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ABETRACT

Thi FETIMATION OF ATMOSHFEKIC DISPERSICN AT NUCLEAK POWER FLANTS
UTILIZING REAL T'ME ANEMOMETER STATISTICS

rispersion and turbulence measurements were conducted ir a simulatecd
stmospheric boundary leyer. Field experiments and wind turnel results
for the lehavicr of lateral plume dispersion are compared to three semi-
empirical expressionc based on the Taylor's diffusion theory. These re-
lationg imply a direct connection between dispersion ccefficients and the
Legrangian integral time scale. Agreement between the field data and
laboratory measurements suppert using wind tunnel results to simulate
atmoshperic transport phenomena.

Fulerian space-time correlations with streamwise separations were
measured for all threc velocity components in the simulated boundary
laver. Results were compared to previous measurements which were per-
formed under ditferent flow configurations., A universal shape of the
Fulerian space~time correlation seems to exist when presented in a
normalized time ccordinate,

Turbulance measurements of fixed-point Eulerian velocity statistics
were employed to estimate the Lagrangian velocity statistics through the
Baldwin and Johnson apprcocach. The approach was modified to account for
the uniform shear stress effect in a homogeneous turbulent flow field.
The estimated Lagrangian integral time scale agrees with estimates inter-
red from dispersion measurements within only a 20% error. Such agreement
supports the methodology of using real time anemometer statistics to
predict the atmospheric turbulent dispersion near a nuclear reactor site.
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Chapter 1

INTRODUCTION

1.1 Statement of Work

The dispersive nature of turbulent flow is an object of
consideration in many branches of engineering and applied science.
Reliable predictive relations applicable to a broad range of scales are
not yet known. Indeed, most atmospheric transport predictive schemes
for a nuclear reactor site still depend upon relating mean wind field
characteristics measured at particular site to regression formulae
developed from data collected at other sites at other times.

Recent research on the turbulent dispersion phenomenon suggest that
the concentration field in a wide variety of situations can be generated
if the Lagrangian statistics/properties of the flow field are known.
Unfortunately, because it is difficult to tag the particles initially in
a manner that does not influence their future behavior, to obtain
necessary trajectories and the subsequent laborious data analyses, it is
not possible to obtain the Lagrangian statistics by tracking individual
particles. Attempts have been made to deduce the Lagrangian auto-
correlation from the Eulerian turbulent velocity at fixed point in
space. Theoretical and empirical approaches to the Lagrangian-Eulerian
relationship are quite diverse. Nevertheless, most of the attempts have
been based on the assumption that the Lagrangian autocorrelation and the
Eulerian autocorrelation, or Eulerian space-time cross correlation, are
of similar shape but different scales. Whereas the imvortance of the
shapes of those two autocorrelation functions is still disputable except
for short range dispersion, the importance of the integral scales in
turbulent diffusion has met with agreement. One of the purposes of this
research is to demonstrate how a systematic scheme based on a
probability method .an estimate those Lagrangian statistics by a few
anemometers located in the fixed Eulerian frame of reference. Of
course, the major intent of this research is to predict dispersive
phenomenon in the atmospheric boundary layer from the estimated
Lagrangian statistics. A meteorological wind tunnel was used to
simulate an atmospheric boundary layer to provide velocity correlation
measurements and diffusion measurements.

An inhomogeneous turbulence field is realistic but complicates the
mathematical description of the turbulent mechanism; hence, most statis-
tical theories assume a homogeneous wind field. As a first estimate of
the atmospheric dispersion, a homogeneous statistical turbulent
diffusion theory is applied for an isotropic analysis and later extended
to a non-isotropic analysis in the present study.



1.2 Introduction to the Text

The statistical theory by continuous movements and the relation
between Lagrangian and Eulerian autocorrelation functions are reviewed
in Chapter 2. In addition, classical and statistical solutions using
the Lagrangian estimates to the diffusion equation are presented.
Chapter 3 states the probability method of estimating the Lagrangian
autocorrelation function in a generalized non-isotropic, uniformly
sheared turbulence. Chapter 4 displays experimental facilities,
measurement procedures and related measurement errors. Laboratory
results of the turbulence field are presented and discussed in Chapter
5. Comparison between the laboratory dispersion measurement and the
atmospheric dispersion experiments is included in this chapter.
Lagrangiau estimates obtained from a numerical iterative scheme based on
the present analysis are compared with previous findings reported by
various researchers in Chapter 6. Estimation of turbulent dispersion
utilizing the Lagrangian estimates are compared with the laboratory
dispersion measurements; the discrepancy is discussed. Chapter 7
briefly summarizes the present study and gives recommends for further
research.



Chapter 2
LITERATURE REVIEW

2.1 Introduction

The basic theoretical approaches to statistical diffusion are
either Lagrangian or Eulerian. Whereas the Lagrangian approach follows
the motion of a single fluid particle, and is difficult to measure, the
Eulerian approach concentrates on the balance of particle fluxes through
a fixed point in the flow field and is normally easier to determine.

The statistical concept of turbulent diffusion is described in
Section 2.2 based on theory of continuous movement. Section 2.3
presents several models proposed by different authors to obtain the
Lagrangian statistics from Eulerian measurements. The Eulerian space~
time correlation plays an important role in the Langrangian-Eulerian
relationship and is reviewed in Section 2.4. The diffusion equation
based on Eulerian kinematics in connection with the Lagrangian
statistics for predictions of turbulent dispersion is considered in
Section 2.5.

2.2 Statistical Theory based on Continuous Movement

Diffusion of a fluid particle in a uniform mean velocity,
stationary, homogeneous turbulent flow was first described by Taylor
(1921). The mean square particle displacement was predicted to depend
on the Lagrangian velocity variance and the Lagrangian autocorrelation,

2 2, 8 4
lxi (v)) = 2|v‘ ) £ { LR“(t)dtdtl R (2.1)

where the square bracket indicates an ensemble average of N fluid
particles, vy is the Lagrangian fluctuation in the i‘h direction, [v‘zl

is an abbreviation for |[v 2(t)l during stationary turbulence, and
l_l“(t) is a normalized Lulrt‘.tan autocorrelation function,

[v (t)v (te1))
L e (2.2)
v 2I2 v 2I2

A J

where i denotes the directional tensor.




When Equation 2.1 is integrated by parts, Taylor's relationship can
also be expressed in the Kampe de Feriet form, i.e.,

t
lxiz(t)] B 2lvi2| £ (t-1) R, (Ddr . (2.3)

From Equation 2.3 two asymptotic results may be obtained:

(i) Since within a very short dispersive range of the source, Ll“(t)
approaches unity, then

[xiz(z)l - |vi2|c2 . (2.4)

(ii) Yor a wvery long disp-rsior ringe, the integral of LR“(t)
approaches a constant value LTii'

LTit = £ LRii(t)dt , thus

[xiz(z)l ~ Zlvizl Sk o (2.5)

where LTii is referred to as the Lagrangian .ategral time scale. The

scale is an indication of the size of the largest eddy within the
turbulence field,

In a homogeneous turbulent flow with uniform shear ' and mean
velocity U, U = T Xq Corrsin (1953) derived expressions for the

components of the dispersion tensor |x‘(z)xj(:)|;
X212 v 21 2 0§ ke ode 2§ Ry 0de ¢ ) f R (0dt)
1 33" 18 AL i, '»
(n

t
+ 2[vlz| £ (t-t)Lll'(!)d!

(1



t t
+ r[v1v3] { (t't)Lkal(t)dt + rlvlv3l { (tz-tz)LRl3(t)dt :
(I11) (2.6)

t
(X, (£)X,(8)] = r[v321 { t(t=1) Ry (1) +

(1)
oot
2 2,2
lvl 1“1l £ (t-t){LRn(t)*L 31(t)}dt (2.7)
(1) ;
(X 2(t)l = 2| 2l } (t=1),R, (1)d d (2.8)
2 v2 4 tl.22 1 an .
2 2, %
(X,°(t)] = 2[v,"] { (t=1) Ryy(v)dr . (2.9)

Notice that the shear-enhanced term (I) in Equation 2.6 and Equation 2.7
dominate the long term dispersion (t > LTII)' The turbulent shear

correlation contribution terms, (IIl) in Equation 2.6 and (I1) in
Equation 2.7, are often neglected in the absence of data for Lnij’ it

Term (11) in Equations 2.6, 2.8 and 2.9 are the Taylor's diffusion
terms. Two asymptotic cases can be identified from Equation 2.6 through
Equation 2.9 if one neglects the turbulent shear correlation
contribution terms.

(i) Within a very short dispersive range, l‘R“(t) approaches unity for
a very short time lag so that

(%2 = § refied o v et

lxzz(t)l . Ivzzlt2 : (2.10)
(%, ()X, ()] = Flv1e? , and

(%2 0)) = (v, 1e?



(ii) For a long range dispersion, the integral of LRii(t) approaches a

constant value, LTii’ and LR“(t) approaches zero so that

2 o202, 2 3 2
lxl (t)] 2 3 r lv3 ) 'r33 Lt o+ lvl | Tll t,
2 2
(X,°(t)) = 2[v,*], T,.t ,
2 2 L'22 .18
2 R 2
(x3 (¢v)) = 2Iv3 lLT33t , and
(X, (X, ()] = T[v, %] T,.t2
1{H)5, =TIV Ip¥agt -

In particular, for asymptotic forms of the displacement measures,
Corrsin (1959) reported that

2 3 d 2 3
[Xl (t)] = 3 r Iv3 'LT33t and
(2.12)
(X, ()X, (1))

1t

2 2
r|v3 ILT33t N

The mean square particle displacement has been implicitly related
to the turbulent Jdiffusivity tensor, Kij’ ever since the analogy between

molccular diffusion and turbulent diffusion was proposed. Batchelor
(1949) generalized the relationship between the time-dependent turbulent
diffusivity tensor and Lagrangian autocorrelation functions through
Taylor's theory fr a homogeneous flow without mean shear.
14
Kij(t) *3dt Ixi(t)xj(t)l

L
S S

i

{LRij(') + LRji(t)!dt (2.13)

For many applications, the asymptotic value of the turbulent diffusivity
suffices (Hinze, 1975)

K, (=) = % g; X, (LX, (1)) 2 |v‘2|Lr‘i. (2.14)

L LT

Based on the equations of mass conservation and Equations 2.6, 2.7,
2.8 and 2.9, Riley and Corrsin (1974) were able to relate the turbulent
diffusivity tensor to the Lagrangian velocity statistics for a simple
shear flow. They revealed that in a homogeneous turbulent flow with
uniform shear, the turbulent diffusivity tensor differs formally from




those for an unsheared homogeneous flow. The turbulent Jiffusivity
tensors in a sheared homogeneous flow are

t t
Ky (1) = |v12| £ (R, (14T + Tlv,v,] £ 1R, (1)dT (2.15)
t
Kl3(t) + K3I(t) = Ivlv3] { {LR13(t) + LRBI(t)}d‘
2. ¢
+ rlv3 | J tLR‘3(t)dt (2.16)
o
. ¢
Kzz(t) = lv2 | { LRzz(t)dt a and (2.17)
5. t
K33(t) = [v3 ] £ LR33(t)dt : (2.18)

Since it is normally not possible to measure the Lagringian
velocity vy directly, an Eulerian RMS velocity fluctuation, (ui . 8

usually substituted for Ivizl.

2.3 Relation between Lagrangian and Eulerian Autocorrelation

The statistical treatment of turbulent diffusion requires an
explicit formation for the Lagrangian autocorrelation function. Some
direct measurements of Lagrangian velocity fluctuations have been made
through simulation of air particle measurement by soap bubbles or by
balloons (see Pasquill, 1974). Yet the evidence for correlation shape
is still not convincing, quantitatively or qualitatively, because the
negligible mass and zero buoyancy of an air parcel cannot be adequately
simulated by a finite sized substitute particle. Since it is not feas-
ible to measure the turbulent velocity of each fluid particle,
researchers tend to estimate the Lagrangian statistics through
conjectures based on physical assertions from Eulerian statistics or
through diffusion experiments and Taylor's theory.

The literature on the relationship between the Lagrangian and
Eulerian correlation function is quite vast, Nevertheless, the avail-
able approaches for the estimation of the Lagrangian autocorrelation can
be categorized into four groups based on their salient traits.



2.3.1 Linear cerrelation method to calculate LRii(t)

In a homogeneous turbulence the shape of the Lagrangian
autocorrelation function is expected by some researchers to be similar
to either an axial Eulerian cross-correlation or a single Eulerian
autocorrelation function. Mickelser (1955) conducted a mass diffusion
experiment and made fixed point Eulerian velocity fluctuation
measurements in the core of a pipe. He demonstrated that the Lagrangian
autocorrelation function may be related Lo the Eulerian
1

longitudinal cross correlation such that ERn(xl) = ;5 L

R]l(C), where

& B/ -~ 2
C = %/W W% .04 B varies from 0.55 to 0.725. It is clesr that the
relation cannot be correct near {=0, and the expression implies that the
Lagraugian autocorrelation function decays more slowly than the
corresponding Eulerian value.

Gifford (1955) reported simultaneous measurements of both
Lagrangian ard Eulerian turbulent fluctuations in the atmosphere at a
height of 300 ft. With limited data, he suspected that the Eulerian
turbulent energy spectra are similar to the Lagrangian spectra but with
a displacement toward higher frequency. Based on his finding, Gifford
further suggested that the Lagrangian autocorrelation is well repre-
sented by an Eulerian measurement observed from a frame moving with the
same velocity as the mean flow. He also remarked upon the possible
importance of the turbulence intensity in the Lagrangian-Eulerian
relationship.

The Lagrangian autocorrelation function is sometimes construed to
be a contracted or stretched form of the Eulerian correlation function
by means of an empirical factor. Hay and Fasquiil (1395%) lypolhesiced
that

LRii(n) s ERii(t) ) (2.19)

where n = PBt, based on atmospheric observations. They concluded that
the Lagrangian autocorrelation function decays more slowly with time
than the Eulerian autocorrelation function. Furthermore, the Lagrang.an
autocorrelation coefficient for a particle decays with time in a similar
manner to the Eulerian autocorrelation coefficient but with a different
time scale B. The value proposed for B has considerable scatter, but a
magnitude of 4.0, independent of wind speed and stability, is
recommended. A natural consequence of Equation 2.19 is that LTii

bET“. Hence P stands for the ratio of the Lagrangian to Eulerian
integral time scale. It is known as Pasquill's P in the literature.

Wandel and Kofoed-Hansen (1962) examined the Lagrangian and
Eulerian energy spectra for a fully developed isotropic homogeneous

turbulence. They established a more complicated relation between the
Eulerian and Lagrangian correlation based on the statistical theory of



"shot" noise and the Helmholtz theorem. A rough approximation in the
an

case of smooth energy spectra indicates that B = , where i is the

turbulence intensity, y E;ZIU.

Corrsin (1963a) compared the shape of Lagrangian and Eulerian
energy spectra over the inertial subrange. By assuming that the total
turbulent energy was identical in the Lagrangian and Eulerian system, he
arrived at a theoretical prediction of B.

p=5 (2.20)

where ¢ is a constant.

After monitoring the trajectories of tetroons and a tethered
balloon system at height of 750 m, Angell (1964) observed an average
value for B near 3.3 and recommended relation equal to 0.4/i1i for B.
Angell et al. (1971) made further observations in the atmosphere near
Las Vegas, Nevada, by releasing tetroons past tall towers. P was again
found to have average values near 3 and varied in direct proportion to
the turbulence intensity.

Snyder and Lumley (1971) performed direct measurements of
Lagrangian velocity in a grid-generated turbulence field in a
laboratory. The fluid particle was simulated by releasing single
spherical beads with different weights and sizes. Since light particles
have only small inertia and cross-trajectory effect, light-particle
correlations were utilized to estimate Lagrangian fluid properties.
They concluded that the Lagrangian autocorrelation function has similar
shape to the Eulerian spatial correlation and that B 1s roughly equal to
3 when approximated by 1/i.

Turbulence measurements reported by Hanna (1981) were conducted in
the daytime mixing layer near Boulder, colorado. The average Lagrangian
time scale detected was about 70 seconds for a sampling time of 15
minutes. The ratio P was found to be 1.7 and inversely proportional to
turbulence intensity, B = 0.7/i.

The various values for P discussed above are summarized and
compared with present wind tunnel results in Section 6.4,

2.3.2 Estimation of LRiift) from Eulerian Space-Time Correlation

An Eulerian fixed=point time periodogram samples many different
fluid points as they pass a fixed point. [t is considered important in
many turbulence dynamic analyses and is relatively easy to obtain.
Unfortunately the conventional measurements do not relate directly to
the Lagrangian statistics during turbulent diffusion.

Burgers (1951) proposed a more general Eulerian space-time
correlation for the behavior of two particles separated in time and
space. He suggested it as a first approximation to the true Lagrangian
autocorrelation
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E 11(Ut 0,0,1) = L ll( ) . (2.21)
The space-time correlation may be obtained from the envelope of a set of
Fulerian space-time cross correlations of the longitudinal fluctuating
velocity given the assumption of homogeneous and isotropic turbulence.
This envelope which connects the peaks of the cross-correlation is
interpreted as the moving Eulerian autocorrelation which would be
measured by a probe traveling steadily at the mean velocity. It may be
thought of as the autocorrelation of the time signal measured by a
single probe in a "quasi-Lagrangian" frame of reference. Inoue (1952)
and Ogura (1953) also viewed such correlation as an appropriate
expression of the Lagrangian autocorrelation.

Baldwin and Walsh (1961) presented experimental data and some
theoretical interpretation to support this scheme. On the other hand,
Baldwin and Mickelsen (1963) found that their pipe flow data showed a
systematic tendency for the Eulerian space-time correlation integral

x

scale, (T, I ER“(Ut 0,0,1)dt, to be greater than T, .~ by factors
ranging from about 2 to 4 as u,? increased. Furthermore, their results

yielded rough values for p var glng from 4 to 18 depending on the mean
flow rate.

