Analysis of the LaSalle Unit 2 Nuclear Power Plant: Risk Methods Integration and Evaluation Program (RMiEP)

Internal Events Accident Sequence Quantification
Main Report

Sandia National Laboratories
Operated by
Sandia Corporation

Prepared for
1.S. Nu ar R puhatory (xommission

[^0]
AVALLABILITY NOTICE

Most gocuments clfed in NRHC publicationt will be available from one of the following sourses
1 The NRC Budhin bocument Room, 21202 Streat. NW Lowar Level. Washingtorn. DC 20 S 5
2. The Superinteridert of Documents. U \$ Government Printing Offlce, P.C Box 37082 . Washington DC 20013-7062

Although the isting that tefiows represemte the majorily of acouments eited in NAC publications. It is not matenosed to be exhaustive

Reterences doouments ayaliabie tor inspection and oppying for a fee from the NAC Publuc Goourr vat Fioom include NFO correspondense and internai NAC memoranda: NFPC bulietina, circuars, inifatnatign notioes.

The following dosurments in the hiJREG seribs ate avaitabie fof purchase hom the CiPO Saies Programe format NRG ifats and conthactor ceporis. NAC-shonsored conference bromedings, international agreement

Locuments avalable from the National Tecringal thtobraiton Service incivide futtés-serios feports and
 shan. forertaner agency to the Nuciear Feguatory commiseian.
 thcoks loumai articles, and transactions. Federat fognter nother Fectetal and Stafa legistation, and won-

 Washmigton, 200535

 ptandards are ustatly copymithted and may be bucctased from the oricit ating organdzation of, if they are
 NY 90013

DISCLANMEA NOTICE

This report was prespared as an actoount of Work sporscred by ah agoncy of the Untwo statas Governmert Neither the Unitec States Governmert not ary agency theneot, or any ot their employegs makes any wartantif,

 by such myrd pany would nat intringe prixately or hear mghts

Analysis of the LaSalle Unit 2 Nuclear Power Plant: Risk Methods Integration and Evaluation Program (RMIEP)

Internal Fvents Accident Sequence Quantification

Main Report

Mannseript Completed: June 1992
Date Published: August 1992

Prepared by
A. C. Payne, It $\$ 1$. Danicl, 1). W. W. rehead.
T. T. Sype S. T Dingman. C \& shaffer

Sandia : iational latboratories
Albuquerque, NM 87185

Prepared for
Division of Safety Issue Resolution
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatery Commission

Washington, $\mathrm{DC} \mathrm{C}^{2}$
NRC FIN A1386

Abstract

This volume presents the methodology and results of the internal event acoldent sequence analysis of the LaSalle Unit 11 nuclear power plant performid as bart of the Levei 111 Probabilistic kisk Assessment being performed by Sandia National Laboratories for the Nuclear Eiegulatory Coninission.

This report describes the new techniques developed to solve the very large and logically somplicated fatlt trees developed in the modeling of the lasmlle systems, for covaluating the large fituber of cut sets in the socident sequences, for the application of recovery actions to there cut sets, and for the evaluation of the effects of containment fallure on the systems and the resolution of core vulnerable aceldent sequences.

The LOCA, transient, transient-Induced LDCAs, and anticipated accidents Without soram accidents resulting from internal initiators are evaluated and the final dominant aceident seçuences are deternined. Integrated rosults are ottatmed by inergtig all of the accident हiequences' cut sets together and evaluating the resulting expression. Integrated risk reduction, risk increase, and uncertainty importance mersures are obtalned. Also, an overall ranking of the doninant cut sets is obtalned.

The total internal core damage frequency has a mean valve of $4.41 \mathrm{E}-05 / \mathrm{R}$. $y \mathrm{r}$. With a 5 th percentile of $2,05 \mathrm{E}-6 / \mathrm{R}-\mathrm{yr}$, a median value of $1.64 \mathrm{E}-05 / \mathrm{R}$. yr.. and a 95 th percentile of $1.39 \mathrm{E} \cdot 04 / \mathrm{R} \cdot \mathrm{yr}$. The dominant cut sets all involve loss of the emergency core c oling systems (ECCS) as a result of common mode faflure of the diesel generator cooling water pumps which results ifi delayed failure of the ECCS injection systems and control rod drtve and efther a complete loss of offsite power resulting in a short or long-term statton blackout accident (depending on the status of che reactor core isulation cooling system, RCIC) or a loss of train A AC or DC power resuiting in a loss of feedwater control and closure of one set of the main steani isolation Ives.

The events most import to risk reduction are; the frequency of loss of offsite power, the no, recovery of offsite power within one hour, the सftetel todl whter pulup common hiode fallure, and the fics-recoverable isolation of RCIC during station blackouts. The events most important to risk increase are: the failure of arious AC power circuit breakers resulting in part al $10 s s$ of onsite $A C$ power, the fallure to scram, and the dtesel geneta or cooling hater pump randonf fallure thte (deterinines the magnitude of tha common mode contribution). The domintnt contributors to uncertainty are: the uncertainty in control circuit fallure rates, the uncettatnty in rilay coll fallure to energize, the uncertalnty til emergized relay colls talling deenergized, the uncertainty in the lose of offsite power frequency, and the uncertainty in diesel generator fallure to start.

TABLE OF CONTENTS

Section Paze
A $\$ 5$ TRACT III
LIST OF FIGURES ix
LIST Os TABLES xi
FOREWORD x 111
1.0 Introduction $1 \cdot 1$
1.1 Level of Modeling detall 1.1
2.0 Overview of Methodology $2 \cdot 1$
2.1 Description of Steps Used to Determine Core Danage Frequency 2-1
$2 \cdot 2$ References 2-2
3.0 Fault Tree Solution Methods $3 \cdot 1$
3.1 Development of Individual System Solutions 3.1
3.2 Merging Fault Trees $3 \cdot 1$
3.3 Development of Independent Subtrees 3.6
3.4 Solving for Systen Fault Tree Minimal Cut Sets 3. 6
3. 5 References 3.11
4.0 Computation of Sequences 4.1
4. Common metin Rentova 4-1
4.2 Separation 1nto Parts Based on Number if Literals 4. 2
4. 3 Separation Into Parts Based on Truncation by Probsbility. 4-2
4.4 Grouping 4. 3
4.5 Intermediate Inclusion of System Success States 4-3

TABLE OF CONTENTS (Contimued)

Section Page
4. 6 Solution of Sequences 4.4
4.6.1 LOCA Sequences 4. 4
4.6.2 Transient-Induced LOCA Sequences 4-7
4.6.3 Transient Sequences 4. 11
4.6.4 Anticipated Transient: Without Scram 4. 14
4.7 References 4-17
5.0 Operator Recovery Actions 5-1
5.1 Application of the Recovery Methodology $5-2$
5.1.1 Identification of Possible Recovery Actions 5-4
5.1.2 Application of Recovery Actions to Cut Sets $5-6$
5.1.3 Obtain Estimate for Recovery Action. $5-12$
5.1.3.1 Diagnosis Phase Estimate. 5-12
5.1.3.1.1 Identification of Group Which Best Describes Recovery Action. 5-12
$5.1,3.1 .2$ Estioke ng Time T_{M} 5. 16
$5.1,3.1,3$ Determination of TA_{A} 5-16
5, 1, 3,1,4 Estisate Time Avallabie to Diagnose the Recovery Action, TD 5. 16
5.1.3.1.5 Estimate Fallure Probabillty for Diagnosis Phase $P(N D)$ at T_{0} 5-16
$5,1,3,2$ Kstimate thr Failure Probability for the Action Phase, $P(N A)$ $5 \cdot 21$
5.1.3.3 Estimate the Total Fallure Probabllity for a Recovery Action, P (NR) 5.21
5.2 Sample Calculation $5 \cdot 22$
5,3 Recovery Actions for LaSalle 5-27
5.4 References 5.27
6.0 Resolution of Core Vulnerable Accident Sequences $6-1$
6.1 Introduction $6 \cdot 1$
6.2 Description of Steps in Core Vulnerable Sequence Resolution 6-2
6.21 Step 1: Define Gore Vulnerable Sequences $6-2$
6.2.2 Step 2: Determine Containment Fallure Modes 6-3

Section

Page
6.2.3 Step 3: Rvaluate the Reactor Building Environments 6-4
6.2.3.1 Reactor Building Model Description. $6 \cdot 5$
$6.2,3.2$ Results of Analysis (. 7
6.2.3.3 Model Limitations 6-16
6.2 .3 .4 Conelusions 6-17
6.2.4 Step 4: Evaluate Equipment Failure Probabilities $6 \cdot 18$
6.2.5 Step 5: Construct Simplified System Models 6-18
6.2.6 Step 6: Resolve Core Vulnerable \$equences 6.45
6.3 Conclusions 6.45
6.4 Interface WIth Level II/III Analysis 6.46
6.5 Refereneos $6-46$
7.0 Rewults of the Internal Events Analysis 7-1
7.1 Dominant Sequetices. $7 \cdot 1$
7.2 Dominant Cut Sets for Integrated Evaluation 7.7
7.3 Tmportance Analysis Results 7-10
7.3.1 Risk Reduction 7-10
7.3.2 Risk Increase 7-13
7.3.3 Uncertainty Importance 7. 15
7.4 Insights and Conclusions 7.19
7,5 References 7.20
Appenilx A Integrated and Individual Accident Sequence Results A-1
Appencix B Description of Doyinant Basic Everts B-1
Appendix G Containment Failure Mode Rlicitation C-1
Eigure IItle Rage
3.1 Example Fault Tree Logie Loop Resolution 3. 5
4.1 LaSalle LOCA Event Tree 4. 5
LaSalle Transient Event Tree - 10
LaSalle ATWS Event Tree 4-15
Recovery Methodology Flow Chart 5-3
HRA Event Tree for Example Application 5-26
System Fallure Resolution 6-3
MELCOR Nodalization for Reactor Building Model $6 \cdot 6$
Reactor Building Precsures for 4" Drywell Break $6 \cdot 9$
Reactor Building Temperatures for $4^{\text {" }}$ Drywell Break 6-10
Reactor Building Pressures for $36^{\prime \prime}$ Drywell Break 6-11
Reactor Bullding Temperatures for $36^{\prime \prime}$ Drywell Break 6-12
Reactor Building Temperatures for Wetwell Venting 6-13
Table Page
3.1 Fault Tree Segments Developed for the LaSalle Analysis....3-2 3.2 Size of Merged Front-Line System Solutions 3. 10
4.1 Transformation Equations for Inftiators and Flags in LOCA Sequence Evaluation 4-8
4.2 Value Block Changes for LOCA Sequence Evaluation 4-9
4. 3 Transformation Equations for Transient-Induced LOCASequences4-12
4.4 Value Block Changes for Transient Sequences 4-13
4.5 Value Block Changes for ATWS Sequences 4-18
5.1 Recovery Actions from Event Trees and Fault Trees 5-5
5.2 Sample VOT with Recoverable Basic Events Identified 5.7
5.3 Basic Events Which Were Categorized as RA-1 Type Ictlons -8
5.4 Basic Events Which Were Categorized as RA-2 Type Actions.5-9
Basic Events Which Were Categorized as RA-8 Type Actions.5-10
Basic Events Which Were Categorized as RA-9 Type Actions. 5-10Basic Events which Were Categorized as RA-15 TypeActions5-10
5.8 Recovery Actions Identified After Examining the Cut Sets. 5-11
5.9 Sumary of Ten Groups of Crew Recovery Actions. $5 \cdot 13$
5.10 Description of Recovery Actions Based Upon Examination of Croup Descriptions in Table 5.9 5.14
Estimates for T_{M} Resulting from Thermal-HydraulicCalculations5-17
$5.12 \quad \mathrm{~T}_{\mathrm{A}}$ for Various Classes of Actions 5-19
5.13 Potential Diagnosis Times $5 \cdot 20$
5.14 Group 11, Parameter Estimates from Fit of LognormalFunction$5 \cdot 23$
5.15 Recsvery Actions In LaSalle PRA 5-28
6.1 Marginal Failure Probabilities C. 4
6.2 Base Cases Temperatures (K) 6-14
6.3 Sensitivity Cases' Temperatures (K) $6 \cdot 15$
6.4 Sample Severe Environment Evaluation for GRD System $6 \cdot 19$
6.5a Quantification for Leaks 6-20
6.5b Quantification for Ruptures 6-22
6.5 c Quantification for Venting 6-24
6.6 Summary of Severe Environments 6-26
6.7 Final Collapsed list of Severe Environments. 6-27
$6.8 \quad$ System Models 6-29
6.9 a Basto Event Name of Survival Questlon for Containment Leak Sequences 6-37
Table Bage
6.96 Basic Event Name of Survival Question for Containment Venting Sequences $6 \cdot 38$
Basic Event Name of Survival Question for Containment Rupture Sequences $6-39$
Basic Event Name of burvival Question for Containment Failure in ATWS Sequences $6 \cdot 40$
6. 10 a Failure Equations for Survival Events for Leaks $6 \cdot 41$
6.10b Fallure Equations for Survival Events for Ruptures $6 \cdot 42$
6.10 c Fallure Equations for Survival Events for Venting $6-43$
Failure Equations for Survival Events for ATWS 6.64
husalle Final Sequence Core Damage Statistics: Internal Events 7-2
Internal Events Total Plant Run: Out Sets 7.8
Internal Events Total Plant Run: Risk Reduction by
Basic Event (With Associated Uncertainty Intervals) $7 \cdot 11$
Basie Event (With Associated Uncertainty Intervals) $7-14$ by Basic Event 16

FOREWORD

LaSalle Unit 2 Level III Probabilistic Risk Assessment

In recent years, applleations of Probabilistie Risk Assessment (PRA) to nuclear power plants have experienced increasing acceptance and use partlcularly In addrossling regulatory issues. Although progress on the PRA front has been impressive, the usage of PRA methods and insights to address increasingly broader regulacory issues has resulted in the need for continued improvement in and expansion of PRA thethods to support the needs of the Nuolear Regulatory Commission (NRC),

Before any new PRA wethods can be considered suitable for routine use in the regulatory arena, they need to be integrated into the overall Lramework of a PRA, appropriate interfaces defined, and the utility of the methods evaluated. The LaSalle Unit 2 Level 111 PRA, described in thit soms assoolated reports, integrates new methods and new applications of pievious methods into a PRA framework that provides for this Integration and evalustion. It helps lay the bases for both the routine lise of the methods and the preparation of procedures that will provide guldance for future PRAs used in addressing regulatory issues. These new metbeds, onef lutegrated into the framework of a PRA snd evaluated, lead 10 d more complete PRA analysis, a better understanding of the tincertainties in PRA results, and brosder insights into the importance of plant design and operational characteristics to public risk

In ordor to satisfy the needs described above, thes Lasalle Unit 2, Level 111. PRA addresses the following broad objectives?

1. To develop and apply methods to integrate internal, external, and dependent fallure risk methods to achleve greater efficiency, consistency, and completeness in the conduct of risk assessments;
2. Te evaluate PRA technology developments and formulate improved PRA procedures ;
3. To identify, evaluate, and effectively display the uncertainties in PRA risk predictions that stem from Limitations in plant modeling. PRA methods, data, or physical processes that occur durlige the evolutian of a severe apcident;
4. To conduct a PRA on a BR: 5. Mark il nuclear power plant. ascertain the plant's dominant aceident sequences, evaluate the coife and contalnment response to accidents. calculate the consequences of the decidents, and arsess overall risk; and finally
5. To formulate the results in suoh a manner as to allow the PRA to be easily updeted and to allow testing of iuture improvemonts in methodology, data, and the treatment of phenomena

The Lasalle Unit 2 PRA was performed for the NRC by Sandia National Labotatories (SNL) with substantial help from Commonwealth Edison (CECo) and its centractors. Bectature of the itse and sode of the The vartous related programs were set up to conduct different aspeots of the analysis. Additionally, existing prograns had tasks added to perform some analyses for the LaSalle PRA. The responsibillty for overall
 Evaluation Prograik (RMIEP) RMIEP was specifically responsible for all aspects of the level 1 analysis (1.6. , the core damage analysis). The Phenomenology and Risk Uncertainty Evaluation Program (PRUEP) was
 source term, cotsequence analyses, and risk integration), Other programs provided support in various areas or performed some of the subatalyses. These programs inctude the Selsmic Safety Margins Research p-agram (\$5N耳T) at tawrence tivermore National Laboratory (tiNi), which performed the seismio analysis; the Integrated Dependent Failure Analysis Progran, which developed methods and analyzed data for dependent fallure modeling: the MELCOR Program, which iodifled the MELCOR code in response to the PRA's modeltar thedst the Ptre Reseatch Program, whteh performed the fire analysis; the PRA Methods Development Progran, which developed some of the new methods used in the PRA; and the Data Programs, which provided new and updated dath for B6tik plants slallar to tasalle EECo provided plant desfgn and operationat inforwation and foviewed many of the analysis results.

The LaSalie FRA was begun before the NUREG-1150 analysis and the LaSalle program has supplied the NUREG- 1150 program with simplified location
 possible subtle interactions that cone from the very detafled system models used in the Lasalle PRA, core vulnerable sequence resolution methods, methods for liandling and propagating statistical uncertainties tif ah fritegrated way through the entite analysis, and Ethe thermalhydraulic moals which were adapted for the Peach Bottom and Grand Gulf analyses

Thif tovel 1 results of the LaSalle Unit ? PRA are presented in: "Analysis of the Lasalle Unit 2 Nuclear Power Plant Risk Methads Integration and Evaluatton Piograin (RMItip), "NuREC/CR-4832, SAND92-0537. ten volumes. The reports are organized as follows:
NUREG/CR-4837 - Volume 1: Sumurary Report.

NUREG/CR-4832 - Volume 21	Integrated Quantification and Uncertainty
Analysis.	

NUREG/CR-4832 = Volune 3: Intetral Events Accident Sequence Quantification.

NUREG/CR-4832 - Volune 4:
Initiating Events and Accident Sequence Delineation.

NUREf/CR-4832 - Volume 5: Parameter Estimation Analysis and Human Reliability Screening Analysis.

NUREC/CR-4832 - Voluse 6: Systew Descriptions and Fault Iree Definit:on
NOREG/CR-4032 : Volume 75ternal Event Scoping Quantification.
NUREG/CR-4832 * Volume 8: Selserc Analysls.

NUREG/CR-4832 * Volume 10: Internal Flood Analysis.

 "Integrated Risk Assessment For the LaSalle Unit 2 Nuclear Power Plant: Phenomenology and Risk Uncertainty Evaluation Prograil (PRUEP) " NUREG/CR 5305, $\operatorname{sAND90-2765}, 3$ yolumes. The reports are organired as follows:

NUREG/CR-5305 - Volume is Main Report
NUREG/CR-5305 * Volune 2: Appendices A-G
MURRG/CR-5305 * Volume 3: MELCOR Code Calculations
Important assoefated reports have been issued by the RMIEP Methods Development Program in: NUREG/CR-4834, Recovcry Actions in PRA for the Risk Methods Integration and Evaluation Program (RMIEP) NUREG/CR-4335, Comparisou and Application of Quantitative Human Reliability Analysis Methods for the Risk Methods Integration and Evaluation Program (RMIEP); NUREC/CR-4836, Approaches to Uncertalnty Analysis in Probabilistic Risk Assemsmint, THTEG/CR-4838, Mterocomptiter Applications and Modificattons to the Madular Fault Trees; and NUREC/CR-4840, Procedures for the External Event Core Damage Frequency Analysis for NUREG-1150.

Some of the compiter codes, expert fudgement elicitations, and other supporting information used in this analysis are documented in assoclated Teports; frciuding: NUMEG/CR-4586, Hsex's Cuide for a Personal-ComputerBased Nuctear Power Plant Fire Data Base; NUREG/CR-4598, A User's Gulde for the Top Event Matrix Atialysis Code (TRMAC); NUREG/CR-5032, Modeling Time to Recovery and Iultiating Event Frequency for Loss of off-Site fowor Thctathts at Nucleaf Power Plants; MUREC/CR -5088, Fire Risk Scoping Study: Investigation of Nuclear Power Rlant Fire Risk, Including Previously Unaddressed 1 rsues; NUREG/CR-5174, A Reference Manual for the Event Progression Analysis Cude (EVNTRE); NUREG/CR-4253, PARTITION: A Programin for Definting the Source Teris/Consequence Analysis Interface in the NUREG-1150 Probabilistic Risk Assessments, Usier's Guide; NUREO/CR5262. PRAMIS: Probabilistic Risk Assessment lodel Integration Sy tem, Usor's Culde: NUREC/CR-5331, MELCOR Analysis For Accident Progression Issues; NuREG/CR-5346, Assessment of the XSOR Codes; and NUREG/CR-5380, A

User's Manual tor the Postpracessing Progran PGTEVNT, In addition the reader is difected to the NUREG- 1150 technical support reports in NUREC/CR-4550 and 4551.

Arthur $C_{\text {. Payue }}$ Its,
Principal Investigatot
Phenomenology and Kisk Uncertaluty Evaluat fon Progranh and
Kisk Methods Integration and Evaluation Program
Division 6412, Reactor Syetems Safety Analysis
Sandia National Latiorat ortes
Albuquerque, New Mexico 87785

1.0 INTRODUCTION

1.1 Level of Modellng Detall

As part of the analysis of the core damage frequency from internal iriltators, the accident sequences defined for the PRA must be evaluated and their frequencles calculated. This process can range from very easy to extremely difficult depending on the level of detall of the analysis and the analyais tools available For the Lasalie Probabilistic Risk Assersiment (PRA), the inclusion of external initiators on an equal footing with internal initlators required the expansion of the madel to include passive failures, diversion paths from spurious operation, additional components not usually modeled, and a greater level of detall in the fault tree modeling to accurately represent the effects of some of the external event \&

This additfonal level of detall required the use of the most powerful tools ayallable and their pxtension by the development of new techniques to (1) aftectively include the additianal level of detall in the system fault trees, (2) Include some information in the fault trees via transformation equations, and (3) aid in the process of evaluating the aceldent sequences in an efficient and cost effective Hanner

The description of the system modeling effort and of the development of the system fault trees is presented in Volume 6 of this report. The defeription of the techniques used to include location based information for the external event analyses in the fault tree model and the location data bases and transformation equations are presented in Volumes 8, 9, and 10 ot this report on the beismic. fire, and flood analyses respectively, This volume presents the method used to gvaluate the very large fault trees developed for phe LaSalle PRA and the new solution techniques used in analyzing the accident sequences to obtain the core damage frequency from internal initiators

2.0 OVERVIEW OF METHODOLOCY

2.1 Description of Steps Used to Deternine Core Damaze Erequency

The general process used to analyze the accident sequences and obrain the core damage frequency for the internal initiating events can be broken down into as sertes of steps:

1. Define the initiators to be analyzed. This analysis is described in Volume 4 of this report.
2. Determine the accident sequences that can result frca these initiators and the systems necessary to mitigate the accidents. This analysis is described in Volume 4 of this report.
3. Develop fault tree models for the systems appearing in the event trees defining the accident sequences (front-line systems) and their support systems. This analysis is described in volume 6 of this report.
4. Develop a data base consisting of point estimate values to use in the screening analysis and continue to refine to get values for the ftrat analysis with uncertafnty distritutions. This analysis is described in Volune 5 of this report.
5. Solve the fault trees of the front-1ine systems in terms of their basic fallures and include their support systems and the tinteractions between front-1ine systems, between support systems, and between front-1ine and support systems. This analysis is described in this volume,
6. Combine these system fault trees into accident sequences using point estimate data to calculate screening estimates of the accident sequences. This analysis is described in this volume.
7. Analyze the sequences cut sets (i, e. combinations of basic failures that can result in the accident sequence) to determine if they make physical sense and evaluate the potential for operator recovery actions inttigating the accident. Define and classify the recovery actions. Add the failures (i.e., non-recovery actions) to the cut sets, develop a method for quantifying the probability of operator failure, and quantlfy the actions and add to the data base. The deflitition, classification, adding to the cut sets, and quantifying the non-recovery actions are reported in this volume. The development of the method of evaluating human actions is presented in Reference 1.
8. Develop a method for resolving accident sequences which have uncertain end-states as a result of the inability to quantify the interaction between sequence phetiomenology and system performance. Apply this methadology to resolve the core vulnerable aocident sequences. This analysis is described in this volume.
9. Using the uncertainty distributions developed for the data, quantify each individual accident sequence and the coubined accident sequences (i.e.. the integrated results) to obtain the individual sequence and integrated core damage frequencies for internal initiators. The implementation of the data base to quantify the basic events appearing in the fault trees with all of the final uncertainty distributions is presented in Volume 2 of this report in the appendix describing the Latin Hypercube sample input files. The evaluation of the sequence and integrated uncertainty distributions and the importance calculations are reported in this volume.

2.2 Refexences

1. D. W. Whitehead, "Recovery Actions in PRA for the Risk Methods Integration and Evaluation Program (RMIEP) Volume 2: Application of the Data Based Method, " NUREG/CR-4834/2 of 2, SAND87-(0179, Sandia National Laboratories, Albuquerque, NM, December 1987.

3.0 FAULT TREE SOLUTION METHODS

3.1 Development of individual Syatem Solutions

modular fault tree methodology was used to construct the LaSalle system fault trees for LaSalle. The generio modules in Appendix 1 of NUREG/GR3268^{2} were revisod and addtitonal modules were developed for modelling control and actuation clicults based on relay as opposed to solld state logio. An IBM-PG program, MODEDIT, was developed to retrieve these files for modiflcation into plant-specific modules. The program also checks each uiodule for any ertors that pay have been generated durfing aodification. Another TBM-PC prograth, 1NDEX, was developed to identify developed events which do not have a corresponding top gate in stother fault tree module. A full description of these programs and the revised generic modules is discussed in "Microcomputer Application of and Modification to the Modular Fault Trees."

As the fault tree modules for each individual system were completed, they were transferred to the mainframe computer. Using the SETS code proceduri
 tree. The Generate Fault Tree Equation, CENFTEQN, procedure was then used to compute the minimal cut sets of the system. These cut sets were examined by the analyst for validity and any indications of modeling errors. If modeling changes were needed, appropelate changes were made and riow cut sets were generated. This process was repeated unt 11 the analyst was satisfied with the model of the system. Some systems, such as the electrical actuation system, were developed in parts to help clarify the function being modeled by the analyst. These parts were then merged and checked for errurs. Twenty-seven individual fault tree segnents were developed during this phase of the analysis. Table 3,1 lists these fault trees

3.2 Merging Fault Trees

Tho fault trec stegmentis for support and front life systems were combined to form a completely merged fault tree for each system that appeared on the event trees (f.e.. the front-line systems). The SETS code was used to perform the merging task. Two mafor problents we e of concern fin merging the RMTEP faut thees: (1) ctrcutat logto and (2) Blze

Oircular logic often oceurs in fault tree models since interdependencies exist among systems. In the LaSalle fault trees, these interdependencies
 systems (e.g-, the heating, ventilation, and air-conditioning system, HVAC,

* I. L. Zimmerman, N. L. Graves, A. C. Payne Jr., and D. W. Whitehead, "Microcomputer Applications of and Modifications to the Modular Fault trees, NHEt Albuquerque, NM, to be published

Table 3.1
Fealt. Tree Segments Developed for the LaSalle Analysis

Table 3.1
Fault. Tree Segments Developed for the Laballe Analysis

20. 14	Instrument Air systew
21. DWN	Drywell Pneunatic System (Instrument Aitrogen)
22. RPT	Recirculation Pump Trip
23. SBLC	Standby Liquid Control System
24. VENT	Containment Venting System
25. RBCCW	Reactor Building Closed Cooling Water System
26. CRD	Control Rod Drive Systom (two pumps needed)
27. CRDI	Control Rod Drive System (one purp needed)

and the core standby coollige system, CSC's, which provide rom cooling and pump and seal conling to the AC power generating eevipment and its support equipnont) atod within the PDlST system itbelt (e.p.i AG/DC power dependencies) Figure 3,1 shews the logical cornections that resulted in feedback effector in the lasalle analysis and the solution used to resolve these dependeticiss. The saibution was lmplemented in the following fashion.

FIrst, the PDIST, CSCS, and HVAC systems were dupleated with all of the gate names changed to ereate different but logically equivalent systems (1.0.) the primary event names rexaln the same). This was accomplished with the FlKMNEWFT procedure of SETS using the NAME option. Gate names were changed by appending a "1" to the end of each gate pame. To insure no gate name exceeded sixteeti characters in length (SETS will not accept names longer than 16 charadters), the ifrst occurrence of a hyphen was removed fram each gate name, In the lopheutting veraton of PDIST, PDIST-LC; gates sonne acirg to the fkont-1ine sybtems were removed using the TRIM option with the ERMNEWFT procedure of SETS so that POIST-LC only fed into the PDIST fatalt tree and its support systoms. The lagio laops all involved diessl cenesatork and battecifs depending upon themselves througl, their support systemit The consestions back into the support systems were removed from the loop ut versions of the fault teees (i.e., when the loop cut version of the OSCS system, CSCS-4C, was merged with the loop out version of the PDIST tree, PDIST-LG; the commection back to the CSCS-LC tree via the diesel generacor was removed). Appropriate gates in the electrical actuation fault tree EPAVAld were renamed to reflect the appended "1" In the loop cut vergions of the other systems so the actuacion logic would feed into the PD1ST-LC fault tree (no logic lops went through the actuation civcuits so a duplicate actuation trew was not required). The three loop-cut systems PUIST-1C, CSCS-LC, and HVAC LC were merged with PDIST and EFAVALL to form a refred-power fault tree MERGED. PWR with all logle luops removed. This fault treu was later merged with the front-11ne system fasti tree segments and the oryginal support system fault trees to create the completed systens.

