}}=\frac{A_{2} L_{B}}{B_{2}+L_{B}} \cdot \frac{P_{h}}{P_{w}} \cdot R_{f}^{1 / 2}$
If Bundle is $8 \times 8, \mathrm{~B}=\mathrm{B} / 1.12$
$\mathrm{X}_{\mathrm{c}}=\operatorname{Max}\left(\mathrm{X}_{\mathrm{cr}}^{1}, ~ \mathrm{X}_{\mathrm{or}}^{2}\right)$ $X_{C}=\frac{A L_{B}}{B+L_{B}} \frac{124}{R_{f}}$
$H(P)=-1.159+0.149\left(P-10^{-5}\right) \exp (-.019 P)$

$$
+\frac{8.74}{10+\left(\mathrm{P} \cdot 10^{-5}\right)^{2}}
$$

$F(P)=0.7249+0.099\left(P \cdot 10^{-5}\right) \exp \left(03.2 \cdot 10^{-7} \mathrm{P}\right)$
the range $300 \mathrm{~kg} / \mathrm{m}^{2}-5 \leq G \leq 1400 \mathrm{~kg} / \mathrm{m}^{2}-5$.
The local chF Biasi correlation has a data base that covers the mass flux (G) range betweeli 100 and $6000 \mathrm{~kg} / \mathrm{m}^{2}-5$. The local flux Biasi correlation logic uses the maximum of

Wall Heat Transfer

$$
\begin{array}{ll}
Q_{\mathrm{CHF}}=\frac{1.883 \times 10^{7}}{D_{H}^{n} G^{1 / 6}}\left(\frac{f_{p}}{G^{1 / 6}}-x\right) & *, \operatorname{QPPCHF}(4.2 .70) \\
Q_{\mathrm{CHF}}^{\prime}=\frac{3.78 \times 10^{7}}{D_{H}^{n} G^{0.6}} h_{p}(1-x) & *, \operatorname{QCHF} 1(4.2-71)
\end{array}
$$

where

$$
\begin{align*}
& \Pi=0.4 \text { for } D \geqslant 1 \mathrm{~cm} \tag{4.2-72}\\
& 0.6 \text { for } D<1 \mathrm{~cm} \\
& f_{p}=0.7249+(0.099)(P)\left[\exp ^{-0.032 P}\right] \tag{4.2-73}\\
& \mathrm{O}_{\mathrm{H}}=\text { hydraulic diameter (} \mathrm{cm} \text {) } \\
& G=\text { mass } f 1 u \times\left(\mathrm{g} / \mathrm{cm}^{2}-\mathrm{s}\right) \\
& h_{p}=-1.159+(0.149)(P)[\exp]+8.99(P) /\left(10+p^{2}\right) \tag{4,2-74}\\
& p=\text { pressure (bars). }
\end{align*}
$$

Note that the Biasi correlation uses cgs units, but the constants in Equations $(4.2-70)$ and (4.2-71) have been changed so that $Q_{C H F}$ is in $\mathrm{W} / \mathrm{m}^{2}$.

If Equation $(4.2-70)$ is used, 0.02 is added to the heat transfer mode number. If Equation $(4.2-71)$ is used, 0.01 is added to the mode number Below a mass flux of $200 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}$, the critical quality correlations cre not used. Above 200, departure from nucleate bolling wil1 occur if the local wall flux exceeds the Biasi CHF or the local quality exceeds either critical quality correlation specified by the user.

Between a mass flux of 200 and $-700 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}$, the local flux Biasi correlation is l inearly interpolated with the Zuber ${ }^{4.2-21}$ pool boiling correlation at a mass flux of zero and the Biasi correlation evaluated at $G=$ 200 for positive flow and $G=700$ for negative fle. The modified Zuber correlat fon is

$$
q_{\mathrm{CHF}}=(1-\alpha)\left(0.9 \times 0.131 \kappa_{+g} \rho_{\mathrm{v}} B R A C+Q S U B\right)
$$

*, QPPPB (4.2-75)
where

$$
\begin{equation*}
B R A C=\left[\frac{\sigma g\left(p_{e}-p_{v}\right)}{p_{v}^{2}}\right]^{1 / 4} \tag{4.2-76}
\end{equation*}
$$

If ins flow is countercurrent, the Zuber correlation is used; if the mass f) ux is ess than $-700 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}$, the absolute value of the flux is used in the Blasi corretat fon

Once $9_{c m}$ has been obtained from the Biasi correlation, the temperature corresponding to the CHF point, $T_{\text {cuF }}$, is calculated using a Newton-Raphson iteration hat $^{4} 22$ to determine the intersection of ne heat flux found by using the nucleate boiling HTC and CHF, An iteration is required because $T_{\mathrm{w}}=\mathrm{T}_{\text {CHF }}$ must be known to evaluate the CHEN correlation; in turn, the CHEN HTC must be known to calculate the wall temperature. The expression thus becomes

$$
q_{\text {CNF }}=h\left(T_{*}-T_{s}\right)
$$

The equation for $T_{C H F}$ is

$$
T_{\mathrm{CHF}}^{\mathrm{nCl}}=T_{\mathrm{CNf}}^{\mathrm{n}}-\frac{T_{\mathrm{CHF}}^{\pi}-T_{s}-\frac{q_{\mathrm{CHF}}}{h}}{1+\frac{q_{\mathrm{CH}}}{h^{2}} \frac{d h}{d T_{\mathrm{N}}}}
$$

$$
\star \text {, TCHF }(4,2-80)
$$

where $T_{\text {rAF }}^{n}$ is the CHF temperature for the nth iteration, h is the HTC evaluated usting the CHEN cirrelation, and $\frac{d h}{d T}$ is the derivative of the HTC with respect to the wall temperature,

Convergence occurs when $T_{\text {Chf }}^{\text {nit }}-T_{\text {CHf }}^{n}<1,0$. A maximum of ten iterations is allowed; if convergence does not occur, a message is printed and a fatal error

$$
\begin{align*}
& \text { QSUB }=\left\{\begin{array}{l}
0, \text { if } T_{t} \geq T_{s} \\
\frac{2 \kappa_{t}\left(T_{\mathrm{s}}-T_{t}\right)}{\left(\frac{\pi T A U k_{t}}{P_{\ell} C P_{\ell}}\right)^{1 / 2}}, \text { otherwise }
\end{array}\right. \\
& T_{H}=2.625 \frac{\left(\frac{a}{9\left(\rho_{i}-\rho_{v}\right.}\right)^{1 / 2}}{B R A C} \tag{4,2-78}
\end{align*}
$$

The CHf temperature is restricted to the range. $(1,+0.5) \leq T \leq(1,+$ 100). The options available to the user are

ICHF - negative, no CHF alluwed
0. use simplified hoiling curve (Mode 7)

1, use 8tast local CHF
2. use Biasi critical quality plus Biasi local CHF
3. wee CICE-GE critical quality plus Biasi loral CHF

To assist in understanding the nature of the nucleate boiling transition for CHAN components, the output variable, FILMTRIP has been added, where

FIIMTRIP = o implies no nucleate boiling transition
1 implies local CHF transition
$?$ implies critical quality transition.
Logic diagrams of both correlations are given in Figures 4.2-12 and 4.2-13.

4.2.13 References

4.2-1. $\quad \begin{aligned} & \text { M. Ishil, One-Dimensional Drift-Flux Model and Constitutive } \\ & \text { Equations for Relative Motion Between Phases } n \text { n Various Two-Phase }\end{aligned}$ Flow Regimes, ANL-77-47, October 1977.
4.2-2. J. G. M. Andersen and K. H. Chu, BWR Refill-Reflood Program lask 4.7--Constitutive Correlations for Shear and Heat Transfer for the BWR Version of TRAC, NUREG/CR-2134, EPRI NP-1582, 1981.
4.2-3. J. Chen, "A Correlation for Boiling Heat Transfer of Saturated Fluids in Convective Flow," ASME paper 63-HT-34, 1963.
4.2.4. F Kreith, Principles of Heat Transfer, International Textbook Company, 1973, P. 442.
4.2-5. F. W. Dittus and L. K. Boelter, "Heat Transfer in Automobile Radiators of iubular Type, "Publicatio is in Engineering, University of Callfornia, Berkeley, CA, 1930, pp 443-461.
4.2-6. W. H. McAdams, Heat Transmission, Third Edition, Naw York: McGrawHill Book Company, Inc.. 1954.

Wall heat Transfer

ASTE.W世木 508 - 49

Figure 4.2-12. Critical heat flux calculation

W5 78 WHT 590 . 50

Figure 4.2-13, Biasi critical heat flux correlation
4.2-7. W. M. Rohsenow and H. Y. Cho1, Heat, Mass, and Monentum Transfer, Englewood Cliffs: Prentice-Hall, Inc.. 1961.
4.2-8. V. P. Isachenko, "Heat Transfer in Condensation in Turbulent Jets," Teploenergetika, 2; 1976, PD, 7+10.
4.2-9. f. W. At大cthart and f. C. Marttrellt, "Proposed Correlation of Data for Isotherma? Two-Phase, Two-Component Flow in Pipes," Chemical Engineering Progress, 45, 1949, D. 39.
 Engineering Progress, 46, May 1950, pp, 221-227.
4.2-11. R. T. Lahey, "A Mechanistic Subcooled Boiling Mode1, "Proceedings of the Sixth International Heat Transfer Conference, 1, Toronto, Cattadt, 1996, p5. 299 295.
4.2-12. R W. Shumway, "Return to Nucleate Boiling," Proceedings of the American Nuclear Society National Heat Transfer Conference, Denver. Co, August 1905.
4.2-13. R. S. Dougall and W. M, Rohsenow, Film Bolling on the Inside of Vertical lubes with Upward flow of the fluid at Low Qualities, Massachtusetts 1nstitute of Technology, Mcchanteal Engineering, 9079 26. 1963.
4.2-14. G. G. Loomis and R. W. Shumway, "Transition Boiling Heat Transfer in the Semiscale Mod-3 Core During Reflood," Nuclear Technology, 56, 3, March 1982, p. 426.
4.2-15. D. Q. Kern, Process Heat Transfer, New York: McGraw-Hill Book Company, Inc., 1950.
4.2-16. T. Fuji1, H. Vehara, and C. Kurato, "Laminar Filmwise Condensation of Flowing Vapour on a Horizonial Cylinder, "International Journal of Heat and Mass Transactions, 14, Great Britain: Pergamon Press, 1972. pp. 235-248.
4.2-17. M. M. Chen, "An Analytical Study of Laminar Film Condensation: Part 1.-Flat Plates," Transactions of the ASME, February 1961, p. 48.
4.2-18. R. E. Phillips, R. W. Shumway, and K. H. Chu, "Improvements to the Prediction of Boiling Transition in BWR Transient Calculations," Proceedings of the 20th ASME/AIChE National Heat Transfer conference, Milwaukee, H1, August 2 5, 1981.
4.2.19. R. T. Lahey, Jr., and F. Moody, The Thermal Hydraulics of a Boiling Water Nuclear Reactor, ANS, 1977.
4.2-20. L. Biasi et al.. "Studies on Burnout: Part 3," Energia Nucleare,

Wall Heat Transfer

14, 1967, pp. $530-536$.
4.2. N. W. Tuher M Twikus, and J. W. Westwater, "The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids, International Developments in Heat Transfer, 2, 1961, pp, 230-236.
4.2-22. F. B. H11debrand, introductton to Numerical Andiysis, New York: McGraw-Hill Book Company, Inc., 1972.

Radiation heat Transfer

4. 3 Radiation Heat Transfer

It is known that the contribution of radiation to the overall heat transer in LWR systems is negligible in normal operations. However, in ia hypothetical accident shtuation in a GWR system that might lead to some core heatup, themmal radiation would contribute to the heat transfer from the fuel cladding to the shroud. This heat transfer by radiation is both directly, from surface to surface, and indirectly, through absorption by steam and water droplets inside the bundle. Radiation heat transfer may be appreciable only If the emitting surface is considerably hotter than its surroundings and if it is not directly if contact with an evaporating ilquid. For these reassns, radiation heat transfer is negiected in all components except the fuel bundle (CHAN component in TRAC BF1/MODI computations). In the case of the CHAN component, the user speciffes a cutoff vold fraction (ALPTST) below which radiation heat transfer is, again, neglected. (A value of 0.9 for the cutoff void fraction is suggested in the TRAC. BFI/MODI User's Guide.) For void fractions above AlPIST, radiation heat transfer in the CHAN is modeled as described below

4.3.1 Radiation Heat Transfer Model

The governing equations for radiative heat transfer within an absorbing, emitting, and scattering medium are a set of integro-differential equations for which onty a few sotutions for simpte gegmetries are available. Numerical solutions to these equations are also impractical in terms of cost and effort. For engineering applications, approximate methods are typically chosen. A lumped-sysicem approximat zon with uniform radiosity at the surfaces has been the tradit onal approach.

The lumped-system approximation of the net-radiation method has been presented in Refrrence $4.3 \cdot 2$. The governing radiation exchange equations can be obtained for the $K^{\text {an }}$ surface of area A_{f} of an arbitrary enctosure of N discrete, diffuse, gray surfaces, as illustrated in Figure 4.3-1, by considering the incident and outgoing radiation components. As illustrated in Figure $4.3=2$, the total radiation leaving surface k is

$$
\begin{equation*}
B_{k} A_{k t}=\epsilon_{k} \sigma_{a k} T_{k}^{4} A_{1 k}+\left(1-e_{k}\right) H_{k} A_{i k} \tag{4,3-1}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{B}_{k}=\epsilon_{k} o_{e B} T_{k}^{4}+\left(1-\epsilon_{k}\right) H_{k} . \tag{4,3-2}
\end{equation*}
$$

As illustrated in figure 4.3-3, the total incident radiation for surface k, assuming a transparent medium between surfaces. is

Radiation heat transfer

Figure 4.3-1. Enclosure of N discrete surfaces.

Figure 4 3-2. Radiation energy leaving surface k.

NEL A. 19 188
Figure 4.3-3. Radiant energy incident on surface i.

$$
\begin{equation*}
H_{k} A_{i k}=\sum_{j=1}^{n} B_{j} A_{i j} F_{i k} \tag{4,3-3}
\end{equation*}
$$

Given the surface temperature, surface emissivities, and geometric viek factors, Equations $(4.3-2)$ and $(4.3-3)$ can be solved for B_{i} and H_{i}. The net radfation from surface k is

$$
\begin{equation*}
q_{k}=B_{k}=H_{k}=\frac{e_{k}\left(\sigma_{k k} T_{k}-B_{k}\right)}{1-E_{k}} \tag{4,3-4}
\end{equation*}
$$

If a two-phase mixture is present, the governing radiative exchange equations would appear as

$$
\begin{align*}
& B_{k}=e_{6} \sigma_{s \theta} T_{k}^{4}+\left(1-e_{k}\right) H_{k} \tag{4,3-5}\\
& H_{k}=\frac{1}{A_{t k}} \sum_{j=1}^{N}\left(B_{j} \tau_{j k}+e_{Q j k} \tau_{\ell j k} \sigma_{\mathrm{s} \theta} T_{g}^{4}+e_{\ell j k} T_{g j k} \sigma_{s \theta} T_{\ell}^{4}\right) A_{\ell j} F_{j k}
\end{align*}
$$

where

$$
\begin{align*}
& \tau_{0, k}=\left(1-a_{0, k}\right) \tag{4,3-7}\\
& T_{\ell, k}=\left(1-a_{l, k}\right) \tag{4,3-8}\\
& \tau_{j k}=T_{0, k} \tau_{\ell, k} \tag{4,3-9}
\end{align*}
$$

ans where the following assumptions have been made:
: All surfates are gray and diffused

- Each rod is one surface at one temperature, and the channel wall is one surface at one temperature.
- Axial radiative heat transfer is negligible.
- The droplets and vapor are gray.
+ Scatteryng is negligible.
- The vapor and liquid temperatures are independent of the radial

Radiation Heat Transfer

dimension.

- The view factor of the two phase mixture of surface j along the path k to j is given by the view factor from surface k to j if $k i$)

Fquation $(4,3-5)$ implies that the radlosity at surface $k\left(B_{k}\right)$ is composed of two comnjnents.

$$
\text { 1. } e_{\mathrm{k}} \mathrm{a}_{\mathrm{B}} T_{2}^{6} \text { radiant heat flux qmitted by surface } k \text {. }
$$

2. $\left(1-\epsilon_{\mathrm{k}}\right) H_{\mathrm{x}} \quad=$ radiation heat flux reflected from surface k due to the incident radiation heat flux on surface k (H_{4}).

Equation ($4.3 \cdot 6$) gives three components to the incident radiant heat flux at surface k

$$
\text { 1. } \frac{1}{A_{k}} \sum_{i=1}^{R} B_{j} A_{i j} F_{i k}{ }^{\mathrm{T}} \mathrm{j}_{\mathrm{k}} \quad \text { radiation transferred from all surfaces to }
$$

$$
\text { surface } k \text { without being absorbed by }
$$

two-phase mixture.

3. $e_{\ell j k}{ }^{t} \mathrm{gik} A_{i k} F_{j k} \sigma_{\mathrm{sh}} T_{\ell}^{4}$ radiation reemitted by the liquid phase along the path j to k and transferred to surface k without beting reabsorbed in the vapor phase.

Equation (4.3-5) and (4.3-6) can be combined to yield a system of linear equations if the surface temperatures, surface emissivities, view factors, and fluid radiation properties are known and can be solved for the radiosities for each surface

$$
\begin{align*}
& \sum_{i=1}^{N}\left[\delta_{i k}-(1-e) T_{i k} F_{k j}\right] B_{j}=\epsilon_{k} o_{s 8} T_{k}^{4}+\left(1-e_{k}\right) \\
& \sum_{i=1}^{N}\left(e_{\left.g k k^{t} \ell k \sigma_{s b} T_{g}^{4}+e_{\ell j k} t_{g k} \sigma_{s B} T_{\ell}^{6}\right) F_{k j}}\right. \tag{4.3-10}
\end{align*}
$$

where

$$
\delta_{j k}= \begin{cases}0, & \text { if } j \neq k \\ 1 . & \text { if } j=k\end{cases}
$$

Given the solution from Equation (4.3-10), a solution to Equation (4.3-4) can be determined to yield the net radiation heat flux from surface k. Equation (4.3.4) provides the radtation keat transfet boundary condftion used for the conduction solution for surface k. However, additional calculations are required to determine the portion of radiant energy leaving surface k that is eventually absorbed into either the vapor, droplet, or film phases of the two phase mixture.

The total radtation absorbed by the two-phase mixture is given by

It can be shown that Equations $(4.3-10)$ and (4.3-12) form a system of radiative exchange equations that conserve radiation energy

$$
\sum_{k=1}^{N}\left(q_{k} A_{2 k}-Q A B S_{k}\right)=0
$$

However, since TRAC-BF1/MOD1 is a nonequilibrium two-fluid code, it is necessary to determine how much of the total radiant energy absorbed by the two-milxture phase is absortad by the vapor phase and how much by the liquid phase

The first term on the right side of Equation (4.3-12) is the amount of radiation absorbed by the two-phase mixture along the path k to j . The second term is the amount of radfation emftted by the liquid phase along the path k to j and not reabsorbed by the vapor phase. The third term is the amount of radiant energy emitted by the vapor phase along the path k to j and not reabsorbed by the liquid phase.

One method for splitting the first term on the right side into vapor/liquid components is to consider the probability that radiation will travel a distance z along a path L from k and then to j and be absorbed in the vapor phase tt, the mext $d z$ of path length, $P_{0}(z) d z$ or

$$
P_{d}(z) d z=K_{\theta} e^{-\left(K_{0}+K_{d}\right) z} d z
$$

Equation (4.3-14) assumes that the radiation absorption mechanism of the two-phase mixture can be expressed as an exponential function. ${ }^{4,3-7,8}$ If Equation (4.3-14) is integrated from 0 to $L, P(L)$ can be determined which is the probability that radiation traveling along the path L. will be absorbed by the vapor phase

Radiation Heat Transfer

$$
\begin{equation*}
P_{d}(L)=\frac{K_{g}}{K_{g}+K_{d}}\left[1-e^{-\left(K_{g}+K_{g}\right) L}\right] \tag{4,3-15}
\end{equation*}
$$

The term of one minas the exponential can be recognized as one minus the tansmissivity, since

$$
\begin{align*}
\tau_{k j} & =\left[1-a_{9 k j}\right)\left(1-a_{(k j}\right) \\
& \left.=\left[1-\left(1-e^{\left.-x_{g k j} L_{k j}\right)}\right)\right] 1+\left(1-e^{-k_{0 k j}(k)}\right)\right] \\
& =e^{\left\{\left(k_{g k j}+k_{(i k j}\right) L_{k j}\right.}
\end{align*}
$$

Equation (4.3-15) can now be written as

$$
P_{d}\left(L_{0 j}\right)=\frac{K(g k)}{K_{0 k j}+K_{d x j}}\left(1-t_{k j}\right)
$$

Comparing Equations (4.3-12) and (4.3-14) yields the following equation for the net radlation absorbed by the vapor phase:

$$
\begin{align*}
& \sum_{k=1}^{N} Q A B S V_{k}=\sum_{k=1}^{N} \sum_{j=1}^{N}\left\{A _ { t k } F _ { k j } \left(B_{k}\left(1-T_{k j}\right) \frac{K_{9 k}}{\left.K_{9 k j}+K_{d i}\right]}\right.\right. \\
& \left.\left.e_{g k} \tau_{(k j} \sigma_{5 B} T_{n}^{4}+e_{0 k} E_{\ell k} \sigma_{08}\left(T_{\ell}^{4}-T_{9}^{4}\right)\right]\right\} \tag{4,3-18}
\end{align*}
$$

The last term on the right side of Equation (4.3-18) is a correction proposed by Sun et al. 4.3.7 to account for radiation heat transfer between the droplet phase and the vapor phase. The rachation absorbed by the liquid phase can be obtained in a similar manner

$$
\sum_{k=1}^{N} Q A B S L_{k}=\sum_{k=1}^{N} \sum_{i=1}^{N}\left\{A _ { k k } F _ { k j } \left[B_{k}\left(1-\tau_{k j}\right) \frac{K_{a k j}}{K_{d k j}+K_{g k j}}\right.\right.
$$

$$
\left.e_{E 1} T_{a k i} \sigma_{i B} T_{i}^{4}-e_{g k,} e_{t+1} \sigma_{10}\left(T_{t}^{+}-T_{v}^{4}\right)\right\}
$$

The sum of Equations $(4.3-18)$ and $(4.3-19)$ are solved in the routine RADSLAB, once B_{x} has been determined. The results of Equations (4.3-18) and (4.3-19)
 channel wall surface k to the liquid phase and a radtation heat-transfer coefficient from the rod or channel wall surface k to the vapor phase.

$$
\begin{gather*}
h_{t a}=\frac{Q A B S L_{2}}{\left(T_{21}-T_{t}\right) A_{11}} \\
h_{t g k}=\frac{Q A B S V_{1}}{\left(T_{29}-T_{Q}\right) A_{2 k}}
\end{gather*}
$$

Before Equations $(4.3-4),(4.3-5),(4.3-18)$, and $(4.3-19)$ can be solved by RADSLAB, the quantities $e_{k}, e_{0 k}, e_{c k}, a_{p h}$, and $a_{\text {gkj }}$ must be determined. The emisctyity of steam, is celculated fakirg into account the absorntion and emission spectrum of water vapor. In physics, the emissivity and absorptivity of absorbing gaseous media are expressed as functions of radiation number v (the inverse of the radiation wave length). The total emissivity, ε, for steam is obtained by integrating the emissivity equation over 8^{11} wave numbens, with the plank black bady radiation distribution. $B(v, T)$, as a weighting factor. Thus,

$$
\begin{equation*}
e_{g}=\frac{\int_{0}^{\infty} e_{q}\left(v, J\left(v, T_{0}\right) d v\right.}{\int_{0}^{\infty} B\left(v, I_{0}\right) d v} \tag{4,3-22}
\end{equation*}
$$

where

$$
\begin{align*}
B(\nu, T) & =\frac{2 \pi h c^{2} v^{2}}{e^{\frac{h e v}{1 T}}-1} \tag{4,3-23}\\
\text { h } & =\text { Plank's constant } \\
c & =\text { velocity of light } \\
k & =\text { Boltzmann's constant. }
\end{align*}
$$

In a similar procedure, the absorptivity for the vapor phase can be calculated as

Radiation Heat Transfer

$$
\begin{equation*}
a_{0}=\frac{\int_{0}^{\omega} a_{0}(v) B\left(v, T_{0}\right) d v}{\int_{0}^{\infty} B\left(v, T_{\theta}\right) d v} \tag{4,3-24}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{T}_{k}=\text { surface temperature } \\
& a_{v}(v)=\epsilon_{p}(v)
\end{aligned}
$$

$$
\text { by Kirchoff's law (hence, } a_{q}=\epsilon_{q} \text {) }
$$

$$
\text { v } \quad=\text { wave number of radiation }\left(\mathrm{cm}^{-1}\right) \text {. }
$$

The absorption spectrum of water/vapor is generally considered to consist of six major absorption bands. The wave numbers and absorption coefficients assoctated with these bands are glven in Peference 4.3-8 and Table 4.3-1. The values given in this table were obtained for the Thomson model of emissivity described in Reterence 4.3.9, which is essentially the model utilized for the present calculation. The absorption coefficient values in Table 4.3-1 were obtathed for a reference temperature of 300 K . These values are assumed to vary inversely with water/vapor temperature to account for various line broadening phenomena, or

$$
K(v) \quad K_{0}(v) \frac{T}{T}
$$

where $T_{0}=300 \mathrm{~K}$ and $K_{0}(v)$ is the tabular value of $K(v)$. The values of $K(v)$ used in the present model were assumed to be constant within each band, and zero in the regton between bands.

Using data in Table 4.3-1, the integrals in Equations (4.3-22) and (4.324) can be approximately evaluated as sums over the six bands

$$
\begin{align*}
& e=\frac{\sum_{i=1}^{6} e\left(\bar{v}_{i}\right) \overline{B\left(v_{i} T\right) \Delta v_{i}}}{\sigma_{s B} T^{4}} \\
& a=\frac{\sum_{i=1}^{6} e\left(\bar{v}_{i}\right) \overline{B\left(v_{i}, T_{*}\right) \Delta v_{i}}}{\sigma_{s B} T^{4}} \tag{4.3-28}
\end{align*}
$$

Table 4.3-1. Water vapor absorption data.

Wave Ienath of Band Center (1)	Minimum Waye Number $\left(\mathrm{cm}^{-1}\right)$	Maximum Wave Number $\left(\mathrm{cm}^{-1}\right)$	Absorption Coefficient $K(v)\left(\right.$ Atm $\left.^{-1} \mathrm{~cm}^{-1}\right)$
$\begin{array}{r} 20.0 \\ 1.0 \\ 2.7 \\ 1.87 \\ 1.38 \\ 1.1 \end{array}$	$\begin{array}{r} 195.5 \\ 1283.0 \\ 3399.0 \\ 5043.0 \\ 6942.0 \\ 8468.0 \end{array}$	$\begin{array}{r} 804.5 \\ 1892.0 \\ 4008.0 \\ 5652.0 \\ 7551.0 \\ 9077.0 \end{array}$	0.0959 0.2874 0.2069 0.0166 0.0135 0.00053

where i is the band index and $\overline{B(v, T)}$ is the average value of the Planck black body function over band i

In the Thomson model, the value is obtained by integrating $B(v, T)$ over the entire band; while in the present model, it is obtained by evaluating $B(v, T)$ at the mean wave number v_{1} of the band, or

$$
\begin{equation*}
\overline{B\left(v_{\mathrm{i}}, T\right)}=B\left(\bar{v}_{\mathrm{j}}, T\right) \tag{4.3-29}
\end{equation*}
$$

4.3.2 Implementation In Coding

The model for water/vapor emisstvity is incorporated into TRAC-BD1/MOD1 in Subroutine EMISS. To test the implementation of this model, EMISS was used to evaluate the enissivity of water/vapor for an appl catle range of vapor temperatures and optical path lengths (PL products). The results of these calculations are compared in Figure 4.3-4 with experimental data and Thomson model results, both presented in Reference 4.3-8. Though the Thomson model gives better agreement with data than the present model, tt is judged that the faster computational scheme used in the present mudel justifies the observed decrease in accuracy.

The droplet propert ies, efe and ack, are also calculated in EMISS. The model developed in Reference 4:3-7 is

$$
\begin{equation*}
e_{d k j}=a_{d k j}=1-e^{-9,11_{a_{d}} \frac{i_{k j}}{0_{d}}} \tag{4.3-30}
\end{equation*}
$$

Equation (4.3-30) also gives zhe absorption coefficient for the droplets ($K_{d x j}$)

Radiation Heat Transfer

Figure 4.3-4. Water vapor emissivity.

$$
\begin{equation*}
K_{\mathrm{dkj}}=\frac{1.11 a_{\mathrm{d}}}{D_{\mathrm{d}}} \tag{4,3-31}
\end{equation*}
$$

The model for the steam absorptivity does not assume the form of Equation (4.3-18); werefore, $k_{g k}$ is calculated from

$$
\begin{equation*}
K_{g k j}=\frac{\ln \left(1-a_{g k j}\right)}{L_{\mathrm{kj}}} \tag{4,3-32}
\end{equation*}
$$

The surface emissivities are input for the CHAN component and held constant over the transient. This completes information required by RADSLAB to calculate the radtation boundary conditions required by the TRAC-BF1/MODI hydrodynamics and heat transfer solution, if all involved surfazes are dry and the geometric data, F_{kj} and L_{kj}, are known.

If a surface involved in the radiation hat transfer calculation quenches, tie radiation heat transfer calculation performed by RADSLAB is modifled to itccount for the harge in effectlve stirface emlssfvity for the wetted or quenched surface, If a surface is quenched, the surface emissivity is set to $0.96^{10}(* 0.6648)$, and the calculated radiation heat flux at that surface is treated as an additional energy inflow to the liquid phase, since it is the 74 gutd f4lu absorbing the radtant energy and not the surface.

The quenched fraction for each axial node (for each rod group) and channel wall withio a given CHAN component is calculated by CHAN1 and passed to RADETAB RADStAB tres the fraction of quenchad surfoce to 14 nearly partition radiation at the quenching surface between the liquid phase and surface. CHANI also uses the fraction of quenched surface to linearly weight the dry surface emissivity with the wet surface emissivity and an effective Wetted sonfacc temperature with on effect tve dry surface temperature for the rods. Linear weighting may not be adequate. Addtional work in this area may be required, depending on how the CHAN radiation model compares with data.

Gaiculathon of the geometrit quantlittes, row and t, requited by the radiation model are performed in ICHAN by calls to CFIS, GRPFIJ, and GRPL.1J. These routines were obtained from Reference 4.3-5. The method employed to calculate view factors between individual surfaces before grouping is the crossed string method given in Reference 4.3.9. The method employed to calculate mean beam lengths between individual surfaces is the equivalent flat plate method proposed in Reference 4.3-3. The method employed in grouping of the individual view factors is the angle-factor algebra method given in Peferettet 4.3.8.

The CFIJ routime has been modified from that given in Reference $4.3-5$. 10 reduce storage requirements, the channel wall is treated as one surface, rathen than broken trito segments and treated as 4 Nion surfates, where Nimon is the number of rods on a row. For calculation of the view factor from each rod to the channel wall, conservation of radiant energy can be used. The view factor from any given rod to the channel wall is given by

$$
F_{i y}=1-\sum_{j=1}^{N-1} F_{k}
$$

The reciprocity rule ${ }^{4,3-8}$ can be used to calculate the view factor from the wall to the rod surface K

$$
\begin{equation*}
F_{N 1}=\frac{A_{c k} F_{k N}}{A_{T N}} \tag{4.3-34}
\end{equation*}
$$

The calculation of the path length from the rod surfaces to the channel wall uses the path length from the rod surface to the nearest channel wall. This is an approxtmation: however. it appears adequate for the outer now of rods in the bundle and is not a major factor for the inner rows of rods, since the view of the channel wall by the inner rows of rods is small. Work should

Radiation Heat Transfer

be performed in the area of improving these calculations and reducing the storage requirements at the same time.

An anisotropic reflection model has been developed for TRAC-BF 1/MOD1. which modifies the view factors to account for anisotropic reflection effects from the rods and channel walls in a BWR bundle. Comparisons with experimental data indicate that the effect can be significant, the view factors are modified by the method suggested by Andersen, ${ }^{6.3-10}$ in which a fraction μ of the radiation incident on rod i from rod 3 is directly reflected back to rod 1 , and a fraction (1 μ_{i}) is reflected isotropically. This has the effect of reductng the effective vied factor from rod if to rod i and increasing the effective view factor from rod j to itself, since a fraction μ_{c} of all radiation sent from rod j to rod i is immediately returned.

The anisotroptc factor if is used to modtfy the view factors used in Equations (4.3-3) through (4.3-12) in accorsance with Equations (4.3-35) and (4.3-36):

$$
F_{i)}^{\prime}=\left\{\begin{array}{l}
F_{i j}\left(1-\mu_{i 1}\right) \text { for } i=j \\
y_{i 1}+\sum_{i=1}^{N} f_{i 1} \mu_{i j}
\end{array}\right.
$$

These new effective view factors co cerve radiant energy and satisfy the reciprocity relationship if $\mu_{1}=\mu \ldots$. In accordance with the recommendations
 rod-to-rod and channel-wall-to-rod radiation.

In an effort to reduce computation time for the radiation model, AADSLAB is called every NRADth time step, where NRAD is a user-supplied input. This has the dtsadvantage that if wall temperatures and flutd temperatumes, or both, are rapidly changing, the radiation heat transfer boundary conditions $\left(a_{k}, h_{\text {rvk }}, h_{\text {rek }}\right)$ calculated by RADSLAB may not be consistent with

$$
\sum_{i=1}^{N} q_{i} A \quad \text { QABS, } 0
$$

Additional work should be done in this area of determining how often to call RADSLAB and what information to calculate at each time step.

4.3.3 Assessment

As reported in Volume 4 of Reference $4.3-1$, the radiation model of IHAC-BF!/MODI has been compared to the data obtained in a simulated full-scale 8×8 gik fuel bundle. The expertimental data, reportad by N+1s50n et al 4 were obtained in the GOTA test facility at Studsvik, Sweden. Test No. 27 of

Radiation Heat Transfer

GOTA experiments was used for this assessment. In this test, the electrically heated 64 -rod bundle was filled with stagnant steam at near atmospheric pressure and operated dt a htoh temperature in the midde with steep temperature gradients towards the periphery. The peak rod temperature in the middle of the bundle was 1224 K . The bundle shroud walls were maintained at 373 K by cooling water on the outside. Heating of the rods (radial power factors) was diagonally symmetrical, and over half of the 64 rods were instrumented.

The TRAC-BDl model used a one-cell CHAN simulation of the bundle nid-section. Modeling the rods in one-half of the bundle plus the half rods along the diagonal requires 36 different rod types, as input to the CHAN component. A zero velocity FILL component was connected to the bottom of the CHAN, and a BREAK component with set pressure was connected to the top

Figure 4.3-5 (from Ref. 4.3-1) shows a comparison कf the calculated and measured data along the diagona?. A summation of the differences between the calculated and measured data for all the 36 rods, divided by 36 yields only 1.3 K error. This error is extremely small considering that the temperature gradient from the fanister wall to the central rod is 600 times larger than the error. Performing the same calculation with the steam absorption set to zere has shown a negligible effect on the results. However, switching to unlform (isotropic) reflection reduces the peak temperature by about 100 K . The enissivity used for all surfaces was 0.7 .

Figure 4.3-5. GOTA radiation test data comparison.

Radiation Heat Transfer

4.3.4 References

4.3-1. 0. D. Taylor et al., TRAC-B01/MOD1: An Advanced Best Estimate Computer Program for Boiling Water Reactor Transient Analysis, Volumes 1 and 4 , NUREG/(R-3633, EG6-2294, April 1984
4.3-2. R. Selgle and J. R. Howell, Thermal Radiation Heat Transfer, New York: McGraw-Hill Book Co. Inc... 1972.
4.3-3. J. 6. M. Andersen et al., MORCOOL I, A Model for Analysis of a BirR Under LOCA Conditions, Riso National Laboratory, NORHAV-D-47, Denmark, August 1977.
4.3-4. M. M. Giles, "A Radiation to Steam Model for Reactor Core Thermal Analysis," ANS Transactions, Sun Vavey, Idaho, 1977.
4.3-5. D. A. Mandel1, A Radiative Heat Transfer Model for the TRAC Code, NUREG/CR-0994, LA-7965-MS, November 1979
4.3-6. G.E.McCreery and C.E. Hendrix, "RELAP̆4/M007 Version I BWR Spray Cooling Calculations Compared with Data," ANS Transactions, San Diego. California, June 1978.
4.3-7. K. H. Sun et al., Calculation of Combined Radiation and Convection Heat Transfer in Rod Bundles Under Emergency Cooling Conditions," Journal of Heat Iransfer, August 1976, P. 414.
4.3-8. E. M. Sparrow and 7. P. Cess. Padiative "it Transfer, Monterey: Books/Cole Publishing Co., 1967.
4.3-9. H. C. Hottel and A. F. Sarofim, Radiative Heat Transfer, New York: McGraw-Hill Book Cos, Inc., 1967
4.3-10. J. G.M. Andersen and C. L. Tien, "Radiation Heat Transfer in a BWR Bundle Under LOCA Conditions, "ASME winter Annual Meeting. New York, New York, December ? ? 7, 1979, ASME 79-WA XX-00
4.3-11. C. L. Tien et al. "Surface Radiation Exchange in Rod Bundles," Transactions of ASME, 101, 1979, p. 378.
4.3-12. L. Nilsson, 1. Gustafson, and R. Harju, Experimental Investigation of Copling by Top Spray and Bottom Flooding of a Simulated 64 Rod Bundle for a BivR, STUDSVIC/RL-78/59, Norhav $\$.406$, June 30, 1978.

₹. CLOSURE RELATIONS REQUIRED BY LUID-MASS CONSERVATION EQUATIONS

Treatment r^{f} fluid-mass conservatfons equations in TRAC-BFI/MODI is very clusely related to the energy exchange equations described in Section 4.1.
For this reason, a separate section on this topic is not necessary.

6. CLOSURE RELATIONS REQUIRED BY FLUID-MOMENTUM FIELD EQUATIONS

Abstract

Closure relations required by the fluid-momentum field equation are described in the following sections

6.1 Interfacial Shear

Calculation of interfacial shear and momentum exchange across the interface is a necessary part of the two fluld equation system solution. In specitic terms, the interfacial shear model calculates the variable fon in equations of motion for vapor and liquid. Feg represents the drag force, per unit volume, between the phases; and it is expressed in terms of phasic velocity difference

$$
\begin{equation*}
F_{\ell q}=C_{q}\left|\bar{V}_{f}\right| \bar{V}_{f} \tag{6,1-1}
\end{equation*}
$$

where C_{i} is the local average interfacial drag coefficient between phases (per unit volume) and y sis the void wefghted average velocity difference between vapor and liquid. The local values of \bar{C}_{5} and \bar{V}_{r} are dependent on flow regime, void fraction, and properties of vapor and liquid. Furthermore, $C_{\text {, is a function of } V}$. Fquation (6.1-1) gives only the generic form of $F_{\text {tg }}$: its specific forms are described later. The basic principle of these calculations is to identify the prevailing flow pattern at each hydraulic junction and then apply specific correlations for relative phasic velocity and interfacial drag to determine the momentum exchange across the interface at that junction. However, to satisfy the requirements of hydraulic modeling with numerical solution, a two-stage intelpolation scheme is used to obtain representative values of the relative velocity and interfacial drag that include the effects of drift velocity and distribution parameters in al? possible flow regimes. This aspect is further clarified after the main variables have been discussed

The interfacial fristion is calculated mainly in the FRCIF subroutine in TRAC-BF1/MOD1. The present section is intended to provide a complete documentation of the actual equations used in that subroutine and to disc the background and origins of the basic relations used in these calculati as well as the effects of coding on the results. The order of presenting different equations in the main text has been arranged, as closely as possible, to reflect the order of application of those equations in the flow chart of the FRCIF subroutine. In order to distinguish hetween the main variabie computations and their derivations in this report, each equation that is used in the coding of FRCIF, eithee exactly or in successive steps, is

Interfacial Shear

marked with an asterisk (*), followed by the variable name used in the coding for the left hand side of that equation.

6.1.1 Background

The interfacial shear model in TRAC-BF1/MOD1 is based mainly on the drift-flux correlations derived by Ishii, ${ }^{6.1 .4}$ Andersen and Chu, ${ }^{6, x-2}$ and Andarsen ef a) bit.3 with some modifications that are specific to the INEI version of the code. These include some additional correlations by ishiik.1.6 and others, as will be specified later.

Accurditit to Arrdersth it al 6.1.2.6.3. the basic assunptions in the derivation of the present interfacial shear model are:

- For adiabatic and steady-sta: conditions, the two-fluid model and the drift flux model are equivalent, and the drift flux parameters cat be usted to characterfze the relatfve veloctly and the phase and flow distributions.
- The correlations for intertacial shear and drag and wall friction, as derived from adiabatic steady-state conditions, are applicable for trantstent condtions

On these bases, an existing collection of data from two-phase flow pressure drop and average void fraction measurements has been analyzed to deftve correlattons for melat lve phaste velocity and interfactal drag in different flow regimes. These correlations are then employed in the two-fluid interfacial shear model. The data base for these derivations covers a large number of experiments. A detalled reference to these will be given later.

6.1.2 Flow Regime Transitions

The interfacial shear inodel distinguishes three regines in two-phase flow. These are:

- Bubbly/churn flow
- Annular flow, including dispersed annular flow
- 01spersed droplet Mow

Except for the extreme cases of zero or 100% void, each one of these flow regimes may invoive either cocurrent or countercurrent flows.

Figure 6.1-1 shows a schematic diagram of the flow regime brundaries and two of the void dependent variables calculated for a mass velocity of 500

Figure $6.1-1$. Flow regime map for a mass velocity of $500 \mathrm{~kg} / \mathrm{m}^{2}$; s at $\mathrm{p}=7$ MPa , showing the void-dependent limits of different flow patterns, the voiddependent interpolation factor x^{2}, and 1tquid entrainment.
$\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~s}$, in a chan - with a hydraulic diameter of 0.0145 m (typical of BWR fuel bundles) at a pressure of 7.0 MPa . As stated earlier, all variables calculated for each one of these flow regimes, tncludtng countercurrent flows, are used in an interpolation scheme with respect to void fraction and entrainment. The interpolation variables that are shown in Figure 6.1-1 will he discussed later. The void fraction at transition between different flow eqimes depends on flow and system varlaties, as will be explatned later. It should be noted that some of the correlations for flow regime transitions, relative velocity, and entrainment in different fiow regimes that are derived for interfacial shear are also applied to the interfacial heat transfer calculations. These were discussed in Section 4.2

6.1.3 Basic Definitions

Before presenting the equations used for interfacial exchange calculations, it is useful to review some of the specific notations used in drift fiux formulation, as inftlally defined by zuber and Findlay.

Interfacial Shear

Simple area-averaged quantity of a locally varying property, $f(A)$, is defined as

$$
\langle f\rangle=\frac{1}{A} \int_{A} f(A) d A
$$

Void-weighted area-averaged quantities are defined as

$$
\begin{equation*}
=\frac{c o t\rangle}{c \infty} \tag{6.1-3}
\end{equation*}
$$

Local volumetric liquid flux:

$$
\begin{equation*}
\left.f_{+}(A)=11-\boldsymbol{a}(A)\right] V_{\cdot}(A) \tag{6,1-4}
\end{equation*}
$$

Local volumetric vapor flux:
$f(A)=a(A) V(A)$

Total volumetric flux at a point

$$
\begin{equation*}
i(A)=f(A)+i \cdot(A) \tag{6,i-6}
\end{equation*}
$$

Average volumetric liquid flux:

$$
\begin{equation*}
\left\langle j_{l}>\right)_{i} \frac{(1 \ldots-x)}{p_{l}} \tag{array}
\end{equation*}
$$

Average volumetric vapor flux

$$
\begin{equation*}
<j_{0}+\frac{x}{P_{0}} \tag{6.1-8}
\end{equation*}
$$

Total average volumetric fiux

$$
\begin{equation*}
\langle i\rangle=\langle j\rangle+\langle i,\rangle \tag{6.1-9}
\end{equation*}
$$

Distribution parameter:

$$
\begin{equation*}
\epsilon_{\phi}=\frac{\langle\alpha\rangle\rangle}{\langle\alpha\rangle\langle j\rangle} \tag{6.1-10}
\end{equation*}
$$

Void-weighted average liquid velocity:

$$
\begin{equation*}
\bar{V}_{2}=\frac{\left\langle a V_{2}\right\rangle}{\langle\alpha\rangle} \tag{6.1-11}
\end{equation*}
$$

Void-weighted average vapor veloctty:

$$
\begin{equation*}
\bar{v}_{g}=\frac{2 \pi f=}{\langle\alpha} \tag{6.1-12}
\end{equation*}
$$

Local drift velocity of vapor with respect to volumetric flux:

$$
\begin{equation*}
\psi(A)=\psi(A)-j(A) \tag{6.1-13}
\end{equation*}
$$

Yoid-weighted average vapor drift velocity

$$
V_{91}=\frac{\left\langle\mathrm{el\mid}\langle \rangle_{0}\right.}{\langle\alpha\rangle}=V_{8}-Q_{0}\langle j\rangle
$$

This relation is employed to calculate C_{p} from $\bar{V}_{g},<j>$, and $\bar{V}_{g j}$. The distribution parameter C_{8} is an indicator of the nonuniform distribution of vold, $\mathbb{d}(A)$ and phastt veloctttes, $V(A)$ and $V(A)$, over flow area.

Nota: In vertical flows, \bar{V}_{g} is related to the rising velocity of bupbles in a continuous liquid phase, or to the faliing velacity of droplets in a continuous vapor phase

Local relative velocity:

$$
\begin{equation*}
V_{1}(A)=\frac{\psi_{g}(A)}{1-\alpha(A)} \tag{6,1-15}
\end{equation*}
$$

Void-weighted relative velocity (see Reference 6.1-2)

$$
\begin{equation*}
V_{1}=\frac{1}{\eta<1-\alpha>} \tag{6.1-16}
\end{equation*}
$$

where

Interfacial Shear

$$
\begin{equation*}
\eta \quad=\frac{\langle\alpha(1-\alpha)>}{\langle\alpha<1-\alpha\rangle}=1 \tag{6.1-17}
\end{equation*}
$$

It shouly be noted that both $V_{g)}$ and $\bar{V}_{\text {}}$ depend on flow regime and the distribution parameter C_{0} as well as on the local void fraction, a.

For simplicity in the following equations, all area-averaged quantities are presented without the symbols, $\langle>$ and the void-weighted average quantities are presented as defined. Hence, $\alpha w<\alpha>$ and $V=$ vaid-weighted average velocity. A complete list of other symbols used in the equations is given in the nomenclature

6.1.4 Flow Trensition Criteria

The criteria for transition between different flow regimes are given in tems of an ayerage void fraction, atran, that is calculated in terms of phasic densities and flow the distribution parameter for bubbly/churn fTow, C..

$$
\alpha_{1 \operatorname{ran}}=\left(1+\frac{4}{y}\right) \frac{1}{C_{0 \text { a }}}-\frac{4}{\gamma}-0.15
$$

*, ACA (6.1-18)
where

$$
\begin{aligned}
& y=\sqrt[P_{\ell}]{\frac{P_{e}}{}} \quad *, \operatorname{GAMMA}(6.1-19) \\
& C_{\text {ot }}=C_{e}-\frac{C_{*}-1}{\gamma} \quad *, C O(6.1-20) \\
& c_{\infty}=1.0+0.2\left(\frac{p_{\ell}}{g^{g D_{n}}}\right)^{0.5} \quad *, \operatorname{COINF}(6.1-21)
\end{aligned}
$$

The latter equation, which is specific to the interfacial shear model in TRAC - BF1/MOD1 (in deviation from Reference $6.1-3$), is a slightly modified form of C formula that was recommended by Rouhant bito the original formula, which includes a factor of $(1 \sim X)$ in the se 1 term, was derived from analyzing a large data base of measured void fractions in different geometries. Dropping the $(1+x)$ term in this case is quite justified (for
simplicity), as the steam quality, x, is close to zero at low a values, where Equation $(6.1-21)$ is appl ed. Equation $(6.1-20)$ gives the distribution pardmeter for totitly/churn thow

Note that there is a dffference petween the G_{w} calculation in this model and the calculation of the same variable for interfacial heat transfer in the HEATIF subroutine (see Section 4.3)

Comparison of drift flux equations with experimental data indicates that, in most cases, Ca has a value slightly more than 1.0 , and it never exceeds 1.33 (see Reference 6.1-1) In subcooled bolling, C_{0} may even reduce to less than. These restrictions are observed in the progranning. as will be described later.

The flow transition criteria are:

Liquid continuous flow (including single-phase liquid, bubbly, and churn flows), when

$$
\begin{equation*}
\alpha s \alpha_{t, a n} \tag{6.1-22}
\end{equation*}
$$

Transition flow (including annular and film flows), when

$$
\begin{equation*}
\pi_{1 n n} \text { eै } t+\pi_{1 r m a}+0.2 E \tag{6.1-23}
\end{equation*}
$$

Vapor continuous flow, (including dispersed droplet and single-phase vapor flow), when

$$
\begin{equation*}
a>a_{\text {ran }}+0.25 \tag{6.1-24}
\end{equation*}
$$

Figure $6,1=2$ shows variations of a $\operatorname{com}_{\text {a }}$ (boundary between bubbly/churn and annular dispersed flows) with mass velocity for three different hydraulic diameters, at a constant pressune $L .6 .81 \mathrm{Mpa}$. These are according to Equations (6.1-18) through (6.1-21), whith are used in the FRCIF subroutine.

Note that the transition eriteria given by Equations $(6.1-22)$ thiough $(6.1-24)$ an simplified forms of the criterta given by 1 shif.6.1.1 In particutar aite tion of a band of 25% void for the transithon from bubbly/ct it to dispersed droplet flow is a computational convenience (a good practica. epproximation) for this region.

The original derivations by Ishis suggest two transition oriteria based on C_{e}, j_{g}, R_{e}, and the variable group $\left(\frac{\operatorname{og} \Delta}{\rho_{9}}\right)^{0}$
These are

Interfacial Shear

Figure 6.1-2. Relationship between mass velocity and void fraction at transition from bubbly/churn to annular-dispersed liquid ${ }^{*}$. Fis $^{\prime}$

Transition from bubbly to annular when

$$
\begin{equation*}
\frac{i_{9}}{\frac{\sqrt{D_{n} G \Delta}}{P_{9}}} \geq \frac{1}{C_{0}}=0.1 \tag{6.1-25}
\end{equation*}
$$

and transition from annular to dispersed droplet flow when

$$
\left|j_{g}\right|>\left(\frac{\operatorname{ag} \Delta p}{\rho_{g}^{2}}\right)^{0.25} N_{\mu \ell}^{-0.2} \begin{cases}, .78 R e_{\ell}^{-1 / 3} & \text { if } R e_{\ell}>1635 \tag{6.1-26}\\ 1.0 & \text { if } R e_{\ell}>1635\end{cases}
$$

where

It should be noted that these derivations are for adiabatic flow, and the bubbly-annular transition is actually for the case of $j_{2}=0$. For this reason (according to References 6.1-2 and 6.1-3), Equation (6.1-24) represents a modified version of Ishil's criteria, which includes the effect of non-zero liquid velocity (no proof has been given).

In eality, transition from annular to droplet flow is a gradual process that starts with the onset of liquid entrainment and is completed when 100% of the liquid flow is entratned. This process is dramat tcally affected by the onset of Cry-out in heated channels. Both of these features are observed in the calculations of entrainment and drift flux variables, as will be discussed in the following sections

6.1.5 Correlations For Interfacial Drag

In e derivations of References $6.1-1,5,1-2$ and $6,1-3$, steady-state momentum equations for vapor and liquid in adiabatic flow are employed to show that the interfactal force may be expressed in terms of phasic density differences and void fraction. This is expressed as

$$
\begin{equation*}
F_{\ell g}=\bar{C}_{i} \frac{\left|\bar{V}_{g i}\right| \bar{V}_{g j}}{\left\langle 1-\alpha^{2}\right.} \Delta \Delta \varphi g<\alpha(1-\alpha)> \tag{6.1-28}
\end{equation*}
$$

in which C_{i} includes $1 / \eta^{2}$, which is a factor in relating $V_{9 j}$ to V_{F} (see Reference $6,1-3$). The coefficient \bar{c}_{1} represents the drag force per unit volune per unit velocity squared. Its components are interfacial area per unit volume and drag coefficient per unit area. Hence, \bar{c}_{i} has the following general form

$$
\begin{equation*}
\bar{C}_{\mathrm{i}}=\frac{1}{2} C_{\mathrm{D}}\left(\frac{3}{2} \frac{1}{d_{\mathrm{i}}}\right) P_{\mathrm{e}} \frac{1}{\eta^{2}} \tag{6.1-29}
\end{equation*}
$$

Here, $\frac{3}{2} d_{i}^{-1}$ is the frictional area per unit volume and p_{c} is the density of

Interfacifl Shear

the continuous phase. As will be shown later, the ${d_{i}}^{-1}$ depends on $\bar{V}_{9 j}$ in bubbly and dispersed droplet flow regimes. This makes C_{i} and $F_{\ell_{0}}$ strongly dependent on the phasic velocity differences in these flow regitmes.

By using known correlations for $\bar{v}_{g i}$, in terms of a and material properties of steam and water, suitable correlations for \bar{C}_{i} are obtained from Equation (6.1-29) in comparison with data. The general form of this correlation is expressed as

$$
\begin{equation*}
F_{29}=\vec{C}\left[\tilde{V}_{f}\right]^{\mathbb{N}}=\bar{C}_{1}\left|C_{1}{ }^{r} 9-\bar{c}_{0} \vec{V}_{e}\right|\left(C_{1} \bar{V}_{g}-c_{0} \bar{V}_{e}\right) \tag{6.1-30}
\end{equation*}
$$

The exponent \mathbf{N} varies between 2 and 4 , due to the effect of the flow regime on the interfacial area. This effect is implied in the variable \bar{C}_{i}, as will be seen later. With this formulation, the calculations involve specifying the coefticients C_{0}, r_{1}, and \bar{C}_{7}. Here, C_{0} and C_{1} account for the effects of vapor and liquid velocity distributions, respectivaly. Cowas defined eartier, and c_{1} is given by

$$
C_{1}=\frac{1-\alpha C_{0}}{1-\alpha}
$$

In computation of the interfacial friction factor, the product of \bar{C}_{i} and the absolute value of relative velocity is considered as a single variable, C_{i}, and expressed as

$$
\begin{equation*}
c_{1}=\bar{c}_{1}\left|c_{1} \bar{V}_{9}-c_{0} \bar{v}_{e}\right| . \tag{6.1-32}
\end{equation*}
$$

This product is readily usable in the integration of momentum equations that are linearized in terms of velocity difference.

Different correlations are used for C_{Q}, C_{1}, and C_{P} in different flow regimes. These coefficients are computed in the FRCIP subroutine in TRAC-BF1/MOD1 and returned to the momentum solution routine, where FRCIF is called in each fteration

6.1.6 Drag Coefficient and Interfacial Area Relations

In particulate flow regimes, such as bubtly or dispersed droplets, the total interfacial area per unit volume is related to a critical Weber number, We that is expressed in terms of $\vec{V}_{g j} \underbrace{6,1 / 3}$

Interfacial Shear

For bubbly fiow, the interfacial area per unit volume is

$$
\begin{equation*}
\frac{1}{d_{i}}=6 \alpha \frac{P_{e} \bar{V}_{9}^{2}}{\alpha W e_{c}(1-\alpha)^{2}} \tag{6.1-33}
\end{equation*}
$$

where

$$
\begin{equation*}
W e_{s}=\frac{p_{t}{Q_{b}}^{V_{t}^{2}}}{a} . \tag{6.1-34}
\end{equation*}
$$

This critical Weber number siynifies the limiting value of \bar{V}_{r} beyond which the bubbles may deform and break up. Equation (6.1-33) is obtained by considering that the void fraction, a. corresponds to n bubbles of diameter D_{b} per unit volume. The void volume is $\frac{1}{6} n \pi l_{b}^{3}$, and the total interfacial area is $n \pi f_{b}^{2}$. These give a ratio of area per unit volume that is $6 a / D_{b}$. By substituting D_{s} from Equation $(6.1-34)$ and setting $\bar{V}_{r}=\frac{\bar{V}_{f g}}{1-\alpha}$, one obtains Equation (6,1-33). However, for friction calculations, one should use the projected area $-1 / 4$ of the total surface area for the spherical particles.

In annular flow, the interfacial area per unit volume for both friction and heat transfer is independent of the relative velocity, as expressed by the following retation:

$$
\begin{equation*}
\frac{1}{d_{i}}=\frac{4}{D_{n}} \sqrt{\alpha} \tag{6.1-35}
\end{equation*}
$$

This is obtained with, the assumption of a vapor core surrounded by a smooth liquid film on the walls.

In bubbly flow, the interfacial drag coefficient \bar{C}_{D} and the frictional area per unit volume are related to \bar{V}_{8}, and the weber number by ${ }^{6,1-2,3}$

$$
\begin{equation*}
\frac{3}{4} \alpha \frac{\bar{C}_{D}}{W e_{C}} \frac{P_{l}^{2}}{\sigma} \frac{\bar{V}_{9}^{4}}{(1-\alpha)^{4}}=\Delta \lg \alpha(1-\alpha) \tag{6.1-36}
\end{equation*}
$$

A sift: or argument for dispersed droplet flow, in which the liquid fraction, a^{-}), corresponds to n droplets per unit volume, gives the

Interfacial Shear

following relation between the drag coefficient and the drift velocity of droplets:

$$
\begin{equation*}
\frac{3}{4}(1-\alpha) \frac{\bar{Q}_{p}}{W e_{c}} \frac{\rho_{g}^{2}}{\sigma} \frac{\bar{V}_{g)}^{4}}{(1-\alpha)^{4}}=\Delta p g \alpha(1-\alpha) \tag{6.1-37}
\end{equation*}
$$

The Weber number in this equation is

$$
\begin{equation*}
W e_{c}=\frac{\bar{p}_{g} D_{d} \bar{v}^{z}}{\sigma} \tag{6.1-38}
\end{equation*}
$$

Equations (6.1-36) and (6.1-37) are employed to evaluate C_{D}, as will be seen later.

6.1.7 Data Base For Interfacial Friction

It should be noted thet the interfacial friction in two-phase flow is not measurable directly and, as yet, there is no measuring technique developed for this effect. The derivations of the interfacial friction factor, as well as phasic drift velocity and the phasic distribution parameter, are done on theoretical basis and verified indirectly through comparison with measurable data, such as void fraction and pressure drop, in two-phase flow. Some data from stinultaneous measurements of radtal and axtal void distribution and axial pressure gradients, as reported by Zuber et al. . $6.1-5,7$ have been very useful in the development and application of the drift flux theory. However, the fundamental task of deriving mathematical expressions for the drift flux parameters and comparing them with a wide range of measured data was performed by Ishii, $6,1,4$ The data base used by lshii in those comparisons is given in Appendix C. The data sources are organized in tabular form to show the range of variables for the different parameters. The appendix also includes a list of publication references.

Andersen et al. ${ }^{6 \cdot 1 \cdot 2,3}$ adopted Ishil's correlations to the concept of twofluid models and added some new ones of their own, particularly for interfacial friction in bubbly flow. For a final check on the interfacial shear in the two-fluid mode?, they used adiabatic void measurement data reported by Agostini et al. The data base for these derivations and assessment are also documented in Appendix C. Finally, the experimental data employed in the derivation of other correlations that are used in this mode? are also included in Appendix C.

6.1.8 Drift Velocity and Distribution Parameters in Different Flow Regimes

6.1.8.1 Bubbly/Churn Flow. The commonly used expression for \vec{V}_{g} in co-current bubbly flow ${ }^{6-1,1,2,5}$ is

$$
\bar{V}_{91}=k\left[\frac{\Delta \operatorname{gog} a}{P_{e}^{2}}\right]^{0.25}
$$

*, VRB (6.1-39)
where k has been given values ranging from 1.18 to 1.53 . TRAC-BFI/MODI uses k $=1.53$.

However, for bubbly flow between the fuel rods in a rod bundle, TRAC-BFI/MODI uses a different correlation for \bar{V} that is recommended by Bestion ${ }^{6.1-8}$ on the basis of experimental data from void measurement in different rod bundles. This correlation is

$$
\begin{equation*}
\bar{V}_{g j}=0.188\left(\frac{g \Delta D_{\mathrm{n}}}{\rho_{\mathrm{g}}}\right)^{0.5} \tag{VRB}
\end{equation*}
$$

in which D_{h} is the hydraulic diameter of the bundle.
In elther case, the re? attve veloctty is catculated according to

$$
\begin{equation*}
\bar{V}_{t}=\frac{\bar{V}_{8 j}}{1-\alpha} \tag{VROB}
\end{equation*}
$$

In the absence of subcooled boiling, the distribution parameter, C_{0} for this bubbly/churn flow is calculated according to Equations (6.1-20) and 6.1-21).

In subcooled boiling, the bubbles are mostly concentrated within a layer close to the heated walls, where the liquid velocity app oaches zero. For this reason, the distribution parameter, C_{0}, is modified to accommodate this difference from regular two-phase flow stituations. The modification is done by applying a multiplier to $C_{\text {a }}$ that is a function of liquid enthalpy and heat transfer parameters (see Reference 6.1-3). Hence, for subcooled bolling,

$$
\begin{equation*}
c_{0, \mathrm{~s}}=c_{0} \frac{h_{e}-h_{\ell d}}{h_{\mathrm{t}}-h_{\ell d}} \tag{6.1-42}
\end{equation*}
$$

where h_{ℓ} is the local liquid enthalpy, h_{f} is the saturation liquid enthalpy, and $h_{e d}$ is the liquid enthalpy at the point of net vapor generation according to the Saha Zuber subcooled botltng mode? 6.t-g ihis enthatpy, which is a function of pressure and wall heat flux, is always less than h_{f}. Calculation of this variable is reviewed in the next section.

Interfacial Shear

6.1.8.2 Transition Region, Annular Flow, and Entrainment

6.1.8.2.1 Entrainment--Beyond the bubbly/churn flow regime, that is, in the annular and dispersed droplet flow regimes, liquid entrainment as droplets in vapor must be considered. The general expresston for entrainment is ${ }^{6}$

$$
E=\left(x_{E}-0.03\right)\left[1+\left(x_{t}+0.1\right)^{2}\right]^{0.5}
$$

*, ENT (6.1-43)
where

$$
\begin{array}{ll}
x_{\mathrm{E}} & 10^{-6}\left(j_{9}^{*}\right)^{2.5}\left(0^{*}\right)^{1.25}\left(R e_{2}\right)^{0.25}
\end{array} \quad \text { *, XE }(6.1-44)
$$

$D^{\circ}=\quad a_{h}^{\frac{g \Delta}{\sigma}}$
$R e_{t}$
$\frac{\rho_{e} j_{e} D_{h}}{\mu_{e}}$
*, DS (6.1-46)

Fouation (6.1-43) is a modified version of an empirical correlation for entramment that was derived by Ishil from experimental data. ${ }^{6,1}$. The constant 10^{-6} in Equation $\left(6.1\right.$ 44) is s? ightly higher than 8.0×10^{-7} that is given in Reference 6,1-3.

The calculated entrainment from Equation (6.1-43) is modified to Ent in two occasions; when $X_{E}<0.03$ and when there are some wetted walls and some dry walls in the same segment of a channel. These modifications are
Ent $=0.0$, if $X_{E}<0.03$
*, ENT (6.1-48)
and

$$
\text { Ent } E+(1-t)\left(1-W_{\text {wet }}\right)
$$

$$
\star \text {, ENT }(6.1-49)
$$

where

$$
\begin{equation*}
W_{\text {wet }}=\frac{W A_{4}}{W A_{\text {tot }}} \tag{6.1-50}
\end{equation*}
$$

in which WA, is the sum of the rod and wall areas in the cell that are covered with a liquid film, and WA is the total rod and wall area in the cell, inctuding the portions that are in film bolling or steam cooling process. It may be observed that if all walls are wet, Ent $=E$ and if all walls are dry Ent $=1 . \quad$ (100% of the liquid flow is entrained). The variables $W A_{\text {, }}$ and $W_{\text {wet }}$ are calculated based on the wall heat transfer mode number. (These are discussed in the section on interfacial heat transfer.)

6.1.8.2.2 Drift Velocity in Transition Region--The vapor drift

 velocity in the transition region does not have a unique expression of its own. Instead, the drift velocity is calculated by interpolation between \bar{V}_{g} values for bubbly/churn and for annular flows. This interpolation is one in terms of the average void fraction in the cell, a, using$$
\begin{equation*}
x^{2}=\frac{\alpha-\alpha_{\text {ran }}}{0.25} \text {, for } \alpha_{\text {tran }} \leqslant \alpha<\alpha_{\text {ran }}+0.25 \tag{6.1-51}
\end{equation*}
$$

This interpolation factor is also used for calculating droplet entrainment in the transition region, as the entrainment should be zero at the end of bubbly/churn regime and it should reach 100% at the start of dispersed droplet flow. Examples of $x 2$ and Ent vartations with void are shown in Figure 6-1.1, and variations of Ent with void for three different mass velocities are shown in Figure 6-1.3.

