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. 1.0 Introduction // //

In the Accident Sequence Precurso: (ASP) study it was

assumed that a specific precursor event, mitigating system failure,
or initiating event was applicable to all nuclear power plants.
Further, two generic sets of standard event trees for PWR and

BWR plants were deveioped and used in the analysis process.
Finally, for each precursor, the conditional probability of
subsequent core damaae (Pscd) was calculated from the analysis of
these generic trees and averaged by dividing it by the total
number of reactor years.

Much concern has risen because of the generic approach taken
in the ASP study, mainly due to the fact that not all precursors
that occured in a specific plant can apply to every plant of the
same type. Even it an event does apply to many plants the prob-
ability of subsequent core damage may vary in plants of the same
type. Because of this concern, the study presented in this report
was initiated. The objective of this study was to estimate the im-
pact of using a more plant specific approach versus the ASP
generic approach.

This study started with the calculation of more plant specific
evaluations for the BWR's simply because there are fewer BWR's and
a lesser number of precursors that occured in them. The next
part of this study will, however, perform similar calculations for
the PWR plants.

Ideally, the most appropriate approach would be to employ
specific event trees for each of the BWR power plarc©s, because
there are no twe plants that are similar in design, operation, or
maintenance. Precursors that have happened in a plant which can
potentially happen to other plants should then be identified and
aprlied on the plant specific event trees. Finally, the frequency

of the subsequent core damage for each percursor and for the specific
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factor of as high as 2 if the generic approach is used. Certain
precursor events were, however, ohserved to have an over-es-
timation of more than an order of magnitu?e. In a few instances
an underestimation of as high as an order of 4 by using the
generic approach were seen.

The plant specific approach used in this study is a very
straight forward one which models and estimates a more accurate rep-
resentation of the precursor analysis than the generic approach used
in the ASP report. We strongly recommend to implement this approach
for further analysis of the precursors.



plants that they apply to, should be calculated. Summation of
all of these frequencies wouuld yield the estimate of average
industry-wide frequency of core damage. The problem with this
approach is first, that the development of plant specific event
trees is a prohibitive task and is out of the scope of this study.
Secondly, application of complete plant specific approach will
severely limit the use of LER data in estimating probability of
loss of safety systems and frequency of initiating events. The
use of complete plant specific approach is also not necessary,
because it was observed that there are groups of plants that re-
spond closely to an initiating event or precursor. Therefore, one
can group the plants into categories with close response.

To deal with the difficulty just stated above, in this study
the BWR plants were grouped into categories that respond similarly
to an initiating event. The methodology to categorize the plants
are dicussed in detail in the next chapter. For each category a
set of event trees for Loss of Offsite Power (LOOP), Loss of Feed
Water Events (LOFW), Loss of Coolant Accidents (LOCA) and Main
Steam Line Breaks (MSLB) initiating events were developed. The
trees developed were based on the available PRA's of a specific
plant in each category. A total of five categories were defined
and one of the categories was divided into three subcategories.

In a review of all of the BWR precursors identified in the
ASP study, applicability of each category or subcategory to these
individual precursor was determined. Then, the loss of function
probabilities and frequency of initiating events were calculated.
Finally, frequency of core damage for individual precursors and
for each category was calculated and the total frequency of core
damage was obtained.

The results of this more plant specific calculation showed
that the freguency of core damage can be over-estimated by a




2.0 BWR Categorization

2.1 Review of Procedure

A three step procedure has been used to divide the BWR
plants into specific categories. In the first two steps, the major
plant categories were generated. In the third step sub-categories
for specific evert situations were identified.

In step 1, each plant was examined to determine what systems
it utilizes to perform the various generic plant functions which
must be performed in response to any initiating event. These
generic functions have been identified in many probabilistic
risk assessment studies and methodology documents and referred
to by many different names. 1In general, they can be summarized
as follows:

- reactor subcriticality

- vessel water inventory

- short-term core heat removal

- containment overpressure protection
- long-term core heat removal

- containment heat removal

- radiocactivity removal

Step 1 identified for each plant, those systems that the
plant has to perform each of these functions. The initial plar.
categories were selected so that the plants whose systems are
nominally identical were grouped. The plants with systems of
the same type and function, without accounting for the dif-
ferences in the design of those systems, were thus grouped.