The advantage of the space-time correlation method is that it
preserves the asymptotic value of a Lagrangian autocorrelation function
such that the Lagrangian coefficient apparently approaches zero
monotonically, whereas the Eulerian correlation dips below zero to
slightly negative values before approaching a zero value asymptote. The
shortcoming in principle of using the moving Eulerian autocorrelalion as
the true Lagrangian autocorrelation, as pointed out by Corrsin (1963b),
is that the Lagrangian velocity is effectively being approximated by
sampling along an unknown random trajectory.

An impediment to the use of such a scheme was revealed by Shlien
and Corrsin (1974) in their grid-generated turbulence experiment. They
estimated the Lagrangian autocorrelation function from diffusion
measurements by double differentiating Taylor's relationship. The
estimated Lagrangian statistics were compared with results of Eulerian
statistics measurements, although the technique for estimating the
Lagrangian autocorrelation was questionable. They concluded that the
moving Eulerian velocity autocorrelation function was different in shape
from the Lagrangian autocorrelation function based on the disparity
between the micro- and integral scale ratios. Further results of their
work are compared in Section 6.4 of this study.

2.3.3 Probability method to estimate LRij(t)

A probability method to estimate LRij(t) was derived from Corrsin's

(1959) conjecture of Lagrangian autocorrelation function and later
modified by Baldwin and Johnson (1972). An Eulerian expression for
LRij(t) was derived by Corrsin by assuming that ug and r, are randomly

related through a joint probability function P(ui(t), ui(t+t),rk),



® u.(t)u.(t+1)
Ry (0) = .UJ'IJ €55 Al 8(x,-r,)dr, }

u.
i

P(ui(t),uj(t+t),rk)dui(t)duj(t+t)drk (2.22)

where X is the Eulerian peosition and Ty is the Lagr:ngian position of

fluid particle, k=1,2,3. In the limit of very large time T, there is no
reason to expect a statistical connection between e and ui(t) so that

@
LRij(t) = {if ERij(rk,t)P(rk,t)drk . (2.23)

P(rk,t) is visualized as the probability of finding a fluid particle
injected at the origin in the region between X, and xk+dxk at any time
t. Equation 2.23 is commonly referred to as "Corrsin's conjecture" or
as a mathematical expression of the Independence Hypothesis.

Intuitively, the velocities should be more persistent along the
path of a fluid particle than a fixed observation point or a moving
observation point. [Equation 2.23 clearly suggested a contradictory
result, i.e.,

)
LRij(t) < ERij(rk,t) {{f P(rk,t)drk

E 1J(rk,t) = ERij(rk’t) (2.24)

However, Kraichnan (1963) supported the opposite expectation. He argued
that the rate of change of the Lagrangian velocity with time is
determined by the rate of spatial variation and magnitude of the
Eulerian velocity. Slower variation of the Lagrangian velocity implies
slower changes of the Eulerian velocity because the fluid particle must
travel a nearly straight line with low acceleration. On the other hand,
a slower change of the Eulerian velocity does not consequently imply
reduction in the variation of the Lagrangian velocity; because the
Eulerian velocity may exhibit an intermittent period of slow local
variation, which is not necessarily true for the whole flow field
experienced by the particle. Nevertheless, at a high Reynolds number
Corrsin (1963a) found that the difference is not significant. Equation
2.23 is also supported by Kraichnan (1970) from his direct interaction
approximation.

If Equation 2.23 is transformed into the frequency domain, one
finds that



12

-1 - .
Ry (0 = 5 S5 IS R j(r Oepl-ingrylary)

Lol

expi-

N‘X

Ixi(t)xj(t)”dKQ (2.25)

where K is the three-dimensional wave number.

Saffman (1963) assumed a spectrum functional form of an Eulerian
space-time correlation and an exponential decaying function for s He

obtained an ordinary non-linear differential equation which relates the
Lagrangian autocorrelation and the mean square particle displacement in

an isotropic homogeneous turbulence. Some interesting conclusions may
be found in Saffman's work.

1. The scale ratio B was found to be gié in low turbulent flow.

Since the Eulerian integral scale was defined by him as

@

< ERii(O,Ut,O,t)dt, it implied that a lateral space-time integral
o

scale was employed. The adoption of mean velocity U in the
lateral direction seems somehow unrealistic.

2. The Lagrangian autocorrelation was found to decay algebraically but
not exponentially and the asymptotic value approached the Eulerian
space-time correlation.

3. The Independence Hypothesis would be exact if those realizations of
the turbulence which displace the particle by a given amount in a
given time were an unbiased sample of the ensemble of all
realization. In a grid-generated turbulence the sample of
realizations is not asymptotically unbiased; therefore, the
Independence Hypothesis is not expected to be valid in such flow.

By physical reasoning, Philip (1967) proposed a Lagrangian-Eulerian
relationship parallel to Equation 2.23. He employed a modified Gaussian
function for the general Eulerian space-time correlation because it
simplified the rather difficult computation which the independence
hypothesis involved, i.e.,

2 2

" 11*3.138p t2
ERll(xl’p;t) " e"P{‘ ) 4 ( 7 * b )} (226)
L : 4
S'11
where p = (x22+x32)5. L and STll are integral scales of Eulerian

space-time correlation in space and time, respectively. The scale



13

2%
y lu "1 6Ty,
ratio B was found to be (1 + a?/i?)? F(a), where « meKbguladss and

F(a) = LTll/STll' Functions like Equation 2.26 represent an Eulerian

space-time correlation normalized by the integral scale of itself. Such
approximation concerns only the integral time scale instead of the
functional form of the Lagrangian autocorrelation. Consequently,

Philips' analysis shows that the predicted time scale LTll is

insensitive to the imprecision of Equation 2.2€.

Baldwin and Johnson (1972) examined the Independence Hypothesis in
further detail. Since their work is closely related to the present
analysis, their ideas will be discussed separately in Section 3.2.

The Independence Hypothesis was tested by Peskin (1974) in two-and
three-dimensional numerical simulated flow fields. The Lagrangian field
was determined by tracking 800 particles for BOO time steps twice. The
mean square particle displacement from a directly measured Lagrangian
autocorrelation was compared with Equation 2.1 to ensure a correct
simulation. The Eulerian field was generated by solving the basic
equations of velocity and stream function with periodic boundary condi-
tions. The independcnce hypothesis incorporating a Gaussian probability
density function was found to reproduce the Lagrangian autocorrelation
function in detail but to have a tendency for overestimation in two-
dimensional flow. The overestimation may be reduced by utilizing the
computed probability density function from simulation. The calculated
Lagrangian autocorrelation agreed with predictions from Independence
Hypothesis methods for a three-dimensional turbulence field. Figure 2.1
displays the result reported by Peskin.

Weinstock (1976) was able to derive the independent hypothesis by
expanding the Lagrangian trajectory of a fluid particle in terms of its
Eulerian ensemble average. Furthermore, he introduced a correction term
to the Lagrangian autocorrelation by dividing the probability of findie:z
a fluid particle into an average part and a fluctuating part. He then
concluded that the Independence Hypothesis is valid when the turbuleat
velocity fluctuation is low and satisfies

3
[uizl2 >> [ui(xi,O)ui(xi,O)ui(xi 8)}

0

where X, is the initial particle position.
o

2.3.4 Other methods

A method to estimate the Lagrangian autocorrelation from Eulerian
velocity products was proposed by Koper et al. (1978). The method is
based on averaging the Eulerian velocities along the Lagrangian
trajectory. The Lagrangian autocorrelation is approximated in a turbu-
leace flow field as a summation of Eulerian cross-correlations between
velocities and velocity derivatives, after averaging over trajectory,
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particle-space and a reference plane. If the correlations among
velocity derivatives and velocity can be ignored, the Lagrangian-
Eulerian autocorrelation may be expressed as

1850 = § SIS Ry, Tk

where S is the reference plane in the flow field and V is the volume of
the integration domain.

The wvariation of the resulting reference-point Lagrangian
autocorrelation coefficient with increasing time delay is depicted in
Figure 4 of Koper et al. (1979).

Notice that in a simplified case, their method coincides with the
probability method stipulating a uniform weighting function. In an
isotropic homogeneous turbulent flow the Eulerian autocorrelation is
independent of its position and direction within the domain of the
average flow field. The method implies L ll(t) E ll(t) with B=1.0.

In addition, since the derivative of turbulent velocity is not

convenient or normally measured precisely, such a scheme remains more
academic than practical.

Lee and Stone (1953) assumed that the Eulerian space-time
correlation may be approximated by the product of an Eulerian convective
correlation and an autocorrelation function for a small time step, Ot,
so that le = USt and

E 11(6x ,0,0;6t) = exp{-6x -UGL/L}exp{ Gt/s ll} (2.27)

They also assumed that the Lagrangian autocorrelation may be
approximated by the Eulerian space-time correlation for a small time
step during a Monte Carlo simulation of particle velocity,

v (t+6t) = v (t)E ll(6x1,0,0;6t.) tvy . (2.28)
From Equations 2.27 and 2.28, an expression for P was obtained,
[v? ]STII 2
A rough estimation of B in low turbulence flow yields B ~ 9+5. One

notices that the major concern of their analysis is the integral scale
rather than the shape of the Lagrangian autocorrelation. However, they
provide an approximation for the Lagrangian-Eulerian relation.
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2.4 The Eulerian Space-Time Correlation

Turbulent flow has been described as an irregular fluid motion
which is three-dimensional, continuous, diffusive and dissipative in
nature. It forms such a complicated mathematical problem that its
solution depends heavily on experimental data. A statistical approach
to describe the mean motion of turbulent phenomenon seems to be most
appropriate. The double velocity correlation function, namely the
Eulerian space-time correlation, may be the most appropriate function to
examine the structure of turbulence and its evolution in time (Townsend,
1976). The previous section confirms that the Lagrangian auto-
correlation is strongly related to the Eulerian space-time correlation.

Pioneer correlation measurements of the space-time corrvlations in
a turbulent flow were produced by Favre and his co-workers (1957, 1958,
1965, 1967). They performed measurements downstream of a grid, in a
turbulent boundary layer and in a turbulent jet; both had wall pressure
fluctuations. A brief summary of their experimental results reveals
that:

1. The longitudinal Eulerian space-time correlation,
ER“(_dxl,O,O;t), reaches a maximum with an optimum delay time,

dx
e where dx1 is the separation distance between two fixed

points and U is the convective velocity.

2. The transverse Eulerian space-time correlation,
E ll(O 0 dx3,t), for two points on a line perpendicular to the mean flow

direction, LA is not zero but proportional to the separation from the
boundary. However, L is small when compared with the time required for

movement with the mean flow over the same range dx3.

3. In a filtered turbulence field, limitation to higher frequency
data results in substantially lower correlation which implies the
smaller scale eddies contribute less to the total! turbulent energy.
Larger separation between two points reduces the contribution of the
higher frequency oscillations dramatically.

4. The space-time correlation due to the diffusion effect, i.e.,
the Lagrangian probability demsity function of particle displacement,
was proposed by Favre as
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© (x -Xl-ut)z xg e

1 3
R, . (x,,0,0;t) = [ff R (X ,X, ,X.)+exp{- - }
E11"} s Lo
ol b Ll L 20,21 20212
dX_ dX, dX
. ! 22 233/2 ’ (2.29)
(2nfu "]t%)

where the general Eulerian space correlation is

_ f(X)-g(X) , 2
R(xl,xz.x3) ey X, + g(X) , and

X
X = (xl2 + xz2 + x32)5 ;
(2.30)
£(X) = R, (X,0,0;0) , and
g(X) = Rll(o.x,o;O) .

The computed correlation from Equations 2.29 and 2.30 was compared with
the experimental results. The comparison is considered good though the
measured data appears to be slightly lower for shorter time delay and
higher than the computed valuz for longer time delay.

Champagne et al. (1970) and later Harris et al. (1977) conducted
measurements in a nearly homogeneous turbulent shear flow. Some
observations may br made from their experiments:

| The optimum delay time may be approximated by the mean convective
time in a uniform snear flow.

2. In a situation such that the turbulent energy appears to reach a
steady asymptotic state, the stationarity but not homogeneity may
hold in the Eulerian frame convected with the mean flow.

The longitudinal and vertical two-point space-time correlations
with separations in streamline direction, Rll(Ut,0,0;t) and
ERZZ(UI,O,O;I), were found to be similar in shape.

Comte-Bellot and Corrsin (1971) reported space-time correlation
measurements in a roughly isotropic grid-generated uniform flow.
Correlations with the two velocity signals pre-conditioned by either a
narrow- or a full-band frequency filter were calculated. The matched
narrow-band filters were designed to examine the frequency dependence of
velocity correlations. The correlation coefficients increased as the
wave number decreased which confirms that larger eddies contribute more
to the total turbulent energy. A rescaling formula which depends on
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wave number and time was suggested to collapse narrow-band velocity
correlations upon full-band velocity correlation.

Measurements of the space-time correlation in the atmosphere are
rather rare. Attempts to measure such information have been made by
Wacongne and Baliano (1982). They performed two-point simultaneous
measurements of the velocity fluctuation at a given height in the atmos-
pheric boundary layer. However, the separation distances were 100
short, less than 0.5 m, to obtain any meaningful results. The results
fall between 1.0 and 0.95 as might be expected.

2.5 Diffusion Equation

Considering the mass conservation of a scalar species over fluid
control volume but neglecting molecular diffusion, one obtains

ac _ _ 2

5t - 5;; uc . (2.31)

By Reynolds averaging and introducing the eddy diffusivity,

uc

ij =" T am 2.32
ax. ,
J
the conventional diffusion eyuation is obtained as
at , a0 _ 2 ot
at ' ek, Bx, (X, 3*3) , (2.33)

where Kij is generally a function of spatial variation and time
evolution. Knowledge concerning Kij is rather limited. Simplification

of Equation 2.33 is generally necessary to obtain any solution. The
most plausible simplification assumes that the principal axes of the
diffusivity tensor are identical with the Eulerian coordinate axes.
Furthermore, if Kij’ like all other turbulence characteristics in a

planewise homogeneous flow, depends only on the vertical coordinate X35
then Equation 2.33 would be

- - 2- 3- py
ot ot _ 2% o R o
5t * U (xg) 57 = Ky (xg) S=pt Koplxg) =5 + 5~ (Ky5(xq) 57)
1 axl axz 3 3
+ K. (x2) %t L, 2 .. (x.) 2 (2.34)
3 3 3x13x3 ax3 31 x3 axl ’ \e.

where the mean velocity exists only along the xl-direction and is a
function of Xy
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Equation 2.34 is generally presented in a more simplified form by
neglecting the Kl3 and KB] terms such that

a 2 = 24 %

at ac _ ac 9%t 9 ac

ar U (2 55 T Ky (xg) =5+ Kyy(xg) =5 + 5 (Kya(xy) 55)
| ax, ax, 3 3

(2.35)

However, as noted by Monin and Yaglom (1971), there is some evidence
from the atmosphere that Kl3 cannot be treated as a zero term. Indeed,

most likely K13 is about three times as great as K33. Fortunately, this

does not necessary imply that the last two terms in Equation 2.34 are
always significant. Nevertheless, Equation 2.34 would be more appropri-
ate than Equation 2.35 for calculations of the diffusion from an
instantaneous source (Gee and Davis, 1964).

A number of solutions to Equation 2.35 are available for special
cases. If all Kii's and U's are constants, independent of spatial

coordinates and time, Equation 2.35 resembles the Fickian equation for
molecular diffusion. This yields the well-known Gaussian solution,

R Q 1 (xl-U t)2 x22 x32
Clxy %y 0kqt) = 3 i - expis g5l TR E;;)}
2 2
(4nt) (K11K22K33)
(2.36)
m-
where Q is the source strength, Q = [[f C(xl,xz,x3,t)dxldx2dx3 ;
-0

In a uniform shear flow where U = rx3, Equation 2.35 was soived by
Novikov (1958), as presented by Monin~ and Yaglom (1971), for _an
absorbing boundary condition. In terms of a uniform shear flow, U = U(1
+ r/Ux3) » Lol

= _ 1
C(xl,xz,x3,t) = 3 i

2 2 2 2
(4ne) {(Kll+r K33t /12)K22K33}

(xl-ﬁ t-rx3t/2)2 x22 x32
. exp{- 2 3 - - ’ . (2-37)
4K11t+r K33t /3 4K22t 6K33t
For a continuous point source release, in a stationa.y flow field,
the differential equation becomes
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)gg.:-a_
3 8xl ax1

ac Bl ac 3
Ky, 5;;’ * ax, (K, ax, )4 ax,

U (x (g g§;> .

(2.38)

The second term for longitudinal diffusion was shown to be negligible by
Walters (1964).

The diffusion equation for a continuous line source in a uniform
shear flow is

3, aC R ac
—) = = (K =) . (2.39)
B . Oxy 1733 Ax,

By a simple transformation to a new inertial system of coordinates the
solution presented by Robert (unpublished, see Sutton (1953)) can be
adopted for a ground release case,

i 3
3 A i Mg p)

. _ Q el
Cxy4%3) = FEanma(2/3) | 9K, %, } exp{- —5 s

} . (2.40)

The solution stated above 1is subject to the following boundary
conditions,

K33 = constant ,

€+ 0 as X)) X, 7 ®

on

> ®at x, =x,% 0, (2.41)

aC
K33 5;5 + 0 as Xq * g, X, > 0, and

0“8

U C(xl,x3)dx3 =qQ, X, >0 .

Smith (1957) derived an exact solution to the dispersion of a continuous
line source in the constant shear stress region. The vertical eddy
diffusivity obeys a simple power law with the power exponent conjugate
to a power law velocity profile due to the constant shear stress
assumption. For an elevated line source, Smith's solution for a uniform
shear flow is:
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) 5 X 3 Basr ;3 "y
Cxyxy) = gplsr (4 )% enpl- 2 '
3371 U 9 I, .x
3371
) rx, 3/2
2 U3(1 + _ﬁ§
& TE 3 } (2.42)
‘3 9 K33x2r

where I represents the modified Bessel function and the origin of the
coordinates is located at source height.

Equation 2.42 has a similar form to the solution proposed by
Lauwerier (1953), and used by Baldwin and Johnson (1972), but it differs
from Lauwerirr's solution by a K33 term in the denominator and the

modified Bessel function. The index of Bessel function changes sign
frorn negative to positive when the boundary conditions are changed from
Neuman to Dirichlet problem. A dimensional inconsistency is included in
Tauwerier's analysis; hence, this equation is incorrect.

