316(b) DEMONSTRATION FOR THE virgil c. Summer nuclear station FOR THE SOUTH CAROLINA DEPARTMENT OF health and environmental control and the nuclear regulatory commission

Dames\&Moore

Job No, 5182-108-09

TABLE OF CONTENTS

I Page
LIST OF TABLES ii
LIST OF FIGURES iii
INTRODUCTION 1
OBJECTIVES OF THIS 316(b) DEMONSTRATION 1
STUDY APPROACH 1
V.C. SUMMER GENERATING STATION DESCRIPTION 4
ENVIRONMENTAL SETTING 6
IMPINGEMENT 7
RESULTS 7
INTERPRETATION AND ANALYSIS 10
AVAILABLE FISH COMMUNITY 12
IMPACTS OF IMPINGEMENT ON THE ADULT FISH COMMUNITY 14
ENTRAINMENT 16
INTRODUCTION 16
STUDY APPROACH 17
STUDY RESULTS 17
DISCUSSION 20
CONCLUSIONS 21
SUMMARY 25
REFERENCES 26
APPENDIX A - SAMPLING PROCEDURES FOR LARVAL AND ADULT FISH A-1
APPENDIX B - AVERAGE INTAKE AND DISCHARGE TEMPERATURES, AVERAGE FLOW, AND GROSS THERMAL POWER B-1
APPENDIX C - ORGANISMS IMPINGED AT THE V.C. SUMMER NUCLEAR STATION INTAKE SCREENS C-1
APPENDIX D - ECOLOGICAL SUMMARIES OF IMPORTANT FISH SPECIES D-1
APPENDIX E - LIFE HISTORY INFORMATION OF IMPINGED FISH E-1

1 Standing Crop of Fish in Monticello Reservoir 29
2 Fish species collected at Station M by electro- 30 fishing and gillnetting

3 Mean Density of Larval Fish (no. $/ 100 \mathrm{~m}^{3}$) at 31 stations in Monticello Reservoir

4 Mean monthly densities of larval fish (no/ $100 \mathrm{~m}^{3}$) 32 at stations in Monticello Reservoir

5 A comparison of larval fish mean densities at Stations I, L, and M for the dates indicated

LIST OF FIGURES

Figure Page
1 Collecting Stations 39
2 Intake Structures 40
3 Plant Layout of Monticello Reservoir 41
4 Total Number of Fish Collected During the Study 42Period.
5 Species of fish, including percent occurrence and 43 weight, collected during the study.
6 Number and length of fish impinged during October 441983 through September 1984. Four species arepresented.
7 Impingement of gizzard shad by month. 45
8 Impingement of yellow perch by month. 46
9 Impingement of white catfish by month. 47
10 Impingement of bluegill by month. 48

OBJECTIVES OF THIS 316(b) DEMONSTRATION

Section $316(b)$ of the "Federal Water Pollution Control Act Amendments of 1972 " (P.L. 92-500) requires that the "location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact" (USEPA, 1977). What constitutes "best technology available," however, must necessarily be determined on a case-by-case basis, since environmental conditions and plant operating characteristics vary widely from location to location and combine uniquely to create different technological requirements at any one site. For new power plants, design studies and ecological assessments are used to provide direction as to the best intake technology for that site, and constitute the demonstrat ion required under $316(b)$.

The Virgil C. Summer Nuclear Station (VCSNS) was designed and built by South Carolina Electric \& Gas (SCE\&G). The plant began operation January 1, 1983 for purposes of regulatory requirements as it relates to the studies described herein. This was after the 1972 enactment of P.L. 92-500. The objectives of this demonstration are to obtain sufficient information on the VCSNS intake structure; determine the relationship of facility operation with the fish community, and determine whether the technology selected by SCEsG constitutes the best technology available for minimizing adverse impacts.

STUDY AP¿ROACH

The detailed impact assessment of the water body associated with the VCSNS and its biological communities, uses an evaluative approach combining quantitative data with qualitative observations and interpretations. The aquatic system under investigation is the 6800 acre Monticello Reservoir. This water body provides the once through condenser cooling water for the Summer station, as well as power
generation associated with the Fairfield Pumped Storage Hydroelectric Station.