In Step 2 these categories were refined by taking into
account major differences in the design and operation of the plant
systems identified in Step 1. There was a certain amount of



subjectivity in this process, and the analyst must have the
knowledge and experience to he able to judge what a major design
difference is. This judgement is based not s» much on “he
mechanical concept of difference in design, but rather is in-
tended to be based on a probabilistic concept. A major design
difference is one which would greatly affect the availability a
system to perform its intended function. A great amount of in-
sight is required to make this judgement, since all facets of a
system's operation must be considered. The effect of system
differences must consider recoverability and other human inter-
actions as well as base unreliability. There is obviously no

set rule which can be utilized for Step 2. By way of example
however, such things as three pumps rather than two, or three-
out-of-four as opposed to two-out-of-four operation are generally
considered not major. However, such things as turbine pumps rather
than motor driven pumps, or shutoff head greater than reactor
operating pressure as opposed to less than reactor operating
pressure are generally considered major. Even those examples
cannot be used as hzrd and fast rules.

At the conclusion of Step 2, the major plant categories were
established. These categories served to allow construction of
event trees that were reasonable representations of the response
to various initiators of the plants within each category and the
evaluation of event sequences for most observed precursor events.
There were, however, Jome specific events for which these groupings
were not sufficiently unique. Since only a small number of events
require this additional detail, it is not reasonable to further
break up the categories for all cases. This would only serve to
further dilute the available data base.

Step 3 is intended to develop sub-categcries wiihin each
category which will be utilized only for those events which do
not apply equally to all plants in a category. This development




BWR FW Pump PLANT
PLANT NAME TYPE  TYPE HPCI Ic  IC Fwcl I RMR SDC EM.P CATEGORY YEARS
Oyster Creek 2 ] b 4 X D
Big Rock Point 1 ~ X X V] Al 21.5
Dresden 1 1 “ b ¢ % X D
Nine Mile Point 2 ~ X X X D A2 21.0
Milestone 1 3 ] X X X X D/G
Humbolt Bay 3 1 » X X X X v A3 20.5
Dresden 2 ] X x x X D o 18.9
Dresden 3 3 - X X X 0 ’
Pilgrim 3 M X X X D
Monticello 3 ~ X X N D
Quad Cities 1 3 M X X X L c 46.02
Quad Cities 2 3 ™ x X x 0 i
Duane Arnold B ] X X X ¥
Varmont Yankee 4 M X X B (5]
Cooper 4 T X X ~ D
Browns Ferry 1 4 - X ” X D
Browns Ferry 2 4 . X X . D
Browns FPerry 3 4 T b { X X L 46.83
Hatch 1 i T X X X D B ®
Hatch 2 . T x X X D

e K\N\K\NW AN

Fitzpatrick Kl : 4 X X X D
Brunswick 1 4 4 X X X D
Brunswick 2 4 T X x X ®
Peach Bottom 2 " T X X X [¥]
Peach Bottom 3 4 T X b § X D
La Crosse o » b
M = Motor Driven
T = Turbine Driven fable 1
D = Diesel Generator Summary of BWR Categories ’
G = Gas Turbine Generator 2
P = Propane Generator




is carried ocut by determining the plant specific applicability

and response characteristics for each precursor event and each
plant. In most ~ases, every plant in a category will be
essentially identical in its response to a particular precursor.
For those few precursors for which this is not ‘rue, sub-categories
are created which are ﬁsed'only when evaluating sequences which
include that particular event. For the evaluation of all other
events, the major categories are left intact.

It is important to note that this categorization applies
only to the deterministic aspects of event tree development.
In many cases, data which may be used to quantify the event tree
sequences must be applied in a different manner. Data for specific
systems may span more than one category, whereas data for other
systems may apply only to the plants in a specific category or
subcategory.

2.2 Summary of Categories Identified

Table 1 summarizes the results of the categorization phase
of the work. Twenty-six plants were considered and seven plant
categories (Al, A2, A3, B, C, D, and E) were selected based upon
presence or absence of the system functions as identified in the
table.

In figures 1 to 6, the generic event trees for LOCA are
presented for each category. Figures 7 to 1l and 12 to 17 present
analogous trees for the LOFW and LOOP initiating events respectively.
Figures 18 to 22 are loss of PCS initiating event.

In the remainder of this section major reasons for this
categocization and a brief summary of specifications of each
category or subcategory is discussed. In the next chapter the pro-
cedure in which the category generic event trees (shown in figures
1 through 17 in this chapter) are constructed from PRA plant
specifi~ event trees are discussed.
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The BWR plants were grouped accoirding to their engineered
safety system design and feedwater pump type. (See Table 1).

