Fort Calhoun Station Unit No. 1

SS-ST-SI-3015

SURVEILLANCE TEST

Title: SAFETY INJECTION TANK DISCHARGE CHECK VALVES TEST

Setpoint/Procedure Form Number (FC-68): 38552

Reason for Change:

To improve the safety injection tank discharge check values test by revising the initial conditions and by providing individual acceptance criteria for each tank.

Contact Person:

Ron Lippy

9209140171 920903 PDR ADOCK 05000285

ISSUED: 06-12-92 4:00 pm

SAFETY INJECTION TANK DISCHARGE CHECK VALVES TEST

SAFETY RELATED

1.0 PURPOSE

1.1 To satisfy in part, each refueling outage, the requirements of Technical Specifications 3.3(1)a for the following check valves:

> SI-207 SI-211 SI-215 SI-219 SI-208 SI-212 SI-216 SI-220

2.0 REFERENCES

- 2.1 Technical Specifications:
 - . 2.1.1: Reactor Coolant System
 - . 2.8: Refueling Operations
 - 3.3: Reactor Coolant System and Other Components Subject to ASME XI Boiler and Pressure Vessel Code Inspection and Testing Surveillance
 - * 3.6(4): Safety Injection and Containment Spray Systems Tests
- 2.2 Fort Calhoun Station Inservice Inspection (ISI)
 Program Plan
- 2.3 Standing Order G-23, Surveillance Test Program
- 2.4 Operating Instructions:
 - · OI-NG-1: Nitrogen System Normal Operation
 - OI-SI-1: Safety Injection System Normal Operation

2.5 P&ID:

- F-23866-210-130 (Sh 2): Safety Injection and Containment Spray System (File No. 10480)
- E-23866-210-110: Reactor Coolant System (File No. 10475)
- 11405-M-42: Nitrogen Flow Diagram (File No. 10450)
- 11405-A-13: Primary Plant Diagram (File No. 12170)

m --

2.6 Instrumentation and Control Interconnect Diagrams

- · 161F561 SHT. 83 File No. 9581
- . 161F561 SHT. 84 File No. 9582
- 161F561 SHT. 85 File No. 9583
- 161F561 SHT. 86 File No. 9584
- 161F561 SHT. 99 File No. 9597
- 161F561 SHT. 100 File No. 9598
- · 161F561 SHT. 101 File No. 9599
- · 161F561 SHT. 102 File No. 9600

2.7 Instrument Loop Drawings

- EM-2901 File No. 20574
- EM-2904 File No. 20192
- EM-2921 File No. 20575
- EM-2924 File No. 20553
- EM-2941 File No. 20576
- EM-2944 File No. 20594
- EM-2961 File No. 20577
- EM-2964 File No. 20595

2.8 USAR:

- · 6.2: Safety Injection System
- 2.9 Calculation:
 - FC-05280
 - FC-05428, Rev. 1

2.10 Surveillance and Calibration Procedures

- * CP-106, Pressurizer Level
- IC-ST-RC-0004, Channel Calibration of Pressurizer Level Instrument Channel L-101X. (If LIC-101X is used)

- 2.10 IC-ST-RC-0005, Channel Calibration of Pressurizer level Instrument Channel L-101Y. (If LIC-101Y is used)
 - IC-ST-SI-0005, Channel Calibration of SI-Tank SI-6A Nitrogen Pressure, Loop P-2901
 - IC-ST-SI-0008, Channel Calibration of SI Tank SI-6A Wide Range Level, Loop P-2904X
 - IC-ST-SI-0011, Channel Calibration of SI Tank SI-6B Nitrogen Pressure, Loop P-2921
 - IC-ST-SI-0014, Channel Calibration of SI Tank SI-6B Wide Range Level, Loop P-2924X
 - IC-ST-SI-0017, Channel Calibration of SI Tank SI-6C Nitrogen Pressure, Loop P-2941
 - IC-ST-SI-0020, Channel Calibration of SI Tank SI-6C Wide Range Level, Loop P-2944X
 - IC-ST-SI-0023, Channel Calibration of SI Tank SI-6D Nitrogen Pressure, Loop P-2961
 - IC-ST-SI-0026, Channel Calibration of SI Tank SI-6D Wide Range Level, Loop P-2964X

2.11 Technical Data Book

TDB-III.20 Page 1

3.0 DEFINITIONS

SIT - Safety Injection Tank

PT-1 and PT-2 - Points on SIT level trace where SIT Isolation valve is >90% (as determined by valve stroke time). PT-1 and PT-2 represent a period of time when the valve is fully open and fluid is flowing through the check valve at approximately its maximum velocity with the SIT Isolation Valve fully open. PT-1 represents an arbitrary beginning time and PT-2 is an arbitrary end time (usually 1 - 10 secs after PT-1). The time interval between PT-1 and PT-2 is used for calculation for fluid flowrate.

PT-5 - Point midway between PT-1 and PT-2

L_R - Level in Reactor Refueling Cavity (in %)

L_{PT-1} - Level of SIT at PT-1 (in feet)

L_{PT-2} - Level of SIT at PT-2 (in feet)

L_{V1} - Level of SIT at PT-1 (in volts)

 L_{V2} - Level of SIT at PT-2 (in volts)

L_{V5} - Level of SIT at PT-5 (in volts)

ΔL - SIT Level change during the time period between PT-1 and PT-2 (in feet)

D - Distance between PT-1 and PT-2 (in mm on the strip chart)

S - Strip Chart Speed (in mm/sec)

R - Rate of SIT level change (in ft/sec)

Q - Calculated flow rate (in gpm)

P_{PT-5} - Total pressure in SIT at time PT-5 (in psig)

P_{v5} - Gas pressure in SIT at PT-5 (in volts)

P_g - Gas pressure in SIT at PT-5 (in psig)

PH - Head pressure due to level in SIT plus the difference in elevation from the lower SIT level tap to the top of reactor vessel flange (in psig)

P_R - Head pressure due to reactor vessel cavity level (in psig)

- 3.0 <u>DEFINITIONS</u> (Continued)
 - ΔP Difference in pressure between P_{PT-5} and P_{R} (in psid)
 - c. Flow Coefficient

4.0 EQUIPMENT LIST

4.1 TEST EQUIPMENT REQUIRED/USED:

NOTE: During the course of this procedure, some portable or temporary test equipment may be used to prove operability of a plant component. All such equipment must be entered into the appropriate I&C Instrument Log.

EQUIPMENT	CALIBRATION OPPD NO./ DUE DATE	INITIALS/DATE
LI-106	N/A /	1
PT-2901	N/A /	
LT-2904X	N/A /	/
PT-2921	N/A /	1
LT-2924X	N/A /	
PT-2941	N/A /	7.00
LT-2944X	N/A /	7
PT-2961	N/A /	
LT-2964X Strip Chart	N/A /	
Recorder		/
		/
		1

5.0 PRECAUTIONS AND LIMITATIONS

- All anomalies and deliciencies shall be reported immediately to the Shift Supervisor and noted in the Remarks Section. An immediate check shall be made to verify Limiting Conditions for Operation per Technical Specifications, have not been exceeded.
- 5.2 A Maintenance Work Request (MWR) shall be initiated to correct any reported deficiency and the MWR number shall be referenced on the Comment Sheet/Chronological Log.