Generally, the liquid velocity in the transition and annular flow regimes will include two components, namely, \bar{V}_{ra} for the annular film on the wall and $V_{\text {rd }}$ for the droplets in a continuous vapor phase. In each case, an average relative valocity is obtained by interpolation between the velocities of the different components

The drift velocity in annular film flow, $\nabla_{r e}$, is calculated from staady-state mass balance for the liquid film and the theory of minimum stable filili flow. The minimum f17m thickness is given by

Interfacial Shear

Figure 6.1-3. Variations of entrainment (Ent) with void fraction at different mass velocities.

$$
D_{1, \min }=\left[18 \frac{o \mu_{\ell}^{2}}{g^{2} \rho_{l}^{3}}\right]^{0.2}
$$

*, DIAFMN (6.1-52)
and the absolute velocity of the liquid film is

$$
V_{r a} \frac{\sigma_{1, \operatorname{ain} g \Delta}^{2}}{3 \mu_{p}}
$$

*, VROA (6.1-53)

This equation is from a simple force balance on a creeping film, assuming viscous flow and linear velocity distribution in the film,

The interpolated drift velocity, based on this $\bar{V}_{r a}$ and $\bar{V}_{r b}$ of Equation $(6.1-41)$ is

$$
\bar{V}_{r b a}=\left(1-x^{2}\right) V_{r b}+x^{2} \bar{V}_{r a}
$$

*, VROBA (6.1-54)

It should be noted that Equation (6.1-54) gives, also, the relative velocity in annular film flow when $a>a_{\operatorname{tran}}+0.25$. In this region, $\chi^{2}=1$ and $V_{r b e}=V_{r a}$

For the dispersed droplet flow regime, TRAC-BF1/MODI uses some more recent correlations suggested by Ishii. $6.1-2$ In this regime, the drift velocity, $\bar{V}_{\text {rg }}$, depends on the pattern of liquid flow. This may be either a wake regime or a distorted particle regime. In the wake regime, that is, when chunks of liquid are dragged behind very large bubbles or when large waves are fanned on the wall, the relattive luqutd veloctty is
$\bar{V}_{r d}=0.5 R_{d} \alpha^{1.5}\left[\frac{(\Delta p g)^{2}}{P_{g} H_{g}}\right]^{1 / 3}$
in which R_{d} is the droplet radius and is given by
$R_{d}=0.005 \frac{a}{P_{g} J_{g}^{2}}\left(\frac{P_{g}}{P_{g}}\left(\operatorname{Re}_{g} \frac{H_{g}}{H_{e}}\right)^{21 / 3}\right.$
*, RDISH (6.1-56)
where

$$
\begin{equation*}
R e_{g}=\frac{\rho_{9} J_{9} D_{n}}{H_{9}} \tag{REG}
\end{equation*}
$$

However, if the liquid flow is in the form of distorted particles, the relative velocity is given by

$$
\begin{equation*}
\bar{V}_{r d}=\sqrt{2}\left(\frac{\log \Delta p}{\rho_{9}^{2}}\right)^{1 / 4} \alpha^{1.5} \tag{6.1-58}
\end{equation*}
$$

The criterion for applying Equation (6.1-55) or Equation (6.1-58) for $\bar{V}_{\text {rd }}$ is set by comparing R_{c} of Equation (6.1-56) with a critical droplet radius that is detined by the following equation: *it

$$
\begin{equation*}
R_{c c}=2 \sqrt{\frac{2 a}{g \Delta}} N_{\mu g}^{1 / 3} \tag{6,1-59}
\end{equation*}
$$

Interfacial Shear

$N_{H Q}$

*, VISNUM (6.1-60)

The wake regime equation (6.1-55) is used whenever $R_{d} \leq R_{d c}$. In coding these equations, some numerical limitations are imposed on R_{d}, as will be described in Section 6, 1,10.

Since the actual two-phase flow in the transition region involves a combination of liquid film and dispersed droplet flow (carried as entrainment), a relevant value of the relative velocity is obtained from an entrainment-denendent interpolation between $\bar{V}_{\text {rba }}$ of Equation (6.1-54) and $\bar{V}_{\text {rd }}$. The interpolation parameter is Ex2, that is defined in terms of Ent from Equations (6.1-48) or (6.1-49), and x^{2}, which is a function of a.

$$
\begin{equation*}
E x^{2}=x^{2} E n t \tag{6.1-61}
\end{equation*}
$$

Figure 6.1-4 shows typical trends of Ex2 variations with void for three different mass velocities. Although entrainment, Ent, starts at lower void fractions for $G=1000$ compared to $G=500$ (see Figure $6.1-3$), Ex2 values are lower for the higher mass velocity at the beginning. This is caused by the x^{2} factor, which remains zero over a wider range of void fraction for higher mass velocitles, as the transition from bubbly to annular flow takes place at increastingly higher voids.

With this Ex^{2} as a new interpolation parameter, the relative velocity in the transition region is given by

$$
\bar{V}_{r o}=\left(1-E \chi^{2}\right) \stackrel{\rightharpoonup}{V}_{r b a}+E \chi 2 \stackrel{V}{r}_{r d} . \quad *, V R 0(6.1-62)
$$

This relative velocity is then used to calculate the average drift velocity
$V_{g j}=V_{r a}(1$
a)
*, VGJ (6.1-63)

Calculation of the distribution parameter, C_{0}, for the annular flow regime is described later.

6,1.8.3 Dispersed Droplet Flow. As was pointed out under Equation $(6.1-54)$, the relative velocity in annual film flow is given by $\bar{V}_{r a}$ of Equation (6.1-53). In the case of dispersed droplet flow, where $x^{2}=1$, Equation $(5.1-61)$ results in $E x^{2}=$ Ent and, since Ent $=100 \%$ in this regime,

Figure 6.1-4. Variations of modified entrainment (Ex2) with void fraction at different mass velocities.

Equation (6.1-62) yields $\bar{V}_{\mathrm{ro}}=\bar{V}_{\text {rd }}$.
Calculation of the distribution parameter, C_{0}, for dispersed droplet flow is described later.
6.1.8.4 Countercurrent Flow. Countercurrent flows of vapor and liquid that may occur at some hydraulic restrictions can lead to flooding situations known as countercurrent flow ifmitation (CCFL). In this process, the rising vapor flow prevents downflow of liquid. This phenomenon is important in the penetration and distribution of the emergency core cooling (ECC) water in BWRs. CCFL may affect the liquid penetration through the upper core tie plate, and it may also affect outpouring of 1 iquid from the fue 1 bundles, through the side entry orifices at the bottom of the bundles.

Experimental investigations ${ }^{6 \cdot 1 \cdot 10}$ have shown that the CCFL behavior depends on the geometry of hydraulic restriction and the properties of the two phases. The CCFL model in TRAC. BF1/MOD1 employs a Kutateladze type correlation ${ }^{6,1-11}$ in which two empirical constants, m and K, must be specified

Interfacial Shear

(see Section 7.3).

TRAC BFI/ WODI Ethploys the CCFL model in two different contexts:
a. as a regular part of the interfacial shear calculations within the FRCIF subrout ine with a built-in set of constants, and
b. as a special option evoked by the user at any flagged hydraulic junction with the user-specified values of m and K.

A detatled discussion of the CCFL model of TPAC BF1/MOD1, including the derivation of equations and features of the CCFLCK subroutine where the optional uses are performed, will be given in Section 7.3. In the following, only the equations that are coded in FRCIF are presented briefly.

The CCFL calculations in FRCIF are initiated by defining an interpolation variable, γ, that depends on phasic velocities. First, the absolute value of the arger phasic velocity, V_{g} or $V_{e,}$ is identified and used for calculating a normatized (nontimenstonal) relative velocity, x_{c}

$$
\begin{equation*}
x_{c}=\frac{\left|V_{9}-v_{1}\right|}{\operatorname{Max}\left[\left|V_{9}\right|,\left|V_{e}\right|\right]} \tag{6.1-64}
\end{equation*}
$$

If x_{c} is 1 arger than 1 , it is set equal to 1 and, in either case, it is used to caiculate another variable, $x_{c l}$

$$
\begin{equation*}
\frac{x-0.8}{0.2} \tag{6.1-65}
\end{equation*}
$$

If x_{-1} is negative, there is no countercurrent flow to be considered. In this case, $x_{c y}$ is set to zero and the CCFL calculations are skipped. However, if $x_{\text {a }}$ is positive, it indicates the existence of a CCFL situation. in this case, $x_{c 1}$ is used in Equation (6.1-81) for $x_{\text {, }}$ and the following equa+ion is used for the distribution parameter (see Section 7.3):

$$
\begin{equation*}
\left(C_{0}\right)_{\text {cef }}=A_{0}+\left(2 x^{2}+1\right) \sqrt{A_{0}^{2}-\frac{F m^{2}}{\alpha}} \tag{6.1-66}
\end{equation*}
$$

in which

$$
\begin{equation*}
A_{0}=0.5\left(\frac{1}{\alpha}+F\left(m^{2}-\sqrt{\frac{\rho_{g}}{\rho_{q}}}\right)\right) \tag{6,1-67}
\end{equation*}
$$

and

$$
\begin{equation*}
F=\frac{\bar{V}_{81}}{K j_{60}} \tag{6.1-68}
\end{equation*}
$$

For reasons that are explained in Section 7.3, the variable F is limited to a maximum defined by

$$
F=F_{\max }=\frac{\gamma}{\alpha\left(1+\sqrt{m^{2} \gamma}\right)^{2}} .
$$

*, FMAX (6.1-69)

As stated earlier, the CCFL constants m and K are dependent on geometry and flow properties. TRAC-BF1/MODI employs one set of default values of m and K in the FRCIF subroutine. These constants that are recommended for the upper tie-plate and general pipe calculations are: $m=1.0$ and $K=4.2$. Another set of default values are used for the side entry orifice of the BWR bundles (see Section 7.3).

In CCFL situations, the C_{1} factor of Equation (6.1-30) is calculated with the following formula:

$$
\left(C_{1}\right)_{\text {ect } 1}=\frac{1-\alpha\left(C_{0}\right)_{c c+1}}{1-\alpha}
$$

*, $\operatorname{CICCFL}(6.1-70)$

In cases of very high void fractions $(\alpha>0.999999)$, the above relation is replaced by the following:

$$
\left(C_{1}\right)_{c c f t}=\frac{\bar{V}_{r o}}{K \bar{V}_{r d}}
$$

*, C1CCFL (611-71)

6.1.9 Calculation of C_{0}, C_{1}, and C_{i} Parameters

As stated earlier, two-phase flow beyond the bubbly/churn flow regime must be considered as a mixcure of annular and dispersed droplet flows. In particular, for smoothness of the numerical solutions, it is important to ramp all changeovers of the variables from one flow regime to the next one. Hence, the final values of C_{0}, C_{1}, and C_{i} that are returned from the FRCIF subrout ine in TRAC-BFI/MODI are obtained by interpolations with respect to void and entrainment. These interpolations are shown diagrammatically in Figure 6.1-5. Each of the elements, $C O B, C O A$, and $C O D$, is obtained by a separate interpolation between its cocurrent and countercurrent components.

In the remainder of this section, a series of correlations for C_{0}, C_{1}, and C_{i} in different flow regimes are described and, finally, the interpolated

Interfacial Shear

Figure 6.1-5. Schematic of interpolations for Co with respect to x^{2} and $E \chi^{2}$ in the transition region
form of these variables will be presented, following the same order as in the coding.
6.1.9.1 Bubbly/Churn Cocurrent Flow. When $\alpha<\alpha_{\text {tran }}$ and flows of vapor and liquid are cocurrent, the following relations are used.
$C_{o b}$ is calculated according to Equation (6.1-20) or $C_{0, s}$ of Equation (6.142), for subcooled boiling, depending on the prevalling thermal hydraulic conditions: C_{1} is given by the following relation:

$$
\begin{equation*}
c_{1 \mathrm{~b}}=\frac{1-\alpha c_{0}}{1-\alpha} \tag{6.1-72}
\end{equation*}
$$

The interfacial friction factor for bubbly flow, $C_{i b}$, is derived from Equation ($6,1-36$) and a modified correlation for drift velocity, $\bar{V}_{\text {gim }}$, based on bubble rise data of Wilson et a\}. ${ }^{6.1-12}$ The modified drift velocity is

$$
\begin{equation*}
\bar{V}_{\theta i \mathrm{~m}}=\bar{V}_{a i}+\left(1-F_{\alpha}\right)|j|\left(C_{o j}-C_{a b}\right) \tag{6,1-73}
\end{equation*}
$$

in which $\bar{V}_{0 j}$ and $C_{o b}$ are given by Equations (6,1-40) and (6.1-20), respectively,

$$
\begin{equation*}
F_{\alpha}=\frac{\alpha-0.3}{\alpha_{\text {tran }}-0.3} \tag{6.1-74}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{V}=0.73\left(0^{*}\right)^{0.121}\left(\frac{\Delta \varphi}{P_{g}}\right)^{0.203}\left(j_{g}^{*}\right)^{-0.365} \tag{6,1-75}
\end{equation*}
$$

where D^{*} is qiven by Equation (4.1,13) and

$$
\begin{equation*}
j_{g}^{*}=\frac{\left|f_{g}\right| \sqrt{P_{l}}}{(\Delta p g a)^{0.25}} \tag{6.1-76}
\end{equation*}
$$

water ${ }^{C}$ based on wistribution parameter for bubble rise in a mass of stagnant

$$
\text { Using } \bar{V}_{\text {gim }} \text { for } \bar{V}_{g j} \text { in Equation }(6,1-36) \text { and rewriting it as }
$$

$$
\begin{equation*}
\bar{c}_{1} \frac{\bar{V}_{\mathrm{gim}}^{4}}{(1-\alpha)^{4}}=\operatorname{sgg\alpha }(1-\alpha) \tag{6.1-77}
\end{equation*}
$$

gives

$$
\begin{equation*}
C_{1 b}=\frac{p_{e}^{2} \alpha(1-\alpha)^{5}}{a \xi^{4}}\left(\left|C_{1 b} V_{g}-C_{o b} V_{l}\right|\right)^{3} \tag{CIB}
\end{equation*}
$$

where

$$
\left.\begin{array}{ll}
₹ & 1.53+\left(\zeta_{a}\left(j_{g}\right)^{0.635}-C_{a b} j_{g}^{*}\right)\left(1-F_{a}\right)
\end{array} \quad *, X X(6.1-79)\right)
$$

As expressed earlier in Equation (6.1-32), C, represents a product of the interfacial friction factor and the absolute value of relative velocity; also. for the dicpersed flow, the interfacial area is proportional to the

Interfactal Shear

relative velocity squared. Combining these two features leads to the thirdpower dependence of $C_{i b}$ on relative velocity in Equation (6.1-78).
F_{a} in Equation (6.1-79) is a void-dependent incerpolation factor. For a <0.3, the variable F_{α} is set equal to 0.0 ; and for $a>a_{\text {tran }} F_{a}=1.0$. Inclusion of (1-F $)$ in Equation (6.1-79) is only a facility to ramp the ξ factor from bubbly fo the start of transition region. The contribution of the second term in Equation (6.1-79) is maximum for void fractions less than 0.3 , and there is no contribution from that term for void fractions greater than a $=a_{\text {trans }}$ (close to the transition region).

An exception to the use of Equation (6.1-78) for $C_{i b}$ in bubbly/churn flow is in the case of flow in the rodded portion of fuel bundles. A special formula for this geometry that covers both bubbly/chum and transition flow regimes will be discussed later
6.1.9.2 Bubbly/Churn Countercurrent Flows. When $\alpha<a$ tran and flows are countercurrent, the following relations are used.

$$
\begin{align*}
& \text { First, a new interpolation variable, } x \text {, is defired as } \\
& x=x_{\text {cl }} \operatorname{Min}\left[\frac{\alpha}{\alpha_{\text {tan }}}, 1\right] \tag{6,1-81}
\end{align*}
$$

This interpolation variable, whose value is limited between zero and one in the coding, is used to obtain $C_{o c}, C_{1 c}$, and $C_{i c}$ according to the following reletions:
$\epsilon_{0 c}=1$
$(1-x) C_{a b}+x\left(C_{0}\right)_{c a t b}$
*, $\operatorname{COB}(6.1-82)$
and

$$
C=1 \quad x) C_{10}+x\left(C_{1}\right) c_{0+0}: \quad *, C 1 B(6.1-83)
$$

In these equations, $\left(C_{0}\right)_{c o f 1}$, and $\left(C_{1}\right)_{\text {cer }}$ are chosen from the corresponding parameter values for cocurrent and countercurrent flow situations according to the following comnaricone:
$\left(C_{0}\right)_{\text {cctb }}=\operatorname{Max}\left[C_{\text {ob }},\left(C_{0}\right)_{\text {cctt }}\right]$
*, COCCFB (6.1-84)
and

$$
\left(C_{1}\right)_{c e t b}=\operatorname{Nin}\left[C_{1 \mathrm{~b}},\left(C_{1}\right)_{\mathrm{acf1}}\right]
$$

It may be observes that, with a few exceptions, if there is no countercurrent flow, $X=0.0$ and Equations (6.1-82) and (6.1-83) reduce to thein equivelente fon cocumpent bubhly/chumen flow. The intempolation procedure is needed to avoid strong discontinuities and numerical oscillations.

The interfacial friction factor, C, for the case of countercurrent flow is the same as given by Equation (6,1-78) that covers both cocurrent and countercurrent flows.

It the entratnment, Ex2, is less than 90%, Equation (6.1-78) is used as it is. But, for Ex2 $>90 \%$, Equation (6.1-78) is modified in the following manner:

$$
\begin{equation*}
C_{1 \mathrm{tm}}=\frac{P_{2}^{2} \alpha(1-\alpha)^{5}}{\alpha \xi^{4}}\left(\left|C_{16} V_{9}-C_{o b} V_{2}\right|\right)^{3}\left[10\left(1-E_{\chi} 2\right)\right] \tag{6.1-86}
\end{equation*}
$$

As may be observed, the last term in this equation ramps $C_{i t m}$ smoothily to zaro as the entrainment approaches 100%.
6.1.9.3 Special Case of Rodded Channels. In this type of geometry, $C_{i b}$ 15 given by

$$
\begin{equation*}
C_{i b}=\frac{p_{g} \alpha(1-\alpha)^{3}}{(0.188)^{2} D_{n}}\left|C_{10} V_{g}-C_{o b} V_{e}\right| \tag{6.1-87}
\end{equation*}
$$

which is based on Equation (6.1-40) for $\bar{V}_{8 j}$

6,1.9.4 Annular Flow. The distribution parameter, C_{0}, and C_{1} for this flow regime are

$$
\begin{equation*}
r_{50}=1+\frac{(1-\alpha)\left(1-E \chi^{2}\right)}{\alpha+\Gamma_{4}} \tag{COA}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\alpha(1-\alpha)\left(1-E x^{2}\right)}{\alpha+\Gamma_{4}} \tag{6,1-89}
\end{equation*}
$$

where

$$
\Gamma_{4}=\sqrt{\frac{1+75(1-\alpha)}{\sqrt{\alpha}}}\left(\frac{p_{9}}{P_{e}}\right) . \quad *, \text { GAMMA4 }(6.1-90)
$$

The origin of these equations is a correlation for interfacial friction factor in annular flow by wallis flow measumments in vertical tubes, with inside diameters of 0.051 and 0.076 $\mathrm{m}_{\text {, }}$ and in a horizontal tube with $0.025-\mathrm{m}$ diameter. I shil employed Wallis' correlation to develop expressions for $\bar{v}_{9 j}, C_{0}$, and $C_{10}{ }^{6}{ }^{6.1-1}$ These were chen modified for the effect of entrainment by including the term (1 - Ent) and used in TRAC-BF1/MOD1. The interfacial friction term that is derived from the same source is given later.

In order to cover the cases of countercurrent flow with large void fractions, just as in the case of bubbly/churn flow, a comparison is made between the C_{9} and C_{1} values of countercurrent flow and those given by tquations $(6.9 .88)$ and $(6.1-89)$, respectively. The countercurrent interpolation factor, χ of Equation (6.1-81) is then used to combine the corresponding variables for the two flow regimes. These are expressed as

$$
c_{\text {bat }}=(1-x) C_{00}+x\left(C_{0}\right)_{e c t o} \quad *, \operatorname{COA}(6,1-91)
$$

and

$$
\begin{equation*}
\text { c. }=(1-x) C_{10}+x\left(C_{1}\right)_{\text {ccto }} \tag{6.1-92}
\end{equation*}
$$

where

$$
\text { (c) })_{\text {ccto }}=\operatorname{Max}\left[C_{00},\left(C_{0}\right)_{c c t i}\right] \quad *, \operatorname{COCCFA}(6.1-93)
$$

and

$$
\begin{equation*}
\left(C_{1}\right)_{\text {ceta }} \quad \operatorname{Min}\left[C_{10},\left(C_{1}\right)_{\text {cett }}\right] \tag{6.1-94}
\end{equation*}
$$

The interfacial friction factor, combined with $\left|\bar{V}_{r}\right|$ is given by

$$
C_{i 0}=\frac{0.015}{D_{n} P_{2} \alpha\left(\alpha+\Gamma_{4}\right)^{2} \frac{C_{10} y_{9}-\left.c_{60} y_{t}\right|^{1}}{1-E_{\chi}^{2}}} \quad *, \operatorname{CIA}(6.1-95)
$$

in which Γ_{4} is defined by Equation (6,1-90).
In orden to make f vanish smonthly when the liquid phase disappears,
whenever $a>90 \%$, the $c_{i a}$ of Equation (6.1-95) is modified according to the following:
$c_{\text {lam }}=10(1$
a) $C_{\text {in }}$
*, CIA (6.1-96)

Also, in order to ramp $C_{i n}$ or $C_{\text {iam }}$ to a 1 imiting value as Ex2 approaches 100%, these terms are further modified, as shown below, whenever Ex2 $>90 \%$.

$$
C_{i 0}=10\left(1-E x^{2}\right) C_{i a} \quad *, \operatorname{CIA}(6.1-97)
$$

$$
\begin{equation*}
c_{\mathrm{iam}}=10\left(1-E x^{2}\right) C_{\mathrm{ian}} \tag{6.1-98}
\end{equation*}
$$

6.1.9.5 Dispersed Droplet Flow. If flow is cocurrent, both C_{0} and C_{1} are unity, because of the assumption of unifnrm distribution of the droplets. However, even in this regime, the flows may be countercurrent. In order to allow for either possibility and provide a smooth changeover between the two cases, the following interpolation scheme is employed.
$c_{\text {ot }}=(1-x)+x\left(c_{0}\right)$ cotd
*, COD (6.1-99)
and

$$
C_{1 \mathrm{~d}}=(1-x)+x\left(C_{1}\right)_{\text {cfd }} \quad *, C 10(6.1-100)
$$

where

$$
\left(C_{0}\right)_{\text {cetd }}=\operatorname{Max}\left[1.0,\left(G_{0}\right)_{\text {ccit }}\right] \quad *, \operatorname{COCCFD}(6.1-101)
$$

and

$$
\left(C_{1}\right)_{\text {cctd }}=\operatorname{Min}\left[1.0,\left(C_{1}\right)_{\text {ccfi }}\right] .
$$

*, CICCFD (6.1-102)

The product of the interfacial friction coefficient and $\left|\bar{V}_{\mathrm{f}}\right|$ in this case is

$$
\begin{equation*}
c_{i d}=\frac{\alpha(1-\alpha)}{V_{r o d}^{4}} \Delta p g\left(\left|c_{1 d} V_{q}-c_{\alpha d} V_{\ell}\right|\right)^{3} \tag{6.1-103}
\end{equation*}
$$

6.1.9.6 Final Interpolations. The final instructions in the FRCIF

Interfacial Shear

subroutine are some simple interpolations that give C_{0}, C_{1}, and C_{1}, to be used for $F_{t_{0}}$, in the phasic monentum equations. These interpolations combine the correspondfng values of each vartable calculated for the three flow regikes, bubbly, annular, and dispersed droplets.
*, CO (b.1-104)

$$
C_{0}=\left(1-E x^{2}\right) C_{\mathrm{oba}}+E x^{2} C_{\mathrm{od}}
$$

$C_{1}=\left(1-E x^{2}\right) C_{1 \mathrm{ba}}+E x^{2} C_{1 \mathrm{~d}}$
*, Cl (6 1-106)
$c_{1}=\left(1-E x^{2}\right) C_{\text {ibe }}+E x^{2} C_{\text {id }}$
where

$$
\begin{array}{ll}
\epsilon_{\text {oba }}=\left(1-x^{2}\right) C_{\mathrm{ob}}+x^{2} C_{\mathrm{oa}} & *, \text { COBA }(6.1-107) \\
C_{\text {Tbe }}=\left(1-x^{2}\right) C_{1 \mathrm{~b}}+x^{2} C_{1 a} & *, \text { C1BA }(6.1-108) \\
C_{\text {iba }}=\left(1-x^{2}\right) C_{\mathrm{ib}}+x^{2} C_{i b} & *, \text { CIBA }(6.1-109)
\end{array}
$$

Another factor that is calculated in FRCIF and returned to the momentum solution routine is an interpolated exponent, $F_{\text {ac }}$ [or N in Equation 6.1-30)], for the relative velocity in the friction formuta. Due to the effect of flow regime on the interfacial area (see Section 6.1.6), the dependence of interfacial friction factor on the relative phasic velocity varies with the flow pattern. In bubbly/churn and droplet flow regimes, the interfacial friction varics with the fourth nower of the relative velocity: while in the annular flow regime, it varies with the square of the relative velocity. In the transition zone, an interpolated value of the exponent is used in the numerical integration scheme. The interpolated exponent is obtained with the use of $X_{2},\left(1-X_{2}\right), E N T$, and (1-ENT), variables that were described earlier. The following formula is used for the calculation of F within FRCIF:

$$
\begin{equation*}
F_{\mathrm{ac}}=(1-X 2) F_{\mathrm{acb}}+X 2\left[(1-E N T) F_{\mathrm{aca}}+E N T F_{\mathrm{acd}}\right] \tag{6.1-110}
\end{equation*}
$$

where
$F_{\text {act }}=2.0$, the \bar{V} exponent in Equation (6.1-30) for annular flow
$F_{\text {acb }}=$ the \bar{V} exponent in Equation $(6.1-30)$ for bubbly/churn flow

4.0 for bubbly flow in pipes, and
2.0 for bubbly flow in rodded bundles
$F_{\text {acd }}=4.0$, the \bar{V} exponent in Frivation (6.1-30) for dispersed droplet flow.

$F_{a c}$ is returned with C_{0}, C_{1}, and C_{1} to the subroutine where the call to FRCIP was initiated.

Yariations of C_{0}, C_{1}, and $C_{\text {, with void volume fraction are shown in }}$ Figures $6.1-6,6.1-7$, and $6.1-8$, respectively. The calculated values are according to Equations $(5.1-104),(6.1-105)$, and (6.1-106) for three different mass velocities at a pressure of 7.0 MPa .

6.1.10 Implementation in Coding

As mentioned at the beginning, presentation of the different equations in this section follow the order of their coding in the FRCIF subroutine rather clecely. Hence, as far as the models and correlations are concerned, the cod 99 implementation is already covered to a large extent. However, an important aspect of the coding concerns preparation of variables that are used to initiate a call to FRCIF and the numerical manipulation of the results retumed from this subroutine. These aspects, that are dffforent for onedimensional and three-dimensionai cases, are discussed in this section. There are, also, some minor aspects in the coding with in FRCIF that are not mentioned in describing the equations. These are elaborated upon here.
6.1.10.1 Coding Aspects within FRCIF. A majority of the coding aspects within the FRCIF subrout ine concern inclusion of finite limits for some of the variables in order to avoid diviston by zero or other discontinutties. Some remedies of this kind were presented as Equations (6.1-79), (6.1-86), (6.1. $96)$, and $(6.1-97)$, all of which provide a smooth ramping to zero for the involved variables. Some of the other noteworthy manipulations in the coding are stated below.

6.1.10.1.1 Comments on $C_{0}-\cdots$ In the coding after Equation (6.1-20),

 the calculated value of C_{0} is limited between that of Equation (6.1-20) and a maximum of 1.33. Furtherinore, if the void fraction, α, is 7 arger than $1 / 1.33$, C is set equal to $1 / \pi$. These restrictions together make it certain that in no case the calculated C_{0} exceeds 1.33 , a limit that is set by experimental observationsAlso, in coding Equation ($6.1-21$), the actual mass velocity, G, is increased by $10^{-4} 17 / \mathrm{m}^{2}$ in order to avoid division by zero. This incremental change in G is con tely negltgible in all practical cases. There are a number of similar changes in the denominators of other equations. They will not be mentioned individually because of the obvious necessity of these operations.

Intepfacial Shear

Figure 6.1-6. Variations of the distribution parameter $\left(C_{0}\right)$ with void fraction at different mass velocities, as calculated in the FRCIF subroutine.

Sigure 6.1-7. Variations of the vapor velocity distribution parameter (C_{1}) with void fraction at different mass velocities, as calculated in the FRCIF subrout ine

Figure 6.1-8. Variations of the linearized interfacial friction coefficient (C.) with void fraction at different mass velocities, as calculated in the rRCIF subroutine.
6.1.10.1.2 Limitation of $\mathrm{Re}_{\ell}-$ The Reynolds number for liquid, Re_{ℓ}, that is used in Equation (6.1-44) for entrainment, has been 1 imited to $\left(R_{2}\right)_{\text {min }}=370$, and lower values of $R e_{2}$ are replaced with 370 . This is in accordance with the source of data used in deriving the ericrainment cor' 'ation, as reported by Ishil and Mishima. ${ }^{6}$.
6.1.10.1.3 CCFL Implementation--For very low void fractions, $\alpha<$ 10^{3}, $\left(G_{0}\right)_{\text {ecf }}$ calculation is bypassed and the following relation is used instead.

$$
\begin{equation*}
\left(C_{0}\right)_{\text {ect }}=F \mathrm{~m}^{2} \tag{6.1-111}
\end{equation*}
$$

where F is defined by Equation (6.1-68).
All other aspects of implementation in coding were included in the discussion of the equations.

Interfacial Shear

6.1.10.2 Preparation of the Input Variables and Numerical Processing of the Result.
6.1.10.2.1 Edge-Centered and Cell-Centered Quantities - The interfacial shear model as described above computes the edge-centered interfactal shear parameters $C O, M, F A C$, and $C 1$ th subrout ine fRCIF using a combination of cell- and edge-centered variables fo both one- and three-dimensional component models in TRAC-BWR/MODI. The edge-centered variables used in the interfacial shern model for both the one and thred dimenstamal component models it. wde the cell edge hydraul ic diameter and the cell edge phasic velocities. The other variables that are input to subrout ine FRCIF are variable shose values are computed by the numerical solution scheme at the cell celars. The values of these variables at the coll edges are computes by subrout ines TFIt and TF3t, which call preif for the one- and three-dimensional cells, respectively

Since the computation of the unknosi cell edge parameters is somewhat different for the one- and three-dimenstonal cells, they will be explained separately

6.1.10.2.2 Computation of Cell-Centered Properties for One-

 Dimensional Components--Several of the cell-centered properties whose values at the cell adges must the computed are themodymants propertles, The phasic densities $\left(R L=P_{e}\right)$ and RV $=\left(p_{q}\right)$ at the cell edges are computed by 1 inear interpolation between the values in the center of the cells on either side of the cell edge as$$
\begin{equation*}
R l_{1+1 / 2}=\frac{D X_{1} R l_{1}+D X_{1,1} R l_{1+1}}{D X_{1}+D X_{1+1}} \tag{6.1-112}
\end{equation*}
$$

where RL is liquid density, DX is the cell length, and where the interpolation is based on the cell lengths. The interpolation for the vapor density is the same

The cell edge phasic viscosities are computed from the donor cell value based on the direction of the phasic velocity as

$$
\begin{equation*}
X M Y L_{1,1 / 2}=W L_{1+1 / 2} X M Y L_{1}+\left(1 .-W L_{[+1 / 2}\right) X M Y L_{1-1} \tag{6.1-113}
\end{equation*}
$$

where

$$
W L_{1+1 / 2}=\left\{\begin{array}{l}
1.0 \text { if } V L_{j+1 / 2}>0.3 \mathrm{~m} / \mathrm{s} \\
0.0 \text { if } V L_{j+1 / 2}<-0.3 \mathrm{~m} / \mathrm{s} \\
0.0 \text { if }\left|V L_{i+1 / 2}\right|<0.3 \text { and } D P P_{i+1 / 2}>0 . \\
1.0 \text { if } \mid V L_{j+1 / 2}<0.3 \text { and } O P
\end{array}\right.
$$

$$
\begin{equation*}
D P_{j+1 / 2}=P_{j+1 / 2}=P_{j} \tag{6.1-115}
\end{equation*}
$$

and XMYL is the Tiquif viscosity. The vapor viscosity XMYV at the cell edge is computed in a similar manner, using the donor direction computed using the vapor velocity at the cell edge. The surface tension at the cell edge is computed using the liquid velocity to compute the donor direction in a similar manner to the computation of the cell edge liquid viscosity.

The parameter WAWE, which was defined under Equation (6.1-49), is a ce11-centered parameter whose value is the fraction of the total structural surface area in a cell that is wetted by the Tiquid phase. The surface of a structure (i.e., pipe wall, fuel rod, channel wall) is wetted if the surface is not in the film boiling heat transfer mode (Mode 4), as determined by the surface heat transfer subroutine HTCOR. If a conduction solution is not being performed for a given structure ($1 . e .$, NoDES $=0$ for that structure), the surface is assumed to be wetted. The value of WAWET in the cell on the higher-numbered side of the cell edge is used for all cell edges in a component

$$
\begin{equation*}
\text { WAWIT } \quad \text { WAWET } 1 / 2=1 \tag{6.1-116}
\end{equation*}
$$

except the last (or highest-numbered) cell edge in the component, which uses the value of WAWET in the cell on the lowen-numbered side

$$
\begin{equation*}
W A W E T_{j, 1 / 2}=W A W E T_{j} \tag{6.1-117}
\end{equation*}
$$

The variable $C 0$ (C notation in coding) is used to pass the subcooled ooiling parameter into subroutine FRCIF, where the distribution parameter CO as computed by FRCIF is modified to account for subcooled boiling effects on the aross-sectional distribution of void. The modification as determined by Ishil (see Reference 6.1-1) is

$$
\begin{equation*}
C O=C O_{N 8, i+1 / 2}\left(1 .+e^{\left.-48 a_{j+1 / 2}\right)}\right. \tag{6,1-118}
\end{equation*}
$$

where
$C_{N 8}$
C_{0}
$\alpha_{\rho / 1 / 2}=$ distribution parameter with no subcooled boifing effect,
The code uses the variable $C 0$ as both an input and as an output variable
subroutine FRCIF. On input.

Interfactal Shear

$$
C 0_{j+1 / 2}=1 .-e^{18 \alpha_{j, 1 / 2}}
$$

for all interior cell edges in a component and

$$
\begin{equation*}
C 0_{+1 / 2}-1.0 \tag{6.1-120}
\end{equation*}
$$

for the cell edges at the ends of a component. In addition, for the interior cell edges, the void fraction is donored, based on the direction of the vapor velocity, and there must be subcooled bolling (QEVAP * O) on at least one structural surface in the donor cell, as determined by the vapor velocity direction. If the previous conditions are not met for interior cell edges, then $C O=1.0$ as for the cell edges at the ends of the component.

Finally, there are three void fractions input to suuroutine FRCIF. These void fractions are the void fractions to be convected across the cell edge based on the direction of the phasic velocities and the void fraction at the interface itself. The convected void fractions on either side of the cell edge are the cell-centered void fractions in the cells on either side of the cell edge unless there is a stratified two-phase level in either one of the cells, in which case the level model determines the void fraction to be convected across a given cell edge. The convected void fractions are use. in subroutine FRCIF to determine the phasic superficial velocities and mass fluxes at the cell edge. The void fraction at the cell edge is used in subroutine FRCIF to determine the interfacial force per unit volume, the flow regime and the interfacial shear coefficients.

The cell edge void fraction is computed as the donored value of the convected void fractions using the donor direction based on the mixture superficial velocity when the absolute value of the superficial mixture velocity is greater than $0.3 \mathrm{~m} / \mathrm{s}$.

$$
\begin{equation*}
\alpha_{j+1 / 2}=W M_{j+1 / 2} \alpha_{j, j+1 / 2}^{e}+\left(1-W M_{j+1 / 2}\right) \alpha_{j+1, j+1 / 2}^{e} \tag{6.1-121}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha_{j+1 / 2} & =\text { void fraction at cell edge, } \\
\alpha_{j, j, 1 / 2}^{c}= & \text { void fraction to be convected from cell } j \text { at cell } \\
& \text { face } j+1 / 2 .
\end{aligned}
$$

$$
\begin{align*}
& W M_{j+1 / 2}=\left\{\begin{array}{l}
1.0 \text { if } j m_{j+1 / 2}>0.3 \mathrm{~m} / \mathrm{s} \\
0.0 \text { if } j m_{j+1 / 2}<-0.3 \mathrm{~m} / \mathrm{s}
\end{array}\right. \tag{6.1-122}\\
& j m_{j+1 / 2}=V L_{j+1 / 2}\left[1-W L_{j+1 / 2} \alpha_{j}-\left(1-W L_{j+1 / 2}\right) \alpha_{j+1}\right] \\
& +V V_{j+1 / 2}\left[W V_{j+1 / 2} \alpha_{j}+\left(1-W V_{j+1 / 2}\right) \alpha_{j+1}\right] \tag{6.1-123}
\end{align*}
$$

and where

$$
\begin{align*}
& W M_{j+1 / 2}=x 1^{2}(3.0-2 x 1) \text { if }\left|j m_{j+1 / 2}\right|<-0.3 \tag{6.1-124}\\
& X I=\left[\frac{j m_{j+1 / 2}+0.3}{0.6}\right] \tag{6.1-125}
\end{align*}
$$

when the absolute value of the mixture superficial velocity is less than $0.3 \mathrm{~m} / \mathrm{s}$. Since the phasic momentum equations are solved simultaneously even in the limit of single-phase flow, the three void fractions input to subroutine FRCIF are 1 imited to be in the range $0.01<a<0.999$, so that the interfacial shear does not go to zero as the flow becomes single phase. This is done so that the velocity of the missing phase will be approximately correct when the phase reappears and will not cause a pressure disturbance due to phase reappearance.
6.1.10.2.3 Computation of Cell-Edge Properties--There are three celi edges (axial, radial, and azimuthal) associated with each cell in the three-dimensional component, leading to three calls to the subroutine FRCIF for each cell. The phasic densities used in each call are interpolated values as in the one-dimensional component, where the interpolation is based on the distance between cell centers in the appropriate direction. The viscosities and surface tension are not donored, as in the one-dimensional component; rather, the cell-centered value is used for all three cell edges associated with the cell. The fraction of the structural surface in a cell wetted by liquid (WAWET) is likewise used for all three cell edges (axial, radial, and azimuthal) associated with that cell.

A structural surface is assumed to be wetted if its temperature is below the minimum stable film boiling temperature, $T_{\text {nin }}$, where $T_{\text {nin }}$ is set to the critical temperature for water (Tcrit $=647.30 \mathrm{k}$) for simplicity. The subcooled boiling modification ir disabled (i.e., input $C 0=1.0$) in the

Interfacial Shear

three-dimensional component for all three cell edges, since subcooled boiling is deactivaled for all structural surfaces in contact with fluid in the three. dimonstonal component by the surface heat transfer * $00^{2} \mathrm{C}$. The three votd fractions for each of the three cell edges associated with each cell in the three-dimensional case are computed in exactly the same wav as in the one-dimensional components
$6.1 .10,2.4$ Integration Schemew- The interfacial shear subroutine FRCII computes four parameters, CI, $C O, C 1$, and $F A C$, from given input varlables, the flow regime selection logtc, and the correlat tons for the average relative velocities between the phases, as described above. This section describes how these four paramet. : are used to compute the interfacial forca per unit volume at the eno of a time step in terms of the unknown phasto velocities (at the end of the time step). The tnterfitial force per unit volume is assumed to obey a force law given by
where
$F_{\text {eg }}$ - interfacial force per unit volume
$\bar{C}=$ coefficient
$\bar{V}_{r}=$ average relative velocity between the phases

$$
\begin{equation*}
c_{1} V_{v}=c_{0} V 1 \tag{6.1-127}
\end{equation*}
$$

$\mathrm{N}=\mathrm{flow}$-regime-dependent exponent
Exnanding thes corce law into a first-arder Taylor expansion to determine interfacial force per unit volume in terms of the known properties at the beginning of the time step gives

$$
\begin{equation*}
\left.F_{-\theta}^{n+1}=F_{t g}^{n}+\left(\frac{\delta F_{t g}}{\delta V_{r}}\right)^{n} \bar{V}_{r}^{n+1}-\vec{V}_{r}^{n}\right) \tag{6.1-128}
\end{equation*}
$$

wt re the superscripts n arid $n+1$ represent the values at the beginning and end of the time step, respectively. Differentiating the interfacial force law [fquation (6:1 126)] with respect to the average relative velocity between the phases gives

$$
\left(\frac{\sigma_{t g}}{\delta \bar{v}_{r}}\right)^{n}=N C\left(\bar{V}_{r}^{n}\right)^{N-1}+N \frac{\delta F_{t_{0}}^{n}}{\Delta \bar{V}_{r}}
$$

Substituting this into the Taylor expansion for the interfacial force per unit volume gives

$$
F_{t g}^{n-1}=(1-N) F_{t g}^{n}+N \frac{F_{t q}^{n} \bar{v}_{t}^{n+1}}{\bar{V}_{t}^{n}}
$$

The variable C1 as computed by subroutine FC1F is defined as

$$
C I=\frac{F_{i_{g}}^{n}}{V_{f}^{n}}
$$

and the power \mathbb{N} in the interfacial force law is computed as FAC.
Subetifuting these variables into the expresston for the interfacial force per unit volume gives

$$
F_{t \theta}^{n+1}=(1-F A C) C i\left(C I V_{v}^{n}-C O V_{\ell}^{n}\right)+N C I\left(C 1 V_{v}^{n+1}-C O V_{\ell}^{n+1}\right)
$$

which defines the in arfacial force per unit volume in terms of the known phasic velocities at the beginning of the time step and the unknown phasic velocities at the end of the time step. This relation is simplifted by defining

$$
C I^{\prime}=(1-F A C) C I\left(C I V_{\mathrm{v}}^{n}-C O V_{t}^{n}\right)
$$

$$
\begin{equation*}
C 1^{\prime} \sim F A C \subset 1 C 1 \tag{6.1-134}
\end{equation*}
$$

$C O^{\prime}=F A C C I C O$(6.1-135)
so that the interfacial force per unit volume is given by
$F_{t g}^{n+1}=C I^{\prime}+C I^{\prime} V_{\mathrm{x}}^{n+1}-C O^{\prime} V_{l}^{n+1}$(6.1-136)

In order to smooth the transitions between flow regimes and to allow langer time steps to be taken, the parameter CI as computed by subroutine FACtF is averaged using an exponential weight factor

$$
\begin{equation*}
\widetilde{C I}-(1-F F C I) C I+F F C I C I^{n} \tag{6.1-137}
\end{equation*}
$$

where
$\overline{C T}$ average value of CI

Interfacial Shear

C1 * valu computed by subroutine FRCIF

FFCI $=$ EXP (-DELT/0.010)

This averaging function assumes a time constant of 10 nsec for the rate of change of interficial shear. The averaged value of Cl is used to compute the ftral finterfactal coufrictents in Fquatton (6. 1 136t fintlly, the argument in the exponential weighting function is 1 imited to be less than 20 to prevent an underflow of the exponential function on the computer.

6.1.11 References

6.1-1. M. Ishil, One-Dimeusional Drift-flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase

6.1-2. J. G. M. Andersen and K. H. Chu, BWR Refill-Reflood Program, Task 4.1 - Constitutive Correlations for Shear and Heat Transfer for the
 Decamber 1981.
6.1-3. J. G. M. Andersen, K. H. Chu, and J. C. Shaug, BWR Refill-Reflood Program, Task 4.7 - Model Development, Basic Models for the BWR
 1983
6.1.4. M. 1shil. "Recommended Correlations for Interfacial Shear in Post Chf Regime, "Letter to Dr. M. W. Young, of U.S. NRC, from Argonne Nationa? Laboratory, May 12, 1983
6.1-5. N. Zuber and J. A. Findlay, "Average Volumetric Concentration in Two-Phae Flow Systems," Journal of Heat Transfer, November 1965.
6.1-6. S. 7. Rouhani, Modified Correlations for Void and Pressure Drop, $A B$ Atomenergi, Sweden, Internal Report No. AE-RTV 841, March 1969
6.1.7. N. Zuber, F. W. Staut, C. Bytwatd, and P.G. Kroeger, Steady state and Transient Void Fraction in Two Phase Flow Systems, GEAP-5417, Vol. 1, 1967.
6.1-8. Eestion. "Tnterfacial Friction Determination for the 10-6 Equations Two fluid Model Used in the CATHARE Code," European TwoPhase Flow Group Meeting, Southampton, U. K., June 3-7, 1985,
6.1-9. P. Saha and N. Zuber, "Point of Net Vapor Generat for and Vapor Void

Interfacial Shear

	Fraction in Subcooled Bofling, "Proceedings of the 5th International Heat and Nass Transfer Conference, Tokyo, Japan. 1974.
6.13	B. Wallis et al., Countercurrent Annular Flow Regimes in Steam nd Subcooled water in a Vertical Tube, EPRI NP-1336, January 1980.
$6.1 .1:$	K. H. Sun, "Flooding Correlations for BWR Bundle Upper Tie Plates and Side-Entry Orifices," Second Multi-Phase Flow and Heat Transfer Symposium-Workshop, Miami Beach, Floride, April 16.19, 1979.
$6.1-12$.	J. F. Wilson, R. J. Grenda and J. P. Patterson, "The Velocity of Rising Steam in a Bubbling Two-Phase Mixture", ANS Transactions, 5, 1. 1962, pp. 151-152.
6.1-13.	G. B. Wallis, One Dimensional Two-Phase Flow, N.w York: McGraw-Hill Book Co., 1969.
6.1-14.	M. Ishil and K. Mishimu, Correlation for Liquid Entrainment in Annular iwo-Phase flow of Low Viscous Fluid, ANL/RAS/LWR 81-2, March 1991.

6.2 Wall Friction Correlations

Like most other models in TRAC-BF1/MOD1, wall friction correlations are apslied to both one-dimensional and three-dimensional calculations.

The general forms of wall shear coefficients for vapor and liquid are:

$$
\begin{equation*}
C_{v g}=\frac{\left.\frac{\partial p}{\partial z}\right|_{v}}{\rho_{8}\left(V_{8}\right)^{2}} \tag{6.2-1}
\end{equation*}
$$

for vapor, and

$$
\begin{equation*}
C_{k}=\frac{\left.\frac{\Delta x i}{\partial z}\right|_{k}}{P_{e}\left(V_{t}\right)^{2}} \tag{6.2-2}
\end{equation*}
$$

for liquid

The term $\left.\frac{\partial P}{\partial z}\right|_{\text {u }}$ is the static fressure gradient due to friction alone at
Lhe wall. The magnitude of this term is obtained from two basic correlations for single-phase and two phase flows. The nature and origins of these correlations are discussed in this section. The calculated variables $C_{\text {rg }}$ and $\mathrm{C}_{n t}$ are used in the solution of momentum equations for vapor and liquid. ${ }^{n g}$

6.2.1 Single-Phase Friction Correlation

TRAC-BF1/M001 employs a set of four correlations for single-phase friction factor, depending on Reynolds number and relative wall roughnes: $\xi=2 c / 0_{n}$. These are:

For laminar flow, the single phase Darcy friction factor is

$$
f_{14}=\frac{54}{R e}, \text { where Re }<2300
$$

For turbulent flow in hydraulically smonth pipes,

$$
\begin{equation*}
f_{14}=\left(\frac{0.28}{\log R e+0.82}\right)^{2} \text { where } 2300<R e<\frac{60}{\xi^{1.111}} \tag{6,2-4}
\end{equation*}
$$

For the transition region between laminar and trobulent flows,

$$
\begin{equation*}
f_{14}\left|\frac{0.25}{\left(3.393-0.805 g_{1}\right) g_{1}-2.477-\log \xi}\right| \tag{6.2-5}
\end{equation*}
$$

where $\frac{60}{\xi^{1.11}}<\mathrm{Fe}<424 \frac{0.87-\log \xi}{\xi}$; and, finally,
for turbulent flow in effectively rough tubes,

$$
f_{14}=\left(\frac{0.25}{0.87-\log \xi}\right)^{2} \text { where } R e \geq 424 \frac{0.87-\log \xi}{\xi}
$$

In these equations,

$$
\begin{align*}
& R e=\frac{a V D}{H} \tag{6,2-7}\\
& 9, \log \left(\frac{R 0 \xi}{0.87-\log \xi}\right)
\end{align*}
$$

Equation (6.2-3) is a classical formula for laminar flow that is found in a) 1 hydraulic text books. Equations $(6,2-4$) through $(6,2-6)$ are due to pfame ${ }^{8,2-1}$ and have been chncen for their accuracy and single-valued form of f that does not require an iterative solution.

6.2.2 The Basis of Pfann Friction Correlations

In an article entitled "A New Description of Liquid Metal Heat Transfer in Closed Conduits, " J. Pfann ${ }^{6 \cdot 2 \cdot 1}$ elaborates on the different formulas used for frltction factor calculations. Amang these, he camnares the well-known correlations of Colebrook and Frenkel with the original works of Nikuradse and the theoretical derivations of Von Karman, regarding the relationship between wall friction and velocity distribution in different conduits. Nikuradse results are given by two equations, one for hydraulically smooth tubes and another onte for rough tubes. These are

$$
\begin{equation*}
\frac{1}{\sqrt{f}}=4.0 \log (\operatorname{Re} \sqrt{f})=0.40 \tag{6.2-9}
\end{equation*}
$$

for smooth tubes and,

$$
\begin{equation*}
\frac{1}{\sqrt{f}}=3.48-4.0109 e \tag{6,2-10}
\end{equation*}
$$

for fully turbulent flows in rough tubes, where $(e \operatorname{Re} \sqrt{f})^{-1}>0,01$. In these equations, $e=$ relative roughness of the tube $=e / D_{h}$.

Equations (6.2-9) and (6.2-10) are the basis of many other correlations and charts that have been suggested for friction factor calculation in single-phase flow. According to Pfann, ${ }^{6 \cdot 2.1}$ the Colebrook formula ${ }^{6.2 \cdot 2}$ is obtalned amalytically as the simplest interpolation between equations (6.2-9) and $(6.2-10)$. Aiso, a review of Moody's paper ${ }^{6.2 \cdot 5}$ on friction factors for pipe flow indicates that the well-known Moody chart for friction factor in smooth and rough tubes is created essentially with the use of Colebrouk's formula that is based on Ntkuradse's equations. Following is a brief review of the data base of Nikuradse equations, that is also the basis for Pfann correlations. The aim of this review is to find out whether the data base is relevant to channel geometries encountered in light water reactors.

6.2.3 The Data Base and Range of Applications of Nikuradse Friction Formulas

Equations (6.2-9) and (6.2-10), which are the basis for Pfann's friction factor correlations, were derived on the basis of experimental studies of radial velocity distribution and fricttonal pressure loss in pipes of different sizes. A review of Nikuradse's experimental studies and range of parameters is given in a brief report entitled "fhe Laws of Flow in Rough Pipes. ${ }^{16.2 .4}$ Table 6.2-1 gives a summary of the range of variables in Nikuradse's experiments.

Reallizing that the hydraulic diameters of most reactor components, with the exception of the main vessel (the steam dome) and the downcomer, vary from 0.014 to about $0.30 \mathrm{~m}_{1}$ it appetrs that the range of pipe diameters in Table 6.2-1 does cover the dimensions encountered in most parts of light water reactors. Besides, the nondimensional form of the relationships for friction factors provides a logical basis for its extrapolation to larger pipes. In partlcular, very 1 arge dlameters and high mass velocitles contribute to very large Reynolds numbers that indicate completely turbulent flow for which the friction factor is only a function of the relative wall roughness (C / D_{h}), regardlcss of the Reynolds number (see Reference 6,2-3).

Wall Friction

Table 6.2-1. Range of variables in Nikuradse experinients on friction factors.

Variable	Description	Range of data base	Remarks
0_{h}, m	Hydraul ic diameter	$\begin{aligned} & 0.025,0.050, \text { and } \\ & 0.10 \end{aligned}$	Channel lengths from 1.0 to 2.5
$\mathrm{R}_{\text {e }}$	Reynolds number	from 600 to 10^{6}	Water flow
$\xi-2 e / D_{k}$	Relative roughness	$\text { fremi } 0.0197 \text { to }$	

6.2.4 Comparison of Pfann's Correlations with Other Forms of Friction Factor Formulas

Pfann's article ${ }^{6.2-1}$ provides a basic review of the formulas for friction factors with no limitations to liquid metais (not withstanding the title and the matn topte of the arttcle) In partlcular the appendfx in Pfann's article includes some approximations to the original Nikuradse equations that simplify the computation procedure. These were given by Equations (6.2-4) to $(6.2-6)$ above. A study of the effect of the simplified formulations is presented below

Equation $(6.2-3)$ for laminar flow is the classical formula for laminar flow situations and needs no further qualification in this report.

Equation (6.2-4) for smooth tubes is a clos6 approximation to Nikuradse experimental results for smooth tubes, expressed by Equation (6.2.9). A comparison of these two equations over a wide range of Reynolds numbers is given by Pfann $6.2 \cdot 1$ and reproduced in Table $6.2-2$. The table also gives friction factors calculated by Von Karman's theoretical equation for smooth pipes.

Table 6.2-2. Comparison of Pfann friction factors with Nikuradse and Von Karipal equations for smooth pipes. ${ }^{6,2-1}$

It may be observed that the largest relative difference between the Pfann and Nikuradse correlations is about 2.36% at the largest. Reynolds number in this table

For turbulent flow in rough tubes, beyond the limiting values of Reynnlds nunber specified in Equation ($6.2 \cdot 6$), the Pfann correlation is analytically

Wall Friction
identical to the Nikuradse formula given by Equation $(6.2-10)$, and they need no numerical comparison.

For turbulent flow in the transition region, spanning between hydraulically smooth and rough tubes, an assessment of the Pfann correlation as expressed by Equation $(6,2-5)$ is more difficult. There is a shortage of data f th this drea, and the 1 iterature peftects sonie dispute over validity of the different correlations. The contradictions over this region may be illustrated by comparing the charts in Figures $6.2-1 \mathrm{a}$ and $6,2-1 \mathrm{~b}$. Figure $6-\frac{2}{2} .1 \mathrm{a}$, which is based on the Colebrook formula just 11 ke the Moody chart, 6.23 shows gradual statie-valued transttlons of frtctton factors in going from smooth to rough tubes. However, Figure 6.2-1b, which is generated according to the Pfann correlations, shows a dip in friction factors over the transition region.

Nikuradse has presented experimental data for artificially roughened tubes in the transition region, and those data do reflect the initial dip and the subsequent rise in the frtction factors over this area. However, acconding to some comments in Reference $6.2-3$, such trends have not been observed for commercial tubes (without artificial roughaning). On the other hand, these comments are not supported by is compirison that is presented in the following.

Except for the original data reperted by Nikuradse, there is not a large data base for comparison of friction factor formulas over the turbulent transttion regton, and a compartson of the Pfann correlation with Nikuradse data in this regton would not provide any new information, since Pfann's correlation is based on Nikuradse results. However, some relatively recent data from single-phase friction factor measurements report by Adorni et a1. ${ }^{6.2-5}$ do support Nitkuradse data and agree fairly well with Pfann's correlation for this region. In Table 6.2.3, two numerical comparisons of the friction factors according to the Pfann and Colebrook corralations (or Moody chart) are presented first; and then the same two correlations are compe eed with the reported data. Note that the combinations of ξ and Re marked by N/A are outside of the transition region, and this pfann correlation is not applicable,

As may be observed, Table $6.2-3$ indicates some noticeable differences between Pfann and Colebrook correlations over the transition region. The deviations change constderably over a small range of Reynolds numbers for each roughness. A graphical comparison of TRAC-BF1/MOD1 single-phase friction factors with the Colebrook equation aver a wide range of Reynolds numbers is provided in Section 6.2.8.

Adornt et al $6.2 \cdot 5$ has reported some single-phase friction factor measurements for flows of cold and hot water with superheated steam in a round tube of 5.08 mm inside diameter with a surface roughness of $e=4.3 \mu \mathrm{~m}$. The data, which are presented only graphfcally $4 n$ Reference 6.2 .5 , fodicate that measured friction factors $g 0$ through a minimum value in the turbulent transition region and then increase with increasing Reynolds numbers. Figure $6.2-2$ shows a reproduction of Adomi's data in the Von Karman system of

Wall Friction

a. Colebrook formula.

Fiysure 8.2-. © \quad aning friction factors.

Table 6.2-3. Comparison of the Pfann correlation with Moody's chart (or Colebrook formula) for ruugh tubes with relative roughnesses $\xi_{1}=10^{-2}$ and $\xi_{2}=10^{-2}$

Figure 6.2-2. Comparison of Pfann correlations arद Colebrook formula with Adorni's wall friction data from Reference 6.2-5

Wall Friction

coordinates, superimposed by calculations accordifig to the Pfann and Colebrook correlations. As it appears, the Pfann correlation follows the data points rather closely, white the Colebrook formuly undershoots the experiniental curve considerably (indicating higher friction factors). This comparison provides some confidence in the validity of the Pfann correlation for this cegion.

6.2.5 Local Friction Losses

Local hydraulic resistances, such as abrupt area contractions or flow restrictions, can be modeled by specifying their form loss coefficients among the inpouts. tach restrittlon may have dtfferent yoss coeffictents for flow in forward and reverse directions; hence, the user may specify separate loss coefficients, k_{f} and k_{k}, for forward and reverse directions, respectively. These local loss factors are usually given in terms of Darcy's pressure loss formela, that is

$$
\begin{equation*}
\Delta_{k}=\frac{1}{2} k \rho V^{2} \tag{6.2-11}
\end{equation*}
$$

The given k values are converted internally in the code to correspond to an equivalent addition to the distributed friction factor over the length of the component. firther explanation is given fn Section 6,2,7.

6.2.6 Two-Phase Friction Factor Multipliers

TRAC-BF1/MODI calculates two-phase frictional pressure drop as a product of the single-phase friction and a two-phase multiplier. This is the common
 two-phase multiplier depends on the nature of the single-phase frictional pressure loss. For the normal friction along a conduit, the Hancox ${ }^{6,2,7}$ multiplier is used; while for local losses; such as in abrupt area changes or across hydraut te restutctions, the two where maltimtien is simnly the rat io of the liquid density to the average mixture density, $p_{\mathcal{E}} / p_{0}$. Further details about these two types of two phase multipliers are given in the following.
6.2.6.1 Hancox Two-Phase Multiplier, In a paper on prediction of time-dependent diabatic two-phase flows, Hancox and Nicol7 ${ }^{5.2 .7}$ suggest the fallowing correlation for the two-phase multiplier:

$$
\begin{equation*}
q^{2}=\frac{\tau}{\tau_{l}}=\left\{1+\left[\left(\frac{P_{l}}{P_{g}}\right)\left(\frac{\mu_{g}}{\mu_{e}}\right)^{1 / 5}-1\right] x\right\}\left(1+R x^{1 / 2}(1-x)^{1 / 4}\right] \tag{6,2-12}
\end{equation*}
$$

where
$R=3.1\left(1-\frac{P_{\mathrm{s}}}{P_{\mathrm{f}}}\right) \exp (-0.000565 \mathrm{G})$
$T_{\ell}=$ equivalent single-phase liquid shear stress.
The Hancox carmelation has been der4wed6.2-8 on the basts of a large number of data from two-phase flow measurements, reported by Caspari et al s:a Adorni et al., ${ }^{6.2-5}$ and Alessandrini et al. $6.2 \cdot 10$. According to Hancox, ${ }^{6.2-8}$ experimental data were used to determine the necessary constants in a generic function that was chosen to embody the following asymptotic behavior:

$$
\begin{aligned}
& \text { - } \frac{\tau^{\tau}}{\tau_{\ell}} \text { must approach } 1 \text {, as } X \text { approaches } 0 \text {. } \\
& \text { - } \frac{\tau}{\tau_{\ell}} \text { must approach }\left(\frac{P_{\ell}}{P_{\ell}}\right)\left(\frac{\mu_{9}}{\mu_{\ell}}\right) \text { as } X \text { approaches } 1 \text {. } \\
& \text { - } \frac{\hbar}{\tau_{\ell}} \text { must approach } 1 \text {. for all values of } X \text { as the critical pressure } \\
& \text { is approached. }
\end{aligned}
$$

The selected functional form includes a dependence on Reynolds number in single-phase friction (expressed as $R e^{-0.2}$), and the final form of his correlation is qiven by Equation $(6,2-1)$. It should be noted that the constant multiplier in the exponent term of R in Equation (6.2-1) has been wrongly given as 0.0135 in the article, but the correct value is as given above. (The constant is obtained by dividi.g $\quad=.00276$ in Hancox original report by 4.885 , which is the conversion factor for mass velocity from $1 \mathrm{~b} / \mathrm{ft}^{2} \cdot \mathrm{~s}$ to $\left.\mathrm{kg} / \mathrm{m}^{2}+\mathrm{s}.\right)$

An advantage of the Hancox correlation over previous two phase multipliers is its dependence on mass velocity. A comparison of Hancox two-phase multiplier with data from the cited references indicates a mean absolute error of 12%. The data range regarding pressure, flow, and steam quality are summarized in Table 6,2-4.
6.2.6.2 Homogeneous Two-Phase Multiplier. The two-phase friction factor multiplier for local restrictions is calculated according to a homogeneous flow model. The formula for this multiplier is

$$
\begin{equation*}
\varphi_{\text {RoH }}^{2}=\frac{P_{\ell}}{P_{\text {m }}} \tag{6.2-14}
\end{equation*}
$$

Wall Friction

Table 6.2-4. Ranges of data used in the derivation of the Hancox two-phase multiplier.

	Bof be 2×9		Ref 6.2-b		Ret	
Parainter	M 615	Hax	Mis	Mex	Min	Max
Pressult ruacs	$4{ }^{4}$	4.85	* . w	$7 \times$	5.40	50
Mass veloctiy $\left(\mathrm{kg} /\left(0^{2}+\mathrm{s}\right)\right.$	1000	a006	1056	3 HOS	1100	3660
Steam quality (胣)	6.15	cotios	A 0	inn	00	an a
Extimel Aftrantes foll	0.005	0.025	6. 0051	0.0051	0.015	0.025

where

$$
\begin{equation*}
\rho_{n}=\alpha \rho_{0}+(1-\alpha) \rho_{g} \tag{6,2-15}
\end{equation*}
$$

This is an empirical relation, suggested by Kay and London, ${ }^{6.2-11}$ that applies particularly to the case of abrupt area contractions. Its application to other types of lacel mestufetions is yery amproximate but aroyides simplicity in computations.

6.2.7 Implementation in Coding

Wall friction calculations are performed in subroutine FRCW in
TRAC-BF1/MOD1. This subrout ine employs Equations (6.2-3) through ($6.2-6$) and Equation (6.2-11) fon single-phase and Equatione (6.2-12) and (6.2-14) for two-phase multipliers. There are, however, a number of other considerations regarding the way those equations are implemented in the program. These consideratisns are (a) limitations of variable ranges imposed within the FRIF sutroutine, (t) the procedures employed in the preparatton of the fnittal variables before a call to FRCIF, and finally, (c) the way the calculated results are used in one-dimensional and three-dimensional components. These aspects are discussed below
6.2.7.1 Limitations Imposed within FRCIF. In order to guard against discontinuities and numerical oscillations, it has been necessary to include the following ? imitations on the extent of varifables and range of correlations:

1. Hydraulic diameter values below $10^{-5} \mathrm{~m}$ are not used in the friction factor correlations. Instead, the friction factors are set to $f=0.32$ for both liguld and vapor. This 14 mitation witl handly affect any reactor calculations, since there are no such small diameters in ariy Q system.
2. The 1owest : diue of the relative roughness, \&. is set at 10^{-10}. For
all practical purposes, this represents a very smooth surface; hence, it poses no restrictions on reactor calculations.
3. If a calculated Reynolds number is less than 1.0 , it is set equal to 1.0. This 1 imitation poses no restriction in any reactor calculations.

Tie laminar friction factor is not allowed to go below a limiting value corresponding to the turbulent friction factor at $\mathrm{Re}=2300$. For Reynolds numbers between the useful range of Equation (6.2-3) and $\mathrm{Re}=2300$, the fryction factors are set to a constant determined from the turbulent transition correlation at $R e=2300$. This feature is shown graphically as the first flat portion of the f curves in Figure 6.2-3. This modification prevents endless iterations in flow calculations that would result otherwise, due to considerable changes in the friction factors with some slight changes in Reynolds number. The adverse effects of this modification is minimal in reactor calculations, as laminar flow and low Reynolds numbers arr seldom encountered. Even when flows dimintsh in a transient, whe switchover to laminar flow is n.t immediate; hence, the turbulent friction factors apply in reality. The solid curves in Figure $6.2 \cdot 3$ are single-phase friction factors for three different roughnesses, calculated acconding to the pracedure used in the FRCW subroutine in TRAC-BF1/MOD1. For Ci, arison, friction factors according to the Colebrook formula (or Moody chart) are also shown in Figure 6.2-3 for the same roughnesses. The largest differences between the two sets are observed over the transition zone, as discussed in Section 6.2.1, with the quantitative examples given in Table 6.2-3.
5. Local loss coefficients are normalized over the length of corresponding hydraulic cells and, after multiplying by their homogeneous two phase factors (see Section 5.2 .2), they are added to the friction factors of the straight segments. This is expressed by the following relations:

$$
\begin{equation*}
f_{\text {add }}=0.25 k_{i} \frac{0_{i}}{l} \tag{6.2-16}
\end{equation*}
$$

representing the local loss factor k_{i} in terms of an added friction factor along the cell length, $1 . k_{j}$ represents the local loss factor for fomward or reverse flow directions, and,

$$
\begin{equation*}
f_{\text {iot }}=f_{1 \psi} \phi_{Q_{1}^{2}}^{2}+f_{\text {add }} \varphi_{\text {ion }} \tag{6.2-17}
\end{equation*}
$$

Finally, the total frictional pressure drop is obtained by the following expression in the code.

Wall Friction

Figure 6.2-3, Single-phase friction factors according to the Pfann correlations as modified in TRAC-BF1/MODI (solid lines). Colebrook friction factors arre shown with dashed thes for comparison.

$$
\begin{equation*}
\left(\frac{d P}{d z}\right)_{t o t}=\frac{2 f_{t o t}^{G_{a v e}^{2}}}{P_{f}} \tag{6,2-18}
\end{equation*}
$$

6. In the final calculations of C_{N} and $c_{N e}$, according to Equations $(6,2-1)$ and $(6,2-2)$, a lower 17 mit is 2mposed on the abs jlute values of ψ and $V_{\text {, to apold division by zemo. This minimum limit of }}$ velocity is $10^{-10} \mathrm{~m} / \mathrm{s}$; and, for all practical purpsees, it has no influence on reactor calculations.
6.2.7.2 Calculation of Initial Variables. Tha wall shear model as dascribed in the sections above computes the edge-centered phasic wall shear coeffictents, using a combinat for of cell-centered and edge-centered variables. The edge-centered variables can be used directly and include the surface roughness, the hydraulic diameter, the phasic velocities, the singular loss coefficient, and the additive pressure gradient (only used by the mechantette separator modell. (ef1l centered vartables whose value at the cell
edge must be computed are the void fractions, pressure, phasic viscosities, phasic densities, and the mixture mass flux. The final input variable for the wall triction subroutine is the distance between the centers of the two cells that are separated by the cell edge under consideration. This distance is computed from the user-input cell geometry.

The computation of the unknown edoe variables is different in the one-dimensional and three-dimensional components and will be discussed separately

6.2.7.2.1. Computation of Cell-Edge Variables for One-Dimensional

 Components - The void fraction used in the wall shear routine has the same value as the vold fraction used in the interfactal shear model and will not be described here (see Section 6.1)The pressure at the cell-edge is a donor weighted value based on the vapor velocity direction

$$
\begin{equation*}
P_{j+1 / 2}=P_{j} W V_{j+1 / 2}+P_{j+1}\left(1,-W V_{j+1 / 2}\right) \tag{6.2-19}
\end{equation*}
$$

where the donoring parameter is given by
and

$$
\begin{equation*}
n D i_{12}=P_{0}-P_{1} \tag{6,2-21}
\end{equation*}
$$

The phasic viscosities at the cell edge are the donor-weighted values where the donoring parameter is computed for each phase using its own veloctty.