Fish were selected as the representative biotic group for the 316(b) demonstration under conditions established in the Study Plan. This plan is part of the requirements in the National Pollutant Discharge Elimination System (NPDES) Permit issued by the South Carolina Department of Health and Environmental Control (SCDHEC, 1978). These organisms were selected for the following reasons:

1. Fish are at the top of the food web. Their abundance and diversity depend in large part, on the characteristics of the ecosystem, therefore serving as an excellent indicator of the reservoir's conditions.
2. Fish are more easily studied than other aquatic biota because of their large size, and because more data are available on their life histories, i.e., preferred habitats and spawning and feeding characteristics.
3. Fish are important for recreational fishing.

Sampling of impinged organisms at the intake structure began in October 1983, and continued at two week intervals through September 1984. The data collected on the impinged fish included the species identification, number impinged, weight, length, and incidence of parasites. A detailed description of this methodology is described in Appendix A.

Ichthyoplankton were collected during this same period of time at seven stations in Monticello Reservoir (Stations $\mathrm{I}-0$), to show distribution of larval fish in the reservoir. Sampling of three stations (I, L, and M) were specified in the Study Plan to meet the entrainment requirements of Section $316(b)$. Station M was located in front of the VCSNS
intake structure, Station I was farthest from the VCSNS and served as a control, and Station L was near the FPSF Intake (Figure 1).

The approach to impact assessment is reflected in the organization of the remaining sections of this report, as follows:
> - Generating Station Description - This section describes the plant operating data, cooling water requirement, and intake structure, of the VCSNS, and the environmental setting of the reservoir.

- Impingement - This section provides results and analysis of the data from fish collected at intake traveling screens.
- Entrainment - This section provides results and analysis of larval fish studies conducted at selected locations in Monticello Reservoir.

For clarity of presentation, all tables and figures are at the end of the narrative portion of this document. Additional supporting technical data have been placed in appendices as follows:

Appendix A - Sampling Procedures for Larval and Adult Fish
Appendix B - Average Intake and Discharge Temperatures, Average Flow and Gross Thermal Power
Appendix C - Organisms Impinged at the V.C. Summer Nuclear Station Intake Screens
Appendix D - Ecological Summaries of Important Fish Species
Appendix E - Life History Information of Impinged Fish

V.C. SUMMER GENERATING STATION DESCRIPTION

The Virgil C. Summer Nuclear Station (VCSNS) is a 900 megawatt facility located in Fairfield County approximately 26 miles northeast of Columbia, South Carolina. The station is situated on Monticello Reservoir, which supplies all necessary cooling water for the plant.

Personnel from SCE\&G provided data related to the operation of the VCSNS, including the average intake and discharge temperatures, average flow of circulating water through the plant, and gross thermal power. This information was tabulated by month and appears in Appendix B.

The circulating water system is designed to remove $6.67 \times 10^{9} \mathrm{Btu} / \mathrm{hr}$ of heat from the main and auxiliary condensers as well as the turbine auxiliaries. When operating at full capacity, cooling water is withdrawn from Monticello Reservoir at a rate of $2030 \mathrm{~m}^{3} / \mathrm{min}(534,000$ gpm), passed through the system, and ultimately returned to Monticello Reservoir through a discharge canal. The intake structure, located along the south shoreline of the reservoir, has three pump bays, earh with two entrances. Each entrance is $4 \mathrm{~m}(13 \mathrm{ft})$ wide and 7.8 m (25.5 ft) high, extending from the bottom of the pump house (elevation 119 m $(390.0 \mathrm{ft})$] to the bottom of a skimmer wall [elevation 126.5 m (415.5 ft)]. The entrances are each equipped with two sets of trash racks, and conventional vertical traveling screens (mesh size $0.4 \times 0.35 \mathrm{in}$). The velocities within the intake structure for specific reservoir levels with all pumps operating are as follows:

Emergency drawdown (elevation	Normal low level	Normal high
[elevation	level	[elevat ion
$127 \mathrm{~m}(418 \mathrm{ft})]$	$128 \mathrm{~m}(420.5 \mathrm{ft})]$	$129.5 \mathrm{~m}(425 \mathrm{ft})$]

Approach velocity measured midway between traveling screen and trash rack, m/sec (fps)

Emergency drawdown	Normal low	Normal high			
[elevation	level	lelevation		level	
:---:	:---:				
[elevat ion					
$127 \mathrm{~m}(418 \mathrm{ft})]$	$128 \mathrm{~m}(420.5 \mathrm{ft})]$				

Velocity through the screen, $m / s e c$ (fps), when screens are

| 100% clean | $0.38(1.24)$ | $0.34(1.13)$ | $0.30(1.00)$ |
| :---: | :--- | :--- | :--- | :--- |
| 75% clean | $0.50(1.65)$ | $0.46(1.51)$ | $0.40(1.32)$ |
| 50% clean | $0.76(2.48)$ | $0.69(2.27)$ | $0.60(1.98)$ |

Further design details of the intake structure are shown in Figure 2.

The heated water is returned to Monticello Reservoir through a discharge canal. Circulating water is delivered through a 12 -foot-diameter concrete pipe, to a semi-enclosed basin created by the dam for the service water pond. The outlet canal for this basin is a canal that discharges the water to a sidearm of the reservoir while a jetty, 792.5 m (2600 feet) long, inhibits recirculation of the heated water. A plan view of the power plant, its intake structure, and discharge canal is shown in Figure 3.

Monticello Reservoir was formed in the Frees Creek drainage area, reaching the full pool level during February of 1978. The water sources of the reservoir are as follows:

- The Broad River, with an average annual flow of $173 \mathrm{~m}^{3} / \mathrm{sec}$ $(6100 \mathrm{efs})$, reaches Monticello Reservoir through the Fairfield Pumped Storage Facility, located on Parr Reservoir (Figure 1).
- The runoff from Frees Creek drainage basin into Monticello Reservoir.
- Direct rainfall.

Biological monitoring has been conducted on Monticello Reservoir since June 1978, and data have been collected at stations shown on Figure 1 through December 1984. This information has been compiled in annual and two semi-annual reports (Dames \& Moore, 1978, 1979, 1979a, 1980, 1981,1982 , 1983).

The sampling results have shown that Monticello Reservoir's fish community is composed largely of centrarchids (sunfish, bass, and crappie) and gizzard shad (Dames \& Moore, 1983). Sixty-eight species have been identified from Monticello Reservoir and other areas of the Broad River watershed (Dames \& Moore, 1983).

IMPINGEMENT

RESULTS

The objective of this portion of the study was to collect data on the species, number, length, and weight of fish impinged on the traveling screens. A detailed tabulation of the twice monthly sampling results are provided in Appendix C. In addition to showing the numbers of species and their length and weight, Table $C-12$ shows damaged specimens that were impinged. Ecological summaries of the important fish species are presented in Appendix D. Life history information, including preferred habitat, spawning sites and temperatures, and egg types of all impinged fish species, is presented in Appendix E.