Although fault tree size is always a problem of concern, it's seldom of the magnitude encountered in the laSalle analysis. For this reason, selected fault trees were mexged in small groups and these groups were later merged lito the one final, latge, frulti-topped faut tree. This helped in a number of ways (1) duplicated logic was eliminated early in the merging process. (2) ertors wete more easlly resolved, and (3) seTS zuns were of a manngeable size in terms of time and output. Front-line system fault trees were eventaally all merged into one large group and the fault trees for the supporting pewer systems into another group. The two groups still contained over 10,000 gates which is mece than the largest version of the SETS code could handle whthout code rewriting, To solve this problen, Form Two of the FRMNEWFT procedure of SETG was used to coalesce and remove single input gates from the fault tree group conuainitg the front-1foe bystems. This reduced the number of gates enough so that it could then be merged wis.h the cupporting pober bystem fault tree group to form one vecy large walti-topped fault tree contatning all the front ilne systems somplete with their bupporting systema. The SETS output was earefully revhewek at this point to

Original Loop Logic

After Loop Cutting

insure (1) the coalescing and single input gate remoyal did not sever any connections betwen front-line and rupport systems (this ould occur if the connecting gates were single. Input gates and were deleted from the tree). (2) no deteloped events femained in the 1 lnal uerged tree, and (3) each By日tre appearing on an flent tree that was represented by a fault tree waz representiod by a top gate on the merged fault tree.

3. 3 Levelopment of Limependent Subtrees

The laballe system fadt trees are large and complox representing the interactons of many support systems and primary events: Even with the use of the SETS computer code on a latge malnframe, it is not possible of economical to fontify all the minimal fut sets of a system fault tree. One zectuique that feduces the fault tree size problem $\frac{1}{2}$ the foentification and sistich of the largest indepondent mubtreas Form Thase of the FRMNEWFT proceduce parfatms this function by restructaring and then separating a desfgrated tcult tree fnto its stem and a vollection of independent subtrees. Independent sutyt-tes can be quantified and evaluated individurlly and replaced by developed events in the system fault trees (i, e., these portions of the fault trees are treated as single super events). This profess was very beneficial whon applied to the LaSalle fault trees, The LaSalle trees contain 3451 primary events. This SETS procedure identified 80 existing independent subtrees and created an additlonal 283 subtrees. These 363 independent subtrees isolated 2928 of the peimary events. The use of these subtrees as "super events" resulted in a smaller tree and more efficlent solving of the orlginal trees. These events must be resubstituted at the end of the atalyels to obtaln xesults in terms of the primary events on the of giginal tree A thorough and in*depth discussion of the development of independent subtrees is found in NLREG/CR-3547.3

3.4 Sglviou for System Fault Tree Minimal Out Sets

TVeri with the use of independent subtrees, the tront-line system fault trees for Lasalle were rety large obtaining at exact listing of minimal cut sets For such large wees is difficalt, expenstye, and often impossible Fot these reasoms, it was necessary to probabillatically elimfnate cut suts below a seleeted truncation value. A truncation value of 1F-08 was selected since previous experience has shown that the dominant PRA-estimated cote damage sequence freguencles before the application of recovery are in the 1E-04/R-ys, to 1E-05/k-ye range and that a significant number of cut sets w 121 be retalned using this truncation value to give good estimazes of the dominant sequence frequencies Every primaty event in the fault tree must have a probability value associated with it in exder to eliminatr zut sets based on probability, Since-Independent sub+ ees are treated as "super events," they tog must have a value assooiated with them. The Generate Fault Tree procedure, GENFTEQN, of SETS was used on the collection of independent subtrees to generate a Boolean equation containing the minimal cut sets tor each independent subtree. The Compute Term Value procedure,

COMTRMVAL, was used to obtain the sua of the probsbilitites of the ainimal cut secs for each independent subtres. This approximation associated with
 point value probabilities for each of the prioary events for use in computing the minfmal cut sets for each of the front-line system equations.

The factective of potiti ostimate values associated with fach primary for computation in this phase of the analysis should be the largest a ever to be associated with the event. Events havirg smaller values certaln sequences can be reduced later. However, if it becomes necessary ? fricroase the probability value for any primary event after the system cut gets have been obtained, the system cut sets should be resolved. Some cut sets may have been ellminated by the use of the simaller peobability value. thavtrig to reptat the process to obtaln system cut sets can be very costly and 1 ह better avolded by careful revtew and use of the hifghest value.

Even with the ume of fridependent subtrees and truncation, obtaining the eut secs for the laSalle front-line systems was very diffloult. The SETS code
 This flexiblilty, that allows an analyst to solve very large complex structures, requires the computer analyst to exercise a considerable amount of responsifility in gencrating and executing the detalls of a SETS user prograin. The collputor anatyst should have a detalled knowledge of the fault tree structure and work very closely with the systems analyst during the front-ine system solution effort. Pailure to recognize this responsibility cati result in exceselve computer costs and minfmal results

The size and complexity of the LaSalle system fault trees necessitated careful review of the front-1 ine systems prior to attempting to solve for the systam nilatinat cut sets. Computer output from the Frint Block procedure. PRTBLK, das revlewed for rach front-1ine system. This computer output gives the analyst insight tntc se coalescing and restructuring that occurs curdng the merging of the fivion system fault trees. Simple sketctics showling the logic structure can be generated and can be used to determine modifications to the SETS user code to optimize the solution as described below. After reviewlig the restructured front-line system fault trees, the Generate Fault Tree Equation procedure was used to generate the SETS पहET code to solve a given fromt-1ine systeil using the bottom-up method. The PUNCH optlon was included to prevent the SETS code from attenpting to execute the generated code.

A "gtatst" hottoultup metthod was used to solve the stem portion of the front 1 ine system fault trees. The bottom-up method generates Boolean equations for selectert tntermediate events starting from the bocton of the fault tree. bach equation is reduced as it is generated. Progression is made through strecessively higher levels of the faut tree until the top gate is reached. After reduction, the top-gate equation is a function of only primary events or primary ovents and independent sabtrees (1, e. "super events") if only the sten portion of a fo it tree is being solved. A detalled explanation of the bottom-up methot of the cemerate Fnult Tike procedure of SETS is given in

Reference 2. A discussion of its use in accident sequence analysis is found In Reforence 3. The approach taken to abtain solutions of the Lasalle fatht theus was a guat brothom up method because the sETB controt program produced with the Generate Fault Tree procedure was modified considerably pefor to exocutfon of the user code. These tiodificatlons Included: (1) fooldifion of adicional stopping polrit (f.e. selected intermediate events Which are botved to obtato flieir toolean equations), (2) fexlik and changes to the user cude for solation of "AND" gates, (3) ase of nquat fons to equate equivalent gatas, ath (4) tenoval, fusertion, and changes to Derete Block

By reviow of the SETS XGer code fromi Denezate Faolt. Tree Equation and the pRTBLK butput, the computer analyst can prepare a ilst of Intermediate
 dovelopmont of ant exprobiton and act of ba sort of "teaporaty guper event " Shee intermediate events are not normally assigned values, stop points are excluded from computation by use of the Except Soncomptement, EXCEPTNONCMP,
 Subsetitute Equation having the STop option

Thie stop potuts are "flher "AND" gatio or fitermedate events wied multiple times in the fault tree. The use of stop point allows the analyst to solve
 conty one on two of the equatious for the inputs of a gate to enter the equation for the gate at one tione will greatly reduce the number ef terms that w111 he generated by expansfon. After mimplifleaton, addtional fuputn can be released

The use of stop points is partioularly effective for multiple input "AND" gaten. In this case, the order in which stop points are relwased can be
 knows to have events in gombon, the analyst should reloase Inputs A and is while stopping on C and D. This will result in a smiller mumber of terms to he coublied when the stop fiaftite Q and D are fequem $\{a l l y$ released. Another
 poluts have not itready been solved in is previous compatoe xum. This results in the stop point baving no efteet
 the SETS code output contathe a list of any occorrences of equivalent gates found in the merged fault tree. Equivalent gaters are gatos of the same type (1.e. both "ANL" or "(gn gates) and having the same ituputs often this

 equivalent gates, then equations can be used to reduce the number of tuputs to gate i from four to three For trample, if $£$ and F are "ANbw gateg both
 equivalent gates equal:

```
PROGRAMS LASALLP M1.
E = TEMP.
F = TEMP
TEMP = K * L.
SUBINEQN (TEMP, TEMP).
```

The computer analysis then precedes as if gate 1 had inputs $6, H$ and TEMP.
The Delete Block and Form Block procedure statements were often removed from the user code at the lower gate levels to speed up computer run time. The name given to a block being formed was changed from the previously used block name to prevent a loss of information if a computer time-limit was encountered durlag a Delete Block or Form Block procedure, Additional Form Block statements were added to the code t the upper gate levels. This saved the computed information more often in case a computer restart was needed. Sithee the SETS block file is a sequential file, it is more economical to keep anly essential Information on the file so previous interlm blocks were deleted once a new one was successfully formed. Admittedly, for small problems the computer cost tmolved in theae procedures would probably be nominal but a significant savings is realized when dealing with extremeiy large system fault trees. Proper use of the Form Block procedure may save the computer analyst from "losing" a 30 minute computer run.

The computer code for solving a frott-1ine system was generally broken into parts for submission to the computer. This allowed the computer analyst to sview the output and make appropriate changes to the next section of code to be submitted if needed. This helped to control the computer cost and often prevented the submitting of a costly run that could not be succeastully conpleted.

An equation was used to set the event HIGH.DWPRESSURE to OMEGA (i, e, the event is assumed to always occur) whlle obtaining the system minimal cut sots for all of the front-1ine systems except PCS. The event HICH. DWPRESSURE was set to /OMEGA (1 e., PHI, the event was assumed never to focur) during the computation of the mindaral cut sets for PCS. The event HIGH-DWPRESSURE is a flag that indicates the presence or absence of high pressure in the drywell. For all accident sequences where PCS was not avail ble or successful, high drywell pressure (i.e., drywell pressure greater than 1.69 psig setpoint used in the emergency system's actuation logic) was asisumed to occur.

The fifteen front-line systems and their number of ininimal eut sets are shown in Table 3.2. The number of eut sets shown is prior to substitution for independent subtrees Suhstitution for independent subtrees was not made until after the formation of sequences.

Table 3.2 Stze of Merged Front-Line Systew Solutions

* Nuaber of cut sets prior to substitution for independent subtrees.

Once system solutions are abtalned for all the front-line systems appearing on the accident sequence event trees, the accident sequences can be evaluated The evaluation of the LaSalle ac- od at sequences is described in chapter 4 of this report

3.5 Referutices

1. G. B, Varnado, W. H. Horton, and P. R. Lobner, "Modular Fault Tree Analysis Procedures Guide," NUREG/CR-3268, SAND83-0963, Sandia National Laboratories, Albuquerque, NM, August 1983.
2. R. B, Worre11, "SETS Reference Manual," NUREG/CR-/.213, SAND83-2675, Sandia Nat lonai Laboratorles, Albuquerque, NM, May 1985
3. D. W. Stack, "A SETS User's Manual for Accident Sequence Analysis," NUREG/CR-3547, SAND83-2238, Sandia National Laboratorles. Albuquerque, NM, January 1984

4.0-COMPUTATION OF SEQUENCES

Hont of the LaSalle sequences vere evaluaced with a t:uncation value of IE08. This led to some difflculty in generating the sequeqre solutions as combining fallure states often genefated nillions of intermediate cut ats. obtafintig a cross product of the or diore systeiil fattures ts expensive and sometimes impotisible without eaploying techintques other than simply "ANDING" (i.e, the Boolean operation of confunction) the systems together. A methodology for perforining the secident sequence analysis portion of a
 techntques employed to oftaun the LaSalle sequences fncluded: (1) common term resoval, (2) separation into parts based on number of ifterals, (3) separation tita parts based on probability, (4) grouping, and (5) Antetmedfato remoual of succedn stater

4. 1 Gommon Fexm Removad

It afttiant intonnation ka kown mbout two systems co indicate that they thave a number of cut sets in common, the combined system faifure can be calculated withont generating all of their intermediate cross prociacts. For exanple, several of the LaSalle sequences required combining the systemi talluri statem of contaitument spray systele (US5) and suppression pool fooling (SFC) systeth. As shown in Table 3,2 , even in terms of independent subtrees (SSTB) of "super "Vents" these systems contained 7920 and 8014 cut sets. ICspectively. Strice these two systemis were known to contain a sizable number of cut sets in comum, their cross product was obtained as follows. The Delote Term, DLTRM, procedure was used to obtaln the terms of CSS not in common with SPC. Using DLTRK agaln, this result was then used to separate out the cerms of CSS that were also in SPC. a third applitentfor of गITRM was made to obtain the Lersis of SPC not in conumon with CS8. The ropulting threo terms repreaented: (1) terms in cSS but not in SPC, (2) texns in both CsS and SPC, and (3) terms in SPC but not in CSS. The ferms of CSS not in common with SFC were then "NNDED" with the terms of SPO not in common with. CSS. This result was then "ORED" (i.e. the Boolean aperation of disfunotion) with terms empon to both CSS and SPC to obtain their complete cross product. Sample StTS code to execute this process is shown below

PROCRAMS LSL-SEQ.
GOMMENTS COMBINE SY4TEM CUTS SETS POR CSS AND SPC \$

```
DLTRM (CSS, SPG, X1)
DLTRM (SPC, CSS, X2).
ttTM (CSS N1.
\(\operatorname{cSS}-S P C=\mathrm{X}_{1} \times \mathrm{X}_{2}+\gamma\)
SUBINEQN (CSS-SPC, CSS-SFC)
```

Some computer costs are heavily w 'ghted to $1 / 0$ operations. Since DLTRM makes heavy use of $1 / 0$, in some cases it may be more efficient to remove the second DITMM statement from the above code and chamge the equation to CSS-SPC $=\mathrm{X1}$ * SPC + Y. This would require that the Substitute in Equation procedure, SUBINEQN, be followed by efther the Reduce Equation procedure. REDUCEQN, or Truncate on Term Value procedure, TRNTRMVAL, since the result of the Sturnmon would not be intntimal. If the product of two or more failures is common to more than one sequence, it is important to save this result using the Forii glock, FRMBLK, procedure so that it is not necessary to compute the product b re than once.

4.2 Separation Into Parts Based on Number of Literals

Some LaSalle sequences were extremely difficult and espensive to obtain. These sequences were developed in stages. The cut sets for two or more system failures in a sequence would be combined and the computer output examined before combining this segment of the sequence with other system fallures to continue computation if the sequence, if the computer output indicated a segment could not be combined with another system without generating too many intermediate terms for the capacity of the computer code, the sequence segment was sometimes broken into parts. This was accomplished by ising the option in the REDUC iv procedure to truncate the sequence segment on number of literals, j, Using the sequence segrent and the j-truncated sequetice segment as arguments for the DLTRM procedure the sequence segment containing greater than 1 literals was obtained. These two parts, the less than or equal to f literals part of the sequence segment and the greuter than j literals part were each "ANDED" with the next system fallure state to be inciuded in the sequenco and then the results are "ORED" to obtain the next stage. If necessary the process can be applied more than once, but since the computations to obtain the parts can be fairly expensive they should be kept to a minimum. The computer output from each stage in the development of a sequence is used to determine the value of j and whether or not this process is applicable.

4.3 Separation Into Parts Based on Truncation by Probability

Sometimes a large sequence segment would not lend itself to sepration into parts based on number of literals (i.e. too many terms containing the same number of literals). In tiase cases, computer output was reviewed for the possibillty of separation into parts based ou truncation at some probability level. This process is similar to separation into parts based on number of literals except the TRNTRMVAL procedure is used to obtain a part of the sequence segment truncaied at a higher probability value, k, than the value being used for the anacysis. To determine the k probability value to be used as the break point requires the analyst to have some knowledge of the magnitude of the eut sets being generated and/or computer output from a COMTRMVAL proccdure for the sequence segment or systems composing the sequence segment. The DtTRM procedure is applied to obtain
the $p c$ ion of the sequence segment having probability less than k. As above, the two parts of the sequence segment are combined with the next system or systems of the sequence ant then the results are "ORED" to obtain the next stage

4.4 Grouping

TWo typos of grouping were used in computing the Lasalle sequences. The first type involved sombining and saving combinations of systems that were used in more than one sequence. Coubining many of the systems generated a large number F^{s} intermediate cut sets which resulted in high computer charges. Because of these computer costs, combinations of systems found in two or more sequences were often formed and the results saved using the Form Block procedure, FRMBLK. These system combinations could then be recalled as needed during a sequence computation.

The second type of grouping used in computing the LaSalle sequences selected systems to be combined based on known commonalities. When combining several systemis that create a large number of interin cut sets, the order in which the systems are combined can become very important. Combining two or more systems known to have many cut sets in common prior to combining these systems with another system which does not have cut sets in common with the previous systams generates fewer intermediate terms which have to be elininated in the Reduce Equation procedure. Obviously, these "groupings" are very judgemental and requite the analyst to have or obtain considerable information about the interactions of the physical systems betng modeled

Occastonally, the two types of "grouping" are in conflict with each other, The first type discussed generally helps in reducing the cost of obtaining a solution whifle the second type of grouping may control whether or not the solution can even be obtained. Unless costs become a major concern, grouping to reduce the number of terms is generally the major deciding factor in dealing with very large problems

4.5 Intermediate Inclusion of System. Success States

 of a system in an ancident sequence without determining a complement equation for the system. For example, suppose we have the failure equations for two systems, p and q, in disjunctive normal form (i.e., sum of products (cut sets) as opposed, for example, to a factored form). The sequence we wish to tvaluate is given by the equation $s=p^{*} / q$ where system p has failed and system q has succeeded. Instead of determining explicitly the complement of $q . / q$, (which can have a very large number of success cut sets and is usually not done) ; we delete terms in the equation for p that subsume terms in the equation for q from the equation for p to form a new equation, r. This means that cut sets in the fallec system that are
physically incompatible with the fact that the other system succeeded are removed from the failed system's equacion. The sequence can then be
 close to 1,0 probability and the improvement. in the estimation of the sequence frequency by elimination of cut sets physically incompatible with the sequence definition more then compensates for the error introduc d by
 small, then a more explicit representation may be needed. The number of terms in equation x will be smaller than the number of terms in equacion p unless the systems invalved are independent of each other. A more precise disenroution of thite procene is found in NHPEC/op 4813 ?

Because the inclusion of a system success in this manner has the uffect of reducing the numbe: of cut sets in a sequence segment, it is often
 computation. It regults in fewer cut sets in a sequence segmeut that must st'11 be combined with other system failures. It is tuportant to rumember that when a success state for a Bystem is included in a sequence segment prtion to contintrg the last fatlume systent to tho sequence segient, it will be necessary to combine the success state again. This is to insure that terms of the success state system have been removed from all of the failure systems occurring in the sequence. Analysts' judgement and familiarity with the modeled systems mast be used to determithe wheni inctudng success states at intermediate stages wlll be useful. Alsc, when using a particular combination in several different sequences, one must be careful to use only success states that appear in both sequences or evaluate the combinution twites, onct for each sequence.

4.6 Solution of sequences

Tho cuatuation ot tho tasatle sequences required the use of all of the texhniques disoussed above. Some types of sequences, such as the transient and transient-LOCA sequences; were extremely difficult to compute. In some cases, it was not feasible to obtain all of these sequences at the protatillty trunchllof value of ith-on

4.6.1 LOCA Sequences

The event trees, discussed in Chapter 2 of Volume 4 of this report determined the sequences to be evaluated for Loss of Coolant Accidents LOCAS. The LOCA event tree is reproduced here as Figure 4.1. Because the severe envixonment and containment failure expert elicitations had not been perfortied by the thine the sereenting was to be cone, the events Shut and sur were not evaluated at this time (see Chapter 6 for a discussion of these events).

Strice the locA tree was evaluated simultaneously for all LoCA sizes (small, medium, and large), any system specific effects due to the different LOCA

(1) TRANSYER FROM TRANSIENT SEQUENCI \& 103.
(2) TRANSFER FROM TRANBIENT SEQUENCE ; 102
(3) RCIC SUCCESS POSSIBLI FOR SMALL LOCA ONLY
(4) CRD SUCCESS POSSIEL E FOR SMALIJ. LOCA OR STEAM BREAK ONLY
(5) FOR VERY LONG-TERM SEQUENCES WITH A LARGE LOCA WHERE THE CORE IS AT 29 TAF MAY GET SUBCOOLING AND MFIV TEE TOP OF THE CORE IF ONLY ONE LPCI PUMP IS OFERATING.
(6) TRANSFERS TO (2), DOWNCOMER, VACUUM BREAKER, OR SRV DISCHARGE LINE FAILUFE, SAME SYSTEM SUCCESS CRTEERIA, SEQUKNCE OCCURES IN SHOFTER TTME
(7) TRANSFER TO ATWS TYERE

Figure 4.1
LaSalle LOCA Event Tree
sizes had to be included directly in the system fault trees. For example, the reactor core isolation cooling (RCIC) system falls due to its inability to supply enough water to make up for the coolant belng lost and due to the reactor vessel depressurization that ocours after a medium or large LOCA. Two events representing a medium and large LOCA are placed in the RCIC system fault tree such that, If a medium or large LOGA occurs, the RCIC system fal. 3 . For other events such as electrical bus failures only partial system fallure may result

Each sequence was multiplied by an initiating event equation to insure every cut set included an appropriate LOCA initiator as indicated by the event trees. After the systems are solved and combined together to form the selected accident sequence, two types of cut sets will be present: 1) cut sets with no initiators coming from the fault trees (i,e., cut sets composed only of random failures of equipment from the falled systems) or 2) cut sets with one or more initiators and possibly some random failures. In order to ecmplete the sequence definition, each 'it set must have an initiating event. Tt.ose cut sets which already have an initiating event coming from the fault tree solution are complete. Cut sets with multiple initiators are not physically realizable since by definition only one initiating event occurs at a time. The fault trees already contain random events representing the occurrence of an initiator as a random fallure given the occurrence of some other initiator. The thod used to eliminate these double initiator cut sets will be discusped ier. Cut sets with no initiators are independent of the specific initiatar type and need to be combined with each initiator to create new cut sets, one for each initiator (i.e., given a cut set $X * Y$ and the three initiators LLOCA, MLOCA, and SLOCA; three cut sets can be created LLOCA*X*Y, MLOCA*X*Y, and SLOCA*X*Y by "ANDINC" the cut set with the equation LLOCA + MLOCA + SLOCA)

For sequences one through sixty, the initiating event equation included a small, medium, and large LOCA initiator. Sequences sixty=one through nimety-eight each contained two parts; the first part recelved a small and medium initistor while the second part received only a large LoCA inftiator, This was because, for a large LOCA, the automatic depressurization system (ADS) is not necessary lo depressurize the reactor vessel in time for the low pressure injection systems to prevent core damage. Since the initiator does not fall the ADS system but merely renders it unnecessary, the sequences were first evaluated without including ADS success or failure. These cut sets were "ANDED" with the large LOCA initiator to form the large LOCA cut sets. The original cut sets were then combined with ADS success or fallure, as appropriate, and the resulting cut sets were "ANDED" with the small and medium LOCA initiators. The two parts of each sequence were then "ORED" together to form the complete sequence. Equations were used to set the translent initiators to /OMEGA (i.e. OMEGA means the event always occurs, PHI = /OMEGA means that the event never occurs) for the LOCA sequence evaluation. This was necessary to remove transient initiators appearing in the cut sets as a result of their inclusion in the fault trees. For some events, the probability of occurrence is different for different sequences. During screening, a single value, the maximum value that can occur in any
sequence, is used so that one value can be used and no cut set will be truncated unnecessartly. In the ilnal evaluation of specifio sequences, the data uspd to quantlfy the events is assigned it's appropriate value. Equation and value block changes used for the LOCA sequence computations are listed in Tables 4.1 and Table 4.2 , respectively,

Complement events were not used in the construction of the LaSalle faule trees. This occasionally led to the same primary event being modeled in a different state in various systems and being given a different event name. For example, a valve might be modeled as tailed open in one system while the same valve is modeled as falled closed in another system. Combining the system cut sets for these two systems in a sequence could result in a cut set that would not be logically valid since the same valve can not fall both open and closed in the same sequence. Events modeled in more than one failure condition were "flagged" during modeling. An equation containing the products of these "flagged" events was used with the DLTRM procedure to remove the logfoally invalid or "double-flagged" cut sets from the sequence

Cut sets containing double initiating events were also considered unnecessary to the analysis. These ut sets were removed in the same manner as the "double- Flag" cut sets.

After the "double-flags" and "double-initiators" were removed, substitution was made for the ISTs to obtain LOCA sequence cut sets containing only primaty events. Omly sequences L4, L6, L.8, L12, L.4. L16, L18, L.20, L24, 2.26. L.28, and 297 had cut sels remaining after this substitution and truncation at 1E-8.

4.6.2 Transient-Induced LOCA Sequences

The event trees, discussed in Chapter 2 of Volume 4 of this report, determined the sequences to be evaluated for transient-induced Loss of Goolant Accidents. The LOCA ev t tree, Figure 4.1, was used ta evaluate the transient-indqeed LOCA sequences. These sequences start out on the transient event tree shown in Figure 4.2 with successful scram and safety relief valve (SRV) opening. The SRVs do not reclose and, depending upon the number of SRVs which fail open, are equivalent to a small, medium, or large LOCA in their effects on system operation and RPV inventory. Because the severe fonvironment and contaimment failure expert ellcitations had not been performed by the time the screening wa: to be done, the events SRUP and SUR were not evaluated at this time (see Chapter 6 for a discussion of these events)

In a similar fashion as for the locA sequences, each sequence was multiplied by a transient initiating event equation to insure an initiator was included in each cut set. However, the event SRV G on the transient event tree which represents the transient-induced L.OCA was not developed into a full fault tree. A Boolean equation SRV $C=Q_{1}+Q_{2}+Q_{3}$ was used to ropresent this event where Q_{1} represents the probability of one of the SRV S_{s} demanded open failing to reclose, Q_{2} represents the probability of

Table 4.1
Transformation Equations for Initiators and Flags in LoCA Sequence Evaluation

```
BLOCK$ LOCA-PHI -OMEGA.
HIOH-DWPRESSURE - OMECA
NOHIGH-DWPRESS - /OMEGA
T1-IE - /OMEGA.
T2.1E = /OMEGA.
T3.1E - /OMECA.
T4-1E - /OMEGA
T5-IE = /OMEGA
T6-1E - /OMEGA.
T7.IE - OMEGA.
LOSP-1E - /OMEGA.
T9A-1E - /OMEGA
T9B-1E - /OMEGA
T101-1E - /OMEGA.
T102-1E - /OMEGA.
T11.IE - /OMEGA
T12-1E = /OMEGA
T13-1E - /OMEGA.
T14-1E = /OMECA.
T15A-1E - OMEGA.
T15B-IE = /OMEGA.
```

Table 4.2
Value Block Changes for LOCA Sequence Evaluation

```
COMMENT$ CHANGES FOR ALL VALUE BLOCKS $
    3.4E-3 $ RHR 301AX-STR $
    3.4E-3 $ RHR 301BX-STR $
    3.4E-3 $ RHR301CX-STR $
    3.4E-3 $ LCSD302X-STR $
    1.2E-3 $ RCID001X-STR $
    1.2E-3 $ HCSD001X-STR $
COMMENT$ CHANGES FOR LOCAS AND TRANS-LOCAS $
    .1 $ TDRFP-T-OE $
    .1 $ MFS-RESET-OE $
    1 $ ADSMINIT-QOO-OE $
    01 $ OPERR-INITCSS $
    .1 $ OPFAILS-REOPEN $
    0.0 $ OPTURNSOFF-TURB $
    0.0 $ TRN-A SCSMODE $
    0,0 $ TRN-B - SCSMODE $
    0.0 $ TRN-AORB-SCSMODE $
```


(1) LSED TO RESOLVE CORE DAMAGE REXXVERY, LOW PRESSURE SYSTEMS FALL ON ADS CLOSURE AT ABOUT AS FSIG, BOLLOFT AND CORE DAMAGE OCCUR BERORE CONTAINMETT FALLURE (MEAN VALUEE, 105 PSIG)
 - 3 SRV $F T C=$ LARRGE LOCA
(3) TRANSFER TO LOCA TREE (OVERPFRSSSURE CREATES LOCA. PROB OF 18 SRV FTO NEGLLARLE)
(4) TRANEFER TO ATWS TREL:

Figure 4.2
LaSalla Translent Event Tree
exactly two of the SRVs demanded open failing to reclose, and Q_{3} represents the probability of three or more of the SRVs demanded open falling to Teclose. These Qs ate equivalent to a small, medtum, and large Locks respectively. The LOCA initiators appearing in the fault tree were changed to the appropriate Q using transformation equations to represent the effects of the stack open SRVs on the responding systems. These equations and theit assoctated probability values for each event are shown in Table 4.3. Other events having changes for probability values for transient. induced LOCA sequence evaluation were the same as those shown in Table 4.2 for the LOCA sequence evaluation.