The phasic densities at the cell edges are linearly interpolated values based on the lengths of the cells on each side of the cell edge under constderation

$$
\begin{equation*}
P_{g(j+1 / 2)}=\frac{D x_{j} P_{0}+D x_{j+1} P_{g(j+1)}}{D x_{j}+D X_{j+1}} \tag{6.2-22}
\end{equation*}
$$

A similar equation calculates liquid density. The mixture mass flux is the sum of the phasic mass fluxes, which are in turn computed as the product of the macroscoptc denstty of each phase at the cell edge and the phaste veloctty at the cell edge. Like the phasic densities, the macroscopic densities at the cell edge are linearly interpolated based on the lengths of the cells on

Wall Friction

either side of the cell edges under consideration.

Again, a similar equation is used for the liquid phase. The average macroscopic phase density used in the linear interpolation is the cell contered macrascopic phase denstty tulless a $-t+6+144$ ted two phase level exists between the center of the cell and the cell edge under consideration.

If a two-phase level exists, then the average macroscopic phase density is computed using the above-level and below-level void fractions as determined by the level model and the retative posttion of the tevel between the cell center and the edge under consideration to determine an average vold fraction in the space between the cell center and the cell edge, This verage void fraction is then multiplied by the cell-centered phasic density to give the average macroscoptc phase dentity to be used in the interpelstion echeme

$$
\left(\overline{a \rho_{g}}\right)_{j, 1+1 / 2}=\left(\rho_{g}\right), \frac{\left(D X_{j}-D L_{j}\right) a_{A_{j}}+D L_{j} a_{Q_{i, j}}}{0.5 D X_{j}}
$$

where
$0 x=$ cell length
$D L ;$ distance between level position and cell center.
for the Tiquid phase, the tiquid traction is used rather than the vapor fraction

The mixture mass flux is computed from the phaste mass fluxes as

$G L_{j+1 / 2}=\overline{(1-\alpha)_{P}(j+1 / 2)^{V}}([3+1 / 2)$
$G V_{j+1 / 2}=\overline{\alpha \rho}_{g(j+1 / 2)} V_{g(j+1 / 2)}$

The sign of the mixture mass flux is then used to choose which of the two input singular loss coefficients will be used at the cell edge

$$
K_{j, 1 / 2}= \begin{cases}K_{1, j+1 / 2} & \text { if } G N_{+1 / 2}=0 \tag{6.2-28}\\ K_{1,1+1 / 2} & \text { if } G M_{j+1 / 2}<0\end{cases}
$$

where
$K_{i+1 / 2}=$ singular loss coefficient to be used in the calculation of the wall friction parameters,
$K_{1,(1 / 1 / 2)}$ - user:input singular loss coefficitent for forward flow at ce? 1 edge $j+1 / 2$
$K_{\text {b, (i.1/2) }}$ ~ uter-t put singular loss coefficient for reverse flow at cell edge $j+1 / 2$.

6.2.7.2.2 Computation of Edge Variables for Three-Dimensional

 components ...The calculation of the edge variables in the three-dimensional components is identical to those in the one-dmenstomal components for the three cell edges (axial, radial, and azimuthal) associated with cells in the three-dimensional components with the following exceptions.The pressure and phaste viscosittes 1π the cell are used instead of donor-weighted values as in the one-dimensional components, and the presence of a stratified two-phase level is only taken into account in the computation of the mixture mass flux in the axial direction. All of the other variables are computed in the same way as ini the one-dimenstonal components.

6.2.7.3 Implementation of the Calculated Results in Momentum Equations.

 The previous sections have described the wall friction subroutine FRCW and the computation of the input quantitfes for thits subroutine. This section describes how the quantities computed by subroutine FRCW are manipulated to obtain the wall frictional force on each phase for use in the momentum equation. The implementation of the wall friction in the ore-dimensional and three-dimensional components is different and will be discussed separately for the two types of components.6.2.7.3.1 Implementation in One-Dimensioilal Components--The wall shear subrout ine FRCW first computes the total pressure gradient due to shear at the wall as a function of the conditions at the beginning of the time step. The wall shear coefficients are then computed as the ratio of the total wall pressure gradient to the kinetic energy of each phase

$$
\begin{align*}
& C F W L=\frac{\left.\frac{d P}{d z}\right|^{n}}{P_{\mathrm{g}}^{n}\left(V_{\ell}^{n}\right)^{2}} \tag{6.2-29}\\
& C F W V=\frac{\left.\frac{d P}{d z}\right|_{v} ^{n}}{P_{g}^{n}\left(V_{g}^{n}\right)^{2}}
\end{align*}
$$

and the wall shear coefficients are returned to the subroutine that called FRCW. We want to linearize the wall friction in such a way as to make it a function of the mifture mass flux, which itself is a function of both of the unknown phasic velocities. One way to do this is to write the end-of-timestep total pressure gradient due to wall friction as

This force is divided between the phases using the vold fraction as a measure of the surface area in the cell melted by each phase. (The void fraction ts used to be conststent with the assumptions used to convert the drift flux correlations into interfacial drag coefficients.) We obtain

$$
\begin{equation*}
\left.\frac{d P}{d z}\right|_{w, s} ^{n+1}=\left(\alpha^{n}\right)^{2} P_{s}^{n} C F W V\left|V_{9}^{n}\right| V_{9}^{n+1}+\alpha^{n}\left(1 .-\alpha^{n}\right) P_{\varepsilon}^{n} C F W L\left|V_{\ell}^{n}\right| V_{\ell}^{n+1} \tag{6,2-32}
\end{equation*}
$$

and

$$
\begin{align*}
& \left.\frac{d P}{d z}\right|_{N, \ell} ^{n+1}=\left.\left(\alpha^{n}\right)(1 .-\alpha) \frac{d P}{d z}\right|_{N} ^{n+1} \tag{6.2-33}\\
& \left.\alpha^{n}\right) P_{g}^{n} C F W V\left|V_{g}^{n}\right| V_{g}^{n+1}+\left(1 .-\alpha^{n}\right)^{2} P_{e}^{n} C F W L \mid V_{\ell}^{n} V_{e}^{n+1}
\end{align*}
$$

The wall shear force appears in the momentum equations as a force divided by an inertia (to obtain the acceleration due to the force) for the gaseous and liguld phases, respectively, which can e written as
$\frac{c_{\alpha 0}\left|V_{0}\right| V_{9}}{\left[\overline{\alpha \rho_{3}}\right]}$
and

for the gaseous and liquid phases, respectively, which can be written as

$$
\alpha^{n} \text { CFWV } \left.\left|V_{0}^{n}\right| V_{9}^{n+1}+\left(1 .-\alpha^{\pi}\right) \frac{\rho_{i}^{n}}{P_{9}^{n}} C F W L \right\rvert\, V_{e}^{n-1} V_{l}^{n+1}
$$

and

$$
\alpha^{n} \frac{\rho_{f}^{n}}{\rho_{i}^{n}} \text { CFWV }\left|V_{0}^{n}\right| V_{9}^{n+1}+\left(1 .-\alpha^{n}\right) \text { CFWLL}\left|V_{i}^{n}\right| V_{l}^{n+1}
$$

6.2.7.3.2 Implementation in Three-Dimensional Components -- The implementation of the wal\} shear in the three-dimensional components is simpler than in the one-dimenstonal components. As for the one-dimensiona? components, the total wall shear is split between the phase using the void fraction, but the linearization is simpler. The wall shear on each phase is written as

$$
\begin{equation*}
\left.\frac{d p}{d z}\right|_{w, g} ^{n+1}=\left.\alpha \frac{d p}{d z}\right|_{w} ^{n+1}=\alpha^{n} p_{g}^{n} C F W L\left|V_{g}^{n}\right| V_{g}^{n+1} \tag{6,2-34}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{\text { in }}{d z}\right|_{n, l} ^{\text {in } 1}=\left.(1,-\alpha) \frac{d P}{d z}\right|_{\alpha} ^{n+1}=\left(1 .-\alpha^{n}\right) p_{l}^{n} C F W L\left|V_{l}^{n}\right| V_{l}^{n+1} \tag{6.2-35}
\end{equation*}
$$

6.2.8 Conclusions

The detailed review of the wall friction calculation in TRAC-BF1/MOD1 that is presented in this section shows that there is a solid basis for the chotce of formulas used for those calculations. The correlattons used for single-phase friction factors include the classical formulas given in thie technical literature for laminar flow, turbulent flow in smooth pipes, and fully developed turbulent flow in rough pipes. The correlation used for turbutent transition region shows deviations from Colebrook formula and Moody chart over a short range of Reynolds numbers. However, it gives considerably better agreement with the limited data available in this region. The chosen correlations are also very suitalle for rapid alculations.

Hydraulic loss coefficients due to local restrictions are normalized over the hydraulic cell length and used as an added friction factor along the length of that cell.

Wall friction

The effect of two-phase flow on friction losses is calculated by using two-phase multipliers. The Hancox correlation is used for straight channel parts, and the homnnenoous two-phase multiplier is used for local restrictions. Both of these correlations are supported by considerable experimental observations.

The codina of wall friction calculations follows the nature of equations exactly, except for a few restrictions imposed on the range of parameters to be used in the equations (such as hydraulic diameters or absolute phase velocities). These restrictions are necessary for stability of numerical solutions, and none of them has any noticeable effect on reactor calculations.

6.2.9 References

6-2.1. J. Pfann, "A New Description of Liquid Metal Heat Transfer in Closed Conduits, " Nuclear Engineering and Design, 41, 1971, pp. 149-163.

6-2.2. F. Colebrook, "Turbulent Flow in Pipes with Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws, Journal of the Institution of Civil Engineers, 11, 1938-1939, PP 133-156.

6-2.3. L. F. Moody, "Friction Factors For Pipe Flow," Transactions of the ASME, 66, 8, November 1944, pp. 671-684
6.2.4.- 3. Nitkuradse, "taws of flow in Rough Pipes," Mechanical World, 95 , 2464, March 23, 1934, p 274.
6-2.5. N. Adornt et al .. Description of a Loop for Heat Transfer Experiments with Steam-water Mixtures (Pait 1), and of Pressure Drop Measurements in Diabatic Conditions (Part II), C1SE-R-62, 1962.

6-2.6. R. C. Martinelli and D. B. Nelson, "Prediction of Pressure Drop
Forced-circulation Boiling of Water," Transactions of the ASME, 70 ,
1948, p. 695 .
6-2.7. W. T. Hancox and W. B. Nicoll, "Prediction of Time Dependent Diabatic Two-phase Water Flows," Progress in Heat and Mass Transfer, 6, 1972, pp. 119-135
6-2.8. T. W. Hancox, Prediction of Oscillating Diabatic Steam-water Flow, oh. D. Thesis, University of Waterloo, 1971

6-2.9. G. P. Caspart et al.. Pressure Drops in Steam-water Mixtures, Round Tubes-Vertical Upflow, CISE-R-83, 1964.
6.2.10. A. Alessandrint et al. Critical Heat flux and Pressure Drop Measurements in Round Vertical Tubes, CISE-R-86, 1963.

Wall friction

6-2.11. W. M. Kay and A. L. London, Compact Heat Exchanger, Palo Alto, CA: National Press, 1958.

6.3 Level Tracking Model

This section documents the liquid level tracking madel presently used in the TRAC-BF1/MOD1 computer code. In early verstons of TRAC. B, the cell void fraction was assumed to be uniformly dietributed thmenhout each hydrodunaimie volume. In many cases (in particular, vertically oriented cells), this can result in numerical solutions to the governing equations that overcaiculate cell-to-cell fluid mass convection. To address this problem, a level tracking model originally developed by General Electric and subsequently modified by INFL was installed in the TRAC-DF1/MODI code $6.3=1,2$ This model has been shown to be capable of simulating a sharp void fraction gradient, which characterizes a two-phase mixture level, Level tracking models have been developed for both three-dimenstonal and one-dimensional components.

The rematinder of this chapter is outlined as follows: Section 6.3.1 summarizes the TRAC-BF1/MOD1 level modeling methodology and implementation. Section 6.3 .2 documents the detafls of the criteria used to detect a mixture lavel in a particttar cell. Section 8.3.3 documents the models and correlations used to calculate the position of a mixture level if it exists. Section 6,3.4 documents the cr'teria for determining when a mixture level will cross a cell boundary: Section 6.3 .5 gives conclustons relative to the applicability of the TRAC-BF1/MOD1 level tracking model.

6.3.1 Summary of Level Tracking Methodology and Implementation

The TRAC-BFI/MODI level tracking model was integrated into the code via two subroutines, LEVID and LEV3D, for the one- and three-dimensional Companante poenaetively Bnth tracking madele ane proanamomed to work in the following sequence:

1. For each vertically oriented cell, the coding first searches for the presence of a two-phase mixture level from criteria based on the dxatal votd proftle around that particular cell
2. If the presence of a mixture level is found in a particular cell, TRAC.BF1/MOD1 calculates the position of the mixture level and mixtume level welacity.
3. Additional tests are performed to see if the mixture level will propagate across à cell edge in the next computational time step.
4. If either conoitions 2 or 3 apply, the codirg uses updated cell void and/or cell phasic velocities in the TRAC-BFI/MOD1 momentum solution solver.

The logic used in the one-dimensional level tr ...ng model is nearly identical to the three-dimensionai model. Because the TRAC-BF1/MOD1 and network solver allows the user to orient one-dimenstonal components in any

Level Tracking Model

direction funlike the VESSEL component, which is always assumed to be vertically oriented), allowances have been made to preclude the use of the tevel tracking model when a one dimonsional comnonent is not vortically oriented.

Presented in Table $6.3-1$ is a summary of the physical parameters that are paised to the LEV10 and LEV3D subroutines and the calculated output parameters, which are, in turn, passed back to the routines that solve for the two-phase conversion of mass, momentum, and energy. The parameter definitions in Table 6.3-1 do not necessarily correspond to the actual argument names used in the coding. In addition, there are user-selected option flags to independently attivate the one dimenstonal or three-dimensional models. . $6.3 \cdot 3$ The user can also use level tracking parameters on a global basis for all one-dimensional or three-dimensional components. This information is summarized in Table $6.3-2$. How these parameters are implemented in the code level tracking logic is discuesed in the following subsections

A number of the TRAC-BF1/M0D1 level tracking features are considered to be empirical rather than based on first-principal physics derivations. The reader should be cautioned that even though the level tracking model can successfully suppress numenical diffusion or unrealistic cell-to-cell mass convection, this is a necessary but not sufficient condition to guarantee accurate numerical results. The level tracking option is an alternative to employing finely noded cells in a TRAC-BF1/MODI computer simulation. The accuracy achieved with finely noded cells may be offset by high computational costs

6.3.2 Critcria for Calculating Cell Mixture Level

The logic used by TRAC.BF1/MODI to test for the presence of mixture level in a computational cel] is based on a certain BWR experimental test data and numerical expertments, ${ }^{6.3-1.2}$. The inttial step in detecting a two phase level is to evaluate the axial void proftle around a zarticular hydrodynamic cell. The level detection logic required for a normal (increasing in the upward axial direction) void profile is not the same as the logic required for an inverted (Thcreasting in the downward axtal dimection) void profile in general, a level is assumed to exist in cell j if the calculated cell centered void distribution satisfies the following criteria:

$$
\begin{equation*}
(\alpha-\alpha)>A A L P C \text { or }(\alpha-\alpha,)>D A L P C \text { and } \alpha,>A L P C U I \tag{6,3-1}
\end{equation*}
$$

provided that no level exists in cell $j+1$ or cell $j-1$ (Figure 6.3-1). Here, DFiPC and ALPCUT are predetermined cut off values (Table 6.3-2), which have defautt values of 2 and 7 or can be specifted ty the code user.

The criteria for a void profile inversion depends on whether a particular cell is above or below a void inversion. A two-phase level is defined as being below a void profile inversion if

Table 6.3-1. Summary of input and output parameters for TRAC-BF1/MOD1 level tracking routines.

Parameter name Parameter description

Input Parameters:

ILEV	Current two-phase level indicator
DZLEV	Current two-phase level position
VLEV	Current two-phase level velocity
ALPP	current void fraction above two-phase level
ALPH	Current void fraction below two-phase level
ILEVB	Previous two-phase level indicator
ALPN	New-time cell-average void fraction
ALP	01d-time cell-average void fraction
VLN	Liquid velocity
VLV	Vapor velocity
DX	Cell axial length
FA	Cell boundary flow area
VCL	Cell volume
DH	Hydraulic diameter

output Parameters:

ILEV	New-time two-phase level indicator
DZLEV	New-time two-phase level position
VLEV	New-time two-phase level velocity
ALPP	New-time void fraction above two-phase level
ALPM	New-time void fraction below two-phase level
VLN	Junction cell liquid velocity
VVN	Junction cell vapor velocity

Level Tracking Model

Table 6.3-2. User-input-specified level tracking parameters

Parameter name
Parameter description

LEVI	Level tracking option flag		
	1 implies level tracking option on		
0	implies level tracking option off	\quad	Minimum allowable cell average void fraction in cell above
:---			
for a two-phase level to be detected in a cell.			

Figure 6.3-1. Two-phase level with normal void profile

$$
a_{i}-a_{i+1}>D A L P C I
$$

If a void inversion is above a cell, the criteria becomes
$\pi \quad \pi$ b nalder
where DALPCI (Table 6.3-2) is a "ser-inputted prodeter ined cut-off value that defaults at . 1.

These void inversions are typically the wesult of liquid pooling in the upper or lower tie plates in a BWR reactor pressure vessel. The coding in the LEVID and L.EV30 subroutines checks for the presence of flow restrictions by calculating the ratioed areas for a cell-to-cell junction:

$$
\begin{align*}
& \text { Test } E=\frac{A_{j+1 / 2}-A_{j+3 / 2}}{A_{j+3 / 2}} \\
& \text { Test } B=\frac{A_{j+1 / 2}-A_{j-1 / 2}}{A_{j-1 / 2}} \tag{6.3-5}
\end{align*}
$$

If Test $E>5,5$, the flag is set for an area reduction above cell j; ic Test B $>.5$, a flag is set for a area reduction below cell j . In either case, the code logtc automatically inttlates a search for a votd proftle tnverston.

If the inlet or outlet cell flow area is less than $1 . E-10 \mathrm{~m}^{2}$, the void prafile inversion logic is also automatically activated. The subroutine logic automatically initiatcs a search for void inversion above or below that particular cell. The level detection logic is further explained in block diagrams given in Figures $6.3-2$ through $6.3-5$.

6.3.3 Models and Correlations Used to Calculate a Cell Twc-Phase Mixture Level Location

Once the TRAC-BF1/MODI model logic determines the presence of a level in a particular cell, a level flag is switched on and the parumeters nece.sary to define the tevel behavior are calculated. The position of the level in cell j of length $D Z_{3}$ is calculated as

Level Tracking Model

Figure 6.3-2. Level detection logic diagram

Figure 6.3-3. Level detection logic diagram for cell j above an inverted profile.

Level Tracking Model

Figure 6.3-4. Level detect.un logic diagram for cell j below an inverted profile.

Figure 6.3-5. Level detection logic diagram for normal profile

Level Tracking Model

$$
\begin{equation*}
D Z L_{j}=D Z_{j}\left(\frac{\alpha_{j}^{+}-\alpha_{j}}{\alpha_{j}^{+}-\alpha_{j}}\right) \tag{6.3-6}
\end{equation*}
$$

where α_{j} and α_{j} are the void fractions above and below the mixture level (Figume $5.3-1$). The \sim^{4} and π votd fractions are catedlated on the basts of whether j is part of a normal or inverted void profile. For a normal void profile, the void fraction below the level a is assumed to equal the void fraction in the cell $\mathrm{j}-1$, which is below cell j

$$
\begin{equation*}
\alpha_{j}=\alpha_{j-1} \tag{6,3-7}
\end{equation*}
$$

In the absence of liquid entrainment in cell j, the value of α would be

$$
\begin{equation*}
\alpha_{j}=\alpha_{j+1} \tag{6.3-8}
\end{equation*}
$$

If the velocity from the provious time step at the top of cell j (Figure 6.3-1) is downward, then no liquid is assumed to be entrained and Equation (6.3-8) is used. If, on the other hand, the velocity at the cell junction is upward, an entrainment correlation developed by Rosen ${ }^{6.3 \cdot 5}$ is used. Liquid entrainment will tend to lower the vapor void fraction above the mixture level. The entrained liquid mass flux is expressed as follows:

$$
\begin{equation*}
G_{\text {lent }}=\left[3 . \times 10^{-5}\left(0 K^{0.5}+530 . C K^{2.1}\right)\left(\frac{P_{\ell}-P_{8}}{P_{9}}\right)^{0.5} J_{8} P_{g}\right. \tag{6.3-9}
\end{equation*}
$$

where

$$
\begin{align*}
& C K=\quad \text { 2. DMAX J }{ }_{9} \\
& \text { VCRIT } g\left(\frac{\alpha}{P_{e}-P_{g}}\right)^{0.5} \tag{6.3-10}\\
& \text { VCRIT }=2 .\left(\frac{\sigma g\left(p_{e}-p_{\theta}\right)}{p_{9}^{2}}\right)^{0.25} \tag{6.3-11}
\end{align*}
$$

$$
\text { DMAX }=0.3375 \frac{\rho_{9} V_{9}^{2}}{g\left(\rho_{\ell}-\rho_{Q}\right)}
$$

In the above expression, $G_{\text {ent }}$ is calculated using donor cell-averaged values for p_{1}, p_{g}, and a at cell j. The value of J_{g} is set equal to the trial value (for postitive v_{8})

$$
\begin{equation*}
J_{a}=\alpha_{j+1} v_{g} \tag{6,3-13}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{s}=v_{3, j+1 / 2}\left(\frac{A_{j+1 / 2}}{A_{j}}\right) \tag{6,3-14}
\end{equation*}
$$

and $v_{0 .+1 / 2}$ is the junction vapor phasic velocity calculated by the TRAC. $\mathrm{BF} 1 / \mathrm{MbD}$ 1/ momentum solution solver and passed to the level tracking subroutine The value for the cross-sectional area A is calculated by simply dividing the cell j volume by the cell length.

The vapor velocity is weighted by the ratio $A_{j+1 / 2} / A_{j}$ to *count for velocity field corrections inside the cell $\mathrm{j}_{\text {, }}$, since the cell Wutlet area $\mathrm{A}_{\mathrm{j} \cdot 1 / 2}$ and cell average flow area A_{j} may not be equal.

By conservation of mass, the liquid mass flux out of the top of the cell j is equal to

$$
G_{\text {lent }}=\left(1-\alpha_{j}^{*}\right) P_{l} v_{t}
$$

from which the above-level void fraction, α_{j}, is computed to be

$$
\begin{equation*}
\alpha_{j}^{*}=1-\frac{G_{i \mathrm{ent}}}{P_{e} V_{\ell}} \tag{6,3-16}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{e}=v_{e, i+1 / 2}\left(\frac{A_{j+1 / 2}}{A_{j}}\right) \tag{6,3-17}
\end{equation*}
$$

[^1]
Level Tracking Model

to a_{i+1} and the above computational procedure is bypassed in the calculation.
When the level logte detects a void tnversion below cell of 'Equation $(6.3-2)]$ or a flow area reduction at the top of cell j , the solution scheme for α_{j} is mudified. In this case, the trial volumetric vapor flux used in Equation (6.3-9) becomes

$$
J_{\mathrm{g}}=.999 \mathrm{~V}_{\mathrm{s}}
$$

where v_{g} was previously defined by Equation (6.3-14). This trial expression is substituted into Equation $(6,3.6), G_{\text {tent }}$ is calculated, and α_{j} is subsequently calculated from Equation (6.3-16). Then, α_{j} and the two-phase level are then calculated using Equations $(6,3-7$ and $6,3-6)$. If $v_{0, i+1 / 2}$ is negative, α_{j} is set equal to .999

For a cell two-phase level occurring above a void fraction inversion [Equation (6.3-3)] or bottom cell area reduction, the void fraction below the cell mixture level is calculated using the drift flux approximation ${ }^{6}$

$$
\begin{equation*}
\alpha_{j}=\frac{J_{\theta}}{c_{0} J+V_{0 i}} \tag{6.3-19}
\end{equation*}
$$

where

$$
\begin{align*}
& V_{Q 1}=1.41\left(\frac{\Delta \mathrm{nga}}{P_{t}^{2}}\right)^{1 / 4} \tag{6,3-20}\\
& C_{0}=C_{\infty}-\left(C_{\infty}-1\right) \sqrt{\frac{P_{a}}{P_{e}}} \tag{6,3-21}\\
& C_{\infty}=1.395-0.15 \ln (\mathrm{Re})
\end{align*}
$$

These coefficients are calculated assuaing a bubbly/churn flow map. ${ }^{6,3-1,2}$ The parameters in the coding (C_{0} and v_{8}) are based on $c e l l$-centered ($c e l l j$) quantities. A further discusston of the drift flux formulation is given in Section 4.6

The volumetric fluxes J_{g} and J^{*} are calcilated using junction-donored veloctties from the bottom of cell j and void fractions of either a or α. (old time), depending on whether or not the phasic velocities are positive or negative, respectively. The values of the volumetric fluxes are

$$
\begin{align*}
& \left.J_{g}=\frac{1}{2} v_{9, j-1 / 2}^{\prime}\left[\alpha_{j-1}+\alpha\right)+\operatorname{sgn} v_{9}\left(\alpha_{j-1}-\alpha\right)\right] \\
& \left.J_{\ell}^{-}=\frac{1}{2} v_{\ell, j-1 / 2}^{\prime}\left[\alpha_{j-1}+\alpha^{\prime}\right)+\operatorname{sgn} v_{\ell}\left(\alpha_{j-1}-\alpha^{i}\right)\right] \tag{6.3-24}
\end{align*}
$$

$J=J_{9}^{*}+J_{\ell}$
where sgn $v_{\text {a }}$ and v_{ℓ} are the signs for the vapor and liquid cell-edge phasic velocities at $j-1 / 2$,

$$
\begin{equation*}
V_{s, j-1 / 2}^{\prime}=V_{9, j-1 / 2}\left(\frac{A_{j-1 / 2}}{A_{j}}\right) \tag{6.3-26}
\end{equation*}
$$

$$
\begin{equation*}
V_{\ell, 1-1 / 2}^{\prime}=v_{\ell, j-1 / 2}\left(\frac{A_{j-1 / 2}}{A_{j}}\right) \tag{6.3-27}
\end{equation*}
$$

The phasic velocities $v_{9, j-1 / 2}$ and $v_{e, j-1 / k}$ a.e calculated using the phasic junction velocities $v_{g, 1-1 / 2}$ and $v_{\ell, 1-1 / 2}$ calculated from the TRAC-BFI/MOD1 momentum solution scheme and passed to the level tracking routines (LEVIU and LEV3D). The primed velocities are calculated using the same weighting scheme as for Equation (6.3-14) but with the inlet instead of outlet junction cell jurction areas. The logic and correlations used to calculate α_{j} are the same used for the normal void profile scheme

Once α_{j} and α_{j} have been calculated using the above methodology (assuming a level flag has been activated for that particular cell), these void fractions are passed back to the code's momentum finite-differencing solution scheme. It is the substituted cell mixture level void fractions, rather than the cell-averaged void fractions, which are then employed for void donoring to the adjacent cell volumes in the TRAC-BF1/MOD1 momentum solution solver. When a two-phase mixture level approaches a cell boundary, the cell junction

Level Tracking Model

velocities are also recalculated in the level tracking routines and passed back to the code's general momentum solution scheme. The code methodology for this is discussed in the next section.

6.3.4 Criteria for Calculating Cell Mixture Level Velocities and Cell Boundary Crossings

This section summarizes the code methodology used to calculate cell mixture level velocities when a mixture level crosses a cell boundary and how junction phase velocities are recalculated under these circumstances.

The level velocity VLEV is calculated by taking the time derivative of Equation (6.3-5)

$$
\begin{equation*}
D Z_{j} \frac{d \alpha_{j}}{d t}-D Z i_{j} \frac{d \alpha_{j}}{d t}-\left(D Z_{j}-D Z L_{j}\right) \frac{d \alpha_{j}^{*}}{d t} \tag{6.3-28}
\end{equation*}
$$

VLEV

$$
\alpha_{j}-\alpha_{j}
$$

The derivatives in Equation $(6,3-28)$ are numerically approximated by taking the difference between the new-time and old-time void fractions and dividing by the thermal-hydraulic time step. The denominator in Equation (6.3-28) uses new-time mixture level void fractions.

The two-phase level tracking model uses two criteria to determine if a level will cross an axial cell boundary. For a rising level, VLEV >0, the condition is

$$
\begin{equation*}
\left(\alpha_{j}-\alpha_{j}\right)<E F S A L P L \tag{6.3-29}
\end{equation*}
$$

If VLEV <0, the criteria for a falling level is

$$
\begin{equation*}
\left(\alpha_{j}-\alpha_{1}\right)<\text { EPSALPL } \tag{6.3-30}
\end{equation*}
$$

Equations $(6.3-29)$ and $(6.3-30)$ comprise the first test for cell boundary level crossing. The level tracking void parameter EPSALPL is defined in Table $6.3-2$ as a user-specified value that defaut's to .02. Agatn, the above criteria are empirical. The reader is cautioned that using a larger nondefault value of EPSALPL may induce numerical instabilities. ${ }^{\text {a }}$

When a two-phase level approaches a boundary, a second test is also employed to see if the mixture level during the next computational time step will be advanced into the next adjoining cell for a rising or falling level. The level is advanced into an adjoining cell if the level transit time is less than the current hydraulic computational time step, Δt.

The criteria for a rising level to adovance to the next cell is

$$
\frac{D z_{j}-O Z L_{j}^{n}}{V L E V_{j}}<\Delta
$$

For a falling level, the criteria is

$$
\begin{equation*}
\frac{D z t_{j}^{n}}{V L E V_{j}}<\Delta t \tag{6.3-32}
\end{equation*}
$$

When a two-phase level crosses a cell boundary, there is a discontinuous change in the void fraction and phase velocity at the cell boundary. To stabilize the numerics, the level model calculates modiffed phastc velocities that are used in the new-time solution to the momentum equation when a level crossing occurs. The modified velocities are determined from the jump conditions

$$
\begin{equation*}
\text { VLEV }=\frac{J_{g}^{-}-J_{g}^{+}}{\alpha_{j}-\alpha_{j}} \tag{6,3,33}
\end{equation*}
$$

or

$$
\begin{equation*}
\text { VLEV }=\frac{J_{i}-J_{i}^{+}}{\alpha_{j}-\alpha_{j}} \tag{6,3,34}
\end{equation*}
$$

For a rising level that will cross a cell boundary at the next time step (as shown in Figure 6.3-6), the liquid velocity at the boundary after the level crosses can be calculated using Equat ion (6.3-34). The modified old-time junction liquid velocity becomes

$$
\begin{equation*}
\left(V_{\ell}\right)_{j-1 / 2}^{n}=\frac{\left(\alpha_{j}^{*}-\alpha_{j}^{*}\right) V L E V_{j}+\left(1-\alpha_{j}^{*}\right)\left(v_{l}\right)_{j, 1 / 2}^{n}}{\left(1-\alpha_{j}\right)} \tag{6,3-35}
\end{equation*}
$$

For a falling level that will cross a cell boundary at the next time step (as shown in Figure 6.3-7), the modified old-time junction vapor velocity at the boundary after the level crosses can be calculated using Equation (6.3-33).

$$
\begin{equation*}
\left(V_{g}\right)_{j-1 / 2}^{n}=\frac{\left.\alpha_{j}\left(V_{g}\right)_{j-1 / 2}^{n}-(\alpha)_{j}^{n}-\alpha_{j}^{n}\right) V L E V V_{j}}{\alpha_{j}} \tag{6,3-36}
\end{equation*}
$$

Level Tracking Model

Figure 6.3-6. Rising two-phase level at a cell boundary.

Figure 6.3-7. Falling two-phase level at a cell boundary.

If the junction velocities are recalculated by the one-dimensional or three-dimensional level tracking routines, these modified velocities are transferred back to the code's one or three-dimensional momentum solutior subroutines for solution advancement to the next time step.

It was discovered during the develonment of the level tracking models that computational instabilities may develop when a level is propagated to an adjacent cell where the vold fraction is very near 0.0 or 1.0 . For this reason, it was necessary to siightly adjust the void fraction in a cell to which a two-phase level is propagated if the initial void in the cell is near 0.0 or 1.0 . System mass is still strictly conserved in this case by transferring mass to ar from the cell from which the level originates.

6.3.5 Conclusions

The following conclusions are miade with respect to the level tracking models which are currently used in TRAC-BF1/MOD1:

- The 1RAC. BFI/M001 level tracking model has been shown to produce physically realistic results in thermal-hydraulic transients by suppressing artificial ce ${ }^{2 n}$-to-cell mass convection.
- The level tracking model is designed to compensate for inherent limitations of the TRAC-BF1/MODI finite-differencing scheme.
- The use of this model has also allowed for coarser nodalization and a substantial savings in computational costs.
- The level tracking parameters supplied to the user should be employed with crution.. The nature of the hypothesized transient may affect the range of validity of these default parameters.

6,3,6 References

1. D. D. Yaylor, Improvements to G.E. Level Tracking Model for 3-D Components, WR-NSMD-83-007, February 1983.
2. D. D. Taylor, 1-D Level Tracking Model, 1S-NSMD-83-011, infil 1983.
3. W. L. Weaver et al,. TRAC-BF1 Manual: Extensions to TRAC-BD1/MOD1, NUREG/CR-4391, EGG-2417, August 1986.
4. B. L. Charboneau, Overview of TRAC-BD1/MOO1 Assessment Studies, NUREG/CR-4428, EGG-2422, November 1985
5.-A. nosen et al a, Teploentergetikia, 11, P. 59, 1976

Level Tracking Model
6. J. G. M. Andersen and K. H. Chu, Constitutive Correlations for Shear and Heat Transfer for the BWR Version of TRAC, NUREG/CR-2134, EPR1 NP-1582, GTAP-24940, December 1981.

7. FLOW PROCESS MODELS

The following sections describe flow process models in TRAC-BF1/MOD1.

7.1 Pressure Drops Due to Area Changes

7.1.1 Velocity Divergence

In the TRAC-BF1/MOD1 momentum equations, the velocity divergence operator is written in terms of a backward spatial difference, which gives the correct pressure drop for a straight duct of constant cross-sectional area. In order to compute the pressure drop between cells j and $j+1$ for the case of a nonconstant cross-sectional area duct, the velocity divergence should be written in terms of the difference in the squares of the cell-centered velocttes as

$$
\begin{align*}
& \left(v_{k} \nabla v_{k}\right)_{i+1 / 2}=\frac{1}{2} \overline{\overline{\Delta x}}\left(v_{k, i+1}^{2}-v_{k, i}^{2}\right) \tag{7.1-1}\\
& \quad=\frac{1}{2 \Delta x}\left(v_{k, i+1}+v_{k, j}\right)\left(v_{k, i+1}-v_{k, j}\right)
\end{align*}
$$

Modifying the terms in the backward spatial difference results in an approximate form of the correct cell-center-to-cell-center velocity difr rence and the correct pressure diop between cell centers for a duct with changing cross-sectional area. The mass flow rates at the cell centers are written as the average of the mass flow rates at the cell edges (where the phasic subscript has been suppressed)

$$
\begin{align*}
& \alpha_{j} \rho_{j} A_{j} V_{j}=\frac{1}{2}\left(\alpha_{j} \rho_{j} A_{i+1 / 2} V_{j+1 / 2}+\alpha_{j-1} \rho_{j-1} A_{j-1 / 2} V_{j-1 / 2}\right) ; \tag{7.1-2}\\
& V_{j+1 / 2}>0, V_{j-1 / 2}>0 \\
& \alpha_{i+1} \rho_{j+1} A_{j+1} V_{j+1}=\frac{1}{2}\left(\alpha_{j+1} \rho_{j+1} A_{j+3 / 2} V_{j+3 / 2}+\alpha_{j} \rho_{j} A_{j+1 / 2} V_{j+1 / 2}\right) ; \tag{7.1-3}\\
& \quad V_{j+3 / 2}>0, V_{j+1 / 2}>0
\end{align*}
$$

where the donor onversion has been used to express the phasic densities and void fractions a the cell edges. Analogous equations may be written for various combtnations of positive and negative velocities at the cell edges.

These equations are combined in various ways with the steady-state phasic

Pressure Drops

continuity equations

$$
\begin{equation*}
\pi=\hat{P}_{j-1} A,-1 / 2^{Y} \quad 1 / 2+\Gamma \quad \alpha_{1}, A_{j}, 1 / 2 V_{1,1 / 2} \tag{7,1-4}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{j} \rho_{j} A_{j+1 / 2} V_{j+1 / 2}+\Gamma_{j+1}=\alpha_{j+1} p_{j+1} A_{j+3 / 2} V_{j+3 / 2} \tag{7.1-5}
\end{equation*}
$$

to determine the cell-centered velocities. Substituting Equation (7.1-5) into Equation (7.1-3) to eliminate $V_{k, i+3 / 2}$, we obtain

$$
\begin{equation*}
V_{j+1}=\frac{\alpha_{j} \rho_{j} A_{j+1 / 2} V_{j+1 / 2}}{\alpha_{j+i} \rho_{j+1} A_{j+1}}+\frac{0.5 \Gamma_{j}}{\alpha_{j+1} \rho_{j+1} A_{j+1}} \tag{7.1-6}
\end{equation*}
$$

Substitution of Equation (7.1-4) into Equation (7.1-2) results in two forms of the cell-centered phasic velocity in the upstream cell in terms of the phasic velocity at each cell edge

$$
\begin{align*}
& V_{j}^{(j, 1 / 2)}=\frac{\alpha_{j} \rho_{j} A_{j-1 / 2} V_{j, 1 / 2}}{\alpha_{j} \rho_{j} A_{j}}-\frac{0.5 \Gamma_{j}}{\alpha_{j} \rho_{j} A_{j}} \tag{7.1-7}\\
& V_{j}^{(j-1 / 2)}=\frac{\alpha_{j-1} \rho_{j-1} A_{j-1 / 2} V_{j-1 / 2}}{\alpha_{j} \rho_{j} A_{j}}+\frac{0.5 \Gamma_{j}}{\alpha_{j} \rho_{j} A_{j}}
\end{align*}
$$

Substitution of Equations $(7.1-6),(7.1-7)$, and (7.1-8) into Equation (7.1-1) gives

$$
\begin{gather*}
(V \nabla V)_{j+1 / 2}=\frac{1}{2 \Delta r}\left[V_{j+1}+V_{j}^{(j+1 / 2)}\right] \cdot\left[V_{j+1}-V_{j}^{(j-1 / 2,}\right] \tag{7,1-9}\\
=\frac{1}{2 \Delta x}\left(A V_{j+1 / 2}+B\right)\left(C V_{j+1 / 2}-D V_{j-1,2}+B\right)
\end{gather*}
$$

where

$$
\begin{align*}
A & =\frac{\alpha_{j} \rho_{j} A_{j+1 / 2}}{\alpha_{j+1} \rho_{j+1} A_{j+1}}+\frac{\alpha_{j} \rho_{j} A_{j+1 / 2}}{\alpha_{j} \rho_{j} A_{j}} \tag{7.1-10}\\
B & \frac{0.5 \Gamma_{j+1}}{\alpha_{j+1} P_{j+1} A_{j+1}}+\frac{0.5 \Gamma_{j}}{\alpha_{j} \rho_{j} A_{j}} \tag{7.1-11}
\end{align*}
$$

$$
\begin{align*}
& C=\frac{\alpha \rho_{j} A_{j+1 / 2}}{\alpha_{j+1} \rho_{j+1} A_{j+1}} \tag{7.1-12}\\
& D=\frac{\alpha_{j-1} \rho_{j+1} A_{j-1 / 2}}{\alpha_{j} \rho_{j} A_{j}}
\end{align*}
$$

It should be noted that setting $A=C=D=1.0$ and $B=0$ results in the uncorrected form of the velocity divergence operator.

This form of the velocity divergence will be numerically stable as long as it has the form of the corrasponding backward difference (curresponding form in the sense thai the two terms in parentheses have the same signs as the uncorrected form at the backward dtfferencr. Since A, C, and 0 are always greater than zero, the only situation that can cause instability is whenever $B>A V_{+1 / 2}$ or $B>-\left(C^{1+1 / 2}-D V_{j+1 / 2}\right)$. These criteria come from the fact that the values of A, B, C, and D should not change the sign of the two terms in parenthesis in Equation (7.1-9) relative to the uncorrected form of the velocity divergence operator

Rather than test for every combination of the coefficients, the coefficients A, B, C, and D are simplified to give

$$
\begin{equation*}
A=\frac{A_{j+1 / 2}}{A_{j+1}}+\frac{A_{j+1 / 2}}{A_{j}} \tag{7.1-16}
\end{equation*}
$$

$B=0$

$$
\begin{equation*}
C=\frac{A_{j+1 / 2}}{A_{j+1}} \tag{7.1-18}
\end{equation*}
$$

$$
\begin{equation*}
D=\frac{A_{j-1 / 2}}{A_{j}} \tag{7.1+19}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{j+1}=\frac{V 0 l_{j+1}}{\Delta X_{j+1}} \tag{7.1-20}
\end{equation*}
$$

Pressure Drops

$$
\begin{equation*}
A_{j}=\frac{V_{0} l_{j}}{\Delta x_{j}} \tag{7.1-21}
\end{equation*}
$$

Since A, C, and D are always positive, the corrected velocity divergence has the form of a backward velocity divergence with modified coefficients. This form of the coefficients will give the correct pressure drop for single-phase flow in a duct with varying cross-sectional area and should be adequate for two-phase flow.

CRITICAL FLOW

7.2 CRITICAL FLOW

This section details the equilibrium critical flow model presently employed in the TRAC-BFI/MOD1 computer code. The critical flow model used in TRAC BFI/MODI ts applitable for coarse-mesh nodalization and is based on a semi-empirical approximation of the choking criteria derived from the general one-dimensional, two-phase fluid field equations. The critical flow model also allows for the simulation of choking with a noncondensable gas phase. The princtpal motivation of using a choked flow limitation model was to improve code efficiency and rus limes. In the past, it was found that modeling choked flow using the TRAC-BF1/MOD1 finite-difference approximation to the basic conservation equations required extremely fine cell nodalization in the vicintty of the ak plane. As a consequence, simulating break transients generally lec .o prohibitively costly calculations. The choked flow model was developed in several stages and was implemented into the code by a number of individuals.

The remainder of this chapter is outlined as follows, Section 7.2.1 documents the basic assumptions used to formulate the choking criteria in TRAC-BF1 and how the choking model is implemented. Section 7.2.2 documents the general methodology used to calculate thermodynamic properties at the choke plane. Sections $7.2 .3,7.2 .4$, and 7.2 .5 document the two-phase/two-component, single phase/two-component $v E_{\text {a }}-r$, and single-phase liquid critical flow models, respectively. Section 7,2.6 documents the closure relattons meeded to calculate the choke plane phasic volocities. Section 7.2.7 gives conclusions relative to applicability and areas for further study reiative to the present TRAC-BFI/MOD1 choking model.

7.2.1 Background

Choking occurs when the mass flow in a pipe becomes independent of the downstream conditions. Therefore, a further reduction in the downstream pressure will not change the mass flow rate. The reason choking occurs is that acoustic signals can no longer propagate upstrean to affect the boundary conditions that determine the mass floy rate at the choke plane. The choking model employs a flow-limiting scheme that uses a linear function of the cell function phasic velocitles and compares this expression to the calculated local junction sound speed. If this linear function exceeds the local sound speed, the choking model is employed to 1 init flow at that particular junction. The quantitative details of how this is done will be identified later in this section. The choking model used in TRAC BF1/MOD1 is based on the RELAP5/M001 model ariginally developea by Ransom and Trapp.

Originally, the TRAC.BF1/MOD1 choking model was based on a characteristic analysis of the partial differential equations governins the flow response. However, it has been found engrfically that a inuch siniplified criterion relating the throat homogenous equilibrium mixture (HEM) sonic velocity and throat phasic velocities void fractions, and densities

Critical Flow

$$
\begin{equation*}
\left|\frac{\alpha_{9} p_{4} v_{9}+\alpha_{1} p_{8} v_{f}}{\alpha_{8} p_{4}+\alpha_{1} p_{8}}\right| \geq a_{H E} \tag{7,2-1}
\end{equation*}
$$

may be used in place of the detailed theoretical expressi in and still yield good code/dat a comparisons.

The choking model consists of four different regimes, identified in Table $7.2-1$. These regimes are presently based on cell-centered void conditions immediately upstream of the choke plane. Each of these regimes is simulated th the TRAC-BFI/MODI subroutine MHOKE. Figure 7.2-1 is a flow chart of the current logic for selecting these flow regimes. In each case, the method used to calculate the homogeneous sound speed $a_{\text {iE }}$ is slightly different. The presence of noncondensables introduces an additional degree of complextty in the approximation of $a_{\text {ane }}$. At present, only air is modeled with the noncondensable option. The presence of air is accounted for in all of the break flow regimes with one exception. Noncondensables at the break choke plane are ignored for the low void regime (Table 7.2-1) when the ATamgir-Jones-Lienhard (AJL) correlat ion is used. In the subcooled blowdown regime the effects of noncondensables on the local sound speed are assumed to be small and are therefore ignored

Table $7.2-1$. Equilibrium critical flow regimes.

Void fraction

Regime

Correlation

a < 0.01	19quid	Alangir-Jones-Lientar
$0.01<\alpha<0.1$	transition	Interpolate
$0.1<\alpha<0.999999$	two-phase	Homogemeous equilibrium sound speed
$0.999999<a$	gas only	HEM with adiabatic gas approximation

$a<0.01$
$0.01<\alpha<0.1$
$0.1<\alpha<0.999999$
$0.999999<\alpha$
α
gas only
HEM with adiabatic gas approximation

We shall now summarize how the choking model is implemented into TRAC-BF1/MOO1. The choking model is presently implemented in only one-dimentstonal components. The critfeal flow model ts called by the subroutine TF1E, which is the subroutine to solve the governing equations for one-dimensional TRAC-BF1/MODI components. TFIE passes donor cell parameters based on new-time velocities to CHOKE. Tables 7.2-2 and 7,2-3 summarize the principal variables passed to choke and the calculated output variables. The alphanumeric identifiers in Tables $7.2-c$ and $7.2-3$ should not be necessarily interpreted as subroutine call argunients. After CHOKF has been entered,

Critical Flow

Figure 7.2-1. (continued)

Table 7.2-2. Input call parameters to CHOKE scbroutine.

CRITICAL FLOW

Table 7.2-3, Output to subroutine CHOKE.

Var able
VL Throat liquid velocity
VV Throat vapor velocity
DFLDP
DFVDP
ICHOKE

Derivative of V_{L} with respect to pressure Derivative of VV with respect to pressure Choking status flag
control is passed to a particular model, depending on the void conditions define in Table 7.2-1. Each model that is invoked follows the same cemputational sequence:

1. The throat pressure and temperature conditions are calculated. The subroutine THERMO is called to calculate additiona" "hermodynamic throat conditions
2. The throat sonic speed is calculated and the choking criteria are evaluated.
3. If the choking criteria are not met, control is returned to TFIE,
4. If choking criteria are met, new-time throat velocities and derivatives are recalculated. To calculate the derivatives, the throat pressure is perturbed by to and a second pass ts made to calculate the liquid and vapor velocities. The chaked derivatives are calculated by dividing the change in the choked velocity calculated between passes by the pressure perturbation
5. Control is returned to TFIE with the new calculated junction phasic velocities and derivatives.

The above process is illustrated in the log? flow in Figure 7.2-1. We shall now detail how CHOKE calculates the throat conditions, the details of particular models that are invoked, and how they are implemented into the code.

7.2.2 Methodology for the Calculation of Choke Plane Thermodynamic Properties

This section detafls the principal method used to calculate choke plane thermodynamic properties and how this method is implemented in the TRAC-SF1/MOD1 code. In ordor to ca?culate a the cell break plane conditions must first be approximated. In tne TRAC-BF1/MOD1 finitediffurencing scheme, fluid properties are calculated as cell-centered quaritities. As a consequence, approximation techniques must be employed to
estimate gradients in fluid cond'tions between the cell center and cell edge choke plane. In TRAC-BFI/MOD1, a half cell momentum (see Figure 7.2-2) balance approximation is used to estimate the junction pressure. It is assumed that the area change from the cell center to the cell face is not too abrupt. Hence, form loss effects are not accounted for in the approximation. The throat pressure becomes, using Bernoulli's theorem,

$$
\begin{equation*}
P_{\mathrm{t}}=P_{c}-\frac{P_{\mathrm{mut}} V_{\mathrm{git}}^{2}}{2}+0.5\left[P_{\mathrm{mc}}-\left(\alpha_{g c} P_{g c} f_{g c}+\alpha_{\ell c} P_{\ell c} f_{\ell c}\right) \frac{L}{D_{H}}\right] V_{\mathrm{mc}}^{2} \tag{7.2-2}
\end{equation*}
$$

where the subscripts t and c designate cell throat and center locations. The m subscript designates mixture conditions. The parameters $V_{m c}, V_{g i t}, P_{m c}$, and $P_{\text {me }}$ are mixture velocities and densities at the cell center and throat, respectively (Figure $7.2 \cdot 2$). The parameters $f_{g c}$ and $f_{c c}$ are the Tiquid and vapor phasic friction factors. The L and $O H$ parameter's are the upstream cell half length and throat hydraulic diameter, mspectively.

Figure 7.2-2. Choking cell configuration.

The above Bernoulli approximation has been done by assuming that the mixture velocities rather than the phasic velocities are sufficient to cafculate throat properties. The wall phaste friction factors, f, and f, are passed from the TRAC-BF1/MOD1 momentum solution routine TFIE to the CHOKE routine. The frictional loss terms are neglected for the throat pressure calculation in the liquid regime and vapor regime (Table 7.2-1). A further elaboration of the above corrections is given in Sections 7.2.3 and 7.2.5.

Because of inherent limitations in the TRAC-BF1/MOD1 finite-difference solution scheme, additional approximations have been made to evaluate $V_{m c}, V_{m t}$, and pot In partlcular, the fintte-difference scheme solves the fteld equations so that the phasic velocities are calculated only at cell edges.

Critical Flow

Cell-donored quantities, including the pressure, phase densities, temperatures and void fractions, are calculated only as cell-centered parameters. The mixture densities and velocities in Equation $(7.2-2)$ are calculated as follows:

$$
\begin{equation*}
P_{m c}=\alpha_{g C} P_{g c}+a_{l c} P_{l c} \tag{7.2-3}
\end{equation*}
$$

$$
\begin{equation*}
\text { RHOCK }=\frac{P_{\mathrm{nt}}}{P_{\mathrm{mc}}} \tag{7,2-4}
\end{equation*}
$$

$V_{\text {mt }}^{\prime}=\frac{\alpha_{g c} P_{g c} V_{g t}+\alpha_{l c} P_{l c} V_{\ell t}}{\alpha_{g c} P_{g c}+\alpha_{t c} P_{l c}}$
$V_{\mathrm{mt}}=\frac{V_{\mathrm{mt}}}{\text { RHOCK }}$
$V_{m c}=\frac{4 V_{m u} A}{A_{u}+2\left(A_{1} A_{t}\right)^{1 / 2}+A_{t}}$

$$
\begin{equation*}
V_{\text {tiu }}=\frac{\alpha_{g u} \rho_{g \mathrm{~g}} V_{\mathrm{gu}}+\alpha_{\mathrm{lu}} \rho_{\ell u} V_{\ell u}}{\alpha_{g u} \rho_{g u}+\alpha_{\ell u} \rho_{\ell u}} \tag{7.2-8}
\end{equation*}
$$

The cell edge velocities and cell-centered densities and void functions are quantities calculated at the previous computational time step that are passed to the CHOKE subroutine, where the expressions (7.2-3) through (7.2-8) are calculated and substituted into Equation $(7.2-2)$. The density ratio $P_{\text {oub }} / P_{\operatorname{moc}}$ is calculated at the previous time step, with pmeing estimated using CHOKE. The expression for the throat mixture velocity $V_{\text {ot }}$ is a logical consequence of the code fintte differencing scheme. The approximation for Y is done by equating the mass fluxes with cell and throat-donored densities so that
$\rho_{m c} V_{m c}=\rho_{m t} V_{m t}$. The mixture velocity $V_{m t}$ is the effective , elocity weighted with the cell-centered mixture density, whereas $V_{m t}$ is weighted with the throat mixture density. If compressibility effects are important, the approximation for $V_{m t}$ will give more accurate results in calculating the throat pressure P_{t}.

The expression used to approximate the cell-centered mixture velocity $V_{m a}$ is based on the assumption (Figure $7.2-2$) that the break geometry upstream of the choke plane approximates a conical pathway. By assuming constant
volumetric flow, we have the following relationship between the cell-centered and upstream mixture velocities:

$$
\begin{equation*}
A_{c} V_{\mathrm{mac}}=A_{u} V_{\mathrm{nu}} \tag{array}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{c}=\frac{A_{t}+2\left(A_{1} A_{t}\right)^{1 / 2}+A_{t}}{4} \tag{7.2-10}
\end{equation*}
$$

which gives us Equation (7.2-7). The value of A_{c} is the result of calculating the cross-sectional area of a frustrum at the half-cell length (crosssectional area at P_{c} in Figure $7,2: 21$

Once P, has been calculated at the choke plane, the phasic temperatures at this location are calculated using assumptions dependent on the break upstream void fraction condttions and whether noncondensables are present. Once the phasic temperatures and throat pressure have been calculated at the break plane, thes properties are passed to the subroutine THERMO, which calculates the remaining thermodynamic properties needed to calculate the sontc speed. THERMO passes the parameters back to CHOKE, where $a_{u F}$ is calculated and the appropriate tests for choking using Equation (7, 2-1) can be performed.

The current TRAC-BF1/MOD1 choking model assumes that the throat void fraction is equal to the calculated void fraction of the cell imnediately upstream of the choke plane. In future versions of TRAC-BF1/MOD1, it may prove useful to investigate ways of accounting for void gradient changes between the choke plane and the upstream donor cell.

Table 7.2-4 summarizes the assumptions used in TRAC-BF1/MOD1 to calculate the key throat parameters (pressure and phasic temperatures) and the assoctated sonic models used in the code. This table also makes reference to the presence of noncondensables, which will be discussed in later sections. Additional details of the assumptions used to calculate the break plane thermodynamic conditions and corresponding sonic velocity are detailed in Sections 7,2.3 through 7,2.5.

7.2.3 Two-Phase/Two-Component Critical Flow Models

The two-component/two-phase (TCTP) HEM critical flow model used in TRAC-BFI/MOD1 was developed by Phillips et, al , ,2,3-3,7 This model is based exclusively on theoretical grounds and employs several simplffying assumptions to enable one to derive an expression for the equilibrium sonic mixture velocity. This section will deal with several variations of the TCTP mode employed in the TRAC-BF1/MOD1 code. The variations include the following:

Critical Flow

- Air/water mixture covering same void regimes as 1.
-Water/steam mixture coyers sa a void regime as !
- General TCTP model with steam/water/air mixture applied to void fraction regimes

$$
1 \leq \pi_{9} \leq .01
$$

- Air/steam mixture formulation covers void regime $\alpha_{g} \geq .999999$.

Section 7.2.3 will deal witt the first three cases. The last case is separately discussed in Se -ion 7.2.4, dealing with single-phase one and two-component gas/vapor choking models

The general expression for the local HEM sonic velocity is
$a_{n E}=\left(\frac{\partial P}{\partial \rho}\right)_{s}^{1 / 2}$
where the subscript $\$$ corresponds to constant entropy of the derivative P with respect to p. In order to derive a tractable expression for $a_{4,}$ in terms of thermodynamic quantities and dertvatives, a number of simplifytng assumptions have been made.

1. For an arbitrary steam-liquid-noncondensable mixture, each component is in temperature equilibrium.
2. Since the flow process is as umed to be isentropic in the formulation of Equation (7.2-11), nonequilibrium interfacial heat and mass transfer are not directly considered in the formulation.
3. If a noncondensable gas component is present, it is assumad that the noncondensable and vapor occupy the same volume and obey the Gibbs-Dalton law of partial pressures.
4. If a noncondensable is present, it is considered chemically inert; i.e., the noncondensable cannot dissolve in the liquid, come out of solution, or form new compounds with the water molecules.
5. If a noncondensable is present, its equation of state is assumed to obey the perfect. gas law.
6. Multt dimenstonal and turbulence effects are not considered.
7. The assumption that the liquid-steam-noncondensable is homogenous precludes formulation of stratification or other fiow-map-dependent phenomena on the sonic velocity.

CeItical Flow

The above assumptions, with some exceptions, also apply to the critical flow models documented in Sections 7.2 .4 and 7.2 .5 . With regard to assumptions 1 and 2 , TRAC- 851 MODI assumes a mixture equilibrtuni temperature at the choke plane that is calculated according to which break flok regime (Table 7.2-4) is considered, Under certain circumstances, the equilibrium assumption may break down, $, 2,1,3$ in particular, for break assemblies of very shout length, nonegutitbutum tronsport behsytor may be 4 mportant. This occurs when the liquid and vapor phase at the choke plane have not had adequate time to relax to thermal equilibrium. mowever, it was judged that, in most cases, the equilibrium assumption is reasonable except in the low liquid void regime (Tab1e $7.2: 1$ M Modtfications to assumption ? unuer these etreumstances are detatled in Section 7.2.5.

With respect to assumptions $3-5$, we have confined the class of problems to situations where noncondensable gases cannot interact chemicaliy with the ligutd steanimintare. This assumption may not produce accurate results for certain classes of problems where significant quantities of dissolved gases are hypothesjzed to come out of solution as the liquid decompresses at the choke plane. Assumption 6 may require code input adjustments $\%$ account for break flow geometry effects. The effects of bre⿻k geametry near the choke plane is discussed by a number of authors. ${ }^{7.2-9}$ through is In general, the use of a one-dimensional critical flow model approximation requires thet a discharge coefficient be employed to account for two- or three-simf: cional geometry effects, 2.2 stnce there 45 a wide range of passfble breuk flow geometries, there is no particular universal discharge coefficient that is applicable to all situations.

With regare to assumption 7, flow stratification effects may be important under certain rircumstances. The TRAC-BF1/MOD1 user is cautioned to be aware of thu situativan where stratificatio. upstream of the break plane may exist. Critical flow models with stratification, haye been itplemented in other thermal-hydraulic codes, suih as RELAP5, it may prove useful to incorporate stratiftcation modeling in future versions of the critical flow model.

Using the formulation detalled in Append:x D and E, we shall tow show how the HEM sonic speed is derived for either a steam-air or air-steam mixture. The general form of the isentropte dertivative for the rectprocal of the sonde velocity squal an^{-4} is

$a_{\text {HE }}^{-z}=\left(\frac{\partial \varphi}{\partial P}\right)_{5}$

$$
\begin{equation*}
=\alpha_{s}\left(\frac{\partial p_{\mathrm{vc}}}{\partial P}\right)_{s}+\alpha_{s}\left(\frac{\partial p_{9}}{\partial P}\right)_{s}+\alpha_{i}\left(\frac{\partial p_{i}}{\partial P}\right)_{s}-\left(P_{\mathrm{vc}}+P_{q}-P_{q}\right)\left(\frac{\partial \alpha_{g}}{\partial P}\right)_{s} \tag{7.2-12}
\end{equation*}
$$

In the liquid/noncondensable regime, $\left(\frac{\partial a_{9}}{\partial P}\right)_{s}=0$ =0 that Equation (7.2-12) reduces to

$$
a_{n E}=\left[\alpha_{v}\left(\frac{\partial P_{\mathrm{Nc}}}{\partial P}\right)_{s}+\alpha_{i}\left(\frac{\partial p_{e}}{\partial P}\right)_{s}\right]^{-1 / 2}
$$

The individual isentropic derivatives in Equation (7.2-13) are given by the general formula for a pure substance derived in Appendix 0 and is

$$
\begin{equation*}
\left(\frac{\partial P}{\partial P}\right)_{S}=\left(\frac{\partial p}{\partial P}\right)_{T} \tag{7,2-14}
\end{equation*}
$$

$$
T\left(\frac{\partial \rho}{\partial T}\right)_{p}^{2}
$$

$$
p^{2}\left[\left(\frac{\partial e}{\partial T}\right)_{p}-\frac{\rho}{\rho^{2}}\left(\frac{\partial \rho}{\partial T}\right)_{p}\right]
$$

where the state variables, such as p, are for the liquid or noncondensable In the case where we are modeling a single-phase vapor/noncondensable mixture. Equation $(7,2-14)$ becomes (a - 1$)$

$$
\begin{equation*}
\left.a_{W E}=\left(\frac{\partial p_{N C}}{\partial P}\right)_{s}+\left(\frac{\partial p_{9}}{\partial P}\right)_{5}\right) \tag{7.2-15}
\end{equation*}
$$

where the individual isentropic derivatives are again evaluated using Equation (7.2-14).

In situations where the steam/liquid phases coexist, the general expression for the homogenous sound speed can be expanded using Equation (7.2. 12). In this situation, the isentropic derivative $\left(\frac{\partial \alpha}{\partial P}\right)_{s} * 0$; and we have a significantly more complex expression. The expansion of e individual isentropic derivatives into algebryic expressions containing non-isentropic

Critical Flow

derivatives is somewhat long and is detailed in Appendix E. In the limit where the noncondensable gas density becomes 2ero, Equation (7.2-12) can be expressed as

$$
\begin{equation*}
a_{k e}=\left(\frac{\partial \rho}{\partial P}\right)_{3}^{-1 / 2}=\left(\frac{\rho}{\rho_{k} \rho_{8}} \Omega\right)^{-1 / 2} \tag{7,2-16}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega=\alpha_{9} p_{l}\left(\frac{\partial p_{p}}{\partial P}\right)_{s}+\alpha_{e} p_{9}\left(\frac{\partial p_{l}}{\partial P}\right)_{s}-\Lambda \tag{7.2-17}
\end{equation*}
$$

$\left.\Delta \quad=\frac{P_{9}-P_{f}}{S_{9}-S_{l}} \left\lvert\, \alpha_{9} p_{9}\left(\frac{\partial S_{g}}{\partial P}\right)_{s}+\alpha_{e} P_{e}\left(\frac{\partial S_{l}}{\partial P}\right)_{s}\right.\right)$
frion to calculating the value of the sonte velocity, the throat thermodynamic conditions must be evaluated. The general outline for calculating the throat pressure was given in Section 7.2.2, using Equation (7.2-2). We shall now give further details as to how the throat temperature and partlal pressures are calculated. The methodology used depends on the particular break flow regime. We shall now consider cases 1-3; Case 4 will be documented seyarately in Section 7.2.4. Table 7.2-4 sumsarizes how the throat conditions are calculated for cases 1-4.

Relative to the steam-water case, $P_{\text {, }}$ is calculated with Equation (7.2-2). The throat temperature of the liquid is assumed to be the upstream cellcentered liquid temperature. The noncondensable gas throat temperature is set equal to the llquid temperature. in the situation where there is a steam-1iquid mixture at the cell center upstream of the break plane, Equation (7.2-2) is again used; and the steam-1iquid mixture is assumed to be in equilibrium with the throat steam and liquid temperatures set equal to the saturation temperature at the throat pressure, P_{t}.

For the steam-1iquid-noncondensable situation, the total throat pressure P_{t} is again calculated with Equation (7.2-2). However, the effect due to partłal pressure compltcates matters for estimating the throat temperature. The steam-1iquid-noncondensable temperature is calculated using, a. Taylor series approximation to account for the steam partial pressure. ${ }^{7.2 \cdot 3}$ Given the cell-centered pressure PC, which is the sum of the vapor and noncondensable partial pressures, the steanl partial pressure P at the throat is expanded as

$$
\begin{equation*}
P_{g t}\left(P_{c}+\Delta P\right)=P_{g}\left(P_{\mathrm{c}}\right)+\Delta P\left(\frac{\partial P_{g}}{\partial P}\right)_{q=P_{f}} \tag{7,2-19}
\end{equation*}
$$

where from Daiton's law, the cell-centered pressure upstream of the throat is

$$
\begin{equation*}
p=p_{i n}+p_{0} \tag{7.2-20}
\end{equation*}
$$

and the pressure increment to the throat is

$$
\begin{equation*}
\Delta=P_{\mathrm{t}}=P_{\mathrm{L}} \tag{7,2-21}
\end{equation*}
$$

In the above expansion, we have calculated the steam throat partial pressure with a Taylor series expansion, where P_{g} is the dependent variable and P_{5} is the independent variable. The derivative $\left(\frac{\partial P}{\partial P}\right)$ is expressed as

$$
\begin{equation*}
\left(\frac{\partial P_{g}}{\partial P}\right)=\left(\frac{\partial T}{\partial P}\right)_{s}\left(\frac{d P_{g}}{d T}\right)_{t=P_{k} P_{G}} \tag{7.2-22}
\end{equation*}
$$

The isentropic part of the derivative $\left(\frac{\partial T}{\partial P}\right)_{s}$ is a fairly complex
expression. Its expanston into its basic components is detalled a
Appendix t. The equlttortini throat steailalquid-noncondensat e temperature is then

$$
\begin{equation*}
T_{\text {eq }}=\text { DSAT }\left(P_{\mathrm{gy}}\right) \tag{7.233}
\end{equation*}
$$

where PSAT is the saturation temperature function at the pressure $P_{\text {gT }}$.

7.2.4 Single-Phase One- or Two-Component Vapor Choking Models

The seven principal simplifying assumptions employed in Section 7.2.3 to calculate $\mathrm{a}_{\text {He }}$ are also employed in the single-phase, one/two-component vapor chok 4 th fortidat 1 on. This choting model presently eimploys two methads for calculating the sonic speed. The first approximation models the steam as a "perfect gas" (in the sense that there is no potential for vapor condensation). This is a valid approximation when the throat temperature of the statm is well^{11} ahove saturbtion candittons so that the isentroptc

Critical Flow

derivative $\left(\frac{\partial \alpha_{p}}{\partial p}\right)_{s}=0$. The second approximation employs the generalized $H E$ fortor ation from Section 7.2.3. In this formulation, the isentropic derivative $\left(\frac{d \alpha}{d P}\right)_{s}$ is not equal to zero. This formulation fully accounts for vapor equation of state deviations "rom the "perfect gas" approximation when the calculated throat temperature is near safuration conditions.