Category A

This category represents the group of older BWRs. They are
not a homogeneous group, but they have similarities which allow
them to be evaluated as a single categroy for many of the pre-
cursors analyzed. In particular, they all have only isolation
condensors as the sole means of supplying high pressure cooling
when feedwater is unavailable. Also, they all utilize separate
systems for containment cooling and shutdown cooling, giving them
long term cooling diversity. For certain precursors,
the differences between these plants become important. This
requires that they be evaluated in subcategories.

Subcategroy Al- These plants would be evaluated separately
for transients involving loss of offsite power. The other plants

in Category A have feedwater coolant injection systems. This
provides a means of utilizing the feedwater system to provide
cooling flow at high pressure when only onsite AC power is
available. The subcategory Al plants do not have the capability,
and thus have less diversity during these transients.

Subcategory A2- These plants would be evaluated along with
Subcategory Al for precursors which involve common mode type
failures in a single low pressure injection system. Each of the
plants in these two subcategories has only one low pressure safety
system, the low pressure core spray. This system also provides
the containment cooling function for these plants. The sub-
category A3 plants have both a low pressure core spray and a low

pressure coolant injection, a diversity which these plants do not
have. Interstingly enough, when only random failures of the low
pressure systems are evaluated the unavailability of the one system
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These plants also saw the elimination of the isolation
condenser, which was replaced by the reactor core isolation cooling
(RCIC) system. This afforded additional high pressure injection
for very small LOCA events, but was not as simple or reliable as
the isolation condenser. Further, this also served to make
additional reductions in the diversity of long term cooling.

The isolation condenser actually provided a third method of long
term cooling for the early plants, since it could maintain the
plant in hot shutdown for extended periods of time. The RCIC
operates like the other injection cooling systems, thus ultimate
long terms cooling by the RHR system is still required. Thus,

the category C plants reduce long term cooling diversity from three
system to only one.

Category B

The category B plants continued the standardization begun
with category C, and they have all of the same systems. The
difference is that the category B plants replaced motor driven main
feedwater pumps (which all the other plant categories have) with
turbine driven main feedwater pumps. This reduces the availability
of main feedwater as a source of injection water, with the turbine
pumps, any event which causes any part of the secondary cycle to
fail will result in a total loss of feedwater. This is because the
main feedwater isolation valves will close, isolating steam to the
turbine. With the motor driven pumps, this cannot occur and feed-
water can continue running or be easily recovered. Thus, the
category B plants have reduced diversity for high pressure in-
jection of coolant for pressure which in older plants would re-
sult in loss of the secondary cycle without failure of the
feedwater system.

Category E

mhis category represents only the LaCrosse BWR plant. This



design versus the two system design are reasonably equivalent.
Thus, for many of the precursors, it is not necessary to make
the distinction.

Subcategroy A3~ The:e plants have both the feedwater coolant

injection system and the two system low pressure systems design.
This group would be evaluated along with subcategory A2 for loss
of offsite power and separately for loss of single low pressure
system.

Category D

The category D plants are lumped together because they have
a high pressure coolant injection system in addition to Category A.
This gives the plant two high pressure cooling systems when feed-
water is unavailable. They do not have a feedwater coolant injection
system, but they do have the two low pressure systems. The major
difference is in the high pressure coolant injection (HPCI). Having
twe high pressure systems (HPCI and isolation condenser) improves
response to loss of feedwater events. Also, injection cooling is
now available if a consegquential LOCA occurs due to a stuck open
relief valve. In plants without HPCI, it is necessary to blow down
and use low pressure cooling in this situation.