As described in Section 4.5 .1 , sequence cut sets containing "double-flags" were removed. Out sets containing two transient initiators were also ellminated from the sequence cut sets. However, cut sets containing the transient initiator $T 7$ which represents a stuck open SRV as an initiating event had to be treated differently since $T 7$ and Q_{1} are equivalent. Cut sets with $T 7 * Q_{1}$ were transformed to cut sets with anly $T 7$ while cut sets with $T 7 *\left(Q_{2}+Q_{3}\right)$ were deleted. The sequences one through sixty and sixtyone through ninety-eight were then evaluated in the same fashion as for the LOCA sequences.

The transient-Induced LOCA sequences were evaluated using a probability truncation value of 1E.08. After the "double-flags" and "doubleinttlators" were removed, substitution was made for the ISTs to obtain the transient-Induced LIOCA sequence cut sets containing only primary events. Only sequences TL4, TL6, TL8, TL12, TL14, TL16, TL18, TL20, TL24, TL26, TL28, TL30, TL32, TL34, TL36, TL38, TL59, and TL97 had cut sets remaining after this substitution and truncation at $1 \mathrm{E}-08$. Although not all sequences had a large number of cut sets in their solution, most of the transient-induced LOCA sequences were difficult to compute and required considerable use of the techniques described in Sections 4.1 to 4.4.

4.6.3 Transient Sequences

The event trees, discussed in Chapter 2 of Volume 4 of this report, determined the sequences to be eveluated for transients. The transient event tree, Figure 4.2, was used to evaluate the transient sequences. Because the severe environment and containment failure expert elicitations had not been performed by the time the soreening was to be done, the events SRUP and SUR were not evaluated at this time (see Chapter 6 for a discussion of these events)

Like the LOCA and transient-induced LOCA sequences the transient sequences were multiplied by a transient initiator equation. Values for the LOCA initiators were set to zero. Probabillity value changes were made for the events 1 isted in Table 4.4. Cut sets containing "double-flags" and "double-initiators" were eliminated in the same manner as for the LOCA and transient-induced LOCA sequences.

Computation of the transient sequences was extremely difficult. Even with the use of all the techniques described in Sections 4.1 to 4.4 , the

Table 4. 3
Transformation Equations for Transient-Induced LOCA Sequences

$$
\begin{aligned}
& \text { SLOCA-IE }=Q 1 \\
& M L O C A-I E=Q 2 \\
& \text { ILOCA-IE }=Q 3 \\
& Q=Q 1+Q 2+Q^{3}
\end{aligned}
$$

PrCSABILITY VALUE CHANGES FOR TRANSIENT LOCA

$$
\begin{aligned}
& \mathrm{Q1}=1 \\
& \mathrm{Q2}=4.5 \mathrm{E}-3 \\
& \mathrm{Q} 3=1.2 \mathrm{E}-4
\end{aligned}
$$

(ALSO ALL EVENTS LISTED IN TABLE 4.2)

Table 4.4
Value Block Changes for Transient Sequences

```
CONMENT$ CHANGES FOR ALL. VALUE BLOCKS $
    3.4E-3 $ RHR301AX-STR $
    3.4E-3 $ RHR301RX-STR $
    3.4E-3 $ RHR301CX-STR $
    3.4E-3 $ LESD302X-STR $
    1.2E-3 $ RCIDOO1X-STR $
    1.2E-3 $ HCSD001X-STR $
COMMENTS CHANGES FOR TRANSIENT SEQUENCES $
    01 $ TDRFP-T-0E $
    01 $ MES-RESET-OE $
    01 $ ADSMINIT-QOO-OE $
    01 $ OPERR-INITCSS $
    1 $ OPFAILS-REOPEN $
    0,0 $ OPTURNSOGC-TURB $
    1.0 $ TRN-A SCSMODE $
    1.0 $ TRN-B-SCSMODE $
    1.0 $ TRN-AORB-SCSMODE$
    01 $ FCSS2-Q-OE-0 $
    01 $ C34R601A-Q-CE $
    01 $ C34R601B-Q-OE
    01 $ 1EGOEX-QCO-OE
    01 $ 2HSFWO32-Q-OE-O $
COMMENT$ SET VALUES FOR Q1,Q2, AND Q3 $
    0.0 $ SLOCA-IE, Q1 $
    0.0 $ MLOCA-1E, Q2 $
    0.0 $ LLOCA-IE, Q3 $
```

truncation value had to be relaxed in order to obtain the cut sets for the transient sequences. Sequences twenty-five through one liundred and one were truncated at 5E-08. Sequences one through twenty-four were truncated at 5E-07. All core damage sequences survived the truncation process before the inclusion of the severe enviromment fallures and the application of recovery.

4,6,4 Anticipated Transients Without Scram

The event trees, discussed in Chapter 2 of Volume 4 of this report, determined the sequences to be evaluated for anticipated transients without scram (ATWS) events. The ATWS event tree, Figure 4.3, was used to evaluate the ATWS sequences. Because the severe environment and contairument failure expert ellcitations had not been performed by the time the screening was to be done, the events SRUP and SUR were not evaluated at this time (see Chapter 6 for a discussion of these events)

The event 1EDC2DEP-FROP-4 which represents DC battery depletion was set to fOMEGA (i,e. PHI) to eliminate the effect of battery depletion for the two systems RPT and SBLC. These systems must perform their functions within the first few minutes of the accident and battery depletion will not occur For several hours; therefore, battery failure can not be a fallure mechauism for these systems. Events for which probability changes were made are listed in Table 4.5. Two point estimates were used in the computation of the ATWS sequences. They included: (1) FWL which is represented by the event OPFALLSMFW-BM and is failure of the operator to control feedwater level in an ATWS scenario to a level consistent with condenser makeup Limitations within eight minutes, and (2) RPS/ARI, reactor protection and alternate rod insertion systems fail. The screening values used for these point estimates are also listed in Table 4.5

The ATWS sequences were multiplied by an initistor equation to insure every cut set contained an initiating event. Cut sets containing "double-flags" and "double-initiators" werc eliminated in the same manner as for the LOCA, transient-induced $L O G A$, and transient sequences

Because of the magnitude (1.0E-05) of the point estimate for RPS in the ATWS sequences, system cut sets were truncated at $1.0 \mathrm{E}-04$ prior to forming the ATWS sequences. The truncation of system cut sets at $1.0 \mathrm{E}-04$ made the sequences easier to compute since fever terms were generated while combining systems. The overall truncation level was equivalent to $1.0 \mathrm{E}-09$ except for initiators with frequencies greater than $1.0 / R-y r$. However, the largest of those was $4,5 / \mathrm{R}-\mathrm{yr}, \mathrm{so}$ in all cases the truncation level was at least 1.0E-08/R-yr

After substitution for the ISTs, the following sequences survived the truncation process: A14, A15, A17, A18, A22, A48, A49, A51, A52, A54, A55. $\mathrm{A} 57, \mathrm{~A} 58, \mathrm{~A} 60, \mathrm{~A} 61, \mathrm{~A} 76, \mathrm{~A} 77, \mathrm{~A} 93, \mathrm{~A} 119, \mathrm{~A} 120, \mathrm{~A} 122, \mathrm{~A} 123, \mathrm{~A} 125, \mathrm{~A} 126$, A128, A129, A131, A132, A147, and A148

Figure 4.3
LaSalle ATWS Event Tree

1. If MFW (main feedwater) succeeds, RPT (recirculation pump trip) fallure will be negligible since it depends upon the same power sources as MFW. If power falls MFW, then it will also fall the RCPS (recirculation pumps). If RPT does fail, either PCS (power conversion system) will have succeeded in which case we have an ok sequence or, if PCS fails. MFW Will bebave as in note (3) and the R.CPs will fail on low suction pressure (the peak pressures will be below level D stress limits).
2. If MFW fails, RPT is not relevant since RFV (reactor pressure vessel) level can not be maintained and the resulting low level will result in RGP fillure on low suction pressure, Sequences transfer to (4).
3. MIW can not continue to run for more than about 8 minutes without depleting the main condenser unless the operator controls level.
4. Transfer sequences from (?).
5. Operators are instructed by EORs (emergency operating procedures) not to use inhibit switch for ADS (automatic depressurization system) but to reset timer.
6. For cases where no cholce is given, ADS success or failure will not affect sequence timing or end result significantly. If the operator opens the SRVs (safety relief valves) to bring pressure doun or auto ADS occurs due to low level, power will increas from about 129 to about 18 g. LTAS code calculations, described in Volume 4 of thls report, show that ADS and subsequent HPGS (high pressure core spray), LPCS (low pressure core spray), or LPCI (low pressure coolant injection) injection will not produce excessive power spikes. Level will remain at about 2/3 TAF, the low pressure injection systems will inject enough to raise pressure above their shutoff heads, and, if HPCS is working, th ty will remain shutoff since the pressure will not decrease back below their shutoff heads. If HPCS is not working then osclllatory behavior results (mild pressure variations)
7. Cortainment pressure increases until containment failure occurs.

Figure 4.3
LaSalle ATWS Event Tree

Figure 4.3 LaSalle ATWS Event Tree (Continued)

1. If MFW (main feedwater) succeeds, RPT (recirculation pump trip) failure will be negligible since it depends upon the same powir sources as MFW: It power falls MFW, thon it wlll also fall the RCPs (recirculation pumps). \quad If RPT does fail, either PCS (power conversion system) will have succeedod in which case we have an ok sequence or, if PCS fails, MFW will behave as in note (3) and the ROPs will fail on low suction pressure (the peak pressures will be below level D stress 1 imits).
2. If MFW fails, RPT is not relevant since RPV (resctor pressure yessel) level can not be maintainod and the resulting low level will result in RCP fallure on low suction pressure sequences transfer to (4)
3. MFW can not continue to run for more than abont 8 minutes wi.hout depleting the main condenser unless the operator controls level.
4. Transfer pequences From (2)
5. Operators are instructed bit Eops (emergency operating procedures) not to use inhibit switcb for ADS (aut miatic depressurization system) but to reset timen
6. For cases where no cholce is given, ADS success or failure will not affect sequence fiming or erid result significantly. If the operator opens the SRV敖 (satety mifef valves) to bring pressure down mr auto ADS oncurs due to low level, power vill increase from about 12% to about 18%. LTAS cede calculations, described in Volume 4 of this report, show that ADS and subrequent IIPCS (high pressure core spray). LPi \& (low pressure cors spray), or LPCI (low pressure coolant infection) Injection wlll not produce excessive power spikes level w 111 remain at about $2 / 3$ TAF, the law pressure injection systems will inject enough to faise peessure above their shutoff heads, and, If HPCS is working, they will remain shutoff stace the pressure will not decrease back below their sthtoff heads. If HPCS is nut workIng then osclllatary behavior results (mild pressure variations)
7. Containment pressure increases until containment failure accurs.

Figure 4, 3

Figure 4.3 Lasalle ATWS Event Tree (Continued)

1. If MFW (main feedwater) succeeds, RPT (recirculation pump trip) failure will be negligible since it depends upon the same power sources as MFW. It power fails MFW, then it will also fail the RCPs (recirculation pumps) If RPT does fail, either PCS (power conversion systea) will have succeeded in which case we have an ak sequence or if PCS fatls, MFW w111 behave as in Fone (3) and the KCPs will fail on low suction pressure (the peak pressures will be below leve D stress linits).
2. If MFW fails, RPT is not relevant since RPV (resi tor pressure vessel) level can not be maintained and the resulting low level \& 111 result ith RCP fallure on low suction presstare. Sequences transfer to (4)
3. MFW can not continue to run for more than about 8 minutes without depleting the main condenser unless the operator controls level.
4. Transfer sequen a from (2).
5. Operators are instructed by EOFs (emergency operating procedures) not to ase inhibit switch for ADS (automatic depressurization system) but cor reset cimer.
6. For cases where no chotice is given, ADS s ecess or failure will not affect sequence timing or end result significantly, If the operator upens the SRVs (safecy rellef valves) to bring pressure down or auto ADS occurs due to low level, power will increase from about $12 f$ to about 18 . LTAS code calculations, described in Volume 4 of this report, show that ADS and subsequent HPCS (high pressure core spray), LPCS (low pressure core spray), or L.PCI (low pressure coolant injectian) injection will not produce excessive power spikes. Level will remaln at about 2/3 TAF, the low pressure injection systems will infect enough to ralse pressure above their shutoff heads, and, if HPCS is working, they will remain shutoif since the pressure will not deeroase back below their shutoff heads. If HPCS is not working then oscillatory behavior results (mild pressure variations).
7. Coutainment pressure increases urilil containment failure ocours.

Figure 4.3 LaSalle ATWS Event Tree (Concluded)
8. RHR (residual heat remers.) and Venting success - Containment pressure remains relow ADS reclosure pressure (90 psiq, 321 F). Csctilatory behavior results from RPV pressure exceeding low prossure system shutoff heads, injection valves cycle (16 thaes/ar.).
9. Rutr OK and Venting failure Containment pressure increases to ADS reclosure pressure then oscillatory behavior results (100 psia, 321 F) from RPV pressitite exceeding low pressure system shutoff heads, injection valves cycle (11 times/hr.).
10. RHR falls and Venting OK - Containment pressure remains below ADS reclosure pressure (90 psia, 321 F) Oscillatory behavior results from RPV pressure exceeding low prescure system shutoff heads, injection valves cycle (16 times/hr.).
11. RHR and Venting fail ADS valves reclose at about 85 psig , RPV repressurizes above LPCS and LPCI shutoff heads, botloff and core domage occurs 10 ong before contafrument fallure.
12. Upon containment leak or rupture to the reactor building, severe enviromments may result in equipment failure.
13. Ultimate Shutdown - Requires alternate rod insertion or Boron injection by some alternate means.

Table 4.5
Value block Changes for ATWS Sequences

```
COMMENTS 3-24-87 $
CUMMENT$ fHIS VALUE BLOCK HAS CHANGES FOR ATWS SEQUENCES INCOPPORATEDS
COMMENTS FOR FOLLONTNG DATA ...S
    0.5 $ OPFAILSCOS-OE $
    0.1 $ SLCOOOOX-QOO-OE $
        01 $ OPERR-INITSPC $
    0.1 $ OPERR-1NTTCSSS $
    3.0E-02 $ SLOCA-IE $
    3.0E-03 $ MLOCA-IE $
    3.0E-04 $ LLOCA-IE $
COMMENT$ OPFAILSCDS-OE WAS 5.0E-01 $
COMMENTS SLCOOOOX-QOO-OE WAS 5.OE-01 $
COMMENT$ OPERR-INITSPC WAS 1.0E.02 $
COMMENT$ OPERR.INITCSS WAS 1.OE-01 $
COMMENT$ SLOCA-IE WAS 1.OE-01 $
COMMENT$ MLOCA-IE WAS 3.OE-03 $
COMMENT$ LLOCA.IE WAS 3.0E-04 $
COMMENTS END OF ATWS 3-24-87 CHANGES $
```

SCREENING VALUES FOR POINT ESTIMATES FOR ATWS SEQUENCES

Polnt Estimate
FWl. - OPFATLSMFW-8M RPS

Screening Value
0.5

1. $0 \mathrm{E}-05 / \mathrm{yr}$.

4.7 References

1. D. W. Stack, "A SETS User's Manual for Accident Sequence Analysis," NUREG/CR-3547, SAND83-2238, Sandia National Laboratories, Albuquerque, NM, January 1984.
2. R. B. Worre11, "SETS Reference Manual," NUREG/CR-4213, SAND83-2675, Sandia National Laboratories, Albuquerque, NM, May 1985.

5.0 OPERATOR RECOVERY ACTIONS

At this point in the LaSalle PRA, we have identified a set of potential core damage accident sequences. These accident sequences consist of equipment fallures (e.g., pump falls to start and run, valve fails closed, etc.) and human errors (e, g, maintenance, test, etc.) and their estimated probabilities of occurrenve. If we stopped at this point. the PRA would not accurar ly reflect the possibility of potential core damage due * an accident seçuence. To accurately reflect this possibility, we must include events in the cut sets which represent the ability of the plant operators and other support persomel to prevent or mitigate core damage during the accident situation. These events are called recovery actions

A methodalogy fer including recovery actions in the laSalle PRA was developed and reported in Volume 1 of NUREG/CR-4834t and is explained in detail In Volume 2 of NUREG/CR-4834, 2 A summary of the methodology asd its development follows

In the methodology, a reoovery action is definod as an action which must be accomplished by the operators (or others) to prevent of mitigate core damage during an accident. It consists of two distinct phases:

1. a diagnosis phase recognizing that a problem exists with one of the critical paramet ad deciding what to do about it, and
2. an action phase - physically accomplishing the action(s) decided upon in the diagnosis phase

A new data-based model for estimating the contribution from the diagnosis phase for certain type recovery actions was developed after (1) examination of existing models indicated a heavy reliance upon judgement data and (2) results from statistical testing of observed operator bebavior indicated a lack of correlation to the corresponding judgement data. This new data* based model for the diagnosis phase was developed using information obtained from simulator drills. These simulator drills were based on preliminary results from the LaSalle PRA. These preliminary results were used to define realistic plant-specific accident scerarios which could potentially lead to cope damage. The drills were used to obtain time data on the operatar team's ability to respond to the accident scenario. This time data, along with the grouping of operator actions based upon the undel lying operational similarity of the actions, provides the basis for the model of the diagnosis phase of the recovery action. It was concluded that existing models for the action phase of the recovery action could be used

The recovery methodology can be summarıed as follows

1. Appropriate recovery actions are identified. This includes both recovery actions which are to be placed directly on the event
trees or fau't trees and recovery actions which result from examination of the information contained in the cut sets.
2. For the recovery actions which are not included in the event trees or fault trees, a unique event representing the recovery action or -et of recovery actions is defined and then added to the -pproprlate cut sets.
3. The recovery actions are modeled as consisting of a diagnosis phase and an action phase.
4. Estimates of the failure probabilities for each phase are provided using separate models (i,e., the diagnosis phase uses the databased models dereloped from the simulator data and the action phase uses existing models).
5. Estimates for each phase are combined to produce a single nonrecovery probability.
6. The effect is that the original cut sets failure probabilities are multiplied by the non-recovery probability of the recovery action(s) to give new cut set failure probabilities. The new cut set faiture probabilities now reflect the operators' contribution in reducing or mitigating core damage.

5.1 Application of the Recovery Methodology

As stated above, the recovery methodology used in the LaSalle PRA was developed in NUREG/CR-4834. ${ }^{1}$ Figure 5.1, Figure 2.1-1 of Reference 2, provides a flow chart for the application of the recovery methodology. The following sections describe how the recovery methodology was implemented for the ifsalte accident sequences:

Before the sequence can be analyzed to determine whether the operator can intervene to restore falled equipment, the assumptions regarding types of operator secovery actions must be defined. We have included the following recovery considerations in the LaSalle Unit 2 analysis.

1. Fallure Mechanism: The fault trees were developed to a level of detail that allows us to identify recoverable and non-recoverable faults. For example, "local faults" of a valve generally included a mechanical failure of the valve that precluded any operator recovery, either remote or local. "Control circuit faults", however, have recovery potential by the operator actions of identifying the problem and possible mantal opening or clostng of the valve. In general, extraordinary actions were not considered unless they were clearly indicated as being needed and sufficient time was available to perform them.

2. Fallure timing: This can be subdivided into two categories:
3. The time of the fallure with respect to the accident scemario (i.e.. the time to the onset of core damage) determined, in part, the state of the operator and his ability to cope with the failure. To pick two extreme examples, much less credit would be given to a recovery action that had to occur within the first two minutes of an accident sequence than to the same type of action that must occur within the first eight hours of an accident sequence.
b. The time to the "Point of No Return" for equipment damage is also a factor. Some failures are not immediately catastrophic. Many support system fallures will cause a front-line system failure only after a perlod of hours has gone by. Thus, if the operator recelves warning of a problem developing, he may have sufficient time to diagnose and correct the situation.
4. Failed Equipment Location: For operations outside of the control room, the operator must have definite indications of a problem with the system of interest and sufficient time to take corrective action. For most locations at LaSalle, an additional ten mfnutes over the control room time is sufficient for the operator to reach the location.
5. Number of Recovery Actions: Oredit was not given for multiple recovery actions unless the actions were performed by a different set of indiva is or were distinct enough or separated by a large enough time interval to be regarded as independent. An example of the first case is the recovery of offsite power which was considered as being performed independently of other onsite recovery actions. An example of the second case is recovery of injection in the initlal phase of the accident and then recovery of containment heat removal in the many hours avallable until containment failure.

5.1.1 Idrntification of Possible Recovery Actions

It is recogntzed that some recovery actions were included in the event crees and the fault trees. The recovery actions included in the event trees were operator actions that were necessary to model certain accident sequences. The recovery actions included in the fault trees were generally high-level procedural actions. The recovery actions included in the event trees or fault trees are listed in Table 5.1. The remainder of this section deals with the recovery actions which were "ANDED" to the sequence cut sets resulting from various SETS runs.

```
1EDC2DEP-FROP-4
ADSMINIT-QOO-OE
    CRD-REALIGN-OE
CRD1-REALIGN-OE
    MFS-RESET-OE
MODESWTCH-C-OE-O
OPERFAIL-VENT-OE
    OPFAILSCDS-OE
    OPFAILS-REOPEN
    TDRFR-T-OE-O
ADS-INHIBIT-OE
SLCOOOOX-QOO-OE
SLCC001B-Q00-OE
OPERR-INITCSS
PERR-INITSPC
OPFAILSMFW-OE
```

One of the first tasks which must be accomplished to take credit for tecovery actions is to idencify the potential recovery actions. For LaSalle this was done by:

1. Identifylrg the basic event failures which were recoverable and
2. Examintng the cut sets to determine if sny other potential xeoovery actions existed

Using the Variable Occurrence Table (VOT) from the SETS run for each sequence, the basic events wore examined to determine if they were potontially recoverable, $1 f$ a basic event was found to be potentially recoverable, it was identified as recoverable and was inftially grouped depending upon what type of action was necessary to accomplish the recovery action. This included identifying whether the action could take place in the control room, locally within the plant, or some place else, Table 5.2 is a sample of a VOT from a SETS run with the basic events identified as ofther recoverable or non-recoverable, and if Fecoverable then recoverable from the control ram, lacally, or some place else.

The basic events which were identified as recoverable were grouped into categories depending on whether they were recoverable from the control rom (RA 1 type actions). locally (RA-2 type actions), of some place else (e.g., RA. 8 type actions). Ta ies 5.3 through $5.711 s t$ the basic events which wheo grouped into a specific recovery action type (e. \&., RA-1 type actions ate 1 isted in Table 5.3). In addition to the recovery actions resulting from sxamination of the Vot, other recovery actions were identified after examinins the cut sets. Table 5.8 11sts chese recovery actlans

5.1 .2 Appl'cation of Recovery Actions to Gut Sets

After the basle events were identified as recoverable of nof-recoverable, they were priorirized to facilitate the application of the recovery tetions to the cut sets. The order of priority was roughly in order of their piobability with the easiest actions being taken credit for first (i.e.. the lowest non-recovery protability action that is, the highest recovery probability action was taken credit tor firat). If two actions were possible and they could be considered independent of each other, then credit weuld be given for both. It should be noted that if restaring offsite power (ie, RA-B) was a potuntial recovery action, then taking oredit for at least one more recovery action in the same cut set was always possible (see section 5, 1).

After prioritizing the basic events, a global search through the computerized list of out sets for each acefdent sequence was conducted to identify each accurrence of a basic event. If the cu' set containing the basie event did not have a recovery aclion, then the recovery actios asseciated with that basic event was "ANDED" to the cut set. If the cut set already contarned a recovery Lon that had been identified lyy this

Table 5.2
Sample VOT with Recoverable Basle Events Identified

EVENT NAME	JDENTLFIEK.	LOCALION
LCSC002A-P-UTM	NR	
LAK10RCA-RO0-LFO	RA-1	CR
LOSP-1E	RA $=8$	OTMER
T101. IE	NR	
CDDG01F-PLG-LF	NR	
CODC01P-PMS-LF	NR	
CODG01P-PMS-CC	NR	
CODG01F-S - UUM	NK	
C0DG01P P P - UUM	NR	
EE-CODG01F-PLG	NR	
OCBODG1F-BCO-LF	NR	
RLosF	$\mathrm{RA}+8$	OTHER
1EB235XA-BCO-LF	NR	
1EB235A-BCO-LF	NR	
AP037X3-R00-LFO	$\mathrm{RA}=1$	CR
D0VB101X-BCO-LF	NR	
HACTK 3-ROO-LFO	RA-1	CR
CSCD300-716-LF	NR	
AP040×3-R00-LFO	RA. 1	CR
LAK9ARCA-R00-LFO	RA $=1$	CR
LAK18ARA-ROU-LFO	RA-1	CR
LAK98RCB-R00-LFO	RA-1	CR
LAK18BRB-R00-1FO	RA $=1$	CR
LAK3BRCB-RCO-LFO	RA. 1	CR
HCSF004C-VCC-LF	NR	
HCSF004C-VCC-CS	RA 22	LOCAL
HF004CB - BCO-LF	RA. 2	:OCAL
HACTCPF1 - FUS - LF	RA. 1	$\bigcirc 8$
hACTCPF2-FUS-L6	RA-1	CR
HACTK9-R00-LFO	RA-1	CR
DG0-GEN-LF	RA-9	LOCAL.
DGO-GEN-CC	RA. 9	LOCAI.
DG2A-GEN - LF	RA $=9$	LOC 12.
DG2A-GEN-CC	RA. 7	LOGAL

Table 5.4
Basic Events Which Were Categorized as RA-2 Type Actions

CSCF068A-VCC-CC CSCFO6BB-VCC-CC CCBFO68A- B 0 -L. CSCBO6BX-BCO-LF HACTK 13 CP 5 - LFCO HACTK13CP3-LFCO HCSFOOLC-VOC.CS HOSF0150.VCC-CS HCSFO23C-VCO-CS HF004CB-BCO-LF HGOLSCB-BCO- LF HFO4CSC-QOC.LF LAK14ARC-RCO-LFO LAR14BRC-RCO-LFO LAK93ARC ROO- LFO LAK93BRC-ROO-LFO LAK93ACP3-LFCO LAK93BCP3.1FCO LAK105AA-R00- LFO LAK105BB-R00-LFO LF5R8AR-ROO-LFO LAKIOBB-ROO- LFO LCSC002A-RUM-1 RHRC003B-RUM-1 RHRF64BE-RUM-1

RHRF47AA-RUM-1
RHRF47BB-RUM-1
RHRF48AA-VOO-CC
RHRF48BB- VOO - CC
RHRHOIAX-RUM - 1
RHRHOIBX-RUM-1
RHRFSSAX-RUM-1
KHRFS5BX-RUM-1
RHRF51AA-RUM-1
RHRF51BB-RUM-1
RHRFGOAA-KUM-1
RHRF60BB-RUM-1
RHRF65AA-RUM-1
RHRF65BB-RUM-1
RHRF64AA-RUM-1
RHRF74AA-RUM-1
RHRF 74BB-RUM-1
RHRF87AA-RUM-1
RHRF87BB-RUM-1
RHTFB8AX-RUM-1
SCSF06AA-RUM-1
SCSF06BB-RUM-1
RHRBOSAX-BCO-LF
RHRB03BX - BCO-LF

Table 5.5
Basic fvents Which Were Cateporized as WA-8 Type Actions
\qquad

Table 5.6
Banic Evonth Which Were Gategorlzed as RA-9 Type Actions

DGO-GEN - LF
DGO-GEN-CC
DO2A - GEN - LF
DG2A-GEN - CC
DG2B-GEN-LF
DURE-GEN-CC

Table 5.7
Bunio Events Which Were Categorlzed as RA-15 Type Actions
\qquad

Table 5,8
Recovery Actions Identified After fxamining the Gut Sets

RA-1	Manual operation of a system or component from the control room.
RA-2	Local operation of components.
$\mathrm{RA} \cdot \overline{3}$	Open RCIC isolation valve(s) after RCIC room isolation.
$R A-4$	Isolate recirculation pump seal LOCA AND restore PCS.
$\mathrm{R} T .5 \mathrm{~V}$	Vent through atternate vent path.
RA 6	If one electrle power train has falled, one-half of the time the recirculat: on pump LOCA will occur on the recirculation pump kifch can be isolated. Isolate recirculation pump seal LOCA AND restore PCS,
RA - 7	Open a manu I valve that is closed due to unscheduled maintenance.
RA-8	Recover off-site power
RA-9	Recover DG after loss of off-site power and failure of DG.
RA-10	Replace a fuse in the control room.
RA-11	Mantally close sple valves aftor the oncurrence of an ATWe, given fallure to close the valves following a previous test on the SBLC system.
RA - 12	Tocally close RWCU valve after the occurrence of an ATWS.
$R A+15$	Repair of DG common mode fallure.
RA-16	Manual start of a DG from the control room and then manual start of an SBLC pump after the occurrence of an ATWS .
RA - CDS	Use condensate system.
RA - DDFP	Use diesel driven firewater pump.