In the first approximation, the steam and noncondensable mixture are assumed to approximate a perfect gas with zero friction losses between the cell center and downstream chake plane. Under these conditions, the cell. tentered total prossure, temperature, and denssty are approxtmated ifthin the adiabatic choked flow perfect gas formulation. The throat, pressure, temperature, and density become.

$$
\begin{align*}
& P_{1}=P_{c}^{*}\left(1+\frac{y-1}{2}\right)^{-\left(\frac{Y}{y-1}\right)} \tag{7.2-24}\\
& P_{c}^{c}=P_{c}+\frac{P_{c} V_{c}^{2}}{2} \tag{7.2-25}\\
& T_{1}=T_{c}\left(1+\frac{y-1}{2}\right)^{+1} \tag{7,2-26}\\
& P_{1}=P_{c}\left(1+\frac{y-1}{2}\right)^{-\left(\frac{y}{\gamma-1}\right)} \tag{7.2-27}
\end{align*}
$$

where th specific heat ratio is density-averaged
and

$$
\begin{equation*}
X_{\mathrm{NC}}=\frac{\rho_{\mathrm{Nc}}}{\rho_{\mathrm{t}}} \tag{7.2,29}
\end{equation*}
$$

Assuming constant noncondensable mass fraction, X_{NC}, gives a noncondensable throat density

$$
\begin{equation*}
A_{\mathrm{NC}}^{\mathrm{t}}, X_{\mathrm{NC}} P_{\mathrm{t}} \tag{7.2-30}
\end{equation*}
$$

The throat partial pressure of the steam becomes

$$
\begin{equation*}
P_{0} \quad P_{t}-a_{1} R T \tag{7,2-31}
\end{equation*}
$$

The conditions at the throat are thus completely specified.
The above throat pressure and temperature condltlons are then used by THERMO to calculate the remaining thermodynamic parameters and derivatives to evaleate the equations for the isentropic sound speed, In the limit $\alpha_{y}=1$, Equation (7.2-12) reduces to

$$
\begin{equation*}
a_{W E}+\left[\left(\frac{\partial p_{N c}}{\partial P}\right)_{s}+\left(\frac{\partial P_{5}}{\partial P}\right)_{s}\right]^{-1 / 2} \tag{7.2-32}
\end{equation*}
$$

where the individual isentropic derivatives are evaiuated at $T_{t}=T_{N C}=T_{6}$.
In the second formulation of the sonic speed, the vapor and noncondensable temperature are set equal to TSAT $\left(\mathrm{P}_{\mathrm{p}} \mathrm{T}\right)$, or the saturation temperature at the partial steam pressure. Since the vapor state is now on the saturation curve, the isentropic derivative $\left(\frac{d a_{9}}{d F}\right)_{5}$ is not equal to zern even though $a_{2}=0$. From Appendix $E_{\text {, }}$, the generalized HEM sonic velocity in the 14 int $\mathrm{a}_{\mathrm{g}} \mathrm{l}$ reduces to

$$
\begin{align*}
& a_{\text {NE }}^{-t}=\frac{P}{P_{e} P_{g}}\left\{P_{g}\left(\frac{\partial P_{N C}}{\partial P}\right)_{s}+\left(\rho_{e}-P_{\mathrm{NC}}\right)\left(\frac{\partial \rho_{p}}{\partial P^{\prime}}\right)_{s}\right. \\
& \left.\frac{P_{\mathrm{Nc}}+P_{g}-P_{2}}{S_{g}-S_{t}}\left[P_{\mathrm{Nc}}\left(\frac{\partial S_{\mathrm{Nc}}}{\partial P}\right)_{s}+P_{g}\left(\frac{\partial S_{g}}{\partial P}\right)_{s}\right]\right\} \tag{7-2-33}
\end{align*}
$$

The current version of TRAC-BF1/MCDI calculates the sonic speed using both Equations (7.2-32) and (7.2-33) and uses the maximum value in the criteride for chaking

Critical Flow

7.2.5 Single-Phase Liquid Critical Flow Models

This secuion documents the single-phase liquid critical flow model used in TRAC-BF $1 / \mathrm{MOD1}$. The terminology single-phase liquid is used in the sense that the yapor andfor nomeondencable yoid fraction ie either small or nonexistent. The single-phase liquid critical flow model presently employs two approximations for calculating the sonic velocity. The first method employs the ALJ sonic correlation, while the second method employs a modified HEM approximation. After the sonic speed for each scheme is calculated, the maximum value is used in the choking criterion formulation. The single-phase liquid model is activated when the cell vapor void fraction imnediately upstream of the break plane satisfies the criteria $a_{2} \leq, 01$.

The seven principal assumptions employed to calculate the choke plane $\mathrm{a}_{\text {ut }}$ in Sections 7.2 .3 and 7.2 .4 are modified for the single-phase liquid criticalt flow model. These modifirations are:

1. Vapor or noncontensables immediately upstream of the break plane are ajsumed to be insignificant and are not donored to the cell choke plane.
2. The ALJ mode! formulation quantifies turbulent fluctuations and nonequilibrium nucleation phenomena at the choke plane.

When high-pressure, high-tamperature water is suddenly decompressed, it transitions from a subcooled or saturated state to a superheated state. As a consequence, the throat pressure of the flashing liquid can be much lower than the choke plane saturation presscise. Such enhanced depressurization can be driven by turbulent fluctuations or by bubble nucleation effects as the liquid exits the choke plane. The pressure undershoot $\Delta P\left(a_{s}\right)$ at the throat is
related to the sonic speed a_{8} via the correlation

$$
\begin{equation*}
P_{\text {sst }}\left(T_{e}\right)=P_{5}=\Delta P\left(a_{5}\right) \tag{7.2-34}
\end{equation*}
$$

$$
\begin{equation*}
S P\left(a_{s}\right)=\left(C A+C B a_{s}^{2,4}\right)^{1 / 2}=C C a_{8}^{2} \tag{7.2-35}
\end{equation*}
$$

where

$$
\begin{equation*}
C A=\frac{0.258 \sigma^{3 / 2}\left(\frac{T_{1}}{T_{\text {erit }}}\right)^{13.76}}{} \tag{7,2-36}
\end{equation*}
$$

$$
\begin{aligned}
& C B=\left[\frac{(13.25)(9.866 E-12) p_{t}\left(\frac{d A}{d x}\right)_{t}}{A_{t}}\right]^{0.8} \\
& O C=0.072 \mathrm{Pe}\left(\frac{A_{t}}{A_{u}}\right)^{2} \\
& \text { a }=\text { surface tension } \\
& \text { * * Boltzmann constant } \\
& \left(\frac{d A}{d x}\right)_{t}=\text { rate of area change } \\
& \text { Terit }=\text { critical fluid temperature } \\
& P_{\text {sat }}\left(T_{l}\right)=\text { saturation pressure at the 1iquid temperature in the cell } \\
& \text { adjacent to the choking plane. }
\end{aligned}
$$

The first term in Equation (7.2-33) represents the depressurization driven by nucleation effects formulated by Alamgir and Lienhard. ${ }^{7.2-18}$ The second term represents effects of deprescurization driven by turbulent driven flashing and was developed by Jones. $, 2 \cdot 19,20$ In the formulation implemented in TRAC-BFI/M001, code turbulence driven by acceleration effects (break geometry area gradients) is assumed to be much larger than wall friction effects. As a consequence, wall friction is ignored in the implementation of the AJL correlation in TRAC-BF1/MOD1. The 072 coefficient is a best estimate of the turbulent intensity index in Equation (7.2-35). This numher is recommended uniess there is a clear and substantially different value known a priori for a particular break geometry.

For closure, the second equation used to equate the throat pressure with sonic speed is the Bernoulli equation (see Section 7.2.2).

$$
\begin{equation*}
P_{c}+\frac{p_{m} v_{m c}^{2}}{2}=P_{1}+\frac{p_{m} a_{s}^{2}}{2} \tag{7.2-39}
\end{equation*}
$$

Equations (7.2-35) and (7.2-39) are solved in the TRAC-BF1/MOD1 solution scheme by eliminatisg P_{T} and finding a_{s} from the transcendental equation

Critical Flow

$$
\begin{equation*}
a_{s}=\sqrt{\frac{2}{P_{l}}\left[D P P+\Delta P\left(a_{s}\right)\right]+v_{m e}^{2}}=0 \tag{7.2-40}
\end{equation*}
$$

where

$$
\begin{equation*}
\text { nop } \quad \operatorname{Max}\left[0, P C-P_{\text {sat }}\left(T_{t}\right)\right] \tag{7,2-41}
\end{equation*}
$$

Equation (7.2-40) is solved iteratively using a standard Newton-Raphson technique.

The sonic speed is calculated using a second approximation with Equation $(7.2-14)$. Here, the throat temperature is set equal to T and the pressure is set equal to $P_{\text {sat }}\left(T_{2}\right)$, where $\mathrm{I}_{\text {, }}$ is the cell-centered liquid temperature upstream of the throat. In the second approximatlon, it is assumed that the liquid has decompressed to a saturated state at the break plane. The final sonic velocity becomes $\operatorname{Max}\left[\mathrm{a}_{\mathrm{s}}, \mathrm{a}_{\text {mf }}\right]$, where $\mathrm{a}_{\text {w }}$ is the liquid single phase homogenous sound speed from Equation (7.2-14),

In the course of doing simulations with early versions of the TRAC-B choking model, numerical oscillations in the break mass flow rate were observed when the throat conditions were neal the subcooled sonic regime, ${ }^{7.2-4}$ If the condtttons unstream of the break platie transition from subcocled to saturated conditions, large reductions in the throat sonic velocity will occur. To prevent large discontinuous changes in the sonic velocity, a cubic spline interpolation scheme has been employed in the transition region . $01 \leq$ $a_{0} \leq 1$. In thits a range, both the TCTP homogeneous equilfbrifum and singlephase liquid models are separately used to calculate the break plane sonic speed. The cubic spline interpolation yields the transition sonic speed

$$
\begin{equation*}
a_{t}=W a_{n t}+(1-W) a \tag{7.2-42}
\end{equation*}
$$

where

$$
W=3 \alpha_{1}^{2}-2 \alpha_{1}^{3}
$$

$\alpha_{1}=\frac{\alpha_{\mathrm{d}}-.01}{.1-.01}$

7.2.6 Choking Criteria and Phasic Velocity Formulation Implc... ation Into TRAC-BF1/MODI

Once a particular regime has been picked and the corresponding sonic speed calculated, Equation (7.2-1) is emplnyed to test for choking conditions. Because of the hatf cell donortang scheme, Equation (7.2-1) is implemented into TRAC-BF1/MOD1 with the following modifications.

The sonic speed calculated from cell edge throat properties is first multiplied by the throat mixcure density ratio so that

$$
\begin{equation*}
a_{s}^{\prime}=a_{s}\left(\frac{P_{m t}}{P_{\mathrm{mC}}}\right) \tag{7,2-45}
\end{equation*}
$$

This modification was used to partially account for the difference in throat mass flux used in the cell continuity equation (due to cell-centered donoring) and the velocity that wound exit if the throat density were used instead. If the choking criteria are satisfied, the new-time throat mixture velocity is set equal to tie sonic velocity and then calculated using a relaxation scheme

$$
\begin{equation*}
a^{n+1}=a^{n}, \text { REtAX }\left(a^{n n}=a^{n+1}\right) \tag{7.2-46}
\end{equation*}
$$

where n and $n+1$ refer to old and new times respectively. A RELAX $=.9$ is used except in the interpolation region, where RELAX $=1$. The relaxation algorithm is used to ensume numerical stability. Caleulating the thmoat sonic velocity is not sufficient to advance the momentum solution for the nexi time step.

STnce there are two unknowns, the throat edge velocities, a second governing equation must be used to solve for two unknowns. The present solution scheme (except for single-phase vapor choking) uses the following two equations:

$$
\begin{align*}
& \partial_{\mathrm{s}}^{\prime}=\frac{\alpha_{g} \rho_{\ell} v_{g}+\alpha_{\ell} \rho_{\mathrm{g}} v_{\ell}}{\alpha_{g} \rho_{\ell}+\alpha_{\ell} \rho_{g}} \tag{7.2-47}\\
& C_{g} v_{g}+C_{\ell} v_{\ell}=R H S
\end{align*}
$$

where

$$
\begin{array}{ll}
a_{\mathrm{s}} & =\text { calculated sonic speed } \\
V_{e}, V_{g} & =\text { choke plane cell edge liquid and vapor velocities }
\end{array}
$$

Critical Flow
C_{1}, C_{g}, RHS * TRAC-BF1/MOLH momentum equation solution constants calculated from Ifit

For single phase one or two component vapor choking,

In general, the above furmulation allows for slip between the phases at the choke plane. In order to advance the TRAC-BF1/MOD1 momentum solution
 calculated. The derivatives are calculated by perturbing the previously calculated throat pressure by 1% in the subreutine CHOKE. The sonic speed and junction velocities are then recalculated. The phasic velocity derivatives ate then raleulated at follows

where ΔP, is the 1% throat pressure variation. It should be noted that the phasic velocitles calculated by CHOKE (if choking criteria are satisfied) that

The current methodology for calculating the choke plane phasic velocities has generally yielded adequate results for comparisons calculated versus expertmet tal data relative to falculated most flow rates and system depressurizat on responses

7.2.7 Conclusions

The fiwe whace er itical flow model detalled in Section 7.1 contains a number of stmplifying assumptions that require the code user to understand where the break flow model is applicable. In particular, break flow geometry must be considered as a factor in simulating a particular scenario. If the modeled break configuration is suspected to be strongly effected by multi-dimensional hydrodynamic phenomena (TRAC.BF1/MODI choking model is inherently one-dimensional), the code user must determine if the input used for the one-dimensional modeling approximation tieeds modifications. In a number of circumstances, the use of a discharge coefficient in the break modeling is sufficient to approximate geometrice effects

The TRAC BF 1/MODI sonic speed formulation (with the exception of the ALJ correlation, which considers turbulence and nucleation) assumes that inhomogeneous or rionequilibrium processes are not significant. As a

Consequence, the sonic speed at the choke plane is derived with the assumption that the liquid and vapor phases have relaxed to thermodynamic equilibrium. The dagree of break plane nonhomageneity as dependent on the flow map, white the degree of nonequilibrium is determined by interfacial transport processes and the time needed to relax to equilibrium. Further studies of these nonequilibrium-inhomogeneous effects on the local choke plane sonic speed may prove fruttful

Assessment work using the TRAC-BF1/MOD1 critical flow model has generally yielded adequate results with regard to calculated versus measured data and associated system depressurization responses. Becallse there is still a fairly scarce experimental data base using noncondensables, the validity of the TRAC.BF1/MOD1 formulation with noncondensables is yet to be extensively tested.

7.2.8 References

7.2.1. S, T. Free, Equilibrium Critical Flow Model Development, WR-CD-024, June 1980.
7.2-2. 3. W. Spore, Improvements in the TRAC-RD1 Choking Mode1, WR-CD-81053, July 1981.
7.2-3. R, E. Philltips, Two-Phase Two-Component Choking Madel, EGG-CDD-5977. August 1982
7.2-4. D. D. Taylor, Improvement's to Subcooled Choking Miodel, IS-SAAM-80025. August 1983.
7.2-5. V. H. Ransom and J. A. Trapp, RELAP5 Progress Summary Analytical Choking Criterion for Two-Phase Flow, CDAP-TR-013, 1978.
7.2-6. Y H. Dansom and a A. Trapp, HThe RELAP5 Choked FYow Model and Application to a Large suale Flow Test, "Proceedings of the ANS/ASME/NRC International Topical Neeting on Nuclear Reactor Thermal-Hydraulics, Saratoga Springs, NY, October 508, 1980, pp. 799. 819.
7.2-7. V, H. Ransom et al., RELAP5/MOD2 Code Nanual, Volume 1, NUREG/CR4312, EGG-2396, Augue' 1985.
7.2-8, 3, A. Trapp and V. H. Ransem, "A Choked-Flow Calculation Criterion for Nonhomogenecus, Nonequilibrium Two-Phase Flows," International Journal of Multiphase Flow, 8, 6, 1982, pp. 669-681.
7.2-9. Y. 1. Hsu et al., Transport Processes in Boiling and Two Phase Systems, American Nuclear Society, La Grange Park, IL, 1986.

Flow, " Nuclear Science and Engi.eering, 68, 1978.
7.2-11. C. L. Sozzt and U. A. E.themland, enitical flow of Saturated and Subcooled Water at High Pressure, NEDO-13418, 1975
7.2-12. R. E. Henry et al., "The Two-Phase Cricical Flow of One Component Mixtures in Nozzles, Orifices, and Short Tubes," Journal of Heat Transfer, May 1981
7.2-13. R. E. Henry, "The Two-Phase Critical Discharge of Initially Saturated Subcouled Liquid, "Nuclear Science Engineering, 41, 3, 1970. pp. 336. 343.
7.2-14. H. K. Fauske, "The Discharge of Saturated Water Through Tubes,"
Chomical Engineering Progress Series, 61, 59, 1965, pp. 210-216.
7.2-15. D. K. Edmonds and R. V. Smith, "Comparison of Mass Limiting Two-Phase Flow in a Straight Tube and in a Nozzle, "Symposium on Two-Phase flow, 1, University of Exetor, England, 1956, pp. G401-G414.
7.2-16. R. E. Henry, A Study of One- and Two-Component, Two-Phase Critical flows at Low Qualities, ANL-7430, March 1968.
7.2-17. A. H. Shapiro, The Dynamies and Thermodynamies of Compressible Flow, 1. New York: Ranald Press, 1953.
7.2-18. M. D. Alamgtr and J. H. Lienhard, "Correlation of Pressure Undershoot During Hot Water Depressurization, "ASME Journal of Heat Tranafer, 103, 1981. pp. 52-73.
7.2-19. N. Abuaf, 0. C. Jones, Jy. . and B. J. C. Wu, Critical Flashing flow in Nozzles with subcooled Inlet Conditions, BNL-NUREG-27512, 1980.
7.2-20. O. C. Jones, Jr. "Flashing Incention in Flowing Liquids," ASMF Journal of Heat Transfor, 102, 1980, Pp. 439-444.
7.2-21. B. L. Charboneau, Overview of TRAC-BD1/NOD1 Assessment Studies, NUREG/CR-4428, EGG-2422, November 1985.

7.3 Countercurrent Flow Limitation

Countercurrent flows of vapor and liquid, that may occur at some hydraulic restrictions, can lead to flooding situations, known as countercurrent flow 1 imitation (CCFL), in which the rising vapor retards downflow of liquid. This phenomenon is important in the penetration and distribution of the emergency core cooling (ECC) water in BWRs.
Countercurrent flow limitation may affect the liquid penetration through the upper core tte plate, and tt may also affect outpourtng of liquid from the fuel bundles through the side entry orifices at the bottom of the bundles. However, CCFL may occur at any hydraulic restriction in the vertical flow patns of a system, depending on the geometry of the restriction, vapor veloc4ty, and the properttes of water and steam at that polnt.

The CCFL formulation used in TRAC-BFL/MQD1 is a part of the inter-facial shear model according to Andersen et al. $7.3 \cdot 1,8$ The present section gives the derivation of the CCFL model, equations that are used in the FRCIF subroutine, and a review of the CCFLCK subroutine, where the user-specified applications of the CCFL model are performed. Equations that are used in the coding of the CCFLCK subroutine are narked with an asterisk, followed by the symbolic variable name used for the left-hand side of that equation in the coding.

7.3.1 The CCFL Model

Experimental investigations have shown that CCFL depends on, properties of the two phases and on the geomstry of the hydraulic restriction. The 1 imiting liguid flow rates may be correlated to the rising vapor flow rates either by a Wallis-type correlation ${ }^{-3 \cdot 3}$ or through a Kutateladze correlation, as suggested by sun, with the following general expression

$$
\begin{equation*}
\sqrt{K_{a}}+m \sqrt{K_{t}}=\sqrt{\bar{K}} \tag{7,3-1}
\end{equation*}
$$

in which

$$
\begin{align*}
& K_{9}=\frac{j_{9}}{j_{90}}=\alpha \overline{V_{g}} \frac{\sqrt{P_{g}}}{(a \Delta g g)^{0.25}} \\
& K_{l}=\frac{j_{\ell}}{j_{20}}=(1-\alpha) V \frac{\sqrt{P_{l}}}{(\alpha \Delta \mathrm{pg})^{0.25}} \tag{7.3-3}
\end{align*}
$$

Countercurrent flow Limitation

where m is a constant and K, which is known as Kutateladze number, depends on geomnty and flow properties (see Nomenclature for the other symbois). J_{5} and $\sqrt{2}$ are the vartable grouns that ard found useful in making the volumetric fluxes j_{0} and j_{e} nondimensional in Equation (7.3-1)

TRAC-BF1/MO01 employs Equat ion (7.3-1) in two different contexts: (a) as a regular part of the interfacia) shear model (described in Section 6.1) with a butt an sot of comstants, ill and k, and (b) as a bpertal option c.oked by the user at any flagged hydraulic junction, with the weer-specified constants, tif and K. In the following, the general approach is discussed first and the speciai applications are mentioned later.

7.3.2 Distribution Parameter for CCFL

In order to eniplay the CCFL model in regular momentum solutions according to the interfacial friction model, one has to define the distribution parametor, f, ind the entanfoctat frictumi coeffictent for that match the CCfl situation. Referring to the variabies j_{0} and j_{6} of the drift flux model (see Section 6.1), one may construct a graph of the countercurrent flows in the coordinate system of these variables, as shown in Figure 7.3. i. It may be observed that tho लCRL suturtaths ate encount ated onty in the quadrant of j, s 0.0 and $j_{3}>0.0$. This explains the necessity of the negative sign of K_{e} in Equation (7.3-1).

Accordting to Reference $7.3-2$, a combination of CCFL and drift flux principles requires that the drift flux equation be a tangent to the CCFL. curve in the $J_{a}-J_{t}$ plane. The drift flax equation is given by

$$
\begin{equation*}
j_{0}=\frac{\alpha C_{0}}{1-x_{0}} j_{l}+\frac{\pi}{1-w_{0}} \bar{v}_{0} \tag{7,3-4}
\end{equation*}
$$

(Derivation of this equation is shown in Appendix F.) The necessity of this requirement is obvious from the fact that the relationship between j_{9} and j_{e} minst satisfy beth Fountions (7. 3 il and 47.3 4) and that the A Anear felat fon may not be applied to any point inside the CCFL curve. Hence, both intercepts of Equations (7.3-1) and (7.3-4) must cofncide at one point on the curve, regardless of the actual values of j_{9} and j_{2}. The necessary mathematical condtion ts ohtatned by setting the $\$$ (the. $t^{2}=$ tac term) in the solution of the intercept equation equal to zero. This gives the following relation between $V_{8 i}$ and C_{0} for the CCFL situations:

M5TR-WHT 48 - 16

Figure 7.3-1. Drift flux correlation and CCFL.

$$
\frac{\bar{v}_{g i}}{j_{t 0}}=\frac{K C_{0}\left(1-\alpha C_{0}\right)}{\frac{j_{e} 0}{j_{g 0}} \alpha C_{0}+m^{2}\left(1-\alpha C_{0}\right)}
$$

This equation is soived for C_{0} in teras of $\bar{V}_{9)}$ in CCFL situations. Solution of this equation provides

$$
\begin{equation*}
\left(\hat{i}_{0}\right)_{\text {cct }}=A_{0} \pm \sqrt{A_{0}^{2}}-\frac{r m^{2}}{\alpha} \tag{7.3-6}
\end{equation*}
$$

in which

$$
\begin{equation*}
A_{0}=0.5\left\{\frac{1}{\alpha}+F\left\{m^{2}-\sqrt{\frac{P_{8}}{\rho_{\ell}}}\right)\right\} \tag{7,3-7}
\end{equation*}
$$

and

$$
\begin{equation*}
F=\frac{\bar{V}_{91}}{K j_{60}} \tag{7.3-8}
\end{equation*}
$$

The term $\left(\frac{\rho_{8}}{\rho_{0}}\right)^{0.5}$ in Equation $(7.3-7)$ is tre ratio of $\frac{j_{t_{0}}}{j_{90}}$.
In orden to avoid imaginary solutions of Equation (7.3-6), the value of F is limited to an $F_{\max }$ which reduces the square roet in Equation (7.3-6) to zero. By setting $A^{2}, \frac{\mathrm{Fm}^{2}}{a}$ a atid dotng some algebrate mantputations, one obtains

$$
\begin{equation*}
F=F_{\max }=\frac{\gamma}{\alpha\left(1+\sqrt{m^{2} y}\right)^{2}} \tag{7,3-9}
\end{equation*}
$$

As may he seen, in qeneral, Equation (7.3-6) prjvides two solutions, depending on the sign to be used for the square root. However, instead of randomly choosing one of the two possible solutions, an interpolation routine is used that takes some fraction of each solution, depending on the local void fraction. The interpolation variable is based on x^{2}, which was defined by Equation (6.1-51) in Section 6.1

$$
x^{2}=\frac{\alpha x_{\text {trat }}}{0.25}
$$

The irterpolated solution is

$$
\begin{equation*}
\left.{ }^{(} C_{0}\right)_{t c+1}=A_{0}+\left(2 x^{2}-1\right) \sqrt{A_{0}^{2}=\frac{F m^{2}}{\alpha}} \tag{7,3,11}
\end{equation*}
$$

For low void fractions, $a<a_{\text {ran }} x^{2}$ is zero; hence, the negative root will be used. As a increases (with increasing j_{g}), $\left(C_{q}\right)$ ecfi will include more and more of the positive root, and for a $\left(a_{\text {tran }}+0.25\right)$, where x^{2} is 1 , the positive root will apply completely.

As stated earlier, the CCFL constants m and K are dependent on geometry and flow properties. TRAC-BF $1 /$ MOD1 employs two sets of default values of m and k, one set for the upper tte-plate and another set for the stde entry orifice. These sets, which are recommended for BWR geometry according to Reference 7.3-9, are;

For the upper tie-plate: m $=1.0$ and $k=4.2$
For the side entry orifice: $\mathrm{m}=0.59$, and

$$
\begin{equation*}
K=\left[A=B P_{*}^{*}\right]^{2} \tag{7.3-12}
\end{equation*}
$$

where $A=2.14, B=0.008$, and

The data base for extracting these constants and relations is summarized in the next section.

In CCFL situations, the C, factor, according to Equation (6.1-30) of Section 6.1, is calculated with the follow'ng formula:

$$
\begin{equation*}
\left(C_{1}\right)_{\text {ecf }}=\frac{1-a\left(C_{0}\right)_{\text {cct }}}{1-\alpha} \tag{7.3-14}
\end{equation*}
$$

Equations (7.3-7), (7.3-8), (7.3-9), (7.3-11), and (7.3-14) are implemented as a part of the interfacial shear model in the FRCIF subroutine (see Section 6.11

7.3.3 Data Base for the CCFL Model

The suggested correlations for countercurrent flow, or flooding, which appear in the technical literature ${ }^{7,3-3,4,5}$ are bac-d on data from a variety of geametries and flow conditions. It is mot withln the scope of this report to enumerate the bastc dat a that have led to the development of generic flooding correlatjons by Wall is $7,3-3$ or its modified version based on Kutateladze numbers. ${ }^{-3-6}$ However, sone test data from BWR-specific geometries have been used to obtain the above mentioned empirical relation and constants for the Kutateladze type flooding correlations in those geometries. The sources of these data and the range of their variables are given in Table 7.3-1. A co:lected reference to the BWR related data, their anaiysis, and the resulting empirical constants is given by Sun in Reference 7,3-4.

Countercurrent Flow Limitation

Table 7.3-1. EWR fuel bundle flooding data base.

Test Geometry

Upper tie olate $\mathrm{e}^{0} 7 \times$? bundle, simulated actual BWR tie plate flow area

Upper tie plate ${ }^{0} 8 \times 8$ bundle, simulated actua TWR tie plate flow area

Upper tie plate 8×8 bundle, 92% of the flow area of ah actual ह \& है BWR tie plate.

Bundle bottom, ${ }^{\text {b }}$ three side-entry orifices witl $0-31.9 .37 .6$, and 61.7 mm .

Range of Variables
$0.11376<p<0.14961 \mathrm{MPa}$
$374<19<385 \mathrm{~K}$
$365<370 \mathrm{~K}$
5.48
$0.0068<11.1 \mathrm{~m} / \mathrm{s} \mathrm{m} / \mathrm{s}$
$0.10066<\psi<0.13789 \mathrm{MPa}$ Jones ${ }^{7.3 \cdot 7}$
$373<T<382 \mathrm{~K}$
$350<7<370$ K
$3.25<\mathrm{J}_{2}<12.04 \mathrm{~m} / \mathrm{s}$
$0.0004<0 \mathrm{jt}<0.126 \mathrm{~m} / \mathrm{s}$
$0.101<P<0.120 \mathrm{MPa}$
$373<\mathrm{I}_{7}<378 \mathrm{~K}$
304 < Tl < 374 K
$9.74<j_{\mathrm{g}}<18.88 \mathrm{~m} / \mathrm{s} \quad$ (approximate)
$0.007<-3 \mathrm{f}<0.117 \mathrm{~m} / \mathrm{s}$
$0.0993<P<1.021 \mathrm{MPa}$
$372.5<388.1 \mathrm{~K}$
$372.5<388.1 \mathrm{~K}$
$0.1436<3<25.79 \mathrm{~m} / \mathrm{s}$
$0.00035<38<0.5097 \mathrm{~m} / \mathrm{s}$

Reference
Tobinn.3.6

Naitoh et al. ${ }^{7.3 \cdot 8}$

Jones ${ }^{7,3}$
a. Data used for extracting the constants m and K for BWR upper tie plate.
b. Data used to derive the geometry and pressure-dependent correlation for K and the constant in for the side entry orifice of BWR fuel bundles.

As may be observed in Table 7.3-1, most of the BWR relevant data are taken at near atmospheric pressure. No comparison of the const nts, m and k . has beem made with data from thyther pressures. However, stnet the eCfI correlation is based on non-dimensional variable groups, no major deviations are anticipated a: higher pressures.

7.3.4 User-Defined CCFL. Applications

Apart from the regular application of the CCFL correlation in the interfacial shear routine, TRAC-BF1/MOD1 provides a separate option for using the CCIL motel at atty spetyfted function. Thits ontion checks the flow situation at the specified junctions and calculates a liquid downflow velocity, according to Equation (7.3-1), for a given vapor velocity and the specified CCFL constants for that junction. These calculations are done in
the CCFLCK subroutine, ard the input constants are A and B in Equation (7.3.12) and m in Equation (7.3-1). A description of the CCFLCK subroutine is given below.

7.3.5 Description of the CCFLCK Subroutine

CCFLCK is a small subroutine that is Called by the TFIDE and TF3DE subroutines for each hydraulic junction. The vale fractions of the hydraulic volumes before and after the sinction (π, and π_{2}, respectively), as well as the liquid and vapor zelocities, \bar{V}_{t} and \bar{V}_{g}, at the junction are among the arguments that are passed from the calling routine to CCFLCK in each case.

The computattons within the CCFLCK subrout ine are straight forward according to Equation (7.3-1). In the beginning, the absolute value of the incoming vapor velocity and the negat ive value of the incoming iquid velocity $\left(V_{e n}=-\left|\bar{V}_{e}\right|\right)$ sre calculated for logical operations, and a check is made on the junction number to identify the proper set of the CCFL constants to be applied for that junction. Once K and n are defined, Equation (7.3-1) is used to calculate a liquid velocity, $V_{i x}$, for the given vapor velocity, \bar{V}_{g}, at the junction. Also, Equation (7.3-2) is used to calculate K_{9} for the given vapor velscity. The logte dtagram of the CCFLCK subroutine is shown in figure 9.3 . 2.

If K_{0} is larger than $K_{\text {, }}$ (vapor Kutateladze number above the cut-off value) there is no countercurrent flow; \bar{V}_{t} is set equal io $\bar{V}_{i x}$ with the sign of the original V_{g} and returned to the calling routine. However, if K_{g} is smaller than K and $\bar{v}_{\text {ix }}$ is equal or smaller than $\bar{V}_{\ell n}$, the liquid velocity, \bar{V}_{ℓ}, is returned to the calling roatine with no alteration. Finally, if $\vec{V}_{i x}$ is larger than $\vec{V}_{\ell n}$, then \bar{V}_{ℓ} is set equal to $\bar{V}_{1 x}$ with a sign that is the negative of the original liquid velocity $\left[\vec{V}_{\ell}=\bar{V}_{i x}\left(\frac{\bar{V}_{\ell}}{\left|\vec{V}_{\ell}\right|}\right)\right]$, and this \bar{V}_{ℓ} is returned to the calling subrout ine

In the final part of the CCFLCK subroutine, one calculates the derivative of $\bar{\gamma}_{i x}$ with respect to pressure difference, $\frac{D V_{i x}}{D(\Delta)}$. This is done by using

Countercurrenf Flow Limitation

Figure $7,3-2$. The logic diagram of the CCFLIK subroutine

Countercurrent Flow Limitation

the analytically derived partial derivative of $\frac{\Delta \bar{V}_{t}}{\Delta \bar{V}_{g}}$ from Equation (7.3-1) and $\frac{D V_{g}}{D(\Delta P)}$, which is brought in among the calling arguments.
$\frac{D \bar{V}_{1 k}}{D\left(\Delta^{\rho}\right)}=\frac{1}{m^{2}}\left[\frac{\sqrt{\alpha_{1} K \sqrt{P_{g}(g o \Delta p)^{0.25}}}}{\left(1-\alpha_{2}\right)\left(\bar{V}_{g} \rho_{\ell}\right)^{0.5}}-\frac{\alpha_{1} \sqrt{P_{g}}}{\left.1-\alpha_{2}\right) \sqrt{P_{\ell}}}\right] \frac{D \bar{v}_{g}}{\overline{D\left(\Delta \Delta^{0}\right)}}$

7.3.6 References

7.3-1. J. G. M. Andersen and K. H. Chu, BhR Refill Reflood Program, Task 4.7 Constitutive Correiations for Shear and Heat Transfer for the BWR Version of TRAC, NUREG/CR-2134, EPRI NP 1582, GEAP-24940, December 1981.
7.3-2. 3. G. M. Andersen, K. H. Chu, and J. C. Shaug, BWR Refill-keflood Program, Task 4.7. Model Develooment. Basic Models for the BWR Version of TRAC, NUREG/CR-2573, EPRI NP-2375, GEAP-22051, September 1983.
7.3-3. G. B. Wallis et al., Countercurrent Annuiar Flow Regimes for Steam and subcooled Water in a Vertical Tube, EPRI NP-1336, January 1980.
7.3-4. K. H. Sun, "Flooding Correlattons for BWR Bundle Tieplate and Bottom Side-Entry Orifices," Second Multi-Phase Flow and Heat Transfer Symposium Workshop, Miami Beach, FL, April 16-19, 1979.
7.3-5. G. B. Wallts, One-Dimensional, Two-Phase flow, New York: McGraw-Hill Book Company, 1969, pp. 336 J45.
7.3-6. R. Toblu, CCFL Test Results, Phase 1 - TLTA 7x7 Bundle, GEAP-21304-5, 1977, Appendix C.
7.3-7. D. D. Jones, Subcooled Counter-Currant Flow timiting Characteristics of the Upper Region of a BWR Fuel Bundle, NEOG-NUREG-23549, 1977.
7.3-8. M. Naitoh, K. Chino, and R, Kawabe, "Restrictive Effect of Ascending Steam on Falling Water During Top Spray Emergency Core Cooling," Journd of Nuclear Science and Technology, 15, 11, 1978, p. 805.
7.3-9. D. D. Jones, Test Report TLTA Components CCFL Tests, NEDG-NUREG23732, 1377.

8. SPECIAL COMPONENT MODELS

Abstract

Some of the one-dimensional components in IRAC-BF1/MODI perform functions thit alter the way in which one-dimensional fluid equations are normally solved Thete functlots dre more than stinp y attaning the normal closure relations that have been discussed in Chapters 4 and 6 ; these components either alter the normal finite differencing of the fluid equations, intraduce source terms to the equations, or use complex logic to alter the closure melntions to gucamplish a spettftc model ting requtrement. The pump component produces a momentum source tenm in the form of an additional Δp on the right hand sids of the momentum equation to model the pressure rise across the pump impeller. The stean/water separator-dryer component (SEPD) permits the user to model the satrl separators and chevron dryers in a BWR reactor. The VALVE component provides a variable flow area to model the action of various types of valves. The HEATR component models the shell side of both vertical and horizontal feedwater heaters as well as the shell side of condensers. tfeludtng the phase separation due to drain cooler regions or hot wells. The JETP component models the jet pumps found in BWR systems by use of the TEE component momentum source in the TEE joining cell and jet pump specific singular loss coeffictents. The TURB component models the energy extraction (and assoctated pressure and enthalpy drops) across the blade cascade of turbines, as well as the phase separation in moisture separators and steam extraction for feecrater heating. The CONTAN component models the BWR containment, ustng a separate mumped parameter formulation that provides boundary condittons to the remalnder of the BWR reactor system. The FILL and BREAK components provide boundary conditions to the normal one-dimensional components by allowing the user to specify either flows (FILL) or pressures (BRFAK) at the houndary, together with the flutd state if an inflow condition exists. Most of these component models have been described in Volume 1 of the TRAC-BF1/MODI Manual, and the following sections are reproductions of the model descriptions from the Manual, with some additinns and modifications.

8.1 PUMP COMPONENT

The PUMP model was developed at LANL and was incladed in the code from which TRAC. BWR was developed. The PUMP compenent describes the interaction of the systan flufd whth dintlfugal pump: The model calculates the pressure differential across the pump and its angular velocity as a function of the fluid flow rate and the fluid properties. The model can treat any centrifugal pump and allows for the inclusion of two-phase effects

[^2]
Pump Component

noding such that the cell number increases in the normal flow direction. This latter requirement is equivalent to requiring the first cell of the component to be in the punp suction हid the second cett in the pump discharge for morma? operation.

The following considerations were important in creating the PUMP component:

1. Compatibility with adjacent components should be maximized,
2. Choking at the pump inlet or outlet should be predfcted automatically, and
3. The calculated pressure rise across the pump should agree with that measured at steady-state conditions.

The first two criterla precluded the use of a lumped-parameter model. The PUMP component, therefore, combines the PIPE component with pump correlations

The pumip model that is in TRAC-B11-HODI is very similar to that included in RELAP4/MOD5, ${ }^{8,-2}$ although some additional assumptions were made to incorporate the momentum source into the me,testum equations. Also, the detat1s of the input for the homologous curves are somewhat different in that the eight curve segments defined in RELAP4/MOD5 are combined into only four segments in TRAC-BF1/MOD1. Reference 8.1-3 (Chapter 9) provides a good discussion of pump operation, and Section 9.2 of the same reference describes the single-phase homologous curve description of a pump. Reference 8.1-4 is a general text on pumps and provides much information about pumps and their operating characteristics. Runstadler ${ }^{8,1-5}$ provides an overview of the state of the art in pump modeling in the mid-1970s, about the time that work began on TRAC-EDI and there was a need for a pump model in the code. Several organizations worked on pump models during the late 1970s, and the work cuntinued through the 1980 s. Furuya ${ }^{8.1 .6}$ developed an analytical pump model that yields the two-phase performance characteristics based on single-phase characteristics and the detatls of the pump geometry

The similarity factor for pumps that is most often discussed is the specific speed ω_{s} defined in the following equation [Reference 8.1-4, Equation $(5,9)]$:

$$
\begin{equation*}
\omega_{5}=\frac{\omega \theta^{1 / 2}}{(g H)^{3 / 6}} \tag{8,1,1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{n}=\text { pump speed (rad/s, rev/s) } \\
& \mathrm{Q}=\text { volumetric flow }\left(\mathrm{m}^{3} / \mathrm{s}, \mathrm{ft}^{3} / \mathrm{s}\right) \\
& \mathrm{g}=\text { acceleration of gravity }\left(\mathrm{m} / \mathrm{s}^{2}, \mathrm{ft} / \mathrm{s}^{2}\right)
\end{aligned}
$$

H $=\quad$ pump head (m, ft).

This specific speed 4 is dimensionless maly if the units of the other parameters are conststent, as noted abov. Stepanoff (Reference 8.1-4) points out that φ_{s} is constant for all similar pumps and ideally does not change with speed for a given pump; bowever, when it is used as a similarity parameter. $\omega_{\text {s }}$ should be calculated at the highest efficiency point of operation. Stepanoffs also casts ω in another dimensionless form (feference 8.1-4, Equation 5.35), which shows the importance ? maintaining certain geometric ratios in similar pumps. All of this discussion really is intended to provide a guide to help the code user determine if a set of homologous curves can be used to describe this pump.

8.1.1 Pump Governing Equations

The pump model is identical to the one-dimensional pipe model except that the momentum equations between cells where the impeller is located are rewritten ats

$$
\begin{equation*}
\frac{V_{g}^{n+1}-V_{g}^{n}}{\Delta t} \frac{p_{j}^{n+1}-p^{n+1}+\Delta^{n}+\left(\frac{\partial \Delta}{\partial v}\right)^{n} V_{g}^{n \cdot 1}-v_{9}^{n}}{\left(p_{n}\right)^{n} \Delta x}-g \cos \theta \tag{8.1-2}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{t} \quad V_{9} \tag{8.1-3}
\end{equation*}
$$

where ΔP is the pressure rise through the pump evaluated from the pump correlation. Equation $(8.1-2)$ is implemented in subroutine TFIE. The steady state solution of fquation ($8.1-2$) is

$$
\begin{equation*}
\Delta=p_{1,1}-p_{1}+g \cos \theta, \tag{8.1-4}
\end{equation*}
$$

Which is the desired result. Friction does not enter explicitly into the pump motion equation, because we assume that the friction effects are normally trwluded in the homblogours curves dtilning the pump head. Therefore, additive friction is not allowed at the impeller location.

It is necessary to evaluate ΔP and its derivative with respect to velocity for a pump cell only once each time step. The source is needed only in moutine TFIE. This evaluation is performed by subroutine PUMPSR.

PUMP Component

8.1.2 Pump Head and Torque from Homolonous Curves

The pump correlation curves describe the pump head and torque response as a function of fluid volumetric flow rate and pump speed. Homologous curves cone curve segment represents a famtly of curvest are used for thts description because of their simplicity. These curves describe, in a compact manner, all operating states of the pump obtained by combining positive or negative impeller velocities with positive or negative flow rates.

The following definitions are used in the subsequent development:
$H=$ the pump head $=\Delta P / p_{1}$
0 a the pump yotumetrite flow, and
0 = the pump impeller angular velocity
where if is the pressure rfse actoss the pump and p_{n} is the pump averaye mixture density in the cells immediately adjacent to the pump interface. The code user should note that the definition of pump head H above differs from the standard definition by a factor g, the acceleration due to gravity. To allow one set of curves to be used for a vartety of pumps, the following normalized quantities are used:

$$
\begin{align*}
& h=\frac{H}{H_{R}}, \\
& q=\frac{Q}{Q_{R}}, \tag{8.1-6}
\end{align*}
$$

and

$$
\begin{equation*}
\omega=\frac{\Omega}{\Omega} \tag{8.1-7}
\end{equation*}
$$

where H_{8} is the rated head (RHEAD) for the pump, Q_{B} is the rated volumetric flow (RFLOW) and Q_{R} is the rated pump speed (ROMEGA). The pump similarity relat fons ${ }^{\text {min }}$ show that

$$
\begin{equation*}
\frac{h}{\omega^{2}}=f\left(\frac{q}{\omega}\right) \tag{8.1-8}
\end{equation*}
$$

For small u, this correlation is not satisfactory, and the following combination of variables is used

$$
\begin{equation*}
\frac{h}{q^{2}}=f\left(\frac{\omega}{q}\right) \tag{8.1-9}
\end{equation*}
$$

Equation (8.1-8) is used in the range $0 \leq|q / \omega| \leq 1$ and resultr in two separate curves, one for $\omega>0$ and one for $\omega<0$. Equation (8.1-9) is used in the range $0 \leq\left|\omega^{\prime} q\right| \leq 7$ and yields twu separate curves, one for $q>0$ and one for $q<0$. The four resulting curve semments, as well as the curve selection logic used in TRAC-BF1/MOD1, are shown in Table 8.1-1.

Table 8.1-1. Definitions of the four curve segments that describe the homologous pump head curves ${ }^{\text {D }}$

To account for two-phase effects on pump performance, the pump curves are divided into two separate regimes. Data indicate that two-phase pump performance in the vapor fraction range of $20 \%-80 \%$ is degraded significantly in comparison with its performance at vapor fractions outside of this range. One set of cu es describes the pump performance for single-phase fluid (0 or 100% vapor fraction), and another set describes the two-phase, fully degraded performance at some void fraction between 0 and 100%. For single-phase conditions, the curve segments for Equation (8.1-8) are input as HSP1 for $\omega>$ C and HSP4 for $\omega<0$, and Equation (8.1-9) curve segments are input as HSP2 for $u>0$ and HSP3 for q. The fully degraded version of Equation (8,1-8) is input as curve H+Pl for $\omega>0$ and HTp4 for $\omega<0$. The fully degraded version of Equation $(8.1-7)$ is input as HTP2 for $q>0$ and HTP3 for $q<0$.

The pump head at any vaper fraction is calculated from the relationship,

$$
\begin{equation*}
H=H_{1}-M(\alpha)\left(H_{1}-H_{2}\right) \text {, } \tag{8.1-10}
\end{equation*}
$$

wiere

$$
\begin{aligned}
& H=\text { the total pump head } \\
& H_{1}=\text { the single-phase pump head }=h_{1} H_{R} \text { where } h_{1} \text { is the }
\end{aligned}
$$

PUMP COMPONENT

nondimensional head from the single-phase homologous head curves
$H_{2}: \quad$ the fully degraded pump head $=h_{2} H_{8}$ where h_{2} is the nondimensional head from the fully degraded homelogous head curves
m = the head degradation multiplier (input as HDM), and
$\alpha=$ the donor-cell void fraction.
To this point, no knowledge of densitv required to calculate H from the homologous head curves. The average aixtur density in the cells immediately adjacent to the pump interfa always used to convert the total pump head H to ΔP, th. ono ure rise "rough the pump, by the definition $\Delta P=$ $\mathrm{P}_{\mathrm{m}} \mathrm{H}$.

The development of homologous torque curves parallels the previous development for homologous head curves. The dinensionless hydraulic torque is defined by

$$
\begin{equation*}
\beta=\frac{T_{h y}}{T_{R}}, \tag{8.1-11}
\end{equation*}
$$

where
${ }^{T}$ hy $=$ hydraulic torque
$T_{R}=$ rated torque (RTORK).
The convention used is that a positive $T_{\text {hy }}$ works to retard positive pump angular velocity. The dimensionless torque β is correlated as either β / ω or β / q just as the dimensionless head was correlated. For single-phase conditians, the correlations yield the corresponding four wirve segments... TSP1, TSP2, TSP3, and TSP4. The fully degraded correlations produce four corresponding curves.-TTP1, TTP2, TTP3, and TTP4. The ' mologous torque curve se ments are orrelated in the same manner ds the head ve segments shown in Table $8.1-1$ (replace h with β). For the special case of $\theta=q=0.0$, the code sets $\beta_{1}=\beta_{2}=0.0$.

The single phase torque T_{1} is dependent upon the fluid density and is calculated from

$$
\begin{equation*}
T_{1}=\beta_{1} T_{R}\left(\frac{P_{m}}{P_{k}}\right), \tag{8.1-12}
\end{equation*}
$$

where

```
f. = dimensionless hydraulic torque from the single-phase
        homologous traque curves
f* pump average mixture density in the cells immediately adiacent
        to the pump interface
    fr mated density (RRHO)
```

The density ratio is needed to correct for the density difference between the pumped fluid and the rated condition. Similarly, the fully degraded torque T_{2} is obtained from

$$
\begin{equation*}
T_{2}=\beta_{2} T_{R}\left(\frac{\rho_{n}}{\rho_{k}}\right) \tag{8.1-13}
\end{equation*}
$$

where β_{2} is the dimensionless hydraulic torque from the fully degraded homologous torque curves. For two-phase conditions, the impeller torque is calculated from

$$
\begin{equation*}
T=T_{1}-N(\alpha)\left(T_{1}-T_{2}\right), \tag{8.1-14}
\end{equation*}
$$

where
$T=\operatorname{total}$ impeller torque
$N(a)=$ torque degradation multiplier (input as TDM).
In addition to the homologous head and torque curves, the head and torque degradation multipliers defined in Equations i8.1-10) and (8.1-14) are required. These functions of void fraction are nonzero only in the vapor-fraction range where the pump head and torque are either partially or fully degraded

8.1.3 Pump Speed

The pump component treats the pump angular velocity as a constant (input) while the motor is energized. After a drive motor trip, the time rate of change for the pump angular velocity 8 is proportional to the sum of the moments acting on it and is cclculated from the equation,

$$
\begin{equation*}
I \frac{d \Omega}{d t}=-\sum_{i} T_{i}=-\left(T+T_{f}+T_{b}+T_{m}\right) \tag{8.1-15}
\end{equation*}
$$

where

PUMP COMPONENT

1 * combined impeller, shaft, and notor assembly moment of inertia (EFFMI)
$\dagger=$ hydraulic torque on the impelle
$I_{f}=$ the torque caused by friction
Ib bearitig and windage torque
$I_{m}=$ driving (or motor) torque computed by he turbine model or the control systems model

We assume that T_{f} and T_{b} are

$$
\begin{equation*}
T_{1}=C_{1}\left(\frac{\Omega|\Omega|}{\Omega_{1}}\right) \tag{8,1-16}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{b}=C_{2}\left(\frac{s|\Omega|}{\Delta q_{k}^{2}}\right) \text {, } \tag{8.1-17}
\end{equation*}
$$

where C_{1} and C_{2} are input constants (TFR1 and TFR2, respectively). The hydraulic torque I is evaluated using the homologous torque curves and Equatton $(8,1-14):$ it ts a function of the volumetric flow, the upstream void fraction, the average density in the cells immediately adjacent to the pump interface, and the pump angular velocity, for time step $n+1$, Equation (8.1-15) is evaluated explicitly

$$
\begin{equation*}
\Omega+1=\Omega-\frac{\Delta}{I} T\left(Q, \alpha, P_{m}, \Omega\right)+\left(C_{1}+C_{2}\right) \frac{\Omega|\Omega|}{\Omega \Omega^{2}}+T_{m} \tag{8.1-18}
\end{equation*}
$$

8.1.4 Pump Homologous Curves

The user may specify pump homologous curves in the input or alternately may use the built in pump curves, The set of built in pump curves is based on the Sentscale Mod-1 systent pump. ${ }^{8,1-2,7,8,8}$. The Semiscale pump curves for single-phase homologous head (HSP), fully degraded two-phase homologous head (HTP), head degradation multiplier (HONi). single-phase homol zous torque (TSP), and torque degradation multiplier (TOM) are provided in Figures 8.1.1 throuch 8.1-5, respectlvely. The fully degraded two phase homologous torque urves (ITP) for the Semiscale pump is zero. Where applicable, the curves are numbered corresponding to the conditions provided in Table 8.1-1

Figure 8.1-1. Semiscale single-phase homologous head curves.

Figure 8.1-2. Semiscale fully degraded homologous head curves

Figure 8.1-3. Semiscale head degradation multiplier curve.

PUMP COMPONENT

Figure 8.1-4. Semiscale single phase homologous torque curves.

Figure 8.1-5. Semiscale torque degradation multiplier curve.

Because these homologous curves are dimensionless, they can describe a variety of pumps by specifying the desired rated density, head, torque, volumetric flow, and angular velocity as input.

There are restrictions and limitations in the current version of the PUMP component. A flow area change should not be modeled at the impeller location. Additionally, the head degradation multiplier $M(\alpha)$ and the torque degradation multiplier $N(a)$ are assumed to apply to all operating states of the pump.

The PUMP component input consists of the same geometric and hydrodynamic data and initial conditions that are required for the PIPE component. In addition, information specific to the PUMP is required, as described in the input specifications. The speed table (SPTBL) as well as the homologous pump curve arrays must be input in the following order:
$x(1), y(1), x(2), y(2), \ldots . x(n), y(n)$
Here, x is the independent variable and y is the dependent variable. Furthermore, the independent variables must increase monotonically on input, tnat is,

```
x ( 1 ) < x ( 2 ) < \ldots < x ( n - 1 ) , x ( n )
```


PUMP COMPONENT

Linear interpolation is used within the arrays.

8.1.5 PUMP Conclusions

The pump model included in the TRAC-BF1/MOD1 code has demonstrated a remarkable capability to model reactor pumps under many conditions. Qbviously, the qualtty of the pump simulation fis yery dependent on the qualtty of the homologous curves used to describe the pump, and we recommend that whenever the data are available, the user irput specific curves for the pump under consideration instead of using the built-in curves. An alternative is to use the Tetra Tect modn) (Reference 8:1-6) to generate the fully degraded nomol gous curves and associated two-phase multiplier curves from the pump geometry and the published single-phase performance curves from the manufacturer. Unless the pump to be modeled is similar to the semiscale pump, the least destrabte optlon is to seecict one of the sets of butht-in curves.

From a code viewpoint, there are two deficiencies regarding the pump model. First, the assumed treatment of frictional torques in calculating the pump cosstdown is limited at hest and should be gemeralized. Second, the assumption of equal phase velocities at the pump interface, while a reasonably good assumption when the pump is operating at a significant rotational speed, breaks down as the pump speed approaches zero. At this point, the homogeneous flow assumption prevents unequal phase velocitfes and, in particular, prevents countercurrent flow at that one interface. The lack of phase slip can affect the separation of liquid and vapor in the pump suction and discharge. This effect could result in oscillatory flow to approximate the net effect of countercurfent flow. Undor the cument coding, the only 501 ution to the second problem avaflable to the code user is to replace the PUMP component with an equivalent PIPE component when the pamp speed is neas zero and the fluid velocities are low.

8.1.6 References

8.1-1. 13. D. Taylor et al., TRAC-BOI/MOD1: An Advanced Best Estimate Computer Program for Bolling Water Reactor Transient Analysis, Volume

8.1-2. RELAP4/MOD5-A Computer Program for Transient Thermal-Hydraulic Analysis of Nuclear Reactors and Related Systems, Vol. I, Anicn numen 1395, Septembern 1976
8.1-3. V. L. Streeter and E. B. Wylie, Hydraulic Transients, New York: MoGraw-Hill Book Company, 1967.
8.1-4. A. J. Stepanaff, Centrifugal and Axial Flow Pumos, ?nd edition, New York: John Wiley \& Sons, Inc., 1957.
8.1-5. P. W. Runstadler. Review and Analysis of State-of-the-Art of Mult iphase Pump lechnology, EPRI/NP-159, February 1976.
8.1-6. 0. Furuya, Development, of an Analytic Model to Determine Pump Performance Under Two-Phase Flow Conditions, EPR1/NP-3519, May 1984.
8.1-7. D. 3. Otson, Experiment Data Report for Single- and Two-Phase Steady-State Tests of the 1-1/2-Loop MOD-1 Semiscale System Pump, ANCR-1150, May 1974.
8.1-8. G. G. Loomis, Intact Loop Pump Performance during the Semiscale MOD-1 Isothormal Test Series, ANCR-1240, October 1975.
8.1-9. D. J. 01 son, Single- and Two-Phase Performance Characteristics of the MOD-1 Semiscale Pump Under Steady-State and Transient Fluid Conditions, ANCR-1165, October 1974.
8.1-10. D. L. Reeder, LOFT System and Test Description (5.5-Ft. Nuclear Core 1 LOCES), TREE-1208, NUREG/CR-0247, July 1978.

Jet Pump Model

8.2 Jet Pump Model

The jet pump model in TRAC-BF1/MON1 is based on the TEE component; the primary arm of the TEE component models the jet pump suction, mixing region, diffuser and discharge passage, and the TEE side arm models the drive line ind drive nozzles. The regular continuity and energy equations are used in the jet pump component, but an additional term is included in the momentum equation for the mixing region of the jet pump. Singular loss (irreversible) coefficients based on data, jet pump geometry, and flow conditions in the jet pump are also used in the jet pump component. The additional term in whe momentum equation represents the momentum gained in the mixing region as a result of the dissipation of the monientum of the high-speed drive line flow as it merges with the suction flow.

Q.2.1 Jet Pump Momertum Source Term

The jet pump momentum source term was derived for each phase by performing a steady-state phasic momentum balance across the mixing region and comparing the resulting expression with the regular momentum equation for the mixing region. The comparison between the two formulations of the momentum equation is complicated by the fact that the regular momentum solution is performed on a staggered mesh and the velocity divergence operator is written ds a backward spatial difference.

The mumentum and continuity equations for the mixing cell of the jel pump are (see Figure 8.2-1)

Figure 8.2-1. Jet pump nixing cell

Jet Pump Model

Continuity:

$$
\begin{equation*}
\alpha_{1} A_{0 N} A V_{0 R}+a_{s} p_{s} A_{5} \quad a_{0 s} p_{0 S} A_{0 S} V_{0 S} \tag{8,2-1}
\end{equation*}
$$

Moment um:

$$
\alpha_{D R} A_{D P} A_{D R} V_{D R}^{2}+\alpha_{5} P_{S} A_{S} V_{e}^{2}-\alpha_{D S} P_{D S} A_{D S} V_{D S}^{2}=\left(P_{0 S}-P_{5}\right) A_{D S} \alpha_{D S}
$$

where

$$
\begin{array}{ll}
P_{5} & =P_{D R} \\
a_{S} & =a_{D S} \tag{8.2-4}
\end{array}
$$

$$
A_{5}+A_{D R}=A_{D S}
$$

and all quantities are defined on the cel: faces. The assumptions as given by the first two equalities are that the static pressures are equal on the suction and drive nozzle exit planes and that the change in phasic void fraction are small between the suction and discharge planes (planes S and OS) Multiplying the continuity equation by V and subtracting from the momentum Aquation gives

$$
\begin{equation*}
\alpha_{D R} Q_{D R} A_{D R}\left(V_{D R}^{2}-V_{D R} V_{S}\right)=\alpha_{D S} A_{D S} A_{D S}\left(V_{D S}^{2}-V_{D S} V_{S}\right)=\left(P_{S}-P_{D S}\right) A_{D S} \alpha_{D S} \tag{8.2-6}
\end{equation*}
$$

or

$$
\begin{equation*}
{ }^{n_{S} \quad P_{D S}} A_{\text {IS }}=\frac{\alpha_{D R} A_{O R} A_{D R}}{\alpha_{D S} P_{D S} A_{D S}} V_{D R}\left(V_{D R}-V_{S}\right) \quad V_{D S}\left(V_{D S}-V_{\mathrm{S}}\right) \tag{8.2-7}
\end{equation*}
$$

Now the regular steady-state TRAC-BF1/MOD1 momentum equation is written as (see Figure 8.2-2)

$$
\begin{equation*}
\frac{1}{\rho \partial z}-\frac{\partial P}{\partial z}=V \frac{\partial V}{\partial z}+\text { losses } \tag{8.2-8}
\end{equation*}
$$

or

$$
\frac{1 \quad P_{2}-P_{1}}{P \frac{1}{2}\left(\Delta x_{1}+\Delta x_{2}\right)}
$$

$$
S=\frac{V_{2}\left(V_{2}-V_{1}\right)}{\Delta X_{1}}+10 \text { sses }
$$

where

M578-WHTT $482-18$
Figure 8.2-2. Jet pump model momentum equation diagram.

$$
\begin{equation*}
\bar{\rho}=\frac{\Delta y_{1} p_{1}+\Delta x_{2} B_{2}}{\Delta x_{1}+\Delta x_{2}} \tag{8.2-10}
\end{equation*}
$$

and the loss terms include wall friction, interphase friction nd gravity head. Comparing these two formulations, the momentum source term, S is given by

$$
S=\frac{\alpha_{3} p_{3} A_{3}}{\alpha_{1} p_{1} A_{1}} \frac{V_{3}\left(V_{3}-V_{1}\right)}{\frac{1}{2}\left(\Delta x_{1}+\Delta x_{2}\right)}
$$

where the donor convention hias been used for all convected properties and the cell face pressures have been staggered with respect to the cell faces to give s form that corresponds to the rn jlar momentum equation with its backward spatial difference approximation to the velocity divergence terms. These relations are summarized as

$$
\begin{equation*}
\alpha_{1}=\alpha_{5} \tag{8.2-12}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{2}=\alpha_{55} \tag{8.2-13}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{3}=\alpha_{D R} \tag{8.2-14}
\end{equation*}
$$

Jet Pump Model

$\rho_{\mathrm{y}}=\rho_{\mathrm{s}}$(8.2-16)
$P_{2}=A D$
$P_{3}=P O R$

$$
\begin{equation*}
A_{1}=A_{8} \tag{8.2-18}
\end{equation*}
$$

$A_{5}=A_{0 S}$

$$
\begin{equation*}
A_{3}=A_{0 R} \tag{8.2-29}
\end{equation*}
$$

$$
\begin{equation*}
v_{1}=V_{5} \tag{8.2-21}
\end{equation*}
$$

$$
\begin{equation*}
V_{z}=V_{D S} \tag{8.2-22}
\end{equation*}
$$

$$
\begin{equation*}
V_{3}=V_{D R} \tag{8.2-23}
\end{equation*}
$$

$$
\begin{equation*}
P_{1}=P_{*} \tag{8.2-24}
\end{equation*}
$$

$$
\begin{equation*}
P_{2}=P_{D S} \tag{8.2-25}
\end{equation*}
$$

Several additional assumptions are implicit in the derivation of the momentum source term as given by Equation (8.2-11) to establish the equivalence of the velocity divergence terms between the two forms of the momentum equation. First, the lengths of the two cells on either side of the discharge face must be the same

$$
\begin{equation*}
\frac{1}{2}\left(\Delta x_{1}+\Delta x_{2}\right)=\Delta x_{1} \tag{8.2-26}
\end{equation*}
$$

so that the velacity divergence terms are the same second,

$$
\begin{equation*}
\frac{\rho}{\rho} \quad \frac{\Delta x_{1} \rho_{1}+\Delta x_{2} \rho_{2}}{\Delta x_{1}+\Delta X_{2}}=\rho_{5} \quad \rho_{1} \tag{8.2-27}
\end{equation*}
$$

The second assumption is closely approximated by the code in that the changes in the phasic density between adjacent cells are usually quite small. However, the assumption of equal cell lengths is rarely satisfind by the code user, and the error in the assumed form of the mom ntum source term must be compensated for by the singular loss terms that are derived from data. The singular locres are derived using an assumed geometric representation of the actual fet pump. If the code user uses a different mode? ?at ion than that used to derive the singular losses, the compensation icomplete and the jet pump model will not perform as well as if the user ut used the sanie geometric representation as was used when the singular loswos were derived.

The momentum source term, as shown in Equation (8.2-11), was derived assuming that the nonconservative form of the velocity divergence operator was being used in the regular TRAC-BF1/MOD1 momentum solution. With the modification of the velocity difference to an approximate conservative fortir (see Section 7.1.1), the momentum source term had to be modified. The velocity divergence in the regular momentum solution is written as

$$
\begin{equation*}
V \nabla=\left(\frac{A_{2}}{A_{1}}+\frac{A_{2}}{A_{2}}\right) V_{2}\left(\frac{A_{2}}{A_{1}} V_{2}-\frac{A_{2}}{A_{1}} V_{1}\right) \frac{1}{2 \Delta x} \tag{8,2-28}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{1}=\frac{\mathrm{Vol}_{1}}{\Delta x_{1}} \tag{8.2-29}\\
& A_{2}=\frac{\mathrm{Vol}_{2}}{\Delta \mathrm{I}_{2}}
\end{align*}
$$

and the areas with the overbar represent the flow area in the center of the cell. Assuming for the moment that

$$
\begin{equation*}
A_{2}=A_{2} \tag{8.2-31}
\end{equation*}
$$

Jet Pump Molel

$$
A_{1}=A_{2}
$$

we obtain

$$
\begin{equation*}
U W=V W \tag{8.2-33}
\end{equation*}
$$

which differs from the velocity divergence term in the original derivation [Equation (8.2.9)] by

$$
\begin{equation*}
V W=\left|V_{2}\left(V_{2}-V_{1}\right)+\frac{A_{2}-A_{1}}{A_{2}}\left(V_{2} V_{1}\right)\right| \frac{1}{\Delta x} \tag{8.2-34}
\end{equation*}
$$

or

$$
\begin{equation*}
V W=\left\{V_{2}\left(V_{2}-V_{1}\right)+\frac{A_{3}}{A_{2}}\left(V_{2} V_{1}\right)\right] \frac{1}{\Delta x} \tag{8,2-35}
\end{equation*}
$$

whare

$$
A_{3} \quad A_{2}-A_{1}
$$

Substituting this expression for the velocity divergence term into the regular momentum solution and eliminating the corresponding terms, the momentum source term becames

$$
\begin{equation*}
S=\frac{a_{5} p_{3} A_{3}}{\alpha_{1} p_{1} A_{1}}\left[\frac{v_{3}\left(v_{3}-v_{1}\right)}{\frac{1}{2}\left(\Delta x_{1}+\Delta x_{2}\right)}\right]=\frac{A_{3}}{A_{1}}\left[\frac{V_{2} v}{\frac{1}{2}\left(\Delta v_{1}+\Delta x_{2}\right)}\right] . \tag{8,2-37}
\end{equation*}
$$

This deviation is based on the equivalence of the cell-centered flow areas to the discharge flow area as qiven by Equations $(8,2-31)$ and $(8,2-32)$. The second relation should always be sattuffed by the jet pump geometry in that the mixing region in an actual jet pump is a straight section of constant flow area, whereas the first relation may be satisfied if the user divides the mixing region into at least two computation cells, each of which models a straight constant flow area section. If the user employs a coarse nodalization in which the first cell models the mixing region anc the second cell models the jet pump diffusor, the first relation will not be satisfied. The performance of the jet pump will suffer unless the singular losses compensate for thin error in modelina the geometry of the tet pum.

The monentum source term as given by Equation $(8.2-37)$ is added to the
right-hand side of the regular TRAC-BF1/MOD1 phasic momentum equations for positive drive flow (drive flow into mixing cell) and is identically zero for reversed flow in the drive line.

In addition, a limit is placed on the numerical value of the macroscopic density ratio in the momentum source term so that the source term does not cause unrealistic phasic velocities. This limtt is given by

$$
\begin{equation*}
\frac{\alpha_{3} p_{3}}{\alpha_{1} p_{1}} \geq 1 \tag{8,2-38}
\end{equation*}
$$

and arises form the observation that if the quantity in the denominator becomes smalle, than the numerator, the value of the momentum source term becomes large relative to the phasic inertia (represented by the denominator) and "unrealistically" large values of the phasic velocity can result. This is a cosmetic problem in that the user can oe mislead by a large value of the phasic velocity at small phasic void fractions into thinking that something is wrong where in reality, the momentum represented by the large velocity and low void fraction is correct and has a small value. The limitation also protects against a divide by zero in the single phase limits.

Finally, there is subtle error in the jet pump, which results from the implementation of the approximate conserving form of the velocity divergence term. The singular losses as explained in subsequent sections were derived using a code version without the modifications to the velocity divergence and are now being used in a code which has these modifications. The momentum source term was modified to npensate for the different form of the divergence term for the mon encum solution at the discharge face. The momentum equations for the suction ace and the drive face, however, use the new form of the velocity divergen terms and are now inconsistent with the singular losses as derived from data using an unmodified code version. These inconsistencies result in a s? ight degradation of the jet pump performance in TRAC-BF1-M0D1 (Figare 8.2-3) as compared to the performance as reported by General Electric (Figure 8.2-4) where the singular losses were derived.

