Table 2.3.2 DESIGN DATA FOR HI-STORM UMAX ISFSI

	Туре	Value (minimum or nominal, as applicable)	Comment
8.	Strain compatible effective shear wave velocity in Space C, V	485 ft/sec minimum	This space may be remediated with vertical reinforcement such as pilings to enhance V.
9.	Strain compatible effective shear wave velocity in Space D, V (Figure 2.4.4)	485 ft/sec minimum	This space will typically contain native soil.
10.	Design Basis Earthquake	Top of the Grade (Ground surface) spectra per Figure 2.4.1 with horizontal ZPA, a_H and vertical ZPA, a_V scaled as follows: $a_H = 1.0g$ av = 0.75g and foundation surface pad spectra per Figure 2.4.2 with horizontal ZPA, a_H and vertical ZPA, a_V of: $a_H = 0.93g$ av = 0.71g	Horizontal and vertical spectra shown in Figures 2.4.1 and 2.4.2 are based on 5% damping. Following the Newmark 100-40-40 response combination technique [2.6.7] endorsed by the Regulatory Guide 1.92 [2.4.7], the <i>resultant ZPA</i> for a 3-D earthquake site is defined as: a_R = a_1 +0.4 a_2 +0.4 a_3 , where a_1 , a_2 and a_3 are the site's ZPAs in three orthogonal directions and $a_1 \ge a_2 \ge a_3$. Hence, the DBE <i>resultant ZPAs</i> at ground surface and foundation surface elevations are 1.3 g's (=1.0×1.0g's + 0.4×0.75 g's) and 1.214 g's (=1.0×0.93g's + 0.4×0.71 g's), respectively.
11.	Permissible long-term settlement of the SFP	0.2 inch maximum	Used as the input value in the strength qualification of the SFP.
12	Density of plain concrete in the Closure Lid (min nom)	150 lb/cubic feet	Used in shielding calculations
13	Reference compressive strength of plain concrete in the Closure Lid	4,000 psi	Used in analysis of mechanical loadings on the Closure Lid
14	Minimum compressive strength of SES in Space A (see Figure 2.4.4)	1,000 psi	Used in tornado missile impact analysis and SSI analysis
15	Density of CEC plenum shield concrete, if applicable	120 lb/ cubic feet	Used in shielding calculations

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL			
HI-2115090		Rev. 5B	
2-86			

Table 5.3.2 COMPOSITION OF THE MATERIALS IN THE HI-STORM FW SYSTEM Component Density (g/cm³) **Elements** Mass Fraction (%) 2.642 B-10 4.388 Metamic B-11 20.436 68.275 Al 6.901 C [PROPRIETARY INFORMATION WITHHELD IN ACCORDANCE WITH 10 CFR 2.390] Metamic-HT Carbon steel 7.82 Fe 99.0 C 1.0 SS304 7.94 Cr 19.0 Mn 2.0 Fe 69.5 9.5 Ni 2.4 (150 lb/ft3) O Concrete 53.2 [note 1 deleted] Si 33.7 Ca 4.4

Al

Na

Fe H

Η

O

Al

Si

3.4

2.9

1.0

0.962

54.361

12.859

31.818

[Note 1 deleted]

Soil

1.7

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL				
HI-2115090		Proposed Rev. 5C		
5-28				

Table 5.4.6

DOSE RATES ADJACENT TO THE HI-STORM UMAX MODULE WITH VERSION B LID FOR NORMAL CONDITIONS

MPC-37 DESIGN BASIS ZIRCALOY CLAD FUEL

Location	Value
Side of the VVM lid Adjacent	22 mremr/hr
to the Inlet Vent	

Table 5.4.7		
DESIGN BASIS DOSE RATE LIMITS		
Location	Value	
Side of HI-TRAC	3500 mrem/hr	
Standard Lid	66 mremr/hr	
(On the side of the closure lid		
approximately midheight)		
Version B Lid	22 mremr/hr	
(On the side of the closure lid		
approximately midheight and		
adjacent to the inlet vent)		

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL				
HI-2115090		Proposed Rev. 5C		
5-45				