It is reasonable to assume a Gaussian distribution of the mean
concentration field in the transverse cross-section since the
diffusion equation contains only the single derivative with respect

2-
to Xy K22 g—gi , and K22 is independent of Xy Hence,
X
2
2
¢ 2 ) - B
e g exp{- - O i e) 2
PN 2 173
21(02 202
i.e.,
_ x.I 1/2 o x., 3/2
Q1+ 2 ) 2% —2)
= = U . U
A i I 1 4 ' 9K,.x, I }
K. . x r(an)Z( 22 1)2 3 31
3371 i
x
Be( —2 + 1)3)
x - -
2 U U
cexp {- " , } . (2.43)
4Kyo%) 9 IK,.x

3371



3/2 -1/2 -1 -1/2
i Ey %
agrees with Walters' (1965) asymptotical solution employing a conjugate

power law assumption.

Equation 2.43 implies that é(xl,xz,x3)~xl-

A more generalized solution of the diffusion problem was presented
by Yeh (1975) with the same boundary conditions as Equation 2.41. The
solution was presented in terms of Green's functions for
the Dirichlet boundary condition, C(xl,xz.x3) = bl(xl,xz,x3) at the

3C(xl,x2,x3)
boundary, and Neumann boundary condition, ey RCEEEL b,(x,,4,,X,)
X3 < i by e
at the boundary. It is applicable under a power law approximation for
the mean velocity and diffusivities such that
U(x3) = ax,"

Kyy = bx3n , and (2.44)

b n
Kyp = Blxg)xy" .

where x3 is measured from the surface.

The method was extended to a non-Gaussian diffusion model for a
turbulent shear flow by modification of K22 in view of the statistical

o2 dod
theory where K,, =5 —+ = 5 U 5= . An analytic solution was also
22 2 dt " 2 dx1
obtained by Huang (1979). For an elevated point source,
2 Q L it (xyxp)*
C(xlixzyxa) - ” 'expl' Y
J2n o b(a)x 20
2 1 2
-
w, w 2
a(x,+x, ) 2a(x.x, )
cexpl- —225 ) o1 { —3 22—}, (2.45)
b w™ x bw" x
1 1
where Xiq is the coordinate of the point source,
w=2.0+p~-n, and
v = (1-n)/w.

In a uniform shear flow with constant diffusivity, n=0 and 9,
(lexzz/U)*, Equation 2.45 is thus “czatical to Equation 2.43 as shown
by a simple transformation of coordinates where Xye = 0 and Xag = u/r.

For a point source on the ground, Equation 2.45 reduces to
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X A, (w,B) Xy s
Clx,,%y%y) = ——— exp{- } exp{-
» AZ
B
J2n02x1
where
AI(W,E) = W- ’
a” (bw?)Pcamma (B)
B = lag , and
b 2
A2Iv %
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24

Chapter 3
ESTIMATION OF THE LAGRANGIAN AUTOCORRELATION FUNCTION

3.1 Introduction

A statistical approach to turbulent dispersion requires knowledge
of the Lagrangian velocity statistics. A method of obtaining the
Lagrangian velocity statistics from Eulerian measur-ments is proposed in
this chapter. Lagrangian autocorrelation functions are formulated in a
broad sense in Section 3.2 following the independence hypothesis
arguments. These arguments have been previously demonstrated to be
appropriate for a homogeneous isotropic uniform flow. Derivations of
earlier relations are reviewed in Section 3.3. The arguments are
extended to a homogeneous non-isotropic uniform sheared turbulence field
in Section 3.4. A npumerical iterative procedure to compute the
Lagrangian autocorrelation function by the Independence Hypothesis
approach is described in Section 3.5. The application of such estimates
of the Lagrangian velocity statistics for turbulent dispersion is
examined in Section 3.6.

Predictions from the approach will be discussed and compared with
laboratory results in Chapter 6.

3.2 General Formulation of the Lagrangian Autocorrelation

The relationship between the Lagrangian autocorrelation and the
general Eulerian space-time correlation has been outlined as Equation
2.23 in Section 2.3.3. In this section, the Lagrangian autocorrelation
function is formulated from the aspect of Lagrangian kinematics of a
fluid particle.

In a stationary turbulent flow field, the general Eulerian
space-time correlation is defined as

[u i(x.o,xjo,xko;O) . 9j(xi'xj’xk;‘)]

1
2 0V [y 2 Y
lu, (xio.xjo.xko.o)l lnj (xi.xj.xk.t)l

ERij(xi'xj’xk;t) = ’ (31)

and the Lagrangian autocorrelation is defined as:

lvi(xio.xjo.xko;t) Yj"io’fjo"ko“")]

(x

Lnij io"jo'xko;t) - i& !

. (3.2)

2 YL T :
lvi (x.o,xjo,xko,t)l [vj (xio,xjo,xko,t*t)
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th

where v %, ko ;t) is the Lagrangian velocity component in the i

X
io’ Jo’
dxrectxon of a particle which passes though position (x. ke xjo, xko)'

The Lagrangian autocorrelation may be expressed in terms of the
Eulerian correlation, i.e.,

) lu (%, X5 01Xk} O)u (X(x; ,xko;f);t)l
R (%0 %0 %koi V) = 5 5
[u, (xlo J-o.xko.o)l [u 2(X(x, o jo,xko;t).t)l
or
L Iui(xi’xj'xk;O)uj(xi’xj'xk;t)]
R..(x. ,x. ,x, ;7) = [ff :
L'ij "ie' jo’ ko b (x . 0)]g[u Z(X " t)'i
io’ Jo’ ko’ J Limt la -l
; ok (
6(X(xio,xjo,xk0,t) (x‘.,xj,xk,t))dxidxjdxk " [ 3. 3)
where X is the position of a particle at time T which was located at
(x JO o) earlier, and & denotes the Dirac delta function of its
argunent In the limit of large 1, we expect there is no relation

between the fluctuating velocity ug and the particle position X. Hence
G(X(x io’ JO *ko®
distribution P ek o MO IR

;)= (x. ,xJ,xk)) may be expressed as a joint normal

L IJ(t) 11} ERij(xi,xj,xk;t)Px(X,t)dxidxjdxk ! (3.4)

(This is the Independence Hypotnesis.)

One notices that the above expression is valid only when the system
is infinitely large so that the particle displacements X are all less
than the size of the system (Weinstock, 1976).

Consider the joint normal distribution where

3 1

P (X,1) = (21) ¢ 3 2 opi- % x 37! xTy
and X = (Xl, 9 3) and (3.5)
2
)(1 (1) xl(t)xz(t) xl(t)x3(r)
o X, (DX, (1) xzz(r) X, (1)X, (1)

X, (DX, (0 X (0%,(0) X (0
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Equation 3.5 for Px(X,t) introduces a great deal of mathematical

complexity to the formulation of the Lagrangian autocorrelation.
Further simplifications of the problem are necessary!

Frenkiel (1953) suggested that the probability density function of
finding a fluid particle in a spherical cloud should preserve a Gaussian
form. It seems that asymptotically the probability density function is
not only joint-normally distributed, but it should be independent in
each direction such that

1 .
20 1x o1 o1, o)

Px(x,t) =

x2 XZ x2
exp-{ —5—+—2— 3} (3.6)
2[x,7(0]  2[%,7(0]  2[%,7(0)]

In accordance with the recent development of the dispersion tensor
(Xi(t)xj(t)] by Riley and Corrsin (1974), the turbulent flow field is

further constrained in a homogeneous uniform shear flow. The
homogeneity requires invariance conditions with respect to the X X4
plane such that LRu(t) = LRZI(I) = [Xl(t)xz(t)] = [XZ(I)X3(I)I =0 in a
uniform shear flow.

However, [Xl(t)xa(t)) cannot be ignored in a uniformly sheared flow

because it increases with time significantly more rapidly than the
variance of transverse displacemente  Thie imnlies that the elliptic
cloud evolves with two mutually correlated displacements along the X,
and Xy axes.

Based on Equation 3.5 and Riley and Corrsin's finding, the
Lagrangian autocorrelation function may be estmated from four integral
equations iterated simultaneously with Taylor's Equation. The system of
equations is

R .(xl,xz,x3;t)

e E'ij 7 4
R,.(v) = [ff exp-{x2x }dx, dx, dx., , (3.7)
L11 JZ-II’Z 32 3
where 2
(X,"(0)] 0 (X, (1)X;(1)]
2= 0 lxzz(t)l 0 »

lxl(t)x3(t)l 0 IX32(I)I



x = (xi - thé,xz,xé) 2

LRij(t) =0 for it] except i=1, j=3 ; and

X201, X (0501, [X20] and X (0] retain their

earlier definition in Equations 2.6, 2.7, 2.8 and 2.9, respectively.

3.3 Estimation of the Lagrangian Autocorrelation in Homogeneous
Tsotropic Turbulence with Constant Mean Velocity

For a stationary isotropic turbulence in which the turbulent
kinetic energy is constant and independent of the resident time, Baldwin
and Johnson (1972) proposed a method to estimate the Lagrangian
autocorrelation function from statistical measurements of the turbulent
velocity in the fixed Eulerian reference frame.

If a frame moves with mean velocity as sketched in Figure 3.1, the
desired general Eulerian space-time correlation may be expressed in
terms of the mean convective coordinates as

pRj (%0%0%55 1) = gRy (4005, %331
where X5 is the Lulerian fixed point coordinate and xi is the Eulerian

moving frame coordinate. Baldwin and Johnson assumed that the general
Eulerian space-time correlation may be expressed as the product of time
correlation and space correlation in the convective moving frame,

ERii(xl,xz,xS;t) = ERii(Ut,O,O,t) ERii(x'l.xé,x3) . (3.8)

Predictions of the general Eulerian space-time correlation are rare and
empirical, yet the convective Eulerian space-time correlations are well
documented (see Section 2.4). Equation 3.8 represents an appropriate
approximation which physically takes into account both the eddy lifetime
and the eddy size effect. Baldwin and Johnson adopted an empirical
funftion for the convective space-time correlation,
F(ﬁf“ = ERH(UI,O,O;I), which was extracted from measurements
S'11
reported by several _.esearchers (Baldwin and Mickelsen, 1963; Favre,
1965, 1967; Frenkiel and Klebnoff, 1966; Comte Bellot and Corrsin,
1971). .T., is the integral scale of ER“(UI.O,O;t).

S'11
By virtue of the Karman-Howarth equation, f(r) + % @%%El = g(r),

where f(r) = l_:Rn(xi,O,O) and g(r) = ERzz(xi,O,O). The space
correlation was obtained by assuming that homogeneity and isotropy exist
in the convective moving frame such that

r

(r,0) = e L

f1-3-5 Q- cos20)} , (3.9)

Ef
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1
2 2

x'
where r = (xi + xéz + x,Z) and 6 = cos-l ( ;l i e

r

The exponential fit of f(r) was simplified to f(r) = e . . Such an
approximation does not satisfy the requirement of evenness as r»0, but
over the entire range of pesitive correlation, the exponential function
rather closely follows the best fit of the measurements. It also
satisfies the inertial subrange theory as noted by Tennekes (1979).
Hence, it is adopted in the present analysis.

If Lagrangian isotropy exists in a stationary isotropic turbulence,
the mean square displacement tensors will be identical for all diagonal
terms an’ vanish for all off-diagonal terms, i.e.

(x,2(01 = (X% = %01,

and (3.10)
LR“(t) - LR22(t) - LRSB(I) ’
LRij(t) =0, ifi¢#j.

A consequence of Lagrangian 1sotropy is a spherical symmetric
probability density function of finding a fluid particle in the
turbulence field such as
3
2 " ¢
P(r,1) = (2n[X1 (1)) exp~ | Sfuliagerie- } . (3.11)
2[X,(0)]

Baldwin and Johnson solved Equation 3.7 in combination with Equations

3.8, 3.9 and 3.11. An analytic solution was found to be
2
Ry (ty) = Fi(ty) (e ) ert0?1(t,) (144021 (t,) + 3 o1ty

o’1(t,) & b
— ) 15 + 20%1(t )]} (3.12)

)
wWin

(

1*

ty t
Ity = J [ (R (t)de,de
0o O



where t, = Tt and

S'11

erf represents an error function of its own argument .
Similarly, LRZZ(I) can be evaluated since the lateral space

correlation is implied by Equation 3.9 as

r

§Ryy(r,0) = e L - % £ (1-8in0)} .

To satisfy the requirement of Lagrangian isotropy, the convective
space-time correlation in the lateral direction must be

fff <R, (r,8)P(r,1)dr d6,do
E 11 e St () .

Fp(ty) =
III ERZZ(I.B)P(r,t)drd6d¢

After some manipulation, it is found that

1
H(a,t,)- 5 K(a,t,)
Fy(ty) = ————3——— Fi(t,) (3.13)
H(a)t*) 3 K(a)t*)
where
H(a,t,) = 021(t,) {60 (ty)+bma®1(t,) (2071t )41) .
; (1-erfya’1(t,)) -exp(a®T(ty))}
an

K(a,t,) = a21(t,) (8021(t,) (14621 (t,))-Jana®1(t,) (ba 1% (1) +60°1(2,))

(1-erf azl(t*))'exp(azl(t*))} ’

Baldwin and Johnson have also shown that Fz(t/sTll) < Fl(t/sTll)

numerically. Hence, T,, < TR

3.4 Estimation of the Lagrangian Autocorrelation in a Homogeneous
Uniform Shear Flow

1f one considers an instantaneous plume released from (xlo,xzo,

xSO) in a uniform shear flow as shown in Figure 3.2, the plume evolves
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as an ellipsoid whose size, eccentricity, and direction are time
dependent due to continuity. Such behavior is well understood as a
result of the shear and has been demonstrated by Elrick (1962). In lack
of information about LRl3(t) and ER‘3(xl,x2,x3;t), the probability

density function of finding a fluid particle in a moving frame
travelling with a mean velocity Ix, may be approximated with a
three-dimensional Gaussian distribution’such as

POxp,xp,x30 = 272 (2 m)1x, (o 1x, o2

(xi-rtx3)2 xéz xéz
. exp-{ + +

2% %01 2%, (1 20%,%(0)

(3.14)

where Ixiz(t)] is defined as previously in Equations 2.6, 2.8 and 2.9
for i=1,2,3, respectively.

The definition of the Eulerian parameter is generalized to

2l
[“i'sT11

account for the anisotropy, i.e., a, = Ll Since the general

space correlation in a non-isotropic flow is still unknown, the
Karman-Howarth relationship s retained and the Lagrangian
autocorrelation functions are assumed to be the same in all three direc-
tions. Such assumptions require that,

(X, %(ty)]

22 2. 1 2
L0 LI a II(t )2 "I(t,)] ,

(X,%(t,)] 2a,21%1(¢,)

X2t = 20, 71%1(t,) , and

;5 E
R,.(t.) =
ey £=0 6=0 ¢=0 J553202a3l(t*) r STll oy Il(t*)*ZGl I(ty)

(64°TsTy tuky)’ & b
exp-{ ——5——5—3 2 b g e 4§ vy |
2(M7gT) "oy Tt 420, 7T(t,))  4ay"I(ty)  4ay"I(ty)
.4 2 .
exp{=E}+(1 - % sin“8) + £° sinBd¢ddf |, (3.15)
where

2, 2% 2 1 % 3
o



/ e i
£ = xR /L,

{l = £ cosB,
{2 = £ sin® sin®, and

{a = £ sin® cosd.

One should refer to App:ndix A, which shows how the Lagrangian
autocorrelation function in a homogeneous shear flow is obtained after a
considerable mathematicsl manipulation:

1
Fo(t,) n 2n g
() = — i §fuc—P BBt
s = = 0=0 ¢=0 2
2°n a0, I(t, )a? (r,) B™(t,) 8B (t,)

1
L P Y
(1eevt( —1—))- 2‘ F 31:’ Je B (t,)
4B (t,)

1
2

28%(t,) 1682(r,)  BB(t,)

(1eepf( —2—)) » ( —zi— ¢ —L1—)}] sin0e¢de , (3.16)

1 8p(r,)  28%(ty)
28° (ty)

2 2

2 2
A(ty) =TT, Ta,"II(t,) + 2a,71(t,) and

2
(cos®-I' (T . t,sinBcosd) X sinZOJiu‘Q sin Qco;g’
2 (t,) “lie,) 4,10t

B(t,) =

Equation 3.12 may be shown to be a special case of Equation 3.16 if one

carries out the integration and assumes that o 159,50, and '=0. Appendix

B discusses the limitation of Equation 3.16.

3.5 Numerical Estimation of the Lagrangian Autocorrelation Function

A numerical iterative procedure was developed to calculate the
Lagrangian autocorrelation function as stated in Section 3.3 and Section
3.4 provided that the convective Eulerian space-time correlation is
specified. The computer program is modified to account for experimental
values ll(t*) and for the presence of uniform shear. The temporary

Lagrangian autocorrelation function is assumed during the computation at
each time step, to have an exponential form:
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LR“(t*) = exp-(Aalt*} (3.17)
where A is a function of the Eulerian parameter and time.

After initialization at t,=0, A is perturbed by a small magnitude
to compute the mean square particle displacement according to the
Taylor's integral relation. The Lagrangian autocorrelation function at
each successive time step is evaluated from Equation 3.16 and compared
for convergence to Equation 3.17. The new value of A is determined by
using Newton-Raphson's technique for a quick convergence. The relative

convergence criterion for A is set to 10-5 which provides a relative

error less than 10‘7 for the estimates of the Lagrangian
autocorrelation.

The procedure may be run for various values of a and the turbulent
shear parameter T STll' With the simple assumptions discussed in

Section 3.4, the procedure is able to estimate LR“(t*) for a non-

isotropic uniform shear flow. The double integral of Equation 3.16 is
computed by a Gauss-Legendre quadrature integration scheme. Such a
scheme is maintained self-convergent during the iteration by using up to
1024 weighting points. Detailed description of the Causs-Legendre
quadrature method may be found in Carnahan et al. (1969).

A brief block diagram is presented in Table 3.1 to show the
numerical iterative scheme sequence.