[^1]proceas, then no additional recovery action was added unless the actfons could be consfdered independent. This process was continued unt il all the fecoverable basic events wore examined

5.1.3 Obtale Estimate for Recovery Action

After the reecvery action identifler was applied to the cut sets, we obtained estimates for the failure probabilities of the recovery actions. Since the recovery actlons wete modeled as consisting of two phasee (I.em, diagnosis phase and action phase) each phase was estimated using approprlate model番. The following sections discuss how estimates for each phane were obtalned
5.1.3.1 Diagnowis Phase Eatimate

Two tasks had to the accomplished before the diagrosis phase fallure prohability of a recovory action could be ostimated. First, where passible, we Identified the group which best described the recovery action of interest by searching Table 5.9 (Table 2.2.5-1 in Reference 2), Second, we entimated the time available for the operators to diagnose the recovery action. These tasks are described below
5.1.3.1.1 Identification of Group Which Best Deserfbes Recovecy Actín

To identify the group that best described the recovery action, we exarined the actions in each group in Table 5,9 and chose the group that contained actions that were most sfallat to the recovery action of interest or for which the group description was judged to be the best inatch. If the recovery action could not be desctibed by one of the groups in Table 5, 9 or if specifle data existed for the recovery action, then other models were used to ptovide estimates for the recovery action

For example, basic event APOAOX3-ROO-LFO from Tabie 5, 2 represents a failure in the automatic operation of diesel generator "2A", Searching Table 5.9 for the actlons which are most similar or the description which best describes the recovery action; we found that the action was best doperfbed by Group 3: Manual operation of systems or components which failed to automatically actuate (operate). This process was repeated for each basic event in Tabies 5.3 and 5.4 . In addition, the recovery actions Listed in Tables 5.1 and 5.8 were examined to determine if they could be descrithed by the groups in Table b.9. Table 5.10 Iist the recovery actions identifled by this process

 te eastrel o eritiesi paraneter prier to the matasestic octustion (if if has antamatic actubtice) of the eyetien or eemponent

2 that of luw presmury eyetemes what bigh preemure eystame sre tasevail sble

3 demual eqperation ef eystase or euepronent: whith falled to estonestically ettuste (operete),
4. Bestarstion of sefety-twleted in-bonuse blectifical buses or ouply in-qui paest

5 Westaretion of eff-cite-napplied mohasfety-relatod electrisal buses or muppiy equipment.

Warnasi beckuep of an austoant le shatdoun functiane.

- Narkut overcide of a eyet the thet sut oseticelly functions when butcastis operetion of the mystes would shallenge e critical Farameter
 eystese fer levsl esetrel.

11 Locsi eperstion of Eanusily controlled ecesponente narselly opersted froe the contrel reose when contrel-reos aperetlan falle.

12 Banuel override of efalue eontrel signel when so direct Indieation axists that the contrel eignal is felse er erronsenu.
trill 1 - Initiste mote after ATVI
Drill 26 2t \rightarrow Initiste ge seblimg infler RX Trip
brill 3 - Initiste mCIC afier yistion blsekout.
brill 4 -Initiste EF eveling ofter tolit lasis
brili $4-$ cleen kSIks efter Level $*$ siars
brili 6 - Close PV valve le af (er Lewel? olere
toril1 4 - Inltista ip veeling sfter in trip. bridi 4 - initisie fo sooling after Ex trif.
trill 1 - bepresmurlee sfier heic failure.
bebil 8 - Inject 4 after Ecic failure.
Dril1 3 - Ested B-aen te egen P013 sfter P013 feilure
Drili i \rightarrow Eenet NCIC iselation efter DC is leade

Drill \$ \rightarrow falquest bce pepsir after etetion bleckout

trib1 3 - Eequest BC 1 A repeir efter stetion bleckout.
Bril1 i - Request lo 18 repelr efter EAT fellure.
Drili 4 - Becever DG 1a sfier DC 14 trouble Drili 4 -. Beguest DC A Investigetion efter lC A isilury
brili 3 - Request E -tie efter etatien bleckout.
Dril1 3 . A Aquest saf repeir efter sistion blackeut
DrdiL $4-\sigma$ Eequest sht repsir efter sat feilure.
brill 6 ... Mequent I-tie sfter sat fellure Brill 6 -. Mestere Bus 251 lecally efter ex frip

411 Drills - Bods ewitch efter me trip.

beil1 1 Khumer VF efter dryuell iseletion.
Dril1 a \rightarrow Bestere VF efter drymell ieeletion.
Drill 4 . Kestore VF efter bC i fallure
terish 1 w- Bestere YF sfter dryesli iseletion.
Drili a - Depressurisstion efter etsilen blechant Drill 4 \cdots - Meguest diesel fire paif sfter etstien blackout.

1. brill $2428-$ Eend B-anh te cloes sov \%alven after ecren reset ettempt
2. Orili 6 - Enguest air resteration ofter eervice sir prosinurs low slers.
3. Dridi $4-$ Bequant bypaen of BCIC Ieoletion ofter ACIC iselstion becsuse of roce evertesting

WThe Iteas listed in this table exfer te the eerrect diagnosie of the required ection.
enkes cerrexponding table (Tables 2.1. ©-1 through 2.1.4-10) for inferantion te be used in ustinating
 systas inject "dirty" (nonrescter grede) water inte the vessel and are wes only if bo other enana of Anjectime vester linte the veswel are eveilable.

Table 5.10

Description of Recovery Actions Based Upon
 Examination of Group Descriptions
 in Table 5.9

Table 5. 10 (Concluded)
Description of Recovery Actions Based Upon
Fsamination of Group Descriptions
in Table 5.9
action Group Description

Identifier

RA-ATWS - 13
Manual operation of a system or component RA-ATWS-1-3
from the control roon which failed to
automatically actuate after the occurrence of an ATWS

RA-ATWS-2 3 Local operation of a systeli or component RA-ATWS-2.3 which falled to automatically actuate
after the occurrence of an ATWS
RA-ATWS-12 Locally close the RWOU valve after the RA-ATWS-12-3 accurrence of an ATWS.

RA-CDS 2 Infection of water into the vessel via RA-CDS the condensate system.

RA-DDFW 10 Infection of water into the vessel via RA-DDFW the diesel driven firewater pump

* $R A=4, R A=6, R A=8, R A=9$, and $R A=15$ are data based and have no group assoclation.
5.1.3.1.2 Entimating Time Th

In order for us to be able to estimate the amount of time available for the dlagnosis phase of the recovery bction, the maximun time avallable to the operators must be estimated. This maximum time, $T_{\text {m. is the time during }}$ which both phases of the recovery action (i.e. diagnosis phase and action phase) must be completed te ensure the prevention or thitigation of the undesirable outcoine. Tm was estimated using therinal hydraulie computer codes to provide information on care or containment paxameters (e.g. . ptessure, temperature, water 1 evel, etc.) Table 5, 11 1ist the estinates of T_{M} that resulted from the tinermal tivdraulio calculations, In Volume 4 at this report, the results of the caloulations are diacussed in more detall
5.1.3.1.3 Determination of T_{A}

Atter astimates of Th were obtaloed, the amount of thme required to physisally accomplish the action(i) decided upon durlug the diagnosis phise was determined. This time, TA. was estimated as the maximum amount of time reguited by the operator (s) to reach the area where the action takes place plas the time required to acoomplish the action(s). The time required to accomplish different clasees of actions is presented in Table 5, 12
$5,1,3,1,4$ Estimate Time Available fo Diagrose the Recavery Action, To

The following, expression was weed to enclimate the time available to diagnose the recovery action
$T_{0}=T_{H}-T_{A}$ where
Im ' the maxintum time in which both phases of the recovery action inust be complete ta prevent or intigate an undestrable outcome during the aceident, and
T_{A} is the the required to physloally accomplish the action(si) decided upor it the diaguosts phase

Table 5.13 11st the possthle diagnorsis times for the lasalle sequonees.
5.1.3.1.5 Estimate Failume Probability for Diagnosis

Phase P(ND) at T_{D}
Qiven that the group which best describes a recovery action has been Identifled (Section 5.1.3.1.1) and the amount of the avallable to dlagnose the recovery action has been esflinated (Soction 5.1.3.1.4), the fallure probability for the diagoosis phase of the recovery actlon was deteralned by

Table 5.11
Estimates for T_{M} Resulting From Thermal Hydraulic Calculations

Table 5.11 (ConcIuded) Estimates for T_{m} Resulting From Thermal Hydraulic Calculat fons

Table 5.12
Th for Various Classes of Actions

2 minutes	Start or stop a systeth or component from the control room.
2 minutes	Change the state of an operated valve from the control room.
15 minutos*	Locally (i.e., away from the control room) start or stop a system or component.
15 ininutes*	Locally change the state of an operated valve given that control rom operation of the valve is impossible.
15 minutes*	Locally change the state of a manual valve.
15 m4tites	Use the condensate syster.
1 hous	Use the diesel driven Pirewater pump.

* The 15 ininutes includes: (1) 10 minutes of travel time and (2) 5 minutes to physically accomplish whatever action is required. The 10 minute travel time is based on a plant walk through by people who were not familiar with the plant layout and as such is considered to be a conservative estinate of the amount of time the operators need to travel from point to point within Lasalle

Fable 5.13
Potential Dlagnosis Thems

27 hrs	2 mis	26 hrs 58 min
	15 min	26 hrs 45 min
23 hrs	2 trin	22 hrs 58 min
	15 min	22 hrs 45 min
is hiss	${ }^{2}$ min	14 hes 58 min
	15 min	14 hrs 45 min
10 hrs		9 hrs 58 min
	15 min	9 hrs 45 min
8 firs	2 min	7 hes 58 min
	15 min	7 hrs 45 min
6 Tus	2 min	5 hre 58 min
	15 min	5 hrs 45 min
4 hrs	2 min	3 hres 58 min
	15 min	3 hrs 58 min
2 hrs	2 min	1 hr 58 min
	15 infor	1 ht 45 min
	1 hr	1 hr
80 min	2 min	78 min
	15 min	65 min
1 lis	2 min	58 min
	15 min	45 min
54 min	2 min	52 min
	15 min	39 min
48 min	2 isin	46 min
	15 min	33 min

(1) Identifying the table from Tables 2.1.9.1 through 2.1.9.10 of Reference 2 that corresponds to the group identified in Section 5.1.3.1.1, and
(2) by following the procedures reconmended by Reference 2 for using the information contalned within the table to obtain an estimate of the dlagnosis fallure probability for a particular recovery action.

The procedures from Reference 2 are sumarlzed as follows
(1) In the probability of failure colum of the table identified above, select the median value of the fallure probability $\left(\mathrm{P}(N D)_{\text {median }}\right)$ that corresponds to the amount of time avallable to diagnose the recovery action. If the amount of time available to diagnose the recovery action is greater than the last time specified in the table, then use the probability of fallure value that corresponds to the last time in the table.
(2) Calculate the error factor (EF) associated with the probability of fallur value identified in step (1). Th's is accomplished by dlviding the correspanding value of the upper 950 confidence 11 mit by the probability of failure value. If this calculated error factor is greater than 10.0 , a value of 10.0 is assumed for the error factor
(3) Calculate the mean value for the diagnosis failure probability ($\mathrm{P}(\mathrm{ND})_{\text {mean }}$) at time T_{D} using the EF from step (2) and the median value from (1) by the following formula which assumes that the distribution at a certaln time is \log-normal
$\left.P(N D)_{\text {mean }}=\left(P(N D)_{\text {median }}\right)\left(\exp (\mid 1 \mathrm{n} E F / 1,645]^{2} / 2\right)\right)$
5.1.3.2 Estimate the Fallure Probability for the Action Phase P (NA)

Estlmates for the failure probability for the action phase. $P(N A)$, can be computed from any number of different sources. For application to RMIEP, the models and information summarized in Chapters 5 and 20 of Reference 3 (also referred to as the Handbook) were used

5,1,3,3 Estimate the Total Failure Probability for a Recovery Action, $\mathrm{P}(\mathrm{NR})$

Afcer eatimates for the diagnosis phase failure probability ($\mathrm{P}(\mathrm{ND}$)) and the action phase failure probability $(P(N A))$ were obtained, we calculated the totat failure probability for the recovery action, $P(\operatorname{liR})$. The failure probability for the recovery action is calculated as the probability of
elther falling to diagnose the appropriate action of failing to perform the recovery action, $P(N R)$ is calculated using the following expression:

$$
P(N R)=P(N D)+P(N A)=P(N D) P(N A)
$$

Abstract

where $P(N R)$ is the fallure probability for the recovery action, $P(N D)$ is the fallure prabability for diagnosing the tiquised action within tine Ton and $P(N A)$ is the fallure probability for physically aceoupllshing the action within the time T_{A}.

5.2 Sample Calculation

As an example of how an ststimate of the fallure probabilicy for a recovery action was made, consider the basie event LAK93ARC-ROO-LFO. The event represents the fallure of a normally open motor operated valve to close and to remain closed given that it is detianded closed. The valve in question is notmally contralled matually from the control room. The fallure probability is estimated as follows:

1. Table 5.9 is searched for the group which best describes the recovery action, in this case group 11 ,
2. From thermal-hydraulic calculations, it has been determined, for the sequence of interest, that the maximum amount of time available to the operators is 27 hours $1 . e . \mathrm{T}_{M}=27$ hours
3. From considering the physical actions required to accomplish the recovery action, it is estinated that 15 minutes will ber required to accomplish the action l.e.. $\mathrm{T}_{\mathrm{A}}=15$ minates. This 15 minutes Includes 10 minutes of travel time and 5 minutes of time to physically close the vaive.
4. Gven the information in (2) and (3), $T_{p}=25$ hours and 45 ininutes.
5. Table 2.1.9.9 from kefereace 2. (reproduced here as Tabla 5.14) corresponds to group 11 as identified in (1).
6. Since T_{p} is larger than the last oecurring value of time in Table 5.14, the last value in the probability of failure column is used. Thus. $P(N D)_{\text {median }}=0.00060$.
7. The EF associated with this value of $P(N D)_{\text {medion }}$ is 10,0 since dividing the cortesponding upper 958 confldence limit by the tedian fallure probability results in a value greater than 10.0.

Table 5.14
Group 11 Paramotel Espimates from Fit of Lognormal Function $(\mathrm{N}=15$, Mean $=85$, Standard Deviation *.50)

Tine (min.)	Standard Deviation of Point	Probability of Failure	Upper 958 Confidence Limit	Lower 958 Confidence Limit
1	. 039	. 96	. 99	. 78
c	. 072	. 87	. 96	. 66
3	. 088	. 77	. 90	. 56
4	. 096	. 69	. 85	. 48
5	. 10	. 62	. 79	. 41
6	. 10	. 56	. 74	. 36
7	.10	. 51	. 70	. 31
8	. 11	. 46	. 66	. 27
9	. 11	. 42	. 63	. 24
10	. 10	. 39	. 60	. 21
11	. 10	. 35	. 57	. 18
12	. 10	. 33	. 55	, 16
13	. 10	. 30	. 53	. 14
14	. 10	. 28	. 51	. 13
15	. 098	. 26	. 49	. 21
16	. 096	. 24	. 47	. 10
17	. 094	. 23	. 46	. 092
18	. 092	. 21	. 44	. 083
19	. 090	. 20	.43	. 075
20	. 088	. 29	. 42	. 068
21	. 086	. 18	. 41	. 062
22	. 084	. 16	. 40	. 056
23	. 082	. 16	. 39	. 051
24	. 080	. 15	. 38	. 047
25	. 079	. 14	. 37	. 043
26	. 077	. 13	. 36	. 039
27	. 075	. 12	. 35	. 036
28	. 073	. 12	. 35	. 033
29*	. 071	. 11	. 34	. 030
30	. 069	. 11	. 33	. 028
31	. 068	. 10	. 33	. 026
32	. 066	. 097	. 32	. 024
33	. 0664	. 092	. 31	. 022
34	. 0663	. 088	. 31	. 020
35	. 0661	. 084	. 30	. 019
36	. 060	. 081	. 30	. 018
37	. 058	. 077	. 29	. 016
38	. 057	. 074	. 29	. 015
39	. 056	. 071	. 29	. 014
40	. 054	. 068	. 28	. 013
41	. 053	. 065	. 28	. 012

Table 5,14 (Cone luded)
Group 11 Parameter Estimates from Fit of Lognormal Function $(\mathrm{N}=15$, Mean $=85$, Standard Deviation - 50$)$

Time $(m i n .)$	Standard Deviation of Point	Probabillty of Fallurf	Upper 954 Confidence Limit	Lower 958 Con letice Limit
42	. 052	. 062	. 27	.012
43	. 051	. 060	. 27	. 011
44	. 049	. 058	. 27	. 010
45	. 048	. 055	. 26	. 0096
46	. 047	+053	. 26	. 0090
47	. 046	. 051	. 26	. 0084
48	. 045	.049	-25	. 0079
49	. 044	. 048	. 25	. 0074
50	. 043	. 046	. 25	. 0070
51	. 042	. 044	. 24	. 0066
52	. 041	. 043	+24	. 0062
53	. 040	. 041	. 24	. 0059
54	. 039	. 040	. 24	. 0055
55	+.038	. 038	. 23	.0052
56	. 038	. 037	. 23	. 0049
57	. 037	. 036	. 23	. 0047
58	. 036	. 035	. 23	. 0044
59	. 035	. 034	. 22	.0042
60	. 034	. 033	. 22	. 0040
61	. 034	. 032	. 22	. 0038
62	. 033	. 031	. 22	. 0036
63	. 032	. 030	. 22	. 0034
64	. 032	. 029	. 21	. 0032
65	. 031	. 028	. 21	. 0030
66	. 030	. 027	. 21	. 0029
67	. 030	. 026	. 21	. 0028
68	. 027	. 0225	. 21	. 0026
69	. 028	. 025	. 20	. 0025
70	. 028	. 024	. 20	. 0024
80	. 023	. 018	. 19	.0015
90	. 019	. 014	. 17	. 00096
100	. 016	. 011	. 16	. 00064
110	. 014	. 0089	+15	$\cdots .00044$
120	. 012	.0072	. 15	. 00031
180	. 0051	. 0026	. 11	. 00005
240	. 0026	.0012	. 093	. 00001
300*	. 0015	. 00060	. 079	. 00000
*For	es greater	an 300 min .	se last line	table.

(8) The mean value for the diagnosis failure probability is then calculated. This results in:

$$
\begin{aligned}
P(N D)_{\operatorname{man}}- & \left(P(N D)_{\operatorname{madian}}\right)\left(\operatorname { e x p } \left((\ln \mathrm{EF} / 1.645)^{2}\right.\right. \\
& \left.=(0.00060) \exp \left((\ln 10.0 / 1.645)^{2} / 2\right)\right) \\
& =1.6 \mathrm{E}-3
\end{aligned}
$$

9) The action phase of the recovery action is a series of physical sctions carcied out by the personnel at the plant. For this efainple, the coftrol room mperators would direct someme te. ह. . a B-man) to manually elose the valve and would moniter control room instrumentation for indications as to the success of the requested action. To estimate the action phase fallure probability, a HRA event tree is constructed (see Chapter 5 of Reference 3). The HRA event tree constructed for this example is shown in Figure 5.2. This HRA event tree, in confunction with the human error probabilities (HEPs) giver in Chapter 20 of Reference 3, provide a means of estimating the action phase of the recovery action.

From the HRA event tree, the probability of falling to accomplish the action phase is found by:

$$
\begin{aligned}
& P(N A)=F_{1}+F_{2}+F_{3}+F_{4} \\
& F_{1}=0 \\
& F_{2}=(0.001)(1.25) *(0.003)(1.25) *-4.69 \mathrm{E}-6 \\
& F_{3}=(0.001)(1.25) *(0.003)(1.25) *=4.69 \mathrm{E}-6 \\
& F_{4}=(0.001)(1.25) *(0.003)(1.25) *=4.69 \mathrm{E}-6
\end{aligned}
$$

(NOTE: *1.25 is the multiplier used to convert a median value with EF-3 to a mean value assuming a log-normal distribution.;

$$
\begin{aligned}
\mathrm{P}(\mathrm{NA}) & =0+4.69 \mathrm{E} \cdot 6+4.69 \mathrm{E} \cdot 6+4.69 \mathrm{E} \cdot 6 \\
& =1.4 \mathrm{E} \cdot 5
\end{aligned}
$$

(10) With both $P(N D)$ and $P(N A)$ having been determined, the total failure probability for the recovery action is found by:

$$
\begin{aligned}
P(N R) & =P(N D)+P(N A)-P(N D) P(N A) \\
& =(1,6 \mathrm{E}-3)+(1,4 \mathrm{E}-5)-(1,6 \mathrm{E}-3)(1.4 \mathrm{E}-5) \\
& =(1,614 \mathrm{E}-3)-(2.24 \mathrm{E}-8)
\end{aligned}
$$

"ALI values are frimi the Hendbock, bxcept the value-for A. The value fou A is based on engineering judgment

Figure 5,2
IRA Byent Tiee for Example Applifation

5.3 Becguery Actions for Lessold

 recovery actions In Tables 5.1 and 5,10 were calculated. To deterwine the fthal values for use In the PKA, one last factor needed to be considered. In determining the final value for recovery actlons, one needs to consider the random failure ptobabillty of the equipment to be used in the recovery process. While contiol circult tailure on a valve can be bypassed by locally manally opening the valve, there is some probability that the valve ftaelf may be locally falled. This fact puts a lower limit on the effectiveness of the operator. The non-iecovery fallure probability used in the PRA to quantify the out sets can not have a failure probability less than the corresponding iallure probability of the equipment. For purposes of this PRA; the non-recovery prasability was not allowed ta be below 1. OE. 03 which is roughly the fallure probability of the types of equipment modeled in the PRA and used for the recovery actions. It was assessed that a more exact model which evaluated a separate random failure for each type of equipment and rerovery action was unwarranted. The results of these calculations are presented in Table 5.15.

5.4 References

1. L. M. Weston, D. W. Whitehead, and N. is Graves, "Recovery Actlans in Pl\& for the Risk Methods Integration and Evaluation Program (RMIEP), Volume 1: Data Based Method, " NUREG/CR-4834/1 of 2. SAND87.0179, Sandia National Laboratorles, Albuquerque, NM, June 1987
2. D. W, Whitehead, "Recovery Actions in PRA for the Risk Methods Integration and Evaluation Program (RMIEP). Volume 2; Application of the Data Based Method, " NUREC/CR-4834/2 of 2. SAND87-0179. Sandia National Laboratories, Albuquerque, NM, December 1987.
3. A. D. Swain and H. E. Guttwann, "Handbook of Hunan Reliability Analysis with Emphasis on Nuclear Power Plant Applications, Final Report," NUREG/CR-1278, SAND80-0200, Sandia National laboratories, Albuquerque, $N M$. August 1983

Table 5.15
Recovert Actions in LaSalle PRA

Eyent Nome	Defarjition	Value	Source
12DC2DEP- FROP-4	Falluce to restore offsite power in 4 hours.	1.0	1
1EDC2DEP-FRP-15H	Fallure to restore offaite power in 15 hours.	2.08-2	1
1ETC20EP-FRP-27H	Fallure to restore offsite power in 27 houts.	2. OE-2	1
ADS - 1 NH181T - 12 M	Cperators inhibit ADS in 12 minutes .	2.08.1	2
ADS-SE1-OE-54M	During a sefmic induced aceident operators fall to ADS in 54 minutes.	2.2E. 1	2
ADS-SEI-GE-80M	During a seisnic induced accident operators fall to ADS in 80 minutes.	2. $2 \mathrm{E} \cdot 3$	2
CRD-REALIGN-OE	Operators fail to realign the CRD system (two purps available) in 8 hours.	$2.1 \mathrm{E} \cdot 3$?
CRDI-REAIICN-OE	Operators fall to realign the CRD system (one pump avallable) in 12 hours.	2.1E-3	2
MFS-RESET-25M	Operators fall to reset main feed water trip in 25 minutes.	4.4E. 3	2
MFS-RESET-69M	Operatoss fail to reset main feedwater trip in 69 minutes.	2.1E-3	2
MFS-RESET-9*M	Operators fall to reset main feed. water trip in 95 minutes.	2.1E. 3	2
MFS-RESET-0E-271	Operators fall to reset main feedwher trip in 27 hours.	2.1E-3	2
MODESWTCH-OE-69M	Operators fall to change mode switeh from run to shutdown in 69 minutes.	1.2E-3	2
SODESWTCH-OE-95M	operators fail to change mode switch from run to shutdown in 95 minutes.	1.2E-3	2
OP-F-1NITCSS-25M	operators fail to inftiate containment spray system in 25 minutes.	$4.4 \mathrm{E}-3$	2
OP-F. INITCSS-30M	Operators fall to inftiate containment spray system in 30 minutes.	2.7E-3	2
OP-F-1NITCSS-56M	operators fail to initiate containment spray system in 56 minutes.	2.1E.3	2
OP-F-IN1TCSS-59M	Operators fail to initiate containment spray system in 59 minutes.	2. $1 \mathrm{E}-3$	2
OF-F-1N1TCSS-85M	Operators fall to initiate containment spray system in 85 minutes.	2.1E-3	2
OP-F-INITSPC-85M	Operators fall to initiate suppression pool cooling in 85 minutes	2.1E-3	2
OP-F-REOPN-FTR	operators fafl to reopen RC1C F063 valve.	4.3E.1	2

Table 5.15 (Continued)
Recovery Actions in LaSalle 1FA

Event Name

RHEATH ANE ESM
OPFA1L-ADS-80M

OPEA1L-REOPN-10H

OFFAIL-REOPN - 14

OFFAIL-REOPN-20M

OPFA1L-SLCOX - 30M
OPFALL-SLCOX-56M

OPFAIL-SLCOX-59M
OPFAIL-SLCOX-85M

OPFA1L-SLC1B-30M

OPFA1L-SLC1B-56M

OPFAIL-SLC1B-59M

OPFAIL-SLC1B-85M

OPFAIL-VENT - OH
OPFAIL-VENT - 2OM
OPFAIL-VENT - 2 H
OPEAIL-VENT - 4 H
OPFAIL-VENT-6H
OPFAILS-REOPEN
OPFAILSCDS-OE-8M
Operators fall to use automatic $2.2 \mathrm{E} \cdot 3$ 2
depressurization system in 54 ininutas.operators fall to use automatic$2.2 \mathrm{E} \cdot 3$2
depressurization system in 80 minutes
Operators fall to reopen RCIC FO63 2. $5 \mathrm{E}-3$ 2
valve in 10 hours
Operators fail to reopen RCIC FO63 2. 5E-3 2
valve in 1 hour
Operators fall to reopen RC1C F063 3. 5E-12
valve in 20 minutes.
Operators fail to start Standby $7 \mathrm{E}-3$ 2.
Liquid Control System in 30 minutes Operators fall to start Standby $2.1 \mathrm{E}-3$ 2
Liquid Control System in 56 minutes Operators fall to start Standby $2.1 \mathrm{E} \cdot 3$ 2
Liquid Control System in 59 minutesOperators fail to start Standby2.1E-32
Liquid Control System in 85 minutesOperators fail to start secondstandby 11 quid control pump in30 minutes given that the firstpump falled to start
Operators fall to start second 2. 1E-3 2
standby liquid control pump in56 minutes given that the firstpump failed to startOperators fall to start second2. 1E-3
standby liquid control pump in59 minutes given that the firstpump failed to startoperators fall to start second2.1E-32
standby liquid contral pump in85 minutes given that the firstpump falled to start
Operators fall to vent in zero hours. 1.0 2
Operators fall to vent in 20 minutes, 1.0 2
Operators fail to vent in 2 hours. $2 \times 1 \mathrm{E}-3$ 2
Operators fall to vent in 4 hours. $2,1 \mathrm{E}, 3$ 2
Operators fail to vent in 6 hours $2.1 E-3$ 2
Operators fall to reopen RCIC F063 1.0 2
valveOperators i. 1 to control condensate 3.4E-12 system in 8 minutes

Table 5.15 (Continued)
Recovery Actions in LaSalle PRA

Table 5.15 (Cont Inued) Recovery Accions in Lasalle IKA

Table 5:15 (Continued)
Racovery Actions in LaSalle Pra

Rvent Nan	Definition	Value	Source
RA-2-3-10H	Local operation within 10 hours of a system or component which failed to automatically actuate.	2.6E-3	2
$\mathrm{RA} \cdot 2+11.23 \mathrm{H}$	Local operation within 23 hours of manually controlled components normally operated from the control room when control-roow operation fails.	1.6E-3	2
RA-2+11- $/$ / ${ }^{\text {a }}$	Local operation within 27 hours of matually controlled components normally operated from the cantrol room when control-room operation fafls.	1.6E-3	2
$\mathrm{RA} \cdot 2 \cdot 3 \cdot 1 \mathrm{H}$	Local opration within 1 hour of a system or component which failed to automatically actuate.	6.9E-3	2
$\mathrm{RA}-2 \cdot 3 \cdot 27 \mathrm{H}$	Losal operation within 27 hours of a system ar component which failed to automatically actuate.	2.6E-3	2
RA-2-3.48M	Local operation within 48 minutes of a system or component which failed to automatically actuate.	$1.6 \mathrm{E} \cdot 2$	2
RA-2-3-54M	Local operation within 54 minutes of a system or component which falled to automatically actuate.	1.OE-2	2
$R A-2+3-8 H$	Local operation within 8 hours of a system or component which fa.led to automatically actuate.	2,6E-3	2
$\mathrm{RA}-2-3 \sim 10 \mathrm{H}$	Local operation within 10 hours of a system or component which failed to automatically actuate.	2. 6E-3	2
RA-3-12-2H	Open RCIC isolation valve (s) within 2 hours given RCIC room isolation.	2.4E-3	2
$R A-3 \cdot 12-68 \mathrm{M}$	Open RCIC isolation valve(s) within 68 minutes given RCIC room isolation.	1. $8 \mathrm{E}-2$	2
RA.3.12-80M	Open RCIC isolation valve(s) within 80 minutes given RCIC room isolation.	3.5E-3	2
RA - 3-12.10H	Open RCTC isolation valve(s) within 10 hours given RCIC room isolation.	2.4E-3	2
RA-4-4H	Isolate recirculation pump seal LOCA AND restore PCS.	1. OE-3	4