8.2.3 Jet Pump Singular Loss Coefficients

In addition to the momentum source due to the high-speed driva line flow, there are pressure losses associated with cik at pump geometry. "hese include diffuser (expanston) and nozzle (contraction) losses. Yessts due to incomplete mixing of the drive and suction flows, and inlet and outlet losses where the jet pump connects to the BWR downcomer and lowr plenum, respectively. The losses due to the jet pump and reacior vessel geometry are developed from handbook values as well as from analysis of data obtained from testing of a subscale jet pump mocel.

The mixing and nozzle losses were developed from the analysis of the subscale data. These loss coefficients were developed by the General Electric

Jet Pump Model.

Figure 8.2-3. TRAC-BF1/MOD1 jet pump results compared to data for $1 / 6$ scale INEL test
4

Figure 8.2-4. Comparisons of predicted versus measured MN curves for INEL jet pump.

Company (GE) as part of the BWR Refill-Reflood and FIST programs jointly sponsored by GE EPRI, and the USNRC. ${ }^{8.2 \cdot 1}$ This model was developed by Andersen et at ${ }^{8,2 \cdot 1}$ and was made available to the TRAC. BF1 project.

$$
\begin{align*}
& 8.2 .3 .1 \text { niffuser (Expansion) Losses. The loss coefficient for the } \\
& \text { irreversible pressure loss for flow through a diffuser is given by } \\
& \text { Idelchik }{ }^{8.2} \text { as } \\
& k_{e}=c_{e} \tan \alpha^{1.5}\left(1-A^{*}\right)^{2} \tag{8.2-39}
\end{align*}
$$

where
a = diffuser angle

A* = area ratio of outlet to inlet
$C_{e}=$ constant
The recommended value of C_{e} is 5.5 and is the default value in TRAC-BF1/MOD1. The user may input the value of C_{e} if he so desires.

This pressure loss coefficient is used zt every cell face of the jet pump where the flo.l areas at the cell centers on either sice of the face increase in the direction of flow.
8.2.3.2 Nozzle (Contraction) Losses. The loss coefficient for the irreversible pressure loss for flow through a nozzle due to the contraction is given by Idelchik ${ }^{8.2-2}$

$$
\begin{equation*}
K_{c}=C_{c} \sin a\left(1-A^{*}\right) \tag{8.2-40}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { d contraction angle } \\
& A^{*}=\text { area ratio of outlet to inlet of contraction } \\
& C_{c}=\text { constant. }
\end{aligned}
$$

The recommended value of C_{c} is 0.38 and is the default value in TRAC-BF1/MOD1. The user has the option to input his own value of C_{c}. This pressure loss coeffictent is used at every face in the jet pump where the flow area at the cell centers on either side of the face decrease in the direction of flow.
8.2.3.3 Inlet Losses. There is an irreversible pressure loss at the jet pump suction inlet due to the contraction of the suction flow from the

Jet Pump Model

downcomer to the jet pump. The loss coefficient for this loss has been estimated to be 0.04 from data obtained at the INEL using $1 / 6$ scale jet pumps. ${ }^{8.23}$ when the flow at the jet pump diffuser outlet reverses, there is a contraction loss from the lower plenum into the jet pump diffuser. The loss coefficient for thi loss has been estimated from data to be 0,45 . These values are in the TRa ur I/MODI code as default values, but the user nay change them

8,2,3,4 Outlet Losses. There is a loss at the diffuser outlet due to the flow expansion from the diffuser outlet into the lower plenum for normal operating conditions in the jet pump. The loss coefficient for this loss is estimated to be 1.0 and is implemented into the TRAC-BF1/MOD1 code at the diffuser outlet for forward flow in the diffuser.
8.2.3.5 Mixing Losses. There are irreversible pressure losses in the mixing region of the jet pump where the high-velocity drive flow mixes with the low velocity suction flow. These losses have been estimated from the $1 / 6$ scale jet pump data and have been correlated in terms of the drive velocity $\left(V_{D R}\right)$, the ratio of suction mass flow rate to drive mass flow rate (M ratio), and the flow regine. The flow regimes are defined for various combinations of positive and negative suction flow, drive flow, discharge flow, and M ratio. The definitions of the flow regimes are shown schematically in Figure 8.2-5 and listed in Table 8.2-1. The loss coefficients in the various flow regimes for mixing losses are given in Table 8.2-2.
8.2.3.6 Nozzle Losses. In addition to the pressure losses in the drive nozzles caused by the contraction of the flow, there are add litusa? losses because of the unique geometry of the drive nozzle. These losses have been estimated from the $1 / 6$ scale jet pump data ${ }^{8.2-3}$ and have been correlated in terms of the M ratio for the varlous flow regimes. These loss coefficients are listed in Table 8.2-2.

The accuracy of the jet pump model in TRAC-BF1/MODI was assessed by simulating the experiment used to cbtain the data from which the loss coefficients were obtained. Figure 8.2-3 shows the comparison between the measured data and the TRAC-BF1/MODI computed results in terms of the N ratio versus the M ratio. The N ratio is defined as the rise in total heed of the suction flow as it moves from the entrance to the exit of the jet pump divided by the difference in the total heads between the drive flow and the suction ${ }^{\text {frow }}$. The total head includes the pressure head, velocity head, and gravity nead contributions. The M ratio is the ratio of total discharge flow rate divided by the drive flow rate. Figure 8.2-3 shows that quite good agreement is obtained between the measured data and the sfmulation.
(a) Positive drive line flow

Flow Regime 1

$$
\begin{aligned}
& W_{1}>0 \\
& W_{n}>0 \\
& M>0
\end{aligned}
$$

Flow Regime 2

$$
\begin{gathered}
W_{1}>0 \\
W_{s}<0, W_{0}>0 \\
-1<M<0
\end{gathered}
$$

Flow Regime 3
W >0
$W_{\mathrm{s}}<0, W_{0}<0$
$M<-1$
(b) Negative drive line flow

Flow Regime 4

$$
\begin{aligned}
& W_{1}<0 \\
& W_{0}<0 \\
& M>0
\end{aligned}
$$

Flow Regime 5

$$
\begin{gathered}
W_{1}<0 \\
W_{0}>0, W_{0}<0 \\
-1<M<0
\end{gathered}
$$

Flow Regime 6
V < 0
$W_{s}>0, W_{0}>0$
$M<-1$

Figure 8,2-5. Jet pump flow regimes.

Jet Pump Model

Table 8.2-1, Jet pump flow regimes.

Regime	Drive flow	Suction flow	Discharge flow	M ratio
1^{*}	Positive	Positive	Positive	$M>0$
2	Positive	Negative	Positive	$0>M>-1$
3	Negitive	Negative	Negative	$M<-1$
4	Negative	Peqative	Negative	$M>0$
5	Negative	Positive	Negative	$0>M>-1$
6	Flow regime 1 is the normal operating regime.	$M<-1$		

Table 8.2-2. Flow-regime-dependent loss coefficients.

Regime Mixing loss coefficient	Nozzle loss coefficient	
1	0	0
2	$-0.134 M^{2} V_{D R}^{2}$	$\operatorname{Min}[2.5, M(0.08 M=0.06)]$
3	$(0.1-0.0333 M) V_{\text {DR }}^{2}$	$\operatorname{Min}[2.5, M(0.08 M-0.06)]$
4	0	$\operatorname{Max}[0.0,0.48-M(0.33-0.055 M)]$
5	0	$\operatorname{Max}[0.0,0.48-M(0.33-0.055 M)]$
6	0	2.55

8.2.3 References

8.2-1. Y. K. Cheung, V. Parameswaran, and J. C. Shaug, BWR Refill-Reflood Program Task 4.7-Model Development: TRAC-BWR Component Models, NUREG/CR-2457, GEAP-22052, April 1983.
8.2-2. Idelchik, Handbook of Hydraulic Resistance Coefficients of local Resistance and Friction, AEC-TR-6630, 1966
8.2-3. G. E. Wilson, INEL One-Sixth Scale Jet Pump Data Analysis, EGG-CAAD-5357, February 1981.

8.3. Steam/Water Separator and Dryer

8.3.1 Model Description

The model used in TRAC-BF1-MOD1 utilizes the TEE component. Both the separator and stoam dryer components of a BWR have a single inlet, which accepts two phase, fiatd, and two outlets discharging nearly single phace fluid through each path. The separator accepts moderate-quality two-phase fluid from the mixing plenum and directs high-quality fluid to the steam dryer and low-quality fluid to the downcomer. The steam dryer accepts the high-quality fluid from the separator and removes the residual moisture to provide nearly single phase steam to the steam dome. The separated liquid is directed back to the liquid pool surrounding the separators.

Each of these components can be represented by a TRAC-BF1/MOD1 1EE cumponent that has three flow paths. The model as developed can be used to represent a separator (or a number of separators), the steam dryer, or both the multiple separators and the steam dryer.

Furthermore, there are two different separator options for determining the liquid carryover and the vapor carryunder qua'ities - a simpie separator option where the user speciffes constant carryover and carryunder qualtties and a mechanistic separatur option in which the carryover and carryunder qualities are computed as functions of the local conditions in the separator The merhanistic separator methodolog, and coding implementinq the methodology were developed by the Ceneral Electric Company (GE) 8.3

The steam dryer also has two options, a prefect separator option in which all liquid is separated regardless of the local conditions and a more mechanistic model in which the dryer efficiency decreases as the vapor velocity increases above a critical dryer inlet velocity. The more mechanistic dryer model was developed by $G E^{8.3-1}$ and is adapted from their version of the TRAC-BWR code.

Figure $8.3-1$ is a diagram of a combined separator/dryer component. The portion of the primary tube from the inlet to the joining cell represents the separator standpipe and barrel, the joining cell represents the volume between the separator discharge and dryer inlet, and the portion of the primary tube above the joining cell represents the dryer.

The TEF side arm represents the separater shroud. The separated liquid from the dryer flows down along the dryer skirt; this flow path is not explicitly modeled, since it occupies a negligible volume. The separator function occurs across the inlet face of tha joining cell where the two-phase mixture leaves the stand pipe and barrel to appear at the inlet to the side arm rath. r than in the joining cell. The dryer function occurs at the outlet face of the joining cell where the convected void fraction is computed from the dryer efficiency. The phase separation is accomplished by adjusting the void fraction convected across the several faces of the Joining cell and by

Separator/Dryer Model.

Figure 8.3-1. Diagram of combined separator-dryer.
adjusting the flow velocities at the inlet to the TEE side arm. The separator/dryer component thus uses the same methodology as the two-phase level model in which convected vold fractions are different than the cell average value. The analogy may be carried further by reference to Figure 8.3-2, in which the phase separation is accomplished by the use of the two-phase level model in the joining cell. The above-level void fraction (void fraction convectec across the dryer face) is determined by the dryer efficiency and the below-level void fraction is determined from the vapor carryunder mass flow rate. The phase velocities at the inlet to the TEE side arm are adjusted such that the desired cell average void fraction is maintained in the joining cell of the TEE. The side arm velocities are determined by adjusting the loss coefficient at the inlet to the side arm so that the velocity solution is sufficiently implicit to allow large time steps to be taken with the new model.

Separator/Dryer Modél

Figure 8. >2. Separator phase separation.

8.3.2 Model Equations

The phase separation in the separator/dryer component is accomplished by determining the void fractions convected across the two outlet faces of the joining cell and by adjusting the loss coefficient at the inlet of the TEE side arm.

8.3.3 Dryer Vold Fraction

The void fraction convected across the dryer face is determined by the dryer efficiency. If the simple dryer option is chosen, the dryer efficiency is assumed to be 100%. If the more

Separator/Dryer Model.

mechanistic dryer option is chosen, the dryer efficiency is computed from the vapor velocity across the dryer face and the dryer inlet liquid quality.

Once the dryer efficiency has been computed, the void fraction convected across the dryer face is computed. The convected void fraction is 1 for a dryer efficiency of 100% and is the donor void fraction for a dryer efficiency of 0.0%. For dryer efficiencies between 100% and 0%, the convected void fraction is linearly interpolated between the void fractions corresponding to values obtained for efficiencies of 100% and 0%, respectively
This relation is summarized in Equat ion (8.3-1) as

$$
\begin{equation*}
a_{5}=r_{b}+\left(1-r_{b}\right) \alpha_{4} \tag{8.3-1}
\end{equation*}
$$

where

```
\mp@subsup{z}{0}{} = convected void fraction at dryer face
\eta
\mp@subsup{\alpha}{i}{}
```

The dryer effictency is computed by comparing the dryer inlet liquid quality to a critical dryer inlet liquid quality. The dryer efficiency is 100% if the dryer inlet lqquid quality is below the critical dryer inlet liquid quality and is zero if the dryer inlet liquid quality exceeds the critical inlet liquid quallty by a user-defined amount, ΔX_{d}. The dryer efficiency is linearly interpolated between these two extremes based on the dryer inlet liquid quality. The dryer efficiency is given by

$$
I \mathrm{~b}=\left\{\begin{array}{l}
1.0 \text { for } x_{i}<x_{i, c r i t} \tag{8.3-2}\\
1.0+\frac{x_{i, c r i x} x_{i}}{\Delta x_{d}} \text { for } x_{1, \text { cert }}<x_{i}<x_{i, \text { erit }}+\Delta x_{d} \\
0.0 \text { for } x_{i}>x_{i, c r i t}+\Delta x_{d}
\end{array}\right.
$$

where

$$
\begin{array}{ll}
\bar{T}_{0} & \text { dryer efficiency } \\
x_{i} & =\text { dryer inlet liquid quality } \\
x_{i, c r i t}= & \text { critical dryer inlet liquid quality, and } \\
\Delta x_{d} & =\begin{array}{l}
\text { range of dryer inlet } 1 \text { iquid quality over which efficiency }
\end{array} \\
& \text { degrades from } 100 \% \text { to } 0 \% .
\end{array}
$$

The range of dryer inlet liquid quality over which the dryer efficiency degrades is a user-input constant

The dryer inlet ilquid quality is determined from the donor void fraction assuming homogeneous flow at the dryer face and is given by
$x_{i}=1$
α_{i}
$\alpha_{4}+\left(1-\alpha_{i}\right)\left(\frac{p_{e}}{p_{v}}\right)$
where $\rho_{\text {, }}$ and φ_{v} are the donor 1iquid and vapor densities, respectively.
Ftantly, the eriticel dryen infet liguid guality is given as a linea function of the vapor velocity at the dryer face and is given by
$x_{i}=\left\{\begin{array}{l}1.0 \text { for } V_{v d}<V_{v d, \ell} \\ 1.0-\left(\frac{V_{v d}-V_{v d, \ell}}{V_{v d, u}-V_{v d, \ell}}\right) \text { for } V_{v d, t}<V_{v d}-\psi_{v e, u} \\ 0.0 \text { for } V_{v d, u}<V_{v d}\end{array}\right.$
where

$$
\begin{aligned}
& y_{v d}=\text { vapor velocity at dryer face } \\
& v_{\mathrm{vd}, \mathrm{t}}=\text { lower dryer vapor velocity } \\
& v_{\mathrm{vd}, \mathrm{u}}=\text { usper dryer vapor velucity. }
\end{aligned}
$$

The lower dryer vapor velocitv is the dryer inlet vapor velocity below which the dryer efficiency is 100% regardless of dryer inlet liquid quality. The upper dryer vapor velocity is the dryer inlot vapor velocity above which the dryer efficiency is less than 100% regardle: of dryer inlet liquid quality. The dryer efficiency relationships are summarized in Figure 3.3-3.

8.2.4 Separator Void Fraction

The computation of the separator void fraction is much more complicated and is divided inte two phases. The first phase of the calculation is the determlatation of the 1 tautd carryover and vapor carryunder qualities. This calculation is performed once per time step in the prepass phase of the TRACBF $1 /$ MOD1 numerical integration scheme. If the simple separator option is used, the user-input valuea of liquid carryunder quality $X_{c p}$ and vapor carryunder quality x are used. If the mechanistic separator option has been selected by the user, $X_{c q}$ and $X_{c y}$ are determined by a call to subrout ine SSEPOR, which computes the phaslc flow rates of liquid and vapor at the two outlet ports of the separator using the separator geometric data and the local

Separayor/Dryer Model

Figure 8.3-3. Dryer efficiency summary.
conditions at the separator inlet. (See Reference 3.9-2 for the details of calculation.) The carryover liquid quality $X_{c p}$ and the vapor carryunder qualty x are assumed to romatn constant durfing the iterations used to undate the TRAC-BF1/M001 hydrodynamic variables.

8.3.5 Implicit Portion of Separator \$olution

Once the liquid carryover quality $X_{c o}$ and the vapor carryunder quality $X_{c u}$ have been determined, the joining cell target void fraction a_{0} and the vapor carryunder mass flow rate \dot{M}_{v} cu are determined. This calculation is performed
once per fteration to prevent the overextraction of mass from the joining cell. The joining cell void fraction is determined from the liquid carryover quality assuming homogeneous flow at the exit of the separator and is given by

$$
a_{0}=\frac{1-x_{c c}}{1=x_{c \theta}+\left(\frac{\rho_{v}}{\rho_{i}}\right) x_{c o}}
$$

$$
\begin{equation*}
\alpha_{0}=\operatorname{Min}\left[\alpha_{0}, 0.995\right] \tag{8.3-6}
\end{equation*}
$$

The vapor carryunder mass flow rate is computed from a steady-state vapor mass balance on the foining cell and is given by

$$
\begin{equation*}
\dot{N}_{v, c u}=\frac{\dot{H}_{v, 1}-\left(\frac{1-x_{c o}}{X_{c o}}\right) M_{l, 1}}{1-\left(\frac{1-x_{c u}}{X_{c u}}\right)\left(\frac{1-x_{c o}}{x_{c e}}\right)} \tag{8.3-7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \dot{M}_{4, i}=\text { vapor mass flow rate into joining cell } \\
& \dot{M}_{e, i}=\text { liquid mass flow rate into joining cell. }
\end{aligned}
$$

Once the target joining cell void fraction a_{g} and the vapor carryunder mais flow rate M, have been computed, the separdtor void fraction and side arm fluid velocity can be computed

The liquid mass flow rate out of the side arm is computed from a steadystate liquid mass balance on the joining cell

$$
\begin{equation*}
\dot{M}_{2, s}=\dot{N}_{2, x}-\Gamma-\dot{M}_{2,0}-\frac{F\left(a_{0}-\alpha\right) P_{e}}{\Delta t} V_{0 l} \tag{8,3-8}
\end{equation*}
$$

where

$$
\begin{aligned}
& M_{\ell, s}=\text { liquid flow rate in side arm } \\
& M_{\ell, x}=\text { extrapolated liquid in? mass flow rate }
\end{aligned}
$$

Separator/Dryfr Model

$$
M_{l, \rho} \text { * dryer liquid flow rate. }
$$

The last terni fcoresent - the liquid mass flow rate needed to remove the excess liquid in the ininieg sespl and return the joining cell void fractimn to the target value doring the current titne step. The attempt to return the fotning cell void fraction to the target value sometimes leads to averextraction of mass from the joining cell. The factor F varies inversely with the number of iterations being used during this time step to attempt to prevent this overextraction and is given by

$$
F=\left\{\begin{array}{l}
1.0 \text { for OITNO } \leq 2 \tag{8.3-9}\\
1.0-0.25(01 \text { ITNO }-2) \text { for } 2<\text { OITNO } \leq 5 \\
0.25 \text { for } 5<\text { OITNO }
\end{array}\right.
$$

where OITNO is the number of iterations. At steady state, when the joining cell void fraction is equal to the desired value, this term is identically zero. The extrapolated lquutd mass flow rate is given by

$$
\begin{equation*}
\dot{M}_{l, x}^{n}+\dot{N}_{l, 1}^{n}+\left(\dot{M}_{l, 1}^{n}-\dot{M}_{l, 1}^{n-1}\right) \frac{\Delta^{n}}{\Delta t^{n-1}} \tag{8,3-10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \dot{M}_{e, 1}^{n-1}=\text { liquid mass flow rate from previous time step, and } \\
& \Delta t^{n-1}=\text { previous time step size. }
\end{aligned}
$$

The liquid mass flow rate at the dryer face is computed using the current dryer void fraction

The side arm flutd velocity can now be computed assuming homogeneous flow as

$$
\begin{equation*}
V_{s}=\frac{1}{A}\left(\frac{\dot{M}_{\mathrm{l}, \mathrm{~s}}}{P_{\ell}}+\frac{\dot{M}_{v, e \mathrm{ev}}}{P_{v}}\right) \tag{8.3-11}
\end{equation*}
$$

where A is the side arm flow area. The separator void fraction is then computed from

which means that the actual doner void fraction is used if reverse flow in the side arm is indicated.

8.3.6 Separator Velocity Solution

If reverse flow in the side arm is indicated by tquation (8.3.11), the sice arm loss coefficient from the previous time step is used. If positive velocity in the side arin is indicated by Equation (8.3-11), then a new side arm loss coefficient is compuied.
8.3.6.1 Side Arm Loss Coefficient. The side arm loss coefficient needed to balance the imposed pressure gradient is computed from a simplified steadystate momentum equation across the side arm face. This simplified momentum equation includes pressire orop, form losses, and gravity lead across the side arm face and is given by

$$
\begin{equation*}
\Delta=\frac{1}{2} K \rho_{n} V_{s}^{2}-g \rho_{n} \Delta Y \tag{8.3-13}
\end{equation*}
$$

where

```
\DeltaP = pressure drop from center of joining cell to center of itrat
    side arm cell
    K s side arm loss coefficient
    fm}=\mathrm{ average mixture density
    g gravitational constant
    \Delta X = \text { distance from cell cente: te cell center.}
```

The gravity head terit assumes that the side arm is directed downward, and the input processor flags an error if the user does not specify a vertically directed side arm. This equation is solved for the side arm loss coefficient. The value computed is averaged with the value from the previous time step, and the averaged value is restricted to be within a factor of two of the previous value

Separator/Dryer Model

8,3.6.2 Side Arm Velocity Solution. The side arm loss coefficient is used in the time-dependent forill of the simplified momentum equation to determine the predlcted slde armil fuid velocity and fts derfvative with respect to pressure gradient. The predicted fluid velocity is given by

$$
\begin{equation*}
V_{5}^{n}=\frac{V_{s}^{n-1}+\Delta\left(\frac{\Delta}{p_{n} \Delta x}+g\right)}{1+\frac{1}{2} \frac{\Delta x}{\Delta x} K\left|V_{s}^{n-1}\right|} \tag{8.3-14}
\end{equation*}
$$

where

$$
\begin{aligned}
& V_{s}^{n}=\text { predictad side arm velocity } \\
& V_{s}^{n-1}=\text { beginning of time step side arm velocity }
\end{aligned}
$$

and the other terms have been defined previously
The derfvattve of the sthe armin veloctty wtth respect to pressure gradient is given by

$$
\begin{equation*}
\frac{\partial V}{\partial P} \frac{\Delta t}{\Delta x p_{m}\left(1+\frac{1}{2} \frac{\Delta t}{\Delta x} K\left|V_{\varepsilon}^{n-1}\right|\right)} \tag{8.3-15}
\end{equation*}
$$

where $\frac{\partial V}{\partial P}$ is the derivative of the side arm velocity with respect to the pressure gradient. These two values are used in the solution of the continufly and energy equations in place of the regular momentum sotution for the first side arm face.

8.3.7 References

8.3-1. Y. K. Cheung, V. Parameswaran, and J. C. Shaug, BWR Refil1-Reflood Program Task 4.7-Model Development: TRAC-BWR Component Models, Nuntayen 2457, GCAn 2205?. Aprtl 1983.
8.3-2. M. J. Thurgood et al., COBRA-TRAC-A Thermal-Hydraulics Code for Transient Analysis of Nuclear Reactor Vessels and Primary Coolant Systents, YOlume 1, NHDEC ICR 3045, DAN A385, March 1983.

8.4 Implicit Turbine Model

The turbine modal in TRAC-B01/MODI was designed to provide a basic capability for modeling BWR main steam turbines and for modeling smaller turbines, such as those used for driving feedwater pumps. The turbine mode? is based on a simple thermodynamic description of flow through a turbine with user-speoified performance parameters, such as mass flow rate and thermodynamic stage efficiency.

8.4.1 Physical Model of Turbine

The turbine is modeled as a one-dimensional branching flow component or tes. The principal branch represents the turbine inlet and outlet, and the tarbine nozzles, rotor blades, stator blades and internal flow passages (hereafter referred to as turbine internais). The secondary branch, or side arm, represents efther a liquid drain or a steam tap for driving a feedwater heater. Consistent with the modeling philosophy used to develop the original model in TRAC. BD1/MOD1, ${ }^{8.4 * 1}$ the flaw through the turbine internals is not treated in detail from first principles, Instead, the processes of momentum and energy exchange are lumped into source terms in the one-dimensional conservation equations. The idealized physical model is illustrated schematically in Figure 8,4-1. The assumed characteristics of this model are summarized below.

Figure 8.4-1. Idealized turbine model.

Implicit Turbine Model

The two phase inlet flow enters from the left and is homogenized in Refion A prior to entry into th) turbine internals (Region B). Heat exchatge with the walls may occur in Region A, but atl flutd dynamic processes associated with the internals are lumped into Region B. In this region, the fluid state is changed and momentum and energy are extracted by the turbine rotor. The net effect is that (a) the flund pressure drops; (b) the total energy flow rate of the working fluld diops by an amount equal to the mechanical power output of the turbine rotor; (c) a saturated mixture is achieved, corresponding to the steam partial pressure in Region C; and (d) the velocity of the fluid changes due to density and/or flow area changes between entry to and exit frotu Reglon 8 . The flow area at the entrance to Regton B is assumed equal to that at the inlet to Region A and the flow area at the exit from Region B is assumed equal to that at the exit from Region C.

The flows through Regions A and t are determtned ty the pressure gradient, the inertia of the fluid, and the wall friction losses (including form loss factors at the turbine entrance and exit). The flow though Region B is determined by the pressure gradient, the fluid inertia, and an effective form loss factor choson to qtve the correct steady -tate mass flow rate through the first turbine stage

The flow through Regton 0 depends on whether the side arm represents a steam tap or a liquid drain. If it is a steam tap, the flow is determined in the same manner as for pegians A and C. If it is a liquid drain, it is determined fromi the user-input 1 iquid separation efficiency (SEPEF). In this case, the vapor velocity is set to zero and the liquid velocity is set to the value required to extract (SEPEF) times (the total liquid mass in Region C) in a single computational time step.

Region B is assumed to tiave zero volume. Thus, the mass flow rate into the region is identically equal to the flow rate out, and the only effect of the region is to change the state of the working fluid and to transfer energy from the flutd to the turbine molion

8.7.2 Numerical Model

The conservation equations for momentum, mass, and energy used in TRAC BF1/MOD1 are given in Sections 2.1.2 and 2.1.3, The semi-implicit finite. differtente forth of these egurt tons used in the TPAC-BE1/MOn! numanical scheme are given in Section 2.1.5. The original turbine model has been reformulated as a standard TRAC-BFI/MOD1 TEE and thus makes use of the above semi-implicit formulation of the fluid dynamic equations. The necessary modifications to the numerical model for the TEE component to achieve this objective awe explatnod with the atd of Figure 8.4-?

The turbine TEE consists of two cells in the primary tube and N cells the side arm, where N is specified by the user. Since all side arm cells except the first are treated exactly like a normal TEE component, only the

Figure 8.4-2 Schematic of numerical model for turbine.
first cell is indicated in Figure 8.4-2. The lumped effects of the turbine internals are felt at Junction b (hereafter referred to as the turbine menibrane). As explatned previousty, the working fluid enters Junction D at the conditions prevailing at the center of Cell 1 and leaves as a saturated mixture at the pressure of Cell 2. The turbine membrane is assumed to possess zero volume, so the mass flow rate into Junction b is identically equal to the mass flow rate out of the junction.

The normal flow conditions for the turbine are into Cell 1 at Junction a, from Cell 1 to Cell 2 at Junction b, out of Cell 2 at Junction c and d, and toward the exit of the side arm at all other side arm Junctions. The modifications explained below are applicable only for the case of normal flow and positive pressure gradient at Junction b (i,e, $p_{2}<p_{1}$). For other flow conditions the described modifications do not apply and the fluid equations are solved by the unmodifled TRAC-BFI/MOt1 semf-implictt scheme.

8.4.3 Momeritum Equation

The normal TRAC-BF1/MOD1 momentum equations are sritten as veloc'ty

Implicit Turbine Model
equations for the 1 lartid and vapor phases. Solution of the linearized equations yields expressions for the axplicit new time junction phase velocities, $V_{8}^{m i t}$ and V_{i}^{n+1}, assuming no change in the pressure drop across the junction and implicit correction terin, $\frac{\partial V_{8}^{n+1}}{\partial(\Delta)}$ and $\frac{\partial V_{p}^{n+1}}{\partial\left(\Delta^{p}\right)}$ for each phase velocity due to variation in the junction pressure drop during the time step Theref no change to the normal TRAC BFI/Hoti scheme for otstafning these terms at Junctions a and e

The momentum (or velocity) equation used at Junction b is obtained by assuming the flow is homogeneous, and the total pressure drop between Cells I and 2 is lumped in a slngle form loss term characterized by the coeffictent $f_{\text {turb: Thus, the momentum equation solved at } b \text { is }}$

$$
\frac{\partial V_{m}}{\partial t}+V_{m} \frac{\partial V_{m}}{\partial x}-\frac{1}{P_{m}} \frac{\partial P}{\partial x}=\frac{f_{\text {turb }} V_{m}^{2}}{\Delta X_{b}}
$$

form loss coefficient is obtained as follows. First, the steady state tarbine nozzle velocity ${ }^{8.4-1}$ is computed.

$$
\begin{equation*}
V_{\mathrm{NO2}}=\left(\frac{2 y}{y}-1 \frac{\rho_{1}}{\rho_{1}} r_{\mathrm{b}}^{2 / \gamma}=r_{b_{1}}^{y+1 / \gamma}\right)^{1 / 2} \tag{8,4-2}
\end{equation*}
$$

Next, the mass flow rate corresponding to this nozzle velocity is used to obtain the steady mixture velocity at b:

$$
\begin{equation*}
V_{\mathrm{m}, \mathrm{~b}}=\frac{F A_{\mathrm{NOZ}}}{F A_{\mathrm{b}}} V_{\mathrm{Noz}} \tag{8.4-3}
\end{equation*}
$$

Finally, f is determined by substituting the velocity obtained from Equation (8.4-3) into the finite-difference approximation of the steady-state form of Equation (8.4-1)

$$
V_{m, \mathrm{~b},}^{n}\left(V_{m, b_{1}}^{n}-V_{m, a}^{n}\right) \frac{\Delta x_{b}}{\Delta x_{1}}+\frac{1}{p_{m, 1}^{n}}\left(p_{2}^{n}-p_{1}^{n}\right)
$$

$f_{\text {turb }}$

$$
\left(V_{m, b_{1}}^{n}\right)^{2}
$$

\square
(To prevent numerical instabilities, a lower 1 imit of 0.001 is placed on the numerical value of f turb. With f turb determined from the above explicit expression, the tramspit, sent burb, ftett, fintte difference approximation to Equation (8.4-1) becomes

$$
\frac{V_{m, b_{1}}^{n+1}-V_{m, b_{1}}^{n}}{\Delta t}+V_{m, b}^{n}\left(\frac{V_{m, b_{1}}^{n}-V_{m, n}^{n}}{\Delta x_{1}}\right)=-\frac{1}{\rho_{n, 1}^{n}}\left(\frac{P_{2}^{n+1}-P_{1}^{n+1}}{\Delta X_{b}}\right)-f_{\text {turb }} V_{m, b_{1}}^{n} V_{m, b 1}^{n+1}
$$

Linearizing the pressure term in the above equation yields the following explicit values for $\nabla_{m, b}^{n+1}$ and $\frac{\partial V_{m}^{n+1}}{\partial \Delta^{P}}$
$V_{m, b}^{n+1}=\frac{\left.\left.-\frac{\Delta P_{2} P_{2}^{n}-P_{1}^{n}}{P_{1}}+V_{m, b_{1}}^{n}-V_{m, b y}^{n} \right\rvert\, V_{m, b 1}^{n}\left(\frac{V_{m, b_{1}}^{n}-V_{m, a}^{n}}{\Delta X}\right) \Delta\right]}{1.0+\frac{V_{m, b_{1} f} f_{\text {turb }} \Delta t}{\Delta X_{b}}}$

$$
\begin{equation*}
\frac{\partial v_{m, b_{1}}^{n+1}}{\partial \Delta_{\mathrm{b}}}=\frac{\frac{\Delta t}{\rho_{1} \Delta x_{\mathrm{b}}}}{1.0 \frac{v_{m, b+}^{n} f_{\text {turb }} \Delta t}{\Delta x_{\mathrm{b}}}} \tag{8.4-7}
\end{equation*}
$$

Due to the assumption of homogeneous flow, $\hat{V}_{s, b_{1}}^{n+1}$ and $\hat{V}_{\ell_{1}, b_{1}}^{n+1}$ are set equal
to $V_{n, b y}^{n+1}$; and $\frac{\partial V^{n+1}}{\partial \Delta}$ and $\frac{\partial V_{t, 5}^{n+1}}{\partial \Delta_{0}}$ are set equal to $\frac{\partial V_{n, b}^{n+1}}{\partial \Delta_{0}}$
At Junction c, the only modification to the momentum equation is in the spatial acceleration terms. Since the phase velocities that are stored in the data base for dunction b are the phase velocttles entering the turbine membrane $\left(V_{b}\right)$, the spatial gradient terms in the momentum equations at Junction c must be altered to refiect the velocity differences between the exit of the turbine membrane and turbine exit. Thus, the spatial terms used in the vapor and 1 fautd momentum selutions at Junction c are of the form

$$
\frac{V_{p, c}^{n}\left(V_{p, c}^{n}-V_{m, v_{2}}^{n}\right)}{\Delta x_{2}}
$$

where

Implicit Turbine Model

$$
\begin{equation*}
V_{m, b_{2}}^{n}=V_{m, b_{1}}^{n}\left(\frac{f A_{1}}{F A_{3}}\right)\left(\frac{P_{n, b_{1}}^{n}}{\rho_{n, b_{2}}^{n}}\right) \tag{8.4-8}
\end{equation*}
$$

$$
\begin{aligned}
& A_{0, b 1}^{n}= \text { mixture density at entrance to turbine membrane cell } \\
& \text { (centered value in cell 1) } \\
& A_{0, b_{2}}^{n} \quad=\quad \text { mixture density at exit of turbine membrane. }
\end{aligned}
$$

The momentum equation at Junction d is treated differently depending on whether the side arm represents a steam tap for feedwater heaters or a liquid separator drain. In the former case, the only modification to the morma? TRAC BFI/MODI momentum solution occurs when the control system is used to regulate the mass flow rate out the side arm. For this case, the side arm loss coefficients FKLOS and RKLOS are set each time step by the control system and are mot direttly controlled by the user

In the case of the side arm reprosenting a liquid separator drain, the momentum equations at Junction d are replaced with "pseudo momentum equations"
 effect of the true separation process. With the separator efficiency (SEPEF) set by the user, the explicit new time liquid velocity is defined as

$$
\begin{equation*}
V_{\ell, d}^{n+1}=\text { SFPEF }\left(\frac{\left.1-a_{2}^{n}\right)}{F A_{d} \Delta}\right) \tag{8,4-9}
\end{equation*}
$$

As previnusly discussed, this velocity is such that all the liquid present in Cell 2 at the end of the previous time step would leave through the side arm during the current time step if $V_{\ell, d}^{\text {nol }}$ is rot implicitly changed during the time step

The implicit correction term $\frac{\partial V_{t, d}^{n, d}}{\partial\left(\Delta_{0}\right)}$ is obtained by defining a "pseudo loss coefficient," $f_{\text {sidet }}$ as follows:

$$
\begin{equation*}
\Delta_{\mathrm{d}}=f_{\text {side }} P_{l} V_{t, d}^{n} \tag{8.4-10}
\end{equation*}
$$

This expression is differentiated with respect to $\left(\Delta P_{d}\right)$ to obtain the following value for the implicit term:

$$
\begin{equation*}
\frac{\partial V_{\ell, d}^{n+1}}{\partial\left(\Delta P_{d}\right)}=\frac{1}{2}-\frac{\bar{V}_{\ell, d}^{n+1}}{P_{3}^{n}-P_{2}^{n}} \tag{8,A-11}
\end{equation*}
$$

When $P_{3}^{n}-P_{2}^{n}<0$, both the expiicit and implicit terms are set to zero $A 1 s o$, to avoid numerical instability during startup, the maximum explicit velocity $\mathrm{V}_{\mathrm{t}, \mathrm{d}}^{\mathrm{n}+1}$ is l imited to $50 \mathrm{~m} / \mathrm{s}$. The vapor velocity and its implicit correction term are both set to zero for the liquid separator option.

The ahove annwoach to comput inn the separator liguid velocity is not mathematically rigorous. The implicit correction term should clearly be tied to the change in the void fraction in Cell 2 and not to the pressure drop. However, the present approach is much simpler and has produced satisfactory wesulte in test calculations to date

8.4.4 Continuity Equation

The continuity equatiuns for vapor and liquid mass are solved by the un modified TRAC-BF1/MOD1 scheme in all cells of the turbilie except Cell 2. For mormal flow, the effoct on the working fluld of passing through the turbine membrane is to lower the misiure enthalpy and iressure and change the mixture quality. This change in the mixture qualit, together with the change in the specific internal energy of the steam and 1tquid after passing through Junction b, must be reflected in the continutty (and energy) equat ions for Cell 2.

The state of the mixture leaving Junztion b is computed by assuming that the turbine membrane extracts adiabatically an amount of energy given by:

$$
\begin{equation*}
w_{\text {turb }}=\eta \Delta n_{\text {ideal }} \tag{8.4-12}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { ideal enthalpy change of working fluid assuming at } \\
& \text { isentropic ideal gas expansion from pressure } P_{1} \text { to } \\
& \text { pressure } P_{2} \text {. }
\end{aligned}
$$

Both η and sh $h_{\text {depi }}$ are computed explicitly, as described in Reference 8,4-2. Applying the lst law, the enthalpy of the mixture on exit from Junction b is computed from the equation:

$$
\begin{equation*}
\frac{1}{2} v_{m, b_{1}}^{2}+n_{b_{1}}=\frac{1}{2} v_{m, b_{2}}^{2}+n_{b_{2}}+w_{t u v b} \tag{8.4-13}
\end{equation*}
$$

Implicit turbine Model

Assuming that the working fiaid leaves Junction b as a saturated an xture of vapor and 1 iquid at pressure P_{2}, Equation (8.4-13) leads to the following expression to compute the homogtneous extt quallty, x ${ }^{\text {ba }}$, leaving Junction b:

$$
\frac{x_{k_{y}} h_{9, b_{1}}^{n}+\left(1-x_{b_{9}}\right)^{n_{i, b_{1}}^{n}}+\left(\frac{v_{\text {m, by }}^{n}}{2}\right)^{2}=w_{\text {lurb }}-h_{\ell, b_{2}}^{n}+\left(\frac{v_{t, 0}^{n}}{2}\right)^{2}}{h_{9, b_{2}}^{n}-h_{\ell, D_{2}}^{n}} .
$$

with $x_{b 2}$, the explicit estimate for the homogeneous velocity at the turbine membrane exit may be computed from mass continuity as follows:

$$
\begin{equation*}
V_{m, b_{2}}^{n, 1}=\frac{P_{n, b_{1}}^{n}}{P_{m, b_{2}}^{n}} \frac{F A_{p_{1}}}{F A_{2}} V_{m, b_{1}}^{n, b_{1}} \tag{8.4-15}
\end{equation*}
$$

The implicit correction term is then

$$
\begin{equation*}
\frac{v_{m}^{n+1}}{\partial\left(\Delta_{0}\right)} \frac{n_{1}^{n}, b_{1}}{A_{0}} \frac{\Delta \phi_{1}^{n+1}}{\rho_{n, b_{2}}^{n}+A_{2} \partial\left(\Delta_{b_{1}}\right)} \tag{3.4-16}
\end{equation*}
$$

The explicit estimates for the integrated mass flux terms for vapor are' liquid entering Cell ; from Coll 1 are now computed from the corresponding terms representing mass flux out if Cell 1 together with the above value for $x_{\mathrm{b},}$ as follows:

$$
\begin{equation*}
M_{B, b_{2}}^{n+1}=M_{0, b_{1}}^{n+1}+\bar{M}_{t, b_{1}}^{n+1} x_{L_{2}} \tag{8.4-17}
\end{equation*}
$$

$$
\begin{equation*}
M_{l, b_{2}}^{n+1}=M_{0, b_{1}}^{n+1}+M_{l, b_{1}}^{n+1}-M_{g, b_{2}}^{n+1} . \tag{8.4-18}
\end{equation*}
$$

The teras $N_{g, b}$ and $N_{l, b}$ are computed hy the normal TRAC-BF1/MOD1 numerical scheme. The implicit corrections to the integrated mass flux terms are also obtalned from the correspondting terms comptuted for the mass flows out of fell 1. Thus,

$$
\begin{equation*}
\frac{\partial M_{g, b_{2}}^{n+1}}{\partial\left(\Delta_{b}\right)}=a_{b_{2}} \rho_{a, b_{2}} F A_{b_{1}} \frac{\rho_{m, b_{2}}}{\rho_{m, b_{1}}} \frac{\partial V_{n, b_{1}}^{n+1}}{\partial\left(\Delta_{b}\right)}(\Delta t) \tag{8.4-19}
\end{equation*}
$$

$$
\frac{\partial M_{c, b_{2}}^{n+1}}{\partial\left(\Delta P_{b}\right)}=\left(1-a_{b_{2}}\right) P_{e, b_{2}} F A_{b_{1}} \frac{P_{n_{1}, b_{2}}}{P_{n, b_{1}}} \frac{\partial V_{n, b_{1}}^{n+1}}{\partial\left(\Delta P_{b}\right)}(\Delta v)
$$

By formulating the mass flux terms and the implicit corrections in the above fashion, mass is identically conserved across Junction b.

8.4.5 Energy Equation

The energy equation has been modified from the normal scheme only in celis i and 2 of the turbine. The modification for cell 1 reflects the effect of frictional dissipation. At this point. it is noted that the energy ennations used in the TRAC-BF1/MODI thermal hydraulic solution ${ }^{\text {B.h }}$ - are thermal energy equations. They were obtained from the total energy (1st law) equations by subtracting out the valume integrals of the product of the respective phase volumet ic fluxes (fA V_{0}) with their corresponding momentum equations, However, implicit in the form of the resulting energy equations is the assumption that frictional dissipation is zero. For most flow situations modeled with TKAC-BF1/MOD1, the dissipdtion terms are small and can be neglacted. To account for the possibility of a large frictional (or form) loss through the turbine entrance (Junction a), the effect of dissipation has bean added to the thermal energy equation for Cell 1.

By performing the absve-mentioned operations on the one-dimensional monentum and energy equations, the following terms are added to the therma energy equations:
$\alpha_{p} p_{p} V_{p}^{3} \frac{d(f-A)}{d x} d x$ is added to the left hand side of the mixture energy equation
(see Section 2.1.1) and $V_{p}(F A) f$ f $d x$ is added to the richt-hand side of the vapor energy equation (see Section 2.1.1). In the mixture energy equation, both the vapur and liquid dissipation terms ($p=g$ and l) are added, while in the vapor energy equation, only the vapor terms ara used $(p=g)$. (Note that. the above form of the dissipation terms neglects the effect of dissipation due to the interfacial shear.)

In the turbine energy equation modifications for Cell 1, the area change term above is neglected. The second term is evaluated assuming that all terms under the integral (8.4-1I) are constant and equal to the values at Junction a. f_{p} is simply the total wall friction term ir the momentum equation for Junction a and is a linear con ination of V_{g}^{2} and V_{t}^{2}. Thus, the dissipation term for Cell 1 is approximated as

implicit Turbine Model

$$
V_{p}(F A) f_{p} d x=V_{p}\left(A_{p} v_{9}^{2}+B_{p} V_{l}^{2}\right)
$$

and the term on the right-hand side is written semi-implicitly as

$$
\begin{equation*}
V_{p}\left(A_{p} V_{g}^{*}+B_{p} V_{i}^{n}\right)^{n} V_{p}^{n-1} A_{p}^{n}\left(V_{q}^{n}\right)^{n}+B_{p}^{n}\left(V_{t}^{n}\right)^{*} \tag{8,4-22}
\end{equation*}
$$

The csefficients $A_{\text {p }}$ and B_{p} are simply products and quotient of volume fractions, phastc denstifies, and friction factors and are evaluated explicitly, as indicated. The fact that V_{p}^{n+1} appears in the above expresston requires additions to both the explicit residual in the energy equation for Cell 1 and the implicit derivative of the residual with respect to the pressure drop across Junccion a. These additions are, respectively

$$
\begin{align*}
& \frac{\partial(D I S S)_{0}^{n+1}}{\partial\left(\Delta_{B}\right)}=\frac{\partial V_{B, n}^{n \cdot 1}}{\partial\left(\Delta_{e}\right)} \frac{(D I S S)_{e}^{n+1}}{\nu_{8,0}^{n+1}} \\
& \frac{\partial(D 1 S 5)_{p}^{n+1}}{\partial\left(\Delta P_{a}\right)}=\frac{\partial V_{C, a}^{n+1}}{\partial\left(\Delta P_{a}\right)} \frac{(D 1 S S)_{9}^{n+1}}{\nu_{Q, e}^{n+1}} \tag{8.4-26}
\end{align*}
$$

The effects of friction in the turbine internals are presumably accounted for in the turbine stage efficiency η and the pressure drop, and thus the addtlion of dtsstnation to the thenmal aporay equation is nerformed only in Cell 1 to reflect the effect of wall friction and form loss at the turbine entrance.

T - anergy equation for Cell 2 must be modified to reflect the altered specit enthalpies and phasic mass flows at the exit of the turbine membrane. This is done by altering the energy flux terms due to vapor and liquid flow into the cell at b_{2} in the same manner as was done for the mass flux terms.

Thes,

$$
\begin{equation*}
F_{p, b_{2}}-N_{p, D_{2}} e_{p, b_{0}} \tag{8.4-27}
\end{equation*}
$$

In adrition to the above correction, the dilatation terms $\left({R_{k}}^{n+1} \nabla_{k}\left(\alpha^{n} V_{0}^{n-1}\right)\right.$ and $\left.b^{n+1} \nabla\left(d^{n} y^{n+1}+11-\sum^{n} 1 \psi^{n+1}\right)\right]$ milist tio altared to reflect the change in void fraction, mixture velocity, and flow area as the working fluid crosses the turbine membrane. The modified terms for the vapor and filxture energy equations for Cell ? are, respectively.

$$
p_{2}^{n+1}\left(\frac{a_{0,2}^{n} V_{5, b_{2}}^{n+1}}{\Delta x_{2}^{n} v_{g, 5}^{n+1}} \underset{\Delta x_{2}}{ }\right)
$$

dud

$$
p_{2}^{n+1}\left(\frac{0}{0} \frac{\left.v_{2, b}^{n}+\left(1-a_{22}\right) v_{t, b_{2}}^{n+a_{2}} a_{2}^{n} v_{0, c}^{n+1}+\left(1-a_{2}^{n}\right) v_{2,0}^{n+1}\right)}{\Delta x_{2}}\right)
$$

(Again, note that junction properties such as velocity and flow area that are stores in the data base for Junction b are those appropriats at the upstream stde of the turthte tiventrate, that figure 8.4.?

8.4.6 Critical Flow

The criterion for critical or choked flow at the turbine membrane is the sane as was used in the previous model, 8.4 when the pressure ratio P_{2} / P_{1} exceeds the eritted value, the explitit new time velocity is comprited as folluws:

$$
\begin{equation*}
\bar{\nu}_{\mathrm{NOZ}}^{n+1}=\left(\frac{2 \gamma}{\gamma-1} \frac{p_{1}^{n}}{A_{\mathrm{N}, 1}^{n}} r_{\text {crit }}^{2 / \gamma}-r_{\text {crit }}^{\gamma+1 / \gamma}\right)^{1 / 2} \tag{8.4-28}
\end{equation*}
$$

The implicit correction to the choked valocity arises due to changes in tt_{2} upstream pressure (P_{1}) only. However, since the TRAC-BF1/MOD1 network solution is based oflpressure differentes deloes functions rather than cell pressures, it is assumed that

Implicit Turbine Model

Choking at all turbine junctions other than b is treated by the normal critical flow mudel in TRAC-B01, ,4.4 with the single exception of Junction d when the side sem is trested as a liguid sanarator drain. In this case, a critical flow model is clearly not applicable

8.4.7 References

8.4.1. D. D. Taylor et a 1., TRAC-BD1,MOD1: An Advanced Best Estimate
Computer Program for Bolling Water Reactor Transient Analysis,
Volume 1, NUREG/CR-3633, EGG-2994, April 1984.

9. HEAT STRUCTURE PROCESS MODELS

Four fundanental heat structure process models are modeled by the TRACBF1/MOD1 code. They include the interfacial heat transfer between the vapor and "lquid phases. conductlon withtn structural components, heat transfer between the structures and the fluid, and internal fuel rod power generation. Interfacial heat transfer has been addressed in develop zent of the fluid-dynamics equations. The remaining three mechanis s are discussed below.

The thermal history of the structural reactor materials is obtained from a solution of the heat-conduction equation. The energy exchange betwean the stivctures and the flutd is modeled using Newton's law of cooling. The coupling algorthim is semf implictt. For each new time step (ffgure 9-1), the fluid-dynamics equations are solved based on previous values for the wall heat-transfer coefficient (h) and surface wall temperatures ($T_{\text {wall }}$). The expressions can be written as

$$
\begin{equation*}
q_{*}^{n+1}=h^{n}\left(T_{v}^{n}-T_{1}^{n+1}\right) \tag{9-1}
\end{equation*}
$$

Once the fluid-dynamics equations are solved, the wall temperature distrilutions are deduced from the conduction equation.

For simplicity as well as computing efficiency, the conduction models are separated according to their geometric function. They include conduction within cylindrical walls, slabs, core rods, and flat channel walls. The first model analyzes heat conduction within the pipe walls of 100 p components and of internal vessel components (control guide tubes and vessel wall). The second madel is used to represent vessel internal structures that cannot be charscterized by a cylindrical conduction model. The third model is used to mppresent the heat transfer in a fuet rod. The four th model is used to represent heat conduction within the walls of the BWR fuel bundle or channel. The fifth model is used to model the fuel rod power density distribution. These walls are assumed to be flat, rather than cylindrlcal. Each of these five models is discussed to detail.

In addition, the TRAC-BF1/MODI model for the zirconium-steam oxidation reaction is discussed, together with its effec: un outer fuel rod cladding radius and intarnat heat generation rate sod in the conduction equations for the fuel rods

The remainder of this chapter is outlined as follows. Section 9.1 documents cylindrical heat conduction in one-dimensional components, 9.2 decuments the Cartesian heat conduction for VESSEL s1abs, 9.3 documents fuet-rod heat conduction, and Section 9.4 documents the reactor core power model

Figure 9-1. Semi-implicit coupling between hydrodynamics and structural heat transfer.

9.1 Cylindrical Wall heat Conduction

The temperature distribution within the walls of a component is determined by subroutine CYLHT. A solution is obtained from a finite difference approyimation to the one dimensional concuction equation

$$
\begin{equation*}
\rho c_{p} \frac{\partial T}{\partial t}=\frac{\Delta}{r} \frac{\lambda}{\partial r}\left(r k \frac{\partial T}{\partial r}\right)+\dot{q}^{\prime} \tag{9.1+1}
\end{equation*}
$$

The finite difference equations are derived by applying an integral method ${ }^{9,1,1}$ to the elemental volumes shown in Figure 9.1-1. The general form for the ith volume (1 e 4 en) is

$$
\begin{aligned}
& \frac{r_{i-1 / 2} k_{i-1 / 2}}{\Delta r_{i-1}} T_{i-1}^{n+1}-\left\{\frac{r_{i-1 / 2} k_{i-1 / 2}}{\Delta r_{i-1}}+\frac{r_{i+1 / 2} k_{i+1 / 2}}{\Delta r_{i}}+\frac{1}{2 \Delta t}\left[\left(r_{i} \Delta r_{i-1}-\frac{\Delta r_{i-1}^{2}}{4}\right)\left(x_{p}\right)_{i-1 / 2}\right.\right. \\
& \left.+\left(r_{i} \Delta s_{i}+\frac{\Delta r_{i}^{2}}{4}\right)\left(r_{p}\right)_{i+1 / 2}\right\} T_{1}^{n+1}+\frac{r_{i+1 / 2} k_{i+1 / 2}}{\Delta r_{i}} T_{i+1}^{n+1}
\end{aligned}
$$

$$
\begin{equation*}
\left.\frac{1}{2}\left(r_{1} \Delta r_{i}-\frac{\Delta r_{i-1}^{2}}{4}\right)\left\{\frac{\left(\rho c_{p}\right)_{1+1 / 2}}{\Delta t} T_{i}^{n}+q^{\prime \prime \prime}\right]+\left(r_{i} \Delta_{i}-\frac{\Delta r^{2}}{4}\right)\left[\frac{\left(\rho c_{p}\right)_{1+1 / 2}}{\Delta t} T_{i}^{n}+\dot{q}^{\prime \prime \prime}\right)\right\} \tag{9.1-2}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{1}^{n}=T\left(t^{n}, r_{0}\right) \tag{9.1-3}
\end{equation*}
$$

$$
\begin{align*}
& \text { The boundary conditions applied to the innar }:=1) \text { and outer }(i=N) \\
& \text { surfaces are } \\
& -\left.k \frac{\partial T}{\partial_{1}}\right|_{i=1, N}=n_{\ell}\left(T_{\ell}-T_{i}\right)+\hbar_{9}\left(T_{9}-T_{4}\right)-q_{r_{1}} . \tag{9.1-4}
\end{align*}
$$

Applying this undary condition to the inner surface ($i=1$), the above finite diffe e equation becomes

Cylindrical Heat Conduction

- Conduction node
- . - Conduction volume

INEL A. 19 193

Figure 9.1-1. Cylindrical wall geomeiry.

$$
\begin{aligned}
& {\left[\frac{r_{3 / 2} k_{3 / 2}}{\Delta r_{1}}+\frac{1}{2}\left(r_{1} \Delta r_{1}+\frac{\Delta r_{1}^{2}}{r}\right) \frac{\left(\rho c_{p}\right)_{3 / 2}}{\Delta t}+f_{\mathrm{ss}} r_{1}\left(h_{e}+h_{9}\right)\right] T_{1}^{n+1}+\frac{r_{3 / 2} k_{3 / 2}}{\Delta r_{1}} T_{2}^{n+1}} \\
& =\frac{1}{2}\left(r_{1} \Delta r_{1}-\frac{\Delta r_{1}^{2}}{4}\right)\left[\frac{\left(\rho c_{p}\right)_{3 / 2}}{\Delta} T_{1}^{n}+\dot{q} \cdots++r_{1}\left(h_{e}\left(f_{t} T_{1}^{n}-T_{l}^{n+1}\right)+n_{0}\left(f_{t} I_{1}^{n}-T_{0}^{n+1}\right)\right]+q_{r-1}\right.
\end{aligned}
$$

In this equation, f and f_{t} are implicitness parameters. Because of the semi-implicit coupling with the fluid equations, f ss and f, take on the values of 0 and 1, respecttvely, for transtent calculations. This ensures that both sets of equations use identical surface heat fluxes as boundary conditions for each time step. When a steady-state solution is required, however, large time steps are desirable. Therefore, the conduction equation is written in a fully 4mplectt form and $f_{50}=1$ and $f_{1}=0$.

Note that the above formulation cunveniently positions nodal points on material interfaces. Material properties are evaluated betweer nodes.

The resulting linear equations are solved in a sequential fashion in the axial (z) direction. For each axial position, a solution is achieved using Gaussian elimination. A lumped parameter solution is available if the number of nodes is one (NODES $=1$). For this option, the wall temperature is obtained from

$$
\begin{align*}
& T^{n+1}=\left\{\frac{1}{2}\left(2 \Delta y^{n}+\frac{\Delta y^{2}}{R_{i}}\right)\left(\frac{\mu_{p}}{\Delta i} T^{n}+q^{\prime}+i\right)+n_{t_{i}}\left(T_{t}^{n+1}-f_{t} T^{n}\right)+h_{\theta_{i}}\left(T_{\theta i}^{n+1}-f_{t} T^{n}\right)\right. \\
& \left.\left(1+\frac{\Delta}{R_{i}}\right)\left[h_{t_{0}}\left(f_{t} T^{n}-T_{t_{0}}^{n+1}\right)+h_{\theta_{0}}\left\{f_{1} T^{n}-T_{g_{0}}^{n+1}\right)\right]\right\} \\
& \left\{\frac{1}{2}\left(2 \Delta t+\frac{\Delta \Delta^{2}}{R_{i}}\right)\left(\frac{\kappa_{p}}{\Delta t}\right)+f_{B_{6}}\left(h_{\theta_{1}}+h_{91}+\left(1+\frac{\Delta y}{R_{i}}\right)\left(h_{\varepsilon_{0}}+h_{\theta_{0}}\right)\right] .\right. \tag{9,1-6}
\end{align*}
$$

The subscripts 1 and o refer to the inner and outer radil, respectively,
Note that the present coding does not allow for radiation heat-transfer boundary conditions when NODES $=1$

The boundary condition at the inside surface is inferred from the hydrau?fc conditions inside the component. The outer boundary condition is normally constant, with user-specified values for the heat transfer coefficient and fluid temperatures. Alternately, the user may utilize a generalized heat. transfer capability whereby the outer surface of any one-dimensional component may be thermally coupled to the fluid inside any other component (including the vessel) in the prodel.

TRAC-8FI/MODI also can be used to model the conduction heat transfer with the preceding cylindrical conduction solution within any double-sided heat slab surface within the vessel. Examples of such heat structures are the core barrel. which sees fluid conditions in both the downcomer and the core bypass, and the vessel wall, which sees ambient fiuid conditions as well as downcomer fluid conditions

9.1.1 Reference

9.1-1. p. 0. Roache, Computational fluid Dynamics, Albuquerque: Hemosa Publishers, 1972

9.2 Cartesian Heat Conduction for Vessel Slabs

```
Conduction within vessel structures such as downcomer walls and support
plates is modeled in Subroutine SLABHT. A lumped parameter solution is
available. Through input, the user must supply the slab mass, m, surface
area, A, and material properties, }\mp@subsup{C}{B}{}\mathrm{ and }k\mathrm{ , for heat slabs in each
fluid-dynamic volume. The lumped parameter temperature is obtained from
\[
\begin{equation*}
\frac{\frac{\rho C_{g}}{\Delta} \times T^{n}=h_{2}\left(f_{t} T^{n}-T_{t}^{n+1}\right)-h_{g}\left(f_{1} T^{n}-T_{s}^{n+1}\right)}{\frac{p C_{p}}{\Delta} x+f_{s s}\left(h_{t}+h_{g}\right)} \tag{9.2-1}
\end{equation*}
\]
where \(x\) is an effective slab thickness (m/2pA). The steady-state \(\left(f_{s s}\right)\) and transient \(\left(f_{t}\right)\) flags were discussed in the previous section.
```


Fuel Rod heat Conduction

9.3 Fuel rod heat Conduction

9.3.1 Cylindrical Model

Subroutine RODHT analyzes the conduction of reactor rods on a rod-by-rod basis. The formulation can model diverse rod geometries. Both nuclear and electrically heated rods cam be andyzed. The effects of intemal heat generation, gap conduction, metal water reaction, and variable rod properties are included. The nu rical procedures are capable 0 modeling the entire LOCA scenario in a consistent and mechanistic fashion. The model can also rectolve large axtal (z) gradients charactertstic of the reflood phase.

The rod conduction solution is obtained for each rod group within each fuel bundle component specified by the user. The number of rod groups regutred to represent the radlation heat transfer withln the bundle is optional. However, for each rod group, a conduction solution is obtained and coupling of the rod heat transfer with the hydraulics is modeled with Newton's law of cooling. Power distributions from bundle to bundle, from rod to rod, and fromi node to node within the rod are modeled.

The fuel rod conduction solution method is similar to that described in the cylindrical geometry section. The major differences pertain to treatment of boundary conditions, user belection of composite materid" structure, and provision for spatial and time-dependent internal heat generation.

The fuel rod conduction model has two significant features not for id in the previous code versions. First, axial conduction is included in the fintte difference equations. Second, the nodes arc defined as centered at material boundaries, and the code calculates and stores special interface material properties that are used in the conduction solutions. Referring to Figure 9.3-1, the finite-difference equation for conduction at an interior node (1,5) is identtcal to that found in References 9.3-1 and 9.3-2 except that axial conduction is included and written as

$$
\begin{align*}
& \left.\frac{1}{2}\left(\Delta_{u}+\Delta_{t}\right) \left\lvert\, \frac{1}{4}\left(r+r_{1}\right)^{2}-\frac{1}{4}(r+r)^{2}\right.\right] \rho c_{p} \frac{T^{n+1}-T^{n}}{\Delta t} \\
& \text { [volumetric source terms] + [normal radial conduction terms; } \tag{9.3-1}\\
& +\left[\frac{1}{4}\left(r+r_{l}\right)^{2}=\frac{1}{4}\left(r+r_{-}\right)^{2}\left[\frac{1}{2}\left(k_{u}+k\right) \frac{T_{u}^{n}-T^{n+1}}{\Delta_{u}}+\frac{1}{2}\left(k_{l}+k\right) \frac{T_{t}^{n}-T^{n+1}}{\Delta_{t}}\right]\right.
\end{align*}
$$

At the top and bottom of the heated length, the axial conduction terms are modified; while at the rod axis, material interfaces, and rod surface, the

Fuel Rod heat Conduction

Figure 9.3-1. Nodalization for fuel rod heat conduction.
radial conduction terms are modified (as specified in References 9.3-1 and 9.3-2). NOTE: For each row of nodes across a rod, these finite-difference equat lons form a tridfagonal system of 1 lnear equattons in temms of the new-time node temperatures T^{n+1}, T^{n+1}, and T^{n+1}. These 1 inear systems are solved row by row (ascending the rod) for each rod group. Because the axial conduction tems are explicit, involving old-time temperatures T_{i}^{n} and T_{u}^{n}, this row-by-row scheme may be used instead of solving for the temperature field for the whole rod at once, which would require inverting a large (although sparse) matrix (perhaps 200×200 or more).

The gap between the fuel and cladding of fuel rods is treated by explicit noding on fuel and cladding surfaces with a heat-transfer coeificient between these nodes. Stored energy and internal heat generation in the gap region are neglected. The finfte-dffference equat ion for the outermost fuel pellet node is

$$
\begin{align*}
& \frac{\rho_{p}}{\Delta t}\left(T^{n+1}-T^{n}\right)=\frac{1}{2} \frac{(r+r)(k+k)}{\left[r-\frac{1}{4}(r-r)\right]\left(r-r_{-}\right)^{2}}\left(T^{n+1}-T^{n+1}\right) \\
& +\frac{r h_{\text {gap }}}{\frac{1}{2}\left[r-\frac{1}{4}(r-r)\right](r-r)}\left(T_{+}^{n+1}-T^{n+1}\right) \\
& + \text { (axial conduction terms) + (volumetric heat sour-e) } \tag{9.3-2}
\end{align*}
$$

For th innermost cladding nade, the finite-difference equation is

$$
\begin{aligned}
& \frac{N_{p}}{\Delta t}\left(T^{n+1}-T^{n}\right)=\frac{1}{2} \frac{(r+r)(r}{\left[r-\frac{1}{4}(r,-r)\right](r \cdot r)^{2}}\left(T^{n+1} r^{n+1}\right) \\
& +\frac{1}{2}\left[r+\frac{1}{4}(r,-\cdots)[(r,-r)\right. \\
& +(\text { (dxial conductire termis) }+(\text { volumetric heat sources) }
\end{aligned}
$$

(met ${ }^{-1}$ water reaction source)

The equation used for the uutside of the cladding is similar to quation (9.3-2) (outside surface node of t ~ fue, fesion) except that the radiative hoat flux and metal-water reaction ere inn *ind. This equation is

9.3.2 Rectangular Model

The walls of CHAN components are modeled as flat plates rather than cylinders. In addition, axial conduction is included in th.e difference equations when the reflood model is activated. For the nodalization conventions used in Figure 9.3-2, the finite-difterence form of the conduction equations us ad in TRAC-BF1/MOD1 are

1. For an inside surface code

Fuel rod heat Conduction

Figure 9.3-2. Nodalization for CHAN wall heat conduction.

$$
\Delta z \Delta x \frac{p C_{p}}{\Delta t}\left(T^{n+1}-T^{n}\right)=\Delta z\left[h_{i, v}\left(T_{i, k}^{n+1}-T^{n+1}\right)+h_{i, \ell}\left(T_{i, \ell}^{n+1}-T^{n+1}\right)\right]+\Delta \geq k+\frac{T_{+}^{n+1}-T^{n+1}}{\Delta x_{p}}
$$

$$
\begin{equation*}
+\Delta x\left[k_{u} \frac{T_{u}^{n}-T^{n+1}}{\Delta v_{u}}+k_{\ell} \frac{T_{\ell}^{n}-T^{n+1}}{\Delta z_{\ell}}\right]+\Delta z q_{r a d}+\Delta z \Delta x q^{\prime \prime} \tag{9.3-5}
\end{equation*}
$$

Here. $T_{i, v}$ and $T_{i, e}$ refer to the vapor and liquid fluid temperatures, respectively, at the inner wall surface, $h_{i, v}$ and $h_{i, 2}$ are the corresponding heat transfor coefficients

> 2. For an outside surface node

$$
\Delta z \Delta x \frac{\rho C_{p}}{\Delta t}\left(T^{n+\cdots}-T^{n}\right)=\Delta z\left[h_{0, v}\left(T_{0, v}^{n+1}-T^{n+1}\right)+h_{c, 2}\left(T_{i, 2}^{n+1}-T^{n+1}\right)\right]+\Delta z k \frac{T_{-}^{n+1}-T^{n+1}}{\Delta x_{m}}
$$

Fuel Rod Heat Conduction

$$
\begin{equation*}
+\Delta x\left[k_{u} \frac{T_{u}^{n}-T^{n+1}}{\Delta x_{u}}+k_{l} \frac{T_{l}^{n}-T^{n+1}}{\Delta_{l}}\right]+\Delta z \Delta x q^{\prime \prime} \tag{9.3-6}
\end{equation*}
$$

3. For an interior node

$$
\begin{align*}
& \Delta \Delta x \frac{p_{p}}{\Delta x}\left(T^{n+1}-i^{n}\right)=\Delta k \frac{\left.T^{+n+1}-T^{n+1}\right)}{\Delta x_{m}}+\Delta \cdot \frac{\left(T_{+}^{n+1}-T^{n+1}\right)}{\Delta x_{p}} \\
& +\Delta x\left[k_{u} \frac{T_{u}^{n}-T^{n+1}}{\Delta x_{u}} \cdot k_{i} \frac{T_{2}^{n}-T^{n+1}}{\Delta_{\ell}}\right]+\Delta x \Delta x q^{\prime} \tag{9.3-7}
\end{align*}
$$

It will be noted that the right-hand side of the above equations includes terms for surface convection, axial and transverse conduction, surface radiation, and internal heat generation. The four conductivities used in these equations ($k_{e}, k_{u}, k_{+}, k_{\text {. }}$) are linear averages between the conductivity of the central node and the appropriate outer node.