Category C

This category represents the early group of plants where
the BWR design became more standardized. These plants differ from
the earlier plants in that low pressure cooling/containment cooling
system and shutdown coocling system were combined into a single,
integrated, residual heat removal (RHR) system. This reduces the
number of components, but also elimantes the diversity enjoyed by
the earlier plants with separate shutdown cooling systems. This
plant group is more susceptible to precursors involving common mode
type failures of long term cooling systems.
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In addition to modifications discussed in this section,
the probability of success of Safety relief valve to reclose was
assumed to be 1.0, thus forcing the event tree to describe only
LOFW event and not transient induced LOCA's. since LOCA's are
treated separately.
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3.0 BWR Plant Specific Percursors Analysis

3.1 1Initiating Events and Function Failures Applied

For each precursor event, the initiator and the subseguent
safety system failures were reviewed individually. If the
description of the actual occurence (as given in App. B of the
ASP report) indicated that the event could occur at any plant,
then the precursor was applied to all plant categories. On the
other hand, if the conditions inducing the precursor were plant i
specific or could apply only to a group of plants, then the |
precursor was restricted to the specific plants(s). For example,
a LOCA event caused by a stuck open relief valve was considered \
applicable to all plants, while the LOOP event caused by salt \
buildup on the 345kv lines and insulators at Millstone I (NSIC ‘
116780) was considered applicable to only plants next to the ocean.

Some of LOFW initiators that occured at plants of Category
B were converted to loss of PCS when applied to the other plant ‘
categories, because the use of turbine driven feedwater pumps
in Category B results in a LOFW following an MSIV closure transient.
In the case of the Browns Ferry Fire, the description of the event
(NUREG/CR-2497 pg B-213) reveals that feedwater was lost because
of the MSIV closure, while the feedwater system was not damaged
by the fire. In actuality, the core was cooled through condensate
booster pumps after manual depressurization. Thus if this event
is applied to plants with motor-driven feedwater pumps, it would
result in loss of PCS only and not loss of the feedwater system.

In a similar manner, mitigating system failures or deg~-
radations were categorized. For example, a HPCI failure was not
assumed an IC failure and vice versas as is done in the ASP
study. In some instances a system's failure or degradation
applicability was restricted to a subcategory or even to one




is required since the plant is of a different design, having been
built by Allis-Chalmere rather than General Electric. It is
the only Allis-Chalmere plant ever built.



plant. For example, the RCIC/HPCI failure cause by a wrong reset
logic connection was considered applicable only to the Browns

Ferry 1 plant at which it occured (NSIC 85566). However, if the
mitigating system failure or degradation resulted as a consequence
of another failure, it was credited for all plant categories in
which the initiator was applicable. As an example, consider the
LOOP event with the relief valve stuck open at Pilgrim 1.

(NSIC # ). Pilgrim 1 utilizes RCIC/HPCI systems which were
degraded because of the stuck open relief valve. Thus, in cat-
egories B and C the RCIC/HPCI systems are assumed to be degraded in
this analysis. However, when the event is applied to categories

A and D which utilize isolation conde..secs and FWCI, the isolation
condenser is considered failed and FWCI degraded, because the
isolation condenser can not function with a stuck open relief valve.
Appendix A summarizes all precursors as they are applied to each
applicable category.

3.2 Category Specific Event Trees

This analysis used systematic event trees developed by the
"Interim Reliability Evaluation Program" (IREP) as follows: In
categories A and D the event-trees developed from the Millstone
Point 1 Nuclear Power Plant were adopted, while for categories B
and C the trees adopted were developed from the Browns Ferry 1 Nuclear
Power Plant. The IREP-Millstone 1 event trees used in category
A were modified to make them category specific as follows: (i) the
IC and ICMP systems were merged into one event, (ii) the LPCI
option was deleted for subcategories Al and A2 (iii) the FWCI option
was deleted for subcategory A2 and (iv) the Containment Cooling
(CC) option was deleted after CS or MDP failure since both
branches of the event tree lead to core damage. (This option was




taken into consideration in the IREP-Millstone 1 study in order
to account for the severity of the sequence in containment
calculations).

Event trees used in Category D were obtained from the same
set of trees by adding the HPCI option which is missing in the
IREP-MIllstone 1 systematic event trees. For Category B, the
event trees of Browns Ferry 1 were used with no modifications.
Fo. Category C the Category B event trees were applied but they
were modified to include the FW and/or PCS availability where
applicable.

Category E consists only of the La Crosse plant which is
considerably different in design from all other BWR plants, and
therefore available event trees and function failure probability
data are difficult to find. Thus for this specific category,
the ASP study event trees and point estimated were applied.

In the rest of this section the ASP standard event trees,
the original IREP trees (Millstone and Browns Ferry) and the
corresponding category specific event trees are shown. The foot-
notes in each figure summarizes the consideration made for any
modifications.
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Figure 25: IRED Study Browns Ferry 1 Event Tree where PCS is
: unavailable (TU).