Table 5.15 (Continued) Recovery Actions in Lasalle PRA

Eyent Name

Operators vent within 2 hours through alternate vent path.
Operators vent within 6 hours thrcugh alternate vent path.
If one electric power train has failed, onerhalf of the time the recirculation pump LOCA will oceur on the recirculation pump which can be isolated. Operators isolate recirculation pump seal LOCA and restare PCS
RA. $7 \cdot 1-15 \mathrm{H}$
$R A-7-1-27 H$
$R A-7-3-8 \mathrm{H}$
$R A=7 \times 3 \cdot 10 H$
$\mathrm{RA}-8$ - 10 H

RA -8 - 15 H

RA - 8-1H
$R A-8-23 H$

RA - 8 - 27H

RA 8 - 48 M

RA-8-80M

RA - 8-8H
locally open within 15 hours a manual valve clored due to unscheduled maintenance on RHR pump C003B. Res ores heat removal. Locally open within 27 hours a manual valve closed d'- to unscheduled maintenare* n RHR pump C003B. Restore removal.
Locally open within 8. irs a manual valve closed duz to unscheduled maintenance on RHR pump C003B. Restores injection. Locally open within 10 hours a manual valve closed due to unscheduled maincenance on RHR pump C003B. Rest res injection.
Restoration within 10 hours of 1.7E-2 1 offsite power.
Restoration within 15 hours of offsite power.
Restoration within hour of 1.7E-1 1 offsite power
Resto:ation within 23 hours of offsite power.
Restoration within 27 hours of offsice power.
Restoration within 48 minutes of offsite power.
Restoration within 80 minutes of offsite power.
Restoration within 8 hours of offsite power.
2.1E-3
2.1E-3

2
5.0E-1
2.1E-3

2
2.1E-3

2
2.1E-3

2
2. 1E-3

2
-18:
1
$6.9 \mathrm{E} \cdot 3$
1
2. $5 \mathrm{E}-3$

1
$1.9 \mathrm{E}-3 \quad 1$
2.2E-1 1
1.1E-1 1
2. OE-2

Table 15 (Cont ifued)
Recovery Actions in Lasalle PRA

Eyent Nawe	Definition	Value	Source
$R A=8-5 E I-11-1 H$	Restoration within 1 hour of offsite power given that a level L.) selstele event has occurred.	1.0	6
RA-8-8EI $-1.1-483$	Restoration within 48 ininutes of offsite power given that a level 11 sefsmie event has occurred.	1.0	6
KA-8-8EI-L1-8H	Restoration within 8 beurs of offsite power given that a level 1.1 selsmic avent has ocouried.	1.0	6
$\mathrm{RA}=8 \cdot \mathrm{SEI}+1.2-1 \mathrm{H}$	Restoration within 1 hour of offsite power given that a level 1.2 seismic event has oceurred.	1.0	6
RA - 8-SET-12-48M	Restoration within 48 minutes of offsite power given that a level 1.2 selsmic event has occurred.	1.0	6
$\mathrm{KA}-8-5 \mathrm{EL}-12 \cdot 8 \mathrm{H}$	Restoration within 8 hours of offsite power given that a level L2 seismie everit has occurred.	1.0	6
$\mathrm{RA}-8-5 \mathrm{EL}-13-1 \mathrm{H}$	Restoration within 1 hour of offsite power given that a level 1.3 selsmic event has occurred.	1.0	6
RA-8=SEI-13-488	Restoration within 48 minutes of offsite power given that a level 13 snisimic event has oceusred,	1.0	6
RA-8.-SEI - L3. 8H	Restoration within 8 homrs of offsite power given that a level L\} seismie event has oceurred	1.0	6
$\mathrm{RA}-8-5 \mathrm{E} 1-24-1 \mathrm{H}$	Restoration within 1 hour of offsite power given that a level L4 seismie event has accurred.	1.0	6
RA-8-SE1-14-48M	Restaration within 48 minutes of offsite power given that a level $L 4$ seismic event has occurred.	1.0	6
RA-8-SEI - 14-8H	Restoracion within 8 hours of offsite power given that a level 14 seismic event has occurred,	1.0	6
RA-8-SE1-15-1H	Restoration within 1 hour of offsite power given that a level 1.5 seismie event has oecurted.	1.0	6
RA -8-SEI $-1.5-48 \mathrm{M}$	Restotation within 48 minutes of offsite power given that a level 1.5 selsmic event has occurred.	1.0	6
$\mathrm{RA}=8-5 \mathrm{SI}-1.5-8 \mathrm{H}$	Restoration within 8 hours of offsite power given that a level LS seismic event has occurred.	1.0	6

Table 5.25 (Cantinued) Recovery Actions in LaSalle PRA

Event Name	Definition	Value	Source
RA-8-SEI-L6-1H	Restoration within 1 hour of offsit \& power given that a vel L6 seismic event has occut 1.	1.0	6
RA-8-SEI-1,6-48M	Restoraticy within 48 minutes of offsite power given that a level L6 eaismic event has oocurred.	1.0	6
RA-B-SEI-L6-8H	Rescuration within 8 hours of offsite power given t \} 16 seismic event has os d.	1.0	6
RA - 8-SEI - LLI - 1 H	Restoration within 1 hu of offsite poser given that a level LL.? sejsmi event has ocsurred.	1.0	6
RA-8-5EI - LLI -48 M	Restoration within 48 minutes of offsite power given that a level LLl seismic event has occurred.	1.9	6
RA-8-SEL-LLI-8H	Restoration within 8 hours of offsite power given that a level LL1 seismic event has occurred.	1.0	6
RA-8-SEI-L1.2-1H	Restoration within 1 hour of offsite power given that a level $1 . L 2$ seismic event has occurred.	1,0	6
RA-8-SEI-LL2-48M	Restoration within 48 minutes of offsite power given that a level LL2 seismic event has occurred.	1.0	6
RA-8-SEI-11.2-8H	Restoration within 8 hours of offsite power given that a level 11.2 seismio event has occurred.	1.0	6
$\mathrm{RA}-9 \cdot 2 \mathrm{H}$	Repair of DG failure within 2 houss.	8. $7 \mathrm{E}-1$	3
RA -9-10H	Repair of DG failure within 10 hours.	5.5E-1	3
RA $-9-15 \mathrm{H}$	Repair of DG failure within 15 hours.	4.7E-1	3
RA. Q. 1 H	Repair of DG failure within 1 hour.	9.3E-1	3
RA $6 \cdot \sim$ d	Repair of DG failure within 23 hours;	4. 1E-1	3
RA.	Repair of DG faflure within 27 hours.	4. CE-1	3
RA - 9.40	Repair of DG rallure within 48 minuter.	9.6:-1	3
RA-9-8H	Repair of DG failure within 8 hours.	6.0E-1	3
RA - 9-SEI-1H	Repair of no failure within I hour given that a seismic event has ocourred.	1.0	7
RA -9-SEI-480	```Kepair of DG failure within 48 min *g given that a seismic event has surred.```	1.0	7
RA-9-8EI-8H	Repair of DG fallure within 8 hours given that a seismic event has occurred.	6.4E-1	7

Eyent Name
$R A-10: 1=27 \%$

RA-ATW-11-11-30M

RA - ATW - $16-31-30 \mathrm{M}$

RA-ATW-16-31-59M

KA-ATWS - 1-3-25M

RA ATWS-1-3-59M

RA-ATWS - 12-3-10M

RA-ATWS-2-3.25M

RA.ATWS-2-3-59M

RA-ATWS - $8-25 \mathrm{M}$

Replace a fuse within 27 hourn in a system or component that has no automat ic opertition or prior to $4+\mathrm{e}$ automatic operation if it has automatic actuation.
Gluse SBLC F016 or P017 valve within 30 minuces after the occurrence of an ATWS, given the fallure to close the valves followng a previous test on the SBLC system. Manual start of a te from the
control room AND then manual start of the appropriate SBLC puap within 30 inirnutes after the occurrence of an ATWS.
Manual start of a DC from the control roow AND then manual start of the appropriate SBLC puap within 59 mimutes after the occurrence of an AThs.
Manual operation within 25 minutes of a system or component from the control room which falled to automattcally actuate aftor the occurrence of an ATWS.
Manual operation within 59 minutes of a system or component from the control room which filled to auto matically actuate after the occurrence of an ATWS. Loeally elose RWCU valve F004 within 10 minutes after the occerrence of an ATWS.
Local operation within 25 minutes of a system or component which falled to automatlealty actunte after the occurrence of an ATWS. Local operation within 59 minutes $7.4 \mathrm{E}-3$ 2 of a system or component which falled to automatically actuate? after the occurtence of an ATWS. Restaration within 25 minutes of 4.0E-1 offsite power after an ATWS has occuried.
3. $0 \mathrm{E}-2$ 3. 2E. -3

Value Source

1. 0 9. 0
1.0
3.21.3 ? 2
\square

Table 5.15 (Continued)
Recovery Actions in LaSalle IRA

Event Name.	Definition	Value	Source
RA - ATWS - 8-59M	Restoration within 59 minutes of offsite power after an ATWS has occurred.	1.7E-1	1
RA ATWS - 8-85M	Restoration within 85 minutes of offsite power after an ATWS has occurred.	1.1E-1	1
RA-ATWS - 9 -59M	Repait of DG fallure within 59 minutes after the occurrence of an ATWS.	9.3E-1	3
KA-ATWS -9-85M	Repeir of DG failure within 85 , inutes after the occurrance of an ATWS.	$9.0 \mathrm{E}-1$	3
RA - CDS - 2 H	Operators use condensate system within 2 hours.	2.2E-3	2
$R A=D D F P-2 H$	Operators use diesel driven firewater pump within 2 hours.	1.0E-1	2
RA - DELETE	Used to delete invalid cut sete.	0.0	
RA - NONE	No recovery action identified.	1.0	
PCICRMCOOL-DELET	Used to delece not applicable cut sets	0.0	
TDRFP-T-OE-15H	Ope . ars fall to trip turbine driven reactor feedwater pumps within 15 hours. Prohibits motor driven feedwater pump from auto starting.	2.6E-3	2
TDRFP-T-OE-25M	Operators fail to trip turbine driven reactor feedwater pumps within 25 minutes. Prohibits motor driven feedwater pump from auto starting.	3.0E-2	2
TDRFP-T-OE-27H	Operators fail to trip turbine driven reactor feedwater pumps within 27 hours, Prohibits motor driven feedwater pump from auto str:ting.	2.6E-3	2
TDRFP-T-OE-48M	Operators fail to trip turbine driven reactor feedwater pumps within 48 minutes. Prohibits motor driven feedwater pump from auto scarting.	$6.4 \mathrm{E}-3$	2
TDRFP-T-OE-69M	Operators fail to trip turbine driven reactor feedwater pumps within 69 minutes. Prohibits motor driven feedwater pump from auto starting.	$2.6 \mathrm{E}-3$	2

Table 5.15 (Concluded) Recovery Actions in LaSalle PRA

Event Name Definition

Value
Source
TDRFP-T-OE-95M
Operators fall to trlp turbine
2.6E-3

2
driven reactor feedwater pumps within 95 minutes Prohibits mot of driven feedwater pump from auto starting.

NOTES: 1 Modeling Time to Recoyery of Loss of off-Site Rower PLants, NUREG/CR-5032.
2 - Recover Actions in PiA for the RLak Methods InteEration and Evaluation Progtam (RMLEP) Volume 2: Application of the Data Based Method, NUREG/CR-4834/2 of 2
3. Station Blackout Accident Analyses. Part of NRC Task Action RLan A-44), NUREC,CR-3226 and Analysis of fore Damaze Frequency Erom Intexnal Events: Peach Botsom. UnLt 2, NUREC/CR-4550/Volsme 4
4 - "RA-4"
5 = "RA-6"
6 - Seismic LOSP
7 - 3 plus time xequirement

6.0 RESOLUPION OF CORE VULNERABLE ACCIDENT SEQUENCES

6. 1 Introduction

Abstract

In this section, we are concerned with tie resolution of an issue that appeats at the interface between the Level I and level II/III analyses and again in the aceident progression afalysis in the Level II analysis, In the level I analysis, certain of the end-etates of the azcident sequences mav be inftially undefined (e.s.. Whether or mat core damage occurs is

This uncertainty involves the interaction between the containment and the systems that must respond to the aceident as described below and this interaction must be evaluated in order to resolve the sequence status. In the Level II analysis, the status of systems after containment failure may not be known. This issue also involves the interaction between the contafnment tesponse and the systems and must bo evaluased in order to evaluate the characteristics of the radioactive release. The Level Il aspeet of this issue is described in the level IIflII report.

For the Level I analysis, in the past, engineering judgement with little or no suppoEting caloulations was used to resolve the end-state. (Usually to simply say that it was core damage since almost no information was available and it was conservative to assume so, Foi the LaSalle PRA, it was decided to use a more realistic approach in whieh thermal-hydraulic analyses were to be coupled with expert judgement to determine the survivability of the systems

The aceident sequence end-states which were initially undefined in the Lasalle analysis involved sequences in which core cooling was initially available, but contaimment heat removal was not sufficient to prevent containment pressutization, For these casti. containment failure or vonting is guaranteed, and the resultant steam blowdown to the reactor building could fall coitical components of the cooling systems, leading to cote damage. The following procedure was used to resolve these end-states

[^2]Evaluate the containment failure location, size, and fallure oressure

Perform appropriace thesmal.hydraulic analyses to evaluate possible reactor building environments for the cases identified in step

Evaluate equipment surviv. bility in these environments

Abstract

T. D. Brown, A. C. Payne Jr., L. A. Miller, J, D, Johnson, D. I Chanin. A. W. Shiver, S. J. Higgins, and T. T. Sype, "Integrated Risk Assessment for the La Ale Unit 2 Nucleat Power Plant: Phenomenology and Risk Uncertainty and Evaluation Program (PRUEP). Volume I Main Report, " NUREG/CR-5305. SAND90-2765. Sandia National Laborataries. Albuquerque, NM, ta be published

5. Develop system models in order to quantify system failure probabilities lor use in quantiflcation.
6. Use this information to resalve the question of whether or not the core coeling systems would fall after containment venting or failure.

These steps will be diseussed in detall in the remainder of this section.

6.2 Description of Steps in Coxp Vuinerable Sequence Resolution

6.2.1 Step 1: Defthe Core Vutnerable Sequences

For the LaSalle PRA certain sequences in the Level 1 analysis were not initially resolved (i.e. whether or not the sequence proceeded to core damage wis not known). These sequences are the so chlled cote vulnerable' sequences its which the core is initially coolable but in which core damage (na) occur later in the sequence if cooling systems fall in the severe enviromment creafed by the accldent. In the LaSalle analysis, these sequences arise et ther from accident sequences in which care cooling is available and contafnment heat removal has falled (TW) or in anticipated transients without scram (ATWS) where the heat load is beyond the capabillty of the containment heat removal systems. In either case, the containment beats up and pressurizes. The reactor core isolation cuoling (RCIC) system wlll fail due to back pressure at around . 277 MPa (40 psia), and the low pressure systems will fall their function when the automatic depressurization system (ADS) valves reclose at about 689 MPa (100 psia). If other high pressure systems are working, they will continue to operate unless they also fail due to the severe erivironments after containment ventlug or fafture

For these types of sequences (TW and ATWS), the emergency procedures direct the operators to vent the containment through $5.1 \mathrm{~cm}\left(2^{\circ}\right)$ lines in the wotwell and drywell if and when the contalnment pressure exceeds 0.517 MPa (60 psig) These two 5.1 cm 1 ines can not remove sufflotent energy to prevent further pressarization and the operator will be directed to vent usting the 0.66 in ($26^{\prime \prime}$) wetwell andfor drywell 11 nes. The two 0.66 if 11 nes continect via a common $0.46 \mathrm{~m}\left(18{ }^{*}\right)$) 1 tre to the standby gas treatment systeil (SGTS) which 1 init the relief size. The 0.46 m inne connects to the SGTS supply tans which have a short section of ductwork and a rubber boot, both of which are virtually certain to fall if a 0.66 in 1 ine is opened. This will retease the vented steam into the reactor building instead of to the environment.

If venting did not or cannot occur, then the containment is assessed by the experts to most likely fail when the pressure reaches the 1.41 MPa (190 pstgh fane Dependmg on the contafnitent fatture mode and locatlon, steam may be released into the reactor building or to the refueling floor. If the release is to the refueling floor, no severe environments will be
generated in the reactor building because the refueling floor walls will fail, thus directing the steam to the outside, If the steam is released directly into tho reactor bullding steam will flll the reactor butlding. creating environments of varying severity depending upon the building deslgn and steam blowdown rate

In order to incorporate these considerations directly into the analysis, additional events were added to the accident sequence event trees as described in Volume 4 of this report. First, a venting question was added, and if venting succeeded, then a system survival question was asked. If vent ing failed, then a contalnment fallure mode question was added followed by a system survival question (see Figure 6.1)

Figure 6.1
Systeth Fallure Resolution
VENT CONT SURVIVAL.
LEAK

6.2.2 Step 2: Determine Containment Failure Modes

The Structura Expert Elicitation Fanel for the NUREC-1150 espert elicitation ${ }^{1}$ was asked to evaluate the structural design information and construct a probability distribution for the containment failure pressure. The experts each received structural design information and previous calculations on the LaSalle and similar containments. They recelved the results of experiments on contaimments and equipment hatchs, and performed some simplified caloulations of their own. Using this information, they were asked to evaluate, at each pressure, the probability of containuent follute and then the condttfonal probablifty of the contalnment fatling in one of the following eight modes

1) Wetwell Leak above the water IIne (WWLaW)
2) Wetwell Leak below the water Iine (WWLbW)
3) Wetwell kupture above the water Ine (WWRaW)
4) Wetwell Rupture below the water line (WWRbW)

Drywe 11 Leak (DWL)
6) Drywell Rupture (DWR)
7) Drywell Head Leak (DWHL)
8) Drywe 11 llead Rupture (DWHR)

These modes were selected, firstly, because we needed to differentiate between leaks and ruptures in order to know if the containment pressure would drop to the point wete law ptessure systems could be used before core damage occurred. Secondly, we tad to differentiate based upon the lacation In order to know if the failure would create a severe environment in the reactor bufldlng or if the failure would be to the refuelling floor which would bypass the reactor building and not affect the systems environment.s. Finally, we had to differentiate effects on the source term of suppression pool and secondary oontainment decontamination.

The gvecall issue and results of this process for the NUREC- 1150 plents are described in Reference 1. For the Lasalle analysis, the results are presented in Appendix C. The mean fallure pressure was 191 psig. The marginal failure probabllities for the individual modes these are the weighted average over all pressures, i.e.. the sum of the conditional prababilitien at each pressure interval times the probability density of fallure in that interval), calculated from the results in Appendix C, are;

Table 6.1
Marginal Failure Probebillities

```
WWLaW - 0.1094
    WWRaW - 0. 1111
WWL.bW = 0.0156
DWL. -0.0746 DWR -0.0858
DWHLS =0.5487 DWHR - 0.0442
```

We use the marpinals for the point estimate sinee the pressure will continue to rise until containment $£$ dils for these sequences. As a result of groupling the fallure modes, we can caloulate varlaus conditional probabilities:

1. The conditional probability of a leak $\{50.748\}$ and a rupture is 0.2516.
2. Given a leak, the conditional probability that it is to the refueling floor is 0,7333 and to the reactor building is 0,2667 .
3. Given a rupture, the conditional probability that it is to the refueling floor is 0.1757 and to the reactor building is 0.8243.
6.2.3 Step 3: Evaluate the Reactor Building Ervironments

The MELCof code was used to pertorm the thexmal-hydraulic analysis of the effects of containment fallure and blowdown from high pressure into the
reactor building. ${ }^{3}$ A detailed MELCOR model was constructed for the reactor building using information from the plant drawings, the Final Safety Aralysis Report, and two volumetric and heat transfer models developed by the architect/engineer for LaSalle (Sargent and Lundy) to perform steam line break calculations. The reactor building was divided into 27 volumes as shown in Figure 6.2. Since the main concern is equipment survival in the lower levels of the reactor building, more detailed noding was used in these regions. Single volumes were used to model the steam tunnels, refueling floor, and the unit 1 reactor building.

MFLCOR was chosen to perform most of the thermal-hydraulic analyses for the PRA because (1) it can be used to perform an integrated analysis that considers reactor vessel, primary containment, and reactor building response simultaneously; (2) it is fast running; (3) it has flexible control function capability for modeling flow paths; and, (4) it includes the capability to address uncertainties in modeling parameters and correlations. This detailed deck will also be used for special analyses of reactor building response to hydrogen and carbon monoxide burns and for fission product transport in the Level II/III analysis. The deck has also been simplified and incorporated into another deck being used for integrated calculations for the Level II/III analysis

6.2.3.1 Reactor Building Model Description

A detailed MELCOR model was constructed for the reactor building using information from the plant drawings, the Final Safety Analysis Report (FSAR). ${ }^{4}$ and two computer models developed by the architect/engineer (AE) for LaSalle, Sargent and Lundy, for use in design calculations. One of the Sargent and Lundy models was used to calculate gas flow between rooms and had detalled calculations of flow path areas and resistances. The other model was used for room environment calculations after high energy line breaks and had detailed calculations of room volumes and surface areas. Neither model had estimates of equipment masses or surface areas, so these were estimated based on the Level I location analysis that had identified all the equipment in euch room of the reactor building

It is important to bave sufficient nodalization to model the building characteristics thac determine the flow patterns for areas where important equipment is located. Also, adequate representation of doors and blowout panels is necessary because the flow patterns can be greatly affected if normally closed flow paths are opened during the severe transients. Slight differences in opening prossure differentials can determine the exact configuration of flow paths for the various scenarios analyzed

The reactor building was therefore divided into 27 volumes as shown in Figure 6.2. Since the main concern is equipment survival in the lower levels (floors) of the raactor building, more detailed nodalization is used in these regions. The annulus (outside the primary containment on the lower two levels), high pressure core spray (HPCS) and low pressure core

Figure 6.2
MELCOR Nodalization for Reacto Bullding Model
spray (LPCS) rooms are each divided into two volumes to represent the upper and lower levels. The low pressure coolant injection (LPC1) rooms are modeled with single volumes because the heating, ventilation, and aft conditioning system (HVAC) circulates between the upper and lower levels, resulting in well-mixed regions. Levels 710^{\prime}, 740', 761', and 786.5' are each divided Into four quadrants to allow the main circulation paths to be calculated. The East portions of levels 807° and 820° are each divided Into two volumes and the more dead-ended regions at the West end of the two levels are lumped into a single volume. Single volumes are used to model the stean tunnel (including turbine cavity), refueling floor, and the unit 1 reactor building

The flow paths in the model are also shown in Figure 6.2. Normally, the corner rooms in the basement of the reactor building are fairly isolated from the other reglons, but circulation is increased if doors are blown open during a severe transient. Unlike the basement where the levels are subdivided into rooms that restrict flow, at levels 710' and above, the floors are essentlally wide open. A!so, there are reasonably large flow areas between the upper levels through stalrways and an equipment hatch. Initially, the reactor building is isolsted from the refueling floor, but paths can be opened if a door is blown open or concrete slabs are lifte from over the equipment hatch. The walls of the refueling floor level are assumed to fail at $14 \mathrm{kPa}(2 \mathrm{psig})$, opening a $7 \mathrm{~m}(23 \mathrm{ft})$ diameter hole to the environment. The reactor building can also vent to the unit 1 reactor building if pressure increases sufficiently to blow open the doors between the two units. In addition, the reactor bullding can vent from the upper level of the annulus into the steam tunnel and into the turoine cavity if a very small pressure differential is exceeded. A blowout panel in the reactor building return air riser at the top of the steam tunnel is Included in the mode1. All leakage/Inflltration paths between the reactor bullding and environment are lumped into floy paths at the 710 level.

Heat siructures are iacluded in all reactor building volumes to model heat transfer to walls, cellings, floors, and equipment. Heat removal by the room coolers in the basealent corner rooms is also modelod. Flow of gases through the standby gas treatment system was included in all runs; failure because of the severe environment was not considered.

A simplified nodalization for the primary containment and reactor pressure vessel (RPV) is used to provide blowdown sources to this detailed reactor building model. The RPV is modeled by a single volume and 3 volumes are used for primary containment. The containment gases are exhausted to the reactor bullding at level 820° (volume 324) for cases examining venting, and to level 740° (volume 313) for cases exami. ing containment failure

6.2.3.2 Results of Analysis

Calculations were performed for venting the primary containment through an $18{ }^{\prime \prime}$ diameter (. 46 m) Iine from the wetwell to the top of the reactor
building and for 2 sizes of drywell breaks: 4^{n} diameter (, 10 m) and $36^{\text {n }}$ diametor (91 m) To examine modeling sensitivities, 4 varlations of the wentiny eatculation wetr trm.

1) Five thwes the equipment mass
2) Twice the rated heat removal rat for the room coolers
3) "entt atran teduefe in half (8. 4n dlameter)
4) Blowout panel on the rafueling floor to the outside environment

The reactor building pressure for the 4° drywe 11 break is shown in Figure 6.3. The early pressurization opened one of the doors to unit 1 and the door to the refuelltig floor, but the blowdown was mot large enough to open paths to the environment by efther falling the walls of the refuring floor or opening the blowout panel at the top of the steam tunnel. The pressurization was relieved through leakage paths, the SGTS, and condensation on stiuctures. Since the flow was not betng forced through the steam tunnel, 1ittle steam was drawn down into the energency core cooling systems (ECCS) rooms in the basement. The reactor buflding heatup was relatively gradual as shown by the temperatures plotted in Figure 6.4 and listed in Table 6.2

The pressurization was higher for the $36^{\prime \prime}$ diameter drywell break (equivalent to ? sq ft), as shown in Figure 6.5. All doors and blowout patrels wete forced open txeent for threa of the doors between the annulus and corner rooms in the basement. With the refueling floor walls falled, most of the blowdown was carried upward through the reactor building rather than being pushed down through the basement and out through the steam tunnel. However, thete whs sufftefent flow down into the basement rooms to cause considerable heatup (i.e., final temperatures $>400 \mathrm{~K}$) as shown in Figure 6.6 and Table 6.2

For the 18 " wetwell vent case, the steam entered near the top of the reactor building rather than near the bottom. The pressurization from the blowdown opened 3 of the upper doors to unit 1 , the door to the refueling floor, and the stean fmnel upper blowout panel, but the walls of the refueling floor were not predicted to fail. Thus, for this case, the majority of the steam was drawn down through tho basement. then into the stean tunnel and turbine cavity before exhausting to the environment. As a result, relatively high temperatures (i.e. $-370-400 \mathrm{~K}$) were predicted in the basement rooms as shown in Figure 6.7 and Table 6.2.

The varlation of the 18^{n} vent case with increased steel area was virtually identical to the base case. Pressures and temperatures were only reduced stiphtily, Ustug twice the rated heat removal for the room cootors also had negligible effect on the pressures and on the temperatures in all rooms except those difectly connected to the room coolers. As seen in Table 6.3. the peak and average temperatures in those rooms were reduced on the ordar of 5.10 K . Wor the case ustag hat f the blowiown tate, the peak pressure was reduced by about $5 \mathrm{kPa}(3 / 4 \mathrm{psig})$ at the top of the reactor building and decreased back to atmospheric pressure at about twice the rate of the
\square

(d) 3ला 1663 dW 31

(お) 3 d 7 Hd 3 dW 3 L

	$\begin{aligned} & \text { TUP BF } \\ & \text { LEVFL } \\ & \text { LEVEL } \\ & \text { LEVEL } \end{aligned}$	$\begin{array}{r} R R \\ 710 \\ 740 \\ 820 \end{array}$

Table 6.2
Base Cases' Temperatures (K)

Volume	4" Leak		18* Vent		36* Rupture	
	Peak	Average	Peak	Average	Peak	Average
301	309	309	310	305	320	305
302	309	305	390	390	415	415
303	320	315	375	380	355	345
304	330	325	395	390	380	375
305	309	309	315	308	325	308
306	313	310	390	390	420	420
307	305	297	400	390	3:3	373
308	365	365	415	390	430	415
309	405	400	420	390	430	415
310	365	365	395	390	430	415
311	395	390	390	390	430	415
313	435	429	410	395	435	410
317	420	415	410	395	435	410
321	400	390	410	395	410	410
324	345	340	415	395	410	410
325	390	390	420	395	400	400
331	305	299	390	390	420	420

$$
6+14
$$

Table 6.3
Sensitivity Cases' Temperatures (K)

me	$\begin{gathered} 5 * \\ \text { Steel Mass } \end{gathered}$		2 * Rated Fan Cooler Q		$\begin{aligned} & 5 * \text { Vent } \\ & \text { Alea } \end{aligned}$		Refuel Floor Elowout	
	Peak	Avg	Peak	$A \cup g$	Peak	Avg	Peak	Avg
301	310	305	310	305	310	305	310	305
302	390	390	390	390	385	385	385	385
303	375	375	370	370	355	355	370	370
304	395	395	380	380	375	375	390	390
305	310	310	310	300	310	310	310	310
306	385	385	380	380	380	380	360	360
307	400	395	390	385	310	300	310	300
308	420	390	415	395	350	350	395	395
309	420	390	420	395	390	390	410	395
310	390	390	395	395	380	380	375	375
311	385	385	385	385	380	380	365	365
313	415	395	415	400	400	400	405	400
317	410	395	410	400	415	400	400	400
321	410	395	410	400	415	400	400	400
324	420	395	415	400	415	400	415	400
325	425	395	420	400	425	400	420	400
331	385	385	385	385	310	300	310	300

base case. The smaller blowdown caused a auch slower heatup of most of the reactor building, but by the end of the run, the temperatures were approaching thit sathe 1 lenal as in the base etse. The iper room response varied more from the base case than the other rooms had because the doors did not blow apen, giving a more restricted path into the room, and therefore, the temperatures remained nominal. In the final sensitivity çse, the tssumed blowout panel from the refueling floot to the environment opened almost immediately. This additional opening relieved the pressure more quickly than in the base case, resulting in about a $5 \mathrm{kPa}(3 / 4 \mathrm{psig})$ reduction in peak pressure and a more rapid return to atmospheric pressure. About $2 / 3$ of the steam went out through the refueling floor level, reducfing the amount of steam being draum doun to lowar levels and out the steam tunnel. Therefore, the response in the lower portions of the building resembled the response for the case with reduced vent flow area. However, the venting of steam through the refueling floor opening resulted in a change in the Π How patzemis such that flow was mat nty dtrected down through the hatoh with less ciroulation around each level. This can be observed by examining the room temperatures in Table 6.3.