The channel wall stmface ' aundamy conditions are determined from the same hat transfon correlations package as is uld for other components.

Additional ifformation relative to the rod hest transfer package is supplied in Apperjix G, which documents the moving mesh model for reflood.

9.3.3 Metal-Mater Reaction

When sufficiently high temperatures are reached by zircaloy in a steam environment, an exothermic reaction may occur that will influence the peak cladding temperatures attained. The zircontum steam reaction equation is

$$
\begin{equation*}
\mathrm{Zr}+2 \mathrm{H}_{2} \mathrm{O}-\mathrm{ZrO}_{2}+2 \mathrm{H}_{2}+\mathrm{Heat} \tag{9.3-8}
\end{equation*}
$$

In the presence of sufficient steam, the reaction rate expression of Reference 9.3-3 is written as

fuel rud heat Conouction

$$
\frac{d r}{d t}=\frac{1.126 \times 10^{-6}}{R_{0}-r} \exp \left(\frac{18062}{1}\right)
$$

where
$r=$ reactit 3 surface radius (m)
$R_{0}=$ cladding outer radius (m)
T = ciadding surface temperature
and is assumed to be valid
The method outlined in Reference $9.3-4$ is used to calculate the zirconium-oxide penetration depth and associated heat source. The mas: of zircontum per unit cladding length,m_{2}) consumed by the reaction in one time step is

$$
\begin{equation*}
m_{2 r}=\pi \rho_{2 r}\left[\left(r^{n}\right)^{2}-\left(r^{n+1}\right)^{2}\right] \tag{9.3-10}
\end{equation*}
$$

Equation (9,3-10) is used to calculate r^{n+1}, yielding

$$
\begin{equation*}
r^{11+1} R_{0}\left[\left(r^{n}\right)^{2}+2.252 \times 10^{-6} \Delta \exp \left(\frac{18062}{1}\right)^{11 / 2}\right. \tag{9.3-11}
\end{equation*}
$$

The heat source $\left(q_{n o w}\right)$ added to the conduction equations, assuming a one-region cladding, is

$$
\begin{equation*}
q_{\mathrm{am}}^{\cdots}=6.513 \times 10^{6} m_{2 r}\left[\Delta t\left(R_{0}^{2}-R_{1}^{2}\right)\right]^{-1} \tag{9.3-12}
\end{equation*}
$$

where R_{i} is the inner cladding radius and $6.513 \times 10^{6} \mathrm{~J} / \mathrm{kg}$ corresponds to the energy release per kilogram of zirconium oxidized.

9.. aferences

9.3-1. J. Spore et al.. TRAC-BD1: An Advanced Best Estimate Computer Program for Boiling water Reactor loss-of Coolant Analysis, NUREG/CR-2178, October 1981.
9.3-2. Los Alamos National Laboratory Safety Code Development Group, TRACPO2, An Adv: ced Best Estimate Computer Program for Pressurized water Reactor loss-of-Coolant Accident Analysis, NUREG/CR-2054, LA 8709-MS,

Fuel rod heat Conduction

April 1981.
9.3-3. 3. Y. Cathcart, Quarterly Progress Report on the Zirconium Metal-Water Oxidation Kinetics Program, ORNL/NUREG/TM-41, August 1976.
9.3-4. RELAP4/4005: A Computer Program for Transient Therlial-Hydraulic Analysis of Nuclear Reactors and Related Systems, Volume 1, ANCR-NURTG-1335, September 1975.

9.4 Core Power Models

In general, the requirements for simulating reactor core neutronics during a postulated transient entails the use of a space-time-dependent multi-group neutron transport model. However, the computational solut ion for a detailed space-time neutron transport calculation is generally cost prohibitive. Consequently, the core power response models employed in TRAC-BF1/M001 have a number of simplifications to the generalized neutron transport formulation.

The TRAC-BF1/MOD1 code has three methods of simulating core power response. The first method is simply a user-supplied table lookup scheme. The supplied table is a power-versus time input. The second method employs a space-independent reactor kinetics model with reactivity feedback. The second model is useful for simulating transients where time-dependent spatial variations in the core power distribution are not significant. The third method employs a one dimensional, two group, neutron transport model. The third model solves the one-dimensional steady-state and time-dependent neutron diffusion equations in a rectangular geometry.

The rematider of Section 9.4 is outlined as follows. Saction 9.4.1 will define and discuss several key parameters that are used in the formulation of the point kinetics and one-dimensional diffusion neutronics models. Section 9.4 .2 will detall the space-independent kinetics formulation, numerical approximations to the point kinetics formulation in TRAC-BF1/MOD1, and implementation of the point kinetics model into the code. Section 9.4.3 will detatl the one dimensional neutron diffusion model formalation, numerical approximations to this formulation, and implementation into the TRAC-BF1/MODI code. Section 9.4.4 will give conclusions relative te apulicability of the above models.

9.4.1 Preliminary Definitions

This section details seviral ke, definitions needed to understand the formulation for the space independent and one-dimensional neutror. kinetics models. For a comprehensive overview of the fundamentals for neutron transport and kinetics, see References 9.4-1 through 9.4-5.

Power in a nuclear reactor is generated by approximately 200 MeV of energy each time a neutron causes a nucleus to fission. The rate at which this energy is released is determined by the state of the neutron chain reaction. The behavior of such neutron chain reactions is most easily understoou in terms of the populations of neutrons in successive generations. The key parameter involved here is dencted by k and is defined in terms of the neutron population of strmessive generations.

Core Power Models

$$
\begin{equation*}
k=\frac{\text { number of neutrons in }(n+1) \text { th generation }}{\text { number of neutrons in nth generation }} \text {. } \tag{9,4-1}
\end{equation*}
$$

If we had a system in which the only mechanism for neutron production was fission without external sources, the nth generation would produce

$$
\begin{equation*}
N_{n}=N_{1} k^{n-1} \tag{9.4-2}
\end{equation*}
$$

neutrons, where N_{1} is the number of neutrons in the first generation. When treated precisely, the kinetic behavior oi the above chain reaction is far more complex.

Complications arise from the fact that small fractions of neutrons are not instantaneously produced by fission but result from the decay of certain fission products. A chain reaction is said to be subcritical, critical, or supscritical at time t depending on whether $k(t)<1, k(t)=1$, or $k(t)>1$. respuctively

Often it is more convenient to deal with the reactivity $p(t)$ at some time t which is drftard in terms of the $k(t)$ as

$$
\begin{equation*}
\rho(t)=\frac{k(t)-1}{k(t)} \tag{9.4.3}
\end{equation*}
$$

Clearly, the subcritical, critical, and supercritical states correspond to ρ < $0, \rho=0$, and $\rho>0$, respectively

We now turn briefly wo definitions needed to describe spatial as well as tine effects in neutron transport theory. In a reactor, the neutron flux is a function of space, time, and energy and can be denoted as

$$
\begin{equation*}
\Phi=\Phi(E, r, t)=v(E, r, t) n(F, r, t) \tag{9.4-4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{E}=\text { neutron energy } \\
& \mathrm{r}=\text { location of neutron at position }(x, y, z) \\
& \mathrm{v}=\text { neutron speed } \\
& \mathrm{n}=\mathrm{meutron} \text { density. }
\end{aligned}
$$

The probability that a neutron with a given energy E wi?l undergo a collision twavelling a unit distance p with a nucleus is defined as

Core Power Models

$$
\begin{equation*}
\Sigma\langle E, r, t)=\bar{n}(r, t) \quad a(E) \tag{9.4-5}
\end{equation*}
$$

where
$\bar{n}(r, t)=$ the atomic density of reactor nuclei at position r at time
$\Sigma(E, r, t)=$ macroscopic cross section
व(f) microseopt eross section
The above units are generally given in centimeters. A neutron that undergoes a collision is scattered, captured, or causes a fission.

The expression $a(E)$ is generally referred to as the total cross section and is written as

$$
\begin{equation*}
a_{1}(E)=\sigma(E)+a_{1}(E)+\sigma_{f}(E) \tag{9.4-6}
\end{equation*}
$$

where the subicripts t, s, c, and f refer to total, scattering, capture, and fission. At times it is convenient to group fission and capture cross esetions togethar. Thes, an absamption eross section is defined by

$$
\begin{equation*}
\sigma_{e}(E)=\sigma_{t}(E)+\sigma_{f}(E) \tag{9.4-7}
\end{equation*}
$$

for each reaction type. A macroscopic cross section is defined as

$$
\begin{equation*}
\Sigma(E, r, t)=\bar{n} \sigma_{v}(E) \tag{9.4-8}
\end{equation*}
$$

where the subsrript \times refers to the reaction type.

9.4.2 Space-independent Reactor Kinetics and Core Decay Mudels

Even the one-dimensional, two-group approximation discussed in Section 9.4 .3 requires extensive numerical calculations. Consequently, it is often destrable to solve the reactor power only as a f inction of time. Although this approach is not as accurate, such simplificutions may provide a great deal of insight into the nature of reactor transients. The derivation of the space-independent or point reactor kinetics equation begins with the more generalized space and energy dependent neutron transport equation. The general diffusion ecuation is collapsed into a single energy group diffusion equation. By assuming that the power distribution can be separated into separate spatial and time-dependent functions, the point kinetics equation can be derived using spatial averaging techntques. This approximation is adequate for cases in which the core spatial distribution remains nearly constant

Core Power Models

Accurately modeling a rod withdrawal accident or similar scenario is an example of a case where the above approximation would not be appropriate.
9.4.2.1 Formulation of Point Kinetics Equations. In the space-independent formulation employed in TRAC-Brl/MOD1 the decay tsat equation that describes the energy release from fission decay products is solved after the point kinetics equation is solved. Moreover, in this formulation, allowances for direct moderator heating have been made The point kinetics and decay heat equations are as given in Reference 9.4.6.

$$
\begin{equation*}
\frac{d p}{d t}=\frac{1-\beta}{\Lambda}(\rho-1) \rho+\sum_{i=1}^{n} \lambda_{i} C_{i} \tag{9.4-j}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d c_{i}}{d t}=\lambda_{i} C_{i}+\frac{\beta_{1}}{\Lambda} p \text { for } i=1,2, \ldots, n \tag{9,4-10}
\end{equation*}
$$

$\frac{d H_{e k}}{d t} n=\lambda_{e k}^{H} H_{k k}+\frac{E_{\ell k} P_{t}}{Q}$ for $t=1,2, \ldots m+k=1,2 \ldots n_{t}$
where

```
B = effective delayed neutron fraction of delayed group i
\(\beta \quad\) total effective delayed neutron fraction \(=\sum_{\sum}^{n} \beta\)
    fission power of delayed neutron group i (W)
\(E_{8 k}\) - effective energy input 10 decay group \(k\) from fission of isotope
    \(\ell\) (MeV/fission-s)
\(\mathrm{H}_{e}\) decay power of decay heat group \(k\) from fissile isotope \(\ell(W)\)
A promit neutran generation time (s)
\(\lambda_{i}\) * decay constant of delayed neutron group i \((1 / \mathrm{s})\)
\(\lambda_{2 k}^{H}=\) decay constant for decay heat group \(k\) from fissile isotope
        (1/s)
in = number of decay heat groups
n \(n\) number of delayed nediron groups
```

```
nf}=\mathrm{ number of fissile isotopes
p, instantzncous fissfon power of isotope \ell (W)
P}=\mathrm{ instantaneous total fission power ( }\boldsymbol{W})=\mp@subsup{\sum}{k=1}{\mp@subsup{n}{f}{}}\mp@subsup{P}{k}{
Q = total energy release per fission (MeV/fission)
p = total feedback reactivity ($)
```

Eqcations (9.4.9) and (9.4-10) constitute the point kinetics equations Equation (9.4-9) describes the time rate of change of total instantaneous fission power. The first and second terms on the right-hand side of Equation (9.4-9) comprise the neutrons directly generated by the fissile fuel and neutrons generated by fissile product precursors, respectively.

Equation (9.4-10) describes the rate of change of the delayed neutron concentrations. The first term on the right-hasd side of Equation (9.4-10) describes the rate of decay, while the second wescribes the rate of production from fissioning isotopes. Table 9.4-1 lists the values for β_{i} and λ_{i} presently employed in the code. The β 's are default values and can be changed by the code user. The value of Λ has a default value of $4.754 \mathrm{E}-5$ s if not speciffed by the user. Together, Equations (9.4-9) and (9.4-10) constitute $1+\eta$ equations in $1+n$ unknowns, where $P(t)$ and $C_{1}(t)$ for $i=1,2$, $\ldots . n$ are to be solved for.

Table 9.4-1. Default values for key reactor kinetics constants.

Group i	B_{i}	λ_{1}
1	$2.74 \times 10-4$	0.0127
2	$1.38 \times 10-3$	0.0327
3	$1.22 \times 10-3$	0.115
4	$2.64 \times 10-3$	0.311
5	$8.32 \times 10-4$	1.40
6	$1.69 \times 10-4$	3.87

The reader is cautioned that the $\beta_{i}^{\prime} s$ and Δ values are nominal values that min not characterize the fuel properties to be simulated. Since these Da abuters can differ depending on fuet burnup and enrlchment, the use of separate neutronics calculations may have be to emp?oyed to calculate globally everaged values of the β_{i} 's and A.

The decay heat equation [Tquation (9.4-11)] quantifits thermal energy production of fission products that decay by emitting beta and gamma rays.

Core Power Models

The beta and gamma radiation is subsequently absorbed as heat. The first term in Equation (9.4-11) is the loss rate due to decay of the various gamma and beta emitters, and the second ternt is the creatfon rate for new gamma and beta entters from fission.

In the current formulation in TRAC BF M MOD1, the user specifies fission power fractions for three nuclides $-{ }^{255} \mathrm{U},{ }^{258} \mathrm{U}$, and ${ }^{23} \mathrm{p}_{1}$. The default values for these power fractions are 21, 21, and 08 for $83 \mathrm{y}, 239 \mathrm{pu}$, and 238 y , respectively. The onergy release rates $E_{\ell 8}$ and associated decay constraints $\lambda_{f k}$ are given in References 9.4-6 and 9.4-7

In order to bettwr understand the energet ics of Equations (9.4-9) through (9.4-11), consider the fissioning of ${ }^{253} U$, which is the principal fuel in most BWRs. A fissioning 25 atom releases approximataly 200 MeV of energy. Most of this energy (93%) is promptly converted into thermal energy, while a sma,i percentage (7%) of the fission energy is stored in the fisston products to be released at a later time. Similar energetics apply to ${ }^{238} \mathrm{U}$ and ${ }^{232} \mathrm{Pu}$.

To calculate the effective instantaneous thermal power delivered to the reactor, Equations $(9.4-9)$ and $(9.4-10)$ must first be solved for $P(t)$. Now, $P(t)$ is the instantaneous fission oower due to both prompt and defayed neutrons Since some of the instantaneous fission power is stored in the fission decay products for later release and some of the previously stored energy is released, the instantaneous effective thermal power is the sum of instantaneous neutron power the's instantaneous neutron power deposited to decay products) and instantaneous power released by previously existing fission decay products. Once Equations (9.4-9) and ($9.4-10$) have been solvad, instantaneous effective thermal power can be quantitatively expresscd as

$$
\begin{equation*}
P_{\text {eff }}=P-\sum_{k=1}^{n_{t}} P_{k} \sum_{k=1}^{m} \frac{E_{t k}}{Q \lambda_{t k}^{k}}+\sum_{k=1}^{m} \sum_{k=1}^{m} H_{e k} \tag{9.4-12}
\end{equation*}
$$

where $\vec{r}_{\text {eff }}$ is the instantaneous thermal energy deposited into the reactor core.

The code user as the additional option of partitioning the fraction of fission power and decay heat for direct moderator hating. These fractions rurrently default to 0.0 . Determining what this moderator deposition is aepends on specific BWR system conftguration. Most of this moderator energy deposition is due to gamma heating and may require a detailed core radiation transport simulation to give a good estimate. This modeling capability exists for the point kinetics misdel as well as the one-dimensional diffusion approximation.

In a BWR, direct moderator heating can be significant, because this causes an almost instantaneous void reactivity feedback during a reactor transient sinulation. For example, this phenomenon may apply to severe Buff pressurization iransients. If all power generated is assumed to be deposited only into the fuel and then transferred to the moderator/coolant, the void

Core Power Models

generation and associated reactivity feedback are delayed. This delay may artificially distort the cheractor of the transient.

The formulation of dicct ssorierator hesting in TRAC-BF1/MGD1 for a given cell is density-weighted and is assumed to be directly proportional to the power.

$$
\begin{equation*}
P_{\text {DNa }}=\frac{P_{m}}{1000}\left(F_{t} P_{t}+f_{d} P_{d}\right) \tag{4.4-13}
\end{equation*}
$$

where

$$
\begin{aligned}
& P_{+}=\text {instantaneous fissior power }(W) \\
& F_{f}=\text { direct moderator heating power fraction for } P_{f} \\
& P_{d}=\text { instantaneous decay power }(W) \\
& f_{d}=\text { direct moderator heuting power fraction for } P_{d} \\
& P_{\mathrm{d}}=\text { cell-average moderator density }(\mathrm{kg} / \mathrm{m} 3) .
\end{aligned}
$$

The F_{f} and f_{d} confficients are user-specified fractions. The rate of thermal energy deposition into the fuel then becomes

$$
\begin{equation*}
P_{\text {fue }}=\left(P_{f}+P_{d}\right)-P_{\text {DAM }} \tag{9.4-14}
\end{equation*}
$$

The next two subsections will detai? the feedback reactivity model presently employed in TRAC-BF1/MOD1 and additional details for approximat ing the core power decay model
9.4.2.2 Reactiv ty Feedback Model. The reactivity parameter ρ in Equation (5.4-9) consists of a user-input control reactivity and a codecalculated feedtack (fb) reactivity. We can express the totar reactivity as

$$
\begin{align*}
& \rho=P_{\text {prog }}+r_{s} \tag{9.4}\\
& P_{\text {pros }}=\frac{k_{\text {pros }}-1}{k_{\text {pros }}} . \tag{9.4-16}
\end{align*}
$$

The control reactivity is computed from a table lookup scheme or is driven by user-modeled control variables. The control reactivity is interded to model reactivity associated with control rod mot ion or any other extermal changes that might effect the core neutronics during a transient. The feedback rezetivity is assumed to be decoupled from the control reactivity. Furthermore, in formulating the feedback reactivity, it is assumed that each

Core Power Models

phenomenon driving feedback is mutually decoupled. The controlling phenomena driving reactivity feedback presently modeled with TRAC-BF1/MOD1 are:

- moderator void (VD)
- moderator teniperature (TM
- fuel temperature
- boron injuction
(B)

For any of the above four controlling phenomena, the general form of the reactivity coeffiriont is given as

$$
\begin{equation*}
c_{q}=\frac{1}{k} \frac{\partial k}{\partial q} \tag{9.4-17}
\end{equation*}
$$

for the core property parameter q. The feedback reactivity for a small change in q is expresced as

$$
\begin{equation*}
\frac{\Delta k}{k}=c_{q} \Delta \Delta \tag{9.4-18}
\end{equation*}
$$

Since it is assumed that the reac:ivities for each G variation can be calcul-ted independently, the total feedback reactivity becomes

$$
\begin{equation*}
p_{f b}=\sum_{q-1}^{\infty} c_{q} \Delta q \tag{9.4-19}
\end{equation*}
$$

In a typiral BWR reactor core, the thermal-hydraulic properties are not spatially uniform. Consequelitly, in the formulation of Equation (9.4-19), a spatilally dependent welghting scheme is employed to calculate the global behavior of $p_{i b}$. for a nonuniform reactor with spatially varying core properties, the total feedback reactivity is

$$
\begin{equation*}
P_{t \mathrm{~b}}=\int d v \sum_{q=1}^{4} P_{q}(\bar{r}) W_{q}(\bar{r}) \Delta q(\bar{r}) \tag{9.4-20}
\end{equation*}
$$

where the control volume integrated ovel is the reactor core and W_{c} are spatially varying weighting functions. The present TRAC-BF1/MOD1 modeling ontions all.w the user to efther employ a volume or a power-souared wei, ht ing schame. The power-squared weighting scheme is formulated so that

$$
\begin{equation*}
W_{T M}(r)=W_{V D}(\bar{r})=W_{B}(\bar{r})=W_{T F}(\bar{r}) \alpha^{p}(\bar{r}) \tag{9.4-21}
\end{equation*}
$$

where $P(r)$ is a normalized power distribution. Equation $(9.4-21)$ has a
theoretical basis and can be found in References 9.4-6 and 9, 4-8.
The reactivity feedback mindel for vold, boron, moderator, and fuel temperature currently employs reactivity coefficients that are fulynomial approximations using core-averaged properties. The polynomial approximations to the reactivity coefficients are functions of local thermal-hydraulic condftions. However, the polynomial copfficients themselves are spatially invariant and are globally averaged parameters. The invariance assumption is reasonable if core fuel properties are approximately uniform at different power densitics

The Doppler reactivity varia:ion induces a change in k, which is due to variations in fuel temperature and moderator voiding around the fuel. The Doppler reactivity change is formulated as

$$
\begin{equation*}
R_{1 F}=C_{1 F}\left(\sqrt{T_{f}}-\sqrt{T_{f 0}}\right) \tag{9.4-22}
\end{equation*}
$$

Where is the final averace fuel temperature and $T_{\text {fo }}$ is the reference averar fuel temperature. The coefficient $C_{T F}$ is a polynomial function of the local modarator void fraction and is given as

$$
\begin{equation*}
a_{T F}+b_{T F} \alpha+c_{T F} \alpha^{2} \tag{9.4-23}
\end{equation*}
$$

The Doppler coefficient in a BWR is a function of a because tha channel void fraction strongly iffects the fuel rasonance escape probability behavior.

The change in moderator void reactivity feedback driven by a small change in a is calculated as

$$
\begin{equation*}
c_{v o}=c_{v o} \Delta \alpha \tag{9.4-24}
\end{equation*}
$$

The void reactivity coefficient $C_{v o}$ is also expressed as a quadratic power series expansion in the fuel channel vold fraction.

$$
\begin{equation*}
c_{V D}=a_{V D}+b_{V D} \alpha+c_{V D} \alpha^{2} \tag{9.4-25}
\end{equation*}
$$

Fuel channel void collapse or generation is the dominant feedback mechanisn during most posculated BWR operational transients.

During normal operating conditions, the moderator temperature reactivity feedtrock is small compared to void reactivity feedback. However, moderator feedback effects are impoitant during cold sta. ' ip and hot standty conditions where moderator void generation conditions are nonexistent or small. For a small variaiion in moderator temperature, the moderator reactivity feedback is expressed as

Core Power Modils

$$
\begin{equation*}
P_{T M}=C_{T M} \Delta J_{M} \tag{9.4-26}
\end{equation*}
$$

where T_{M} is the fuel channel liquid moderator temperature. The moderator temperature coefficient is expressed as a power series function of moderator tomperature

$$
\begin{equation*}
C_{M}=i_{M}+B_{-M} T_{M}=C_{T M} T_{M}^{2} . \tag{9.4-27}
\end{equation*}
$$

The boron feedback reactivity is assumed to be

$$
\begin{equation*}
\rho_{0}=C_{B C} \quad N R \tag{9.4-28}
\end{equation*}
$$

where B is the boron concentration in ppm. The boron concentration feedback coefficient $C_{B C}$ is modeled as a quadratic function of the moderator density $P_{m}, 50$ that

$$
\begin{equation*}
\varepsilon_{B C}=a_{B}+b_{B} P_{\mathrm{D}}=C_{B} P_{n}^{2} \tag{9.4-29}
\end{equation*}
$$

A set of default coefficients for the various feedback phenomena is 11 ted in Table 9.4-2. The reactivity quadratic curves were obtained from curve fitting data. $9.4-9$, The default values are nominally for a fresh BUR core; however, the default values are only recommended if a code user does not have data that are BWR plant-specific. Reactivity parameters are dependent on fuel geometry, burnup, and other considerations. The actual coefficient vatuns may reautre the use of multidimenstomal neutronics simulation.

9.4.2.3 Solution Approximation to the Point Kinetics Equations. The

 present strategy for integrating the point kinetics equations to advance the fisston power and delayed neutron precursors to new time values requires the following input:1. old-time fission power
2. old-time delayed neutron precursor concentrations
3. new-time feedback reactivity change calculated from new-time thermal-hydraulic input parameters and/or user-supplied control variables or tables.

The solution scheme used in TRAC-BF1/MOD1 emgloys a fourth-order Runge-Kutta integration method deveioped by Gill , 9.4-10,11 This technique was found to be very fast with excellent round off error-limiting characteristics. Unless the thermal hydraulic time step is small, it is generally necessary to solve the point kinetics equation over a series of time step subintervals.

Table 9.4-2. Default values for key feedback phenomena.

Parameter	Constant	Value
Neutron generation time (s)	TNEUT	4.754×10^{-5}
Fuel reactivity coefticients	$c_{1}{ }^{15}$	-8.44 $\times 10^{-4}$
	$\mathrm{C}_{2}^{\text {IF }}$	-3.95×10^{-6}
	$C_{3}{ }^{\text {¹ }}$	0.00
Moderator temperature	$\mathrm{C}_{1}{ }^{\text {M }}$	-1.158×10^{-4}
Reactivity coefficients	$\mathrm{C}_{2}^{\text {M }}$	4.63×10^{-7}
	$\mathrm{C}_{3}^{\text {tM }}$	-9.69×10^{-10}
Void reactivity coefficients	$c_{1}^{\text {vo }}$	-4.78×10^{-2}
	C_{2}	-2.748×10^{-4}
	$c_{3}^{\text {VD }}$	1.911×10^{-1}
Boron reactivity soefficients	c_{1}^{8}	3.6×10^{-5}
	c_{2}^{8}	-2.23×10^{-7}
	C_{3}^{8}	0.0

This is borne out by the physical observation that the characteristic time constants connected with the neutron kinetics time scales can be very small relative to hydrodynanic time scales. This is especially true for severe transients where there is a very large reactiv ty insertion. The maxinum solution time step subinterval for the point kinetics equatio scales with the prompt neutron generation time and is given by

$$
\begin{equation*}
\text { 8t } \frac{0.8 \Lambda}{\beta M a x[p-1,1]} \tag{9,4-30}
\end{equation*}
$$

where p is the old-time reactivity. From the above expression, it is also clear that, for large ($\rho \gg 1$) reactivity insertiuns, δt_{n} varies inversely with p. Thus, the move severe the transient, the cmaller δt becomes. The approximation for the total global change in core reactivity is deiailed in Section $9,4.3 .3$. With respect to TRAC-BF1/MOD1, the solution algorithin time step size is 1 imi .ed by ihe hydiaulic time step size Δt_{H}. If δt_{n} < Δt_{H}, the kinetics equations are integrated over J equal subintervals where

Core Power Models

$$
\begin{equation*}
J=\frac{\Delta t_{n}}{\Delta t_{n}}+1 \tag{9.4-31}
\end{equation*}
$$

The total reactivity increnent thet was calculated as a function of the last Hydraulte. the stop ts splt+ thto $\frac{\Delta y}{J}$ increments. Thus, when the kinet4es equations are integrated, the reactivity change is approximated as a tir dependent ramp Ciange $s p$) up into a equal increments of magnttude $\frac{4 \text {. }}{\text { ? }}$. The linear assuaption may break down, however, if there is a very large initial reactivity change coincident with the situation $\Delta t_{H}, i_{n}$. Vinder these circumstances, some nonlinear reactivity insertion rate may be a better approximation to integrate the point kinetics equation $9.4-8,9$ if $8 t_{n} \rightarrow \Delta t$, only one integration of the point kinetics equation is done. Under these circumstances, the new-til reactivity change can be thought of as a step change approximation

It should be noted that the dccay heat equation [Equation (9.4-11)] is solved using the same Runje-Kutta algorithm and the same time sut aterval δt_{n} However, the numerical solution to Equation $(9.4-11)$ is further modified after the 11 ex's have been solved to account for 9.4 .6

$$
\begin{aligned}
& \text { 1. Heavy element decay heat (from }{ }^{239} \mathrm{U} \text { and }{ }^{259} \mathrm{~Np} \text {) and } \\
& \text { 2. Inclusion of the effect of fission product neutron capture. }
\end{aligned}
$$

If the above two phenomena were not accounted for, the instantaneous fission decay energy would be

$$
\begin{equation*}
P_{\text {O|kT }}=\sum_{k=1}^{n_{+}} \sum_{k=1}^{m} H_{k} \tag{9.4-32}
\end{equation*}
$$

1) fact, the user does not have to model these phenomena; the code decay heat will default to Equation $(9.4-32)$. With the above two phenoniena accounted for the detital imstantancous decay poseri is spritton as

$$
\begin{equation*}
P_{\text {DIN: }}^{\prime}=G P_{\text {DINI }}+P_{\text {HE }} \tag{9.4-33}
\end{equation*}
$$

where $P_{\text {HE }}$ accounts for heavy elanent decay heat and G accounts for fission praduct neutron capture. The expressions for G end $P_{\text {HE }}$ are rather complex expmesetions and are given in Deference Q 4-6

9.4.2.4 Approximations of Reactivity Feedback for the Point Reactor

 Kinetics Equations. The calculation of reactivity feedback inot includinguser-supplied reactivity insertion tables or control variables) is initially done on a cell-by-cell basis. The reactor core is partitioned into chanimel regions (using (HÂk components) and bypass regions (using VESSEL component). Contributions for the moderator, 0 ppler, void, and boron feedback coefficients are glubaily summed over all CHAN and VESSEL cells. The same reactivity coefficient polynomial corve fits are used for the CHAN and bypass VESSEL cells. The user has the option to specify what fraction of the reactivity contribution is from the VESSEL bypass and CHAN components.

After the new-time thermal-nydraulic calculations are done, the total reactivity change is calculated from the individual changes in reactivity for the moderator, boron, Doppler, and void contributions. The total change in feedback reactivity is written as

$$
\begin{equation*}
\rho_{F B}^{n+1}=\rho_{T B}^{\pi} \cdot \Delta A_{F B}^{n+4} \tag{9.4-34}
\end{equation*}
$$

where
and where n and $n+1$ indicate old and new time values.
The individual reactivity sentributions are computed from

$$
\begin{equation*}
\Delta_{n+1}^{n+1}=\sum P_{1+}^{n+1}\left(\sqrt{T_{F_{1}}^{n+1}}, i_{1}^{n}\right) W_{18} \tag{9.4-36}
\end{equation*}
$$

$$
\begin{equation*}
\Delta Q_{V D}^{n+1} \quad \sum p_{V 0,1}^{n+1}\left(\alpha_{1}^{n+1}-\alpha_{i}^{0}\right) \alpha_{v o, i} \tag{9.4-37}
\end{equation*}
$$

$$
\begin{equation*}
\sum W_{T N} P_{T N_{1}}^{n+1}\left[\left(1-a_{1}^{n+1}\right) \rho_{t}^{n+1} T_{N, 1}^{n+1}-\left(1-\alpha_{i}^{n}\right) \rho_{2}^{n} T_{N, 1}^{n}\right] \tag{9.4-38}
\end{equation*}
$$

$4{ }^{4}$

$$
\sum\left(1-\alpha_{2}^{n+1}\right) \rho_{x}^{n+1} h_{i n},
$$

Core Power Models

$$
\Delta_{n_{B}}^{n+1} n \frac{\left.\sum_{1} W_{B, i} \rho_{B}, 1\left[1-\alpha_{i}^{n+1}\right) \rho_{\ell, 1}^{n+1} B_{i}^{n+1}-\left(1-\alpha_{i}^{n}\right) \rho_{2}^{n} B_{1}^{n}\right]}{\sum\left(1-\alpha_{1}^{n+1}\right) \rho_{2}^{n+1} W_{B, 1}}
$$

where i is the cell index and the summation is over all cells in the reactor core regicn. The reactivity coefficients are computed using the new-+ me condttions in each cell. The moderat or temperature and boron feedtack contributions are normalized by the amount of liquid in the cells. This is because the property is connected with the liquid phase and cannot exist apart from the presence of liquid

As previously mentioned as an option, the user is allowed to choose for each feedback reactivity component whether the power-squared weighting is to be applied or not. When the power-squared weighting is not chosen for a given feedback reactivity component, the stimple volume avorage is used.

In addition to the feedback, the explicit reactivity (control rod) insertion is modeled as a user-input reactivity-versus-time table. This reactivity table represents the additional control rod reactivity worth inserted from steady state. At the beginning of the transient, this idactivity value is therefore zero. The control rod reactivity, $\rho_{C R}$, inserted in each time step is found from this reactivity table. The total reactivity ingented into each time sten is th. cum of the feedback reactivity and the control rod reactivity. The geutron multiplication factor at the new time is updated as

$$
\begin{equation*}
k^{n+1}=k^{n}+k^{n}\left(P_{r y}^{n+1}+P_{C x}^{n+1}\right) \tag{9.4-40}
\end{equation*}
$$

where k^{n+i} and k^{n} are the neutron multiplication factors at the new and old times, respectively. At the beginning of a transient, $k=1$ is assumed. The new time reactivity piss

$$
\begin{equation*}
\frac{k^{n+1}-1}{k^{n+1}} \tag{9.4-41}
\end{equation*}
$$

where p^{n+1} is then used in the point kinetics equation to solve for the newtime fission power

9.4.2.5 Implementation of the Space-Independent Reactor Kinetics Model.

 The user input requirements for the TRAC-BFI/MOD1 core power model are presently inputted into the code using the one-dimensional CHAN and threedimensional VESSEL components and auxitfary POWER cards to define ifdttional input data. The dhroutine IPOW is the principal input processor of the usersupplied kinetic ameters. If the user specifies a spatially indepenuentmodel, the subroutine FPOW calls FPPT, which proci inl spailally independent kinetics input models. The decay hea uid delayed neutron constants are stored in block data with the name BLUCKDATA. The subroutine POWER controis the overall shlution logic for the space-independent core power solution. This subrocti ine employs user inputted options to branch to other subroutines depe ding on what options have beed invoked. Relative to spaceindependent models, the following options can be ...voked:

1. Constant power
?. Table tookup power
2. Trip-initiated puwer
3. Point kinetics with table lookup reactivity
4. Point kinetics with trip-initiated table lookup
5. Point k nztics with reactivity 1 eedoack

Deint kinetics with trin-initiated table tookup, reactivity feedback, and scram insertion.

It should be pointed out that the cne dimensional kinetics model can also be invoked by the subroutine POWER. Discussion of this model is deferred until sectlori 3.4.3.

If the user employs option 1, the code will either use a constant core Power specified by the user or emplay a user-specified control system to drive the core power. In the event that the iser employs lookup tables fontions 2 or 3), the code employs a linear interpolation SC, he to find power or reactivity at a particular time step. The subroutine LININT is employed to do this interpolation. The use of option $1, \Sigma$, or 3 preciudes the use of the reactor physics models supplied in the code.

If the kinetics space-independent solution scheme is employed (options 4 through 7), POWER calls the subrout ine POWPT, which solves the naint kinetes Equations (y.4-9) and (9.4-10). Once the prompt fission power has been calculated, POWER calls POWDK, which uses the numerical results from POWPT to calculate the decay power fraction of the total power

Relative to the reactivity feedbark, the subroutine VSS calculates the VESSEL bypass moderator, boron, and void reactivity fe dback contributions. The CHAN component Doppler feedback reactivity is calculat d with subroutine COR3. The CHAN component moderator, void, and boron feedback reactivities are calculcted with subroutine CHN3. It should be pointed out that subroutine CHN3 is run before COR3. COR3 uses new-time channel thermal-hydraulic conditions to caiculate the new-tire fuel temperature profile prior to calculating the Doppler reactivity tsedback. If the user-specified time-versus-reactivity table is employed. P_{CR} is interpolated in the subroutine POWPT. If the control rod reactivity is modeled as a control variable, the

Core Power Models

subroutines for the TRAC-BFI control system are employed. The approximation model for direct moderator heating is done in subroutine TFIE.

9.4.3 One-Dimenstonal Kinetics Model

This section documents the one-dimensional diffusion moral presently employed in the TRAC-BF1/MODI code. This mode] is a two-group kinetics scheme based on the Analytic Nodal Method (AlM) The ANM can also be extended to two- or three-dimensional problems by making the appropriate programming modifications to TRAC-BFI/MOD1. The one-dimensional model assumes axial variation of the core neutronic properties but is assumed uniform in the radial direction. This assumption precludes detailed modeling transients with inherently three-dimensional characteristics. The one-dimensional diffusion approximation is applicable to a number of transient scenarios, including many types of anticipated transients without scram (ATWS). Control bank insertion or withdrawal events may also be applicable under certain circumstances where the radial flux profile can be approximated as being flat. ATWS applications using the TRAC ANM approximation can be found in Reference 9.4-13.

The one-dimensional TRAC-BF1/MOD1 model assumes that a parallel mult i-channel core can be divided into a number of a*ial nodes. Each hydraulic node in the reactor core may be subdivided into multiple neutronic nodes, and each neutronic node may have separate fuel characteristics. The one imensional diffusion model can be thought of as working in three stages.

1. Radially averaged properties (state variables) for each axial hydraulic level are calculated (void fraction, moderator temperature, fuel rod temperature, boron concentration, and control rod fraction)
2. One-dimensional diffusion transport parameters for each axial node are calculated with the radially averaged properties from stage 1.
3. The transport coefficients from stac ; 2 are inserced into the two-group ANM diffusion approximation, and the core power distribution is calculated.

It shouid be noted that stages $1-3$ apply to both steady-state and t.ansient situations. In the transient mode, the core thermal-hydraulic properties are recrlculated at each hydraulic time step so that the core properties, transport coefftcients, and diffusion equation solution similarly have to be updated. We shall now detail each of the abo"e three stages.
Q.4.3.1 Radtal Averaged-Thermal - Hydraul tc r-operties. In TRAC-BF1/M001, the core region can be represented by multiple CHAN components, each having different characteristics in the radial direction. Each CHAN component approximates a particuldr fuel bundle radial region. Because of radial varlations in moderator temperatures, void fractions, etc... a radtal averaging algoritha is emplayed to generate averaged core properties at a particular
axial level. These averaged properties are required to calculate transport. coefficients used in the TRAC-BFI/MODI one-dimensional diffusion model. The radial cell averaging is done over both the CHAN and associated VESSEL bypass components.

The approximations used for the representative radially averaged thermal-hydraulic properties are given as follows.

$$
\begin{align*}
& a_{i}=\sum_{n=1}^{N_{c}} \alpha_{i, n} R_{i, n}^{c}+\sum_{i=1}^{N_{v}} a_{j} r_{i, i}^{v} \tag{9.4-42}\\
& \bar{T}_{m i}=\frac{\sum_{n-1}^{N_{c}}\left(1-\alpha_{i, n}\right) T_{m i, n} R_{i, n}^{c}+\sum_{j \in i}^{N_{v}}\left(1-\alpha_{j}\right) T_{m j} R_{j, i}^{v}}{1-\alpha_{i}} \tag{9,4-43}\\
& T_{f i}=\sum_{n=1}^{N_{c}} T_{f i, n} R_{i, n}^{c} \tag{9.4-44}\\
& T_{+i, n}=\sum_{k=1}^{K_{n}} \sum_{\ell=1}^{L_{k}, n} T_{i i, n, k, e^{\prime}}{ }_{k, \ell}^{f} \tag{9.4-45}\\
& \bar{B}_{i}=\frac{\sum_{n=1}^{N_{c}}\left(1-\alpha_{i, n}\right) p_{\ell i, n} b_{i, n} R_{i, n}^{c}+\sum_{i=}^{N_{v}}\left(1-\alpha_{i}\right) p_{\ell j} b_{i} R_{j, i}^{v}}{\sum_{n=1}^{N_{c}}\left(1-\alpha_{i, n}\right) p_{e i, n} R_{i, n}^{2}+\sum_{j=1}^{N_{v}}\left(1-\alpha_{j}\right) p_{e j} R_{j, i}^{v}} \tag{9,4-46}
\end{align*}
$$

$$
\begin{aligned}
& \text { where } \\
& a=\text { void fraction } \\
& R^{c}=\text { CHAN weight factor } \\
& N_{f}=\text { number of CHAN components } \\
& N_{v}=\text { number of VESSEL cells corresponding to level i } \\
& T_{m}=\text { moderator temperature }(K) \\
& T_{f}=\text { fiel temperature }(K)
\end{aligned}
$$

```
3 a boron density (kg/m3)
b = boron concentration (ppm)
K}=\mathrm{ number of rod groups in CHAN component n
L}\mp@subsup{L}{k,n}{}={\begin{array}{l}{\mathrm{ number of radial fuel nodes in fuel rod group }k\mathrm{ in CHAN}}\\{\mathrm{ component. }n}
R
R
p, = Tiquid density (kg/m}\mp@subsup{}{}{3}
i = core hydraulic level index
j VESSEL cells on core Tevel index
n chaN comronent index
K = rod group ingex
I = fiet radz?l node index.
```

Each hydraulic parameter consists of a veighted average of CHAN and VESSEL component hydraulic variables. The VESSEL component portion of the hydraulic parameter represents the contribution of the bypass region surrounding each fuel bundle. Normally, the bypass region of the core is represented by fewer axial cells than the region within the CHAN component portion of the cGre; hence, the weight factors for the VESSEL portion of the weighted sums must take this into account. We shall now give further details to explain how the CHAN, VESSEL, and fuel weighting factors are defined.

The CHAN weight factor may be determined using one of three options:volume weighting, power-squared wtighting, or user-input weighting. The general form of the waight factor is

$$
\begin{equation*}
R^{c}=A V_{0 l} \tag{9.4-47}
\end{equation*}
$$

where
$R^{+}=$CHAN weight factor
A $=$ option-aependent parameter
Vol $=$ total CHAN cetl volume which eouals number of bundles represented by this CHAN component times the volume of one bundle axial section.

For volume weighting, $A=1$; for power-squared weighting, $A=P_{c}{ }^{2}$; and for

VIII 1.25 III 1.4 III 16
\qquad

$4 \quad 150 \mathrm{~mm} \quad+$

Core Power Models

user-input weighting, $A=U$, where P_{c} is the power density in a particular CHAN cell.

Estimating the weight factors for the vessel region is complicated by the fact that the VESSEL cells a the CHAN cells do not generally span the same elevations. The weic facturs for the VESSEL cells that represent the bypass region are computed from the weight factors in the CHAN cells. The weight factor for VESSEL cell j, which spans core hydraulic level i, is given by the weighted average of the weight factors for the CHAN cells inside VESSEL cell j on core hydraulic levei i

$$
\begin{equation*}
R_{j, i}^{v}=W_{1} V_{j, i}^{v}\left(\frac{\sum_{k=1}^{k j} R_{k}^{c}}{\sum_{k j}^{k j} V_{k}^{c}}\right) \tag{9,4-48}
\end{equation*}
$$

where

```
W
V V,i = volume of VESSEL cell j on core hydraulic level i
R}\mp@subsup{R}{}{c}=\mathrm{ CHAN weight factor
Vk
kj = number of CHAN components in VESSEL cell j.
```

The formulation of the fuel keight factors are similar to the CHAN weight factors. The general form is given as

$$
\begin{equation*}
R^{f}=f: 17 \tag{9,4-49}
\end{equation*}
$$

where

$$
\begin{aligned}
R^{f}= & \text { fuel temperature node weight factor } \\
A= & \text { option-dependent parameter } \\
\text { Voi }= & \text { total cylindrical shell fuel volume between two radial } \\
& \text { temperatures nodes for a particular rod group. }
\end{aligned}
$$

For volume weighting, $A=1$; for power-squared weighting, $A=P_{f}^{2}$; and for user-input weighting, $A=U$, where P_{f} is the power density in a fuel rod temperature node.

Core Power Models

9.4.3.2 Control Rod Model. The control rod model is incorporated into

 the one-dimensional kinetics model via a space-time dependent control rod fraction parameter C. This parameter drives the transport coefficients in the one-dimensional kinetics field equations. $9,6 \cdot 15,16$ (see Section 9.4.3.3 for more details)The control rod model in TRAC-BF1/M001 consists of a user-speciffed number of control rod groups, each group containing a user-input number of individual control rods. A control rod group coutains control rods having the same initial axial insertion and actuated by the same scram or trip signal. The user specifies the trip number for each controt rod group and the insertion velocity of the rods in the group once the trip signal has occurred.

The control fraction on each core neutronic level is determined from the locations of all of the control rods and varies from zero to one for each core level. A value of zero means that there are mo control rods at thts level. and a value of one means that all control rods have been inserted completely through this core level. The control fraction is the average contral rod position in the level and is given by

$$
\sum_{k=1}^{n_{k}} N_{k} f_{k} .
$$

where
Cf. control fraction on core level
$\mathrm{N}_{\mathrm{g}}=$ number of control rod groups
N_{k} mamber of control rods in control rod group k
$N_{\text {cr }}=$ total number of contral rods
$f_{k, 1}=$ relative location of control rod group k or core level is
The relative locations of the control rods on a care level are detemined from the absolute axial location of each control rod and the top and bottom of each axial level in che core region. Figure 9,4,1 shows an example of control rod locations and the resulting control fraction for each core level. The absolute axial location is computed from the initial control rod positions and the distance the rod has moved since the scram or trip signal was received.
9.4.3.3 Generation of One-Dimensional Neutron Kinetics Transport Coefficients. Once the radially averaged parameters from Sections $9,4,3,1$ and 9.4 .3 .2 have been calculated, the one-dimensional kinetics transport

Figure 9.4-1. Control rod locations and corresponding control fractions.
coefficients can be determined using polynomial correlations. These correlations are determined with a separate detailed neutron transport
 parameter is

$$
x_{1}=C f_{j}\left(a_{1}+a_{2} \alpha=a_{3} \alpha^{2}\right)+\left(1-C f_{j}\right)\left(a_{4}+a_{5} \alpha+a_{6} \alpha^{2}\right)
$$

$$
\begin{equation*}
+a_{7}\left(\sqrt{T_{f j}}-\sqrt{T_{f 0 j}}\right)+a_{8}\left(T_{m j}-T_{m o j}\right)+a_{8} B_{j} \tag{9.4-51}
\end{equation*}
$$

Core Power Models
where
X $=$ specific transport coefficient
Cf $=$ control fraction
a) radtally averaged void fraction
T_{f}. radially averaged fuel temperature (K)
$T_{m j}$ radially averaged moderator temperature (K)
B. $=$ radially averaged boron cencentration (ppm)
$a_{1} \quad$ user-defined coefficients (for $i=1,2, \ldots 9$)
$T_{\text {. }}$ * user-defined fuel reference temperature (K)
$T_{\text {and }}$ = user-defined moderator reference temperature (K)
The nine user-defined copflicients and two reference temperatures equal 11 unknown coefficients convelation. The transport parameters that are calculated with the above correlation include nine different variables:

1. The fast neutron group diffusion coefficients.
2. The thermal neutron group diffusion coefficient.
3. The fast group inacroscoplc absorpt fon cross section
4. The themal group macroscopic absorption cross section
5. Fast group macroscopic downscatter cross section.
6. Fast group iransverse buckling squared
7. Themmal group transverse bucking squared.
8. Fast group macroscopic fission cross section
9. Therimat group macroscoptc fission eross section.

Each transport parameter is described by the same functional relationship with different coefficients. Moreover, each 11 sets of coefficients will differ for different fuel types.

The polynomial coefficients in Equation (9.4-50) are generated using a three dimensional multi-group neutronics simulation code. Since there are nine transport parameters, each of which has 11 separate polynonta? coefficients, a total of 99 independent coefficients must be generated per fuel type. Each axidl level of the core may have different fuel types. For
instance, if the core were composed of a single fuel type and there were 10 neutronic levels, we would need 11.9 diiferent coefficients in order to calculate all of the nine transport variables. If on the other hand, all 10 levels were of different fuel types (different burnups for example), we would then lieed $10 \cdot 11 \cdot 9$ different coefficients in order to calculate all transport parameters

The neutron transport parameter coefficients are calculated using a least-squares fitting scheme to the information calculated from a threedimensional neutronics calculation. In order to perform the least-squares fits, one must calculate transport parameters as functions of the following state variables:

- control rod fraction
- moderator temperature
- boron concentration
- fuel temperature
- void fraction
at a particular computational cell or cells. After the nine transport and five state variables have been calculated at each axial level, they are radially averaged using a weighting function scheme to produce one averaged value per level for each state and transport variable. At least 11 sets of data per fuel type must be generated to uniquely determine parameter fits for the transport variables. Also, the variations in the state variables should cover the range of parameter space expected to occur in the hypothetical transtent being simulated. This will ensure that the transport variables are being interpolated between known regions of state space rather than extrapolating outside known state space boundaries.

The details of how TRAC-BF1/MOD1 interfaces with particular threedimensional neutron transport codes are found in References $9,4-15$ and 9.4-16. The reader is cautioned that using calculated data from a separate neutronics transport code for input into TRAC-BF1/MOD1 requires an understanding of the inherent differences in how TRAC-BF1/M0D1 and a three-dimensional neutronics code calculates core power. In particular, many advanced neutronics codes have a thermal-hydraulics package (RAMONA-3B for example) that solves field equations that are different than those in TRAC-BF1/M001 9,4-17 For this reason, transport versus state variable correlations derived from a specific neutron transport code may require additional adjustments before being used as input to the TRAC-BF1/MOD1 one-dimensional kinetics model.

[^3]
Core Power Models

The one-dimensiona! kinetics model in TRAC. BF $1 / \mathrm{MODI}$ is a two-group formulation based on the Analytic Nodal Method, $9,6-12,13$ The advantage of the one-dimensional kinetics option over traditional point kinetics is that the axial flux profile is allowed to change as a function of time in response to changing thermal-hydramlis conditions and/or control system actions. However, considerably more uss. sapit is reqaired in order to implement the onedimensional kinettes model, as compar, it to the point kinetics model.

The two-group, one-dimensional, space- and time-dependent neutron diffusion equations can be written in matrix form as

$$
\left[\begin{array}{ll}
\frac{1}{v_{1}} & 0 \\
0 & \frac{1}{v_{2}}
\end{array}\right] \frac{\partial}{\partial t}\left[\begin{array}{l}
\phi_{1} \tag{9.4-52}\\
\phi_{2}
\end{array}\right]=\frac{\partial}{\partial z}\left[\begin{array}{ll}
D_{3} & 0 \\
0 & D_{2}
\end{array}\right] \frac{\partial}{\partial z}\left[\begin{array}{l}
\phi_{1} \\
\phi_{2}
\end{array}\right]-\left[\begin{array}{ll}
\Sigma_{j_{1}}+\Sigma_{1}+D_{1} B_{1}^{2} & 0 \\
-\Sigma_{1} & \Sigma_{\alpha_{2}}+D_{2} B_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
\phi_{1} \\
\phi_{2}
\end{array}\right]
$$

where the space- and time-dependence of all parameters except $\lambda, \lambda_{\mathrm{k}}$, anc β is implied and
$D_{1}=$ the group 1 diffusion coefficient
$D_{2}=$ the group 2 diffusion coefficient
En - the groun 1 macroscopic abcorption cross section
$\Sigma_{\mathrm{n} 2}=$ the group 2 macroscopic absorption cross section
$\Sigma_{11}=$ the group 1 macroscopic downscatter cross section
$B_{1}^{2} \quad$ = the group 1 transverse buckling squared
$B_{2}^{2}=$ the group 2 transverse buckling squared
$x_{1}=$ the fraction of fission neutrons released into group 1. (x_{1} is assumed to be a constant equal to 1.0; no distinction is made in this derivation between the prompt and delayed neutron emission spectra.)
$x_{2}=$ the fraction of fission neatrons released into group 2. (x_{2} is assumed to be a constant equal to 0.0)

$$
\begin{align*}
& v \Sigma_{11}=\text { the group } 1 \text { macroscopic production cross section } \\
& \text { पע }{ }^{12} \text { - the groun ? macroccopic production cross section } \\
& \phi_{1}=\text { the group } 1 \text { scalar neutron flux } \\
& \phi_{2}=\text { the group } 2 \text { scalar neutron flux } \\
& \text { 2. a constant parameter used to force criticality for a } \\
& v_{1}=\text { the group } 1 \text { average neutron velocity } \\
& v_{2} \text {, the group } 2 \text { average neutron veloctty } \\
& \lambda_{k} \quad \text {. the decay constant for delayed iron precursor } k \\
& \text { C. the concentration of delayed neutron precursor } k \\
& K \quad=\text { the number of delayed neutron precursor groups } \\
& \text { R the total effective delayed meutron fract tion. } \\
& \text { Equation (9.4-52) may be written in a more compact form } \\
& {[v]^{-1} \frac{\partial}{\partial t}[\phi]=\frac{\partial}{\partial z}[D] \frac{\partial}{\partial z}[\phi]-[\Sigma][\phi]+[x](1-\beta)\left[\frac{v \Sigma}{\lambda}\right]^{\mu}[\phi]} \\
& \sum_{i}^{x}[x] \lambda_{k} C_{x} \tag{9,4-53}
\end{align*}
$$

where all bracketed quantities denote matrices or vectors.
The megion of interest ("rsmally the entime reactor and po:sibly the axial reflectors) is now partitioned into an arbitrary namber of subregions, or nodes. Each node, 1, extends from interface i to interface i+1 and is of width h_{i}, where $h_{i}=z_{i+1}, z_{i}$. If it is assumed that suitably averaged, space-fndependent (wthtin each node) meutron diffuston theory parameters are available for every node, then Equation (9.4-53) may be integrated over a typical node, i, to yield

$$
\left.h_{1}\left[v_{i}\right]+\frac{\partial}{\partial t}\left[\bar{\phi}_{1}\right] \quad-U_{1+1}\right]+\left[\vartheta_{i}\right]=h_{1}\left[\Sigma_{i}\right]\left[\phi_{1}\right]
$$

Core Power Models
$+h_{1}[x](1-\beta)\left[\frac{\nu \Sigma_{1}}{\lambda}\left[\bar{\phi}_{1}\right]+\sum_{1}^{K}[x] \lambda_{i} \bar{c}_{1}\right.$
where

$$
\begin{array}{ll}
\bar{C}_{k i} & \int_{2 i}^{2 i=1} C_{k} d z \\
{\left[\phi_{1}\right]=} & \frac{1}{h_{j}} \int_{z_{i}}^{z_{i}+1}[\phi(z)] d z \text { (node-average flux vec:or) } \\
{\left[J_{i}\right]=} & {\left[-D_{i}\right] \frac{d}{d z}\left[\phi\left(z_{i}\right)\right] \text { (net current vector at } z_{i} \text {) }} \tag{9.4-57}
\end{array}
$$

The equation governing delayed neutron precursor k is given by

$$
\begin{equation*}
\frac{\partial C_{k}}{\partial t}=-\lambda_{k} C_{k}+\beta_{k}\left[\frac{\nu \Sigma}{\lambda}\right]^{n t}[\phi] \tag{9.4-58}
\end{equation*}
$$

where β_{k} is the partial effective delayed precursor fraction for precursor k and
$\sum_{i}^{k} A=\beta$

Integration of Equation $(9.4-58)$ over node i yields

$$
\begin{equation*}
\frac{d}{d t} \bar{C}_{k i}=-\lambda_{k} \bar{C}_{k i}+h_{i} \beta_{k}\left[\frac{v \Sigma_{i}}{\lambda}\right]^{\pi}\left[\bar{\phi}_{1}\right] \tag{9.4-60}
\end{equation*}
$$

Additional relationships between the node-averaged fluxes and the interface currents are now required in order to allow the solution of the system of Equations (9.4-54) and (9.4-60) to be obtained for the node-average fluxes and the nodal precursor inventories, $C_{k i}$, as functions of time, The , desired relationships may be obtained using the Analytic Nodal Method. This method produces a flux-current relationship for node i of the form

$$
\begin{equation*}
\left[J_{i+1}\right]-\left[J_{i}\right]=\left[C L_{i}\right]\left[\bar{\phi}_{i-1}\right]+\left[C C_{i}\right]\left[\bar{\phi}_{1}\right]+\left[C R_{1}\right]\left[\bar{\phi}_{i+1}\right] \tag{9.4-61}
\end{equation*}
$$

Core Power Models

where the coupling matrices $[C L],\left[C C_{4}\right]$, ard $\left[C R_{1}\right]$ are complicated functions of the nodal cross sections and dimensions.

Substituting Equation (9.4-61) into Equation (9.4-54) and rearranging yields

$$
\begin{align*}
& h_{i}\left[\nu_{i}\right]^{-1} \frac{d}{d t}\left[\bar{\phi}_{i}\right]=\left[C L_{i}\right]\left[\bar{\phi}_{1-1}\right]+\left[C C_{i}\right]\left[\bar{\phi}_{i}\right]+\left[C R_{i}\right]\left[\bar{\phi}_{i+1}\right]+h_{i}\left[\Sigma_{i}\right]\left[\bar{\phi}_{i}\right] \\
& -h_{i}[\chi](1-\beta)\left[\frac{v \Sigma}{\lambda}\right]^{T}\left[\bar{\phi}_{1}\right]-\sum_{i}^{K}[\chi] \lambda_{i} \bar{C}_{k i} \tag{9.4-52}
\end{align*}
$$

Equations (9.4-60) and (9.4-62) are the basic time-dependent nodal equations of intarest. Note that Equation $(9.4-62)$ is nonl inear because quantities prop rttional to the time derivatives of the fluxes and precursor coicentrations appear in the coupling matrices. This is a consequence of the inalytic Nodal formulation.

The time-dependent nodal equations are usually initialized by assuming that the transient to be calculated starts from an equilibrium condition. Initial fluxes can thus be obtained by running a steady-state nodal calculation and using the resulting fluxes and eigenvalue to initialize Equation (9.4-62). In the TRAC-BF1/MOD1 program, the steady-state flux calculation would normally be run iteratively with the thermal-hydraulic initialization procedure, stnce the diffusion theory parameters are functions of the thermal-hydraulic state variables associated with each node and these state variables are, in turn, functions of the nodal fluxes and powers.

At every point in time, t_{n}, of interest, nodal powers are computed by the following formula:

$$
\begin{equation*}
P W R_{i}^{n}=(e p f) h_{i}\left[\Sigma_{i}^{n}\right]^{T}\left[\phi_{i}^{n}\right] \tag{9.4-63}
\end{equation*}
$$

where

$$
\begin{aligned}
& P W R_{i}=\text { the total power in node i at time tn } \\
& \text { epf }=\text { an input power nomatization factor, usually equal to the } \\
& \text { user-spectifed prompt energy per fission times the reactor } \\
& \text { transverse area } \\
& h_{1}=\text { the height of node i } \\
& {\left[\Sigma_{i}\right]=\text { the macroscopic fission cross section for node i at time } t_{n}}
\end{aligned}
$$

Core Power Models
$\left[\phi_{1}\right]$ - the node average flux vector for node i at time t_{n}.
The total reactor power is then the sum of all the individual nodal powers.
For most transient situations, the neltron diffusion kinetics equations must be integrated over time interv: s smalle than the TRAC-BF1/MOD1 thermal-hydraulic time step sice Δt_{H}. One exception is the prompt jump approximation, which is avatlable to the code usen. This approximation assumes that reactivity is very striall, so the kinetics equations can be integrated between thermal-hydraulic time steps.

The automatic time step control algorithm solves the neutron kinetics equations over a series of tima subintervals between two thermal-hydraulic computational time steps. the cerivation used to calculate the maximum size for the subinterval time s.ep can be found in Reference $9.4-13$. The time step partitioning between two thermal-hydraulic time steps is required for numerical stability. The physical bas's is that the characteristic time constants assocfated with the nodal neutron kinetics equations can be much smaller than any thermal-hydraultc time sCale. For severe transients, this time scale ordering regime exists.

If either of the automatic time step control algorithms is requested in the TRAC-BF1/MOD1 nodal routines, the fully implicit approximation $(\theta=1)$ is specifted; and the subinteryals 8t of the input time interval DT are currentiy set such that, at all times,

$$
\begin{equation*}
\frac{0.01}{\left|\omega_{\mathrm{m} n}\right|} \geq \delta t_{\mathrm{jn}}=\frac{0.005}{\left|\omega_{\mathrm{pm}}\right|} \tag{9.4-64}
\end{equation*}
$$

where

$$
\begin{align*}
& \left|\omega_{n n}\right|=M_{i, g}^{M a x}\left|\omega_{p i}^{9}\right| \tag{9.4-65}\\
& \omega_{b i k i}^{n+1}=\ln \left(\frac{\phi_{1}^{g n+1}}{\phi_{i}^{g n}}\right)
\end{align*}
$$

This constrains the flux that is changing the fastest during a transient to change by no more than approximately 1% but by at least. . 5% during each time subinteryal. These limits can be changed eastly as a programmor option. The relevant statements are flagged in the coding. The ω_{p} data used in Equations (9.4-61) and (9.4-62) are always the most recently available as the calculations progress across the time input interval $D T$. Thus, the subinterval estimate, $\delta t_{i n}$, is constantly updated across DT. For example, a typical caleulation may require a few small subinteryals near the heginning of a time step DT ; but after a short time, it is usually possible to divide the
remaining portion of DT, into much larger intervals, since the components of the nodal $\left[\omega_{q}\right]$ matrices ordinarily decrease in absolute magnitude as a calculation For an input interval or progresses. This is a consequence of the assumption that the input nodal diffusion theory parameters are constant during each DT .

The two time step control algorithns differ only in the matter in which an estimate is made of the magnitudes of the components of the [ω_{p}] matrices at the beginning of each input time step DT. This estimate is used to set the first subintarval time step. Since no subinterval time steps have yet been taken, it is not possible to use Equation (9.4-66). It is also usually not sufficient to simply use the $\left[\omega_{\mathrm{pi}}\right]$ matrices computed at the end of the previous TRAC-3F1/MOO1 time step OT P1. The nodal diffusion theory parameters will usually be different from one time step to the next, due to changing thermal-hydranl ic conditions, control actions, and other time-dependent changes that can occur during a reactor transient.

The first time step contral algorithm sets the starting subinterval on the basis of nodal k-infinity data, which are computed from the input nodal diffusion theory parameters for each time step. At the beginining of each time step, the following parameter is computed for each node:

$$
\begin{equation*}
\Omega_{i}^{j}=\frac{k_{\infty i}^{j}-k_{\infty i}^{j-1}}{k_{\infty i 1}^{j-1} l_{\infty i}^{j}} \tag{9.4-67}
\end{equation*}
$$

where $k_{\infty j}^{j}$ is the k-infinity value for node i during time step $D T_{j}$, and $k_{o i}^{j-1}$ is the k-infinity value for the previous time step. DT .. The parameter 1_{∞}^{j} is an approximate estimate of the infinite medium prompt neutron generation time for node i. The k_{0} and i_{n} data are computed for each node using the following expression:

$$
\begin{align*}
& K_{\infty i}^{j}=\frac{\nu \Sigma_{+1 i}^{j}\left(\Sigma_{a 2 i}^{j}+D_{2 i}^{j} B_{2 i}^{2 i}\right)+\nu \Sigma_{+2 i}^{j} \Sigma_{c 1 i}^{j}}{\lambda\left(\Sigma_{a 11}^{j}+D_{1 i}^{j} B_{1 i}^{2}+\Sigma_{r 1 i}^{j}\right)\left(\Sigma_{a 2 i}^{j}+D_{2 i}^{j} B_{2 i}^{2 j}\right)} \tag{9.4-68}\\
& \text { for the case where }[x]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \\
& T_{\infty i}^{j}=\frac{k_{a i}^{j}-K_{Q i}^{j}}{k_{a i}^{j} K_{a i}^{j}} \tag{9.4-69}
\end{align*}
$$

where $k_{\alpha i}$ is computed from Equation (9.4-64) with the absorption cross

Core Power Models

sections increased by the input inverse velocity terms $\left[v_{i}\right]^{-1}$ for each group. The starting time step is then

This method of obtaining the starting subinterval requires very little computer time but can produce an undesirably large subinterval estimate if the neutron flixes and precursors are not near equilibrituin. it should be noted that if no diffuston transport parameter changes are made in any node between TRAC-BF1/Mnn thermal-hydraul ic time steps, then Equation $(9.4-70)$ is not used. The starting time step is obtained from Equations $(9.4-63)$ and (9.4-67) directly using the onega data computed at the end of the tast Δt thermat hydraulic time step

With regard to the second initialization option, the algorithm sets the starting interval on the basis of the neutron kinetics equation itself. Substitution of Equation $(9.4-61)$ into Equation $(9.4-54)$ yields

$$
\left.-h_{1}\left[V_{1}\right]^{-1}\left[\varphi_{0}\right]\left[\phi_{1}\right]=\left[C L_{1}\right]\left[\phi_{-1}\right]+C T_{1}\right]\left[\phi_{1}\right]+\left[C R_{1}\right]\left[\phi_{1+1}\right]
$$

$$
\begin{equation*}
\sum_{1}^{x}[x] \lambda_{k} \bar{c}_{k i} \tag{9.4-71}
\end{equation*}
$$

Rearranging this expression and solving for the omega matrix on the left-hand side (using the thermal-hydraulic time node-average fluxes, delay precursor inventortes, and new thine dirfusion theory transport parameters) provides estimates for the expected omega matrices for each node at the beginning neutronics time step. These are then used in Equation (9.4-63) The coupling matrices in Equation (9.4-70) are computed using the omega data fron the end of the previous TRAC Af Mont the interval but are based an new. time transport parameters. The estimated omega matrices on the left-hand side of Equation $(9.4-70)$ are thus evaluated without iterations. Again, a check is made to determine whether any diffusion transport parameter changes were made from the previous TRAC-BFI/MODI ime step (or from the assumed initlat equilibrium condition when compucing the estimated omegas for the first time step). If no changes were made, the omega data from the ent of the previous time step are used in Equation (9.4-63) in order to estimate the starting interval

The second time step initialization afgorithm is very conservative and requires more computing time, since an extra set of omega matrices has to be evaluated for the condthons extstitig at the beginning of the time step However, this algorithm appears to be applicable to a wider range of transients, and in addition it will detect and account for transport variable changes, if any, from one time step to the next.
9.4.3.5 Implementation of the One-Dimensional Diffusion Mode. The programming for the TRAC-BF1/MOD1 one-dimensional kinetics package is implemented in a number of subroutines in a way similar to the point kinetics modei (see Section 9.3.2). However, the level of programming detail is significantly more complex.

As in the point kinetics package, the one-dimensional diffusion model is interfaced with the one-dimensional CHAN and three-dimensional VESSEL components. This a? Tows the user to appropriately partition the fuel bundle and vessel bypass elements so that TRAC-BF1/MOD1 can correctly estimate macroscopic cross sections and other transport variables in the onedimensional diffusion model. The subroutine FPOW is the master input processor of the user supplied kinetics data. FPOW will call the subroutine FP1D to process one-dimensional kinetics input if the one-dimensional kinetic option is on. Initialization of decay heat arrays, computation of weight factors, and the calculation of rod power distribution factors are controlled by the subroutines IPOK, IPRW, and IPFL, respectively. The one-dimensional model also uses the same data from BLOCKDATA to calculate the decay heat fraction of the total core power.