- 5.3 Test data shall be evaluated by the Special Services Engineer (SS) AND reviewed by the Shift Supervisor for acceptability within 24 hours following completion of this test.
- 5.4 The System Engineer shall be notified within 24 hours of the completion of this test of any marginal, unexpected, or unacceptable results.
- 5.5 The use of N/A (not applicable) in this procedure shall be in accordance with the requirements listed in Standing Order G-23.
- 5.6 The completed Surveillance Test procedure and all applicable attachments shall be signed and dated by the person(s) who actually performed the test.
- 5.7 To prevent overflow of the Reactor Refueling Cavity and to provide adequate Radiological Shielding in the event of a crud burst, the Reactor Refueling Cavity level must be between 40% and 50% as indicated on LI-106 at the beginning of this test. If LI-106 is unavailable, the Reactor Refueling Cavity must be between 1032 ft and 1034 ft as indicated on LI-199 at the beginning of this test.
- 5.8 All steps in this procedure shall be conducted in sequence written unless otherwise noted.
- If the procedure becomes contaminated or damaged, the "Lead Person" or designee shall ensure that all data, verifications, or other pertinent information is transcribed to another copy of the procedure, which will become the official copy.
- 5.10 An Incident Report shall be initiated, in accordance with SO-R-4, to report any anomalies or deficiencies. The Incident Report number shall be recorded on the Comment sheet/Chronological Log.
- 5.11 No maintenance shall be conducted within this Surveillance Test other than that specifically directed by this procedure.

6.0	TRITMIAT COM	DEMEASIO	·
0.0	INITIAL CON	STITONS	į.

INITIALS/DATE

NOTE: The Initial Conditions may be performed in any sequence.

6.1 Procedure revision verification

Master Revision No._____

		INITIALS/DATE
6.2	No other test is in progress which could potentially affect this test, or if this test were performed, could have an effect on that test.	
6.3	Calibration of test equipment has been verified and procedures listed below have been satisfactorily completed prior to test.	
PROCEDU	DATE COMPLETED	
IC-ST-S IC-ST-S IC-ST-S IC-ST-S IC-ST-S IC-ST-S IC-ST-S IC-ST-S	I-0008 I-0011 I-0014 I-0017 I-0020 I-0023	
Comment She	A prejob briefing has been conducted prior to the start of this test. ALL personnel participating in the performance of this test have read AND understand the procedure AND have completed the Surveillance Test Signature Sheet.	
6.5	Control power is available for valve operation.	
6.6	Safety Injection Tank levels are between 85% and 90%.	
6.7	Shutdown cooling is not in service.	
6.8	The Reactor Vessel Head has been removed and core off-loaded.	
6.9	The pressurizer is vented or the manway removed (Pressurizer pressure is the same as Containment pressure).	

		PAGE O CF 5	3
		INITIALS/DAT	E
6,10	Notify Radiation Protection prior to the start of this test due to the possibility of increasing airborne radiation in containment.		
6.11	The Reactor Refueling Cavity level is between 40% and 50% as indicated on LI-106. If LI-106 is unavailable the reactor refueling cavity level should be between 1032 ft and 1034 ft elevation on LI-199 sightglass.		
6.12	Ensure the Strip Chart Recorder is loaded with paper graduated in square centimeters.		
6.13	If test instrumentation or temporary equipment is expected to be installed for greater than 24 hours, ensure the requirements of SO-O-25 are met.		
6.14	Complete the activities in Attachment 8 to fill and vent the Safety Injection Tanks, as required.		
6.15	Notify Chemistry prior to start to coordinate containment sampling as needed support containment releases.		
6.16	Ensure _nat the instrument lines to the level transmitter for each S.I. Tank have been flushed and filled prior to the test.	I&C /	
6.17	Shift Supervisor authorizes performance of this test.		
	Shift SupervisorDate/Ti	me	
PROCE	URE		
In any Superv betwee flow c be com tanks calcul	Step 7.1 through 7.4 may be performed order at the discretion of the Shift isor. In order to decrease the time in each test, the determination of the coefficient (C _v) for each tank need not pleted until all four safety injection have been discharged. (This ation is located in Steps 18 through n Attachments 1, 2, 3, and 4.		

7.1 Test SI-6A Discharge Check Valves SI-219 and SI-220 per Attachment 1.

7.0

9.1 The Flow Coefficients (C_v) calculated in Attachments 1 through 4 are greater than or equal to the values below:

Tank	Minimum	Cv
SI-6A	1189	
SI-6B	1164	
SI-5C	1132	
SI-6D	1159	

This satisfies the ISI requirement that the discharge check valves were full-stroked open. Acceptance criteria based on Reference 2.9.

10.0 TEST RECORD

9.0 ACCEPTANCE CRITERIA

- 10.1 This entire procedure.
- 10.2 Attach Strip Charts to this procedure.

11.0 REVIEW

11.1 The Supervisor-Special Services is responsible for ensuring this completed surveillance is reviewed in a timely manner and forwarded in accordance with SO-G-23.

Test data shall be evaluated by the Special Services Engineer and reviewed by the Shift Supervisor for acceptability within 24 hours of the completion of this test.

Evaluated by _____Date/Time___/

SS Engr

Reviewed by _____Date/Time___/

Shift Supervisor _____/

11.2 The Supervisor-Special Services is responsible for ensuring this test is evaluated and reviewed in a timely manner then forwarded in accordance with SO-G-23.

REMARKS

11.2.1 Th. ISI Coordinator is responsible for reviewing this test to ensure compliance with the FCS ISI Program Plan. This test has been reviewed and found acceptable or the deficiencies have been noted in the Remarks Section.

ISI Coordinator_____Date/Time___/

- 11.3 The Supervisor-System Engineering is responsible for ensuring this Surveillance Test is evaluated by the System Ergineer in a timely manner and forwarded in accordan ith SO-G-23.
 - 11.3.1 The System Engineer is responsible for reviewing the test data and the identified deficiencies noted within the test. This test has been reviewed and found acceptable or deficiencies and actions taken have been noted in the Remarks Section.

System Engineer	Date/Time	1
REMARKS		

ATTACHMENT 1 (SI-219 AND SI-220)

Page 1 of 7

SAFETY RELATED

PROC	EDURE	INITIA	LS/DATE
	NOTE: Steps 1 through 10 can be performed in any sequence, but prior to Step 11.		
	NOTE: This attachment will raise the reactor refueling cavity level by approximately 2% from a 90% initial SIT level.		
1.	Record the "As Found" position of the following valves, THEN Close.		
	Valve s Found		
	HCV-311 HCV-312 HCV-327	OPS	
	NOTE: Control Room Indication of SI-6A level is to be used for Step 2.0.		
2.	Ensure that Safety Injection Tank SI-6A level is between 85% and 90% as indicated on LI-2904X and record.		
	SI-6A Level (85% to 90%)	OPS	
3.	Record the Reactor Refueling Cavity level $(L_{\rm R})$ as indicated on LI-106.		
	Reactor Refueling Cavity Level (LR)		
	*	OPS	1
	N/A this step if LI-199 is used.		
	If LI-106 is unavailable, ensure the Reactor Refueling Cavity is between 1032 and 1034 ft elevation as indicated on the LI-199 sightglass.		
	Reactor Refueling Cavity Level		
	(1032 ft to 1034 ft) ft	OPS	

N/A this step if LI-106 is used.