3.6 Estimation of Turbulent Dispersion

The statistical turbulent dispersion method proposed in the present
study is to use estimates of the Lagrangian statistics in the Eulerian
diffusion equation. Eulerian space-time correlations and concentration
distributions from a point source were measured in a simulated planetary
boundary layer in a wind tunnel. The Eulerian space~time correlation
was employed to estimate the Lagrangian autocorrelation function via the
methodology introduced in Section 3.4.

Given the Lagrangian statistics, the asymptotic eddy diffusivities
were calculated from Equations 2.15 to 2.18. The calculated eddy
diffusivities were used in the diffusion equations, Equations 2.42 and
2.43, to predict the turbulent dispersion. The experimental results
from the dispersion measurements were then compared with the predicted
results from the estimated Lagrangian statistics. Such comparisons are
provided in Chapter 6.
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Table 3.1. A computational numerical scheme of calculating the
Lagrangian autocorrelation function (Program MEULLAG)

O

INPUT
INITIALIZATION
Tabulate Gauss- Update and
Legendre Weighting}—e Print l“R“(O) -{Store previous
Points terms for
-._._—””—_-J summation

I=0, t =t +6t
o X

Evaluate the left-hand
side of Eqn. 3.16

l

Evaluate the first
integral of R, (t,)

'

Evaluate the first, second
and third moment of LR“(t*)

Evaluate the double
integral of LR”(t*)

- [ = I+1]




Table 3.1. continued.

Evaluate II(t,)
in Equation 3.16

al=02=a3 and rsT“=o o #?

l N 1

Evaluate the right-hand Evaluate the right-hand
side of Eqn. 3.12 side of Eqn. 3.16 by

using Gauss-Legendre

quadrature formula

Calculate
——
Fo(ty)

Gauss @ Exponential

Emperical

v

Interpolation

'

l———————¢9{ Error = RHS - LHS }ja-
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Table 3.1. continued.

I=1 Perturb A to
—4 start iteration

aP=A

Use Newton-
Raphson's method
for new A

EP=ERROR

Print out
data at this time

>0

Update and store
previous calculations
for summation

t_-
R *(15>?§o°5
L 11"

Print LTll/STll

Number of
Case and Model
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Chapter 4

EVPERIMENTAL FACILITIES AND MEASUREMENT PROCEDURES

4.1 Introduction

A brief description of the equipment utilized and the measuri'ig
techniques employed is presented in this chapter. Emphasis is also
given to the experimental errors that developed from every step during
the experiment.

Section 4.2 describes the wind tunnel facility in which all
measurements were conducted. Measurement details of the mean flow
characteristics are discussed in Section 4.3. Section 4.4 presents the
turbulence measurements while diffusion measurements under the same flow
configuration are examined in Section 4.5. The experimental procedure
in the present study is outlined in Section &.6.

4.2 Winc Tunnel Facility

New me.surements reported in this study were obtained in the
Micromeceorolugical Wind Tunnel (MWT) in the Fluid Dynamics and
Diffusion Laboratory at Colorado State University. The MWT is normally
operated on a closed circuit principle with the option of an open
circuit operation mode. “ne ceiling of the tunnel 1s adjustable for
control of pressure gradient in the mean flow direction. Thermal
control of air stream temperature permits a wide range of thermal
stratifications in the test section. The MWT is specially designed to
mode ! significant turbulent characteristics of the atmospheric
bounda:y layer. Through selection of proper combinations of wind tunnel
length, surface roughness, ambient wind speed, temperature stratifica-
tion and boundary layer augmentation devices, a range of atmospheric
situations may be simulated (Cermak, 1982). A more detailed description
of "he MWI wa- prepared by Plate and Cermak (1963).

Turbulence and dispersion measurements discussed in this paper were
performed over a smooth floor. The ceiling of the tunnel was adjusted
to have a 2zero pressure gradient in the longitudinal direction.
Augmentation devices at the tunnel entrance, 1.8 m in length, included
1.27 cm roughness entrance strips attached on four walls and a 3.8 cm x
7.6 cm sawtooth fence. These devices were employed in order to reduce
the wall effects, thicken the boundary layer, and stabilize the flow
pattern. One set of turbulence intensity measurements was conducted
with additional vortex generators at the entrance. A fully developed
turbulent boundary layer was obtained 13 m downwind from the tunnel
entrance section. This fully devel.jed boundary layer was maintained
for the next 10 m where all the weasurements discussed herein were
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The triple-wire probe incorporated a cross-wire operated at high
overheat ratio and a single wire operated at a very low overheat ratio
(effectively cold). The cross-wire was sepsitive to both velocity and
temperature fluctuations, whereas the temperature wire sensed only
temperature fluctuations. The temperature wire was operated in a low
overheat constant current mode, thus providing a signal sensitive to
temperature. It was located in front of the cross-wire to avoid thermal
wake effects as suggested by many researchers (e.g., see Chevray and
Tutu, 1972). The temperature wire voltage output was calibrated with
temperature variation within a fixed velocity range. Temperature
variation was found empirically to produce a voltage output fit by a
second degree polynomial curve. The cross-wire was wused for
simultaneous measurements of two velocity components in a plane parallel
to both wires. The methodology and accuracy related to the cross-wire
technique is discussed in detail by Sandborn (1972). Bienkiewicz (1981)
assumed equal sensitivity of both component wires in order to utilize
with a linearizing system. The methodology was employed with some
modification for the thermal effect in the present work. If the
cross-wire is calibrated as shown in Figure 4.1 and the velocity
component parallel to the wire direction is negligible, one obtains

Ul(t)

O.S{le(t)+Uw2(t)} , and (4.3)

Uz(t) O.S{le(t)-Uwz(t)} L

An empirical best fit to the calibration data, calibrated according to
the configuration shown in Figure 4.1, was observed.
- o = 4, K -2

wil
where the temperature 6 is (4.4)

8(t) = n]Eez(t) + nEg(t) +ny . (4.5)

Here mij and nj are empirical constants and Ewi(t) and Ee(t) are
voltages across cross-wire i and the temperature wire, respectively.

The velocity and temperature sensitivities of each cross-wire
component are conveyed in the mij and n., coefficients. Among the .ij
coefficients, " and m., vary as the overheat ratio of wire varies,
whereas moe and m 6 account for the adjustment when the velocity and
temperature raunges change.

Signals were recorded simultaneously and processed by a

Hewlett-Packard 1000 mini-computer. The probe was rotated 90 degrees in
its axial direction for turbulence measurements of transverse motion.
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conducted. A heating system located in the section passage before the
entrance was set to yield the air temperature in the free stream. The
aluminum floor can be heated or cooled to produce a constant temperature
along its length. In the present study, the air temperature in the free
stream was held at 114°F, and the floor temperature was cooled to 32°F
for the stable condition. No heating or cooling to the thermal facility
was supplied for the neutral case.

The MWT was modified to prevent the possible occurrence of a
transverse temperature gradient. Insulation panels were attached to the
side walls to reduce heat loss from the glass window. Nonetheless a

slight lateral temperature gradient was detected near the end of the
test section.

4.3 Velocity and Temperature Measurements

4.3.1 Velocity measurements under neutral stratification

The longitudinal mean and turbulent velocity under neutral
stratification were detected by a TSI-10 quartz coated cylindrical
hot-film probe with a TSI Nodel 1050 anemometer. The hot-film probe was
calibrated with a TSI Model 1125 flow calibrator and an MKS Baratron
Pressure Meter. Calibration data were fit to the form of King's law,

E2

=A+BU", (4.1)
using a least-square curve fitting program. The local turbulence
intensity is obtained by a linear approximation, i.e.,

3
o] _ 2EJe?

—_— - : (4.2)
U aBU™ 1

A Datametrics model 800 LV linear flowmeter with probe was used to
monitor the reference velocity in the wind tunnel. The probe was placed
at fixed point in the MWT throughout all measurements. The tunnel was
set at various speeds according to the hot-film calibration results.
The reading from the Datametric probe was integrated for 1 minute by a
Hewlett-Packard Integrating Digital meter. Hence, a calibration curve
was obtained between the wind speed and the Datametrics reading. This
curve then served 2s a reference for the mean wind speed during
dispersion measurements under neutral stratification.

4.3.2 Velocity and temperature measurements under stable
stratification

A multi-wire probe was employed to measure the mean and fluctuating
components of velocity and temperature under stable stratification. The
lateral and vertical components of turbulence intensities under neutral
stratification were also detected by such a probe.
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4.4 Velocity Correlation Measurements

4.4.1 The analog method

Two TSI-10 quartz coated cylindrical hot-film probes with TSI Model
1050 anemometers were utilized in the velocity correlation measurements.
The upstream probe was mounted above the tunnel floor and placed with
the wire axis perpendicular to the floor. The downstream probe was
mounted on a three-dimensional traverse mechanism with the wire axis
parallel to the lateral direction. Such arrangement was expected to
reduce the dynamic wake effect imposed upon the downstream probe from
the upstream probe. The thrce-dimensional traverse is capable of
providing displacement 1in all three directions with an accuracy of

6.35)(10.3 mm. Analog signals were recorded continuously by an AMPEX

FR-1300 Recorder/Reproducer. The record and reproduce modules were
carefully calibrated to provide a flat frequency response under 2000 Hz.
Near zero distortion was found when tested by sine waves with frequency
below 2000 Hz. The turbulent kinetic energy of the present flow
configuration was predominantly at frequencies below 300 Hz. A modified
switch board was prepared so that two channels of data could be taken
simultaneously. A SAICOR correlation and probability analyzer, model
SAI-42, was employed for the data analysis. The SAI-42 correlator
provides auto- and cross-correlation functions with incremental lag or
time delay value from 1 p second to 1 second resulting in total time
delays from 100 p second to 100 seconds. Precomputation delay of 200
lag values in 50 lag increments allows the correlation function to be
viewed symmetrically about zero or up to 200 lag values removed from
zero (optiomally to 2000 points). The averaging is accomplished

digitally with fixed summation ranging from 29 to 217 in binary steps.

The correlation function was displayed on an oscilloscope and a X-Y
plotter in the form of 100 discrete points. A schematic diagram of the
experimental set up is shown in Figure 4.2.

Data were continuously recorded on a APMEX-766 Magnetic Tape for 5
minutes for every separation distance between two probes. A sine wave
was used for signal separation and calibration was recorded before each
set of measurements. Tape was rewound to the same point for the
analysis of auto- and cross-correlations. Each set of data was examined
by the probability analyzer so that minimum signal attenuation occurred.
The range of correlation was selected so that 95 percent of data points
were analyzed without smoothing. (This approach covers all signals
within two standard deviations from the mean of the vrobability density
function.)

Anemometer voltage output from the velocity sensor was calibrated
with the mean wind speed by King's Law. The following relationship was
obtained for a linear approximation between two fluctuating quantities.

(4.6)

R, (%, ,%,,%,,1) = _1"1ul(tjw2"l(t"j _ _ew17138w2(t*r)
Ul b S R dat
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4.4.2 The digital method

It was later found that the amplified AC signals from the TSI
signal ¢ ditioners were automatically filtered by a built-in high pass
filter + ch cut off signals at 2 Hz. 2 Hz corresponds to a length of 1
m at a convective velocity of 2 m/sec. Signals recorded with such a
filter apparently eliminated correlations contributed from eddies larger
than 1 m. An examination of the turbulent energy reveals that 1/3 of
the turbulent energy was filtered out by these high pass filters.
Hence, velocity correlation measurements were redone at 3 heights, 2 cm,
10 em and 20 cm, by analyzing unfiltered signals which included all
signals from DC to 2000 Hz. New measurements were performed under the
same flow configuration and experimental procedures by using two
TSI-1287 split film probes. Velocity signals were digitized and stored
in a HP-1000 computer. In addition to the u, space-time correlation,

Uy, Uy space-time correlations with longitudinal separations were also

computed. The split film sensor incorporates two electrically
independent films on a single cylindrical quartz fiber. By operating
each film with a separate anemometer circuit, the variation in heat
transfer around the cylinder is utilized for a unique measurement
capability. Figure 4.3 displays the geometric configuration of the
sensor. The sensor is essentially insensitive to flow in the direction
along a sensor axis. The total heat transfer on both films gives a
measure of the velocity vector perpendicular to the sensor and the
difference of heat transfer for the two films gives a measure of the
velocity vector perpendicular to the plane of the splits on the sensor.
The sensor was calibrated to have the same temperature on both of the
films. Maximum error resulting from the calibration was found to be 9
percent on the low (70 cm/sec) end and 3 percent on the high end (230
cm/sec) of the velocity range.

4.5 Concentration Measurements

4.5.1 Gas chromatograph

A Hewlett-Packard Model 5700A gas chromatograph with flame
ionization detector was used to determine the mean concentration of
scalar tracers. The flame ionization detector functions on the
principle that a DC voltage on a collector electrode is proportional to
a charge produced by charged particles when organics burn in a
hydrogen/air flame. Air samples tagged with two tracer components,
methane and ethane, were carried into a combustion column by an inert
carrier gas, nitrogen. Tracers arrived at the flame at separate times
due to the diffusive properties of different hydrocarbon mixtures in the
column. The DC voltage output from the electrode was amplified by an
electrometer and fed to a Hewlett-Packard Model 3380 integrator.
Separate peaks on the integrator output can be identified as contents of
different tracer gases. Flow rates of auxiliary gases (air, hydrogen
and nitrogen) were selected to yield a maximum sensitivity of the
instrument. Zero drift of the gas chromatograph due to the impurities
in the carrier gas was corrected by subtracting the background flow
baseline values.
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The gas chromatograph can measure samples with sensitivity down to

picogram (10-12) quantities. It was calibrated with a methane-ethane
mixture of known concentration every four hours during the experiment.
The maximum error expected from the gas chromatograph was found to be
less than 0.12 percent.

4.5.2 Concentration measurement technique

A neutrally buoyant continuous point source was simulated by either
a methane or an ethane mixture. The source flow rate was set at 50 cc/s
with an exit velocity of 51.5 cm/s. The source gas flowmeter was pre-
calibrated with the source gas, and volume flow rate error was less than
*3 percent. The point source was injected into the wind tunnel in the
same direction as the mean flow to avoid possible plume rise effect.
The tracer gas was withdrawn from the test section by a sampling grid
and trapped in a sampling system for further analysis. The sampling
grid consisted of 43 brass 0.16 cm I.D. tubes mounted upwind over a
rectangular matrix. The sample draw rate was set to 1.2 cc/s which
results in a draw velocity of 60 cm/s. The sampling system is composed
of fifty 30 cc air-tight syringes mounted between two circular aluminum
plates. A variable-speed motor raises a third plate which lifts the
plungers of all fifty syringes simultaneously. Syringes were completely
flushed to prevent residual concentrations accumulated from earlier runs
before any sample was taken. The sampler was periodically calibrated to
insure proper function of every check valve and tubing assembly. A
block diagram of the experimental system is shown in Figure 4.4.

The gases were allowed to flow for three minutes before any data
were taken in order to reach a steady state of true mean concentration
distribution. Forty-five samples were simultaneously drawn in a period
of five minutes for each run. Two samplers were employed to monitor the
level of background concentration. Forty-three sampling tubes were
located on the cross section of a continuous plume while three samplers
were used to check plume symmetry. Each run was repeated if necessary
to locate the plume center. The background concentration was subtracted
from each concentration sampled.

4.6 Experimental Procedure

Mean speed of the approach flow was monitored by the Datametric
linear flowmeter. Homogeneity of the wind tunnel was tested by velocity
measurements at different mean wind speeds and different downwind
locations in the test section.

Velocity measurements under neutral stratification were performed

at U = 200 cm/sec, 300 cm/sec and 500 cm/sec. Data were taken at X, = 0

cm, 200 cm, 500 cm and 800 cm. Under stable stratification only U = 200

cm/sec was employed and measurements were conducted at X = 0 cm, 200

cm, 500 cm and 700 cm. Velocity spectra were obtained at X, = 0 cm
for different heights.
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Velocity correlation measurements were performed with the upstream
probe fixed at X, = 0 ecm. The longitudinal separation between two

probes was extended from 0.5 cm to 200 cm. Transverse separations
between two probes were investigated in order to correct the heat wake
effect, or the dynamic wake effect, imposed on the downstream probe.

Concentration measurements were conducted under neutral and stable
stratification. The flow configuration and source release system were
maintained the same but the temperature stratification varied. The free
stream velocity was set at 200 cm/sec during all dispersion measure-
ments. Measurements were made for eight different source heights, i.e.,
H = ground, 2 cm, 4 cm, 6 cm, 8 cm, i0 cm, 15 cm and 20 cm. Cross wind
samples were taken at ten different downwind distances, X, = 25 cm, 50

cm, 100 cm, 150 cm, 200 cm, 300 cm, 400 cm, 500 cm, and 700 cm for each

release height; however, Ny ® 25 cm was not used during stable

stratification.
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Figure 4.1. Calibration of x-wire probe.
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Chapter 5

LABORATORY RESULTS OF TURBULENCE AND DISPERSION MEASUREMENTS

5.1 Introduction

Results of turbulence and dispersion measurements in the wind
tunnel are presented in this chapter. The adequacy of laboratory
simulation of the atmospheric turbulence and transport phenomenon is
investigated. The broad characteristics of a neutral and a stable
stratified boundary layer are described in Section 5.2. Turbulence
measurements which include energy and temperature spectra are discussed
in Section 5.3 for two thermal stratifications. Results of the Eulerian
space-time correlation across a neutrally stratified boundary layer are
displayed in Section 5.4. Section 5.5 focuses on the laboratory plume
simulation of atmospheri. *‘<persion. The point source size effect in
source simulation is disc. ssed. Comparison between laboratory
simulation and atmospheric disp rsion experiments is furnished in terms
of standard deviation of plume width.

5.2 Characteristics of the Laboratory Simulated Boundary Layer

The MWT has the advantage of a long test section which permits deep
laboratory boundary layers suitable for _the simulation of the
atmosphere. After a sufficient distance (~ 10 m) from the tunnel
entrance, the boundary has only a slight additional growth. The portion
of the test section selected for diffusion experiments was chosen so
that velocity, turbulent intensity and temperature profiles do not
change noticeably along the streamwise fetch at different stabilities
and various wind speeds (i.e., horizontally homogeneous).