The key specifications and options that the TRAC-BF1/MOD1 user has when insoking the one-dimensional diffusion model are as follows:

1. Calculate either steady-state and/or transient diffusion equation solutions.
2. Specify source convergence options for steady-state solutions.
3. Specify time differencing and fractional nodal change parameters for time-dependent solutions.
4. Specify boundary conditions via albedo matrices.
5. Spectfy polynomial fit coeffictents for the diffusion equation transport parameters.

It should be pointed out that the code will generally default to some value if the user has not chosen a particular parameter or parameters.

If the one-dimensional kinetics option is employed, the subroutine POWER passes control to the one-dimensional diffusion code package, which is composed of a number of different subroutines. A summary of these onedimenstonal kinetics subroutines is given in Appendix H.

The kinetics subroutines are not self-contained but require thermal-hydraulic data calculated from other subroutines in order to solve the one dimensfonal diffuston equation nodal intte-difference scheme, In particular, subroutines VSL3, CHN3, and COR3 calculate radially averaged hydraulic and fuel temperiture data to subrout ine NXSECT, which computes new time diffusion equation transport variables for the one-dimensional diffusion subrouttines. Unce the power distribution has been calculated by the one-

Core Power Models
dimensional kinetics package, additional data processing is performed by TFIE to partition power between the modeled fuel bundles and moderator.

9.4.4 Conclustons

Both of the neutronics models documented in Section 9.4 were global approximations to the generalized three-dimensional neutron transport methodology. The global approximations were rrade on the assumption that the fuel and moderator properties were spatially homogenous (point kinetics model) or radially homogeneous at different axial locations (one-dimensional approximation). Relative to the point kinetics model, the following conclusions are made:

1. The point kinetics model can proviue quick estimates of reactor power when spatial effects are judged to be insignificant.
2. The TRAC-BF1/MOUl user is cautioned that certain types of kinetics problems are inherently multi-dimensional, so the point kinetics approximation breaks down
3. The present point kinetics model assumes linear variations in reactivity feedback for a given thermal hydraulic time step. If the hydraulic time step is very large relative to the neutronics time scale, the linear assumption may become invalid.
4. The power-squared or volume-weighting reactivity feedback modeling in the point-kinetics formulation indirectly accounts for some spatial variation in reactor core state vartathes

Conclusions relative to the one-dimensional nodal neutronics model are as fallows

1. The analytic nodal routines provide TRAC-BF1/MODI with an efficient one-dimensional neutronics capability.
2. The accuracy of this modet is dependent on how well the modeled reactor can be represented in one dimension. In particular, calculations with a sebarate neutronics code must be performed to generate radially averaged transport coefficients.
3. The assumption of one dimensional geometry can be eliminated by expanding the TRAC-BF $1 /$ MOO1 nodal routines to two or three dimensions.

Conclusions releyant to both TRAC-BF1/MOD1 models include:

1. Reactor kinetics constants such as delayed neutron fractions and neutron lifetimes should be chosen with great care. Supplied

conditions peculiar to specific reactors.
2. The powet fraction for dfwect moderator heating can be very importanc, depending on the transient scenario simulated. Moderator power aeposition fractions should be carefully chosen under these conditions
3. Wherever possible, the simplified models in TRAC-BF1/MODI should be benchmarked against more detailed three-dimensional neutronics codes.

9.4.5 References

9.4-1. A. F. Henry, Nuclear-Reactor Analysis, Cambridge, Massachusetts: M.I.T Press +1975.
9.4-2. 0. L. Hetrick, Dynamics of Nuclear Reactors, Chicago, Illinois: University of Chicago Press, 1971.
9.4-3. J, R. Lamarsh. Introduction to Nuclear Reactor Theory, Reading, Massachusetts: Addiscn-Wesley, 1966.
9.4-4. W. M. Stacey, Space-time Nuclear Reactor Kinetics, New York, New york: Academic Press, 1969.
9.4-5. M. Ash, Nuclear Reactor Kinetics, New York, New York: McGraw-Hill Book Company, 1979.
9.4-6. 0. D. Taylor et. al., TRAC-BD1/MOD1: An Advanced Best Estimate Computer Progran for Boiling Water Reactor Transient Analysis, NUREG/CR-3633, EGG-2294, Apr11 1984.
9.4-7. ANS Standards Committee Working Group, "ANS-5.1: Decay Heat Power in Light Water Reactors, " ANS, ANSI/ANS-5.1-1979, August 1979.
9.4-8. C. C. Tsai, TRAC-BWR Completion Report, Power Squared FeedbackReactivity Weighting and Direct Moderator Heating, WR-CD-82-061, March 1982
9.4-9. C. C. Tsai, TRAC-BWR Completion Report, Implementation of Reactivity Feedback Model, WR-CD-81-049, June 1981
9.4-10. S. Gill, "A Process for the Step-by-Step Equation Integration of
Differential Equations in an Automatic Digital Computer Machine,
Proceedings of the Cambridge Phitos. Society, 47, 1951, pps. $96-108$,
9.4-11. R. S. Thompson, "Improving Roundoff in Runge-kutta Computations with Gill's Method," Private Communicaticn of the ACM L3, 12, December 1970

Core Power Models

9.4-12. D. W. Nigg et. al., An Improved Integration Method for the TRAC-BD1 Analytical Nodal Reactor Kinetics Equations, EGG-PBS-6554, May 1984

8-4-13. D. 4. Nigg, One-Dimensional Nodal Neutronics routines for the TRAC-BD1 Thermal Hydraulics Program, EGG-PBS-6379, Revision 1, July 1984
9.4-14. W. L. Keaver, "One-Dimensional Kinetics in the TRAC-BF1 Code," Proceedings of the ANS Tapical Meeting on Anticipated and Abnormal Transients in Nuclear Power Plants, Volume 1. Atlanta, Georgia, sforil 1087
9.4-15. W. L. Weaver, TRAC-8D1/MOO1 Completion Report: Implementation of One-Dimensional Neutron Kinetics, SE-CMD-84-003, May 31, 1984.
9.4-16. $V, \mathrm{~L}$ Weaver, TRAC BWB nesign Pepont: Gemanation of ane Dimenstonal Kinetics Input, EGG-RTH-7528, January 1987
9.4-17. W. Wulff et al., A Description and Assessment of RAMONA-3B: A Computer Code with Three-Dimensional Neutron kinetics for BWR System Transtents, BNI NuRFE 51740, NUREG/CR 3664, उantary 1984

Appendix A
 Thermodynamic Properties

Appendix A
 Thermodynamic Properties

The thermodynamic properties subroutines used in TRAC-BFI/MOD1 are based on polynomial fits to steam table data for water and ideal gas behavior for the noncondensable gas component. The thermodynamic property routines are used by all TRAC-BF1/MOD1 component modules. Tables A-1 through A-0 list the values of the constants.

Subroutine THERMO supplies themodynamic properties for TRAC-BF1/MODI. The input variables are the total pressure, the partial pressure of the noncondensable gas component, and the liquid and gas-phase temperatures. The output variables include the saturation temperature corresponding to total pressurt; the saturation temperature corresponi.ng to the partial pressure of stcam; the specific internal energies of liquid, gas, and noncondensable; the saturated liquid and steam enthalpies corresponding to the partial pressure of steam; the liquid, qas, and noncondensable densities the derivatives of saturation temperatures and enthalpies with respect ; pressure; and, finally, the partial derivatives of liquid, steam, and nonconc isable internal energies and densities with respect to pressure (at constant temperature) and with respect to temperature (at constant pressure)

The range of validity for the thermodynamic properties supplied by THERMO is
$273.15 \mathrm{~K} \leq T_{C} \leq 713.94 \mathrm{~K}$
$273.15 \mathrm{~K} \leq T_{r} \leq 3000.0 \mathrm{~K}$; and

If THERMO is providad with data outside these ranges, it adjusts the data to the corresponding 1 imit and issues a warning message.

A-1 Saturation Properties

A-1.1 Relationship between Saturation Pressure and Temperature

The saturation line that lies between the triple point (27. K) and the orical point $(647.3 \mathrm{~K})$ is divided into two regions of temperalute and pressure, and a separate correlation is used in each region.

A-1.1.1 First Region of Temperature and Pressure, ihe first region of temperature is defined by

APPENDIX A

Table A-1. Miscellaneous constants.

Constan

A_{11}	1.00008875 E-3
A_{12}	7.691625 E2
A_{13}	1.300115 E-3
H_{14}	1. $\mathrm{E}-5$
C_{1}	- 2263.0
C_{2}	0.434
C_{3}	-6.064
C_{4}	$C_{12} /\left(C_{16}-1\right)$
C_{5}	273.15
C_{6}	$C_{27}+C_{12}+C_{5}$
C_{7}	C_{24}
C_{8}	$-0.61132+C_{7}(C$
C_{9}	990.0
C_{10}	$h_{\text {fg }}\left(C_{5}\right)$
L_{14}	1. E5
C_{12}	461.49
C_{13}	0.0228
C_{14}	0.65141
C_{15}	0.0
${ }^{16}$	1.3
$C_{1.2}$	$\mathrm{C}_{22}-\mathrm{C}_{25}$
C_{18}	$\mathrm{C}_{22} / \mathrm{C}_{17}$

Constant

C_{19}	Not used
C_{20}	$9.056466 \mathrm{E4}$
C_{21}	370.4251
C_{22}	1004.832
C_{23}	$C_{16} \cdot C_{4}$
C_{26}	4186.8
C_{25}	287.03
C_{26}	$C_{24}\left(C_{5} \cdots C_{29}\right)$
C_{27}	$C_{26}+C_{10}$
C_{28}	$\left(C_{12}=C_{25}\right) / C_{12}$
C_{29}	273.15
C_{30}	1.0
C_{31}	450.0 E5
C_{32}	C_{5}
C_{33}	713.94026
C_{34}	C_{5}
C_{35}	3000.0
C_{36}	610.8
C_{37}	221.2 E5
C_{38}	647.3
C_{39}	$139.6997 \quad E 5$
C_{60}	609.625

T3. 1 e A-2. Constants for steam internal energy function.*

Region	cessure (Pa)	Ave	Bue	Cve	Dive
1	20.55	2.49497 56	2. osese - -1	-3.3553n E-7	2.859258 - 14
2	50 E5	2. 56008 E6	3.10861 E-2	-6.89888 E-9	4.32037 E-16
3	100 E5	2.5915515	8.77499 E-3	-1.794999 E.9	$4.29999 \mathrm{E}-17$
4	150 E5	2. 66060 E6	-1.3545 E-2	6. 425 E-10	-4.21 E-17
5	200 E5	3.82016 E6	-2.30199 £-1	1.40689 E-8	-3.1786 E-16
6	220 E5	-1.21034 E8	1.80188 El	-8.74424 E-7	$1.40911 \mathrm{E}-14$
7	250 E5	2.20 E6	0.	0.	0.
8	300 E5	2.20 E6	0.	0.	0.
9	350 E5	2.20 E6	0.	0.	0.
10	400 E5	2.20 E6	0.	0.	0.
11	450 E5	2.20 E6	0	0.	0.

[^4]Table A-3. Constants for gama function.

Region	Maximum Pressure (Pa)	Avq	Bvg	Crg	Dvg
Region		- AEgea	2 83108 E-8	2.1151 E14	4.7404 E21
1	20 I5	1.06508	2.651805 E-9	-6.3461 E-16	3.9824 E-23
2 3	50 E5	7354	-2.43 €-11	-7.19799 E-17	4.87999 €-25
3	100 E5	1.077773	-	8.91 E-17	-3.896 E-24
4	150 E5	1.085113	-	9.5856 E. 16	-2.1194 E-23
5	200 E5	1.16398	-1.63385 E-8	1.74763 E-14	-2.5377 E-22
6	220 E5	3.88988	-3.85959 t=	+ .04173 E-14	-1.58428 E-22
7	250 E5	2.71687	$-2.28327 \mathrm{k}$	1.063789 £-14	-1.22579 E. 22
-	300 E5	3.97498	-3.06571 E	8979 f-16	-8.079 E-24
9	350 ¢5	1.29469	-2.48349 E-8		90
10	400 E5	1.05905	-2.46159 E-9	39 t-17	
1	450 E5	1.143019	-7.709599 E-9	1.933599 E-16	24

[^5]Table A-4. Constants for steam heat capacity function. *

Region	Max imum Temperature (K)	Acp	$B C D$	Ccp	DCD
1	323.15	7.3078 62	2.81876 E1	1 010n6 E-1	1.2499 F.4
2	373.15	-9.70826 E2	2.8325 El	-9.76562 E-2	$1.16 \mathrm{E}-4$
3	423.15	-1.66497 E3	3.315936 EI	-1.0861179 E-1	1.2399 E-4
4	473.15	-6.142048 E3	6.363098 E1	-1.71523 E-1	1.7599 £-4
5	523.15	-8.228995 E4	5.377395 E2	-1.16125	8.5599 E-4
6	573.15	-6.5842 E5	3.79343 E3	-7.29249	4.704 ह-3
7	623.15	3. 45616 E5	-2.2129 E2	-2.4524	3.14799 E-3
8	647.3	1.979837 E6	-1.478255 84	3.16564 E1	-2.08433 £ - 2
9	673.3	-9.62493 E7	4.363367 E5	-6.58876 E2	3.31461 E-1
10	723.3	-1.10749 E7	4.8073714	-6.9212 E1	3.30917 E-2

a. Constants in TRAC-BF1/MOD1 have 14 significant figures.

Table A-5. Constants for liquid internal energy function.

Region	Temperature (K)	Af	Bre	Cle	Dle
				0	0
1	423.15	+1.1426		36 E?	-9.78797 E-2
2	473.35	8.09575 E6	5.70086	ans if	1.08799 E-2
3	523.15	-1.93739 E6	9.74928 E3	522 Fl	3.456 E-2
4	573.15	-5.32458 $£ 6$	2.9179418	12 F2	3. $276 \mathrm{E}-1$
5	623.15	-6.35835 E7	3.2873 E5	[92637 E4	2.665 E1
6	645.15	-6.62391 E9	16056	3.6931 F4	1.84547 tl
7	573.15	-5.4759 E9	40355 !	-4.34245 f?	1.97199 E-1
8	713.94	-7.15364 E7	3.05608		

[^6]
APPENDIX A

Table A-6. Miscellaneous liquid property constants."

Constant	Value
$C_{k 0}$	$-8.329[-4$
$C_{k 2}$	$-2.2458 \mathrm{E}-17$
$C_{k 4}$	$-1.4504 \mathrm{D}-16$
a_{ℓ}	7.146

[^7]Table A-7. Constants in liquid specific volume function."

Reqion	Maximum Temperature (K)	Avo	Byo	Cvo	Dvo
1	373.15	1.705767 E-3	603208 E. 6	1.5944 F-8	- 2149 [-11
2	473.15	$5.21459 \mathrm{E}-4$	3.518922 E-6	-9.73048 E-9	1.085668 E-11
3	573.15	-1.493186 E-2	Y. 793156 E-5	2.01728 E-7	1. 40804 E-10
4	603.15	-4.93342 E-1	2.59285 E-3	-4.53871 E-6	2.65379 E-9
5	613.15	-3.45589	$1.735179 \mathrm{E}-2$	-2.90474 E-5	1.62202 E-8
6	623.15	-1.19525 E1	$5.89049 \mathrm{E}-2$	-9.67866 E-5	5. 30292 E-8
7	633.15	$-3.74466 \mathrm{El}$	$1.81734 \mathrm{E}-1$	-2.940499 E-4	1.5863 E-7
8	643.15	-3.97132 E2	1.88018	-2.96739 E-3	1.561217 E-6
9	653.15	-2.31427 E3	1.07102 E1	-1.65217 E-2	8.49552 E-6
10	663.15	2.048156 E3	-3.345278	1.4212 E-2	-7.2037 E-6
11	673.15	-7.38647 E1	3.31449 E-1	-4.96087 E-4	$2.477179 \mathrm{E}-7$
12	713.94	-2.189132 El	9.67584 E-2	-1.14289 E-4	7.05672 E-8

a. Constants in TRAC-BF1/MOD1 have 14 significant figures.

Table A-8. Constants in liquid specific volume correction factor. *

Region	4aximum Temperature (K)	Afn	Bfn	Cfn	Ufn
1	373.15	-4.24863 E9	3.75167 57	-1.00690 E5	8.75972 EI
2	473.15	-2.79363 E8	5.566317 E6	-1.49217 $£ 4$	1.0834095 E1
3	573.15	-1.17612 E8	4.38322 E6	-1.208837 E4	8.60345
4	603.15	-4.54151 E9	2.73686 €7	-5.18947 E4	3.15812 El
5	613.15	-4.01043 E10	2.029257 E8	-3.40759 E5	1.900066 E2
6	623.15	-6.01738 E10	2.99849 EB	-4.96759 E5	$2.73686 \quad 12$
7	633.15	$2.06788 \mathrm{E10}$	-8.95038 E7	1.282278 E5	-6.072229 61
8	543.15	$8.379355 ¢ 10$	-3.899718 [8	6.050262 E	-3.129196 E2
9	653.15	9.240237 E10	-4.267492 E8	6. 569561 E5	-3.371112 E2
10	663.15	-2.75477 E10	1.2580004 E8	-1.914749 E5	9.713614 E1
11	673.15	6.860819 E8	-3.063602 E6	4.561362 E3	-2.264207
12	713.94	4.34584 E7	-1.83799 E5	$2.59716 \mathrm{E2}$	-1.224404 E-1

a. Constants in TKAC-BF1/MOD1 have 14 significant figures.

APPENDIX A

$273.15 \mathrm{~K} \leq \mathrm{T}_{\mathrm{s}} \leq 370.4251 \mathrm{~K}$
$1 \mathrm{O}_{2}<\mathrm{p}_{0}<90564.66 \mathrm{D}_{2}$
In this region, themodynanic relations are used to define the saturation properties. The enthalpy of vaporization, $h_{l v}$, is represented as a linear function of temperature

$$
\begin{equation*}
h_{e_{v}}=3180619.59-2470.2120 T_{4} \tag{A-1}
\end{equation*}
$$

The Clausius-Clapeyron equation, which assumes that steam is an ideal gas and neglects liquid volume compared to steam volume, can be written as

$$
\begin{equation*}
\frac{d p_{\mathrm{s}}}{d T_{s}}=\frac{h_{\mathrm{c}} p_{\mathrm{s}}}{R_{\mathrm{r}} T_{\mathrm{s}}^{2}} \tag{A-2}
\end{equation*}
$$

where R_{r} is the gas constant for steam. Substituting for $h_{f v}$ and integrating, using the boundary condition $p_{4}=24821 \mathrm{~Pa}$ at $T_{8}=338 \mathrm{~K}$, gives

$$
\begin{equation*}
p_{\mathrm{s}}=24821\left(\frac{T_{\mathrm{s}}}{338}\right)^{-5.3512} \exp \left[\frac{20.387\left(T_{\mathrm{s}}-338\right)}{T_{\mathrm{s}}}\right] \tag{A-3}
\end{equation*}
$$

To compute the saturation temperature for a given pressure, this equation must be solved iteratively. To simplify the solution and avoid iteration, an approximate solution is used that is wes the value of saturation temnerature t within a fraction of a percent erco. First, an approximate value of saturation temperature is determined from

$$
T_{\text {s.ap }} \frac{2263}{6.064-0.434 \ln \left(\frac{P_{s}}{100000}\right)}
$$

which gives the saturation temperature within a few degrees of its correct value. This value is corrected by integrating the Clausius-Clapeyron oquation, dssuming constant h_{p} hetweon $T_{\text {G,ap }}$ and T_{s}, which gives

$$
\begin{equation*}
T_{\mathrm{s}}=\frac{T_{\mathrm{s}, \mathrm{ap}}}{1-\left[\frac{R_{\mathrm{v}} T_{\mathrm{s}, \mathrm{ap}}}{h_{\mathrm{ev}}\left(T_{\mathrm{s}, a p}\right)}\right] \ln \left[\frac{P_{\mathrm{s}}}{P_{\mathrm{s}, \mathrm{a}}\left(T_{\mathrm{s}, a p}\right)}\right]} \tag{A-5}
\end{equation*}
$$

where $h_{f v}\left(T_{s, a p}\right)$ and $p_{s}\left(T_{s, a p}\right)$ are calculated using the equations above ai $T_{s, a p}$. The derivative along the saturation line is also needed and is given by

$$
\begin{equation*}
\frac{\partial T_{s}}{\partial p_{s}}=\frac{R I_{s}^{2}}{p_{s} h_{e v}\left(T_{s}\right)} . \tag{A-6}
\end{equation*}
$$

A-1.1.2 Second Region of Temperature and Pressure. The second region of temperature is given by
$T_{s} \geq 370.4251 \mathrm{~K}$
$p_{5} \geq 9.056466 \mathrm{E4} \mathrm{~Pa}$
In this range of temperature and pressure, a simpler functional form is used and is written

$$
\begin{equation*}
P_{s}=\frac{1}{A_{14}}\left(\frac{T_{s}-C_{3}}{C_{1}}\right)^{\frac{1}{C_{2}}} \tag{A-7}
\end{equation*}
$$

$$
\begin{equation*}
T_{s}=C_{1}\left(A_{1,} P_{5}\right)^{C_{2}}+C_{3} \tag{A-8}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d T_{8}}{d p_{5}}=\frac{C_{2}\left(T_{5}-C_{3}\right)}{P_{5}} \tag{A-9}
\end{equation*}
$$

Los Alamos National Laboratory has since modified the high-pressure range
calculation. Those modifications have not as yet been incorporated into TRAC-
BFI/MOD1.

A-1.2 Internal Energy of Saturated Steam

There are 12 pressure ranges in which the saturated vapor internal energy and the derivatives of the s-turation enthalpy with respect to pressure and temperatume ate ent watec is lowest pressute range uses one functional form, while the 1. highest -sure ranges use another functional form with different sets of constant ae two functional forms are given, along with the sets of constants and pessure ranges.

A-1.2.1 Lowest Pressure Range. The lowest pressure range is given by p_{v} $<5.2 E 5 \mathrm{~Pa}$, where p_{y} is the partial pressure of steam, In this pressure range, the intennal enengy ic given by

APPENDIX A

$$
\begin{equation*}
e_{v s}=R_{v k}-\frac{P_{v}}{P_{v i}}=h_{v s}-R_{v} T_{s} \tag{A-10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d e_{v}}{d p_{v}} \quad \frac{d h_{v}}{d p_{0}}-R_{v} \frac{d l^{d}}{d p_{v}} \tag{A-11}
\end{equation*}
$$

The quantities have bcen determined by fitting the saturated vapor enthalpy and its derivative with respect to pressure as

$$
\begin{equation*}
h_{\mathrm{vs}}=C_{8}+C_{7}\left[T_{5}\left(p_{\mathrm{v}}\right)-C_{5}\right]+h_{\mathrm{ev}}\left[T_{\mathrm{s}}\left(p_{v}\right)\right] \tag{A-12}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d h_{v s}}{d p_{v}}=C_{7}-2470.212 \frac{d T_{\mathrm{s}}}{d p_{v}} \tag{A-13}
\end{equation*}
$$

Other quantities that will be needed later are $\gamma_{\gamma s}$, the ratio of vapor spacific heats along the saturation line, and its derivative along the saturation tine with respect to pressure. There quantities ars given by

$$
\begin{align*}
& \gamma_{\mathrm{vs}}=\frac{h_{\mathrm{vs}}}{e_{\mathrm{vs}}} \\
& \frac{d \gamma_{\mathrm{vs}}}{d p_{\mathrm{v}}}=\frac{d h_{\mathrm{vs}}}{d p_{\mathrm{v}}}-\frac{\gamma_{\mathrm{vs}}}{e_{\mathrm{vs}}} \frac{d e_{\mathrm{vs}}}{d p_{\mathrm{v}}} \tag{A-15}
\end{align*}
$$

A-1.2.2 Higher-r, essure Ranges. In the high-pressure ranges, the Quantities of interest are determined from polyomials. These polynomials have different coefficients for the dffferent pressume ranges. The pressures ranges and coefficients ar given in Tables $A-2$ and $A-3$. The functions for pressure range j are

$$
\begin{align*}
& A_{v}\left(\vec{v}-A_{v a l} j\right\}+n_{1}\left(B_{v e}(j)+p_{v}\left[\text { Cve }(j)+p_{v} D v e(j)\right]\right) \tag{A-16}\\
& \frac{d e_{v s}(j)}{d p_{v}}-\operatorname{Bre}(j)+p_{v}\left[2.0 \text { Cve }(j)+p_{v} 3.0 \text { Dve }(j)\right] \tag{A-17}
\end{align*}
$$

$$
\begin{align*}
& \gamma_{v s}(j)=\operatorname{Avg}(j)+p_{v}\left(B v g(j)+p_{v}\left\{\operatorname{Cvg}(j)+p_{v} D v g(j)\right]\right) \tag{A-18}\\
& \frac{d \gamma_{v s}(j)}{d p_{v}}=B_{v g}(j)+p_{v}\left[2.0 \operatorname{Cvg}(j)+p_{v} 3.0 D_{v g}(j)\right] \tag{A-19}\\
& h_{v s}(j)=e_{v s}(j) \gamma_{v s}(j) \tag{A-20}\\
& \frac{d h_{v s}(j)}{d p_{v}}=\gamma_{v s}(j) \frac{d e_{v s}(j)}{d p_{v}}+e_{v s}(j) \frac{d \gamma_{v s}(j)}{d p_{v}} . \tag{A-21}
\end{align*}
$$

A-1.3 Heat Capacity of Saturated Steam at Constant Pressure

Although the heat capacity of steam is not an output variable of the THERMO subroutine, it is used in subsequent calculations. The temperature is divided inte 10 regions, with the heat capactly and its dertvat tve with respect to pressure being determined from the same polynomial function in each temperature range with different coefficients. The polynomial function is given by

$$
\begin{equation*}
\operatorname{Cps}(j)=A c p(j)+I_{s}\left\{B C p(j)+I_{s}\left[\operatorname{Ccp}(j)+T_{s} D C p(j)\right]\right) \tag{A-22}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d C p s(j)}{d p_{v}} \sim\left(B C p(j)+T_{5}\left[2.0 \operatorname{Ccp}(j)+3.0 T_{5} D c p(j)\right]\right) \frac{d T_{5}}{d p_{v}} \tag{A-23}
\end{equation*}
$$

A-2 Liquid Properties

A-2.1 Liquid Internal Energy

The liquid internal energy is computed by adding a correction term to the Internal energy at saturation (corresponding to saturation pressure at the ligutd temperaturel, thet is

APPENDIX A

$$
\begin{equation*}
e_{t}\left(T_{t}, p\right)=e_{\ell}\left(T_{t}, P S L\right)+E L P \tag{A-24}
\end{equation*}
$$

where PSL is the saturation pressure corresponding to T_{ℓ}, and

$$
\begin{equation*}
E L P=(p-P S L)\left(\frac{\partial e_{t}}{\partial p}\right)_{1_{t}} \tag{A-25}
\end{equation*}
$$

where the derivative of liquid internal energy with respect to pressure at constant temperature is given by

$$
\begin{equation*}
\left(\frac{\partial e_{\ell}}{\partial p}\right)_{\tau_{\ell}}=C_{k e}\left[1-e x p\left(C_{k 4} p S L\right)\right]+C_{k 2} p S L^{2} \tag{A-26}
\end{equation*}
$$

The derivative of the liquid internal energy is calculated from

$$
\begin{equation*}
\left(\frac{\partial e_{\ell}}{\partial T_{t}}\right)_{p}=\frac{\partial}{\partial T_{t}} e_{\ell}\left(T_{\ell}, P S L\right)_{p}+E R T \tag{A-27}
\end{equation*}
$$

where

$$
\begin{align*}
& E R T=\frac{\partial}{\partial T_{t}}(E L P)_{p} \\
& =\left\{C_{k d l}\left[1-\left(C_{k i} p+C_{k i} P S L\right) \exp \left(C_{k 4} P S L\right)=1\right\}+C_{k 2}\left[2 p P S L-3 P S L l^{2}\right]\right\} \frac{d P S L}{d T_{t}} . \tag{A-28}
\end{align*}
$$

The liquid internal energy at saturation is computed from a third-order polynomial in each of eight temperature ranges. The polynomial coefficients are different in each temperature range. The temperature ranges and the coefficients for each range are given in Table A.5. The polynomial function is given by

$$
\begin{equation*}
e_{\ell}\left(T_{e}, P S t\right)=A l e(j)+T_{\ell}\left\{B\left(e(j)+I_{\ell}\left[C l e(j)+T_{\ell} D f e(j)\right]\right\}\right. \tag{A-29}
\end{equation*}
$$

for each temperature range j

A-2.2 Liquid Density

The liquid density is corputed in two steps. The density is computed from the primary liquid density function to which a residual void correction is applied.

A-2.2.1 Primary Liquid Density Correlation. The primary liquid density is computed frots a correlation for the liquid specific volume as a function of liquid temperature, to whith a pressure dependent correctlon factor is applied, and is

$$
\begin{equation*}
\rho_{\ell}\left(T_{t}, p\right)=\frac{1}{v_{\ell}\left(T_{t}\right)\left[1-\frac{\ln \left(1+\frac{p}{F\left(T_{\ell}\right)}\right)}{a_{2}}\right]} \tag{A-30}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{i}\left(T_{2}\right)=A v o+T_{e}\left[B v o+T_{t}\left(C v o+T_{e}\left(v v_{0}\right)\right]\right. \tag{A-31}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(F_{i}\right)=A f n+T_{C}\left[B f n+T_{2}\left(C f n+T_{,} 0 f n\right)\right] \tag{A-32}
\end{equation*}
$$

The temperatire range is broken up into 12 temperature regions, and the polynomial coefficients are dirferent in each region. The temperature regions and the coefffetents for each region are 115ted tim Tables A 7 and A.8.

The derivatives of the liquid density with respect to pressure and temperature are found by differentiation of the liquid density function.

A-2.2.2 Residual Void Correction. After evaluation of the functions described above, the 1 iquid density and its derivatives are modified to reflect a restduat vold fraction. In the following, the unmodffted values computed by the formulas described above are denoted by a tilce ($)$). There are two pressure ranges for the residual void correction.
A. 2.2.2.1 Migh Pressure Residutal Votd correction - The high-pressure range for the residual vaid correction is given by $\mathrm{P}>4: \mathrm{E} 5 \mathrm{~Pa}$.

In the high-pressure region, the corrected liquid density and its derivatives are given by

Appendix A

$$
\begin{align*}
& p_{e}\left(T_{t}, p\right)=\left(1-\frac{1000}{p}\right) \bar{p}_{e}\left(T_{t}, p\right) \tag{A-33}\\
& {\left[\frac{\partial p_{e}\left(T_{t}, p\right)}{\partial T_{e}}\right]_{p}=\left(1-\frac{1000}{p}\right)\left[\frac{\partial p_{e}\left(T_{t}, p\right)}{\partial T_{t}}\right]_{p}} \tag{A-34}\\
& {\left[\left.\frac{\partial p_{e}\left(T_{t}, p\right)}{\partial p}\right|_{\ell}=\left(1-\frac{1000}{p}\right)\left[\frac{\partial p_{e}\left(T_{e}, p\right)}{\partial \theta}\right]_{1}+\frac{1000 \hat{p}_{t}\left(T_{e}, p\right)}{p^{2}}\right.} \tag{A-35}
\end{align*}
$$

A-2.2.2.2 L.w-Pressure Residual Yoid Correction--The low-pressure region for the residual void correction is given by

```
P&4.0 E5 Pa
```

In this region of pressure, the corrected liquid density and its derivatives are given by

$$
\begin{equation*}
A f f=6.25 E-9 p+0.005 \tag{A-36}
\end{equation*}
$$

$$
\begin{equation*}
P_{l}\left(T_{2}, P\right)=A \mid f \bar{p}_{\ell}\left(T_{t}, p\right) \tag{A-37}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial \rho_{l}\left(T_{e}, p\right)}{\partial p}\right]_{T_{l}}=\left(1-A(f)\left[\frac{\partial \rho_{e}\left(T_{e}, p\right)}{\partial p}\right]_{T_{l}}+6.25 E-9 \bar{p}_{\ell}\right. \tag{A-38}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial p_{e}\left(T_{e}, p\right)}{\partial T_{t}}\right]_{p}=(1-A l f)\left[\frac{\partial p_{t}\left(T_{t}, p\right)}{\partial T_{t}}\right]_{p} \tag{A-39}
\end{equation*}
$$

A-3 Vapor Properties

> There are two vapor species in $1 R A C-B F 1 / \mathrm{MOD1}$, steam and noncondensable gas. Correlations are provided for the properties of each of these species.

A-3.1 Stean Properties

Steam properties are computed frem different correlating functions. derending upon whether the stean is superheated or subcooled.

A-3.1.1 Superheated Steam $\left(T_{v} \geqslant T_{8}\left(p_{v}\right)\right.$. Superheated steam is defined as stqam whose temperature is greater than the saturation temperature based on the partial pressure of steath.

A-3.1.1.1 Internal Energy of Superheated Steam-- The internal energy of stean is computed by integrating the enthalpy from the saturated state to the temperature of interest along A tine of constant pressure to give

$$
\begin{equation*}
e_{v}\left(T_{v, p}\right)=e_{v}\left[T_{s}\left(p_{v}\right), p_{v}\right]+A_{12}\left\{\left[T_{v}-T_{s}\left(p_{v}\right)\right]+\left(T_{v}^{2}-\beta\right)^{1 / 2}-\frac{T_{s}\left(p_{v}\right)}{A_{1,} C_{p s}-1}\right\} \tag{A-40}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=T_{5}^{2}(\rho,)\left[1-\frac{1}{\left(A_{11} C_{p s}-1\right)^{2}}\right\} \tag{A-41}
\end{equation*}
$$

where β is the isobaric thermal expansion coefficient
The saturated vapor enthalpy function was described in Section A-1.2, and the other constants are listed in Table A-1.

The derivative of vapor internal energy with respect to temperature at constant pressure is given by

$$
\begin{equation*}
\left(\frac{\partial e_{v}}{\partial T_{v}}\right)_{P_{v}}=\frac{C_{4}}{1-\frac{\beta}{k^{2}}} \tag{A-42}
\end{equation*}
$$

and

$$
\begin{equation*}
K=A_{13}\left(e_{v}-e_{v s}\right)+T_{s}\left(1+\frac{1}{A_{11} C_{p s}-1}\right) \tag{A-43}
\end{equation*}
$$

where k is the isothermal compressibility.

Appendix A

The derivative of vapor internal energy with respect to pressure at corstant temperature is given by

$$
\begin{align*}
& \left.\left(\frac{\partial e_{v}}{\partial p}\right)_{t_{v}}=-1 / 2\left(\frac{\partial e_{v}}{\partial t_{v}}\right)_{p}\left(1-\frac{\beta}{k^{2}}\right) \kappa_{p}+\frac{1}{k} \frac{d \beta}{d p}\right) \tag{A-44}\\
& k_{p}^{\prime}=\left(\frac{\partial k}{\partial p_{v}}\right)_{T_{v}}-A_{13}\left(\frac{\partial e_{v}}{\partial p_{v}}\right)_{v} \\
& A_{13}\left(\frac{d e_{v s}}{d p_{v}}\right)+\left(1+\frac{1}{A_{11} C_{p s}-1}\right)\left(\frac{d T_{v}}{d p_{v}}\right)=\frac{A_{11} t_{s}}{\left(A_{11} C_{p 6}-1\right)^{2}}\left(\frac{d C_{p s}}{d p_{v}}\right) \tag{A-45}\\
& \frac{d \beta}{d k}=\frac{2}{T_{s}}\left[\beta \frac{d t_{s}}{d p_{v}}+A_{11} \frac{d C_{p s}}{d p_{v}}\left(\frac{T_{s}}{A_{11} L_{p s}-1}\right)^{3}\right] \tag{A-46}
\end{align*}
$$

A-3.1.1.2 Density of Superheated Steam. The density af superheated steam is given by

$$
\begin{equation*}
R_{v}\left(T_{v}, p\right)=\frac{p_{i}}{\left(\gamma_{v s}-1\right) e_{v s}+0.3 D_{e}} \tag{A-47}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.D_{e} k A_{12} \left\lvert\, T_{v}+T_{5}+\left(T_{v}^{2}-\beta\right)^{1 / 2}-\frac{t_{s}}{A_{n} C_{p s}=1}\right.\right\} \tag{A-48}
\end{equation*}
$$

The derivative of steam density with respect to temperature at consiant pressure is given by

$$
\begin{equation*}
\left(\frac{\partial p_{v}}{\partial T_{v}}\right)_{p}=\frac{-0.3 \rho_{v}\left(T_{v}, p_{v}\right)}{\left(\gamma_{v s}-1\right) e_{v s}+0.3 \rho_{e}}\left(\frac{\partial e_{v}}{\partial T_{v}}\right)_{p} \tag{A-49}
\end{equation*}
$$

The derivative of steam density with respect to pressure at constant temperature is given by

$$
\begin{align*}
& \left(\frac{\partial p_{v}}{\partial p_{v}}\right)_{T_{v}}=\frac{1-p_{v}\left(T_{v}, p_{v}\right)\left[e_{v s} \frac{\partial \gamma_{v s}}{\partial p_{v}}+\left(\gamma_{v s}-1.3\right) \frac{\partial e_{v s}}{\partial p_{v}}\right]}{\left(\gamma_{v s}-1\right) e_{v s}+0.3 D_{e}} \\
& =\frac{0.3 \rho_{v}\left(T_{v}, p_{v}\right)}{\left(\gamma_{v i}-1\right) e_{v s}+0.3 D_{e}}\left(\frac{\partial e_{v}}{\partial p_{v}}\right)_{T_{v}} . \tag{A-50}
\end{align*}
$$

A-3.1.2 Subcooled Steam $\left[T_{y}<T_{s}\left(P_{y}\right)\right]$. Subcooled steam is defined as steam whose temperature is less than the saturation temperature based on the partial pressure of steam.

A-3.1.2.1 Internal Energy of Subcooled Steam - . The internal energy of steam is computed by integrating the internal energy from the saturated state to the temperature of tnterest afong a $14 n$ of constant pressure, assuming that the heat capacity at constant volume remains constant at its value on the sacuration line. This gives

$$
\begin{align*}
& e_{v}\left(T_{v}, p\right)=e_{v}\left[T_{s}\left(p_{v}\right), p_{v}\right]+\left[T_{v}-T_{s}\left(p_{v}\right)\right] \frac{C_{v-}\left[T_{s}(D)\right]}{C_{16}} \tag{A-51}\\
& {\left[\left.\frac{\partial e_{v}\left(T_{v}, p_{v}\right)}{\partial T_{v}}\right|_{p_{v}}=\frac{C_{p s}\left[T_{s}\left(p_{v}\right)\right]}{C_{16}}\right.}
\end{align*}
$$

$$
\begin{align*}
& {\left[\frac{\partial e_{v}\left(T_{v}, p_{v}\right)}{\partial T_{v}}\right]_{p_{v}}=\frac{C_{p s}\left[T_{s}\left(p_{v}\right)\right]}{C_{16}}} \\
& \left(\frac{\partial e_{v}\left(T_{v}, p_{v}\right)}{\partial p_{v}}\right)_{T_{v}}=\left\{\frac{\partial e_{v}\left[T_{s}\left(p_{v}\right), p_{v}\right]}{\partial p_{v}}\right\}_{T_{v}}+\left\{\frac{\partial C_{p s}\left[T_{s}\left(p_{v}\right), p_{v}\right]}{\partial p_{v}}\right\}_{T_{v}}\left\{\frac{T_{v}-T_{s}\left(p_{v}\right)}{C_{16}}\right] \\
& =\frac{C_{p s}\left[T_{s}\left(p_{v}\right), p_{v}\right]}{C_{16}}\left[\frac{\partial T_{s}\left(p_{v}\right)}{\partial p_{v}}\right] \tag{A-53}
\end{align*}
$$

where the derivatives and heat capacity of saturated steam were described in Section A-1.

APPENDIX A

A-3,1,2.2 Density of Subcooled Steam-- The density of subcooled stean is computed using the same correlating functions as for superheated stean (as dectribed in Section A-3.1 1 2) oxcent that the correlating parameter, 0, is given by

$$
\begin{equation*}
D_{e}=\frac{C_{50}\left[I_{s}\left(p_{v}\right), P_{v}\right]}{C_{16}}\left[T_{v}-T_{s}\left(P_{v}\right)\right] \tag{A-54}
\end{equation*}
$$

A-3.1.3 Steam Density Corrections, There are two separate corrections aplied to the steam density as computed from the formulation described in the provious sectionts. If the couputed densty ts negative, then the steam density and its derivatives with respect to pressure and temperature are recomputed assuming that stean is a perfect gas. These relations are

$$
\begin{align*}
& R_{v}\left(T_{v}, p\right)=\frac{P_{v}}{C_{12} I_{v}} \tag{A-55}\\
& \left(\frac{\partial p_{v}}{\partial I_{v}}\right)_{p_{v}}=\frac{\rho_{v}\left(I_{v}, p\right)}{I_{v}} \tag{A-56}\\
& \left(\frac{\partial p_{v}}{\partial p}\right)_{T_{v}}=\frac{R_{v}\left(I_{v}, p\right)}{P_{v}} .
\end{align*}
$$

The second correction is used whenever the computed steam density is greater than the computed liquid density. In this case, the vapor density and its derlvatives with respect to prossure and temperature are eet an aroxtmately equal to their corresponding liquid properties. Thus,

$$
\begin{align*}
& \text { if } P_{v}\left(T_{v}, P_{v}\right) \geqslant 0.999 P_{e}\left(T_{Q}, P\right) \text {, then } \\
& P_{v}\left(T_{v}, P_{v}\right)=0.999 P_{e}\left(T_{e}, p\right) \\
& {\left[\frac{\partial R_{v}\left(T_{v}, P_{v}\right)}{\partial p_{v}}\right]_{T_{v}}=0.999\left|\frac{\partial \rho_{l}\left(T_{R}, p\right)}{\partial p_{v}}\right|_{l_{t}}} \tag{A-59}
\end{align*}
$$

$$
\begin{equation*}
\left[\frac{\partial P_{v}\left(T_{v}, P_{v}\right)}{\partial T_{v}}\right]_{P_{v}}=0.999\left[\frac{\partial_{P}\left(T_{\ell}, P\right)}{\partial T_{\ell}}\right]_{Q_{v}} \tag{A-60}
\end{equation*}
$$

A-3.2 Noncondensable Gas Properties

The derisity and internal energy of the noncondensable gas are computed from the perfect gas law and are given by

$$
\begin{align*}
& e_{e}\left(T_{v}, P_{0}\right)-C_{1, y} T_{v} \\
& {\left[\frac{\partial e_{a}\left(T_{v}, P_{a}\right)}{\partial T_{v}}\right]_{p}=C_{1 z}} \tag{A-62}
\end{align*}
$$

$$
\begin{equation*}
\left[\left.\frac{\partial e_{a}\left(T_{v}, P_{u}\right)}{\partial P_{a}}\right|_{T_{v}}=0\right. \tag{A-63}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\partial p_{0}\left(\zeta_{v}, p_{a}\right)}{\partial p_{n}}\right)_{t_{v}}=\frac{1}{C_{25}^{7}} \tag{A-64}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial p_{0}\left(T_{v}, p_{a}\right)}{\partial T_{v}}\right]_{p_{0}}=-C_{25} p_{0}\left(T_{v}, p_{a}\right)\left[\frac{\partial p_{\mathrm{a}}\left(T_{v}, p_{\mathrm{a}}\right)}{\partial p_{p}}\right]_{v} \tag{A-65}
\end{equation*}
$$

$$
\begin{equation*}
P_{\mathrm{B}}=\left(T_{\mathrm{v}}, p_{\mathrm{s}}\right)=p_{\mathrm{B}}\left(\frac{\partial \rho_{\mathrm{o}}\left(T_{v}, P_{\theta}\right)}{\partial p_{\theta}}\right)_{T} \tag{A-66}
\end{equation*}
$$

A-3.3 Properties of Water Mixtures

APPENDIX A

The internal energy of a mixture of steam and noncondensable gas is given by the density-weighted average of the internal energies of the two species

$$
\begin{equation*}
e_{\mathrm{e}}\left(T_{v, p}\right)=\frac{\rho_{v}\left(T_{v}, p_{v}\right) e_{v}\left(T_{v}, p_{v}\right)+\rho_{a}\left(T_{v}, p_{a}\right) e_{0}\left(T_{v}, p_{a}\right)}{\rho_{v}\left(T_{v}, p_{v}\right)+\rho_{u}\left(T_{v}, p_{u}\right)} \tag{A-67}
\end{equation*}
$$

The density of a mixture of steam and noncondensable gas is the sum of the densities of the two spectes.

Appendix B

Material Properties

APPENDIX B

Material Properties

An extensive library of temperature-dependent material properties is incorpolated in the TRAC-BF1/MODI code. The entire library is accessible by
 heat slabs have access to structural material property sets only, There are 10 sets of materials properties that comprise the library, each set supplying values for thermal conductivity, specific heat, density, and spectral entisstvity for use in teat transfor calculat loms. the first five sets contain properties for nuclear-heated or electrically heated fuel rod simulation. Included are nuclear fuels, zircaloy cladding, fuel-cladding gap gases. electrical heater rod filaments, and electrical heater rod insulating matertal. The last flve sots tre for structurth matertals, includtry stainless steels, carbon steel, and Inconel. The material fndices used in the library are:

1. mixed-oxide fuel
2. zircaloy

3. boron nitride insulation
4. constantan/ntchrome heater
5. stainless steel, Type 304
6. Stainless stee 1, Type 316
7. stainless steel, Type 347
8. Carbon stee 1, Type fi50s
9. Incone1, Type 718

In addttion to the library of built-in material properties, the code provides for user-supplied tables of matertals properties

Figure B-1 illustrates the calling tree for rutaining the property values. Subroutines MFROD and MPROP are simple essors for calculating the average temperature and calling the appropriate : out ine based on the usersupplied material index. Subroutine FROD controls the fuel-cladding gap conductance and fuel rod thermal conduction calculations. Gap gas properties are caiculated only when the dynamic fucl-cladding gap heat transfer corfficient option is used

APPENDIX B

Figure B-1. Material properties code organization.

Density variation with thermal expansion is currently suppressed, because it is inconsistent with the fixed-node conduction solution. When node spacing

B-1. Nuclear Fuel $\left(U 0_{2}-\mathrm{Pu} 0_{2}\right)$ Properties

Subroutine MEIEL calculates the properties for mixed oxide nuclear fuels. Values obtained are influenced by three user-supplied input variables:
 fuel burnup. Property changes upon melting are not included in this code version.

B-1.1 Density

$$
\left.\left.\begin{array}{rl}
\text { A constant value is used; } \\
\rho & =f_{R 0}\left[\left(1-f_{P U D_{2}}\right)_{\mathrm{PO}_{2}}+f_{\mathrm{PWO}_{2}} \mathrm{P}_{\mathrm{HO}}^{2}\right. \tag{B-1}
\end{array}\right]\right] .
$$

where

$$
\begin{aligned}
& \text { fTD } \\
& f_{\mathrm{PuO}_{2}} \quad \text { fract:on of theoretical fuel density } \\
& \mathrm{AuO}_{2} \\
& =1.097 \mathrm{E} 4 \\
& \mathrm{P}_{\mathrm{FOO}_{2}}
\end{aligned}
$$

B-1.2 Specific Heat

The mixed-oxide fuel specific heat correlations ar taken from the MATPRO report ${ }^{6 \cdot}$

$$
\begin{equation*}
c_{p}=15.496 \frac{b_{1} b_{4}^{2} \exp \left(\frac{b_{4}}{T}\right)}{\left(T^{2} \exp \left(\frac{b_{6}}{T}\right)-1\right)}+2 b_{2} T+\frac{b_{3} b_{5}}{t_{6} T^{2}} \exp \left(\frac{b_{5}}{b_{6} T}\right) \tag{B-2}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{p}=\text { specific heat capacity }(J / \mathrm{kg} \cdot \mathrm{~K}) \\
& \mathrm{I}=\text { fuel temperature }(\mathrm{K})
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{D}_{1}=19.145 \text { for } \mathrm{CO}_{2} ; 19.53 \text { for } \mathrm{UO}_{2}-\mathrm{PUO}_{2} \\
& \mathrm{~B}_{2}=7.8473 \mathrm{E}-4 \text { for } \mathrm{UO}_{2}: 9.25 \mathrm{E}-4 \text { for } \mathrm{UO}_{2}-\mathrm{PuO}_{2} \\
& \mathrm{~b}_{3}=5.6437 \mathrm{E} 5 \text { for } \mathrm{UO}_{2} ; 6.02 \mathrm{E} 5 \text { for } \mathrm{UO}_{2}-\mathrm{PuO}_{2} \\
& \mathrm{~b}_{4}=535.285 \text { for } \mathrm{UO}_{2}, 539.0 \text { for } \mathrm{UO}_{2}=\mathrm{PUO} \\
& b_{5}=37694-6 \text { for } \mathrm{UO}_{2}, 40100.0 \text { for } 4 O_{2}-\mathrm{PuO}_{2} \\
& \mathrm{~B}_{6} \quad 1.987 \text { for } \mathrm{UO}_{2}, 1.987 \text { for } \mathrm{UO}_{2} \cdot \mathrm{PuO}_{2}
\end{aligned}
$$

APPENDIX B

B-1.3 Thermal Conductivity

The mixed-oxide fuel thermal conductivity correlations are taken from the MATPRO report ${ }^{6-1}$ and include porosity and density correction factors .

For $T_{c} \leq T_{11}$

$$
\begin{equation*}
k=\left[c \frac{c_{1}}{c_{2}+T_{6}}+c_{3} \exp \left(c_{6} T_{6}\right)\right] \tag{B-3}
\end{equation*}
$$

For $T_{c}>T_{1}$,

$$
\begin{equation*}
k=c_{c}+c_{3} \exp \left(c_{4} T_{c}\right) \tag{B-4}
\end{equation*}
$$

where

$$
\begin{align*}
& f_{c}=\text { temperature }\left({ }^{\circ} \mathrm{C}\right) \\
& f_{T D}=\text { fraction of theoretical density } \\
& c=100.0\left[\frac{1-\beta\left(1-f_{10}\right)}{1-0.05 \beta}\right] \tag{B-5}
\end{align*}
$$

$$
\begin{equation*}
\beta=c_{6}+c_{7} T_{6} \tag{B-6}
\end{equation*}
$$

and

$$
\begin{aligned}
& c_{1}=40.4 \text { for } \mathrm{UO}_{2} ; 33.3 \text { for } \mathrm{UO}_{2}-\mathrm{PUO}_{2} \\
& c_{2}=464.0 \text { for } \mathrm{UO}_{2} ; 375.0 \text { for } \mathrm{UO}_{2}-\mathrm{PUO}_{2} \\
& C_{3}=1.216\left[-4 \text { for } 40_{2}, \text { i } 54 \text { [} 4 \text { for } 40_{2} \cdot \mathrm{PuO}_{2}\right. \\
& \mathrm{c}_{4}=1.867 \mathrm{E}-3 \text { for } \mathrm{UO}_{2} ; 1.71 \mathrm{E}-3 \text { for } \mathrm{UO}_{2}-\mathrm{PuO}_{2} \\
& \text { C5 0.0191 for wh: A. N17 for U0 nuf } \\
& C_{6}=2.58 \text { for } \mathrm{UO}_{2} ; 1.43 \text { for } \mathrm{VO}_{2}-\mathrm{PUO}_{2} \\
& \text { C. } \quad-5 \text { \& r. } 4 \text { fan iliñ. in fan lin - Dun } \\
& T_{1} \approx 1650.0 \text { for } \mathrm{UO}_{2} ; 1550.0 \text { for } \mathrm{UO}_{2}-\mathrm{PUO}_{2} \text {. }
\end{aligned}
$$

```
B-1.4 Spectral Emissivity
```

The mixed-oxide spectral emissivity is calculated as a function of temperature based on MATPRO correlations. The values for UO_{2} fuel and UO_{2}. PuO_{2} fael are assumed to be eqtifvalent.

For $\mathrm{T} \leq 1000^{\circ} \mathrm{C}$,
e $=0.8707$
For $1000<T \leq 2050^{\circ} \mathrm{C}$,
$r=1.311-4.464$ E. $4 T$
For $T>2050^{\circ} \mathrm{C}$,

- - 0 1003

B-2. Zircaloy Cladoing Properties

Subroutine MZIRC calculates the properties for zircaloy and oxidized zircaloy clad 4 . The values obtained are for zircaloy 4 . Zircaloy-2 properties are assumed to be identical. The equations used are based on the correlations in the MATPRO report,

B-2.1 Density

A constant value is used;
$\rho=6551.4$

B-2.2 Specific Heat

Since zircaloy undergoes a phase change (alpha to beta) from 1090 to 1248 k, with a resultant sharp spike in the specific heat value during the transition, the specific heat is calculated by linear interpolation. Table B1 provides the values of specific heat versus temperature that are used for T $\leq 1248 \mathrm{~K}$.

For $T>1248 \mathrm{~K}, \mathrm{C}_{p}=356 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$

Appendix B

Table B-1. Specific heat versus temperature for I S 1248 K

8-2.3 Thermal Conductivity

Four-term polynomials are used to calculate the zircaloy and axidized zircaloy thermal conductivities. kelvin temperature is the independent variable, and the polynomial constants are

```
am}=-7.51\mathrm{ for Zri 1.96 for 2rOO
7, 2.ant a for 2%: 2.41 f:4 for 2rO2
```


The form of the polynomial used in this section and the substquent materials properties sections is

$$
\begin{equation*}
y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{01} x^{\omega} \tag{8-11}
\end{equation*}
$$

B-2.4 Spectral Emissivity

The emissivity of zircaloy is tenperature-depondeint, and the emissivity of zircaloy oxide is temperature and time dependent. For simpilcity, a constant value of $z=0.75$ is currently used

B-3. Fuel-Cladding Gap Gas Properties

Subroutine MGAP calculates values for the gan gas mixture thermal conduetivity used in predicting gap heat-trensfer coefficients. The method is takein from MATPTo ${ }^{\text {h-s }}$ and $1 s$ based on calculating mixture values for a possible seven constituent gases

$$
\begin{equation*}
k_{\text {pop }}=\sum_{i=1}^{n}\left(\frac{k_{1} x_{1}}{x_{1}+\sum_{j=1}^{n} \psi_{1} x_{j}}\right) \tag{B-12}
\end{equation*}
$$

whers

$$
\begin{align*}
k_{\text {sop }} & =\text { gap mixture thermal conductivity }(W / m \cdot K) \\
\psi_{1 j} & =\phi_{j}\left[1+2.41 \frac{\left(M_{j}-M_{j}\right)\left(M_{1}-0.142 N_{j}\right)}{\left(M_{i}+M_{j}\right)^{2}}\right] \tag{B-13}
\end{align*}
$$

$$
\begin{equation*}
\phi_{i j}=\frac{\left\{1+\left(\frac{k_{i}}{k_{i}}\right)^{1 / 2}\left(\frac{M_{i}}{M_{j}}\right)^{1 / 4}\right\}^{12}}{2^{3 / 2}\left(1+\frac{M_{i}}{M_{i}}\right)^{1 / 2}} \tag{B-14}
\end{equation*}
$$

$k_{i}=$ canstituent gas thermal conductivity ($W / m \cdot k$)
M - conse.t.tiont gesk moleathan Weishe
$x_{1} \quad=$ constituent gas mele fraction.
The seven constituent gases considered are hel4um, aryon, xenon, krypton, hydrogen, air/nitrogen, and water/vapor. Except for water/vapor, their thermal conductivities are defined as

$$
\begin{equation*}
k=a t^{t} \tag{B-15}
\end{equation*}
$$

where

T
temnerature
(K)

APPE: SDAX E

a $\Rightarrow 3.36$ f $\quad 3$ for He, 3.421 I. 4 for Ar; 4.0288 L-5 for Xe; 4.726 E-5
where fo is the gap gas pressure $\left(N / m^{2}\right)$
When the gap dimention ghinks te the order of the gas mean free pith, a
cortection factor is applied to the light gas therinal conductivities ta
accoit for the change in energy exchange between gas and surface. fnce again
utiliz'ng the MATPRO recommendati ins, the correction factor for h drogen
ar 4 heltim is
$k=\frac{k_{i}}{19 i k_{i}}$
where

$$
\begin{align*}
& f=\frac{0.2103 \sqrt{T_{0}}}{\beta_{\mathrm{e}} \lambda} \tag{B-18}
\end{align*}
$$

$$
\begin{aligned}
& \lambda=\text { characterist ic fuel RMS roughness (4.389 [-6 mi) } \\
& \text { B-4. Electrical Fuel Rod Insulator (BN) Properties }
\end{aligned}
$$

Subrout ine mBN calculates values for boron ntiride insulators used in cletrically lieated nuclear fuel rod simulatars. Magnesium oxide insulators are assumed to have roughty equivalent values

B-4.1 Density

```
                            A constant value of 2002 kg/m
```

```
B-4.2 Specific Heat
```

B-4.2 Specific Heat
A four-term polynomial is ssed to calculate the specific heat. The
Infependent variable is temperaiure (}\mp@subsup{}{}{\circ}\textrm{F})\mathrm{ , and the sonstants are modifications

```

```

4; and }\mp@subsup{\textrm{a}}{3}{}=1.5896 E-
B-4.3 Thermal Conductivity
The boron fismige thermal conductivity*4 is calculated based on a
conversion to SI un{ts of a curve fit
k=25.27 = 1.365 E-3%,
where
$k=$ thermal conductivity (W/m. K)
T + temperature ("t)
B-4.4 Spectral Emissivity
A constant value of unity is used for the horon nitride spectral emisofvity

```

\section*{B-5. Electrical Fuel Rod Heatef Coll (Constantan) Properties}
```

Subroutine MHTR calculates property values for constantan heater coils as usod in electrically heated nuclear fuel rod simulators. Nichrome colls, used in some installations in place of constantan, are assumed to have similar properties. The correlations itsed are from Reference B-4
B-5,1 Density
A constant value of $8393.4 \mathrm{~kg} / \mathrm{mo}^{3}$ is used.
B-5.2 Specific Heat

```

\section*{Appendix B}
```

 co-110 f0.200
 where
Cp
F. temperature (FF)
B-5,3 Thermal Conductivity
k=29.18+2.683 E-3 (If - 100)
where
k * thermal conductivity (W/or.K)
T, = temperature (*F)
8-5.4 Spectral Emissivity
A constant value of unity is used
B-6. Structural Material "oo'enties

```

Subroutine MSTRCI supplies property values for five types of structural (interials normally used in light water power reactor plants? stainless steel.
 lype A508; and Inconel Iype 718. A tabulation of the correlations used and a list of associated references are given in Table B-2.

\section*{B-7. Jser-Supplied Material iroperties}

At the option ef the user, Subroutine MIAB gets property values from the usor-supplied fisterial property table, using straight-line interpolation.

\section*{Appendix B}

\section*{B-8. References}

B-1. J. K. Hohor'st, Ed. SCDAP/RELAP5 MODE Coce Manual, Volume 4. MAIP. A Library of Naterials Properties for Light-Water-Reactor Accident Analysis, NUREG/CR-5273, tG6-2555, February 1990

B-2. Y, S, Touloukian, Ed.. Thermophysical Properties of High Temperature Solid Materials, New York: MacMillan Co., 1967.

B-3. Electric Power Research Institute, A Prediction of the Semiscale Blowdown Heat Iransfer Test 5-02-8 (NRC Standard Problen Five), EPll NP. 212, October 1976

B-4. W. L. Kirchner, Reflood Heat Transfor in a Light Water Reactor, Volumes I and II, NUREG-0106, Augqust 1976

B-5. Argonne National Laboratory, Properties for LMPBR Safety Analysis, ANL. CEN-RSD-76-1, 1976

B-6. J. C. Spanner. Ed., Nuclear Systems Materials Handbook - Volume 1, Design Data, T10-26666, 1976

Table B-2. Structural materials properties

\title{
APPENDIX C \\ Data Base Used by M. Ishil for Verification of Drift Flux Models
}

\section*{APPENDIX C}

\section*{Data Base Used py M. Ishit for Verification of Drift Flux Models}

If the derivation of drift flux formulas, for variables such as the distribution parameter, \(C_{0}\), and phasic drift velocity, \(V_{g}\), in different flow regtmes, ishtt has used a vartety of data from different sources. \(-1,2,3\) it should be noted that, with the exception of correlations given for \(\mathrm{C}_{\infty}\), there are no empirical correlations in the drift flux model that are generated only from data. The mathematical relations for different variables, such as \(C_{0}\) and Y hatve been derfved on mechantstic pritetples first and then compared with a collection of data to ascertain their validity. In some cases, however, a body of experimental data has been used to determine the leading constant or an exponent in formulations. In the same manner, additional sets of data were enployed by Anderseil and Chifes, in develaping some fmproved correlat \(\mathrm{cons}^{6-6}\) for \(V_{a i}\) and \(C_{0}\) that were addressed in the text. The source, nature and the range of variables of those data are summarized here in Tables C-1 and C-2.

\section*{References}

C-1. M. Ishii, One-Dimensional Drift-Flux Mudel and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes, ANL -77-47, October 1977

C-2. M. Ishii, "Recommended Correlations for Interfacial Shear in Post CHF Regime," letter to Dr. M. W. Young, of U.S. Nutlear Regulatory Commtsston, from Argonne Nattotal Laborttory, May 12, 1983

C-3. M. Ishii and K. Mishima, Correlation for Liguid Entrainment in Annular Two Phase flow of Law Viscous Fluid, ANL/RAS/LWR 81-2. March 1981.

C-4. J. G. M. Andersen and K.H. Chu, BWR Refill-Reflood Program, Task 4.7 Constitutive Correlations for Shear and Heat Transfer for the BWR Version of TRAC, NUREG/CR-2134, EPRI NP-1582, GEAP-24940, December 1981

C-5. J. G. M. Andersen, K. H. Chu, and J. G. Shaug, BWR Refill-Reflood Program, Task 4.7. Model Development. Basic Models for the BWR Version of TKAC, NUREG CR-2573, TPR1 NP 2375, GLAP-22051, Septeniber 1983.

C-6. J. Nikuradse, "Gesetzmasigkeit der turbulenten stromung in glatten Rohren, " Forsch. Arb. Ing. Wes. 356, 1932.
C.7 K. Schwartz, "Investigation of Distribution of Density, Water and Steam

\section*{APPENDIX C}

Velocity and of the Pressure Drop in Vertical Tubes, " VDI forschungsh. 20, Series B, 445, 1945
C.8. J. F. Marchaterre, The Effect of Pressure on Boiling Density in Nultiple Rectangular Channels, ANL-5522. February 1956.

C-9.- 1. A. Hughes, Steam Water Nixture Donsity Studies in a Natural Circulation High Pressure System, Babcock and Wilcox, G. Report No 5435, 1958

C 10 . §. Z Routhant and K. M. Becker, Neasurement of Void Fraction for Flow of Boiling Heavv Water in a Vertical Round Duct, AE-106, Aktiebolaget Atomenergi, Studsvik, Sweden, 1963.

C-11. G. E. Semtssaert, Two Component Two-Phase Flow Parameters for Low Circulation Rates, ANL-6755, July 1963.

C-12. N. Adorni, G. Peterlongo, R. Ravetta, and F. A. Tacconi, Large Scale Experiments on Heat Transfer and Hydrodvnamics with Steam-Water Mixtures, C1SE Report R-91, Italy, 1964

C-13. R. J. Thome, Effect of a Transverse Magnetic Field on Vertical Two-Phase Flow through a Rectangular Channel, ANL-6854, 1964

C-14. G. B. Wallis, D. A. Steen, S. N. Brenner, and T. M. Turner, Joint U. S. Euratom Research and Development Program, Quarteriy Progress Report, January, Dartmouth College, 1964

C-15. 3. L. L. Baker, Flow-Regime Transition at Elevated Pressures in Vertical Two-Phase Flow, ANL-7093, Sepiember 1965

C-16. C. C. St. Pierre, Freguency-Response Aralysis of Steam Voids to Sinusoidal Power Modulation in a Thin-Walled Boiling Water Coolant Charinel, ANL. 7041, May 1965.
C.17. N. Zuber, "Flow Excursions and Oscillations in Boiling. Two-phase Flow Systems with Heat Addition, "Proceedings of the Symposium on Two-Phase Flow Dynamics, 1, 1967, p. 1071

C-18. M. Petrick, A Study of Vapor Carryunder and Associated Problems, ANL-6581, July 1982.

C-19. F. Bergonzoll and F. 3. Halfen, Heat Transfer and Vo'd Formation during forced Circulation Boiling of Organic Coolants, NNC-SR-8906, 1964

C-20. L. E. G111 and G. F. Hewitt, Further Data on the Upwards Annuler flow of Air-water Mixtures, AERE-R3935, 1962.

C-21. P. Alia, L. Cravarolo, A. Hassid, and E. Pedrocchi, Liquid Volume Fraction in Adiabatic Two-phase Vertical Upflow Round Conduit, CISE Report-105, Italy, 1965.

\section*{Appendix C}

C-22. L. Cavarg70, A. Georgini, A. Hassid, and E, Pedrocchini, A Device for the Measurement of Shear Stress on the Wall of a Conduit, Its Application in Mean Density Determination in Two-phase Flow: Shear Stress Data in Two-phase Adiabatic Vertical Flow, CISE Report-82, Italy, 1964.

\section*{Appendix C}

Table C-1. Experiments used to check the distrioution parameter
\begin{tabular}{|c|c|c|}
\hline Reference & Flow medium and test geometry & Range of variables \\
\hline Nikuradse \({ }^{\text {c-6 }}\) & \begin{tabular}{l}
Single-phase water. \\
Round Tubes, \\
\(0_{1}=0.025,0.050\), and 0.10 in
\end{tabular} & Reynolds numbers from 600 to \(10^{6}\) \\
\hline Schwartz \({ }^{\text {c-7 }}\) & \begin{tabular}{l}
Steam-wate \({ }^{*}\) \\
Round tube,
\[
\begin{aligned}
& D=0.0596 \mathrm{~m} \\
& L=6.350 \mathrm{~m}
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& \text { Pressure }=2.11 \text { to } 8.10 \mathrm{MPa} \\
& G=577.8 \text { to } 608.6 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& X=2.8 \% \text { to } 5.85 \%
\end{aligned}
\] \\
\hline Marchaterre \({ }^{\text {c-8 }}\) & \begin{tabular}{l}
Boiling water. \\
Paralle: rectangular channels,
\[
\begin{align*}
& 0.011 \times 0.094 \mathrm{~m}^{2}  \tag{3}\\
& 0.056 \times 0.094 \mathrm{~m}^{2}  \tag{2}\\
& \mathrm{~L}=1.22 \mathrm{~m}
\end{align*}
\]
\end{tabular} & \[
\begin{aligned}
& \text { Pressure }=0.78 \text { to } 4.18 \mathrm{MPa} \\
& \text { Mass velocity, } \\
& G=365.46 \text { to } 499.88 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& \text { Exit steam quality, } \\
& X=1.9 \% \text { to } 8.2 \%
\end{aligned}
\] \\
\hline Hughes \({ }^{\text {c-9 }}\) & Steam-water. Round Tube,
\[
\begin{aligned}
& t_{1}=0.168 \mathrm{~m} \\
& L^{2}=3.105 \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pressure }=6.8 \text { to } 16.32 . \mathrm{MPa} \\
& G=118.8 \text { to } 362.6 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& X=3.22 \% \text { to } 22.77 \%
\end{aligned}
\] \\
\hline Rouhani and Becker \({ }^{2-10}\) & Boiling heavy-water. Round tube,
\[
\begin{aligned}
& D_{1}=0.006 \mathrm{~m} \\
& L_{1}=2.50 \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pressure }=0.7 \text { to } 6.0 \mathrm{MPa} \\
& G=650 \text { to } 2550 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& X=0.0 \text { to } 38 \%
\end{aligned}
\] \\
\hline Semissaert \({ }^{\text {c-11 }}\) & \begin{tabular}{l}
Air-water. \\
Pound tube,
\[
\mathrm{t}_{1}=0.07 \mathrm{~m}, \mathrm{~L}=3.19 \mathrm{~m}
\]
\end{tabular} & \[
\begin{aligned}
& \text { Pressure }=0.1 \mathrm{MPa} \\
& j_{g}=0.0 \text { to } 11.0 \mathrm{~m} / \mathrm{s} \\
& j_{\ell}=0.0 \text { to } 0.305 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline Adorni \({ }^{8-12}\) & Boiling water. Round tube,
\[
\begin{aligned}
& D_{i}=0.0251 \mathrm{~m} \\
& L^{\prime}=1.651 \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Prassure }=5.1 \mathrm{MPa} \\
& \mathrm{G}=1500 \text { to } 3800 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& X=5 \% \text { to } 70.4 \%
\end{aligned}
\] \\
\hline Thome \({ }^{\text {c-13 }}\) & \begin{tabular}{l}
\(\mathrm{NaK}-\mathrm{N}_{2}\) mixture. \\
Rectangular Channel
\[
\begin{aligned}
& 0.0064 \times 0.516 \mathrm{~m}^{2} \\
& \mathrm{t} \\
& =0.762 \mathrm{~m}
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& \text { Pressure }=0.107 \text { to } 0.16 \mathrm{MPa} \\
& \mathrm{j}_{9}=0.078 \text { to } 3.89 \mathrm{~m} / \mathrm{s} \\
& J_{t}=0.39 \text { and } 1.36 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Wall is }{ }^{\mathrm{C}-14} \\
& \text { (1.ppendix) }
\end{aligned}
\] & Air-water. Round tube,
\[
\begin{aligned}
& D_{1}=0.0248 \mathrm{~m} \\
& L^{\prime}=1.778 \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pressure }=0.1 \mathrm{MPa} \\
& j_{\mathrm{g}}=0.539 \text { to } 11.46 \mathrm{~m} / \mathrm{s} \\
& j_{l}=0.0285 \text { to } 1.384 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline Baker \({ }^{\text {E-15 }}\) & \begin{tabular}{l}
Freon-11. \\
Rectangular channel
\[
0.0097 \times 0.0267 \mathrm{~m}^{2}
\]
\end{tabular} & \[
\begin{aligned}
& \text { Pressure }=0.411 \text { to } 2.492 \mathrm{MPa} \\
& j_{g}=0.021 \text { to } 2.05 \mathrm{~m} / \mathrm{s} \\
& j_{e}=0.024 \text { to } 15.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline
\end{tabular}

Table C-1. (cont inued)
\begin{tabular}{|c|c|c|}
\hline Reference & Flow medium and test geometry & Range of variables \\
\hline St. Pierre \({ }^{\mathrm{c}-16}\) & ```
Bolling water.
Rectangular channel
0.011\times0.0445 m
t}=1.55\textrm{m
``` & \[
\begin{aligned}
& \text { Pressure }=1.36 \text { to } 5.44 \mathrm{MPa} \\
& j_{9}=0.0 \text { to } 1.93 \mathrm{~m} / \mathrm{s} \\
& j_{t}=0.77 \text { to } 1.15 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline Semissaert \({ }^{\text {c-11 }}\) & \begin{tabular}{l}
Air-water. \\
Round tube,
\[
D_{i}=0.07 \pi_{i}, L=3.19 \mathrm{~m}
\]
\end{tabular} & \[
\begin{aligned}
& \text { Pressure }=0.1 \mathrm{MPA} \\
& j_{g}=0.0 \text { to } 11.0 \mathrm{~m} / \mathrm{s} \\
& j_{t}=0.0 \text { to } 0.305 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline Adorni \({ }^{\text {c-12 }}\) & Boiling water. Round tube,
\[
\begin{aligned}
& D_{i}=0.025 i \mathrm{im} \\
& L_{L}=1.66 i \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pressure }=5.1 \mathrm{MPa} \\
& G=1500 \text { to } 3800 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& X=5 \% \text { to } 70.4 \%
\end{aligned}
\] \\
\hline Thome \({ }^{\text {c-13 }}\) & \begin{tabular}{l}
Nak- \(\mathrm{N}_{2}\) mixture, \\
Rectangular channel \\
\(0.0064 \times 0.0516 \mathrm{~m}\) \(\mathrm{L}=0.762 \mathrm{~m}\)
\end{tabular} & \[
\begin{aligned}
& \text { Pressure }=0.107 \text { to } 0.16 \mathrm{MPa} \\
& j_{9}=0.078 \text { to } 3.89 \mathrm{~m} / \mathrm{s} \\
& j_{2}=0.39 \text { and } 1.36 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Wall is \({ }^{2.14}\) \\
(Appendix)
\end{tabular} & \begin{tabular}{l}
Air-water. \\
Round tube,
\[
\begin{aligned}
& D_{i}=0.0248 \mathrm{~m} \\
& L_{i}=1.778 \mathrm{~m}
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& \text { Pressure }=0.1 \mathrm{MPa} \\
& j_{9}=0.539 \text { to } 11.46 \mathrm{~m} / \mathrm{s} \\
& j_{\ell}=0.0285 \text { to } 1.384 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline Baker \({ }^{\text {c-15 }}\) & \begin{tabular}{l}
Freon-11. \\
Rectangular channel
\[
\begin{aligned}
& 0.0097 \times 0.0267 \mathrm{~m}^{2} \\
& L=1.130 \mathrm{~m}
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& \text { Pressure }=0.411 \text { to } 2.492 \mathrm{MPa} \\
& j_{\Omega}=0.021 \text { to } 2.05 \mathrm{~m} / \mathrm{s} \\
& j_{t}=0.024 \text { to } 15.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline St. Pierre \({ }^{\mathrm{C}-16}\) & \begin{tabular}{l}
Boiling water. \\
Rectangular channe?
\[
\begin{aligned}
& 0.011 \times 0.0445 \mathrm{~m}^{2} \\
& \mathrm{~L}=1.55 \mathrm{~m}
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& \text { Pressure }=1.36 \text { to } 5.44 \mathrm{MPa} \\
& j_{9}=0.0 \text { to } 1.93 \mathrm{~m} / \mathrm{s} \\
& j_{l}=0.77 \text { to } 1.15 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline Zuber \({ }^{\text {c-17 }}\) & Boiling freon- 22. Round tube,
\[
\begin{aligned}
& D_{i}=0.01 \mathrm{mI} \\
& L^{\prime}=1.54 \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pressure }=0.61 \text { to } 3.32 \mathrm{MPa} \\
& G=81.16 \text { to } 8116 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& X=0.0 \text { to } 60 \%
\end{aligned}
\] \\
\hline Petrick \({ }^{\text {c.18 }}\) & \begin{tabular}{l}
Boiling water. \\
Round tube riser: \\
\(0 \quad=0.067 \mathrm{~m}\) and annular downcomer:
\[
\begin{aligned}
& D_{i}=0.089 \mathrm{~m} \\
& D_{0}=L .132 \mathrm{~m} \\
& L^{=}=\text {unspecified }
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
\text { Pressure } & =4.8 \mathrm{MPa} \\
\text { Upflow, } G & =739 \text { to } 1276 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
X & =2.1 \% \text { to } 6.5 \% \\
\text { Downflow, } G & =347 \text { to } 600 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
X & =0.0 \% \text { to } 3.4 \%
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Appendix C}