Page 2 of 7

		INITIA	LS/DATE
5.	Use Table 1 in Attachment 5 to determine the test pressure for SI-6A based on the tank level recorded in Step 2. Use the pressure that corresponds to the tank level rounded down to the nearest whole percent.		
	SI-6A Test Pressurepsig		1
	NOTZ: Control Room Indication of SI-6A pressure is to be used for Step 6.0.		
6.	Set pressure of Safety Injection Tank SI-6A as indicated on PT-2901 to pressure recorded in Step 8. N/A if not required.	OPS	1
7.	Strip Chart Recorder hooked up as per Attachment 6.	I&C	
8.	Connect the Strip Chart Recorder to the Safety Injection Tank SI-5A ERF computer input terminals located in cabinet PC-15.		
	8.1 To record SI-6A pressure, connect one channel to terminals:		
	TB402-15(-)		
	TB402-16(+)	I&C	
	Independent Verification	I&C	
	S 2 To record SI-6A level, connect one channel to terminals:		
	TB401-15(-)		
	TB401-16(+)	īāc	
	Independent Verification	I&C	
€.	Adjust Strip Chart Recorder Speed (S) to 10 mm/sec, or desired, and record.		
	(S) =nm/sec	I&C	1

47	5.5	12	41	C)	Ð	41	CP.	(1)	ŗ.	1
(C	0	n	t	i	n	u	e	d)

Page 3 of 7

10.	Ensure	that	FH-11	is closed.
36 20 2	THE R. P. LEW. LEW. LLEY.	Sec. 8 & Sec. Sec.	4 6 A 16 M	水田 一下水田田田林木

OPS /

INITIALS/DATE

11. Start the Strip Chart Recorder.

140

12. Open HCV-2914 AND Mark the Strip Chart to indicate the start of the test (T=O) when HCV-2914 begins to open.

ops /

NOTE: HCV-2914 takes approximately 55 seconds to open. When HCV-2914 is full open, only the red light will be on.

13. WHEN HCV-2914 indicates full open, Wait approximately 10 seconds, THEN close HCV-2914.

OPS /

NOTE: When HCV-2914 is closed only the green light is on.

14. WHEN HCV-2914 indicates closed, THEN stop the Strip Chart Recorder.

I&C /

15. Return valves in Step 1 to "As Found" position or as directed by the Shift Supervisor.

OPS /

16. Restore Safety Injection Tank SI-6A to service as directed by the Shift Supervisor.

OPS /

17. Remove Strip Chart Recorder from the following ERF Computer terminals:

TB401-15(-) TB401-16(+) TB402-15(-)

TB402-15(-) TB402-16(+)

I&C

Independent Verification

I&C /

Page 4 of 7

191	*** **	P MES S	F 56 1	8. 54	1.00	\$ 100	996
- 1	IN I	0.00	1.74	LS	1.13	A.I.	360
455	52.3	استاهينا	5.0.3.	destar.	4	513.45.	and the

18.	Recor Recor			
	18.6 18.7 18.5 18.9 18.10	when HCV-2914 is Point (PT-1), Second (PT-5) on the	Tank Number ec) sig/volt) olt) olt) re and level traces >90% open: First	
19.	Measu trace	re and record the (D) between PT-1	chart run along the	
		D=	mm	
20.	Recor PT-1	d the level change and PT-2 when HCV-	(ΔL) in SI-6A between 2914 was >90% open.	
	20.1	Determine the lever PT-1.	el (L _{PT-1}) of SI-6A at	
		$L_{PT-1} = LV_1$ (volts) X 3. 42 ft/volt	
		L _{PT-1} =	_ X 3.6042 ft/volt	
		L _{PT-1} =	_ ft	
	20.2	Determine the lever PT-2.	el (L_{PT-2}) of SI-6A at	
		$L_{PT-2} = LV_2$ (volts) X 3.6042 ft/volt	
		L _{PT-2} =	_ X 3.6042 ft/volt	
		L _{PT-2} =	_ ft	

Page 5 of 7

			INITIALS/DATE
	20.3	Calculate AL for SI-6A.	
		$\Delta L = L_{PT-1} - L_{PT-2}$ ft	
		$\Delta L = \underline{\qquad} ft$	
		$\Delta L =$ ft	
21.	Deter for S	mine the tank level Rate of Change (R) I-6A.	
		$R = (\Delta L + D) \times S \text{ ft/sec}$	
		R = (+) xft/sec	
		R =tt/sec	
Wher	91	S = chart speed recorded in Step 9 (mm/sec)	
		D = chart run recorded in Step 19 (mm)	
22.	CHECK	late the flowrate (Q) from SI-6A through valves SI-219 and SI-220 (based on a econd average when HCV-2914 is >90%	
		Q = R x 530.24 gal/ft X 60 sec/min	
		$Q = R \times 31,814.4 \text{ gal/min}$	
		Q = x 31,814.4 gal/min	
		Q =GPM	
23.	Deter	mine the pressure (P _{PT-5}) of SI-6A at	
	23.1	Determine the gas pressure (P_g) in SI-6A at PT-5.	
		$P_g = PV_5$ (volts) x 75 psig/volt	
		P _g = x 75 psig/volt	
		P = peig	

Page 6 of 7

		TNITTALCIDATE
		INITIALS/DATE

- 23.2 Determine the head pressure $(P_{\rm H})$ due to the level in SI-6A at PT-5.
- $P_{\rm H}$ = (LV₅ (volts) x 3.6042 ft/volt x .434 psig/ft) + 2.42 psig

$$P_{H} = (LV_{5} \text{ (volts)} \times 1.56) + 2.42 \text{ psig}$$

$$P_{\rm H} = ($$
_______ x 1.56) + 2.42 psig

- 2.42 = head pressure from 0% level in SI-6A at the Reactor Vessel Flange level (psig)
- 23.3 Calculate the total pressure (P_{PT-5}) of SI-6A at PT-5.

$$P_{PT-5} = P_{q} + P_{H} psig$$

24. Determine the head pressure (P_R) due to the reactor refueling cavity level.

$$P_R = [(L_R(%) \times 20) + 11] \times .434 \text{ psig/ft}$$

$$P_R = (L_R \times 8.68) + 4.77 \text{ psig}$$

$$P_R = ($$
_____ x 8.68) + 4.77 psig

Where:

- L_R = Reactor Cavity level recorded in Step 3 (%).
- 20 = distance between LI-106 0% and 100% level taps (ft). If LI-199 is used, refer to Attachment 7 for cavity level.
- 11 = height of 0% level tap above Reactor Vessel Flange (ft)
- 24.1 Determine AP for SI-6A at PT-5

$$\Delta P = P_{PT-5} - P_{R}$$
 psid

Page 7 of 7

Discharge Piping. 25.1 Determine the Flow Coeffici $C_{v} = Q + (\Delta P)^{1/2}$ $C_{v} = + ($ $C_{v} = $ Where: Q = flowrate calculate REMARKS	Date/Tim	ne/
Discharge Piping. 25.1 Determine the Flow Coeffici $C_v = Q + (\Delta P)^{1/2}$ $C_v = - + ($		
Discharge Piping. 25.1 Determine the Flow Coeffici $C_{v} = Q + (\Delta P)^{1/2}$ $C_{v} = $		Marina Carlos Vision David Constitution
Discharge Piping. 25.1 Determine the Flow Coeffici $C_v = Q + (\Delta P)^{1/2}$ $C_v = - + ($		
Discharge Piping. 25.1 Determine the Flow Coeffici $C_v = Q + (\Delta P)^{1/2}$ $C_v = - + ($		
Discharge Piping. 25.1 Determine the Flow Coeffici $C_v = Q + (\Delta P)^{1/2}$ $C_v = + ($		
Discharge Piping. 25.1 Determine the Flow Coeffici $C_v = Q + (\Delta P)^{1/2}$ $C_v = + ($ $C_v = $ Where: $Q = $ flowrate calculate		
Discharge Piping. 25.1 Determine the Flow Coeffici $C_{v} = Q + (\Delta P)^{1/2}$ $C_{v} = \underline{\qquad} + (\underline{\qquad}$ $C_{v} = \underline{\qquad}$		
Discharge Piping. 25.1 Determine the Flow Coeffici $C_{v} = Q + (\Delta P)^{1/2}$ $C_{v} = \underline{\qquad} + (\underline{\qquad}$		
Discharge Piping. 25.1 Determine the Flow Coeffici $C_v = Q + (\Delta P)^{1/2}$		
Discharge Piping.		
Discharge Piping.	ent (C _v).	
Determine the Flow Coefficient (C	v) for SI-6A	INITIALS/