Note that the LOFW transient in the IREP-Browns Ferry 1
study is part of "transient systematic event tree where PCS is
unavailable (TU)." The tree becomes a LOFW event tree by assuming
success prob. for relief valve to reclose and MSIV to close to

be 1.0.
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*Assumption of 1.0 for RC(C) success forces the event tree
to describe a LOFW event.
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Figure 27: IREP Study Millstone 1 for LOFW
Systematic event tree modified to apply
in Category A3

Assumption of 1.0 for RV(C)success forces the event tree to
represent a LOFW event.



LOFW Event Tree for Categories B and C

Lorw
RPS
Rv(0)
RV (9)
Ms1V
Rcrc
HPCI
E
COND
A
LPCT
[sBcs

. LBCA
Loch
(4
<o

Figure 28: IREP Study Browns Ferry 1 for LOFW

Event Tree Modified to apply in Categories
B and C

*Assumption of 1.0 for RVCC and MSIV closure success forces
the event tree to represent a LOFW event.



IREP Study Millsteon 1 for LOFW
Systematic Event Tree Modified to

apply in Category D.

Figure 29:

#Assumption of 1.0 for RV(C) success forces the event tree

to describe a LOFW event.
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Figure 30: IREP Study Millstone 1 for Loss ~f PCS (Fxecl.
Feedwater) (Tz) Loss of Normal AC Power (T,)

The ASP Study did not include PCS failure as an irnitiating
event in i‘~ event tree sequences.

The "Transient systemic event tree where PCS is unavailable
(TU) " shown in figure 20 and used for LOFW event is the appropriate
tree for loss of PCS event. This tree was used in Category B as
it was and modified to include the FW availability for Category C.
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Figure 31: IREP Study Millstone 1 for Loss of
PCS Event Tree Modified to apply in
Categories Al and A2

* Assumption of 1.0 for RV(C) success forces the event tree
to represent a loss of PCS event.
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Figure 32: IREP-Study Millstone 1 Event Tree
for Loss of PCS modified to apply
in Category A3

* Assumption of 1.0 for RV(C) success forces the event
tree to represent a loss of PCS event.
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Figure 33: IREP Study Browns Ferry 1 Event Tree for Loss
of PCS applied in Category B

* Assumption of 1.0 for RV(C) and MSIV closure success forces
the event tree to represent a loss of PCS event.
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Figure 34: IREP Study Browns Ferry 1l event tree
for Loss of PCS modified to apply in

Category C
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Figure 35: IREP Study Millstcne 1 event tree
for loss of PCS modified to aoply in
Category D

* Assumption of 1.0 for RV(C) success forces the event tree
to represent a loss of PCS success



3) Loss of Offsite Power Event Trees
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Figure 36: ASP Study Event Tree
Standard event tree for BWR loss of offsite power.

The ASP study treated the Emergency Power System as an
separate system in its functional event tree for a loss of
offsite power. On the contrary in the IREP Study, the function
of the Emergency Power System was considered an integral part
of the success or failure of the related safety systems. In this
analysis we followed the ASP study approach. Thus, in addition
to modifications discussed at the beginning of this section, the
IREP study event trees used for the loss of offsite power events
were modified further to include the Emergency Power System.

The IREP study event trees used for loss of offsite power
are the event trees of figures 20 and 25.
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Figure 37: IREP Study Millstone 1 event tree for
LOOP modified to aoply in
Category Al
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IRFP Study Millstone 1 event tree

for LOOP modified to
Category A2

apply in



Figure 39: 1IREP Study Millstone 1 event
tree for LOOP modified to z%plv
in Cateogory A3




Figure 40: IREP Study Browns Ferry 1
Event Tree for LOOP modified
to apoly in

Categories B and C
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Figure 41: IREP Study Millstone 1 event tree
for LOOP modified to avply in

Category D



Small LOCA Event Trees

All of the BWR small LOCA events in the ASP report are

stuck open relief valve events. In the IREP study for Millstone
1 plant, the stuck open relief valve event was treated separately
and the corresponding event tree was used in this analysis for
the small LOCA initiators at categories A and D.
hand, the IREP study for Browns Ferry 1 plant treated the stuck
open relief valve event as part of the small steam line event.
The corresponding event tree was modified in this analysis by
omitting the vapor suppression system availability since this
system consists of a set of relief valves.