Table C-1. (cont inued)
\begin{tabular}{|c|c|c|}
\hline Reference & Flow medium and test geometry & Range of variables \\
\hline \begin{tabular}{l}
Bergonzoli \\
and Halfen \({ }^{\mathrm{c}-18}\)
\end{tabular} & Boiling Santowax-R. Round twhe,
\[
\begin{aligned}
& D_{\mathrm{i}}=0.0122 \mathrm{~m} \\
& \mathrm{~L}=3.65 \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pressure }=0.102 \text { to } 0,238 \mathrm{MPa} \\
& G=1400 \text { to } 3141 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s} \\
& X=0.0 \% \text { to } 8.5 \% \text { in upflow } \\
& X=0.0 \% \text { to } 17 \% \text { in downflow }
\end{aligned}
\] \\
\hline
\end{tabular}

Table C-2. Experiments used to check drift velocity formulas
\begin{tabular}{|c|c|c|}
\hline Reference & Flow medium and test geometry & Range of variables \\
\hline 6311 and Hewitt \({ }^{\text {c. } 20}\) & \begin{tabular}{l}
Air-water. \\
Round tube,
\[
\begin{aligned}
& D_{i}=0.0318 \mathrm{~m} \\
& L=3.66 \mathrm{~m}
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& \text { Pressure }=\text { unspecified } \\
& P_{g}=1.18 \text { to } 1.83 \mathrm{~kg} / \mathrm{m}^{3} \\
& P_{l}=1012.4 \text { to } 1014.0 \mathrm{~kg} / \mathrm{m}^{3} \\
& j_{g}=12.96 \text { to } 89.9 \mathrm{~m} / \mathrm{s} \\
& j_{l}=0.0031 \text { to } 0.47 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline Alia et at. \({ }^{\text {c-21 }}\) & Argon-water and argon-ethyl . I cohol Round tubes,
\[
\begin{aligned}
& D_{i}=0.015 \mathrm{mi} \text { and } \\
& \mathrm{L}=4.025 \mathrm{mi} \\
&
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pressure }=0.1 \text { to } 2.2 \mathrm{MPa} \\
& j_{9}=4.43 \text { to } 55.4 \mathrm{~m} / \mathrm{s} \\
& j_{\mathrm{l}}=0.221 \text { to } 1.772 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline Cavarolo \({ }^{\text {c-22 }}\) & Argon-water and argon-ethyl alcohol Round tube,
\[
\begin{aligned}
& D_{1}=0.025 \mathrm{~m} \\
& L=3.0 \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pressure }=0.1 \text { to } 2.2 \mathrm{MPa} \\
& j_{9}=0.693 \text { to } 26.32 \mathrm{~m} / \mathrm{s} \\
& j_{l}=0.075 \text { to } 2.063 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Appendix D}

Derivation of the Isentropic Sound Speed as a Function of Pressure and Temperature for a Single-Component, Single-Phase Substance

\section*{Appendix D \\ Derivation of the Isentropic Sound Speed as a Function of Pressure and Temperature for a Single-Component, Single-Phase Substance}

\footnotetext{
To begin, let us consider the following expressions for the differential change in entropy.
\[
\begin{equation*}
d s=C_{v} \frac{d T}{T}+\left.\frac{\partial P}{\partial T}\right|_{p} \frac{-d p}{p^{2}} \tag{D-1}
\end{equation*}
\]
}
and
\[
\begin{equation*}
d s=c_{p} \frac{d T}{T}+\left.\frac{1}{p^{2}} \frac{\partial p}{\partial T}\right|_{p} d p \tag{D-2}
\end{equation*}
\]

For isentropic systems, \(d s=0\), so
\[
\begin{equation*}
C_{v}=\frac{T}{p^{2}}\left(\frac{\partial D}{\partial T}\right)_{p}\left(\frac{\partial \rho}{\partial T}\right)_{s} \tag{D-3}
\end{equation*}
\]
and
\[
\begin{equation*}
C_{p}=\frac{-T}{p^{2}}\left(\frac{\partial \rho}{\partial T}\right)_{p}\left(\frac{\partial P}{\partial T}\right)_{S} \tag{D-4}
\end{equation*}
\]

Thus,
\[
\begin{align*}
& \frac{C_{v}}{C_{p}}=\frac{\left(\frac{\partial P}{\partial T}\right)_{p}\left(\frac{\partial p}{\partial T}\right)_{s}}{\left(\frac{\partial \rho}{\partial T}\right)_{p}\left(\frac{\partial P}{\partial T}\right)_{S}} . \tag{D-5}\\
& \text { From the cyclical relationships, } \\
& \left(\frac{\partial P}{\partial T}\right)_{p}\left(\frac{\partial T}{\partial p}\right)_{R}\left(\frac{\partial p}{\partial P}\right)_{T}=-1 \tag{D-6}
\end{align*}
\]

\section*{Appendix D}
\[
\begin{equation*}
\left[\left(\frac{\partial T}{\partial \rho}\right)\left(\frac{\partial P}{\partial T}\right)\right]_{s}=\left(\frac{\partial P}{\partial \rho}\right)_{s} \tag{0-7}
\end{equation*}
\]

Therefore, substituting gives
\(\frac{c_{v}}{C_{p}}=\frac{\left(\frac{\partial p}{\partial p}\right)_{S}}{\left(\frac{\partial p}{\partial p}\right)_{T}}\)

This means that calculating \(C_{v}\) and \(C_{p}\) is sufficient to specify \(\left(\frac{\partial p}{\partial P}\right)_{s}\)

Now, for any gaseous substance,
\[
\begin{equation*}
c_{p}=c_{v}=\frac{T\left(\frac{\partial p}{\partial T}\right)_{p}^{2}}{p^{2}\left(\frac{\partial p}{\partial p}\right)_{T}} \tag{0-9}
\end{equation*}
\]
and
\[
\begin{equation*}
\frac{C_{v}}{C_{p}}=1-\frac{T\left(\frac{\partial \rho}{\partial T}\right)_{p}^{2}}{\rho^{2}\left(\frac{\partial \rho}{\partial P}\right)_{T}\left[\left(\frac{\partial e}{\partial T}\right)_{\rho}-\frac{P}{\rho^{2}}\left(\frac{\partial \rho}{\partial T}\right)_{\rho}\right]} \tag{D-10}
\end{equation*}
\]

The isentropic sound speed is then
\[
\begin{equation*}
\left(\frac{\partial P}{\partial \rho}\right)_{s}^{1 / 2}=\left\{\left(\frac{\partial \rho}{\partial P}\right)_{T} \frac{T\left(\frac{\partial \rho}{\partial T}\right)_{p}^{2}}{\rho^{2}\left(\frac{\partial e}{\partial T}\right)_{p}-\frac{\rho}{\rho^{2}}\left(\frac{\partial \rho}{\partial T}\right)_{p}}\right\}^{1 / 2} \tag{D-11}
\end{equation*}
\]

\title{
APpendix E \\ Derivation of the Two-Phase, Two-Component hem Sonic Velocity
}

\section*{Appendix E \\ Derivation of the Two-Phase, Two-Component hem Sonic Velocity}

Following the analysis of Ransom, the sonic velocity for a homogeneous equilibrium mixture is given as
\[
\begin{equation*}
a=\left(\frac{\partial P}{\partial p}\right)^{1 / 2} \tag{E-1}
\end{equation*}
\]

Assuming that one phase is a steam-liquid mixture and the other is an imiscible component such that the gaseous phase is a Gibbs-Dalton mixture, the density of the mixture may be expressed as
\[
\begin{equation*}
\rho=\alpha\left(\rho_{g}+\rho_{N C}\right)+(1-\alpha) \rho_{\ell} \tag{E-2}
\end{equation*}
\]

Taking the derivative of this mixture density with respect to pressure at constant entropy gives
\[
\begin{align*}
& \left(\frac{\partial \rho}{\partial P}\right)_{S}=\alpha\left(\frac{\partial P_{\mathrm{q}}}{\partial P}\right)_{S}+\alpha\left(\frac{\partial p_{N C}}{\partial P}\right)_{S}+(1-\alpha)\left(\frac{\partial P_{\ell}}{\partial P}\right)_{5}+\left(\rho_{9}+P_{N C}-P_{\ell}\right)\left(\frac{\partial \alpha}{\partial P}\right)_{S} \\
& \text { To evaluate }\left(\frac{\partial \alpha}{\partial P}\right)_{S} \text {, consider the mixture specific entropy, } \\
& S=X_{g} S_{g}+X_{N C} S_{N C}+\left(1-X_{9}-X_{N C}\right) S_{\ell}
\end{align*}
\]
where
\[
\begin{align*}
x_{9} & =\frac{\alpha \rho_{9}}{\rho} \tag{E-5}\\
x_{\mathrm{NC}} & =\frac{\alpha \rho_{\mathrm{NC}}}{\rho} \tag{E-6}
\end{align*}
\]

In an isentropic system,

\section*{APPENDIX E}
\[
\left.\begin{array}{rl}
\left(\frac{\partial S}{\partial P}\right)_{S} & =0 \tag{E-7}
\end{array}=x_{N C}\left(\frac{\partial S_{N C}}{\partial P}\right)_{S}+x_{g}\left(\frac{\partial S_{Q}}{\partial P}\right)_{S}+\left(1-x_{N C}-x_{G}\right)\left(\frac{\partial S_{\ell}}{\partial P}\right)_{S}\right)
\]

Since the noncondensible is assumed to be immiscible in the liquid-vapor mixture,
\[
\begin{equation*}
\left(\frac{\partial X_{N C}}{\partial P}\right)_{\S}=0 \tag{E-8}
\end{equation*}
\]

From Equation (E-5),
\[
\begin{equation*}
\left(\frac{\partial X_{s}}{\partial P}\right)_{s}=\frac{\alpha}{\rho}\left(\frac{\partial \rho_{s}}{\partial P}\right)_{s}+\frac{\rho_{9}}{\rho}\left(\frac{\partial \alpha}{\partial P}\right)_{s}-\frac{\alpha \rho_{g}}{\rho^{2}}\left(\frac{\partial \rho}{\partial P}\right)_{s} \tag{E-9}
\end{equation*}
\]

If we substitute Equation (E-9) into Equation \((E-7)\) and rearrange terms, we get
\[
\begin{equation*}
\left(\frac{\partial \alpha}{\partial P}\right)_{5} \Rightarrow \frac{\Sigma}{P_{9}}\left(S_{q}-S_{l}\right)-\frac{\alpha}{P_{g}}\left(\frac{\partial P_{g}}{\partial P}\right)_{s}+\frac{\alpha}{\rho}\left(\frac{\partial p}{\partial P}\right)_{s} \tag{E-10}
\end{equation*}
\]
where
\[
\begin{equation*}
\Sigma=\left[\alpha \rho_{\mathrm{Nc}}\left(\frac{\partial S_{\mathrm{NC}}}{\partial P}\right)_{S}+\alpha \rho_{\mathrm{g}}\left(\frac{\partial S_{\mathrm{g}}}{\partial P}\right)_{S}+(1-\alpha) P_{t}\left(\frac{\partial S_{t}}{\partial P}\right)_{S}\right] \tag{E-11}
\end{equation*}
\]

If Equation (E-11) is substituted into Equation (E-3), we have
\[
\begin{align*}
& +\alpha\left(\frac{\partial \beta_{\mathrm{NC}}}{\partial P}\right)_{s}+(1-\alpha)\left(\frac{\partial p_{e}}{\partial P}\right)_{s}+\Sigma_{2} \tag{E-12}
\end{align*}
\]
where
\[
\begin{align*}
& \Sigma_{2}=\frac{\left(P_{g}+P_{\mathrm{Nc}}-P_{\ell}\right) \Sigma}{P_{y}\left(S_{g}-S_{A}\right)} \tag{E-13}\\
& \text { so that } \\
& \left(\frac{\partial \rho}{\partial P}\right)_{s}=\left.\frac{\rho}{P_{Q} P_{\ell}}\right|_{g}\left(\frac{\partial P_{\mathrm{Nc}}}{\partial P}\right)_{s} \\
& +\alpha\left(p_{l}-p_{N C}\right)\left(\frac{\partial p_{g}}{\partial P}\right)_{s} p_{g}(1-\alpha)\left(\frac{\partial p_{i}}{\partial P}\right)_{s} \\
& +\left(P_{x C}+P_{8} \quad P_{l}\right)\left[\begin{array}{c}
{[7}
\end{array}\right] . \\
& \text { Having defined an expression for }\left(\frac{\partial p}{\partial P}\right)_{s} \text {, the next step is to define the } \\
& \text { property derivatives, Recall that the thermodynamic variables are defined as } \\
& f_{\mathrm{Nc}}=f_{\mathrm{Nc}}\left(P_{\mathrm{NC}}, i\right) \tag{E-15}\\
& f_{g}=f_{g}\left(P_{g}, T\right) \tag{E-16}\\
& \text { and } \\
& f_{e}=f_{e}(P, T) \tag{E-17}\\
& \text { where } \\
& P=\quad P_{\mathrm{NC}}+P_{\mathrm{S}} \tag{E-18}\\
& \text { since we are dealing with a Gibbs-Dalton mixture. The result of this is that } \\
& \left(\frac{\partial D_{N C}}{\partial P}\right)_{S}=1-\left(\frac{\partial D_{g}}{\partial T}\right)\left(\frac{\partial T}{\partial P}\right)_{S} \tag{E-19}\\
& \text { and }
\end{align*}
\]

\section*{APPENDIX E}
\[
\begin{equation*}
\left(\frac{\partial P_{s}}{\partial P}\right)_{5}=\left(\frac{\partial P_{s}}{\partial T}\right)\left(\frac{\partial T}{\partial P}\right)_{s} . \tag{E-2v}
\end{equation*}
\]

Here, the assumption has been made that the equilibrium partial steam pressure is that which corresponds to the equilibrium temperature. Thus,
\[
\begin{equation*}
P_{g}=P_{g}(T) \tag{E-21}
\end{equation*}
\]

From this knowledge, the basic derivative properties may be defined as from the chain rule as
\[
\begin{align*}
& \left(\frac{\partial P_{\mathrm{NC}}}{\partial P}\right)_{S}=\left(\frac{\partial P_{\mathrm{NC}}}{\partial P_{\mathrm{NC}}}\right)_{T}+\left[\left(\frac{\partial \rho_{\mathrm{NC}}}{\partial T}\right)_{P_{\mathrm{HC}}}-\left(\frac{\partial P_{\mathrm{A}}}{\partial P_{A}}\right)_{T}\left(\frac{\partial P_{\mathrm{g}}}{\partial T}\right)\right]\left(\frac{\partial T}{\partial \rho}\right)_{\mathrm{S}} \tag{E-22}\\
& \left(\frac{\partial \rho_{9}}{\partial P}\right)_{s}=\left\{\left(\frac{\partial P_{9}}{\partial P_{s}}\right)_{T}\left(\frac{\partial P_{g}}{\partial T}\right)+\left(\frac{\partial P_{9}}{\partial T}\right) P_{g}\right]\left(\frac{\partial T}{\partial P_{S}}\right)_{S} \tag{E-23}\\
& \left(\frac{\partial p_{e}}{\partial P}\right)_{S}=\left(\frac{\partial p_{e}}{\partial P}\right)_{T}+\left(\frac{\partial p_{e}}{\partial T}\right) p_{e}\left(\frac{\partial T}{\partial P}\right)_{S} \tag{E-24}\\
& \left(\frac{\partial S_{\mathrm{NC}}}{\partial P}\right)_{\mathrm{S}}=\frac{1}{P_{\mathrm{NC}}}\left(\frac{\partial P_{\mathrm{NC}}}{\partial T}\right)_{\mathrm{P}_{\mathrm{NC}}}+\left[\frac{C_{P_{\mathrm{NC}}}}{T}-\frac{1}{P_{\mathrm{NC}}}\left(\frac{\partial \rho_{\mathrm{NC}}}{\partial T}\right)_{P_{\mathrm{NC}}}\left(\frac{\partial P_{q}}{\partial T}\right)\right]\left(\frac{\partial T}{\partial \rho}\right)_{\mathrm{S}} \tag{E-25}\\
& \left(\frac{\partial S_{g}}{\partial P}\right)_{S}=\left[\frac{C_{P_{g}}}{T}+\frac{1}{P_{g}^{2}}\left(\frac{\partial P_{g}}{\partial T}\right)_{P_{g}}\left(\frac{\partial P_{g}}{\partial T}\right)\right]\left(\frac{\partial T}{\partial P}\right)_{S} \tag{E-26}\\
& \left(\frac{\partial S_{\ell}}{\partial P}\right)_{S}=\frac{1}{P_{\ell}^{2}}\left(\frac{\partial p_{l}}{\partial T}\right)_{P}+\frac{C_{P_{l}}}{T}\left(\frac{\partial T}{\partial P}\right)_{S} \tag{E-27}
\end{align*}
\]
where
\[
\begin{align*}
& C_{P_{N C}}=\left(\frac{\partial e_{\mathrm{NC}}}{\partial T}\right)_{P_{\mathrm{NC}}}-\frac{P_{\mathrm{NC}}}{P_{\mathrm{NC}}}\left(\frac{\partial P_{\mathrm{NC}}}{\partial T}\right)_{P_{\mathrm{NC}}} \tag{E-28}\\
& C_{P_{g}}=\left(\frac{\partial e_{g}}{\partial T}\right)_{P_{9}}-\frac{P_{g}}{P_{g}^{2}}\left(\frac{\partial P_{\mathrm{NC}}}{\partial T}\right)_{P_{9}} \tag{E-29}\\
& C_{P_{\ell}}=\left(\frac{\partial e_{\ell}}{\partial T}\right)_{P_{\ell}}-\frac{P_{\ell}}{P_{\ell}^{2}}\left(\frac{\partial P_{\ell}}{\partial T}\right)_{P_{\ell}} \tag{E-30}
\end{align*}
\]

This leaves the specification of \(\left(\frac{\partial T}{\partial P}\right)_{S}\). To this, consider the identity \(x_{N C} \rho_{9}=x_{9} \rho_{N C}\)

Differentiating with respect to pressure gives
\(x_{\mathrm{NC}}\left(\frac{\partial P_{g}}{\partial P}\right)_{s}=x_{g}\left(\frac{\partial P_{\mathrm{Nc}}}{\partial P}\right)_{s}+P_{\mathrm{Nc}}\left(\frac{\partial X_{g}}{\partial P}\right)_{s}\)

Using the result from Equation (\(\mathrm{E}-7\)) gives
\(x_{\mathrm{NC}}\left(\frac{\partial \rho_{g}}{\partial P}\right)_{S}=x_{g}\left(\frac{\partial P_{\mathrm{MC}}}{\partial P}\right)_{S}-\frac{P_{\mathrm{MC}}}{S_{\mathrm{g}}-S_{\ell}}\)
\[
\begin{equation*}
\left[x_{\mathrm{NC}}\left(\frac{\partial S_{\mathrm{NC}}}{\partial P}\right)_{\mathrm{S}}+x_{\mathrm{g}}\left(\frac{\partial S_{\mathrm{NC}}}{\partial P}\right)_{\mathrm{S}}+\left(1-x_{\mathrm{NC}}-x_{\mathrm{g}}\right)\left(\frac{\partial S_{\mathrm{e}}}{\partial P}\right)_{\mathrm{S}}\right] \tag{E-33}
\end{equation*}
\]

Substituting the relations defined above,
\(\alpha P_{N C}\left(\frac{\partial P_{9}}{\partial T}+\frac{\partial P_{9}}{\partial P_{g}} \frac{\partial P_{9}}{\partial T}\right)\left(\frac{\partial P}{\partial P}\right)_{S}=\alpha P_{S}\left(\frac{\partial P_{N C}}{\partial P_{N C}}+\left(\frac{\partial P_{M C}}{\partial T}-\frac{\partial P_{N C}}{\partial P_{N C}} \frac{\partial P_{g}}{\partial T}\right)\left(\frac{\partial T}{\partial P}\right)_{S}\right)\)

\section*{Appendix E}
\[
\begin{align*}
& \left.+\alpha p_{0}\left[\frac{C_{p_{g}}}{T}+\frac{1}{p_{g}^{2}} \frac{\partial p_{g}}{\partial T} \frac{\partial p_{g}}{\partial T}\right]\left(\frac{\partial T}{\partial P}\right)_{s}+(1-\alpha) \rho_{\ell}\left[\frac{1}{\rho_{s}^{2}} \frac{\partial \rho_{\ell}}{\partial T}+\frac{c_{p_{p}}}{T}\left(\frac{\partial T}{\partial P}\right)_{s}\right]\right) . \tag{E-34}\\
& \text { Solving for }\left(\frac{\partial T}{\partial P}\right)_{s} \text { then gives the result } \\
& \left(\frac{\partial T}{\partial P}\right)_{\mathrm{S}}=\left[\alpha P_{\mathrm{g}} \frac{\partial P_{\mathrm{NC}}}{\partial P_{N C}}-\frac{1}{S_{g}-S_{\ell}}\left(\alpha \frac{\partial P_{\mathrm{NC}}}{\partial T}+\frac{(1-\alpha) P_{\mathrm{Nc}}}{P_{\ell}} \frac{\partial P_{\ell}}{\partial T}\right)\right] \\
& \left\{\alpha \rho_{\mathrm{NC}}\left(\frac{\partial \rho_{g}}{\partial P_{\mathrm{NC}}} \frac{\partial P_{g}}{\partial T}-\frac{\partial \rho_{g}}{\partial T}\right)+\alpha \rho_{\mathrm{g}}\left(\frac{\partial \rho_{\mathrm{NC}}}{\partial P_{\mathrm{Nc}}} \frac{\partial P_{g}}{\partial T}-\frac{\partial \rho_{\mathrm{Nc}}}{\partial T}\right)\right. \\
& \frac{1}{S_{\mathrm{s}}-S_{\mathrm{e}}} \left\lvert\, \alpha\left(\frac{\partial_{\mathrm{N}}^{2} C_{P_{N}}}{T}-\frac{\partial P_{\mathrm{NC}}}{\partial T} \frac{\partial P_{g}}{\partial T}\right)\right. \\
& \left.\left.+\alpha\left\{P_{\mathrm{Nc}} P_{9} \frac{C_{P_{9}}}{T}+\frac{P_{\mathrm{NC}}^{2}}{P_{s}} \frac{\partial P_{9}}{\partial T} \frac{\partial P_{9}}{\partial T}\right)+(1-\alpha) P_{\mathrm{Nc}} P_{l} \frac{C_{P_{l}}}{T}\right]\right\} \tag{E-35}
\end{align*}
\]

Finally, at saturation conditions, this Clasius-Clapyron equation gives \(\frac{\partial P_{g}}{\partial T}=\left(\begin{array}{lll}S_{g}\left(P_{g}, T\right) & S_{\ell}(P, T) \\ P_{t}\left(P_{g}, T\right) & P_{g}\left(P_{g}, T\right)\end{array}\right) P_{t}\left(P_{g}, T\right) P_{g}\left(P_{9}, T\right)\)

Assuming that the approximation is valid in the presence of a NC gas,
\[
\begin{equation*}
\left(\frac{S_{g}\left(P_{g}, T\right)-S_{l}\left(P_{g}, T\right)}{P_{l}(P, T)-P_{g}\left(P_{g}, T\right)}\right) P_{l}(P, T)=\left(\frac{S_{g}\left(P_{g}, T\right)-S_{l}\left(P_{g}, T\right)}{P_{l}\left(P_{g}, T\right)-P_{s}\left(P_{g}, T\right)}\right) P_{l}\left(P_{g}, T\right) \tag{E-37}
\end{equation*}
\]
a)lows for \(\left(S_{g}-S_{l}\right)\) to be expressed as
\[
\begin{equation*}
S_{9}-S_{l}=\frac{\partial P_{\mathrm{s}}}{\partial T} \frac{P_{e}-P_{\mathrm{g}}}{P_{l} P_{9}} \tag{E-39}
\end{equation*}
\]

Equations \((E-5),(E-7)\), and \((E-8)\) thus provide complete closure for the two-phase, two-component HEM sonic velocity. It is interesting to examine the limit of no air in \(P_{A}-0\). In this case,
\[
\begin{equation*}
\lim _{A c^{+0}}\left(\frac{\partial T}{\partial P}\right)_{s}=\left(\frac{\partial P_{s}}{\partial T}\right) \tag{E-39}
\end{equation*}
\]
and
\[
\begin{align*}
\lim _{A C^{-0}}\left(\frac{\partial P}{\partial P}\right)_{s} & =\frac{p}{\rho_{l} P_{g}}\left\{\alpha \rho_{l}\left(\frac{\partial \rho_{g}}{\partial P}\right)_{s}+(1-\alpha) \rho_{g}\left(\frac{\partial \rho_{l}}{\partial P}\right)_{s}\right. \tag{E-40}\\
& \left.-\frac{\rho_{\mathrm{s}}-\rho_{l}}{S_{g}-S_{l}}\left[\alpha \rho_{g}\left(\frac{\partial S_{g}}{\partial P}\right)_{s}+(1-\alpha) \rho_{l}\left(\frac{\partial S_{l}}{\partial P}\right)_{s}\right]\right\} .
\end{align*}
\]

This result is in agreement with that prescribed by Free and Spore in the original choking model.

\title{
Appendix F Derivation of the Drift Flux Equation
}

\section*{Appendix F}

\section*{Derivation of the Drift Flux Equation}

The basic definitions of the drift flux formulation of two-phase flow were given in section 6.1 of this report. However, for a quick reference, a simple derivation of Equation (7.3-4) is given below.

According to the definitions given by Wallis (see Chapters 1 and 4 of Reference \(F=1\)), the overall volumetric flow equation for vapor and 7 ic id may be written as
\[
\begin{equation*}
\frac{Q_{g}}{\alpha A}=C_{0} \frac{Q_{e}+Q_{g}}{A}+\frac{J_{g \ell}}{\alpha} \tag{F-1}
\end{equation*}
\]
where \(Q_{g}\) and \(Q_{2}\) are the total volumetric flow rates of vapor and liquid, respectlvely, \(\alpha\) is the vapor volume fraction, \(A\) is the total flow area, and \(c_{0}\) is the distribution parameter defined by
\[
\begin{equation*}
\frac{1}{A} \int \alpha^{2} J d A \tag{F-2}
\end{equation*}
\]
\[
\left(\frac{1}{A} \int \alpha d A\right) \frac{1}{A} \int \alpha_{\omega} d A
\]
in which, according to definitions (see Chapter 1 of Reference \(\mathrm{F}-1\)),
\[
\begin{equation*}
J=J_{9}+I_{l} \tag{f-3}
\end{equation*}
\]
\[
\begin{equation*}
J_{g}=\frac{Q_{g}}{A}=\frac{1}{A} \int \alpha V_{g} d A \tag{F-4}
\end{equation*}
\]
\[
\begin{equation*}
J_{2}=\frac{Q_{2}}{A}=\frac{1}{A} \int(1-\alpha) V_{2} d A \tag{F-5}
\end{equation*}
\]
and
\[
\begin{equation*}
j_{g l}=\alpha(1-\alpha) \frac{Q_{g}-Q_{\ell}}{A}=\alpha(1-\alpha)\left(J_{g}-J_{\ell}\right) \tag{F-6}
\end{equation*}
\]

\section*{APPENDIX F}
\[
\begin{equation*}
V_{a 1}=V_{9}-\left(J_{9}+J_{e}\right)-(1-\alpha)\left(V_{9}-V_{2}\right) \tag{F-7}
\end{equation*}
\]

Substituting \(J_{g}\) in Equation \((F-1)\) by Equation (\(\left.F-3\right)\), eliminating \(Q_{9}\) and \(Q_{\ell}\) between these relations, and using \(V_{9 i}\) instead of \((1-\alpha)\left(V_{9}-V_{\ell}\right)\) converts Equation (\(F-1\)) into the following form:
\[
\begin{equation*}
\frac{J_{9}}{a}=c_{0}\left(J_{9}+J_{2}\right)+V_{9)} \tag{F-9}
\end{equation*}
\]

This equation may be rearranged to give Equation (7,3-4) that reads
\[
\begin{equation*}
J_{9}=\frac{\alpha r_{0}}{1-\alpha C_{0}} v_{e}+\frac{\alpha}{1-\alpha C_{0}} V_{9} \tag{f-9}
\end{equation*}
\]

\section*{Reference}

F-1. G. B. Wallis, One-Dimensional, Two-Phase Flow, New York: McGraw-Hill Book Company, 1969, pp. 336-345

\section*{Appendix G \\ Moving Mesh Reflood Model}

\section*{Appendix G}

\section*{Moying Mesh Reflood Model}

This model incorporates into TRAC-BF1/MOD1 the moving-mesh reflood core heat transfer model originally developed by the Los Alamos National Laboratory Safety Code Bevelopinent Group for TRAC-PO2. in addition, a similar moving-mesh upgrade was developed for the CHAN (EWR fuel element component) wall heat transfer. The CHAN wall model tracks both rising and falling quench fronts on the inside and outside of the wall and allows inter-component heat transfer from the outside wall surface to the fluid of an outside component.

These models were originally documented in the following EG\&G internal report: C. M. Mohr, Moving Mesh Reflood Heat Transfer Mode i, IS-NSMD-83-013, May 1983

\section*{G-1. Nomenclature}
```

C P Specific heat (J/kg\cdotK)
h.. hy Ligutd and vapor heat transfer coefficients (W/m/2
h},\mp@subsup{h}{|}{}\quad\mathrm{ Average liquid and vapor heat transfer coefficients (W/m
k, ki Thermal conductivity (W/m.k)
P Axicl level of outside component associated with wall node j
QPpP Volumetric heat source in channel wall (W/\mp@subsup{\textrm{m}}{}{3})
QRAD Surface heat flux on inside channel wall due to radiation
(W/m
QTOT Total heat flux to a wall node or fluid cell ( W/m
ri Rod radius at node i (m)
TV.TV Flut+ Cell 1fqutd and vapor temperatures (K)
T, TW Local and average wall surface temperature at node j (K)
At Time step size (s)
W.P. Wetted perimeter of heat transfer surface (wall or rods)

## APPEndix G

```
X Fraction of node rewetted
X (,j Overlap fraction of wall node j on outer cell \ell,
\Deltax Radial node spacing in wall (m)
2) Elevation of node row & (m)
ZQF Elevation of quench front (m)
*
p Wall or rod local density (kg/m
\delta
 CHAN wall (}\alpha1\mathrm{ if located there, =0 otherwise)
```


## G-2. MODEL REQUIREMENTS

The fuel rod and channel wall models are discussed in this section.

## G-2.1 Fuel Rod Model (TRAC-PD2 Reflood Model)

The original reflood fine-mesh model in TRAC-BD1 had the following features:

1. A fixed fine-mesh array, with node locations input at the start of reflood and kept throughout the rest of the transient.
2. The same fine mesh spacing for each rod group.

These features limited code efficiency, since fine-mesh nodes cannot be clustered about a moving quench front without so riodalizing the whole rod, causing excessive heat transfer calculations in regions of the rod (far from the quench front) where they are not needed. In order to eliminate this problem and still permit fine nodalization where needed, a moving-mesh reflood model developed at Los Alamos National Laboratory for TRAC-PD2 was adapted for use in the TRAC-BFI/MODI code.

## G-2.2 Channel Wall Model.

The same limitations that applied to the origina! TRAC-BDI fuel rod model applied to the channel wall quench model as well. In addition:

1. Falling-film and bottom-flood quench fronts were not tracked on the outside of the CHAN wall.
2. Each node in the CHAN wall could transfer heat to only one o'ter component cell.
3.- The heat transfer regimes permitted on the outside of the channel wall were restricted.

The present model addresses these limitations by:

1. Trackina quench fronts on the outside of the channel w..l.
2. Partitioning heat transfer from a node according to the wall area associated with each outer cell.
3. Allowinc a full rance of heat transfer modes on the outside of the channel wall.

The scheme followed for the CHAN wall fine-mesh model closely follows that used for the rod model.

## G-3. MODEL DESIGN

Models for heat transfer from the fuel rod surface, heat conduction within the rod, heat transfer from inner and outer walls of the channel, and heat conduction within the channel are described in this section.

## G-3.1 Fuel Rod-Surface Heat Transfer Model.

In the original TRAC-BD1 fuel rod model, heat transfer coarse-mesh nodes were centered in the hydrodynamic cell, is shown in Figure G-1, which depicts a typteal fuel rod and several assoctated hydrodynamte cells. When the reflood fine-mesh model is invoked, each coarse-mesh node is divided into $n$ equal-length fine-mesh nodes (" $n$ " is user-input for each coarse-mesh row), as shown in Figure G-2, where the coarse-mesh node has been divided into five fine-mesh nodes. In neither instance does a fuel rod heat transfer node overlap two adfacent hydrodynamic cells. The new model, however, places the coarse-mesh nodes at hydrodynamic cell boundaries, where each transfers heat into two hydrodynamic ceils, as shown in Figure G-3. The upper and lower elevations of each node are taken as the midpoints between the center node and the nodes above and below. In order to maintain equality between the heat transfer out of the wall noden and the heat recevord by the fluid cells, average heat transfer coefficients (and associl ced wall or fluid temperature) must he defined for each fluid cell and eact uel rod node. Figure G-4 shows portions of three fluid cells and two assor ated coarse mosh nodes. Note that

## Appendix $G$



Figure G-1. Previous fuel rod coarse mesh nodalization.


Figure 6-2. Previous fuel rod fine-mesh nodalization.

wo Ts whil 4 are-24

- Fuel rod coarse-mesh iocations

Figure G-3. Revised fuel rod coarse-mesh nodalization.


- Original coarse-mesh node locations
- Fur j-mesh node locations

Figure G-4. Revised fuel rod fine-mesh nodalization

## APPENDIX G

each coarse-mesh node transfers heat to two fluid cells. For the situation shown in Fiqure G-3, the total heat transfer to liquid in fluid cell $k$ is

$$
\begin{align*}
& Q_{\text {IOT, }, k, k}=W \cdot P \cdot\left[Z_{j+1}-\frac{1}{2}\left(Z_{j+1}+Z_{j}\right)\right] h_{\ell, j+1+k}\left(T W_{j+1}-T_{\ell, k}\right) \\
& +W \cdot P \cdot\left[\frac{1}{2}\left(Z_{j, 1}+Z_{j}\right)-Z_{j}\right] h_{\ell, i+k}\left(T W_{j}-T_{\ell, k}\right) . \tag{G-1}
\end{align*}
$$

We define an appropriate average wall temperature and heat transfer coefficient as follows:

$$
\begin{align*}
\hat{T W}_{\ell, k} & =\frac{\frac{1}{2}\left(Z_{j+1}-z_{j}\right) h_{\ell, j+1} T W_{j+1}+\frac{1}{2}\left(z_{j+1}-z_{j}\right) h_{\ell, j} T W}{\frac{1}{2}\left(Z_{j+1}-z_{j}\right) h_{\ell, j+1}+\frac{1}{2}\left(Z_{j+1}-z_{j}\right) h_{\ell, j}}  \tag{G-2}\\
h_{\ell, W-k} & =\frac{\frac{1}{2}\left(z_{j+1}-z_{j}\right) h_{\ell, j+1}+\frac{1}{2}\left(z_{j+1}-z_{j}\right) h_{\ell, j}}{z_{j+1}-z_{j}} \tag{G-3}
\end{align*}
$$

Analogous expressions for vapor $T W_{V}$ and $h_{v, u k}$ may be derived.
close inspection showis that, indeed,

$$
\begin{equation*}
Q_{\text {rar }, \ell, k}=h_{\ell, k-k}+W_{\ell, k}\left(Z_{j-1}-Z_{j}\right) W, P \tag{G-4}
\end{equation*}
$$

A simi" ar average must be derived for the wall nodes that are in thermal contact with two fluid cells. These averages become more complicated when fine-mesh nodes are introduced, but the general form remains similar.

Another feature unique to the reflood package is the adjustment of the void fraction used in calculating heat transfer coefficients if the quench front is near the node. Referring to Figure G-4, the void fraction, aj, used at node $j$ is:

$$
\bar{\alpha}_{j}=\left\{\begin{array}{l}
\alpha_{1} \text { when } Z Q F>Z_{j+1}  \tag{G-5}\\
\alpha_{1} \text { when } Z Q F<Z_{j}
\end{array}\right.
$$

$$
\begin{equation*}
\bar{\alpha}_{j}=\frac{1}{2}\left[\alpha_{k}+x \alpha_{k+1}+(1-x) \alpha_{k-1}\right] \tag{G-6}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{1}=\frac{1}{2}\left(\alpha_{k}+\alpha_{k-1}\right) \\
& \alpha_{v}=\frac{1}{2}\left(\alpha_{k+1}+\alpha_{k}\right)  \tag{6-8}\\
& x=\frac{Z_{j+1}-Z Q F}{Z_{j+1}-Z_{j}}
\end{align*}
$$

and ZQF, the elevation of the quench front, is in node $j$. This adjustment permits a smooth void fraction transition as the quench front moves up in the node.

The model has three distinct types of heat transfer nodes. The coarsemesh nodes, used before refloor 's specified, are centered on fluid cell boundaries as previously illust ated. The fixed fine mesh modes are introduced at the beginning of reflood and do not "move." These are similar to the fine-mesh nodes in earlier versions of the code. The user specifies in input how many of these nodes should be introduced between each pair of adjacent coarse mesh nodes. Finally, the third kind of nodes are the "moving" nodes. The placement of these nodes is up to the computer, subject to linitations imposed by user input. These limitations are:

1. Maximum total number of heat transfer nodes per rod group.
2. Minimum spacing between heat transfer nodes (required for stability).
3. Minimum surface temperature difference between adjacent existing nodes. If this temperature difference is exceeded, the code will attempt to insert another row of fine-mesh nodes between the tivo nodes that have the excessive temperature difference.

Nodes are inserted in such a manner as to minimize disruption of energy conservation. When rows are deleted, however, the temperatures of the nodes above and below are not adjusted, so that some minor energy loss (or gain) may occur. The algorithm for calculating the temperature of an inserted node is where $p_{1,1} C_{0}, P_{j+1,}$, and $C_{p i+1}$ are the density and specific heat for the nodes below and above the inserted node, and

## Appendix G

$$
\begin{align*}
& T_{j}=\frac{\rho_{j+1} C_{p j-1} T_{j+1}+P_{j+1} C_{p i+1} T_{j+1}}{2 p_{j} C_{p j}}  \tag{G-10}\\
& P_{j}=\frac{\rho_{j-1}+P_{j+1}}{2}  \tag{G-11}\\
& C_{p j}=\frac{C_{p j-1}+C_{p i+1}}{2}
\end{align*}
$$

 conservation should not be seriously violated for addition or deletion of rows of modes.

Falling film and botton flood quench fronts are tracked on each rod group. While the arevious code versions had an explicit calculation of quench fro it velocity, this package considers a node quenched whenever the node is in heat transfer mode $1,2,3,11$, or 12 . The quench front positions are taken as the lowermost consecutive quenched noda for the falling film and the uppermost consecutive quenched node for the bottom flood position. While this method could permit isolated patches of quenched nodes, this has not yot been observed in any sample test cases.

## G-3.2 Fuel Rod Conduction Model

The fuel rod conduction model has two significant differences from that found in previous code versions. First, axial conduction is included in the fintte difference equations. Second, the nodes are defined as centered at material boundaries, and the code calculates and stores special "interface" material properties, whis are used in the conduction solutions. Referring to Figure G-5, th finite-difference equation for conduction at an interior node $(1, f)$ is fdent, a) to that found in References G-1 and G-? excent that axial conduction is included.

$$
\begin{aligned}
& \frac{1}{2}\left(\Delta_{u}+\Delta_{t}\right)\left[\frac{1}{4}\left(r_{i}+r_{i+1}\right)^{2}-\frac{1}{4}\left\langle r_{i}+r_{i-1}\right)^{2}\right] \rho_{i, i} C_{p i, i} \frac{T_{i, i}^{n+1}-T_{i, j}^{n}}{\Delta} \\
& =\text { [volumetric source terms] }+ \text { [normal radial conduction terms] }
\end{aligned}
$$



Figure G-5, Nodalization for fuel rod conduction equations.

$$
\begin{align*}
& +\left[\frac{1}{4}\left(r_{i}+r_{i, 1}\right)^{2}-\frac{1}{4}\left(r_{i}+r_{i, 1}\right)^{2}\right]\left[\frac{1}{2}\left(k_{i, j+1}+k_{i, j}\right) \frac{T_{i, j+1}^{n}-T_{i, 1}^{n+1}}{\Delta_{p}}\right. \\
& \left.+\frac{1}{2}\left(k_{i, j-1}+k_{i, j}\right) \frac{T_{i, j-1}^{n}-T_{i, j-1}^{n+1}}{\Delta_{m}}\right] . \tag{G-13}
\end{align*}
$$

At the top and bottom of the heated length, the axial conduction terms are modified, while at the rod axis, material interfaces, and rod surface, the radial conduction terms are modified (as specified in References G-1 and G-2). Note that for each row of nodes across a rod these finite-difference equations form a tridiagonal system of linear equations in terms of the new-time node temperatures $T_{i-1, j}^{n+1}, T_{i, j}^{n+1}$, and $T_{i+1, j}^{n+1}$. These linear systems are solved row by row (ascending the rod) for each rod group. Because the axial condu-tion terms are explicit, involving old-time te atures $T_{i, j-1}^{\prime \prime}$ and $T_{i, j+1}^{n}$, chis row-by-row scheme may be used instead of g for the temperature field for

## APPENDIX G

the whole rod at once, which would require inverting a large (although sparse) matriy (perhaps $200 \times 200$ or more).

## G-3.3 Channel Wall Inside Surface

The surface heat transfer on the inside of the channel wall is analogous to the rod surface heat transfer. Coarse mesh nodes are located at cell boundaries. and the same temperature and heat-transfer coefficient averaging schemes are used. Volumetric heat sources and radiation are included, and the same method for averaging void fractions near a quench fron: is employed.

## G-3.4 Channel Wall Outside Surfaze Heat Transfer

The heat transfer situation on the outside of the channel wall is complicated by the fact that the coarse-mesh rodes may not be located at fluid cell boundaries. Previous versions of the code handled this by assuming that all the heat transfer fram a wall node went into the fluid cell that overlapped most of the node. The present model partitions the heat transfer according to the fraction of overlap with each fluid cell. The model is Ifmited, however, since it unly permits a wall node to contact one or two fluid cells. This places some burden on the user to ensure proper alignment of channel and outside-component cells in order to comply with this rule, but, in general, the restriction is reasonable, sinc? channels are always noded muci finer than the surrounding bypass region, fiaure G. 6 shows several fluid cells (both CHAN and outside component) and associazed ... 11 heat transfer nodes (both fine and coarse mesh).

A new variatle, $X_{4}$, has bren defined for each wall node, wilch 1 fraction of the node that transfers heat to the lor ast outer cell wha overlaps. Referring to Figure G-6,

$$
\begin{equation*}
\left(x_{i}\right)_{k+1}=\frac{Z_{j-1}-\frac{1}{2}\left(Z_{k}+Z_{k+1}\right)}{\frac{1}{2}\left(Z_{k+2}-Z_{k}\right)} \tag{G-14}
\end{equation*}
$$

$\left(x_{j}\right)_{k+2}=1$

$$
\begin{equation*}
\left(x_{j}\right)_{k+3}=1 \tag{G-16}
\end{equation*}
$$



M578-WHT-492-27
Figure G-6, CHAN wall fine-mesh nodalization scheme and relationship to adjacent fluid cells.

$$
\begin{align*}
& \left(x_{j}\right)_{k+6}=1  \tag{G-17}\\
& \left(x_{f}\right)_{k+5}=\frac{z_{j}-\frac{1}{2}\left(z_{k+5}+z_{k+6}\right)}{\frac{1}{2}\left(z_{k+6}-z_{k+4}\right)} \tag{G-18}
\end{align*}
$$

Previous code versions contained a vartable defined on the fine-mesh nodes that stored the outer component cell number that most overlaps the wall node. This varlable has been changed to store the lowest outer component cell that the node overlaps. Combined with $X_{t}$ and the rule that only two cells may overlap a node, the fraction of each node in contact with each cell is completely defined. However, since this model can add and delete fine-mesh nodes accordtng to the wall temperature proftle, these two values need to be
APPENDIX G

Figure 6-7. Logic for addition of a fine-mesh channel wall node and redefinition of node overlap parameters.


## APPENDIX G

redefined each time node spacing is altered. A flow chart showing the logic used for different situations when a node is added is given in Figure G-7. A similar chart for the deletion of a tode ts gtyen in Figure 0.8 . when a vessel (or other outer component) cell boundary is near the added or deleted node, the boundary location is determined using the previous $X_{f}$ 's and $I_{f}$ 's, and this information is combined with the new H.T. node boundary elevations to calcolate the now 7,15 and $1, ' s$ msing Equations ( $6-14$ ) through ( $G-18$ ).

## G-3.5 Channel Wall Conduction

Previous code versions considered the channel wall to be cylindrical, ignored axial conduction, and tracked quench fronts only on the inside surface, U54ng explictt quench front yoloctty correlationts. This model pictures the channel wall as flat rather than cylindrical, includes axial conduction, calculates quench front locations on the outside of the wall, and omits the explicit calculation of quench front velocity. The quench front location is taken to be the uppermost ( $r$ lowermost. for top flood) wetted node, the criteria for wettedness beinc identical to that for the fuel rod model.

The equation used for the conduction solution is quite similar to Equation (G-13) but is written in Cartesian coordinates. Referring to Figure G.5, the equat ion is
$\left\{\frac{\left(1-\delta_{m}\right) \Delta x_{m}+\left(1-\delta_{p}\right) \Delta x_{p}}{2}\right\}\left(\frac{\left(1-\delta_{u}\right) \Delta_{u}+\left(1-\delta_{l}\right) \Delta_{t}}{2}\right) p_{1}, c_{p i, 1} \frac{T_{i, 1}^{n+1}-T_{1,1}^{n}}{\Delta t}$
$\left(1-\delta_{u}\right)\left[\frac{\left(1-\delta_{m}\right) \Delta x_{m}+\left(1-\delta_{p}\right) \Delta x_{p}}{2 \Delta_{u}}\right] k_{i, 1+1 / 2}\left(T_{i, i+1}^{n}-T_{i, i}^{n+1}\right)$
$(1-8)\left[\frac{\left(1-\delta_{m}\right) \Delta x_{m}+\left(1-\delta_{p}\right) \Delta x_{p}}{2 \Delta x_{t}}\right] k_{i, j-1 / 2}\left(T_{i, j-1}^{n}-T_{i, j}^{n+1}\right)$
$+\left(1-\delta_{p}\right)\left[\frac{\left(1-\delta_{u}\right) \Delta_{u}+\left(1-\delta_{\ell}\right) \Delta_{\ell}}{2 \Delta x_{p}}\right] k_{\left(+1 / z_{i}\right)}\left(T_{i, i}^{n+1}-T_{i, i}^{n+1}\right)$

$$
\begin{align*}
& +\left(1-\delta_{m}\right)\left[\frac{\left(1-\delta_{u}\right) \boldsymbol{\Delta}_{u}+\left(1-\delta_{t}\right) \boldsymbol{\Delta}_{t}}{2 \boldsymbol{\Delta}_{m}}\right] k_{i-1 / 2, j}\left(T_{i-1, j}^{n+1}-T_{i, j}^{n+1}\right) \\
& +\delta_{m}\left[h_{m, t}\left(T_{m, l}-T_{i, j}^{n+1}\right)+h_{m, v}\left(T_{m, t}-T_{i, 1}^{n+1}\right)\right]\left[\frac{\left(1-\delta_{u}\right) \Delta_{\mathrm{u}}+\left(1-\delta_{\ell}\right) \Delta_{t}}{2}\right] \\
& +\delta_{p}\left[h_{p, e}\left(T_{p, l}-T_{i, i}^{n+1}\right)+h_{p, v}\left(T_{p, v}-T_{1, i}^{n, 1}\right)\right]\left[\frac{\left(1-\delta_{n}\right) \boldsymbol{\Delta}_{\mathrm{u}}+\left(1-\delta_{\mathrm{e}}\right) \boldsymbol{x}_{\mathrm{t}}}{2}\right] \\
& +\delta_{m}\left[\frac{\left(1-\delta_{n}\right) \Delta_{u}+\left(1-\delta_{l}\right) \Delta_{l}}{2}\right] \text { QRAD (j) } \\
& +\left[\frac{\left(1-\delta_{u}\right) \Delta_{u}+\left(1-\delta_{e}\right) \Delta_{t}}{2}\right]\left[\frac{\left(1-\delta_{m}\right) \Delta \Delta_{m}+\left(1-\delta_{p}\right) \Delta_{p}}{2}\right] \operatorname{QPPP}(i, j) \tag{G-19}
\end{align*}
$$

where

8	= 1 at top nodes, 0 elsewhere
$\delta_{t}$	- 1 at bottom nodes, 0 elsewhere
$\delta_{m}$	$=1$ at inside surface nodes, 0 elsewhere
8 p	= 1 at outside surface nodes, 0 elsewhere
$p_{i, j}$	= density at node ( $i, j$ )
$C_{\text {pt, }}$	* specific heat at node ( $i, j$ )
$k_{1,1}$	$=$ conductivity at node (i,j)
$k_{1, j+1 / 2}$	$=1 / 2\left(k_{i, j}+k_{i, j+1}\right)=$ average $k$ between nodes
$n$	* old-time value
$n+1$	* new-time value (being calculated).

## APPENDIX G

The first two terms after the equals sign are the explicit axial conduction terms; the next two terms are the implicit transverse conduction terms; the next two terms are the surface heat transfer terms; the next terin is the inner surface radiation term; and the final term is the volumetric heat source term.

## G-4. References

G-1. J. Spore et al., TRAC-BD1: An Advanced Best-Estimate Computer Program for Bolling Water Reactor Loss of Coolant Accident Analysis, EGG-2109,


G-2. Los Alamos National Laboratory Safety Code Development Group, 1RAC.PD2, An Advanced Bost Estimate Computer Program for Pressurized Water Reactor Lo5s of Coolpht Acc, Jent Andyysis, 1A-8709 MS, NUREG/CR-2054, April 1981.

## Appendix H

## Appendix H

Analytic Nodal Model Routines in TRAC-BF1/M0D1

## Appendix H

## Analytic Nodal Model Routines in TRAC-BF1/M0D1


#### Abstract

This appendix describes the Analytic Nodal Model routines presently enployed in the TRAC-BF1/MOD1 code. TRAC-BF1/MOD1 will call three subroutines at vartou: stmes durtng roactor s4mul at4on


K10SS: This is the control rout the for steady-state (eigenvalue) calculations. A set of nodal cross sections and the necessary grometry informatton for the reactor beting modeled are 4 nput. Output consists of a set of two-group node-averaged fluxes normalized to a user-specified power. These, plus the output global eigenvalue, constitute the solution for the given reactor condttions. Nodsl powers and rel attve power distributtons are also output. K1JSS should be used to compute an initial condition for a transient. It can be called repeatedly during the thermal. hydraulics initialization procedure in order to iteratively generate an $1 n+1+1 a l$ reactor power itstrituition that is consistent with the initial reactor themal-hydraulic conditions which, in turn, should be consistent with the initial power distribution.

KIFIUX: The subrout tne ts ctiled one time, dfter inttlal condition nodal fluxes have been determined. KIFLUX initializes the delayed neutron precursor inventories in each node so that they are consistent with the inftial flux distribution, assumed to be a steady-state flux distribution. Klftux also inttlatizes the power and omega arrays.

K10TR: This is the control routine for time-dependent calculations. Each time KIDTR is called, the fluxes, powers, omegas, and precursor tnventortes are advanted forward $4 \pi+4$ mes. input constst's of the fluxes, precursor inventories, and their associated omega arrays as they stand at the beginning of a time step, along with a set of nodal cross sections and albedos presumed to exist during $\Delta t_{H}$. fluxes, powers, mmegas, and precursor inventortes at the end" of $\mathrm{At}_{\mathrm{H}}$ are output. In addition, the total energy deposited in each node during $\Delta t_{\mu}$ is output. If automatic time step control is requested, K1DTR breaks $\Delta t_{\text {" }}$ up into subintervals, as described in Section 9.4.3. If autonatic time step control is not requested, all data are advanced forward over $\Delta t_{\mu}$ in one step. In additton, if inverse velocity terms equal to zero are detected in the input data, $\Delta t_{\text {H }}$ is not subdivided, even if autrmatic time step control is requested. for this reason, caution should be used when runnting specta? problems having inverse velocity terms equal to zero.

The three subroutines described above call several other subroutines in order to solve the steady-state and time-dependent equations. These subroutines, shown in Tigure H. 1 , are described below:

## APPENDIX H



MSTB-WHT-48e-30
Figure H-1. Subroutine diagram for the TRAC-BF1/M001 Analytic Nodal neutronics routines.

KSCHEK: Checks the input steady-state cross section vector fo data that are not ph, $5^{\text {tnally }}$ realistic. Computes nodal $k$-infinity data. Prepares a printeu cross 5 tion tatle $4 f$ requested.

ASANOD: Solves the steady-state, one-dimenstonal Analytic Nodal equations using the source iteration method. KSANOD performs outer iterations untit the giobal eigenvalue and the modal source distritution are converged to some arbitrary criterion. During each outer iteration, the nodal flux vector is computed using Gaussian elimination.

KSCOEf: Assembles the steady-state global nodal coeffictent matrix. The non-zero elements of this matrix are returned in three arrays containing, respectively, the below-diagonal terms, the diagonal terms, and the above-diagonal terms.

KSRGEN: Generates a nodal fisston source vector for steady-state problems using the latest flux estimate.

EXTAP: Extrapolates the latest nodal source iterate using Chebyshev polynomials, if requested.

## APPENDIX H

## KMXMN: Computes source convergence data.

KFACTR: factors the global modal coeffictent matrix using Gaussian elimination. The below-diagonal elements of the factored matrix are written in elementary form into the same locations where the below-diagonal elements of the unfactored matrix were originally stored.

KNFLUX: Given a factored global nodal coefficient matrix and a global source vector, KNFLUX computes the global flux vector by back-substitution. The input source vector is destroyed.

KMATPR: Performs various submatrix manipulations (multiplication, inversion, etc.) required during assembly of a global nodal coefficient matrix.

KABMAT: Generates the necessary data for each node for use in assembly the global nodal coefficient coupling matrices. For time-dependent problems, these are also used during assembly of the global source vector.

KTCHEK: Checks the input time-dependent cross section vector for data that are not physically realistic. Computes nodal k-infinity and generation time data. Estimates the maxtmum expected omega if automatic time step control is requested. Prepares a printed cross section table if requested. KTCHEK is called at the beginning of each time step, since, in the general case, the input cross sections whtl be different for each time step.

KTANOD: Advances the nodal fluxes, powers, precursur inventories and omega data forward over time interval $\delta t_{n}$ : $\delta t_{n}$ may be a subinterval of the time interval $\Delta t$, input to Subrout ine KLDTR. If so, KTANOD is repeatedly called to march across $\Delta t_{H}$. If, as is recommended, an option to compute the delayed portion of the total reactor power separately is included in TRAC-BFI/MOD1 with space-dependent kinetics, this could logically be dome in Subroutine KTANOD.

KTABLS: Prints a table of nodal fluxes, powers, and other data whenever called. KTABLS simply edits the current information in the nodal arrays.

KOMGST: KOMGST evaluates the kinetics equation at the beginning of each time step 18 th in order to estimate the maximum expected omega.

KTCOEF: Assembles the global time-dependent nodal coefficient matrix and the global time-dependent nodal source vector. These are input to KFACTR and KNFLUX to step the fluxes forward

KOMEXP: The delayed precursor formulation contains several terms of the form [1-exp $(-x)]$. This expression is subject to round-off error if $x$ is smal1. KOMEXP computes $[1-\exp (-x)]$ using an $x$-dependent number of termis of an infintte serles tn order to avold round-off error.

## Appendix H

KSSQID: Performs one-dimensional thermal buckling search using Crowther's method prior to a steady-state calculation.

EIELIOGRAPHIC DATA SHEET		REPCAFT NUMBEA    ind todandan tumtert if any I   NUREG/CR-4391   EGG-2680
TRAC/BF1-M001 Models and Correlations		Sathemeger
		August 19
		L2031
5. AuTHOH(S)   Idited by   1. A. Brorkoriky, N.I. Wade   Contributitis Authors   A $Z$ Rexham, F W Shumway W. I. Weaver. W. HI Rotug', C I kullbers		8 fryt of nepont
		Technical
colw acel meding adolues   Idahe National Engineering Laboratory   *Presently with the   Deparment of Energy EGSG Idaho, Inc.   thatho field Office   Idaho falls, ID 83215   ldaha liatle in $\times 2401$		


ene raveryy widicent
Divistion of Systems Research
Office of Nuclear Reculatory Research
U.S. Nuclear Regulator Conimisston

Washington, D.C. 20555
SUFPLEMENTARY NOTES

A AhSTBACT ( 200 wothe or lawn
The TRAC-BWR code development program at the Idaho National Engineering Laboratory has developed versions of the Transient Reactor Analysis Code (TRAC) for the U.S. Nuclear Regulatory Commisstan and the public. The TRAC. BF1/MODI verrion of the computer code provides a best-estimate analysis capability for analyzing the full range of postulated accidents in boiling water reactor (BWR) systems and related facilities. This version provides a consistent and unified analysis capability for analyzing all areas of a large- or small-break loss -01-coolant accident (LOCA), beginning with the blowdown phase and continuing through reatup, reflood with quenching, and, finally, the refill phase of the accident. Also rovided is a basic capability for the analysis of operational transients up to ad including anticipated transients without scram (ATWS) The TRAC-BF1/MOD1 version produces results consistent with previous versions. Assessment calculations using the two TRAC-BFI verstons show overall improvements in agrecmont with data and computation times as compared to earlier versions of the TRAC. BWR series of computer codes.
12. KEY WOADSDE SChIHTOAS is words or prases that $w$ it assist researthers in focatang the report.



[^0]:    -Presently with the
    Department of Energy
    Tdaho Field Office
    Idaho Fals, ID 83401

[^1]:    Again, if either $v_{\ell, j+1 / 2}$ or $v_{9, j+1 / 2}$ are negative, $\alpha_{j}$ is automatically set equal

[^2]:    The pump model is represented by a one-dimensional component with $\mathbb{N}$ cells $(\mathbb{N}>1)$. The pump momentum is modeled as a source at the user-specified interface between cells; this interface will be referred to as the pump interface for the remaindem of this discuscton. The source is posittve for nomal operation, so that a pressure rise occurs in the direction of increasing cell index. Therefore, it is necessary to construct the cell

[^3]:    9.4.3.4 The One-Dimensional Two Group Neutron Diffusion Mode1. In the last two sections, we detailed how volume-averaged state and transport vartables are calculated. These variables are substituted into the one-dimensional diffusion field equations to calculate the core power profile

[^4]:    a. Constants in TRAC-BFI/MOOl have 14 significant figures

[^5]:    3. Constarits in TRAC. BFI/MODI have 14 significant figures
[^6]:    a. Constants in $T R A C=B^{5} 1 / M O C 1$ have 14 significant figures

[^7]:    a. Constants in TRAC-BF1/MOD1 have 14 significant figures

