Spent Fuel Performance Margins: Radiation Safety

NEI/NRC Workshop

April 15 and 16, 2020 Washington DC

©2020 Nuclear Energy Institute

Agenda

- Goal
- Dose Rates and Safety
- Dose at Site Boundary (V-1)
 - Compliance with Safety Requirements
 - Regulation and Guidance
 - Comments on Guidance
 - Occupational Exposure
 - The Consequences
 - Proposed Change to Guidance Documents (V-1)
- Guidance on Modeling Details (V-2)
- Discussions

Goal

- Discuss Radiological Safety
- Discuss proposed reviews and revisions of guidance documents, for the purpose of ensuring activities that have no radiological safety significance are eliminated.

Dose Rates and Safety

- Radiological Safety Demonstration
 - Dose Rates can be measured, and are measured
 - Acceptance Criteria (Dose Limits) are clear
- Demonstrating compliance with the safety requirements is done with measurements, informed by analyses
- Vast amount of dose experience for dry storage of spent fuel
 - more than 3000 systems loaded with dose rates taken and compliance demonstrated
- Main safety criteria
 - Public: 25 mrem/year at the "site boundary", including contribution from casks and from the plant
 - Occupational: 5 rem/year for each person

Dose at the Site Boundary (V-1)

- Dose at the Site Boundary depends on
 - Number of loaded casks (Site specific)
 - Type of casks (cask vendor specific)
 - Distance to Site Boundary (Site Specific)
 - Fuel loaded into the casks (Site Specific)
- Compliance with Dose at the site boundary is responsibility of the site (the licensee)
 - Demonstrated by measurements that are informed by calculations

Compliance with Safety Criteria

- Two criteria to be satisfied:
 - Site boundary dose limits
 - Occupational exposure ALARA

Compliance with Safety Criteria

Site Boundary Dose Rates

Typically accomplished in the following steps:

- Step 1:
 - Offsite dose calculations performed (typically by cask vendor) to demonstrate compliance (in calculational space)
 - Level of detail and sophistication can vary significantly depending on site conditions
- Step 2:
 - Calculations of dose rates on transfer cask and storage cask at locations specified in the CoC, consistent with Step 1
- Step 3:
 - Licensee develops cask loading plans/procedures consistent with Steps
 1 and 2

NÉI

Compliance with Safety Criteria (cont.) Site Boundary Dose Rates (cont.)

- Step 4 (for each cask):
 - Transfer cask is loaded, measurements are taken
 - If limits are met, process continues to next step
- Step 5 (for each cask):
 - Storage casks are loaded, measurements are taken
 - If limits are met, cask is placed on ISFSI
- Step 6:
 - After all casks of a campaign are loaded, dose rates at the site boundary are reviewed to again confirm limits are met (formal compliance demonstration).

NÊI

Compliance with Safety Criteria (cont.)

Regulation and Guidance

From 10CFR72.236

(d) Radiation shielding and confinement features must be provided sufficient to meet the requirements in § § 72.104 and 72.106.

From NUREG 1536/(2215) Section 6.4 (with sections highlighted)

In general, the DSS shielding evaluation should provide reasonable assurance that the proposed design fulfills the following acceptance criteria:

1. The radiation shielding features of the proposed DSS are sufficient for it to meet the radiation dose requirements in 10 CFR 72.104 and 72.106(b). The applicant demonstrates this with:

a. A shielding analysis of the surrounding dose rates that contribute to occupational exposure and off-site doses at large distances (for a single storage and transfer cask with bounding fuel source terms at various cask locations), and

b. A shielding analysis of a single cask and a generic array of casks at large distances.

Compliance with Safety Criteria (cont.) Comments on Guidance

- Calculated dose rates in the FSAR, around a single cask or from a cask array, provide NO indication if 72.104 regulatory requirements can be met or not for an ISFSI site, since this depends on site specific parameters
 - For a small ISFSI far away from the site boundary, limits can be easily met even if dose rates around a cask are comparatively high
 - But for a large ISFSI close to the site boundary, even casks with very low dose rates can be a challenge, and may require additional shielding (e.g. a berm)
- Additionally, using BOUNDING source terms in the FSAR further increases the discrepancy between FSAR calculations and site-specific dose rates, which may result in erroneous conclusions drawn from the FSAR.

Compliance with Safety Criteria (cont.) Occupational Exposure

- Crew dose (dose to the loading crew for loading a single cask) are presented in the FSAR
- NRC still expects update and maintenance of the FSAR information, for changes to the designs and/or content
- Licensees have their established RP and ALARA processes, further informed by industry experience, to plan and perform loading operations.
- FSAR crew dose information does not provide any relevant information in that context.

The Consequences

- Including information in the FSAR triggers a cascade of activities, on the part of the vendor, NRC and licensee:
 - The FSAR needs to maintained essentially indefinitely
 - May also inform limits specified in the Technical Specifications
 - Forever subject to 72.48 review
 - Reviewed by NRC, generating a Safety Evaluation Report
 - Used and maintained by the licensee as the licensing basis
- Any change to a cask design or content, even very small, triggers this cascade
- This should not be necessary for something that is not used or needed to demonstrate safety

Information for Licensees

- The licensee needs to know that the system is capable of meeting the regulatory requirements
 - This needs to be known before the casks are loaded, i.e. before measurements can be taken to demonstrate safety.
- This is achieved through site-specific site boundary dose analyses, taking into account all previously discussed site specific and cask parameters
- For additional verification, licensees may consult general industry experience, from the 3000+ cask loaded
- Dose rates reported in the FSAR play no role here

Proposed Change to Guidance (V-1)

- In the FSAR, provide dose rates for a <u>typical</u> cask design with <u>representative</u> content, showing values on the surface and at various distances for a single cask. The associated analyses establish the methodology to determine site boundary dose
 - Parameters for those calculations should be clearly specified
 - Additionally, present qualitative discussions of the impact of any possible variations of those parameters on the results
 - Cask type, content, ISFSI size, distance to side boundary
 - Impact on dose rates (small, factor 2, factor 5, factor 10,)
- Occupational exposure evaluations are provided to demonstrate that worker dose can be reasonably controlled ALARA
 - Licensee RP and ALARA programs, informed by industry experience control worker dose, not the SAR
- SAR presentation of off-site dose and occupational exposure are to demonstrate ability to meet site limits, and not for demonstration of compliance with the regulations.

Guidance on Modeling Details (V-2)

- Guidance specifies lots of expectations on modeling approaches and the corresponding levels of details, often characterized as a need to be "appropriate or bounding".
 - Without any appropriate concept on what is "appropriate", the expectation often defaults to bounding.
 - Example: consider dimensional tolerances in shielding analyses
- Higher levels of details and/or bounding modeling approaches substantially increase the modeling effort
 - See the "The Consequences" slide for additional discussions on the consequences of this
- Over 3,000 loaded systems provide measured data for comparison typically 50% lower than calculated.
- Recommendation
 - Review and revise the guidance on modeling, taking into consideration the industry experience on dose rates from the radiation protection programs.