ATTACHMENT 2 (SI-215 AND SI-216)

Page 1 of 7

PROCEDURE

IN TALS/DATE

NOTE: Steps 1 through 10 can be performed in any sequence, but prior to Step 11.

NOTE: This attachment will raise the reactor refueling cavity level by approximately 0% from a 90% initial SIT level.

 Record the "As Found" position of the following valves, THEN Close.

Valve	As Found	
HCV-314 HCV-315		
HCV-329	North Committee	OPC

NOTE: Control Room indication of SI-6B level is to be used for Step 2.0.

 Ensure that Safety Injection Tank SI-6B level is between 85% and 90% as indicated on LI-2924X and record.

SI-6B Level (85% to 90%) OPS

3. Record the Reactor Refueling Cavity Level $(L_{\rm R})$ as indicated on LI-106.

Reactor Refueling Cavity Level (LR)

N/A this step if LI-199 is used

4. Record the Reactor Refueling Cavity Level as indicated on LI-199 Sightglass

Reactor Refueling Cavity Level (L_R)

N/A if LI-106 is used.

5. Use Table 1 in Attachment 5 to determine the test pressure for SI-6B based on the tank level recorded in Step 2. Use the pressure that corresponds to the Tank Level rounded down to the nearest whole percent.

SI-6B Test Pressure psig . _____

Page 2 of 7

INITIALS/DATE

NOTE: Control Room indication for SI-6B pressure is to be used for Step 6.0.

6. Set pressure of Safety Injection Tank SI-6B as indicated on PT-2921 to pressure recorded in Step 5. N/A if not required.

OPS /

 Strip Chart Recorder hooked up as per Attachment 6.

I&C /

- 8. Connect the Strip Chart Recorder to the Safety Injection Tank SI-6B ERF computer input terminals located in cabinet PC-15.
 - 8.1 To record SI-6B pressure, connect one channel to terminals:

TB402-17(-)

TB402-18(+)

T&C

Independent Verification

T&C

8.2 To record SI-6B level, connect one channel to terminals:

TB401-17(-)

TB401-18(+)

I&C

Independent Verification

I&C

9. Adjust Strip Chart Recorder Speed (S) to 10 mm/sec, or as desired, and record.

(S) = ___mm/sec

T&C /

10. Ensure that FH-11 is closed.

OPS /

11. Start the Strip Chart Recorder.

I&C

12. Open HCV-2934 AND Mark the Strip Chart to indicate the start of the test (5-0) when HCV-2934 begins to open.

OPS /

Page 3 of 7

NOTE: HCV-2934 takes approximately 55 seconds to open. When HCV-2934 is full open only the red light will be on.

INITIALS/DATE

WHEN HCV-2934 indicates full open, Wait 13. approximately 10 seconds, THEN close HCV-2934.

OPS

NOTE: When HCV-2934 is closed only the green light will be on.

WHEN HCV-2934 indicates closed, THEN stop the 14. Strip Chart Recorder.

I&C

Return valves in Step 1 to "As Found" position or as directed by the Shift Supervisor.

OPS

Restore Safety Injection Tank SI-6B to 16. service as directed by the Shift Supervisor.

OPS

Remove Strip Chart Recorder from the 17. following ERF Computer terminals:

TB401-17(-)

TB401-18(+)

TB402-17(-)

TB402-18(+)

T&C

Independent Verification

I&C

- Record the following information on the Strip Recorder Chart:
 - 18.1 Surveillance Test Number

Attachment Number

Safety Injection Tank Number

18.4 Date

18.5 Chart Speed (mm/sec)

18.6 Pressure Trace

18.7 Pressure Scale (psig/volt)

18.8 Level Trace

18.9 Level Scale (ft/volt)

18.10 Start of test (T=0)

18.11 Segment of pressure and level traces when HCV-2934 is >90% open: First Point (PT-1), Second Point (PT-2) 18.12 Point (PT-5) on the pressure and level

traces halfway between PT-1 and PT-2.

Page 4 of 7

19,	Measu	re and record the	clurt run along the	INITIALS/DATE
	trace	(D) between PT-1		
		D-4		
20.	Recor PT-1	d the level change and PT-2 when HCV-	(ΔL) in SI-6B between 2934 was >90% open.	
	20.1	Determine the lev	el ($L_{\rm PT-1}$) of SI-6B at	
		$L_{PT-1} = LV_1$ (volts) X 3.6042 ft/volt	
		L _{PT-1} =	X 3.6042 ft/volt	
		L _{PT-1} =	_ ft	
	20.2	Determine the lever PT-2.	el (L _{PT-2}) of SI-6B at	
		$L_{PT-2} = LV_2$ (volts) X 3.6042 ft/inits	
		L _{PI-2} =	_ X 3.6042 ft/volts	
		L _{PT-2} =	_ ft	
	20.3	Calculate AL for	SI-6B.	
		$\Delta L = L_{PT-1} - L_{PT-2}$	ft	
		ΔL =	ft	
		ΔL =	_ ft	
21.	Deter for S	mine the tank leve. I-6B.	1 Rate of Change (R)	
		$R = (\Delta L + D) \times S$	ft/sec	
		R = () xft/sec	
		R =	ft/sec	
where	9:	S = chart speed re Step 9 (mm/sec	ecorded in	
		D = chart run reco	orded in	

Page 5 of 7

			INITIALS/DATE
22.	check	late the flowrate (Q) from SI-6B through valves SI-215 and SI-216 (based on a second average when HCV-2934 is >90%	
		Q = R x 530.24 gal/ft X 60 sec/min	
		Q = R x 31,814.4 gal/min	
		Q = x 31,814.4 gal/min	
		Q ==GPM	
23.	Deter PT-5.	mine the pressure (P_{PT-5}) of SI-6B at	
	23.1	Determine the gas pressure (P_g) in SI-6B at PT-5.	
		$P_g = PV_5$ (volts) x 75 psig/volt	
		P _g = x 75 psig/volt	
		P _g = psig	
	23.2	Determine the head pressure ($P_{\rm H}$) due to the level in SI-6B at PT-5.	
P _H =	(LV ₅	(volts) x 3.6042 ft/volt x .434 psig/ft) +	2.42 psig
		$P_{H} = (LV_{5} \text{ (volts)} \times 1.56) + 2.42 \text{ psig}$	
		P _H = (x 1.56) + 2.42 psig	
		P _H = psig	
		2.42 = head pressure from 0% level in SI-6B at the Reactor Vessel Flange level (psig)	
	23.3	Calculate the total pressure $(P_{\text{PT-5}})$ of SI-6B at PT-5.	
		$P_{PT-5} = P_g + P_H psig$	
		P _{PT-5} = +psig	