On the other

ORNL -DWG 82588 EYD

lawn s of kercinr WICT/NCIC | ASJLICT
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Accident Subcritical | Adequate Kesponse | Core
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Figure 42: ASP Event Tree for Loss of
Coolant Accident
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Figure 44:

IREP Study Browns Ferry 1

Event Tree for small liguid-
line or steam-line break (S).
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Figure 45: IREP Study Millstone 1 event tree
for small LOCA modified to apply in
Categories Al and A2



SwmalLlL
LochA
wyw

(2L ]
pe=p

N

(2]

o

”
[resuLr

<O

Figure 46: IREP Study Millstone 1 Event Tree for
small LOCA applied in Category A3



Figure 47: IREP Study Browns Ferry 1 Event
Tree for small LOCA modified to

apply in Category B



HPCT
De P
cs
LPcT
RESALr

L LT

Locw

ReS
<

Fw

S— 1

e e © W

ok

s < P

—— D

Figure 48: IREP Study Browns Ferry 1 Event
Tree for small LOCA modified to apply

in Category C
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4.0 Numerical Analysis

4.1 Precursor Event Frequency and System Unavailability Data

The category specific precursor event frequencies were es
timated according to the number of events and number of reactor
years in each category. The ASP report data was used to cal-
culate failure probabilities. If no system failures occured
in a precursor belonging to a specific category while there were
system failures in other categories, the 50% ¥ - value for zero
failures was used. Frequencies for LOFW and MSLB initiators were
not categorized, the former because LOFW events are not reportable
in LER and therefore the ASP study did not have complete data,
and the latter because there was no MSLB initiator in the ASP data
for BWR's. For both cases the ASP study point estimates were
utilized for all categories.

Ssufficient data was available to compute category specific
unavailability for the Emergency Power System. Likewise, isolation
condenser unavailability was computed from ASP data. Further-
more, it was observed that the RCIC/HPCI unavailability estimation
was fitted in the categories B and C which have these systems and
this estimate was used. Similarly, the ASP HPCI unavailability
for LOCA estimation was used where only HPCI unavailability is
needed.

All of the data for ADS unavailability estimation in the
ASP report corresponds to plants of Category C. But the ASP
estimate of 0.27/D is close to 0.3/D that both the MIllstone-1l
and Browns Ferry 1 IREP studies used. Hence, the ASP estimate for
ADS failure was used for all categories. For the rest of the
Safety Systems, there was no data in the ASP report. The sources
used for the corresponding unavailabilities are listed in Table 2.




In analyzing the precursors, no changes were made in
the recovery factors of the ASP report. It is beyond the scope
of this analysis to calculate more accurate recovery factors.
In actuality it was not desirable to change them, since one of
the objectives uf this analysis is to determine the impact of
the plant specific calculation on the results of the ASP study.
Since the safety systems are grouped in the ASP event trees,
the recovery factors were assigned to groups of systems. In
applying the recouvery factors per safety system, care was taken
so the end resul’, would be the same with the corresponding ASP
recovery factor. For example, in the ASP report for NSI1C 153810
(Loss of feedwater event), the RCIC/HPCI system is failed with a
recovery factor of .1 in the ASP report. The actual occurence
was: HPCI was unavailable due to maintenance, the RCIC turbine
trip was manually reset and them put into operation. This in this
analysis for this event, the recovery factor .l was assianed to
RCIC and factor of 1.0 to HPCI.

4.2 Frequency Calculations

For each of the seven plant categories identified in this
study, the generalized tree representing the LOCA, LOOP and LOFW
events were modeled and discussed in Chapter III. The generalized
trees for the 21 cases considered in this study (7 categories x 3
event types) are presented in Table 2.

Subsequently, specific NSIC events were considered and the
generalized trees and function data were modified to reflect the
specific events that occured.

To cite one example illustrating this procedure, consider
NSIC 106616. To reflect this Category Al LOOP event, the category
specific event tree is modified as follows:

© The initiator (the leading constant
in the equation) is set to 0.5. Since
the initiating events was part of the
precursor.
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Category

Al

A3

Table 4

Reactor Years by Plant Category

Reactor Years

21.5

21

20.5

46.83

46.02

18.9

A

TOTAL 185.75

% of Total

11.57

11.31

11.04

25.21

24.78

10.17

5.92



© The HPCI function failure is set to 1 to represent
failures, since HPCI failed in the precursor.