5.2.1 Neutral stratified boundary layer

Figures 5.1 to 5.3 show the mean velocity and the local turbulent
intensity profiles over the test section for various velocities.
Normalized data at different longitudinal stations in the test section
are very similar. The variation with distance of the free stream
velocity in the test section was found to be less than 1 percent with no
trend to either increase or decrease. Figure 5.4 displays the lateral
wall effect on the mean velocity and turbulent intensity at a height of
80 cm from the floor. The boundary layer created by the lateral wall is
not so significant as the boundary layer along the ground. The velocity
correlation measurements and the dispersion measurements were performed
within the range where the velocity variation is no greater than |
percent. Hence, homogeneity in the X17%, plane is preserved in the

simulated boundary layer in the test section. Table 5.1 summarizes the
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characteristics of the simulated atmospheric boundary layer. Counihan
(1975) reviewed meteorological literature on fully developed adabatic
boundary layers, and recommended some empirical formulae for almospheric
turbulence. The present simulated boundary layer is compared in Table
5.1 with his regressive formulae based on a fixed roughness length.
Wind tunnel results are within %30 percent deviation from his results,
well within the variation in data he evaluated.

5.2.2 Stable stratified boundary layer

The mean velocity and temperature profiles in the stable stratified
boundary layer are shown in Figures 5.5 and 5.6. Neither profile grows
appreciably within the test region. The planewise homogeneily
requirement for simulating the atmospheric boundary layer was fulfilled
in the stable stratified boundary layer in the wind tunnel. Due to the
iscation of thermal conditioning panels, the test section for the
thermal stable stratification is 3 m shorter tnan that for the neutral
stratification which is 10 m in length. The boundary layer thickness
for the stable case using the same inlet tunnel augmentation device was
larger than that fer the neutral case (75 cm for stable case and 45 cm
for neutral case).

The temperature profile depth is much greater than the velocity
profile depth (120 cm when T/T_ = 99%). Arya (1969) also found that the

temperature gradient abruptly increased before finally leveling off
instead of decreasing monotonically to zero near the edge of the thermal
layer. He attributed the behavior to incomplete mixing of the air in
the core region of the wind tunnel where a residual stratification may
exist even after circulation. Arya then suggested that the thermal
layer thickness should be determined after correcting for the observed
deficit in the temperature profile near the edge ot the thermali layer.
A similar situation may exist in the current measurements as shown by
the fluctuation profiles in Figure 5.7. An abrupt change of the
temperature fluctuation at x3/6T = 0.5-0.6 suggests that the turbulent

mixing mechanism was suppressed near that region. Hence, the effective
thermal layer thickness was probably 6+ = 75 em.

Another characteristic of a thermal boundary is the local
Richardson number which provides a quantitative measure of the thermal
stability. The flux Richardson number, Rf. is derived from the

turbulent energy equation as the ratio of the rate of destruction of
turbulence by stable stratification to the rate of creation of
turbulence by shear. But lf is not often measured in practice, instead

the gradient Richardson number, Ri'

the relative importance of thermal stratification. R
through

is usually stipulated to indicate

i is related to l‘

K
R 'ﬁ!Rf (5.1)
h
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where K. and Kh are eddy viscosity and eddy diffusivity, respectively.
In a stable air, K-/Kh is very close to unity and Ri is commonly defined

in the atmosphere as

§ Ggv

, .07
Ri = 3 2 (1+ Br ) (5.2)

au v
(z2) *+ (5
533 ax}

¢ (T,-T)

where Br is the Bowen ratio, Br ™ - e
(Q2-ql)

Y4 is the adiabatic lapse rate,

y is the lapse rate at sunrise,
C_is specific heat for dry air at constant pressure, and
q is heat per unit mass.

Further discussions about the Richardson number may be found in Panofsky
(1982).

An overall Richardson number which serves as a reference parametler
for a thermal layer is defined as (Ellison and Turner, 1960)

(1.1 )b
h "o
R, = ’— e, 0 <y <h, (5.3)

h a Uh

in which T is the temperature at the surface and T _ is the average

absolute l@hpetature in the layer. R = 0.25 wa found in the

present study. The distribution of lli Miross the thermal boundary is
h

presented in Figure 5.8,

5.3 Turbulent Velocity Fluctuations

5.3.1 Neutral stratified boundary layer

The longitudinal turbulent intensities are also shown in Figures
5.1 through 5.3. The RMS velocity fluctuation is normalized by the
local mean velocity and plotted vs. non-dimensional height x3/6. Data
presented in such a manner collapses on a single curve regardless of the
variation of characteristic Reynclds number, le = %9. based on the
boundary layer thickness and the freestream velocity. The similarity

implies that the absolute velocity fluctation increases as U, increases
or :3/6 decreases.
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The one-dimensional energy spectra of longitudinal velocity

fluctuations measured at different heights in the boundary layer for Uy

= 2 m/ are shown in Figure 5.9. The -5/3 slope of the inertial subrange
is indicated in the figure. Due to the low velocity employed, the
inertial subrange is rather short compared to the velocity spectra
reported by Hansen and Cermak (1975) and Chandra (1967) where higher
velocities were used. The energy spectra have been normalized with
respect Lo mean square fluctuations so that

1 ®
- ¥ 1] E](n)dn =1, (5.4)

lu‘ | o

The normalized energy spectra are presented in Figure 5.10 where
similarity of the spectrum function is found across the boundary layer.

The longitudinal velocity autocorrelation functions at various
heights in the boundary layer are shown in Figure 5.11. Figure 5.11a
displays the measured autocorrelation functions from filtered turbulence
while Figure 5.11b presents data from unfiltered turbulence.* The
autocorrelation function decays much faster in a filtered turbulence due
to the absence of large :ddy motion. The autocorrelation functions of
lateral velocity fluctuations are shown in Figure 5.12. Figure 5.13
gives the measured autocorrelation functions of vertical velocity
fluctuations. The area under the autocorrelation curve is seen to
increase as the height increases in the boundary layer.

The lateral turbulent intensities were also measured during the
general boundary layer survey., However, a related measurement of the
lateral turbulent intensity was performed with extra inlet spires. The
results are compared with previous measurements conducted in the
same wind tunnel by Zoric ['968) and Chaudhry and Meroney (1969) as

u'
shown in Figure 5.14. ~Ug- = 0.04 was adopted to represent test
w

section conditions during the verification of dispersion measurements.

5.3.2 Stable stratified boundary layer

The RMS velocity fluctuations for the longitudinal, lateral and
vertical directions are plotted in Figures 5.15 through 5.17 against
different heights in the layer. The local turbulent intensity (the RMS
velocity fluctuation normalized by the free stream velocity) changes
slowly except near the edge of the layer for the lateral and vertical
directions. Figure 5. 18 shows the variation of the lateral turbulent
intensity through the boundary layer under stable stratification, The
data was compared with Arya's (1969) measurements

"Results discussed thereafter are limited to unfiltered turbulence
case unless specified,
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for different overall Richardson numbers. The RMS velocity fluctuation
decreases in a consistent trend as the thermal stratification increases.
Figure 5.19 displays the decreasing trend of the lateral
turbulent intensity with the RichatdsOﬁjtgguber which also shows

u

consistency with previous measurements. -ﬁg— = 0.02 was selected to
x

represent test section correlations for the analysis of dispersion.

The u, energy spectra are shown in Figure 5.20. The area under
each spectJL- appears to be less than its counterpart at the same height
in the neutral boundacy layer. It is understood to be the effect of
stability which reduces the turbulent energy. The dissipation range is
visualized at higher frequency (~ 200 Hz). The Uy, uy energy spectra

are presented in Figures 5.21 and 5.22, respectively. These energy
spectra start with a lower energv level and decay much faster than the
u, energy spectra. This is reasonable since when no mean motion exists

smaller eddies contribute more to the total energy. (he energy
containing region is less appreciable because it lacks large eddies and
because the dissipation mechanism soon takes ove. at higher frequency.

All Ups Uy and u, energy spectra are normalized by the RMS velocity

fluctuations and plotted vs. frequency as shown in Figures 5.23, 5.24
and 5.25, respectively. The inertial subrange is broader in the u
spectra for various heights in the boundary layer as compared with th
-5/3 slope sketched in the figures. The related turbulent scales for
all three velocity components are listed in Table 5.2. The integral
scale increases as the height increases while the microlength scale
remains nearly constant.

Velocity autocorrelation functions presented in Figures 5.20; 5.27
and 5.28 support the calculated length scales in Table 5.2 since the
autocorrelation functions persist to longer times for positions farther
away from the ground. The autocorrelation functions for the u, and uq

component do not appear to develop large negative magnitudes although
they do decay faster than the longitudinal autocorrelation function.

The measured one-dimensional spectra of temperature fluctuations
are shown in Figure 5.29. They are normalized with the RMS temperature
fluctuations. The temperature spectrum decays with increased frequency
in a similar way to that in the velocity spectrum. If the Reynolds
number is large enough for an equilibrium range to exist in the kinetic
energy spectrum, there is also an equilibrium range (exhibiting local
isotropy) in the spectrum of temperature variance, because it is the
t.rbulent motion that is mixing the temperature field (Lumley and
Tronekes, 1972). The inertial subrange is insignificant in the
figure A » to the low velocity employed. The temperature spectrum
(uickly declines into the dissipation subrange. There is no sign of a
viscous=convective subrange as reported in liquids.




5.4 Two-Point Velocity Correlation

5.4.1 Source of error

Errors involved in the measurements of two-point velocity
correlations are primarily due to the finite width of the band filter
deficiencies, the tape recorder deficiencies, the analog correlator
deficiencies and the wake effect of the upstream probe. Cyclic
variations of the velocity signal over the mean velocity range employed
in the present study were found to be less than 2000 Hz; a low pass
filter was selected to eliminate high frequency noise above 2000 Hz.

Instrument deficiencies. Error introduced into the measurement
process by the magnetic tape recorder have been described by
Comte-Bellot and Corrsin (1971). Mechanical errors such as

magnetization, detection, modulation and demodulation were avoided by
careful selection of the tape and calibration as described in Section
4.3. The only remaining error resulted when the tape did not rewind to
the same point for auto- and cross-correlation calculations. Although
the tape may not have been rewound to the exact same data point due to
the imperfect motion of the tape, at least 99.9 percent of the same data
points were analyzed after rewinding. Furthermore, the stationarity of
the time series signal compensates for any differences for finite length
signals. Repeated analysis of the same signals by rewinding the tape to
new starting points showed that less than 1 percent error was caused by
tape position.

The clip mode on the SAICOR correlator can be set to smooth the
correlation function. It was carefully selected to preserve the
characteristics of the correlation with minimum fluctuations.

Wake effect of upstream probe. When one probe is positioned behind
another probe in the streamwise direction, the upstream probe produces
not only a thermal wake but also a dynamic wake which caused additional
disturbance about the downstream probe. To reduce the consequent error
it is common in the laboratory to locate the downstream probe laterally
just outside the wake and to assume that such approximation results in
negligible change in the correlation measurements. In the present
study, the wake effect of the upstream probe was reduced by two methods.
First, for single wire measurements, the two probe axes were placed
perpendicular to one another so that the upstream probe is only
sensitive to Uy and u, components while the downstream probe is

sensitive to Uy and Uy components. Such an arrangement has the

advantage that it enhances the accuracy of the desired correlation
(uI)A(ul)B’ since (uZ)A("J)B and ("I)B(uZ)A are less appreciable than

(ul)A)("3)B and ("3)A(u3)8 which result when the two probe axes are

placed parallel to each other. Second, for both single wire and split
film measurements, the correlations at sz = 0 were extrapolated from a

series of correlation measurement with small displacements sz away from

the wake center. Figure 5.30 presents the extrapolation results for
cross=correlation with zero time delay. Figure 5.31 shows the same
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extrapolations for space-time correlations with optimum delay time. It
may be concluded from the slopes of curves in these figures that the
wake effect of decays as the downstream probe moves away from the
upstream probe, and the wake effect completely disappeared after Ax]

exceeds 20 cm. The wake effect persists at longer distance for higher
velocities.

The extrapolation technique employed in the present study is
somehow subjective. In most cases, the curve slopes were kept zero for
symmetry.

5.4.2 Eulerian space correlation

Eulerian space correlations presented in this section include two
f-type correlations and four g-type correlations according to Hinze's
(1975) definition. Their integral scales are represented by Lij where 1

indicates the velocity component and j indicates the direction of
spatial separation.

The longitudinal space correlation functions, ERII(Axl,O,x3;0), are
given in Figure 5.32. For small Ax] the values are improved from
extrapolations as discussed in section 5.4.1. Results from filtered
turbulence are also plotted for comparison. Figure 5.33 presents the
space correlation of lateral velocity fluctuations, ERZZ(O,sz,x3;O).

ERII(Axl,O.x3;O) decays much slower than ER22(0,Ax2,x3;0) which

indicates the elongation of turbulent eddies in the streamwise
direction. Since both functions are f-type correlations, L“/L22 ~ 4.8

as compared with 1.0 for isotropic turbulence, which emphasizes the
destruction of isotropy in the boundary layer flow. ERH(O,sz,x3;0)

and ERBB(O'AXZ'X3;O) are shown in Figures 5.34 and 5.35, respectively.

Figure 5.34 displays less deviation between filtered and unfiltered
correlation for transverse separation than the streamwise separation
data (Figure 5.32). It implies that large eddies are less dominant in
the transverse direction. The space correlation function increases as
height increases and turbulence decreases in all cases. The other two
g-type correlations with streamwise separations are plotted in Figures
5.3 and 5.37. Correlation with longitudinal separations seems to
persist for a longer distance than correlation with transverse
separations. The corresponding integral length scales for all space

correlations are summarized in Table 5.3a. Lll is significantly larger

than all other scales which is generally observed in the atmospheric
boundary layer. Integral scales are normalized with Lll and compared to

field observations (Teunissen, 1980) in Table 5.3b. Teunissen's
measurements were conducted in the neutral-stable planetary boundary
layer over typical rural terrain at a height of 11 m. The mean wind

velocity in his measurements was about 9 m/sec. The turbulent
intensities were 0.16, 0.11 and 0.07 for longitudinal, lateral and
vertical direction, respectively. Hence, his measurement: are

comparable to the present measurements for x3/6 = 0.044. Considering
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the uncertainty involved in the field experiment with its insufficient
data and varying wind direction, Teunissen's results qualitatively
support our simulated atmospheric boundary layer.

5.4.3 Eulerian space-time correlation

The longitudinal space-time correlation functions, for filtered
turbulence l‘:R“(Axl,0,)(3;A.ul/U). are reproduced in Figure 5.38. Each

data point represents the peak of the individual cross-correlation
observed at optimum delay time, T _, although t may be different from
the convective time AxI/U. For small Axl the Values are extrapolated

from a series of correlation measurements with sz positioned away from

the wake center as illustrated in Figure 5.30. Figure 5.39 displays
ERll(Axl,O,x3;Ax1/U) for unfiltered turbulence. The transverse space~

time correlations, ER22(Ax.0,x3;Axl/U) and E833(Ax1,0,x3;Axl/U), for

unfiltered turbulence are given in Figures 5.40 and 5.41. It is
observed in the measurements that the space-time correlation function
increases as height increases and ERn(Axl.O.x3;Axl/U) >

ERzz(Axl,O,x3;Ax1/U) > ER33(Ax1,0,x3;Axl/U) for a given height.

Notice that the correlation function has a rapid drop at small
times in Figure 5.38. Such a drop is more marked as the probe moves
closer to the ground. Similar results have been observed in the
atmosphere where probe wake effect appears unnoticeable (Lumley and
Panofsky, 1964). One explanation for the drop would be that near the
ground the turbulence level is stronger and small eddies become more
dominant. The small eddies lost their correlation in a shorter period
which results in a decrease in the correlation as height decreases. Such
effect is somehow Jiluted when large eddies are dominant in an
unfiltered turbulent field.

The inadequacy of Taylor's frozen turbulence hypothesis is clearly
seen in a sheared turbulent boundary layer. According to the
hypothesis, l_:R“(A.ul,(),)ta;t) should reach its maximum value of unity at

a time 1 = Axl/U, but as a result of shear, the resultant higher level

of turbulence and the small eddy behavior, the peak value of
Eﬂii(Axl,O,x3;t) can never regain its theoretical magnitude as observed

in Figures 5.38 through 5.41. Even in the grid-generated turbulence
reported by Frenkiel and Klebanoff (1966) as well as Comte-Bellot and
Corrsin (1971), where the turbulence is not distorted by mean shear;
large departures from a frozen pattern are observed. Most investigators
attributed the breakdown of Taylor's hypothesis to the loss of coherence
of small eddies when downwind separations slowly exceed the iarger eddy
sizes. Data reported on the frequency filtered space-time correlation
measurements by Favre et al. (1957, 1958) gave equivalent support to the
observation in a boundary layer. The turbulence gradually loses some
coherence at the edge of the boundary layer where mean shear and
turbulence level are low, but near the ground the correlation function

losses its identity quickly due to higher mean shear and turbulence
level.



Convective velocity. The convective velocity Uc is defined as the

: . . 9 Sl
ratio of Axl to the optimum delay time where T l':R“(Axl,o.x:,,t) =0. It

is closely related to the eddy motion and serves as a characteristic
velocity of the large scale disturbances in the turbulence. The
convective velocity was found to be identical to the local mean velocity
U in both uniform and uniform shear flows by several researchers.
Fisher and Davies (1964) examined the convective velocity for various
frequency components in a subsonic jet. They reported that Uc increases
as frequency increases and deviated from the mean value by as much as 25
percent. Blackwelder and Kovasznay (1972) observed that UC/U = 0.958 at

x3/6 = 0.83 and Uc/U = 0.975 at x3/6 = 0.45 in a turbulent boundary

layer. This indicates that the large eddies are traveling at a slower
velocity than the mean velocity in the boundary layer. Figure 5.42
presents a comparison between T and Axl/U where . Axl/U is plotted

as a solid line. For small separations such as Axl =0.5cmto 1.0 cm
errors are as high as 50 percent due to the vagueness of the correlation
peak. Erro' quickly reduces to less than 3 percent as the separation
increases. t./(—ﬁl) is consistently greater than 1.0 at large separation
which indicates the slower motion of large eddies in the boundary layer.
The fact that the difference between Uc and U is not significant at

various heights implies that the autocorrelation observed from a
convective moving frame is well represented by the envelope of fixed
point space-time correlation.