_psig

P₇₇₋₅ =

Page 6 of 7

INITIALS/DATE

24. Determine the head pressure (P_R) due to the reactor refueling cavity level.

$$P_R = [(L_R(%) \times 20) + 11] \times .434 \text{ psig/ft}$$

$$P_{p} = (L_{R} \times 8.68) + 4.77 \text{ psig}$$

$$P_R = ($$
____ x 8.68) + 4.77 psig

Where:

- L_R = Reactor Cavity level recorded in Step 3 (%).
- 20 = distance between LI-106 0% and 100% level taps (ft). If LI-199 is used, refer to Attachment 7 for Cavity Level.
- 11 = height of 0% level tap above Reactor Vessel Flange (ft)
- 24.1 Determine AP for SI-6B at PT-5

$$\Delta P = P_{PT-5} - P_R psid$$

Page 7 of 7

Determine the Flow Coefficient ($C_{\rm v}$) for SI-6 Discharge Piping.	B INITIALS/DA
25.1 Determine the Flow Coefficient (C,).	
$C_{v} = Q + (\Delta P)^{1/2}$	
$C_{v} = \frac{1}{2}$	
C _v =	
Where: Q = flowrate calculated in Step 2	2/
REMARKS	
Completed byDate/	Time/

ATTACHMENT 3 (SI-207 AND SI-208)

Page 1 of 7

-	Mrs.	200	Sprin.	anc.	4-70		-
1200	200		84.	4 a		107	
-	ā'n.	~	63.0	<i>E.</i> 7		Γ	

INITIALS/DATE

NOTE: Steps 1 through 10 can be performed in any sequence, but prior to Step 11.

NOTE: This attachment will raise the reactor refueling cavity level by approximately 2% from a 90% initial SIT level.

 Record the "As Found" position of the following valves, THEN Close.

Valve	As Found
HCV-317	-
HCV-318 HCV-331	

OPS

NOTE: Control Room indication of SI-6C level is to be used for Step 2.0.

 Ensure that Safety Injection Tank SI-6C level is between 85% and 90% as indicated on LI-2944X and record.

SI-6C Level (85% to 90%)

PS /

Record the Reactor Refueling Cavity Level $(L_{\rm R})$ as indicated on LI-106.

Reactor Refueling Cavity Level (L_R)

OPS

N/A this step if LI-199 is used.

 Record the Reactor Refueling Cavity Level as indicated on LI-199 Sightglass

OPS

Reactor Refueling Cavity Level (L_R)

N/A if LI-106 is used.

5. Use Table 1 in Attachment 5 to determine the test pressure for SI-6C based on the tank level recorded in Step 2. Use the pressure that corresponds to the tank level rounded down to the nearest whole percent.

SI-6C Test Pressure psig

(Continued)

Page 2 of 7

INITIALS/DATE

NOTE: Control Room indication of SI-6C pressure is to be used for Step 6.0.

6. Set pressure of Safety Injection Tank SI-6C as indicated on PT-2941 to pressure recorded in Step 5. N/A if not required.

OPS /

. Strip Chart Recorder hooked up as per Attachment 6.

I&C /

- 8. Connect the Strip Chart Recorder to the Safety Injection Tank SI-6C ERF computer input terminals located in cabinet PC-15.
 - 8.1 To record SI-6C pressure, connect one channel to terminals:

TB402-19(-)

TB402-20(+)

T&C

Independent Verification

160

8.2 To record SI-6C level, connect one channel to terminals:

TB401-19(-)

TB401-20(+)

I&C

Independent Verification

min/sec

I&C

9. Adjust Strip Chart Recorder Speed (S) to 10 mm/sec, or as desired, and record.

I&C

10. Ensure FH-11 is closed.

OPS

11. Start the Strip Chart Recorder.

I&C

12. Open HCV-2954 AND Mark the Strip Chart to indicate the start of the test (T=O) when HCV-2954 begins to open.

OPS

Page 3 of 7

INITIALS/DATE

NOTE: HCV-2954 takes approximately 55 seconds to open. When HCV-2954 is full open only the red light will be on.

13. WHEN HCV-2954 indicates full open, Wait approximately 10 seconds, THEN close HCV-2954.

OPS /

NOTE: When HCV-2954 is closed only the green light will be on.

14. WHEN HCV-2954 indicates closed, THEN stop the Strip Chart Recorder.

I&C /

15. Return valves in Step 1 to "As Found" position or as directed by the Shift Supervisor.

OPS /

 Restore Safety Injection Tank SI-6C to service as directed by the Shift Supervisor.

ops /

17. Remove Strip Chart Recorder from the following ERF Computer terminals:

TB401-19(-)

TB401-20(+)

TB402-19(-)

TB402-20(+)

I&C

Independent Verification

I&C

Page 4 of 7

INITIALS/DATE

18,	Recor	rd the following in rder Chart:	nformation on the Strip	
	18.3 18.4 18.5 18.6 18.7 18.8 18.9 18.10	Attachment Number Safety Injection Date Chart Speed (mm/s Pressure Trace Pressure Scale (p Level Trace Level Scale (ft/v Start of test (T= Segment of pressure Men HCV-2954 is Point (PT-1), Sec Point (PT-5) on t	Tank Number sec) sig/volt) olt) o) re and level traces >90% men: First	
19.	Measu	re and record the (D) between PT-1	chart run along the and PT-2.	
		D=	mm	
20.	Recor PT-1	d the level change and PT-2 when HCV-	(ΔL) in SI-6C between 2954 was >90% open.	
	20.1	Determine the lever PT-1.	el (L_{PT-1}) of SI-6C at	
		$L_{PT-1} = LV_1$ (volts) X 3.6042 ft/volt	
		L _{PT-1} =	_ X 3.6042 ft/volt	
		L _{PT-1} =	_ ft	
	20.2	Determine the lever PT-2.	el (L_{PT-2}) of SI-6C at	
		$L_{PT-2} = LV_2$ (volts) X 3.6042 ft/volt	
		L _{PT-2} =	_ X 3.6042 ft/volt	
		L _{PT-2} =	_ ft	

ATTA	CILIMI	CALLER	3
23 4 4 53	PT11.71	Peta T	12
(Cor	ntin	ued	1

Page 5 of 7

INITIALS/DATE

20.3 Calculate AL for SI-6C.

$$\Delta L = L_{PT-1} - L_{PT-2}$$
 ft

$$\Delta L = \underline{\hspace{1cm}}$$
ft

21. Determine the tank level Rate of Change (R) for SI-6C.

$$R = (\Delta L + D) \times S \text{ ft/sec}$$

Where:

S = chart speed recorded in Step 9 (mm/sec)

D = chart run recorded in Step 19 (mm)

22. Calculate the flowrate (Q) from S.-6C through check valves SI-207 and SI-208 (based on a 10 se and average when HCV-2954 is >90% open).