A total of 19 significant precursor events from the ASP
study were considered, yielding a total of more than 200 specific
event trees for the 7 plant categories (Al, A2, A3, B, C, D, and
E) and the 3 event types (LOCA, LOCP, and LOFW).

The specific event trees were then used to estimate the
conditional probability of core damage and the total frequency of
core damage (per reactor year) for BWR's only. 1In addition, the
trees were grouped to analyze the 7 plant categories separately
and, as a final case, all trees were grouped to yield overall
estimates of core damage.

Two techniques of weighting the core damage probability
based upon the number of reactor years per plant category were
examined. 1In the first (referred to as Method I) the core damage
condi*ional probability for each plant category i was weighted by
RY§ /lu',r where RY j is the number of reactor years for that plant
category and RY is the total nrmber of reactor years for all
plants for which the NSIC event would occur. The reactor years
by plant category (for all plants in the category) is given in
Table 4. The frequency of severe core damage was estimated by
dividing the weighted conditional probability by the total of
185.75 BWR reactor years.

In the second techniaque, (referred to as Method II), the
frequency of severe core damage was directly estimated by dividing
the conditional probability for each plant category i by RYiz the
number of reactor years in that category. In this case only
precursors that actually happened in each category were considered.



METMOD I RESULTS
NSIC ¢ CAT A) CaT A2 CAT A3 CAT » CaT C CAT D CAT E TOTAL il ::::“u A:mw DIFFERENCE
S1a34 4. 64106 | 3.08x10°7 | 3.78x10°7 | 3.21210-7 | 2.84x10-7 | 4322107 | 2.56x10-F | 9.03210-5 | 6.8210°Y [ 4. 70107 5%
63129 6126000 | 300107 | 3.70m107 | 3. 20m1677 | 2osenre? [ aaasmio® | s.ien107® | s.80x107® | r.ex0? | 9.69m107° 16.7
66996 6.0010"" | s.0axi0”? | s.73u0077 | 2.18m07 | 2.00m0 7 | 2.49x0077 | 5.26m1077 | 4.94x107® | 1.ex107? | 9.69m107 1.96
17916 6.00x00"" | s.96x1077 | 5231077 | 2.10m10°® | 2100077 | 24901077 | 5261077 | 4.90x107® | 2,000 | 1.13m107® -%.37
79565 4120007 | 300007 | 32007 | 1.330107 | 1.o1x107® | 3.6m107® | s.83x077 | 3.00m10™® [e.mmio™® | 3.66x107® 1.07
85566 4120070 | 0.107107? | 7.0m07 | 4.5em0”® | 2861077 | aa15a0™? | s0ixi0”? | a6rmio® |3 | remm0”® -2.80
85738 2.x107% | 7.530007% | 709107 | 3.95x107% | 3.00x107® | 7826107 | 1.08x107® | 9.24x107® ] 3.4x1077 | 1.83m0070 2.00
101644 3.50m10"> | 3.420107% | 3.34x10™® | s.60m107 | 1420107 | 3.08x107% | 1.25w107 | 963107 | 0.29 2.1500" 2.18
103002 6.08520"" | 5.96x1077 | 5.2301077 | 3.44u107 | 8.94x107® } 4.02x107 | s5.26x107 | s.08x107® | 2,407 | 1.20m107° 3.9
105540 6.00x10% | 5.96x107® | 5.73x107® | 2.08m1077 | 2.10m107® | 2.49x207® | 5.28x007% | 4.9umr0”? |10 | 9.05mi0”7 1.85
106616 9.26610°% | 1772107 | 1700107 | 3.20m1077 | 2061077 | 0.63m0077 | 2.9701077 | 1.asmi0” | 9.3m0™ | s.00m0™® -2.90
115870 9.60610°7 | 00020077 | 0601077 | 2.672007® | 1.030207® | 5.10x107® | 1.99x107° | 9.25%107 4 1.6m107? 1. 1sxi0”d 1.24
116780 1oexio”’ | wa 6.30x10"7 | 5.3ax1077 | s.36a0”7 | wa N/A 1.00x10°® | 160 | s.60mi0™® .79
120443 9.66x10"" | 00300077 | 06001077 | 2,610 | 1030007 | 503107 | 1992107 | 9.25x107% 9§ 1.6x10™? | 1.asm07d 1.2
124222 9.66x10"7 | 0831077 | 6.60x0077 | 2.622107® | 1.83107® | 503107 | 0992107 | 9.25x107" 1 exio? | asae™ 1.24
128569 1.29x007 7 | 1.25:0077 | 1.20m077 | 2.00x107® | 970107 | 1.29m1077 | s.28m1077 | 3.66m107® | 1.4xi0? | 9.69m1070 2.80
128906 2001078 2.536107 | 2.19%107® | 1.06x107® | 1.83m107 | 3620007 | osmio™® | coremio | 2.92:007 | 7.501070 1.81
149450 162103 2.07x1070 | 7.00m107® | e.20m107? | 6oremio”? | aommao? | s.0en107® | 2.650007% | i.3wm107? | 1.esmao™ 5.62
149961 205610 | 3.76x207® | 2.60x107® | 1.05x107% | 1.820007% | 3.36x107® | 4.43x107® | 4.a3m107® | 29m0™ | .40mi07d 1.80
153810 2.01510°%] 753107 | 7.19x107® | 3.95x107® | 3.68u107 | 6.73107® | 9.18:077 | 8.8201070 . 1.56x10"> .77
ToTAL 200m10°3 | 61321073 | 3.94m107% | 7.05m107¢ | 1.97m107* | 3.35m107% | 1.cemio™ | 1.25m107? - 2.65x10°° 2.12
951 vppar| 1.56m10* | 1.020007 | 10207 | 1.35m10™? | 6.20m07™ | maswao™ | s.29m07™ | 2.08m07 v i >