Normalization of the space-time correlation function. Since
accurate space-time correlation magnitudes for large separations could
not be obtained in the present study the integral scale, STii’ has to

be estimated by approximating the tail of the correlation function.
| 8
1 2

A function, 5"
(1+Plt) (l*Pzt)

3 o was employed for the extrapolation

where P, are regression constants. The ratio e, preserves the
. (1+P 0?

expected asymptotic characteristics of the lpace-tlne correlation
Pzt

(1+P,1)

lar method 3.. used by Blackwelder and Kovasznay (1972) where the sum of

two exponential terms was employed to approximate the space-time

correlation function. The correlation data was unevenly weighted to

obtain the regression constant, Pi’ in the present study. The weighting

while 3 accounts for the rapid decay at small times. A simi-

factor for each data point was determined by its logarithmic value of
optimum delay time which means more weight was given to data points at
large separations. Figure 5.43 compares the fitted curve to a typical
set of data points. STll was obtained by integrating the regression

function (Figure 5.36).
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The space-time correlation function was finally plotted versus
Ax

U_;T%T . The shear layer values for filtered turbulence are included
ii

on Figure 5.44 and compared with several sets of Eulerian space-time
correlation data from other laboratory experiments. These experiments
include data measured in another turbulent boundary layer (Farve, 1965;
Frenkiel and Klebnoff, 1966), in grid turbulence corrected for energy
decay (Comte-Bellot and Corrsin, 1971), and in a nearly homogeneous
turbulent shear flow (Harris et al., 1977).

Space-time correlation functions for an unfiltered turbulence are
replotted against normalized time coordinates in Figure 5.45 through
Figure 5.47 for all three components of velocity fluctuations. Data are
in good agreement with previous results for filtered turbulence. A
universal shape for the Eulerian space-time correlation function seems
to exist when presented in the non-dimensional coordinates. Such a
curve is given in the figures in Figures 5.45 through 5.47.

5.5 Laboratory Plume Simulation

Lateral plume spread was evaluated from laboratory simulation of
atmospheric dispersion. Data examined in this section includes the
present diffusion measurements and measurements reported by Chaudhry and
Meroney (1973). Plume dispersion was studied by Chaudhry and Meroney
for three thermal stratification conditions from neutrally buoyant
continuous point sources released in a boundary shear layer.
Experimental details concerned with the measurements are summarized in
their paper.

The diffuson data from all wind tunnel measurements were expressed
in terms of the standard deviations of the horizontal concentration
profile. The standard deviation of the concentration, 02’ is defined as

2
i Xz.

0, = s el (5.3)

J

where Cj is the mean concentration at a sampler, XZJ indicates the
lateral distance from the plume centerline at the same height, and j is
a particular sampler on the array.

A diffusion time t is approximated by the advection time scale
xl/U‘, where U. represents the average mean velocity between source
height and the sampler height.

5.5.1 Source size effect

The laboratory source employed during the dispersion experiments
was large compared to an idealized point source.
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Assuming a Gaussian form for the concentration distribution in the
horizontal direction during plume dispersion, the probability density
function for an ideal point source release may be written as

- 2

2
e I (5.6)
exp | 202

P(x,) =
2 Jan o

But for a finite length source with width d, the probability density
function would be

2 § s 5
2 2 ) = erf ( 22
o Ni ] o

y

P(x,) = 5‘—3 ferf ( )} . (5.7

After some manipulation, the standard deviation of horizontal
concentration for a finite source, oy. can be related to the ideal

value, 0, by

g =0 - Ti (5.8)

provided that X, »> g.

Csanady (1973) remarked that "in the later stage of diffusion the
concentrated source model is adequate, but the initial circumstances
could only be elucidated by the slightly more complex distributed source
model." Fackrell and Robins (1980) conducted an extensive study on the
effect of source size on plume behavior in a simulated boundary layer.
They concluded that flux of variance in the plume reaches a maximum
close to the source, for the smallest source size, and thereafter the
variance monotonically decreases. The results presented by Fackrell and
Robins indicate that the mean plume width becomes independent of source
size after ul/d exceeds 10.

If the lateral plume spread is approximated by a Gaussian
dtltributioqlroy would be roughly the sawme as 0,. Since the maximum
error, o;i;ozloz for the present configuration was found to be less

than 4 percent, and the nearest sampling location to the source was al
_ld = 20, the influence of source size is negligible.

$.59.2 g%!!prinon of laboratory simulated plumes to field
spersion experiments

Draxler (1976) examined diffusion data from eleven field
experiments including elevated and ground release sources over a range
of stratification conditions. Wind tunnel simulation results were
compared to these experiments for the behavior of lateral plume
dispersion based on the Taylor's diffusion theory, Equation 2.1.



Pasquill (1971) suggested a more explicit relationship for the
diffusion parameter derived from Taylor's equation. For lateral
dispersion,

Rl o 2
501 = % T, (5.9)

where LT22 is the Lagrangian integral time scale and

T =

22 lez(r)d!

L

R )

Since it is difficult to determine the true Lagrangian integral time
scale from field diffusion experiments, Draxler introduced another time

scale T‘. which should be proportional to LTZZ' He first suggested that

the lateral plume growth may be related to time, t/T; for all data by

1
R, SN
L aox.o(:/r‘iat‘

where 1'i is defined as ‘he diffusion time required for 'l to become
equal to 0.5. In order to satisfy the theoretical limit for fl at large

time and to provide a satisfactory fit to the data, he subsequently
replaced the sbove equation by

1
' [ QT — s (5-'0)
' noo.otz/r‘)a's

The corresponding Lagrangian autocorrelation function may be derived
from Taylor's equation and Equation 5.13. This yields

( 1-1.125Jf7T; 61
Rys(t) ® e 5.1
e (100.9J17¥k;z

but this expression for the autocorrelation function has an unrealistic
infinite negative slope in the limit as t+0,

Phillips and Panofsky (1982) ve-examined Draxler's ideas and
concluded that Equation 5.11 is inconsistent with the theory of the
inertial subrange according to which R(t) varies as 1-Ct near 120, where
C is a constant. They roptccod Equation 5.10 by another form,

2
'l(‘/Tt) s 0.6)7[&/7‘ e = = ‘l(l’5.25‘/7‘)' ' (5.12)

which was derived from a simple form for lez(t)



1
L.22(‘) = -——————-——;i . (5.13)
22

(l+t/LT

An exponential Lagrangian autocorrelation function 1is also
consistent with the assumptions of inertial subrange theory (Tennekes,
1979). In addition, the exponential form is consistent with the concept
of a Markov process and is frequently preferred by analysts (Newumann ,
1978). Thus if

-t/ T
L 22
lez(t) = e ’ (5.14)

one obtains

T, (r.l/n2 -6.83/T, %
f‘(t/’ti) = 0.541 | i v g (1-e Yl . (5.15)

Plume dispersion data. The laboratory measurements are compared
with field data for horizontal diffusion from a ground source in Figure
5.48., Only the data set for strong stable stratification (Rt6 "

0.25) deviate significantly from the field results. The lateral
diffusion from an elevated source are plotted in Figure 5.49. The
stable elevated case seems to deviate only slightly from the field
experiments.

The stable elevated case has been considered separately so that a
cleaner comparison with Draxler's results may be made. Draxler utilized
an average Ti for a specified stratification category which applied to

all experimental sites wunder that category in his analysis.
Unfortunately, this approach results in points which are consistently
reater than 0.5 in Figure 5.50. This suggests that the actual value of
{ May bs 34 times the value recommended by Draxler for the stable

elevated source releases. In this case a replot of the field data would
lie between !Ot/T‘ = | and 2, which agrees with the laboratory results.

Figure 5.51 displays the lateral diffusion measured at the same
height as an elevated source. Plume width variations found for the
elevated case in Figure 5.51 should theoretically be described most
accurately by Taylor's theory. Yet no significant improvement was found
in comparison to Figures 5.48, 5.49 and 5.50.

arison with Predictions. The proportion of variation explained
by prediction (or regressive curve), which describes the coherence
between data and formulae, was examined by an analysis of variance. The
experimental data employed in the analysis consisted of field
experiments in Figure 5.52 and the laboratory results, but not including
the stable stratification case SP. The correlation coefficient R
appears to be acceptable for all three equations as shown in Table 5.4,
The residual, ll(t/T‘)-l‘(t/T‘). is displayed in Figure 5.53a for field
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measurements and in Figure 5.53b for laboratory results, where f,(t/Ti)

is the predicted value. The residuals were compared to a normal
distribution by the Kolmogorov-Smirnov goodness of fit test (Conover,
1971). The level of significance in the test suggests that a normal
distribution hypothesis is rejected by residuals of Equation 5.10,
Therefore, the probability distribution of residuals is presented with
the cocrelation coefficients in Table 5.4. Equations 5.12 and 5.15 were
found to fit the data slightly better. Yet no significant systematic
deviation can be found among the three predictions during comparison
with field or laboratory experimental results.

Comparison among sgggiggionq. Equations 5.10, 5.12 and 5.15 are
plotted on Figures 5.4 through 5.52. Comparison between the predictive
formulae and the experimental data reveals that:

(1) Difference among the three functional values are not significant.
All of the expressions fit the trend of atmospheric field data as
shown in Figure 5.52. MHowever, the equations imply different

values for the Lagrangian integral time scale, i.e., Ti = 1,64 LTZZ
for Equation 5.10, Ti = 5.25 T,, for Equation 5.12 and ‘I‘l = 6.83

L 22
LT22 for Equation 5.15.

(2) The Lagrangian autocorrelation function corresponding to Equation

5.12 preserves an exponential form for short diffusion times such
that

-2t/ T 2
R.(t) = LZZ._” | - 1
L722 t
v (I’T)
2 L 22

2 . (5.19)

Neglecting higher order terms in the expressions prevents fl (t/Ti)

from dropping rapidly at longer diffusion times. Since a higher
correlation at larger times implies a larger value of the
Lagrangian integral time scale, removal of higher order terms in
the expansion results in an increase in the Lagrangian integral
time scale for the same T‘; thus LT22 calculated from Equation 5.12

is 1.3 times the value calculated from Equation 5.18,

(3) For the same set of data, the implied Lagrangian integral time
scale is seen to vary from T‘/é.GJ to T‘/l.bk. Although it is well
known that drastically different forms for lez(t) give very

similar results for the dispersion using Taylor's integral relation
(Pasquill, 1974), the importance of selecting a correct integral
time scale in any predictive scheme becomes clear.

Importance of the Lagrangian time scale. It is obvious that
accurate specification of T‘"fir iT;z) is necessary to use Pasquill's fl

Curve as a predictive scheme for plume dispersion. Unfortunately, a



wide range exists in the magnitude for the Lagrangian integral time
scale, primarily due to thermal stratification and complex terrain
effects. Neumann (1979) used a simple exponential expression for the
Lagrangian velocity correlation function during turbulent diffusion. A
set of integral time scales was calculated corresponding to the various
Hosker-Briggs-Gifford-Pasquill stability categories. Since the integral
time scale is difficult to estimate in the atmosphere, researchers tend
to simplify the problem and assume that the fl curves are only a

function of downwind distance. Briggs (1973) suggested a dimensionally
inconsistent function for the standard deviation of plume width. Hanna
(1982) recommended a simplified function for the fl curve compatible

with Briggs' formula. Table 5.5 summarizes the integral time scale used
(or implied) by the different authors. The variation is indeed
astonishing. LT22 varies from several hundred seconds as predicted by

Draxler (1976) to an order of 10‘ seconds as suggested by Gifford
(1982). ALl these time scales are based on field measurements in the
atmosphere; however, their stability classification and the flow
configuration may vary. Hence, additional knowledge about the integral
time scale and how it relates to basic physical characteristics of a
turbulent shear layer is required.




Table 5.1. Characteristics of the simulated atmospheric
boundary layer, neutral

WODEL SCALE PROTOTYPE FIELD RESULY
(1/1250) COUNTHAN (1975)
f T dm —_—————y -y~ - e — ]
'-" U +2ws rﬁ.-!qn U_=Sws U~ 2wms U s dws (0_-5-/: U - 2w U_* e [u_-s-u
Scale Ratto. 45/600 |y . 0 0725w/s| U,> O 129w Ju, - 0.217 m+-. * 0.0725m/s| U,s 0.0029mw/s{ Uy 0.217 wrsfu, « 00725 mys| U, 0 0129e/s] U e 0.217 s
L e 3 LU S - 6 e
& =) 0.4 0.45 0 500 500 600 600 600 600
- 0.166 0.16 0.146 0166 0.16 0.148 0. 0.13 on
2, = coxw® | 200w0%| 10400" 0.05 0.025 0.0125 0.08 0.025 00128
(::)‘ a0 | resaw? [y amaie? [roeno? | 1m0 rmere? i oaw? [ 1mern? | 16 x0?
(/ —J) 0128 0158 0.120 0128 0.158 0.120 0.158 0.140 0.128
:
: Yy = V20
(/ 7) 0.10 0.108 0 oas 0.0 0.106 0 085 0. 0.120 o.m
' '/. -8
- = 0.103 o 129.1 nzs 220 250
(apprex. ) (approx. )
(7, - o)

%9




Table 5.2. Turbulent length scale of the stable stratified boundary layer.

u,~cC mﬂt "~ lelt 5= coq;onent

x3 1 2 3
'3 L A A L A A L A A

(cm) (ch) (ch) (cm) (ci) (ch) (cm) (cih) (ch)
.028 3.96 3.34 1.62 1.74 1.70 .835 1.91 1.73 .627
.053 6.16 4.40 1.56 2.34 2.14 .889 1.87 1.53 .528
.08 5.18 4.48 1.68 2.10 2.07 .904 2.35 2.24 .554
.107 5.20 4.61 1.62 2.88 2.83 1.02 2.-15 2.09 .547
133 7.39 $-N 1.62 3.69 2.78 L945 2.18 2.18 .557
.20 9.21 6.41 1.58 3.72 3.14 .982 2.22 2.12 .515
.267 9.18 6.97 1.67 4.70 4.16 1.03 2.14 1.99 .541
.40 11.79 8.39 1.79 7.60 5.62 1.21 3.19 3.04 .570
.60 10.76 B.44 1.30 7.54 6.43 1.06 3.76 3.65 .593

<9
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Table 5.3. Turbuient length scale of the neutral stratified boundary
layer.

{a} Integral length scales

A

7 In L2 L L2 Ly Ly
. 04é 19.5 2.54 - ' 2.10 .78
.22 26.9 4.69 5.22 5.14 4.00 2.35
4k 26.0 5.50 5.59 6.01 5.18 3.46

") Normalized integral length scales.

TG R R TR, S
5 L Ly i L 11 I
. 044 1 .13 - - 11 .040
22 1 .17 .19 .19 .15 .087
A 1 .21 .22 .23 .20 .13
Teunissen™ 1 .18 .40 f 5 | .14 .027
(1980)
Teunissen 1 .19 o | .23 .089 .040
(1980)%*

* From correlstion integral
** From exponential fit



Table 5.4.

Summary of Comparisons Between Data and Predictions

% of variation Correlation Level of Probability distribution of residual
explained by Coefficient Significance e i
the formula R a** ptlelc0.0%) p(0.05¢|e]c0.1) p(l.lzo.x{_J
Formula Field Lab.* Field Lab. Field Lab. Field Lab. Field Lab. Field i.;b.
Exp. Dats Exp. Data Exp. Data Exp. Dats Exp. Data Exp. Deta
Equation 3 80.3 74.7 .899 864 <0.01 <0.01 .458 472 .325 .303 217 .225
Equation § 78.9 B84.5 .288 .919 0.09 0.03 496 .618 .292 .228 .212 187
Equation 8 72.9 86.5 .853 .930 0.10 ©.10 496 .630 L2718 .202 .222 .168

* Stable Stratification case SP is not included

** Residuals were tested to a mormal distribution fumction by the Kolmogorov-Smirsov goodness of fit test.

L9



Table 5.5. Summary of Lagrangian Integral Time Scales
LTZZ (sec)
Neumann Briggs Hanna Drazler Phillips Gifford
(1978) (1973) (1982) (1976) and (1982)
. 2 o W - o Panofsky
Stability s v 17Ty /529 T, ST /688 1T /5.2 LT,y =T,/6.83 s,
Category (m/s) m/s
A .19 2 2400 2900 2200 2900 2200 200~600 190~700 ~10*
B .24 3.5 1700 2300 1800 1640 1250 200~600 190~700 ~10*
c .36 s 1700 900 690 1050 880 200~600 190-700 -10*
D 17 s 750 1070 820 1030 880 200~600 190~700 -10*
E 044 3.5 1000 1640 1250 1640 1250 200~600 190~700 -10*
F .0064 2 2250 2900 2200 2900 2200 200~600 190~700 ~10*

89
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Figure 5.1. Mean velocity and turbulent intensity profiles for neutral stratified boundary
layer at U_ = 200 cm/sec.
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Figure 5.2. Mean velocity and turbulent intensity profiles for neutral stratified boundary
layer at Um = 300 cm/sec.
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Figure 5.3. Mean velocity and turbulent intensity profles for neutral stratified boundary
layer at U°° = 500 cm/sec.
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Figure 5.4. Lateral distribution of mean velocity and turbulent intensity profiles for neutral
stratified boundary layer at 80 cm height.
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Figure 5.5. Mean velocity profiles for stable stratified boundary
layer at U, = 200 cm/sec.