 $Q = R \times 530.24 \text{ gal/ft } \times 60 \text{ sec/min}$

 $Q = R \times 31,814.4 \text{ gal/min}$

Q = ____ x 31,814.4 gal/min

Q = _____GPM

23. Determine the pressure $(P_{\text{PT-5}})$ of SI-6C at PT-5.

23.1 Determine the gas pressure (P_g) in SI-6C at PT-5.

 $P_g = PV_5$ (volts) x 75 psig/volt

 $P_g =$ x 75 psig/volt

P_q = _____ psig

Page 6 of 7

INITIALS/DATE

23.2	Determine	the hea	d pressure	(Pu)	due	to
	the level	in SI-6	C at PT-5.			

$$P_{H} = (LV_{s} \text{ (volts)} \times 3.6042 \text{ ft/volt} \times .434 \text{ psig/ft)} + 2.42 \text{ psig}$$

$$P_{H} = (LV_{5} \text{ (volts)} \times 1.56) + 2.42 \text{ psig}$$

$$P_{H} = ($$
_____ x 1.56 $) + 2.42 psig$

2.42 = head pressure from 0% level in SI-6C at the Reactor Vessel Flange level (psig)

23.3 Calculate the total pressure (P_{PT-5}) of SI-6C at PT-5.

$$P_{PT-5} = P_g + P_H psig$$

$$P_{PT-5} = ____ + ___ psig$$

24. Determine the head pressure (P_R) due to the reactor refueling cavity level.

$$P_R = [(L_R(%) \times 20) + 11 \text{ ft}] \times .434 \text{ psig/ft}]$$

$$P_R = (L_R (%) \times 8.68) + 4.77 \text{ psig}$$

$$P_R = ($$
____ x 8.68 $) + 4.77 psig$

Where:

L_R = Reactor Cavity level recorded in Step 3 (%).

20 = distance between LI-106 0% and 100% level taps (ft). If LI-199 is used, refer to Attachment 7 for Cavity Level.

11 = height of 0% level tap above Reactor Vessel Flange (ft)

Page 7 of 7

24.1 D	etermine AP for SI-6C a	t PT-5	INITIALS/DATE
	$\Delta P = P_{PT-5} - F_{R}$ psid		
	ΔP =	psid	
	ΔP =	psid	
Décermi Dischar	ne the Flow Coefficient ge Piping.	(C _v) for SI-6C	
25.1 D	etermine the Flow Coeff	icient (C _v).	
	$C_v = Q + (\Delta P)^{1/2}$		
	C _V = + () 1/2	
	C _v =		
	Q = flowrate calculated		
REMARKS_			
-			
-			
manufacture of executive			
-			
Complete	d by	Date/Tim	e/

ATTACHMENT 4 (SI-211 AND SI-212)

Page 1 of 7

PROCEDURE

INITIALS/DATE

NOTE: Steps 1 through 10 can be performed in any sequence, but prior to Step 11.

NOTE: This attachment will raise reactor refueling cavity level by approximately 2% from a 90% initial SIT level.

 Record the "As Found" position of the following valves THEN Close.

Valve	As Found	
HCV-320 HCV-321 HCV-333		
		,
		ODE

NOTE: Control Room indication of SI-6D level is to be used for Step 2.0.

2. Ensure that Safety Injection Tank SI-6D level is between 85% and 90% as indicated on LI-2964X and record.

3. Record the Reactor Refueling Cavity Level $(L_{\rm R})$ as indicated on LI-106.

N/A this step if LI-199 is vsed.

4. Record the Reactor Refueling Cavity Level as indicated on LI-199 Sightglass

Reactor Refueling Cavity Level
$$(L_R)$$
 ft

OPS /

N/A if LI-106 is used.

Page 2 of 7

5. Use Table 1 in Attachment 5 to determine the test pressure for SI-6D based on the tank level recorded in Step 2. Use the pressure that corresponds to the Tank Level rounded down to the nearest whole percent.

INITIALS/DATE

SI-6D Test Pressure psig

NOTE: Control Room indication of SI-6D pressure is to be used in Step 6.0.

6. Set pressure of Safety Injection Tank SI-6D as indicated on PT-2961 to pressure recorded in Step 5. N/A if not required.

OPS /

 Strip Chart Recorder hooked up as per Attachment 6.

I&C /

- 8. Connect the Strip Chart Recorder to the Safety Injection Tank SI-6D ERF computer input terminals located in cabinet PC-15.
 - 8.1 To record SI-6D pressure, connect one channel to terminals:

TB402-21(-)

TB402-22(+)

I&C

Independent Verification

I&C /

8.2 To record SI-6D level, connect one channel to terminals:

TB401-21(-)

TB401-22(+)

I&C

Independent Verification

I&C

 Adjust Strip Chart Recorder Speed (S) to 10 mm/sec, or as desired, and record.

(S) = ____mm/sec

I&C /

(Continued)

Page 3 of 7

		INITI	ALS/DATE
10.	Ensure FH-11 is closed.	OPS	-/
11.	start the Strip Chart Recorder.	I&C	L
12.	Open HCV-2974 AND Mark the Strip Chart to indicate the start of the test (T=0) when HCV-2974 begins to open.	OPS	1
	NOTE: HCV-2974 takes approximately 55 seconds to open. When HCV-2974 is full open only the red light will be on.		
13.	WHEN HCV-2974 indicates full open, Wait approximately 10 seconds, THEN close HCV-2974.	OPS	1
	NOTE: When HCV-2974 indicates closed only the green light is on.	OPS	
14.	WHEN HCV-2974 indicates closed, THEN stop the Strip Chart Recorder.		
15.	Return valves in Step 1 to "As Found" position or as directed by the Shift Supervisor.	I&C OPS	
16.	Restore Safety Injection Tank SI-6D to service as directed by the Shift Supervisor.	OPS	
17.	Remove Strip Chart Recorder from the following ERF Computer terminals:		
	TB401-21(-)		
	TB401-22(+)		
	TB402-21(-)		
	TB402-22(+)	I&C	
	Independent Verification	Ī&C	

Page 4 of 7

INITIALS/PATE

18.	Recor Recor	rd the following information on the Strip order Chart:	
	18.7 18.8 18.9 18.10	Attachment Number Safety Injection Tank Number Date	
19.	Measu	ure and record the chart run along the e (D) between PT-1 and PT-2.	
		D=mm	
20.	Recor PT-1	rd the level change (AL) in SI-6D between and PT-2 when HCV-2974 was >90% open.	
	20.1	Determine the level $(L_{\text{PT-1}})$ of SI-6D at PT-1.	
		$L_{PT-1} = LV_1$ (volts) X 3.6042 ft/volt	
		L _{PT-1} = X 3.6042 ft/volt	
		L _{PT-1} = ft	
	20.2	Determine the level $(L_{\text{PT-2}})$ of SI-6D at PT-2.	
		$L_{PT-2} = LV_2$ (volts) X 3.6042 ft/volt	
		L _{PT-2} = X 3.6042 ft/volt	
		L _{PT-2} **	

INITIALS/DATE

ATTACHMENT 4 (Continued)

Page 5 of 7

20.3 Calculate AL for SI-6D.

$$\Delta L = L_{PT-1} - L_{PT-2}$$
 ft

$$\Delta L = _____$$
ft

$$\Delta L = ft$$

21. Determine the tank level Rate of Change (R) for SI-6D.

$$R = (\Delta L + D) \times S ft/sec$$

Where:

22. Calculate the flowrate (Q) from SI-6D through check valves SI-211 and SI-212 (based on a 10 second average when HCV-2974 is >90% open).