Total Excluding 2.87%10 ¢ 5.50m10 1.93

Browns Ferry

* Factor of 0.75 1 not applied in thiv table.



S.0 Results

Table 5 summarizes the quantitative results obtained using
Method I for weighting with resvect to reactor years. The re-
sults for Method II are given in Table 6.

A comparison for the core damage frequency estimates by
the two methods, I and II, shows that the category totals
represent different types of estimates. The category totals for
Method I represent fractional core damage contributions
be added together to obtain an overall core damage frequency
estimate. The totals for Method II, however, represent an over-
all core damage frequency estimate based upon the failure data
for each category and thus are larger than the figures calculated

in Method I. This is mainly due to small number of reactor vears
associated with each category.

To estimate the upper bound for the core damage frequency
in Method I, the conditional core damace orobahilities were summeA
by category A 95% binomial confidence interval was then comouted
for each category using the procbability sum and the "N" figure
for the category as determined by the Maximus reduction, Method
( ). The upper 95% confidence interval was then divided by 185.75
to yield the upper confidence interval for core damage frequency.
An overall upper confidence interval was also determined by further
summing all of the category probability totals and determining an
overall N.

For Method II, the core damage frequency for each category
was multiplied by the number of reactor years in the category to
determine a conditional probability. These probabilities were
then used in conjunction with the N figures from the Maximus re-
duction to calculate the binomial 95% upper confidence interval
The upper interval firmres were then divided by the number of reactor
years in each category to return to a frequency estimate.



The 95% confidence interval in Method I represent approx-

imately a factor of two increase over the base core damage con-
tributions. Comparing the frequency estimates by category shows
that Category B is the largest contributor to the overall core
damage frequency estimate. The event totals indicate that the
Brown's Ferry cable tray fire (NSIC 101444) is the largest con-
tributing event. Multiplying this event's frequency by 185.75
results in a conditional probability of .179. This is approximately
one-half of the .39 figure reported in the ASP study. Generally,
the analysis indicates that other precursors contributions are
over-estimated by an average of a factor of two.



NSIC ¢ CAT Al CAT A2 CAT A3 CAT B CAT € CAT CAT &

61434 310107

63129 -5 1.46x1077

29906 v 4.70x10

17916 4.54x10 @

79565 5 1.64x10

85566 7.31x107]

85738 6.22x10_;

101444 8.86x107,

103002 $.42x10 >

105540 3.4221077

106616 4.62x107

115870 i 2.98x10

116780 4.88x10 i

120443 2.98x10;

124222 = 2.98x10

128569 3.43x107;

128906 + 2.93x10

149450 1.34x10 “

149961 2.91x10"

153810 6.22x10°°

TOTAL 1.39x10"° -0~ 1.27x107" 1.15x1072 WITT -0- 1.46x10"0
1.62x1073 -0- 1.52x107% 1.18x1072 1.21x107% -0- 1.79x10"2

95 Upper
Bouand




APPENDIX A

Precursor as they are applied on the Category Event Trees
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