"2 i 3 ] Al ‘ Al 1 v 1 fT Ll j v ' v 1 v
L Legend (see Figure 5.5) g
1.8} .ﬁ
- -
.8 -0 -
- 4
& o
< .8 - -~
)
%
-
b 4
4 £1e -
ae
! .
-
-2b “ =
"
E 3
. F ) E
S
-0 PRV, (WG (e (R I WP DISETSRNN N W N

.8 5.2 18.0 165.2 20.2 25.2 39.8 365.0 40.8 46.9

 §

Figure 5.6. Mean velocity profiles for stable stratified boundary
layer at U = 200 cm/sec.
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Figure 5.8. Variation of Ri with x3/6; U°° = 200 cm/sec.
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Figure 5.9. Energy spectra of longitudinal velocity fluctuations; U_= 200 cm/sec,
neutral, filtered (continued).
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Figure 5.17. Vertical turbulent intensity profiles;
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Figure 5.52. f curve for diffusion in the atmospheric boundary
layer (from Phillips and Panofsky, 1982).



= Equation (3)

= Fquation (8)

o S S T
A
tl'l'i

(a)

Figure 5.53.

Field Measurements

I /f\(t/‘ri) = Egquation (3)

.’i£~
. F:
n® xig
A
.. s
~ [
"
.‘P
) 8

2 W :l L x x
H,‘ /f\(t/T‘) = Equation (5)
A . .

- JF e .l .
= Q-J—u_"——“ “‘”_ﬁ;.l N— 1

oF e o g

‘ o
- 2\

f (tlri) = Equation (8)

l&: .. --. : % - . »
il =
- t ‘

(b) Laboratory Results

Residual analysis for predictive schemes.

o€l



Chapter 6
PREDICTIONS FOR LAGRANGIAN STATISTICS AND TURBULENT DIFFUSION

6.1 Introduction

The estimated Lagrangian statistics obtained from the present
analysis are given in this chapter. These Lagrangian estimates are used
to predict dispersion from a continuous point source; then comparisons
are made between the predicted and measured dispersion in a simulated
boundary layer.

The Lagrangian autocorrelation functions and integral scales for a
uniform turbulent flow are presented in Section 6.2. Discussions are
extended to a uniform sheared turbulence field in Section 6.3. Section
6.4 compares the Lagrangian estimates calculated from the Independence
Hypothesis approach with other analytical methods. Section 6.5 examines
the integral scale ratios between the present data and previous
experimental results. Predictions of turbulent dispersion based on the
Lagrangian estimates are presented in Section 6.6 for comparison with
experimental data.

6.2 Lagrangian Estimates for Homogeneous Isotropic Turbulent Flow

6.2.1 Turbulent flow with uniform velocity

Lagrangian autocorrelation functions are computed according to
Equation 3.12 for various & via the numerical iterative procedure
described in Section 3.5. Four different functional forms for F, (t,)

are employed in the analysis of homogeneous isotropic turbulence with
uniform velocity. The four cases are:

Model I (Exponential) : F,(t,) = exp(-t,)

2
exp(- Eﬁf—)

dotted curve in Figure 5.44

Model II (Gaussian) : Fl(t*)

Model IIT (Empirical) : F,(ty)

Model IV (Empirical) 3 Fl(t*) solid curve in Figure 5.45
Results computed from Equation 3..0 have been compared with results
computed from Equation 3.12. Increasing the number of Gauss-Legendre
quadrature points improves the accuracy of the double integral in
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Equation 3.16. In crder to reduce the computational time, the number of
weighting points is limited to 400 in calculating the double integral.
The maximum error resulting from the double integration is 0.5 percent

n T /sThe
Figure 6.1 presents the estimated Lagrangiaw autocorrelation

function computed from four different models in terrs of t,. Figures
are reproduced in the coordinates of t/LT11 in Figure 6.2. It is

designed in the numerical procedure so that the Lagraigian and Eulerian
space-time correlation functions are identical in the limit of a=0. In
each case, the shape of LRll(t*) strongly depends on the model selected

and bears resemblance to the functional form of Fl(t*) at small o. For
large o, the resultant LR”(t*) is less affected by F](t*) in all
models. LRll(t*) decreases as the Eulerian parameter increases but
preserves similarity, except Model II, when plotted in terms of t/LT11

LR“(t*) predicted from measured Fl(t*), Model III and Model IV, decays
faster than predicted from analytical Fl(t*), Model I and Model II, at

small t, but retains higher correlation at large t,. LTll/STll can be

evaluated from Figure 6.1 and is plotted in Figure 6.3 against various a
for all models. Figure 6.3 also presents results reported by other
researchers. Discussions of those data are deferred to Section 6.5.

The fixed-point Eulerian autocorrelation can be obtained as a
result of Equation 3.9 by substituting r = -Ut and 6 = n. Therefore,
ETll may be determined as

~ ‘l%"*
e =stinJ e Fy(ty)de,

O~ 8

The ratio STII/ETII calculated from the above relationship is shown in
Figure 6.4. Another ratio of time scale, B = LTll/ETll (the Pasquill's
Beta), is readily evaluated by multiplying LTII/STII by STH/ET“.
Figure 6.5 is produced from Figures 6.3 and 6.4 with selected .

Baldwin and Johnson (1972) have indicated that the bracket term in
Equation 3.12, G(o,t,), is rather insensitive to the functional form of
Fl(t*). In the present analysis, cases considered are further extended

to a general turbulence which includes non-isotropy and uniform shear
strain. Figure 6.6 displays the results for various flow configura-
tions. G(a,t,) is presented in Figure 6.6a for an isotropic homogeneous
uniform flow while Figures 6.6b,c,d present the same calculation for an
isotropic uniform shear flow, a non-isotropic uniform flow, and a non-
isotropic uniform shear flow, respectively. Under each turbulence
category, all models yield similar estimation for a short diffusion time
but diverge from one another for a long diffusion time. The shape of
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G(a,t,) is not much affected by different models as seen in the figures.
LR“(t*) is obtained as the product of G(a,t,) and Fl(t*). After

multiplying with Fl(t*), the deviation in G(a,t,) due to different
Fl(t*) only accounts for a small percentage of error in estimating
LR“(t*). Hence, it will be of practical interest to tabulate the

calculation of G(a,t,) with respect to @ in each turbulence category.
The tabulated results may be used in conjunction with a measured Fl(t*)

without going through all the numerical computation as the first
approximation to LRll(t*\.

Fl(t*) will be limited to Model IV during subsequent predictions of
LR“(t*) in some generalized turbulent fields.

6.2.2 Turbulent flow with uniform shear

Figure 6.7 presents LRll(t_k) for various values of a and rSTll'

The existence of mean shear does not change the Lagrangian auto-
correlation function at small t, (t, < 0.25) but results in a faster

decay at larger t,. The ratio LT“/STll is plotted in terms of rsTll

for different o in Figure 6.8 to emphasize the shear effect. The ratio
LTII/STII decreases faster for small value of o due to the shear strain.
Increase of shear causes little change in LTn/s'l'll after rsrll
approaches 5.0 for large a. Figure 6.8 may be used together with Figure
6.4 to predict B in an isotropic honggeneous uniform shear flow as long

as such turbulence parameters as [u1 , L, T and ST11 are specified in

the turbulence field. Figure 6.9 displays the predicted f contours for
i=0.1. Note that B falls between 3.0 and 5.0 for a wider range of a
with the presence of shear than without the presence of shear (e.g., B
3.0~5.0 for a = 0.35~3.3 and rSTll = 2.0 while B = 3.0~5.0 for «

0.19~1.0 and T L9 . 0.0,

%
an averaged B = 4.0 for various strain rates agrees very well with field
observations.

(=]

Tll = 0.0). For atmospheric turbulence,

R

w
(=}

n

6.3 Lagrangian Estimates for Homogeneous Non-Isotropic Turbulent Flow

It is difficult to provide complete information on the estimated
Lagrangian statistics for a non-isotropic turbulent flow since there are

four parameters involved, namely, ay, 0y, oy and rSTll' However the

numerical procedure can perform the estimation for any specified
combination of these four parameters. Figure 6.10 presents results for
L‘l'”/s'l‘11 in an ideal one-dimensional non-isotropic uniform turbulent

flow by assuming a, = @y = 0. The magnitude of the Lagrangian

autocorrelation function as well as the scale ratio is gradually reduced
once the turbulence field is expanded from one-dimension to three-

dimension. Figure 6.11 presents the resultant LTII/STII for two-

dimensional turbulent flow with uniform velodity. LTII/STII for a
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designated three-dimensional turbulence with a, =a, is given in Figure

&.12. Reduction of LTII/STII due to the redistribution of turbulent

energy to other directions is clearly observed through Figures 6.10 to
6.12. Variation in T _/.T resulting from different o, and a., values

L'11°8 11 2 3
plotted in Figure 6.13 for an @, = 1.0, LTII/STll may be obtained
without significant error by using the averaged value of a, and ay from

Figure 6.12. Figure 6.12 or Figure 6.13 can be used in connection with

Figure 6.8 as the first approximation for LTII/STII in a non-isotropic

uniform shear flow. Similarly, B may be estimated from Figure 6.12 in
conjunction with Figure 6.4.

6.4 Comparison with Analytical Predictions

6.4.1 Numerical simulation of particle motion

In a recent paper prepared by Lee and Stone (1983), Monte Carlo
techniques were wused to predict one-dimensional diffusion in a
stationary, homogeneous field of turbulence. An analytical expression
to predict the Lagrangian statistics from Eulerian statistics was also
presented. The analytical solution for cloud growth compared favorably
with the results from the Monte Carlo simulation, and both results
agreed with Lagrangiun statistics estimated from the present analysis.
It is indeed impressive that a one-dimensional turbulence model
approximated cloud dispersion as well as a full three-dimensional model.
Hence, their expressions are re-examined here.

Lee and Stone approximated the Lagrangian autocorrelation function
at a short time increment by the Eulerian space-time correlation. They
assumed that the velocity fluctuations is normally distributed with zero

mean and standard deviation lulzls. They used the expression
2
o .
. (2,\% _ 6t 2 -an 2
LR“(bt) = (n) exp( T ) J n" e - dn (6.1)

S11 o

2.%
where a = L!_%_QE and n = N(0,1).

The Lagrangian autocorrelation function at 8t can be obtained as

6t 2
-3 a

T A
6t) =e 3" {2 (14ad)(1-erf( 2))- ¥2 43 . (6.2)

R
L1 J2 Jn

Sirce 2 first order autoregressive process successfully describes the
motion of a diffusion air particle, the autocorrelation function must
satisfy the following relationship (Box and Jenkin, 1976)



135

_ k 2
LR“(I) = {LR”(ﬁt)} , t = két . (6.3)

Therefore LRn(t.) can be expressed as

-_%__ o2 R
(R (t) = e bl - 2 (14a%) (1-erf( 3;))' LEY 5 (6.4)
2 |n
and
T a?
T <
ETll = {1 - §3%1 lace 2 (1+ad)(1-erf( 1))- £ )17 (6.5)
s'11 Z |n
or
T azAti
LI . 1 - o mfe 2 (ra’ard)(1-ert( %))
s'11 * 2
2, T (6.6)
n
where a = oAt, and

Aty = 6t/T, .

Lee and Stone obtained LRn(ét) by expanding the exponentials,
exp(-&t/sTll) and exp(-an), in Equation 6.1 for small value of 6t»0.
LT“/STll was obtained in conjunction with the random force model
suggested by Gifford (1982). Their result is

g2 -1
Tl = s G . 6.7)

Equation 6.6 is a more exact solution to the Monte Carlo simulation, yet
the differences found are negligible. Table 6.1 displays values
calculated from Equations 6.6 and 6.7. It is not surprising that
Equation 6.6 successfully predicts results from a Monte Carlo simulation
since it is the natural consequence of the Markov process. Table 6.1
also lists LTll/STll computed from Equation 3.12 by adopting Fl(t*) B

exp(-t/sTll). For a small value of o, the estimated LT“/STll agrees

with the Monte Carlo simulation predictions. As & increases, the
deviation becomes appreciable. Lee and Stone warned of the possibility
that the one-dimensional model inadequately represents the spatial
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variation of the correlation function in three-dimensional homogeneous
turbulence. Indeed their results agree with these more exact
calculations at small a.

Suppose that instead of using Equation 3.9, ER”(r,e,t) is replaced

with exp(-t,)exp(- r /L) as utilized by Lee and Stone. The Lagrangian
autocorrelation function is then

2
Ry = e (e T+ 2020 (1-ert (JP1))- j—,/«?l} . (6.8)
n

If 6t, is a small value such that 6t,»0, I(t,) will approximate its
asymptotic value,

2
1(6t,) = % .

Substituting this approximation for I(6t,) into Equation 6.8 recovers
Equation 6.2 with ~ = abt,. Values for LT”/STll calculated from

Equation 6.8 are also included in Table 6.1. The results are signifi-
cantly larger than estimates from Equations 6.4 and 3.12. Deviations
between estimates result solely from the simplification introduced for
the general Eulerian space correlation function. LT“/STll is over-

estimated when one assumes that the g-correlation is the same as the
f-correlation in an isotropic homogeneous turbulence field.

The difference between estimates from Equations 6.4 and 6.8 is due
to the different approaches employed. By virtue of the Lagrangian
kinematics of a fluid particle, the Independence Hypothesis is
applicable only when t is so large that there is no relation between the
fluctuating velocity and the particle position. Equation 3.12
represents results based on such a theory.

Equation 6.2 may be interpreted in terms of the present approach by
ignoring the influence of fluctuating velocities on particle position
when t is small. For small Ot, see Figure 3.1; particles released at
t=0 are most likely to arrive at x1=U6t, but they will actually scatter

s 2
LR”(ZGt) = LRll (6t), the

Independence Hypothesis is essentially utilized twice. Hence, the
assumption neglects the contribution to the autocorrelation from those
fluid particles which scattered about xl=Ut. At large t, Equation 6.4

about x1=U6t. When one  assumes

underestimates the Lagrangian autocorrelation as compared to Equation
6.8. Table 6.1 shows that LT“/STll values derived from Equation 6.8

are larger than time ratios calculated from Equation 6.6. The resultant
overestimations and underestimations tend to compensate; hence, Lee and
Stone's expressions result in close agreement with present analysis for
F,(t,) = exp(-t,) as shown in Figures 6.3 and 6.4.
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Indeed, the Monte Carlo simulation is mathematically and physically
similar to the present approach despite the fact that the numerical
simulation is fundamentally incorrect for three-dimensional turbulence.

6.4.2 Prediction from estimated space-time correlation

Favre (1965) has proposed a method for calculating the Eulerian
space-time correlation from the space correlation through the
Independence Hypothesis. Townsend (1976) also developed an analysis to
obtain the space-time correlation starting from the space-time structure
function. Both analyses took into account the mean particle
displacement in the first approximation and resewbled the other.
Instead of using the exact form, the mean square particle displacement
is assumed to have its asymptotic value as

(X0 = (v, .
Such approximation automatically limits the validity of the approach to
short diffusion time. Their estimated Eulerian space-time correlation
may be expressed in terms of the present derivation as

Foty) = Go,t,) . (6.9)

If one applied their estimated Fl(t*) to the present a.alysis, the

Lagrangian autocorrelation function is found to be

- (e
Ry (te) = 6%(a,ty) (6.10)
®
and J Gla,t)dt, =1 .
0

Fl(t*) calculated from Equation 6.9 has been compared with the

measured results from Favre et al. (1962) QY Townsend. For a time delay
of Ult/H = 7.57, the effective value of a“I(t,) is found to be 0.0648,

and the estimated value of Fl(t,*) is 0.48 compared to the measured

maximum correlation coefficient 0.41 in Favre's experiment. The value
0.48 is different from Townsend's calculation of 0.85 but consistent
with Favre's computation. A possible error may exist in Townsend's
calculation.

A consequence of the form of [Xlz(t*)] adopted in Favre's analysis,

the predicted Fl(t*) has a higher correlation at small t and lower

correlation at large t than the measured results reported by Favre.
Equation 6.9 predicts Fl(t*) based on the knowledge of knowing mean

square particle displacement (equivalently, the Lagrangian auto-
correlation function). Hence the methodology employed in their analysis
is quite similar to the present approach except the unknown
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in their analysis is the known variable in the present study and vice
®

versa. In order to satisfy [ G(a,t.)dt, = 1, the present analysis
o
yields «o ~ 1.1 and LTll/STll = 0.336 according to Equation 6.10. The

data point marked as Favre and Townsend in Figure 6.2 shows their result

is close to the prediction using Comte-Bellot and Corrsin's measured
F,(t,).
1'%

6.4.3 Comparison with analysis using Independence Hypothesis

Philip (1967) and Saffman (1963) employed the Independence
Hypothesis to estimate Lagrangian autocorrelation functions and integral
scales. Both analyses, closely related to the present approach, have
been discussed thoroughly by Baldwin and Johnson. Their results are
briefly summarized in this section.

Philip's results for LT“/s'l’“, derived from Equation 2.26 are

reproduced and presented in Figure 6.3. His results are comparable to
Model II by using a Gaussian form for Fl(t*)' The deviations result

from his use of an averaged integral length scale regardless of the
variation in the space correlation. The averaging process for L becomes
more accurate in the region in Figure 6.3 where the two curves
intercept.

Saffman assumed a functional form of an Eulerian spectral density
function rather than an equivalent general space-Lime correlation
function. Baldwin and Johnson were able to transform the spectral
density function into the Eulerian space-time correlation function as

1.2
R, (r,0,1) = e 2 {1 - ) nz(l-cosze)}( L ¥ (6.11)
E'11 2 =X
2 %
where n= £ a0d A= | %— + % [uzltz}

JZA

Based on Equation 6.11, Baldwin and Johnson reduced two time-scale
ratios from Saffman's analysis. The results are reproduced in Figures
6.3 and 6.4. One notices that models with analytical F (t.) approach
the Taylor's hypothesis asymptotic, 45 degree line in F}gure 6.3 more
rapidly than models using emperical Fl(t*).

To avoid repetition, comparison made by Baldwin and Johnson with
previous work are summarized in Figure 6.14 without further discussion.
This figure is compatible with Figure 6.5 but separated for clarity.



6.5 Comparison with Experimental Data

Simultaneous measurements leading to confirmation of the integral

scales (ETii’STii and LTii) are rare both in the laboratory and in the

atmosphere. Nevertheless, there were several Eulerian measurements
reported while examining the production of turbulent energy. The
following comparisons are made in a qualitative sense despite the fact
that variations in the different experiments preclude similarity.