$$Q = R \times 530.24 \text{ gal/ft } X 60 \text{ sec/min}$$

$$Q = R \times 31,814.4 \text{ gal/min}$$

23. Determine the pressure $(P_{\text{PT-5}})$ of SI-6D at PT-5.

23.1 Determine the gas pressure (P_g) in SI-6D at PT-5.

$$P_g = PV_S$$
 (volts) x 75 psig/volt

$$P_Q = \frac{}{}$$
 x 75 psig/volt

Page 6 of 7

INITIALS/DATE

23.2	Determine	the head	pressure	(Pu)	due	to
	the level			100		

 $P_{H} = (LV_{S} \text{ (volts)} \times 3.6042 \text{ ft/volt} \times .434 \text{ psig/ft)} + 2.42 \text{ psig}$ $P_{H} = (LV_{S} \text{ (volts)} \times 1.56) + 2.42 \text{ psig}$

$$P_{H} = ($$
_____ x 1.56) + 2.4_ 1 '"

2.42 = head pressure from 0% level in SI-6D at the Reactor Vessel Flange level (psig)

23.3 Calculate the total pressure (P_{PT-5}) of SI-6D at PT-5.

$$P_{PT-5} = P_{g} + P_{H} psig$$

24. Determine the head pressure (P_R) due to the reactor refueling cavity level.

$$P_R = [(L_R(%) \times 20) + 11] \times .434 \text{ psig/ft}$$

$$P_R = (L_R (%) \times 8.68) + 4.77 \text{ psig}$$

$$P_R = ($$
____ x 8.68) + 4.77 psig

Where:

- L_R = Reactor Cavity level recorded in Step 3 (%).
- 20 = distance between LI-106 0% and 100% level taps (ft). If LI-199 is used, refer to Attachment 7 for Cavity Lavel.
- 11 = height of 0% level tap above Reactor Vessel Flange (ft)

Page 7 of 7

24.1 Deter	mine ΔP for SI-6D at PT-	5. I	NITIALS/DATE
	$\Delta P = P_{PT-5} - P_{R}$ psid		
	ΔP =	psid	
	ΔP =	psid	
Determine the SI-6D Discha	he Flow Coefficient (C_v) arge Piping.	for	
25.1 Determ	nine the Flow Coefficien	t (C _v).	
C _v =	$Q \div (\Delta P)^{1/2}$		
C _v :	+ ()	1/2	
C _v =			
	2 = flowrate calculated		
Completed by	,	Date/Time	

Page 1 of 1

ATTACHMENT 5 (SAFETY INJECTION TANK TEST PRESSURES)

SAFETY INJECTION TANK LEVEL	TEST PRESSURE (PSIG)
84%	80.0
85%	82.5
86%	87.5
87%	90.0
88%	95.0
89%	100.0
90%	105.0

NOTE: Test Pressures are based on Calculation FC-05280.

NOTE: Set pressure at above test pressure +0 -2.5 psig

ATTACHMENT 6

Page 1 of 2

CALIBRATION CONSTANTS AND REFERENCE VALUES

LOOP INSTRUMENT OUTPUTS - ERF Computer

White the second state of		
Tank 6A		
Pressure: P2901	1 - 5 volts	0 - 300 psig
Level L2904X	1 - 5 volts	0 - 100% (173" - 0)
Tank 6B		
Pressure: P29?1	1 - volts	0 - 300 psig
Level L2924X	1 - 5 volts	0 - 100% (173" - 0)
ink 60		
Pressure: P2941	1 - 5 volts	0 - 300 psig
Level L2944X	1 - 5 volts	0 - 100% (173# - 0)
Tank 6D		
Pressure: P2961	1 - 5 volts	0 - 300 psig
Level L2964X	1 - 5 volts	0 - 100% (173" - 0)

Strip Chart Set-Up Parameters

Speed 10 mm/sec (suggested)

Channel 1 Pressure

Set 1 - 3 Volts to correspond to 0 - J50 psig

Channel 2 Level

Set 1 - 5 Volts to correspond to 0 - 173" (14.42 feet)

ATTACHMENT 6 (CONTINUED)

Page 2 of 2

CONVERSION FACTORS

Level

14.42 feet/4 Volts

= 3.6042 ft/volt

Pressure

: .J psig/2 volts

= 75 psig/volt

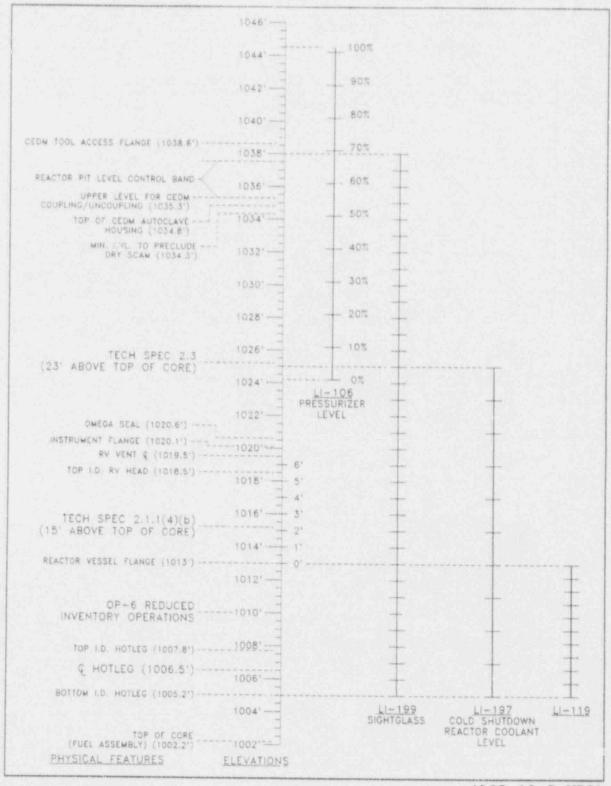
Volume

Tank ID = 9'-6"

Volume = $\pi D^2 h/4$

 $= \pi (9.5 \text{ ft})^2 (1 \text{ ft})$ (4)

= 70.88218 ft3 per foot of height


Water volume = 7.48052 gal/ft^3

Tank volume = $7.48052 \text{ gal/ft}^3 \times 70.88218 \text{ ft}^3$

= 530.24 gal/ft of height

ATTACHMENT 7

Page 1 of 1

ATTACHMENT 8

Page 1 of 8

Depressurizing and Filling SI Tank(s) Using Containment Spray Pumps.

				INITIA	LS/DATE
	NOTE: This p AC-41 from be Cooling.	procedure prevents SDHX eing used for Shutdown			
1.	instrumentati	on is operable by oplicable portions of		OPS	
2.	Verify SIRWT Concentration	is at Refueling Boron			/
	If on shutdow following val	n cooling ensure the ves are CLOSED:			
	Valve	Description	(V)		
	SI-306	SIRWT Fill Valve	-		
	HCV-349	Cooled Water Suction to HPSI Pump SI-2B	AND DESCRIPTION OF THE PARTY.		
	HCV-2914	SI Tank 6A Discharge Isolation Valve	Management Associates		
	HCV-2934	SI Tar': 6B Discharge Isolation Valve			
	HCV-2954	SI Tank 6C Discharge Isolation Valve	***		
	HCV-2974	SI Tank 6D Discharge Isolation Valve			
	SI-170	Crosstie from SDHX 4A to 4B			
	SI-174	SD Cooling Discharge Isolation Valve		OPS	/