6.2.3.3 Model Limitations

Shtue thits is otti of +umb aralyses being performed as part of the PRA and due to limited resources, complete sensitivity calculations covering all possible variations in physical parameter estimates, code thermal-hydraulic models, init:al conditions, and reactor building models cannot be evaluated explicitly. For the PRA, the impact of these uncertainties must be costimated so the uncertainty can be represented in the final result. Some of the dominant modeling uncertainties are discussed below.

1. We did not model the leakage path from the steam tumel to the turbine building via the turbine cavity underneath the main tulthe tilttally, thes volume was belfeved to be fooleted, but later information showed that there were various paths by which steain could reach the turbine building. All of these paths have fairly large flow resistances and we judge that the total flow will be small if any other path is opent. However, for leake, some portion of the flow would be drawn down into the annulus and out the steam tunnel. The information to model this is not available and would be very difficult to either calculate or estimate. Sensitivity th is of engirectitg fudgement could be used to assese the impact on uncertainties. The steam tunnel volume was doubled to account for the cavity volume but this was later found to be too low. The turbine cavity is actually about $35,000 \mathrm{~m}^{3}$. For teaks. Whis w111 draw hot steam down trto the lower regione of the reactor building but should not result in significant additional heatup of the corner rooms. For venting and ruptures, the dominant flow paths will not change and, therefore, the enviroments in the reactor bullthig should not be substantially affected
2. At the time these calculations were performed, the drywell was predicted to fall at 12.3 bar (160 psig). More recent analyses by the Nurpe. 1150 expert review group, as described in Appendix C, predicted primary contalrment fallure to occur in the wetwell and at a pressure of $1.41 \mathrm{MPa}(190 \mathrm{psig})$. This difference will not significantly affect expected flow patterns in the reactor building and the resultant threat to equipment.
3. If the doors between the Unic 2 and Unit 1 reactor buildings blow out in more than 1 location, a flow path can form where steam flows from one location in Unit 2, through Unit 1, and back into a secund location in Unit 2. Unit 1 is only modeled as a single volume, so any flow entering it is instantaneously mixed with the entire Unit 1 volune, rather than just mixing in a local region. Thif simpliffeation affects the resul's, but it is probably less influential than other uncertainties in the problem.
4. The results are probably most sensitive to the setpoints of blowout panels and doors. As was discussed in the Results section, the status of these paths greatly affects temperaturcs within the various regions of the renctor buildiag. The actual load the doors could withstand is unknown; we estimated values that seemed reasonable.

6.2.3.4 Conclusions

Because of the level of detail of the model, we were able to examine details of reactor building flow patterns chat have not previously been examined. This level of detall reduced the uncertainty in a number of varlables included in the model that could affect the results of the calculations (e.g. volumes, surface areas, flow path characteristics, and the effects of room cooling) and, therefore, the assessment of equipment survivabillty. The reduction in the number of uncertain parameters and the experience gafted by varying scae of them enables us to better use our engineering judgement to estimate the effects of the remaining parameters.

Por all of the cases examfned, the upper regtons of the reactor building were relatively well mixed. For the $4^{\prime \prime}$ drywell leak case, the blowout panel in the steam tumnel did not open, so the basement rooms were buffered from the blowdown and remained relatively cool. For the 18° vent case, the steam tunnel blowout panel opened, but the walls of the refueling floor did not fail. As a result, steam was drawn down into the basement rooms, giving higher temperatures: For the $36^{\prime \prime}$ rupture case, the stean tume 1 blowout panel was opened and the walls of the refueling floor failed, Although this allowed some of the steam to flow up through the reactor building, a substantial amount was still drawn down into the basement rooms, resulting in relatively high temperatures. Sensitivity calculations for the $18^{\prime \prime}$ vent case showed that heat transfer uncertainties were much less significant than uncertainties regarding possible flow path configurations.

6.2.4 Step 4: Evaluate Equipment Failure Probabilities

The Expert Elicitation Panel for the NUREG- 1150 bevel I issues was supplied with the results of the above severe anvironment calculations for LaSalle and with a list of the types of equipment that appeared in the reactor building and their qualification characteristics. The experts were asked to assess the fallure probability of the different categories of equipment In the various environments. The experts based their evaluation upon their knowledge of test and qualification procedures and results. The results of their anslysis are reported in Reference 5. The actual distributions used in the Lation Hypercube? sauple are reported in the LHS input flle in Appendix D of Volume 2 of this report. However, we note here that ins conditional failure probabilities were in the 0.1 to 1.0 range with wide distributions

As an example, we use the control rod drive (ORD) system and its support systems in the case of a leak from the containment to the reactor building. From the expert ellottation, the values for the fallure probabilities in severe enviromments for the GRD and reactor bullding closed cooling water (RBCCW) proms and control cirenits, the heating ventilation, and airconditfoning (HVAG) system fan and its control olsuit for the CRD room, spurlous operation of a motor operated valve in the servioe water system (SW), and a 480 VAC motor control center are given in Table $6,4$.

Table 6.5 contains the list of equipment evaluated, rough estimates of envikormental qualification, their locations, the expert case used, and the median probability of failure to give a sample estimate for containment leaks, ruptures, and venting. Table 6,6 contains a summary of all the different cases evaluated for each component examined in Table 6.5 and Table 6.7 gives a summary list of the environments examined. In all the tables the tollowing abbrevlations occur: $S O=$ spurious operation, SH short to ground, FTR = fail to run, QT - qualification temperature, 1 and $10-1$ of 10 hour exposure

6.2.5 Step 5. Construct Simplifled System Models.

For each system, the original fault tree models were examined and all equipment in the reactor $k \neq 1 l d i n g$ was identified. For each train, the components which had the highest failure probabilities in the enviromments to which they were subjeet were selected to represent train failure. The full system models could have been quantified since sufficient information was avallable; but, insufficient resources were avallable for full quantification, she probabilities were high and exact probability calculations would need to be done to get accurate answers, and the current level quality of the envirommental, themal-hydraulic, and expert judgement on containment failure and environmental fallure analyses does not really justify that level of effort. Therefore, slmple Boolean models were then constructed for the systems. Failure probabilltirs for the components were selected from the expert fudgement results, and the system fallure

Table 6.4
Sample Severe Envitonnent Evaluation for CRD System

Event	Value (median)	Location (VOL)	Description

The conditional probability of a leak to the reactot bullaing given containment failure is:

LEAKTRB
$=0.2667$ (median)

Table $6.5 a$
Quantification for leaks:

Types of components and environments:

1) CRD pumps FTR $10 \mathrm{hr}, q u a 1=310 \mathrm{~F}$, envir - nominal temp (312)
2) RBCCh pumps FTR 10 hr , qual $=310 \mathrm{~F}$? , envix $=250 \mathrm{~F}(30$)
3) Fan motors FTR 10 ht qual $=355 \mathrm{E} 100$ hum, envir - nominal temp (312-)

4 MOV motors FTR 10 hr, qual $=310 \mathrm{Fq}$, envir $=260 \mathrm{~F}$ ($3 \mathrm{G}-1$) \Rightarrow prob 300 F if leak in wetwell, nominal temp (3 Hl or 311), 280 F (3 E).
5) CRD pump GC FTO 10 ht , qual - 185 F ? , envir - nominal temp (312)
6) RBCCW pump CG FTO 10 kr , qual - 185 F , envix - 250 F (3D)
7) Fan CC FTO 10 hr , qual - 185 F 95 hum, envis - ($312,3 \mathrm{H} 2$) nominal tomp tor leaks on $3 F-1$ from drywell but would be more severe in $3 \mathrm{H}_{2}$ for leaks from the wetwell only one floor above (200-300 F dependiag on lecation of leak, use 240 F). Average the two with a $.58 / .42$ split from expert mode probabllities.
8) Valve GC $\$ 010 \mathrm{hr}$, qual -185 F , envir $-300 \mathrm{~F}(3 \mathrm{G}-1$ and $3 \mathrm{~F}-1)$, nominal temp $(311,3 H 1), 280 \mathrm{~F}(3 \mathrm{E})$, see $\# 7$ above use $240 \mathrm{~F} \star, 42$ +100 F * .58 ($3 H 2$)
9) MCO SH 10 br, qual -340 F thr then 320 F the then 160 F 100 days 958 hum, envir $=250 \mathrm{~F}(3 \mathrm{D}), 300 \mathrm{~F}(3 \mathrm{G}-1)$,
10) ADS valves ETO 10 hr , qual -350 F , envi: $=60 \mathrm{psig}, 308 \mathrm{~F}(3.1)$.
11) ADS valves $1 T 010 \mathrm{hr}$, qual -350 F , envir -195 psig, $386 \mathrm{~F}(3 \mathrm{~J})$.
12) HPCS pump FTR 10 hr qual 310 F , nominal teinp (312).

Teble 6.5 a (Concluded) Quantification for Leaks:

From the expert elicitation, median values are:

Therefore:

```
    CRD1 = 0 + 0 +.4168 +..5517+0+.2510+.7976+.7016
        =.9882
    HPCS}=.5517+0+0+0+0+.4841+.226
        =.8210
        ADS = .0171
        LPCI = .7015
        LPCS = .7015
L.PCI * LPCSS = .7015
HPCS * CRD1 = .5517 + 0 +(0+0+0 +.4841+.2260)* (0+0 +.4168
    +..2310+..7978+.7015)
    -. 8139
```

where sums were combined using $P(A+B)=P(A)+P(B)-P(A B)$.

Table 6.5b
Quantification for Ruptures:

Types of components and environments:

1) GRD pumps FTh 10 hr , qual $=310 \mathrm{~F}$, envir $=$ nominal temp (312)
2) RBGCW pumps FTR 10 hr , qual - 310 F ? , envir - 280 F (3D)
3) Fan motors FlR 10 hr , qual - 355 F 100 h hum envir nominal temp (312)

4 MOV motors FTR 10 hr , qual -310 F , envir $-230 \mathrm{~F}(3 \mathrm{G}-1)$) prob 280 F if rupture in wetwell, 290 F (3H1), y jinal (3I1) , 280 F (3E).
5) CRD pump CC. FTO 10 hr , qual - 185 F ? , envir - nominal temp (312)
6) RBCCW pump GC FTO 10 hr , qual +185 F , envir -280 F (30)
7) Fan CC FTO 10 hr , qual = 185 F 95 hum , env $\mathrm{r}=$ nominal (312), 300 F ($3 H 2$) for rupture on $3 \mathrm{~F}-1$ from drywell would be the same in 3 H 2 for ruptures from the wetwell only one floor above.
8) Valve CC SO 10 hr , qual $=185 \mathrm{~F}$, envir $-285 \mathrm{~F}(36.1$ and $3 \mathrm{~F}-1)$, nominal temp $(311), 290 \mathrm{~F}(3 \mathrm{HI}), 280 \mathrm{~F}(3 \mathrm{E}), 300 \mathrm{~F}(3 \mathrm{H} 2)$.
9) MCC SH 10 hr , qual - 340 F 1 hr then 320 F 1 hr thed 160 F 100 days 95 h hum; envir $-280 \mathrm{~F}(30), 280 \mathrm{~F}(36 \cdot 1)$
10) ADS valves FTO $10 \mathrm{hr}, q u a l=350 \mathrm{~F}$, envir $-60 \mathrm{psig}, 308 \mathrm{~F}(3 \mathrm{~J})$.
11) ADS valves FTO $10 \mathrm{hr}, ~ q u a l-50 \mathrm{~F}$, envir $=195 \mathrm{psig}, 386 \mathrm{~F}(3 \mathrm{~J})$,
12) HPCS punp FTR 10 hr, qual * 310 F , nominal temp (312).

Table 6.5 b (Concluded)
Quantification for Ruptures:

From the expert elicitation, median values are:
FVEHE
CRDP1FTR-SUR-E? -0
where sums were combined using $P(A+B)=P(A)+P(B)=P(A B)$

Table 6.5 c Quantification for Venting:

Types of components and environments:

1) CRD pump pro 10 hr quat 310 f ? envir nominal temp (312)
2) RBCCW pumps FTR 10 hr , qual - 310 F , envir - 250 F (3D)
3) Fan motors FTR 10 hir, qual - 355 F 1008 hum, envir - nominal temp (312)

4 MOV motors FTR 10 hr , qual - 31 F , envir - 240 F ($36-1$), nominal temp (311), 240 F (311), 250 F (3E).
5) CRD pump CC FTO 10 hr , qual - 185 F ? , envir - nominal temp (312)
6) RBCCW pump CC FTO 10 hr , qual - 185 F ?, envir $=250 \mathrm{~F}(3 \mathrm{D})$
7) Fan CC PTO in hr, qual 185 p 959 hum, cruit $=$ nominal (312), 240 $\mathrm{E}(3 \mathrm{H} 2)$.
8) Valve CC So 10 hr , qual - 185 F ?, envir - $250 \mathrm{~F}(3 \mathrm{G}-1$ and $3 \mathrm{~F}-1$), nowtnal temp (311), $240 \mathrm{~F}(3 \mathrm{Hl}), 250 \mathrm{~F}(3 \mathrm{E}), 240 \mathrm{~F}(3 \mathrm{H} 2)$.
9) MCC 5 SH 10 hr , qual - 340 F 1hr then 320 F thr then 160 F 100 days 95* hum, envir - 250 F (3D), 240 F (3G-1).
10) ADS vaives THO 10 hr , quat - 350 F , envit $-60 \mathrm{psig}, 308 \mathrm{~F}$ (3J).
11) ADS valves FTO 10 hr , qual - 350 F , envir - $195 \mathrm{psig}, 386 \mathrm{~F}$ (3J),
12) HPCS pump FTR 10 hr , qual - 310 F , nomtnal temp (312).

Table 6.5 e (Concluded)
Quantification for Venting:

Froie the expert elicitation, median values are:
Evtit:
Quăn 5
CRDPIFTR-SUR•E? $=0$
FFR10, nominal
CRDP1CO-SUR-E? $=0$
Frolo, nominal
PSW175C. - SUR-E? $=.6168 *(1+3 F \cdot 1,30-1$
5010, QT+75 *
SWVYOZCC.SUR-E? $=.7976 \quad 312,3 \mathrm{H} 2$
/FTR10QT-60
FTO10, QI +50
SWVY02LF. SUR-E $=0$
2WRPTITR SUR-E? $=.2510$ 30
FTR10, nominal
FTR10, QT-60
FTO10, QT+80
SH10, QT+100
FTR10, nominal
Sol0, nominal
\$010, QT+50 *
/FTR10QT-60
S010, QT+75 *
/FTR10QT-60
HPCS15SP-SUR-E7 $=.5381 \quad 3 H 1,3 H 2,311$
SO10, QT+50 * 1.0
MC1E3SY2A-SĹR-E? - 6168
SH10, Q1 +75
AtHTEWH1. 5tHR ET - 0
FTO10, QT - 50**18
Therefore:

$$
\begin{aligned}
\text { CRDI } & =0+0+4620+.7976+0+.2510+.7976+.7015 \\
& =.9951 \\
\text { HPCS } & =.7976+0+0+0+.4030+.4620+.5381 \\
& =.9700 \\
\text { CRD1 }+ \text { HPCS } & =.7976+(1+(0+)+.4620+.2510+.7976+.7015 \\
& =.9316 \\
\text { LPCI } & =.6168 \\
\text { LPCS } & =.6163 \\
\text { LPCS }+ \text { LPCI } & =6168 \\
\text { ADS } & =0
\end{aligned}
$$

where sums were combined using $P(A+B)=P(A)+P(B)=P(A B)$.

Table 6.6
Sumary of Severe Enviromments

Component

```
TWw175ce stmeE? - S010, QT+115 * /FTR10, QT+15
SWVY02CC-SUR-E? = FTO10, 58*QT.75+,42*QT+50
2WRPIFTR-SUR-E? - FTR10, QT-60
2WRP1CC-SUR-E? & FTO10, QT+80
2WRMCC1 SUR-E? - SH10, QT+100
HPCS04SP-SUR-E7 = S010, QT+100 * /FTR10, QT-35
HPCS15SP}+5UR-E? = S010, 58*QT-7 2+.42*QT+50)*
    /FTR10,QT-210
EI
MC1-., SYPA-SUR-EP=
ADSI8VAL-SUR-E? *
SH10, QT+150
FTO10, QT+50**18
```

Quantifleation for Ruptures
Quantification for Venting
PSW17SCC-SUR-E? $=\$ 010, \mathrm{QT}+75$ * /FTR10,QT-60
SWYY02CC - SUR - E? $=$ FTO10, QT +50
SWYY02CC-SUR-E? $=$ FTO10, QT +50
2WRPIFTR-SUR-E? $=$ FTR10, QT-60
2WRP1CC-SUR-E? - FTO10, QT+80
2 WRMCG1 - SUR - E? $=\$ \mathrm{H} 10$, QT +100
HPCS23SP-SUR -E? $=$ SO10, QT $+50 * / F T R 10, Q T-60$
HPCSO4SP-SUR-E? $=\$ 010$, QT +75 * /FTR10,QT-60
HPCS15SP-SUR -E? $=\$ 010$, QT+50
MC1E35Y2A-SUR-E? $=$ SH10, QT+75

- E4* (1-E16)
- E23
- E16
- E24
- E10
- E3*(1-E.16)
- E4* (1-E16)
 - E3

Calculational Formula

$=56+(1-418)$
$=.58 * E 22+42 * E 23$
= E .16

- E24
- E10
= E5*(1-E17)
$=(.58 * \mathrm{E} 2+.42 * \mathrm{E} 3) *(1-$
$=\mathrm{E} 1 \mathrm{I}$
= E23**18

Quantifleat on fos Rupturea

```
PSW175CO-SUR-E7 = $01,QT+100* /FTR1,QT+35
```

PSW175CO-SUR-E7 = \$01,QT+100* /FTR1,QT+35
SWVY02CC-SUR-E? =
SWVY02CC-SUR-E? =
2WRPIFTR-SUR-E? - FIR1, QT-35
2WRPIFTR-SUR-E? - FIR1, QT-35
2kRPIOC-SUR-E7 = ITO1, QT+100
2kRPIOC-SUR-E7 = ITO1, QT+100
2WRMCCL-SUR-E? - SH1,QT+125
2WRMCCL-SUR-E? - SH1,QT+125
HPGS23SP-SUR-E? = SO1,QT+100 * /FTR1,QT-10
HPGS23SP-SUR-E? = SO1,QT+100 * /FTR1,QT-10
HPCS04SP-SUR-E? = S01, QT+100 */FTR1,QT-10
HPCS04SP-SUR-E? = S01, QT+100 */FTR1,QT-10
HPCS15SP-SUR - E? = SO1,QT+100 * /FTRR1,QT-10
HPCS15SP-SUR - E? = SO1,QT+100 * /FTRR1,QT-10
MCIE35Y2A SUR-E?-
MCIE35Y2A SUR-E?-
ADS18VAL.SUR E? = FTOL. 2T+50**18
ADS18VAL.SUR E? = FTOL. 2T+50**18
FTO1, QT+115
FTO1, QT+115
\$HL, QT+150

```
$HL, QT+150
```

- E1*(1-E14)
- E21
$-\mathrm{E} 12$
$-\mathrm{E} 12$
- E20
- E7
= E1*(1-E13)
$=$ E1*(1-E13)
$=E 1 *(1-E 13)$
- E8
- E19**18

Quantification for Venting

- E19**18

PSW175CC-SUR-E? $=$ SO10, QT+75 * /FTR10, QT - 60

- E4* $(1-\mathrm{E} 16)$
- E23
- E16
- E24
- E10
-E3* (1-E16)
- E4* (1-E16)
- E3
- E9

Table 6.7
Final Collapsed List of Severe Environments:

Name	Description		Where Found
± 1	- sol	OT +100	Nw\% squpe sot \#5
E2	- S010,	QT-75	NA IDENTICALLY zero
E3	- s010.	CT+50	NEW STUFF SO10 \#3
84	- 5010.	QT+75	NEW STUFF S010 \#4
E	$=5010$.	CT+100	NTM stury sole \#5
E6	- 8010.	QT+1: 5	NEW STUFF Sol0 \#6 (+125)
E]	- SH1,	QT +125	NEW STUFF SH1 \#6
E8	- Sill	QT. 150	NEW STUFF SHI $\#$?
En	- smin $^{\text {a }}$	QT+75	New Stute shlo \#t
E10	- sh2a,	QT +100	NEW STUFF SH10 \#S
E11	- SHIO,	QT+150	NEW STUFF SH10 \#7
E12	- FTR1.	QT. 35	NEW STUFF FTR1 \#4
EH^{13}	- FTR1.	QT-10	NEW STUTF TTR1 \#5
El 4	- FTR1.	QT+35	NEW STUFF FTRI \#7 (+40)
E15	- FTR10.	QT - 210	NA IDENTICALLY ZERO
F'6	- FTR10,	QT 60	NEW STUFF FTR10 \#3
\%.7	- FTR10,	QT-35	NEW STUFT TTR10 \#4
E. 8	- FTR10.	QT+15	NEW STUFF FTR10 \#6
819	- FTVI.	QT+50	NEW STUFF FTOI \#9
E20	- FTO1.	QT+100	NEW STUFF FTO1 \#9 (+50)
E21	- F701.	Qt+115	NEW STUFF +TTO1 \#9 (+50)
E22	- FT010.	QT-75	NEW STUFF FTO10 \#4
E23	- FTO10.	QT +50	NEW STUFF FTO10 \#9
E24	- FTO10.	QT +80	NEW STUFF ETO10 \#9 (+50)

probability was calculated. Since the failure probabilities were mostly above 0.1 , the small value approximation could not be used and exact results were calculated. For example, for the CRD system with one traln operating (CRD1) and contalrment leak, the Boolean equation is

```
CRD1 - (CRDPIPTR-SUR-EF + CRDPICC-SUR-E? + PSW175CC-SUR-E?
    + SWVY02OC-SUR - E? + SWVY02LF-SUR-E + 2WRP1FTR-SUR - E?
    + 2WRP1CC-SUR-E? + 2WRMCCl-SUR-E? )
```

Substituting in the above equation the fallure probabili ess for each event frow step 4

```
CRD1 }=0.0+0.0+0.4168+0.5517+0.0 +
    0.2510+0.7976 +0.7016
    9882
```

where suns were combined using $P(A+B)-P(A)+P(B)-P(A B)$. For this particular system and case, the severe emvironment failure probability is nlmost 1.0 and not much was galned; however, for other systems and cases, the values ranged from no additional fallure probability to 1.0 depending upon the type and location of the equipment, the environment, and the syuten design. Table 6.8 contains a description of the simplified equation used for each system

Because the systems that are available to respond to the survival question re por atially different for each cut set (i,e.. combine ion of component llures that can result In a particular accident sequence), a Boolean eqdation was constructed for each possible combination based upon an examination of the cut sets of the sequences. Each unique combination is defined to be a different survival event. If we sunsider a cut set for which only CRD can operate them:

SUR $-001-\mathrm{L}=$ CRDL * LRAKTRB $=.9882 * .2667 * .2636$
where $5 U R=001 . \mathrm{L}$ is the probability of no iting able to use CRD if contalnment failed in a leak mode and the resulting severe environment failed CRD, since one needs a leak to the reactor bullding in order to get any severe environment failure. We see that, for this example, che conditional probability of a leak to the reactor oullding instead of the refieling floor is very important in determining the final amount of recovery credit that can be given.

The definition of each survival event used in the analysis is given in Table 6.9 in terms of system succerses. In Table 6.10, the fallure equation and an estimate of the probablifty ustng the unedtan values for the severe envirotuant failures and the contaiument fallure is given. The system equations were substituted into the survival event definitions and the Boolean expressions were simplified and then converted to probability equations. Because some of the probablifties are large (1.e., greater than $0.1)$, exact expressions were soped to calculate the probabilities (the

Table 6.8
Systell Models

ADS Systeil

Thit the tybtim has only its main valves and their solenold valves in the peimary containoent. All other components which are necessary for manual operation are in the auxiliary building and not subject to harsh enviroments, There is a nitrogen bottle sta lon also in the auxiliary tuthatng to indeffntte operatton cant be sustalned.

The followis simpified equation is therefore adequate to represent $A D S$ fallure in harsh environments:

ADS-SUR = ADS18VAL-SUR-E?
That is: all 18 SRVs must fail in order to fail ADS. This must be evaluated for venting at 60 psig or containment fallure at about 195 psig .

Table 6.8 (Gont inoed)

 Systew Models
CL. System

The eomponents in the conderisate systes are located throughout the turbine bullding Even if the steam geti into the turblne building for this syates 10 be operatiog the building HVAG will likely be working since all power will be avallable. The expected environments for the lower levels Into which outside air is being forced, thould be mild. Therefore, only randoin failure is expectod. However, Bince fOS has failed, makoup from the CST is neoded for continued operation. The limiting ratudom fatlure is fallure of 1 A supply to the thakeup valves. By examining the system cut gets this tame Thire is 6 पे:-2. Fallure of any comptessor will result In Bufflefent froul $\quad \because \pm 4 .^{3}$ on to close the valve. Because of the long
 means that th loftyo an meality is doninated by operator fallute to
 the low iE 3 ragge than mote tn the 5E-5 range. Thetefore, CDS fallure can be create 3 as rameme and we will use qperator fallure to be the dominant fallure:

ODS-MALL $=$ OPERFCDSTW $=2.15-03,10 \mathrm{~g}-$ notual, KF-10, Group 2 action

Table 6.8. (Cont inued)
System Models

CRD Systen

If the GRD system is alceady running then the following equation represents the dominant system fallures?

```
CRD2R-SUR - (ORDP1HTR-SUR-E? + CRDP1OC-SUR-E? ) *
        CRDP2FTS-SUR-E? + CRDP2FTR-SUR-E? + CRDP2CC-SUR-E? )
        + PSW1750G-SUR-E? * /PSW175LP-SUR-E? +
        SWVY02CC-SUR-E? + SWVY02LF-SUR-E? + ( 2WRP1FTR-SUR-E?
        + 2WRPLCC-SUR-E? + 2WRPLCB-SUR-E? + 1E34XPMCC-SUR - E?
        + 1ET34XBTR-SUR-E? + 1EB234BBK-SUR-E?) * (
        1E233TXTR-SUR-ET + 1EB233ABK-SUR - E? + 2WRP2FTS -SUR-E?
        + 2WRP2FTR-SUR-E7 + 2WRP2CC-SUR-E?)
```

The equation we used to approximate the system probability for all cut sets where at least one train of CRD is working was

For Lerks

GRDIR-SUR $=$ (GRDPIFTR-SUR-E? + CRDP1CC-SUR-E? + PSW17SCC-SUR-E?