6.5.1 STll/LTIl

In a nearly homogeneous turbulent shear flow, Champagne et al.
(1970) demonstrated that the temporal history of turbulence at a fixed
position is well approximated with convertive spatial structure in a low
turbulence field. Based on this, _T was found to be 0.00335 sec

E" 11
in their measurement. STll was estimated through the relationship,
u
e, Ay | .
STll = (L + dx; , which resulted in a value of STll = 0.056 sec for
i = 0.018. The following parameters are obtained from their results

a, = 0.3 3 02 E0.23 2 03 =0.22 ;

r =12.9 ser:.l and = 16.7 .

sTi/L™n

After correcting for decaying turbulence, the following properties
in a homogeneous isotropic uniform turbulent flow were obtained by
Comte-Bellot and Corrsin (1971)

i =0.0175 ; L=2.4cm

ETll = 0.00189 sec ; STll = 0.084 sec

a=0.78 and I =0 sxec.1 .
The term STll/ETll is then found to be 44.4.

The above two experiments emphasize the uniform shear effect on
sT”/ET“. It seems that STII/ETII was significantly reduced when a
uniform shear was introduced.

The turbulent shear effect was further investigated by Harris et
al. (1977). An experiment was performed in the same wind tunnel

facility used by Champagne et al. with stronger strain rate and the same
fr stream veloci-g The turbulence levels were slightly changed to

ty.
J:nlu = 0.052, u, /U = 0.040, and ug /U = 0.033. Both integral and

micro length scales were reduced a significant amount, but sT 1 remained
about the same, 0.061 sec. Their conditions may be written al

*Results were adopted in conjunction with an errata sheet later issued
by Harris et al.
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-1%
= 48.0 sec ! 3 ETll = 0.001€9 sec

a = 1.86 ; a, = 1.43 ay = 1.17

and STll/ETll = 36.1 .
Unfortunately, both turbulence levels and strain rate were different

from measurements by Champagne et al.; thus the separate effect on the
scale ratio due to turbulent parameters cannot be compared.

Tavoularis and Corrsin (1981) extended the shear flow measurements
to a turbulent field with a uniform mean temperature gradient. The
velocity measurements were made under a neutral thermal stratification
which was identical to the configuration employed by Harris et al.
Paradoxically, they reported an integral scale which is about twice the

value reported by Harris et al. and assumed STll was the same as in

their earlier finding. Consequently STII/Elll was found to be 15.1 in
their report.

Blackwelder and Kovasznay (1972) conducted measurements of space-
time correlation in a turbulent boundary layer. As in their earlier
paper, Kovasznay et al. (1970), the turbulence statistics at x3/6 = 0.45
may be summarized as

%

u, /U =0.57 ; ETll = 0.0137 sec ; &6 =10 cm
a, = 0.87 ; STll = 0.185 sec ; I = 34.5 sec-1
and STII/ETII = 13.2.

Sabot et al. (1973) performed a space-time correlation measurement
in a pipe flow. Measurements were made at r/R = 0.5 where R is the
radius of the pipe and R = 5 cm. The corresponding mean velocity

2

gradient is 95 sec < and

Ju2/u=0.061 ; a=1.09
1

STll = 0.048 BTll = 0.00268

and STll/ETll =17.9

Turbulent statistics obtained from previous experiments are
summarized in Table 6.2. The scale ratios are referred to in Table 6.3,
where results from present measurements are tabulated for comparison.
Present measurements in a filtered (without large eddies) and in an

unfiltered turbulence gives consistent results for a, and STII/ETII'

But these two parameters have higher magnitudes than data reported
either in a pipe flow or in a thin boundary layer.

%



141

6.5.2 The Lagrangian integral scale

In Snyder and Lumley's measurements (see Section 2.3.1), they
reported that LT22 = 0.1 at xl/H = 73 sec after a correction for decay

adjusted. The corresponding RMS velocity fluctuations were tabulated as
Y iy
Ut o= Juyt = 13.1 cm/sec .

The time scale ET y can be approximated as

|

- 11 _ 3.1 (em) _
EN11 * U © 855 (cm/sec) - 00047 sec.

They suggested that__the Lagrangian integral time scale may be

approximated by L,2/ u22.

The quantity L“/jul2 reflects the persistent time of the turbulent

structure during the destruction by self-scrambling and is referred as
the "eddy turnover time." This time scale has been found to be roughly
the same as ST11 by Comte-Bellot and Corrsin in grid turbulence and has

been confirmed by Sabot et al. in pipe_flow and turbulent boundary

. 2 & =
layer. If one approximates STll by LII/ Uty then STll = ST22 = 0.237
in Snyder and Lumley's homogeneous isotropic turbulent field. The
corresponding & in their measurements is 1.0 which yields LTZZ/STZZ =
0.36 from present analysis. Therefore LT22 is found to be 0.085 sec
which closely agrees with their estimated LT22 (0.09 sec from Figure 14

in their report). LT22 was reported to have an asymptotic value of 0.10

21 22 since LZI = 1.2 cm
is implied in their results (Figure 7 in their report). Based on the

estiated STll' one also obtains

sec. Snyder and Lumley mistakenly adopt L,., as L

LTll/STll = 0.09/0.237 = 0.38
and
STll/ETll = 50.4 .
Baldwin and Walsh (1961) performed turbulent diffusion experiments
in the core of a fully developed pipe flow. They reported that the pipe
core turbulence departed from isotropy by about 30 percent and Juzz/Ju]2

~ 0.7 to 0.8. If the eddy turnover time is adopted as an approximation
to the integral time scale for Eulerian space-time correlation, one

L L
: 22 ~" 1
one obtains .T,, = ~ :
§°22 i"
2 “1
results and tabulated in Table 6.4 for various velocities. ST22 ranges
from 0.038 to 0.027 sec which agrees with Baldwin and Johnson's (1972)

ST22 is calculated from their
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estimation, by fitting the Eulerian space-time correlaton data to Fl(t*)
(0.045 to 0.019 sec).

A consequence of using the eddy turnover time as an approximation

to STZZ is that o automatically becomes unity. LT22 is estimated from
sT22 in connection with the present analysis. The estimated LT22 is
displayed in Table 6.4 for comparison with experimental values. ST22 is

found to be greater than LT22’ and LT22 qualitatively agrees with the

prediction. STII/ETII is obtained as 28.6 for various mean velocities.

The most recent experiment identified was made by Shlein and
Corrsin (1974). They conducted diffusion measurements in a similar
turbulent field to that used Comte-Bellot and Corrsin. Shlein and
Corrsin reported that LT22 is larger than ST22 (0.11 sec and 0.084 sec,

respectively). The Eulerian parameter may be evaluated as a = 0.78.
The present analysis cannot be made consistent with their results.

Lagrangian integral time scales calculated from both turbulence and
dispersion measurements are included in Table 6.5. Table 6.5a lists the
Lagrangian integral time scale as LT11 since the Eulerian longitudinal

length scale Lll is adopted as the turbulence length scale in the

analysis. The non-isotropic turbulence proposed in the present approach
is considered as a "pseudo" anisotropic turbulence because the isotropic
Karman-Howarth relationship is still employed as the general Eulerian
space correlation in the non-isotropic analysis. This remains a
shortcoming in the present approach until further information is
obtained about the general Eulerian space-time correlation in a non-
isotropic turbulence field. Similarly, Table 6.5b lists the Lagrangian

integral time scale as LT22 since L22 is used for the prediction. LT22

obtained from lateral plume growth is based on the assumption that

I_Rzz(t) is either an exponential function or equal to the inverse of (1
2 . ’ . .

+ t/LTzz) . The predicted LTII agrees with LT22 from dispersion

measurements and LTll/ETll averages to a value of 4.0. LT22 obtained

from sT22 and L22 apparently underestimates the lateral plume growth

which implies the longitudinal lengtk scale may be the dominant length
scale even in a non-isotropic turbulent field.

LTll estimated from the isotropic uniform flow approach is also

displayed in Table 6.5. The prediction generally agrees with estimates
based on the non-isotropic uniform shear flow approach. It is
encouraging to see that an isotropic approach can approximate a more
sophisticated approach so well. This implies that an overestimation in
the transverse dispersion which resulted from the isotropic assumption
compensates the additional dispersion caused by uniform shear in a
non-isotropic turbulence.
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6.6 Turbulent Dispersion Predicted from the Lagrangian Estimates

The Lagrangian statistics obtained from velocity correlation
measurements are utilized to predict the concentration distributions
from a continuous point source in the boundary layer. The predicted
concentrations are compared to dispersion data for three elevated point-
source releases under thermally neutral stratification. The measured
dispersion data are listed in Table 6.6 to Table 6.8, Part (A).
Predictions resulting from Equation 2.43 with uniform velocity

gradients, [ = U/H, and constant l(,‘3 are tabulated in (B). Parts

(C), (D), and (E) of Tables 6.6 through 6.8 present predictions based on
Equatien 2.45: (C) is based on a constant K33; (D) is based on a

reflected Gaussian model; (E) is based on a power law K rofile.

33 P
One notices that neither Equation 2.43 nor 2.45 predicts the ground
concentrations downwind from an elevated point source successfully
because a Neuman boundary condition was employed in solving the
diffusion equation. A Neuman boundary condition specifies that a zero
mass flux occurs at the impermeable boundary but leaves the concentra-
tion at the boundary as an undetermined constant. Smith (1957)
disclosed this deficiency in the analytical solution of turbulent
diffusion, and thereafter provided a method to predict the ground
concentrations from an elevated point source through the Reciprocal
Theorem. The Reciprocal Theorem states that "the concentration at x
due to a source at x"' with the flow in the position x -direction, i3
equal to the concentration at x"' due to an identical source at x"
when the direction of flow is reversed." Smith proved the theorem with
Neuman boundary conditions. The methodology is adopted in the present
analysis. Hence, the ground concentrations are evaluated from Equation
2.46 with the Reciprocal Theorem for (C), (D), and (E). Such estimation
for ground concentration was found identical (error < 0.1%) to

prediction from Equation 2.45 with x, = 0.2 em. Thus x, = 0.2 cm was

3 3
used instead of Xy = 0.0 cm in Equation 2.43 to predict the ground

concentration because Lauwerier did not provide a solution for ground
source releases.

K22 was approximated by its asymptotic value, luglLTll' and [x%(t)l
was approximated by 2lu§|LTll xl/U for all predictions, where LTll

is the value measured at source height. Similarly, [u%] LTn was

adopted as K33 for the constant eddy diffusivity cases. For the
varying eddy diffusivity case, K33 was assumed to vary in the X3
direction and fitted to a power law profile. Such approximations
inevitably introduced significant errors in predicting turbulent
dispersion, especially for short distance observations.

Tables 6.6 through 6.8 show that concentration predictions are
roughly fall within a 30 percent error range when compared to the
measured values at downwind distances greater than 5 Lll' For an

elevated point source at Xg = 10 cm, the maximum concentration drops to
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the ground much faster in the predicted cases. Farther downwind from
the source, the predicted concentrations agree better with measured
data. For H = 20 cm, the concentration predictions are made for
distances up to 700 cm where the maximum concentration still occurs
above the ground but tends to drop to the ground level before the
observed data drops. Figures 6.15, 6.16, and 6.17 display concentration
contou s at x3 = 700 cm for sources located at x3 =2 cm, 10 cm, and

20 cm, respectively. Predicted concentration contours presented in
these figures are obtained from Equation 2.45 with a constant K33 and

a power law velocity profile. Figure 6.15 shows that the predicted
concentrations agree with measured dispersion data from a near ground
elevated source release. The measured data in Table 6.7) were displaced
to the left to compare with predicted data due to lateral plume drift in
the wind tunnel. Satisfactory results are still reflected in Figure
6.16, as the source height incrcases to Xy = 10 cm. The assumption

that the plume spreads at a constant rate with respect to height is
appropriate only at distances where the maximum concentration occurred
on the ground as shown in Figure 6.17. This is attributed to the
simplified assumptions of K22 and l(33 employed in Equation 2.45.

Comparison between the measured and estimated lateral plume spread
is displayed in Figure 6.18. Based on an analysis of variance, the
lateral plume spread predicted from the Lagrangian estimates agrees with
observations from the dispersion measurements to a correlation
coefficient of 0.90. This suggested that the statistical model explains
81% of the variance found in the wind tunnel experiments.

The major thrust of this research was to reveal the importance of
the Lagrangian velocity statistics in atmospheric dispersion phenomenon
and to provide a method to estimate plume dispersion from fixed-point
Eulerian turbulence measurements via the Independence Hypothesis.
Therefore, this report does not attempt to select the best solution to
the diffusion equation. Equations 2.43 and 2.45 were chosen to examine
the turbulent dispersion because they cover most of the analytical
solutions proposed in the literature. A better prediction might be
obtained if more Eulerian measurements were performed to evaluate Kij
for the boundary layer and if a more sophisticated numerical approach
to solve the diffusion equation were pursued. Nevertheless, the
above comparisons indicate that plume dispersion can be correctly
predicted with simple dispersion formulae if the Lagrangian integral
scale is correctly estimated.
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Summary of predicted Lagrangian-Eulerian time scale

from Monte-Carlo particle simulation and Independence

Hypothesis

0.1

2.3

0.5

1.0

1.5

2.0

4.0

Eqn.

6.6

0.8624

0.6764

0.5564

0.3856

0.2977

0.2391

0.1378

e
-
—

. 6.7

0.8624

0.6763

0.5562

0.3852

0.2947

0.2386

0.1354

T Eqn.

w
—_—
-

3.12

0.8635

0.6837

0.5702

0.4087

0.3216

0.2664

0.1612

Egn.

6.8

0.8946

0.7439

0.6417

0.4853

0.3949

0.3350

0.2140
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Table 6.2. Turbulent statistics of previous measurements.

Experiment
Property CHC CBC HGC SRC BK
FLOW low grid high boundary pipe
shear turbulence shear layer flow
U (cm/sec) 1240 1270 1240 1850 374
3 '
.
U .018 .022 .050 .061 .057
L 4.2 2.4 2.1 .50 3.3
I (1/sec) 12.9 0 48 95 34.4
sTll (sec) .056 .084 .061 .048 . 182
ETll (sec) .00348 .00189 .00169 .00268 .0137
T
S 11 16.7 44 .4 36.1 17.9 13.2
ET11
a, 0.3 0.78 1.86 1.09 0.87
a, 0.23 0.78 1.43 - -
uy 0.22 0.78 P . -
CHC = Champagne et al. (1970)
CBC = Comte-Bellot and Corrsin (1971)
HGC = Harris et al. (1977)
SRC = Sabot et al. (1973), r/R = 0.5
Bk =

Blackwelder and Kovasznay (1973), 13/6 = 0.45
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Table 6.3. Turbulent statistics from neutral stratified
boundary layer.

Filtered
Turbulence Unfiltered Turbulence
T sTi1 st2)

] al ET11 E122

1.09 9.5 -
2.25 25.5

36.5
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Table 6.4. Re-examination of Baldwin and Walsh's turbulent statistics

Estimation based on eddy

Baldwin and Walsh's result turnover time

U ‘/‘-‘-1?2 L T et dk s L:u LIZZ
. 78 11 L'22 s'22 ]‘? s 22 L 22

(ft) (ft) (sec) (sec) (sec)

72.6 .035 .0978 .014 .038 1 .36 .014

106 .035 .116 .007/5 .031 1 .36 011

135 .035 L142 .0062 .030 1 .36 .011

160 .035 154 . 0046 .027 1 .36 .0097




Table 6.5.
(a)

Comparison of Lagrangian integrul time scale from predictions and dispersion measurements.

Turbulence Measurement

Non-isotropic shear
flow (prediction)

Isotropic
uniform flow
(prediction) Dispersion Measurement

x
3 s R e B BN Ut e 3k Jfat 3

(sec) . | | rSTll STll (sec) Etll STll (sec)(sec) 3.5 (sec) 6.83
.044 1.33 1.09 0.54 0.54 12.9 0.28 0.37 2.7 0.35 0.46 0.34 0.26
.222 4.03 2.25 1.20 1.20 10.1 0.21 0.84 . T 0.22 0.89 0.80 0.62
444 5.13 2.27 1.58 1.58 7.2 0.20 1.03 r:y 0.22 1.13 0.85 0.65
(b)

Isotropic
Non-isotropic shear uniform flow
Turbulence Measurement flow (prediction) (prediction) Dispersion Measurement

X
3 sz tf2 1’2 T2 f2 M2, en r,=n

) & “ 9  TgTy T2z (sec) ET22 sT22  (sec)(sec) >*P (sec) ©-83
.222 1.48 4.32 2.30 2.30 3.7 0.17 0.25 8.8 0.14 0.21 0.80 0.62
L4446 2,05 3.93 2.73 2.73 2.9 0.16 0.33 9.7 0.15 0.31 0.85 .65

691
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Table 6.6. Comparison of turbulent dispersion between measured and predicted concentration
distribution, H = 2 cm.
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Table 6.6. Comparison of turbulent dispersion between measured and predicted concentration
distribution, H = 2 cm.
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Table 6.6. Comparison of turbulent dispersion between measured and predicted concentration
distribution, H = 2 om.
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Table 6.6.

Comparison of turbulent
distribution, H = 2 cm.
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Table 6.6. Comparison of turbulent dispersion between measured and predicted concentration
distribution, H = 2 cm.
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Table 6.6. Comparison of turbulent dispersion between measured and predicted concentration
distribution, H = 2 cm.
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Table 6.6.

Comparison of turbulent dispersion between measured and predicted concentration
distribution, H = 2 cm.
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Table 6.6.

Comparison of turbulent dispersion between measured and predicted concentration

distribution, H = 2 cm.
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Table 6.6.

Comparison of

distribution, H = 2 cm.
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Table 6.6.

Cq-parison of turbulent dispersion between measured and predicted concentration
distribution, H = 2 cm.
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Table 6.7. Comparison of turbulent dispersion between measured and predicted concentration
distribution, H = 10 cm.
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Table 6.7.

Comparison of turbulent dispersion between measured and predicted concentration

distribution, H = 10 cm.
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Table 6.7. Comparison of turbulent dispersion between measured and predicted concentration

distribution, H = 10 cm.
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