4. If not on shutdown cooling ensure the

Page 2 of 8

INITIALS/DATE

following val	ves are CLOSED:	
Valve	Description	_(v)_
SI-306	SIRWT Fill Valve	
SI-183	Containment Spray Flow Test Stop Valve	
HCV-349	Cooled Water Suction to HPSI Pump SI-2B	
HCV-350	HPSI Pumps SI-2A and C Alternate Suction valve	
HCV-2914	SI Tank 6A Discharge Isolation Valve	
HCV-2934	SI Tank 6B Discharge Solation Valve	And distributions are as a second
HCV-2954	SI Tank 6C Discharge Isolation Valve	
HCV-2974	SI Tank 6D Discharge Isolation Valve	

HCV-2983 Safety Injection Leakage
To CVCS Isolation Valve

HCV-341 Shutdown Cooling Heat

Isolation Valve

Shutdown Cooling Heat Exchanger Inlet Header

HCV-341 Shutdown Cooling Heat Exchanger Outlet Temperature Control Valve

5. Ensure the following SDC Hx AC-4A Isolation Valves are open:

SI-171

SI-172

HCV-335

OPS /

Page 3 of 8

				INITIA	LS/DATE
6.	Uncap SI Tank	k(s) Vent Line(s):			
	Tank		(v)		
	SI-6A		_		
	SI-6B				
	SI-6C		-		
	SI-6D			PE	
7.	Throttle SI T	Tank(s) Manual Vent			
	Tank	Valve	(V)		
	SI-6A	NG-171	TO STATE OF THE LOCAL SECTION 1		
	SI-6B	NG-172			
	SI-6C	NG-173			
	SI-6D	NG-174		OPS	
3.	as required t	Vent to atmosphere valves to lower tank pressure to 25 psig then close			
	Tank	Valve	_(√)_		
	SI-6A	HCV-2630			
	SI-6B	HCV-2632			
	SI-6C	HCV-2634			
	SI-6D	HCV-2636			,

OPS

Page 4 of 8

INITIALS/DATE										
INITIALS/DATE	75.3	T T 1	THE PER	26.	7	279	2.90%	16	727	m.
	3.7	N. E.	2.0	- Al	Œ.	200	F 1 3	м	5 B 7	100
	385 A	T. 166	ple, Africa	63	r) Bru	Charles	E. Seid	ണ	and the	سه

9.	Ensure the SIRWT Suction to SI Pumps
	is OPEN for the desired Containment
	Spray Pump:

Containment Spray Pump

Pump	Valve	(V)
SI-3A	LCV-383-2	
SI-3B	LCV-383-1	
SI-3C	LCV-383-1	OPS /

10. Open the Suction Valve for the desired Containment Spray Pump:

Pump	Valve	<u>(√)</u>
SI-3A	KCV-2957	
SI-3B	HCV-2967	Mark Removalupe o
SI-3C	HCV-2977	OPS /

11. Open the Discharge Valve for the desired Containment Spray Pump:

Pump	Valve	_(v)
SI-3A	HCV-2958	
SI-3B	HCV-2968	
SI-3C	HCV-2978	
		OPS

Page 5 of 8

INI	THE PER	2 2	pr 1	pro.	The Prince	975
1 74 1	7.1	63.1	244	5.3	D.I.	PC

12. Open the Recirculation Isolation Valve to SIRWT for the desired Containment Spray Pump:

Pump	<u>Valve</u>	_(V)_
SI-3A	SI-138	
SI-3B	SI-146	
SI-3C	SI-152	
		OPS

13. Ensure the Minimum Recirculation Stop Valve for the inservice LPSI Pump is closed: (N/A if SDC not in service)

Pump	Valve	recorded and areas
SI-1A	SI-132	
SI-1B	SI-124	OPS

14. Open both SI Minimum Recirculation to SIRWT Isolation Valves:

HCV-385	,
	OPS
HCV-386	,
	OPS

15. Verify both Containment Spray Valve Test Switches are in TEST:

THE THE THE THE THE TANK THE T	
HCV-344 Test Switch	
	OPS
HCV-345 Test Switch	
	OPS

Page 6 of 8

INITIALS/DATE

OPS

OPS

OPS

OPS

OPS

16. Verify both HCV-344/345 SET SPRAY PUMPS TEST PERMIT annunciators are IN ALARM:

A33-1, H-5

M33-1, N-3

A34-1, H-3

17. Start the desired Containment Spray Pump.

18. Open the Fill and Drain Valve(s) for the Tank(s) to be filled:

Tank	<u>Valve</u>	_(∀)_
SI-6A	HCV-2916	sometimes at the some
SI-6B	HCV-2936	
SI-6C	HCV-2956	
SI-6D	HCV-2976	

 Unlock and open SI Tank Fill Isolation Valve SI-185.

20. Unlock and throttle open Containment Spray to SI Check Valve Leakage Header Valve SI-342.

ops

CAUTION

As SI Tank level increases SI Tank pressure will also increase. Do not allow tank pressure to exceed 260 psig.

21. Fill and/or vent SI Tanks as necessary to achieve a level and pressure as indicated on Attachment 5 of this procedure.

				4		
				1		
-	and the later of	innist man	reservations	diamen	STATE OF THE	menta
OF	100					
O.E	25					

Page 7 of 8

INITIALS/DATE

22.	When SI Tank(s) reach desired
	indicated level, THEN close their
	respective Fill and Drain Valve.
	Repeat as necessary for subsequent
	tank fillings.

		OPS
SI-6D	HCV-2976	,
SI-6C	HCV-2956	and the second second
SI-6B	HCV-2936	
SI-6A	HCV-2916	
Tank	Valve	_(v)_

23

OPS

24. Stop the Containment Spray Pump.

							1				
1970	9000k	encrimin	ments	HEROT	-	-	din	ceany	inne	180718	800
0	D	0									

25. LOCK CLOSED the Minimum Recirculation Isolation Valve for the Containment Spray Pump used.

Pump	valve	_(√)_
SI-3A	SI-138	
SI-3B	SI-146	
SI-3C	SI-152	
		OPS

26. Ensure SI Tank Vent to Atmosphere Valve(s) are closed:

Tank	<u>Valve</u>	<u>(√)</u>
SI-6A	HCV-2630	
SI-6B	HCV-2632	
SI-6C	HCV-2634	
SI~6D	HCV-2636	
		OPS

INITIALS/DATE

OPS

IND VER

ATTACHMENT 8 (Continued)

Page 8 of 8

Close SI Tank Manual Vent Valves (N/A if valves are desired to remain open at Shift Supervisor's discretion):

		OPS
SI-6D	NG-174	
SI-6C	NG-173	
SI-6B	NG-172	
SI-6A	NG-171	
Tank	Valve	_(√)_

28. Replace caps on SI Tank Vent Lines (N/A if sees are desired to remain of at the discretion of the Shift Supervisor):

Tank	(4)
SI-6A	one state a special state
SI-6B	
SI-6C	
SI-6D	,
	PE
LOCK CLOSED SI-185.	,

- 30. Close the Discharge Valve opened in
- Step 10 (N/A if desired to remain open at Shift Supervisor's discretion). OPS
- 31. Open SI-170. OPS 32. Open SI-174. OPS

29

SURVEILLANCE TEST SIGNATURE SHEET

All persons participating in the performance of this test shall enter their printed name, signature and initials below.

NAME (PRINT)	SIGNATURE	INITIALS
		PROPERTY SECURE NEW CONTRACT C
		Commission was a second
		PERSONAL TRANSPORT CONTRACTOR CON
		CONTRACT NUMBER OF STREET

COMMENT SHEET/CHRONOLOGICAL LOG

Professional and the second se	

(Left Blank Intentionally)