+ SWVYO2CC-SUR + E? + SWVYO2LF-SUR-E + 2WRP1FTR-SUR-E?
+ 2WRPICC-SUR-E? + 2WRMCC1-SUR-E?) * LEAKTRB

For Ruptures

```
CRDIR-SUR = (GRDP1FTR-SUR-E? + CRDPICO-SUR-E? + PSWI7SCC-SUR-E?
    + SWYYO2CC-SUR-E? + SWVYO2LF-SUR-E + 2WRPIFTR-SUR.E?
    + 2WRPLCO-SUR-E? + 2WRMCQL - SUR-E? ) * RUPTURETRB
```

For Venting

```
CRDIR-SUR = CRDP1FTR-SUR-E? + CRDP1CC-SUR - E? + PSW175CC-SUR-E?
    + SWVYO2GO-SUR-E? + SWVY02LF-SUR-E + 2WRP1FTR-SUR-E?
    + 2WRPIOC-SUR-E? + 2WRMCCL - SUR - E?
```

The only components in the reactor building needed to operate in this mode (one pump minimum flow at $>x$ hrs) are the pumps and their control circuits, the amplice water supply MOV wilich could spurfously close, the foom cooling fan control circuit, the RBCCW pumps and their control circuits, and the electrical power support through an MCC, transformer, and clrcuit breaker (the transformer and circuit breaker are in the MCC). All other components are: (1) in the auxiliary or DC building and not subject to harsh eriviromments, (2) in the main turbine bullding area where some mild environmental changes are expected, or (3) in the HFCS room (5D2) which is isolnted from atry harsh environment. The CRD pumps are in 312 , the CRD control circuits are in 312, the fan control circults are in 3H1 and 3 H 2 , the service water valve is in $30-1$ with $0 C$ in $30-1$ and $3 \mathrm{~F}-1$, the RBCCW pumps and MCO electrical support are in 3D

Table 6.8 (Continued)
System Models

Firewater System
This systew is in the turbine building and will be doininated by operator fallure to start. Success is unlikely unless started before contadment failure since soine steati will be in the turbine building after containment failure. There are no active valves of other support systems needed; so failure is dominated by operator fallure to align. The following equation can be used to quant lfy DDFW

DDFW-FAILS - OPERFDDFW $-0.12, \log$-normal, EF=7.8, Group 10 action.
\$ysterm Models

```
HPCS System
Since the HPCS system is a single train system, it can be represented by
the following equation:
For Leaks
HPCS-SUR = (SWVYO2LF-SUR-ET + SWVYO2CC-SUR-E? + HPCSPFTR-SUR-E?
    + HPCSO1SP-SUR - E? + 1FPCS23SP-SUR-E? + HPCSO4SP-SUR-E?
    + HPCSISSP-SUR-E? ) * LEAKTRB
For Ruptures
HTCS-STR - SWVYO2LF-SUR-E? + SWVYO2CC-SUR-E? + HPCSPYTR-SUR-E?
    + HPOSO1SP-SUR-E? + HPCS23SP-SUR-E? + HPCSO4SP-SUR-E?
    + HPGS15SP-SUR-E? ) * RUPTURETRB
Foz Vonting
HPOS-SUK = SWVYO2LF-SUR-E? + SWVYO2GC-SUR-E7 + HPGSPFTR.SUR-E?
    + HPCSO1SP-SUR-E? + HPCS23SP-SUR - E? + HPCSO4SP-SUR - E?
    + HPCS15SP-SUR-E?
```

The f an is in its own housing and sees the environment in the HPCS room 312 and $3 H 2$ (This is the same fan as for CRD), valve 23 and control ofreuit are in 3ill, valve 1 and control circult are in 311 , the pump is $[\mathrm{n} 312$, valve 4 and control circuit are in 3 E , and valve 15 is in 311 with its control circuit in $311,3 \mathrm{H}$, and 3 H 2 .

Table 6.8 (Continued)

System Models

1.FCI System

The L.PCI system is a chree train systen in which two trains are in the same roor Since the rooms are normally is lated except in the rupture case, the mont susceptible components are the room HVAC power supplies on the 710^{\prime} level of the reactor building (even in the case of a rupture, these are still the most limiting). The system failure can therefore be represented by the following equation:

LPCI-SUR = MCC1E35Y2A-SUR-E? * MCC1E36Y1B-SUR-E? .

The two MCCs are identical and can be said to be ompletely correlated, The envixomment they see will also be the same. As a result, we approximated the syotem Iallure by using only one of the MOCs and sald that the second falled if the first falled. For most of the dorinant cases this was also reasonable since only one of the trains was operating due to partial losis of $A C$ power or randon fallure of the other traiti. The MCC used is the same MCC that powers L.PCS.

For Leaks
LPCI-SIR $=$ MCC1E35\%2A-SUR-E? * LEAKTRB

For Ruptures:
LPG1-SUR $=$ MCO1E35Y2A-SUR-E? * RUPTURETRB

For venting :
LPCI-SUR $=$ MCO1E35Y2A-SUR-E?

For failure due to valve cycling only
$\mathrm{LPCI} \cdot$ SUR $=\mathrm{LPCIC}$

Table 6.8 (Cont inued)
System Models
L.PCS System

Since the LPCS system is a single train system, it can be represented by the following equation

LPCS-SUR - NEHVACF-SUR-E? + NEHVACFCC-SUR-E? + NEHVACBR-SUR-E? + LPCSO15P-SUR - E? + LPCS12SP-SUR-E? + LPCSPFTR-SUR - E? + LPCSPCC-SUR-E? + LPCSOSFTO-SUR-E? + CSCS35SP-SUR-E? + MCC1E35Y2A-SUR -E? + CSCSBR-SUR - E? + LPCSN413-SUR-E? .

However, the LPGI and LPCS systems limiting components are the MCCs on the 710^{\prime} level in the reactor bullding and these systems can be approximated by only one term (we used the common MCC for l.PCS and train A of LPCI, see discussion under 1.PCI)

For Leake
LPGS.SUR - MCCIE3SY2A-SUR - E? * LEAKTRB
For Ruptares
LPOS - SLR - MCClE $35 \mathrm{Y} 2 \mathrm{~A}-$ SUR - E? * RUPTURETRB
For Venting
LPCS - SUR $=$ MCC1E $35 Y 2 A-$ SUR $-E ?$

```
Table 6.8 (Concluded)
    System Models
```

MFW System
As with the CDS system, the main feedwater system does not have important components in the reactor building. The main components are in the turbine building where the environments are expected to be fairly mild and not result in a significant increase over the random fallure rates. For this analysis. main feedwater failure was conservatively estimated as IE-02 and was only used in ATWS sequences since, for non-ATWS transients, if feedwater is working no core damage results

Table $6.9 a$

Basic Event Name of Survival Question
for Containment Leak Sequences

Banic Event Name
sure :001:-
SUR-002-L
SUR-003-1.
SUR-004-1
SUR -005-L
SUR-006-L

Equipment avallable
~601
HPCS
HPCS + CRD1
CDS
HPCS + CRD1 + CDS
HPCS + CDS

Table 6.9 b
Basic Event Name of Survival Quer 10 n
for Contalnment Venting Sequen is

Basic Event Name Equipment Avallable


```
SUR-002-V
SUR - 003-V
SUR-004-V
SUR-005-v
SUR-006-V
SUR -007 - V
$UR.008 - V
```


CRDI + ADS * (DDFW + CDS + LPCI)
CRD1 + ADS * (DDFW + CDS + LPCS)
CRDI + ADS * (DDFW + CDS + LPCI + LPCS $)$
HPCS + ADS * (DDFW + CDS)
HPCS + ADS * DDFW
HPCS + DDFW
HPCS + DDFW + ODS

Table $6,9 \mathrm{c}$
Basic Event Name of Survival Question
for Containment Rupture Sequences

Basle Event Name
Equipment Avallable

```
Str-001-8
SUR=002-R
SUR-003-R
SUR-004-R
SuR=005-R
SUR-006-R
SUR-007-R
SUR-008-R
SUR-009-R
SUR-010-R
SUR-011-R
SUR-012-R
SUR-013-R
SUR-014-R
SUR-015-R
SUR-016-R
SUR-017-R
$UR-018-R
SUR-019-R
SUR-020-R
SUR-021-R
SUR-022-R
SUR-023-R
SUR-024-R
SUR-025-R
SUR-026-R
SUR-027-R
SUR=028-R
SIJR-029-R
```

```
CRDI + 1PCS + DDFW
```

CRDI + 1PCS + DDFW
LPCS + DDFW
LPCS + DDFW
CRDI + LPCI + DDFW
CRDI + LPCI + DDFW
CRD1 + LPG1 + LPCS + DDFW
CRD1 + LPG1 + LPCS + DDFW
LPCI + DDFW
LPCI + DDFW
LPCI + LPCS + DDFW
LPCI + LPCS + DDFW
CRD1 + CDS + LPCI + DDFW
CRD1 + CDS + LPCI + DDFW
CRD1 + CDS + LPCS + DDFW
CRD1 + CDS + LPCS + DDFW
CRD1 + CDS + LPCS + LPCS + DDFW
CRD1 + CDS + LPCS + LPCS + DDFW
CDS + DDFW
CDS + DDFW
CDS + LPC1 + DDFW
CDS + LPC1 + DDFW
CDS + LPCS + DDFW
CDS + LPCS + DDFW
CDS + LPC1 + LPCS + DDFW
CDS + LPC1 + LPCS + DDFW
CRD1 + ADS * (DDFW + CDS)
CRD1 + ADS * (DDFW + CDS)
CRD1 + ADS * (DDFW + CDS + LPCI)
CRD1 + ADS * (DDFW + CDS + LPCI)
CRD1 + ADS * (DDFW + CDS + LPCS)
CRD1 + ADS * (DDFW + CDS + LPCS)
CRDI + ADS * (DDFW + CDS + LPCI * LPCS)
CRDI + ADS * (DDFW + CDS + LPCI * LPCS)
GRD1 + ADS * (DDFW + LPCI + LPCS)
GRD1 + ADS * (DDFW + LPCI + LPCS)
CRD1 + ADS * (DDFW + LPC1)
CRD1 + ADS * (DDFW + LPC1)
CRD1 + ADS * (DDFW + LPOS)
CRD1 + ADS * (DDFW + LPOS)
HPCS + CRD1 + ADS * (DDFW + CDS)
HPCS + CRD1 + ADS * (DDFW + CDS)
HPCS + CRDI + ADS * DDFW
HPCS + CRDI + ADS * DDFW
HPCS + ADS * (DDFW + CDS)
HPCS + ADS * (DDFW + CDS)
HPCS + ADS * DDFW
HPCS + ADS * DDFW
HPCS + CRDI + DDFW
HPCS + CRDI + DDFW
HPCS + CRD1 + CDS + DDFW
HPCS + CRD1 + CDS + DDFW
HPCS + DDFW
HPCS + DDFW
HPCS + DDFW + CDS
HPCS + DDFW + CDS
CRD1 + CDS + DDFW

```
CRD1 + CDS + DDFW
```

Table 6.9d
Basic Fvent Name ef Survival Question
for Containment Failure in ATWS Sequences

Basic Event Name. Equipment Avallable

$\text { UR }-002 \cdot A \text {. }$

MTM + ITMCs
HPCS
HPCS + ADS * (LPCS * LPCI)
HPCS + ADS * (LPCS * LPCI)
ADS * (LPCS + 1.PCD)
SUR-001-A-C
LPCIC

Table 6.:0a
Fallure Equatlons for Survival tvents for Leaks

```
SUR-001-L * CRD1 * .9882 * . 2667 * .2636
SUR-002-L = HPCS = 8210* .2667 = . 2190
SUR+003-1 = HPCS * CRD1 = .8139 * .2667 * .2171
SUR-004-1 = CDS =2.1E.3* .2667 = 5.6E.4
SUR-005-L = HPCS * CRD1 * CDS * .2171 * 2.1E-3 - 4.559E-4
SUR.006-L = IPOS * CDS = .2190 * 2.1E-3 = 4.599E-4
```

Table 6.10 b
Paflure Equathont for Survival Evints for Ruptures

```
SUR-001-R = CRD1 * LPCS * DDFW * .9844 * 8243 *.6220 * . 12
    -.0651
```



```
SUR=004 -R = CRDI * LPPCI * LPCS * DDFW = .0651
SUR-007 R R CRD1 * CDS * LPC1 * DDFW = .9844 * .6220 * 8243 *
    2.1E+3-1.054E-3
StTR 000 - - = CRDI * CDS * LPCD * DDtw = 1.054E-3
SUR.009.R - CRD1 * CDS * LPC1 * LPCS * DDFW - 1.054E - 3
SUR-010-R = CDS * DDFW - 2.1E-3 * ,8243-1.718E-3
SUR 014-R = CRD1 * (ADS + CDS * DDFW ) = .9844 * . 8243 *
    (.00125 + 2.1E-3 ) - 2.733E-3
SUR-015.R = CRDI * (ADS + CDS * DDFW * LPCL ) = .9844 * 8243
        * (.00125 + 2.1E.3 * .2.220) = 2.147E.3
SIR -01G - = CRDI * ( ADS + CDS * DDFW * LPGS ) - 2.147t 3
SUR 017-R = CRDT + ( & %S + CDS * DDTW * TPCS * LPCI )
    =2.14/E-3
SOR-078-R = CRD1 * (ADS + DDFW * 1.PG1 * LPCS ) - 9844 *.8243
        * ( .00125 + .12 * .6220) - 6.246E-2
SOTR 019-1 - CRD1 * (ADS + DNTW & 1PC1 ) = 6.246E-2
SUR.020-R = GRD1 * ( ADS + DDFW * LPCS ) - 6.246E.2
SUR -021-R - 11PCS * CRD1 & ( ADS + DDFW * CDS ) = . 8774 *.8243
        * ( .00125 + 2, 1E - 3) = 2.342E-3
StR - 022-R = HPCS * ORD1 * (aDS + DDFW ) = .8774 * 8243 * (
        .00125 + .12 ) - 8.784E-2
501% t193 -t% = ttPes * (A05 子 D01% * CDS ) = 9917 * 8244 * (
        .00125+2.1E-3) - 5.856E-3
STRE-024-R = HPCS * (ADS + DDFW) - .9317 * .8243 * (.00125
        + 12) = 4.369E-2
```



```
        -8.979E-2
SUR-026-R = HPCS * CRDL * DDPW * CDS - .9317 * .9844 *.8243 *
    2.1E-3 - 1.581E-4
SUR-027-R - HPC5 * DD - - .9717 * .8243 * .12 - 9.174E-2
SUR-028-R = HPCS * DDFW * CDS =.9317* .8243* 2.1E-3
    -1.620E-4
SUR 029.R = CRD2 * CDS * DDPW - .0844 * 8243 * 2.18-3
    - 1.698E-4
```

```
SUR-001-V * CRDL * (ADS + DDFW * CDS ) = .9951 * (0 + 2.1E-3)
SUT-002-V = CRDI * ADS + DDFW * CDS * TFCI ) - .9951 * (0) क
    2.1E-3 * .6168) - 1.3E-3
SUR-003-V * CRD1 * ( ADS + DDFW * CDS * LPC1 ) - 1.3E-3
SUR=004-V = CRD1 * (ADS + DDFW * CDS * LPC1 * LPCS ) = 1.3E.3
SUR-005.V = HPCS * ( ADS + DDFW * CDS ) = .9700 * ( 0 + 
    2.1E-3)=2.0E-3
SUR-006-V = HPCS * (ADS + DDFW ) = .9700 * (0 + .12)
SUR-007-V = HPCS * DDFW = .9700 * .12 = 1.2E-1
SUR-008-V * HPCS * DDFW * CDS = .9700 * 2.1E.3 - 2.0E-3
```

Table 6.10d
Fallure Equations for Survival Events for ATWS

```
SUR-001-A-L = MFW * HPCS = .01 * . 8210 *.2667 = 2.2E-03
SUR.002 - A L = HPCS = B210* .2667 = 2190
SUR.001-A.R = HPOS * (ADS + LPCS * LPFCI ) - . 5317* * (1.25E.03 + .6220)
    * . 8243 = . 4787
SUR-001 - = V = HPCS * (ADS + LPCS * LPCI ) - .9700* (0+ .6168) - .5983
SUR.002-A.V =ADS + LPOS * L.PCI =0 +.6168 = .6168
SUR-001-A-C = LPCIK =
```

equations used to calculate the probabilities can be found in Appendix D of Volume 2 of this report in the LHS extender code listing)
6.2.6 "t 6: Resolve Core Vulnerable Sequences

The venting system fault tree was evaluated and its success and failure were "ande i" to each relevant sequence. This resulted in two sequences one in which venting was a success and the other in which venting had falled. For the sequence in which venting had falled, two events representing contalnment failure by leak and rupture ere added and two sequences were oreated. In one, the contairment falled by leak and, in the other, the containment failed by rupture. For each of the three sequences thus created (as defined in the step 1 discussion above), the individual cut sets were examined and the approprlate survival event from Table 6.9, ropresenting the systems which were avallable to respond, was chosen and added to the out set. The sequence was then quantified

The use of the above method fives a point estimate of the Level 1 core damage frequency. To get an evaluation of the uncertainty, a latin Hyperoube sample (1.e., a stratified Monte Carlo sample) must be formed using the distributions not only for the component failure data commonly used thut also for the containtent fallure locations and modes, the equipment failure probabilities in severe environments, and, if there was a large uncortalnty in the envixonments, the ranges of the environments. The sequences with the added venting, cantainment fallure, and survival events were then evaluated multiple tines using this latin Hypercube sample and the TEMAC? code, The result is an uncertalnty distribution for each sequence and/or the total core damage frequency that incorporates tne uncertainty not only of the random failure distributions for the basic component fallures, but also of the uncertainty in phenomena and equipment response to these phenomena, see Chapter 7 of this report and the integrated results presented in Volume 2 of this report.

6.3 Conclusions

The use of expert fudgement based upon varlous supporting calculations Allowed us to resolve core vulne-able sequences in a much more realistic and less conservative way than by simply assuning failure

By applination of a systematic precedure, the underlying parameters or processes contributing to the umortainty in the issue were delineated much nore explicitly than has heen done in the past. The underlying assumptions and expert judgement that were used to quantify the issue for the PRA are delineated such that people wanting to review the PRA or use it can clearly understand the 1 imitations and areas of applicability

The uncertainty in the current state-o nowledge in both PRA modeling and thermal-hydraulic analyses was explicitly incorporated into the PRA, and its importance to the final results calculated

A simplifled version of this methodology was used in the NUREG-1150 analysis of the Peach Bottom plant
6.4 Interface With Level 11/LIL. Analysis

Because the Level $11 / 111$ analysis evaluates the possibility of containment fallure and uses the location, size, and time of failure to calculate the radioactive release to the environment; the same contaiment failure modes funt be used in order 10 calculace the contalnment and system Fallure probabilities in the Level 1 analysis and pass these values in a consistent fashion to L.e Level $11 / 111$ analysis. in order to maintain consistency, fox each Level I sample, we will sample the contalnatit fallure pressure (even though this is certain for the Level I sequences of interest, the actual failure pressure will impact the mode of containment fallure and Will also be used iti the level 11 analysis for sequences which had core damase in the level 1 analysis but do not have containent fallure until later). The same user function (FORTRAN subroutine used in the acciden. progression event tree, APET, in the level 11 analysis to calculate the contalfment fallure mode) used in the APET was used in the level i analysis. For the level 1 andlysis only slow pressurization cases are important (for the level II analysis, explosive or very rapid pressure increases are also possible) The result is that, for each sample, the samb contalnment failure pressure, location, and size and the same environmental fallure probability for the system components and survival events is used in both the level 1 and level 11 analyses

References

R. J. \#ieeding. R. T. Harper, T. D Brown, J. J. Gregory, A. C. Payne Jr., E. D. Gorham, W. Murfin, and C. N. Amos, "Evaluation of Severe Aocident Rlaks: Quantification of Major Input Parameters Expert's Determination of Structural Response Issues, "NUREG/CR 4551 Vol 2, Rev, 1, Part 3, SANDS8-3313, Sandia National Laboratories, Albuquerque, NM, March 1992.
R. M, Sumers, R. K. Cole, If., E. A. Boucheron, M, K. Carmel, S E. Dingman, and J. E. Kelly, "MELCOR 18.0: A Computer Code for Nuclear Reactor Severo Accident Source Term and Risk Assessment Analyses," NUREG/CR-5531, SAND90-0364, Sandia National taboratories, Albuquerque, NM, January 1991.
3. S. E. Dimgman, C.J. Shatter, A. C. Payne Jr., and M. K. Carmel "MELGOR Aralysis for Accident Progression 1ssues," NUREG/CR-5331 SAND89.0072, Sandia National Laboratories, Albuquerque, NM, Jar y 1991

[^3]5. T. A. Wheelar, S, C. Hora, W. R, Cramond, and S. D, Unkin, "Analysis of Core Damage Frequency: Expert Judgment Elicitation on Internal Event Issues; Part 1 . Expert Panel, and Part 2. Project Staff," NUREG/CR-4550, Revision 1. Volume 2, SAND86-2084, Sandia National Laboratorlis, Albuquerque, NM, December 1988.
6. R. L. Iman and M. J. Shortencarier, "A FORTRAN 77 Program and User's Guide for the Generation of Latin Hypexcube and Randoll Samples for Use With Computer Mode1s," NUREG/CR-3624, SAND83-2365, Sandia National Laboratories, Albuquerque, NM, March 1984.
7. R. L. Iman and M. J. Shortencarier, "A User's Guide for the Top Event. Matrix Analysis Code (TEMAC), "NUREG/CR-4598, SAND86-0960, Sandia Natlonal Laboratorles, Albuquerque, NM, August 1986

RESULTS OF THE INTERNAL EVENTS ANALYSIS

1 pominant Sequences

Fifty-four sequences survived the initial screening process described in Chapters 3 and 4 . For each of these sequences, the cut sets were individually examined and the appropriate recovery and survival e onts were determined and added to the cut sets as described in Chapters 5 and 6 . The basle event data was reviewed and modifled as described in Volume 5 of this report and the sequences were requantified. No sequences or cut sets that survived the initial screenling process were truncated for this final quantification. If some cut sets were determined to be unphysical, an event RA. DELETE was added to them so that the cut set frequency would be zere The cut set remained in the cut set file so that the final disposition of all cut sets could be traced

Table 7.1 lists all of the sequences that survived the screening process The sequences are ordered from most dominant to least dominant as dofermined by the mean value from the TEMAC1 calculation. Also shown are the Sth percentlle, median, 95 th percentile, the point estimate, the fractional contribution to the total internal core damage frequency, and the cumulative contribution to the total internal core damage frequency. The last two rows show the algebralc sum of each colum and the results of the integrated evaluation.

The wean core damage frequency for internal events is $4.41 \mathrm{E} \cdot 05 / \mathrm{R} \cdot \mathrm{yr}$, for the LaSalle plant. The lower 5 th percentile $-2.05 \mathrm{E} \cdot 06 / \mathrm{R} \cdot \mathrm{yr}$. , the median $=$ 1. 64E-05/R-yr and the 95 ch percentile $-1.39 \mathrm{E}-04 / \mathrm{R}-\mathrm{yr}$. The mean core damage frequency is low considering that this is the first time a PRA has been performed on the plant. Typical core damage frequencies obtained in the past for first time PRAs have been in the low $1,0 \mathrm{E}-4 / \mathrm{R}-\mathrm{yr}$, range. This is usually due to the identirication of some dosign and construction errors that result in a loss of redundancy and some core damage sequences with high freguet. - 85 of occurrence, The LaSalle plant, being a modern BWR design, has H ighly redundant and indepondent systems which tends to ameliorace these types of problems. While some design faults were found in the analusis, none were of sufficient severity to result in sequences with high core danage fi-quenofes

The dominant sequence is T 100 which contributes 64.18 of the core damage frequency from internal events. In this sequence, we have a transient Inttiator followed by successful scram and SRV operation. All high and low presenve 4 metection sustems fatl and core damage onsures. The cut sets fall Into two groups: (1) an early core damage scenario where all AC is lost initially and reactor core isolation cooling (RCIC) fails and (2) a late core damage scemario where $A O$ works for a whlle and then falls. For the late scemarto we have about 10 hours for recovery actions to be completed For the early scenario we have about 80 minutes

 \rightarrow 名保

\qquad
\qquad

\qquad

[^4]The second most dominent sequence is T62 whioh contributes 14.68 of the Gore danage frequency frow internal events. In this sequence, we have a transient inltiator followed by successful scram and safety relief valve (SRV) operation. All high pressure infection except RCIC fails and containiment and primaty system heat removal fall. The automatie depressurdsation (ADS) system works but the low pressure systems are falled. The overall time avallable to the operators to perform their recovary actions is spproximately 2 hours. In some cases (e,g., restoring offaite power when a diesel generator ($D C$) has run for some perlod of time) more time is avallable. The amount of time available depends on the faliures that constitute the out set and what recovery action is betng considered

The third most dominant sequence is T18 which contributes 11.18 of the core danage frequency from internal events. In this sequence, we have a translont inftlator followed by successful scrais and SरV operation. The maln feedwater (MFW) systemif falls but high pressure core spray (HPCS) and one train of the control rod drive (CRD) system work providing high pressure infection. The normal contalnment and primary heat removal bystems fall, and venting fails. Contaimont pressure increases until a leak developa. Depending apon its location, this leak will produce an environment which could cause injection systems that are operating or that may be able to operate to fail. The overall time avallable to the operators to perform their recovery actions is approximately 27 ours . In some casen (e.g., venting) less time is avallable. The amount of floe avallable depends on the fallures that constitute the cut set and what recovery action is being considered.

The fourth most domfrant sequence is $T 20$ which contributes 2.98 of the core damage frequency from internal events. In this sequence, we have a transient inflator followed by successful sicram and SRV operation. The main feedwater system falls but HPCS and one train of the CRD system work providing high pressure infection. The normal containment and primary heat removal systems fail, and venting tails. Containment pressure increases until rupture occurs Depending upon its location, this rupture will produce an environment which could cause injeoticn systems that are operating or that may be able to operats to fail. The overall time avallable to the operators to perform theif recovery actions is approximately 27 hours. In some cascs (e.e., venting) less time is avallable. The amount of time avallable depends on the fallures that constitute the cut set and what recovery actlon is being considered.

The fifth most dominant sequence is $T 22$ which contributes 2.5 of the core damage frequency from internal events. In this sequence, we have a transient initiator followed by successful seram and SRV operation. The main feedwater system and the CRD system fail but the HPCS syster works providing high pressure infection. The normal containment and primary heat removal systens fall, and venting fails. Containment pressure increases until a leak develops, Depending upon Its location, this leak will produce an envixonment which could cause in tion systems that are operating or
that may be able to operate to fail. The overall time avallable to the operators to perform their recovery actions is approximately 27 hours. In some cases (e.p., venting) loss time is avallable. The amount of time avallable depends on the failures that cotistltute the cut set and what recovery action is being considered

The sixth most dominant sequence ls $\$ 16$ which contributes 0.978 of the core damage frequency from internal events. In this sequence, we have a transient initiator followed by successful scram and SRV operation. The aain feedwater system fails but HPCS works providing high pressure infection. The noomal containment and prim sy heat removal systems fail, but the operators are able to vent. Swesessful venting produces an enviroment which may cause injection systems that are operating or that may be able to operate to fall. The oveiall tith available to the operators to perform their recovery actions is approximately 27 hours. In some cases (e, g. . performing venting) less time is avallable: The amount of thie avallable depends of the fallures that constitute the cut set and what recovery action is being considered

The seventh most doninant sequence is Tl01 which contributes $0.55 *$ of the core damage frequency from internal events. In this sequence, we have a transient Initiator followed by successful scram and SRV operation. A11 high pressure injection fails and ADS falls so jow pressure systems are not avaliable. Core damage begins in about 80 minutes.

The eighth most dominant sequence is 124 which contributes 0.508 of the core damage frequency from internal events. In this sequence, we have a transient inftiator followed by successful scram and SRV operation. The main feedwater system and the CRD system fail but the HPCS system works providing high pressure infection. The normal containment and primary heat removal systems fall, and venting fails. Containunent presfure increases until a rupture occurs. Dr.ending upon its location, this rupture wlll produce an environment which could cause injection systems that are operating of that may be able to operate to fail. The overall time available to the operators to perform their recovery actions is approximately 27 hours. In some cases (e.g., venting) less time is available. The amount of time available depends on the failures that constitute the cut set and wha recovery action is being considered

The nir a most dominant sequence is TL12 which contributes 0.4% of the core damage frequency from internal events. In this sequence, we have a transio it initiator followed by a successful scram. The SRVs open but one or mol 12 reclose when required (i.e., they stick open), resulting in a $t=$ dest-induced LOCA. The main feedwater system fails but HPCS works prow, ing high pressure injection. The normal containment and primary heat removal systems fail, but the operators are able to vent. Successful venting produces an environment which may cause injection systems that are operating or that may be able to operate to fail. The overall time available to the operators to perform their recovery actions is approximately 27 hours. In some cases (e.g., performing venting) less time

Dominant Gut Secs for Integrated Evaluation

In order to ohtain an integrated result or internal events, all of the cut sets from all of the sequences were merged together to form one large expression representing the total internal core damage possibilities. A point estimate TFMAC run was made and the cut oats were truncated at 998 for the uncertainty calculations Originall re were 11,452 cut sets and after truncation 3589 cut ats remainer full results of the uncertainty calculation are inclurted in Appet. , only selected resulis are described in this and following sections.

Table 7.2 IIsts the top fourty-six cut sets from the integrated calculation. These cut sets account for 72.5% of the total core damage frequency from internal initiators.

The two dominant cut sets are short-term station blackouts resulting from a loss of offsite power followed by a common mode failure of the core standby cooling (CSOS) system cooling wator pumps which falls the diesel generators and emerge,ucy core cooling systems' (BCCS) room cooling. In the dominant cut sat, responsit'e for 21.28 of the core damage frequency, the RCIC inboard isolation valve closes due to a sneak circuit that oceurs when offsite power is lost and the emergency DGs are started. The operator fails to reopen the valve in the short time between the DGs starting and then falling soon after due to the loss of cooling and, since the isolation valve is AC powered, it onn not be reopened. Offsite power is not restored Within 1 hour and core damage results after primary coolant boilaff in abou" 80 minutes.

In the second cut set, also responsible for 21.38 of the core damage frequency, the valve isolation occurs because RCIC room cooling has failed and the room heats up to the isolation tomperature. In an event where all $A C$ power has failed immediately, this high temperature isolation is bypassed and RCIC would continue to work. However, in this case, AC power works for some period of time until the DGs fail on loss of cooling. RCIC is on train A and, if the train A diesel fails betore the train B diesel then the RCIC room tempurature will Iise on loss of roon cooling and RCIC will isolate since train B AC power is avallable. When train B AC power is then lost, the valve can not be reopened. This event was conservatively modeled as always resulting in isolation. This clearly is not the case, since: (1) some of the time the train B DG will fail before the train A DG, (2) the operator may reopen the valve before the train B DG fails, (3) the time interval between the train A and train B DG failures may not be sufficfent for the room to reach the isolation temperature, or (4) the RCIC system could be isolated from the sneak circuit described above

The third cut set, responsible for $2,3 \%$ of the core damage frequency, is similar to the fixst two except that RCIC continues to work. RCIC fails at about 6 hours when either the battery depletes or the containment pressure results in isolation of the steam discharge line. Core danage accurs about hours after the loss of all injection at about 8 hours. The top three
（IAE FIRST COLNS OF SINEERS IS THE LISE STMGERS FOR THE FLLV TEMACSETS DNF）

＊IE－LOSP
＊IE－LOSP
＊IE－LOSP

$*$| IE－I101 |
| :--- |

4	＊	\％	\％	a
\％	18	49.	告	g
B	12		x	$\frac{y}{2}$
星	草	$\frac{6}{2}$	$\frac{d}{5}$	8
481	H2	＋1	101	建

4
$\frac{4}{3}$
$\frac{1}{3}$
6
DGEOOL PNS－OM
DCOOOL－27S－20
DOCOOL－PWS－CM
D3COOL－PMS－CN
$\operatorname{sacocs}-\mathrm{Pes}-21$
DOCOOL－RNS－OS
DGCDEC－EWS－OT
Dacool－RHS－CM
Docoos－pus－ay
DOCOOL－PUS－CM
DGX－GEN－CM－FTS
DOCDOL－PTS－CT
2SCDS50PETMCENT 4
$\frac{4}{2}$
$\frac{1}{4}$
$\frac{1}{3}$
$\frac{1}{8}$
8
$3 A-8-1$ 1
RA－$\theta-15$
$D G 0-G E N-1 F-F T S$
RA－$B-1$－
BATI－ETDE

APD3E82－ROC－LFO

 1
3
$\frac{8}{4}$
a
$\frac{3}{6}$
a

2	2	5	6．60E－66	0.21235	DGCDOL－EETA
3					RA－8－18
4	1	5	5． $508-06$	0．42676	DCCOCL－EETA
5					PCICRAYCOOL－FLAG
6	3	4	7．232－07	0．44763，	DOCOOL－EETA
5	4	5	4．58E－77	0．4．8267	DGCOCL－BETA
5					RA－NONE
9	9	5	4．54E－07	［8．4772\％	J9C001－BETA
10.					PA－roNE
11	5	5	4．54E－07	0．4818？	DGCOOL－PETE
12					RA－SON：
13	10	5	4． $542-07$	0.50547	DGCOOL－BETA
14					RA－NOEL
15	8	3	4．545－07	0． 52107	DGCOCL－BETh
45					RA－SONE
87	8	3	4． $34 \mathrm{E}-07$	0．53566	DCCOOL－BETA
16					fa－wne
19	7	5	A． 54507	10，55926	DGCDCL－3ETA
20					RA－MONE
21	11	5	3．50E－27	Q． 58152	DG－ETS－EETA
22					RA－8－85
23	12.	6	2． 8 ES－27	0.57081	DGCOOL－BETA
24					REICrHCOOL－FIAG
25	15	7	2，79E－87	0.57978	AP04OK2－ROO－LFO
26					OFFAILS－REOPES
27	13	7.	2．798－07	0．5887？	APOU0×2－ROO－LFO
2.8					寿A－8－1E
29	14	7	2．79E－07	0.537724	AP03882－R00－LF0
30					OFFAILS－gEOFES
31	16	4	2．768－07	5．606С4	BATT－EETA
32	17	6	2．63E－07	0.61439	1EE236B－BCD－IF
33					RHRH01AX－ETX－LFB
34	23	7	2．23E－07	9.52157	184327Ex－R00－1FO
35					OPFAILS－REOPES
36	16	7	2． $23 \mathrm{E}-07$	0.62876	迷4378x－800－LEO
37					OFFAILS－REOPES
38	21	7	2． $238-27$	0． 53596	1E4327NY－R00－LFD
37					OEFAILS－PEOPES
40	19	7	2． 235007	2.54312	1E43275Y－R00－1．PO
41					RA－3－1E

 CORT-LEAK
SIR-DO3-L

 CONT-LEAK 8
$\frac{1}{4}$
$\frac{1}{4}$
$\frac{1}{2}$
$\frac{8}{8}$
8

 4
$\frac{4}{4}$
4
4
2
$\frac{2}{4}$
1
4
5 A-8-I

 RA-8-1H四业

 A-B-1d
CRD-REALIGN-OE
TSCDSSOPERCENI TSCDSSOPERCENI
IE-T5 IEB236B-BCO-LF RRRCO2AA-P-UUM
 IEB236B-BCO-LF

 1EE236B-BCO-1F
RHRBO1N-BOO-CC

 APO4CX2-RDO-LFO OPFAILS-REOPES APO39X2-ROO-LFO
OPFATIS-REOPST

 DGCOOL-BETA

cut sets, while correct in themselves, double count some of the frequency contribution because they not not completely independent. Due to the complexity of the interactions between the sneak circuit and the system isolation on room temperature for various $A C$ power states, it was not possible to easily model this process exactly in the fault trees. The sneak circuit will always occur if the appropriate DG restarts after the loss of offsite power: but, only if the operator reopens the valve can the room temperature isolation come in to play. If the operator reopens the valve in both cases, then RCIC can continue to work.

The next set of seven cut sets, responsible for 10.38 of the core damage frequency, consists of train A AC or $D C$ power fallure and common mode fallure of the CSCS cooling water pumps. The cooling water fallure results in the failure of all ECCS systems including RCIC (since train B AC is workling, RCIC will isolate on high room temperature), the train A DG (train B may start and fall but train $B A C$ is still available from offsite), and the CRD system whose pumps are in the HPCS room. Mal.i feedwater falls when the main steam isolation valves (MSIVs) drift closed on loss of instrument air and the motor-driven pump injection islve fails closed or a turbine pump locks up on loss of DC power resulting in high RPV level, MSIV isolation, and main feedwater high level trip.

7.3 1mportance Analysis Resules

7.31 Mitk neduction

The risk reduction measure calculates the decrease in the core damage frequency when a single basic event's probability is set to zero. The thiplication is that the component or event represented by this basic event can not fail or occur. This measure tells you how much risk reduction you could gain by making a component perfect versus leaving it at its current rellability.

Risk reduction measures are calculated both for basic event and for initiating events. Risk reductions for each individual sequence and the tintegrated result are presented in the TEMAC outputs shown in Appendix A. In this section, we $\alpha 111$ discuss only the integrated results which are shown in Table 7.3

One important item to note is that since some complement events appear in the LaSalle fault trees and, therefore, in the accident sequence cut sets; some events can have negative risk reductions. That is, decreasing a certain events failure probability can actually result in an increase in risk not a decrease. These events appear at the bottom of the risk reduction list, so you must not look just at the top events in the list.

The importance of this is much more obvious if one looks at individual sequences then for the integrated results. In some sequences only an event or its complement shows up, for example, sequences T18 and T22. Sequence T18 has the event CONT-LEAK while sequence T22 has the event/CONT-LEAK. Reducing the probability of containment failure by leakage increases the

Table 7.3
INTEREAL EVENES TOTAL. PAST RUN

Table 7.3. (Consluded)
RISK REOUCTION 9 IN INITIATING EVEST (UITB ASSOCIATED URCEKTAINTI INTER2ALS)

IsIT Evest	accur	FREO	(RANK)	$\begin{aligned} & \text { QISE } \\ & \text { REDUCTION } \end{aligned}$	(3ALK)	LONER 57	WREER 5:
1E-LCOSF	2685	a $60 \mathrm{E}-\mathrm{cz}$	7.e)	2.312-65	1.67	1.27E-06	1. 1208-04
18-7101	252	5.00E-03	10.9)	2. 538 -06	2.01	* 25E-09	1.078-05
18-11	160	4. $508+00$	+.61	1.81z-06	3,c)	8.55E-10	1.48E-25
12-TSA	59	5.00E-03	11.5)	1.53E-06	4.0)	E.4 $4 \mathrm{EE}-68$	6. 2 EE -06
1E-T5	204	8. $005 \mathrm{E}-01$	3.0)	$3.028-07$	5.08	2, 19E-06	3. $608-05$
[E-T102	128	5.00E-03	10.58	- 008-07	5.03	3,43E-11	3. $208-05$
12-T98	40	5.00E-03	10.5)	2. 7 - ${ }^{\text {a }}$-37	3.61	1. 93E-09	1. $32 \mathrm{EE}-06$
[8-T3	74	5. 10E-21	2.03	2. $445-07$	8. 21	7,03E-10	2. 9 9E-p6
断-72	43	5. $208-01$	4.23	3.15E-07	9,0)	3, 55E-10	8. $60 \mathrm{E}-97$
18-74	31	4. 10E-01	5.97	B. $36 \pm$-08	10.0)	2. SaE-20	6. $268 \mathrm{E}-97$
IE-SLocs	18	3.002-02	8, 93	2.40E-03	12.03	0, 00E +30	5 . $24 \mathrm{E}-08$
IE-T?	4	1. $40 \mathrm{E}-61$	5.07	3.262-43	(12.0$)$	1.40E-12	1. $70 \mathrm{E}-38$

containment failure probability by rupture. In the integrated result these effects are balanced out somewhat. However, one can see by looking at Table 7,3 that two tuents even in the fntegrated analysis have negative risk reduction measures. These two events, OPFAIL-VENT-2H and RA-5V-1-2H, represent successful operator venting of the containment. Venting using the current procedures creates severe environments in the reactor building that can feil iniection systems leading to core damage sequences. if verting fails and then the containment fails by overpressure, the failure is often to the refueling floor which bypasses the reactor building and no severe environments are created. For the dominant long-term containment heat temoval fatlum sequences whict appear in this analysis, HPCS is the system supplying infection. Since HPCS is a high pressure system and does not fail from high containment pressures, the conditional probability of core damage is actually higher if venting occurs than if containment fatlure occurs. This is because venting always results in severe enviroments while containment fallure only results in severe envirorments if the failure is in the reactor building.

The most fuportant event for ifsk reduction is the loss of offsite power initiating event with a risk reduction measure of $2.31 \mathrm{E}-05 / \mathrm{R}-\mathrm{yr}$. The second most important event is the non-recovery of offsite power within one hour with a risk reduction measure of $1.89 \mathrm{E} \cdot 05 / \mathrm{R}-\mathrm{yr}$. The third and fourth most important events are concerned with the CSCS cooling water pump common mode fallure and are the pump random failure probability and the common mode beta factor which links the pumps together, each with a risk reduction of $1.77 \mathrm{E}-05 / \mathrm{R}-\mathrm{yr}$. The fifth and sixth most important events are related to the RCTC Isolation problem aither the isolation on room high temperature or the sneak circuit with risk reductions of $1.09 \mathrm{E}-5 / \mathrm{R} \cdot \mathrm{yr}$. and $887 \mathrm{E}-06 / \mathrm{R}-\mathrm{yr}$. respectively

7.3.2 Risk Increase

The tisk increase measure calculates the increase in the core damage frequency obtained by setting each basic events failure probability to one. The implication is that the component or event represented by this basic event always falls or occurs. This measures cells you how much increase in H1sk you woutd obtain if a componant was allowed to degrade to the point of failure versus maintaining it at its current rellability level.

Risk increase measures are calculated only for basic events. Since initiating events are frequencies and can have values greater than 1.0 , this calculation is not applicable to them. Risk increases for each individual sequence and the integrated result are presetited in the TEMAC outputs shown in Appendix A. In this section, we will discuss only the integrated results which are shown in Table 7.4.

As with the risk decrease measure, certain events can have negative risk increase implying that the risk decreases as their probability is increased. In fact, the same two events that have negative risk decreases have negative risk increases. For example, as the probability of the operator failing to vent increases the core damage frequency goes down
because, for the dominant sequences, there is less probability of severe environments if the containment fails than if its vented as described above.

The most important event for risk increase is the failure of the circuit breaker from 4160 V AC emergency bus 242 Y train B$)$ to 480 V AC buses 236 X and 236 Y with a tisk fnctease of ? $89 \mathrm{E}-02 / \mathrm{R}-\mathrm{yr}$. This falls all of traln B emergency $A C$ power. The second most important event is reactor scram fallure with a risk increase of $1.29 \mathrm{E}-02 / \mathrm{R}-\mathrm{yr}$. Even though ATWS sequences at LaSalle are very low and do not dominant the core damage frequency, if the fallitre to scrati protatillty fincreased, they would become very important. The third most important event is the CSCS cooling water pump randon failure probability which determines the level of the cooling water common mode event. This event has a risk increase of $7.05 \mathrm{E}-03 / \mathrm{R} \cdot \mathrm{yr}$. The next ten events are electric power circuit breaker failures or unavailability due to maintenance which result in degraded $A C$ and $D C$ power states

7.3.3 Uncertainty Importance

The uffectitinty importance is calculated for groups of basic events all of which have the same underlying distribution (i.e., all basic events represented by the same LHS2 variable). In the Latin Hypercube (LHS) sample, a certain distributinn might have been selected for motor-operated valve fallume to oper. Evory basfe event appeating in the model that represents a motor-operated valve failing to open is correlated, is represented by the same LHS variable, and has the same value for a particular LHS sample member. The uncertainty importance calculation is performed by performing a polynomial regression on the expected value of the log of the top event condttional on the sampled values of the selected LHS variable. The uncertainty importance is calculated as: (the unconditional variance in the log of the top event - the expectation of the variance of the \log of the top event conditional on the selected LHS variable)/(the unconditional variance of the \log of the top event). This calculation is performed both for basic event and initiating events.

For the lasalle analysfs, the result of this calculation for each accident sequence and for the integrated result are presented in Appendix A. Only the integrated results will be disoussed in this section. The integrated results are presented in Table 7.5

The dominant class of events, responsible for a 28,48 reduction in the uncertainty of the \log risk, is uncertainty in the probability of control circuit failure. This class includes valve, circuit breaker, pump, and fan contral circuit fallures. The second and third most dominant classes are deenergized relays failure to energize, responsible for a 16.5 and 16.38 reduction (two class were modeled with different exposure times which decoupled the 1 HS distributions in the LHS sample; they were correlated, however). The fourth and fifth most dominant classes are failure of

LPCI-MCV-CM2	4	2. $508-03$	(161.5)	28.4	(17.5)	2.81	0.94
REREO2RB-PDC-CC	8	2. $50 \mathrm{E}-03$	(152, 5)	28.4	(27.5)	2, 83	0.85
1EE $2228-B C C-C C$	11	2. $50 \mathrm{E}-03$	\$161.5	28.4	(17.3)	2.81	0.94
C2DO01P-P4S-CC	33	2. $50 \mathrm{E}-03$	(161.5)	26.4	(17, 5)	2.81	0.94
DAV-MOD-COM-CC	19	2. 50 ± -23	(162.5)	2B.4	(17.5)	2.81	0.94
CODGO1P-PTMS-CC	36	2. $50 \mathrm{E}-03$	\{261.5\}	28.4	(17.5)	2.82	0.94
$1 E B 425 B-$ BCC-CC	30	2. $50 \mathrm{E}-03$	(161.5)	28.4	(17.5)	2.81	0.94
RSCF004X-VOO-CC	6	2. 508-03	\{1E1,5)	28.4	(27.5)	2.81	0.34
DC2V03CB-pMS-CC	30	2.50E-03	(161.3)	28. 4	(27.5)	2.81.	0.94
CSCCOO2-P6TS-CC	2)	2 S0E-03	(251.5)	28.4	(17.53	2.81	0.94
DGCOOL-PMS-CM	27	2. $50 \mathrm{E}-03$	(162.5)	28.6	(17.5)	2.81	0.96
SEVY03CB-FMS-CC	35	2. $50 \mathrm{E}-03$	(261. 5)	28.4	(17.5)	2.81	0. 94
1EL $423 \mathrm{~B}-\mathrm{BOO}-\mathrm{CC}$	11	2. $50 \mathrm{E}-03$	(151.5)	28.4	(127,5)	2.81	0.94
SWVY020C-FMS-CC	28	2. $50 \mathrm{E}-03$	(161.5)	28.4	(27.5)	2.81	0, 84
FHRF 4 88 BE - VOO-CC	3	2. $50 \mathrm{E}-03$	(161.5)	28.4	(17,5)	2. 81	0,94
RHRE 4 AAA - WOO-CC	2	2. $50 \mathrm{E}-03$	(151.5)	26.4	(17.5)	2. 81	0. 94
RHIRB01AA-300-CC	22	2. $508-03$	(161.3)	28.4	\{ 17, 5\}	2.81	0.94
DGFVOICC-DMS-CC	16	2. $50 \mathrm{E}-03$	(161.5)	28.4	(17.5)	2.81	0.94
1EB432C-BCC-CC	16	2. $50 \mathrm{E}-03$	(161 5)	28.4	(17.5)	2.81	0.94
HCSCOOIC-TMS-CS	15	$2.50 E-03$	(1E1 5)	28.4	(2.17.5)	2.81	0.36
NWVYO1CA-EMS-CC	22	2 50E-03	(181.5)	28.4	(17.5)	2.81	0.34
IEB412A-BCC-CC	28	2. $50 \mathrm{E}-03$	(161.5)	28.4	(17.5)	2. 81	0.94
1EB413A-B00-CC	28	2. $50 \mathrm{E}-03$	(161.5)	28.4	(17.5)	2.81	0.94
DGOWO1CA-FMS-CC	2)	2. $50 \mathrm{E}-03$	(161.5)	28.4	(17.5)	2.81	0.98
12B433C-BOO-CC	16	2. $50 \mathrm{E}-03$	(151.5)	28. 4	(17.5$)$	2.81	0.94
LPCI-PWS-CM	8	2. $50 \mathrm{E}-03$	(1*1.5)	28,4	(17.5)	2. 81	0.94
CSCFO68A-VCC-CC	2	2. $50 \mathrm{E}-03$	(151. 5)	28.4	(17, 57	2.81	0.34
SY-REGP-RCICOOIX	6	2. $50 \mathrm{E}-03$	(161, 5)	28.4	(17.5)	2.81	0.34
DRV-MOD-COn-CC	18	2. $50 \mathrm{E}-03$	(281 5)		(17.5	2.81	0.34
DOV- $\mathrm{NOOO}-\mathrm{COM}-\mathrm{CC}$	27	2. $50 \mathrm{E}-03$	(161.5)	28. 6	(17.53	2. 81	0.94
1EB234B-8CC-CC	30	2. $50 \mathrm{E}-63$	(2E1.5)	28,4	(17.5)	2. 81	0.94
LPCI-MOV-CM1	4	2. $508-03$	(261,5)	28.4	(17.5)	2.81	0. 34
CSCF $068 \mathrm{~B}-\mathrm{VCC}-$-CC	3	2. $50 \mathrm{E}-03$	(161.5)	28.4	(.17.5)	2,81	0.56
IEB233A-BCC-AS	31.	2. $50 \mathrm{E}-03$	(161.5)	28.4	(17,5)	2.81	0.94
2DG1PK18-R00-LFO	12	5. $00 \mathrm{E}-04$	(251.0)	16.5	(35.5)	1.00	1.00
CSCO2K18-ROO-LFC	12	5, D0E-04	(251.0)	16.5	(35.5)	1.00	1.00
1E4,327NX-ROO-LFO	358	2. $00 \mathrm{E}-02$	(84.0)	16.3	(48, 5)	1.64	0. 86
RACTKS-RO0-LFO	1	2. $000 \mathrm{E}-02$	(84.0)	15.3	(43, 5)	1.64	0.86
RACTK $3-\mathrm{ROO}-1 F O$	1	2. $00 \mathrm{E}-02$	(84.0)	16.3	(48,5)	2. 64	0.85
EACTK 9 ROC-LFO	ET	2.00E-02	(84.0)	16.3	(48,5)	1.64	0.85
LAK14BRC-RCO-LFO	25	2.00E-02	(84.0)	16.3	(48, 5)	1.84	0. 86
LAK18BRB-ROO-LFO	40	2.00E-02	(84.0$)$	16.3	(48.5)	1.84	0.86

(48.5)	1. 64	0. 86
(46.5)	1. 64	0. 86
(48.5)	1. 64	\% 86
(48.5)	1.64	0.85
(48.5)	1. 64	0.86
(48.5)	1.64	0. 86
(48.53	1.64	6.86
(46.5)	1.84	Q. 86
(48.5)	1. 64	0.86
(43, 5)	1. 56	- **
(48.5)	1.64	Q, 86
(48.5)	1.54	0.86
(4.8 .5)	1. 64	0.85
(48.5)	1. 64	0.66
(48.5)	1. 64	. 86
(48.5)	1. 64	0.85
(48.5)	1.64	0.86
(48,5)	1. 64	0 0. 86
(61.5)	1.00	1.00
(61.5)	1.00	1.00
(63.3)	1.00	1.00
(65.5)	2.06	100
(65.5)	1.05	1.00
(65.5)	1.06	1.00
(65.5)	1.06	1.60
(69.5)	0.84	$\rightarrow 8$
(69.5)	0.86	0.97
(69.5)	0.84	0.97
(69.5)	0.84	0,87
(72.0)	1.00	t**
(73.5)	1.38	0.97
(73.5)	1.38	0.97
(75.0)	1.45	1.00
(78.5)	1.00	1.30
(78.5)	1.00	1.00
(78.5)	1.00	1.00
(78.5)	1.00	1.00
(78.3)	1.09	1.00
(78,5)	1.00	1.00

energized relays to remain energized, responsible for a 16.1 t and 15.8 \% reduction (these were also divided into two groups). The sixth most dominent class the loss of offsite power inftlator which is responsible for a 12.58 reduction. The seventh most domina class is diesel generator failure to start which is responsible for a 6.88 reduction. The eighth to tenth most dominant classes are the severe environment fallure probabilities of various types of equipment, responsible for $6.58,5.48$, and 5 . 3 \% reductions

7.4 Insights and Conclusions

Overall, the mean core clamage frequency of $4.41 \mathrm{E}-05 / \mathrm{R}-\mathrm{yr}$. for the internal events analysis is very good considering that this is the first time a PRA has been performed on LaSalle and no design or construction deficiencies were found that resulted in excessive core damage potential.

Several changes could be made to systems and procedures that would result in a significant reduction in the current core damage frequency and not be too costly. The first is to ellminate the sneak circuit in the RCIC isolation logic that results in the RCIC steam line inboard isolation valve closing when offsite $A C$ power is lost and the appropriate diesel generator starts. This is is clearly an unwanted result that defeats the purpose of having a $D C$ powered system to mitigate station blackout type accidents. This is particularly true here since the dominant core damage sequence involves a loss of offsite power followed by a delayed loss of the diesel generators as a result of the loss of diesel generator cooling water. This results in a delayed station blackout sequence in which the operator must reopen the isolation valve before the diesel generators fall. Commonwealth Edison Company (CECO) immediately recognized that this was a design deficiency when it was Initially found in the PRA analysis. A design modification was devised but implementation was delayed until the PRA was completed so that fts relative importance could be assessed. The design change should go in at the next refueling outage.

The seconct change would be to change the RCIC room temperature isolation logic so that, in cases where train A AC power has fail but train B AC is avallable, RCIC does not lsolate if no other ECCS system is working. The current logic assumes that if either $A C$ power train is working then sufflcient other systems are avallable to cool the core and that RCIC is not needed. For the type of sequences showing up here, a modification as described above would reduce the probability of RCIC isolation in these sequences significanily while introducing a very low probability failure event (i,e., a spurious inhibition signal).

The third mafer change rould be to change the venting procedure so that venting does not result in severe environments in the reactor building. At LaSalle, this can be dotie solely by changing the procedures since a hardened vent line already exists. The current procedures require that the
operatar vent the contalnment through the standby gas treatment system. This system thas an open suction line from the reactor building and, even if this is isolated, has some duct work and a rubber boot connecting the vent pipe to the statadry gas treatment filter. This duct work and/or boot will certainly fall if the maln vent lines are opened. The resulting severe onvironment in the reactor butlding has a very high prohability of falling the ECCS and CRD systems all of which have components in the reactor building. A simple change in procedure to close the reactor building nuction 1 ine, isolate the standby gas treatment system, and vent to the steam tunnel should be able to mitigate this problem. The vent and purge system can not be used because it has a sfuilar boot. Venting to the steam tunnel can produce some changes in the turbine building environment as a result of leakage from the turbine cavity into the maln building but the blowout panel on the roof should open directing most of the steam out that path A more detalled study of possible turbine bullding ettyironments would need to be made before this change could be made. In addition, Level II/111 corisiderations as to the effects on possible radiaactive source terms from aceidents which progressed to core damage anyway would need to be assessed. Section $4.6,4$ of Volume 1 of this report contains as more detalled dizeussion of this problem

3,5 References

1. R. 1. Imian und M.J. Shotkencarter, "A User"s Gulde for the Top Event Matrix Analysis Code (TFMAG), " NtIREG/CR-4598, SAND86-0960, Saridia National Laboratoties, Albuquetque, NM, August 1986
2. 3. 4. [Fan and M. J Shortencatier, "A FORTRAN 77 Program and User's Guide for the Generation of Latin Hypercube and Random Samples tor Use WIoh Computer Models, " NUREC/CR-3624, SAND83-2365, Sandia Nattaral Laboratories, Albuquerque, NM, March 1984.

Analysis of the LaSalle Unit 2 Nuclear Power Plant: Risk Methods Integration and Evaluation Program (RMIEP) Internal Events Accident Sequence Quantification Main Report	Vol. 3 Part 1
	CRTT F (t
	40
	August 1992
	$\begin{array}{r} 4 \text { FINOR GRAN NUMEER } \\ \text { A1386 } \end{array}$
5. Aulnotis A. C. Payne, Jr., S. L. Daniel, D. W. Whitehead, T, T. Sype, S. E. Dingman, C. J. Shaffer	E OF REPOR
	PERIOO COVERE.
 Sandia National Laboratories Albuquerque, AM 87185	
tev methes, everth:	
Division of Safety Issue Resolution Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Coumission Washington, DC 20555	
O SUPPLEMENTARY NOTES	
This volume presents the aethodology and results of the internal event accident sequence analysis of the LaSalle Unit II nuclear power plant performed as part of the Level 111 Probabilistic Risk Assessment being performed by Sandia National Laboratories for the Nuclear Regulatory Commission. The total internal core damage frequency has a mean valve of $4.41 \mathrm{E}-05 / \mathrm{R}-\mathrm{yr}$. with a 5 th percentile of $2.05 \mathrm{E}-6 / \mathrm{R}-\mathrm{yr}$., a median value of $1.64 \mathrm{E}-05 / \mathrm{R}-\mathrm{yr} \ldots$ and a 95 th percentile of $1.39 \mathrm{E}-04 / \mathrm{R}-\mathrm{yr}$. The dominant sequences involve a loss of off-site power (LOSP), immediate or delayed failure of on-site AC power resulting in station-blackout, and fallure of the reactor core isolation cooling system (RCIC). The events most important to risk reduction are: frequency of LOSP, non-recovery of offsite power within one hour, diesel generator ($D G$) coolling water pump common mode fallure, and non-recoverable isolation of RCIC during station blackouts. The events most important to risk increase are: failure of various $A C$ power circuit breakers resulting in purtial loss of onsite $A C$ power, fallure to scram, and $D G$ cooling water common mode fallure. The dominant contributors to uncertainty are control circuit failure rates, relay coll fallure to energize, energized relay coils falling deenergized, frequency of LOSP, and DG failure to start,	
$12 \mathrm{KE}+\mathrm{VOROS}$ OESCRPTORS ism wdon PRA RMIEP LaSalle Level I	Unlimited
	Unclassified
	$\left\lvert\, \frac{\text { That Resat }}{}\right.$
	Unclassified
	5 Numblt or Facts
	16 Price

UNITED STATES

NUCLEAR REGULATORY COMN ISSION

WASHINGTON, DE 20555-0001

OFFICIAL BUSINESS

PENALTY FOF PRIVATE USE, 4300

SDECIAL FOURTH CLASS RATE

[^0]: $\begin{array}{lr}9209220470 & 920931 \\ \text { PDR ADOCK } & 05000374 \\ p & \text { PDR }\end{array}$

[^1]: * RA- 13 and RA- 14 not used.

[^2]: Identify those accident progressions with uncertain end-states

[^3]: "LaSalle Gounty Station: Final Safety Analysis Report," through Amendment 63, Comonweal th Edison Company, Chicago, 11

[^4]: 保