The total number of fish collected during the study was 5,140 (Figure 4) which can be projected to an estimated $85,000 \mathrm{fish} / \mathrm{year}$ (days/year $[365$] 〒 days sampled $[22$] x numbers or weight of fish collected.) The total weight collected was 31 kilograms (kg) which amounts to $515 \mathrm{~kg} / \mathrm{yr}$ or 0.47 percent of the 1984 estimated standing crop $(110,500 \mathrm{~kg})$ of Monticello Reservoir (Table 1). The greatest number of fish were impinged during January through March 1984 (Figure 4). No direct correlation can be made between the number of fish impinged and the Monticello Reservoir water level. There is a greater velocity at the intake screens when the reservoir level is lowered dramatically below the normal pool level of 425 ft . elevation (Figure 2). The largest total number of fish were impinged during January 1984 when the pool level elevation was 424.8 feet. The high number of fish (primarily clupeids) collected during that time was probably attributed to cold shock, and the fish were already in a moribund condition or were stunned when they reached the intake screens. The water temperature measured at the VCSNS intake during December 1983 through March 1984 ranged from a high of $56.3^{\circ} \mathrm{F}$ on $12 / 13 / 83$ to a low of $45.8^{\circ} \mathrm{F}$ on February 6,1984 . The average during the four months was $49.7^{\circ} \mathrm{F}$. The collected fish were represented by 17 species belonging to six families
(Figure 5). The family Clupeidae was by far the most abundant. The Clupeids were represented by gizzard shad (82.63 percent) and threadfin shad (0.76 percent). Second in abundance was the family Percidae, comprising 7.57 percent of the sample and represented by a single species, yellow perch. Even though the sunfish (Centrarchidae) are represented by 8 species in the reservoir, this family comprised only 4.61 percent of the sample and ranked third in abundance, of the impinged species.

Nearly all the fish impinged were small and an analysis of their lengths shows them to be predominantly young-of-the-year or first-year class fish (Figure 6). This observation has been noted previously in other studies (Dames \& Moore, 1977) (Loar, et al., 1978, McFadden, 1977, and McClean, etc., 1981).

A discussion of findings relative to the most commonly impinged and most important species (gizzard shad, yellow perch, white catfish, bluegill, and largemouth bass) follows. Life history information for these species is presented in Appendix D.

Gizzard Shad (Dorosoma cepedianum) - Gizzard shad were by far the most abundant fish collected from the intake screens (82.6 percent, Figure 5). However, nearly all of these were impinged during December through March with the greatest number (2,834) occurring in January (Figure 7). The large number impinged during this time indicates the possible influence of cold stress or cold kill, on this species. This theory is supported by the extremely cold weather which was encountered during this period. The average water temperature during the month of January was $47.9^{\circ} \mathrm{F}$. Although, no unusual numbers of dead or dying shad were noted in Monticello Reservair during this time, the cold stress may have resulted in impaired swimming response making them unable to avoid impingement .

The gizzard shad in the impinged samples were almost consisiontly fish of the young-of-the-year class fish (Figure 6). Similar findings have been reported in other studies (Dames \& Moore, 1976). Jester and Jensen (1972) also indicate that young-of-the-year fish are more susceptible to shock and cold kill, than older adults. It is unlikely that the VCSNS had an adverse effect on the gizzard shad population, since this species has an extremely high reproductive capability and the generating station removes almost exclusively young-of-the-year fish rather than reproducing adults.

Yellow Perch (Perca flavescens) - Yellow perch was the second most abundant species of fish impinged, comprising 7.6 percent of the fish collected (Figure 5). The greatest numbers were impinged during January (139) and March (121) (Figure 8). The fish collected were either young-of-the-year or first-year-class fish (Figure 6). Since yellow perch are not very strong swimmers and are found in large wandering schools (McClane, 1974) it is expected that they would be impinged en masse. However, like other forage species, this species has little recreational value and has high fecundity and fertility, that should offset losses associated with impingement.

White Cat fish (Ictalurus catus) - White catfish are common in Monticello Reservoir and are quite prevalent around riprapped areas such as occur near the intake structure. White catfish ranked third in abundance of the impinged fish and represented 2.4 percent of the total collection (Figure 5). Unlike the other major species collected the white catfish impinged did not demonstrate a correlation between age or size (Figure 6) nor seasonal distribution of fish collected (Figure 9). These data indicate that the white catfish are impinged with little ralationship between avoidance ability and age class.

Bluegill (Lepomis macrochirus) - Standing crop estimates indicate that bluegill are the most common fish in Monticello Reservoir (Table 1); however, they account for a total of only 1.3 percent of the impinged
fish collected (Figure 5). The greatest numbers were collected during December (Figure 10) and included mostly young-of-the-year and first-year class fish (Figure 6). The low percentage of impinged fish for this species may result from their habitat preference which appears to be in the littoral zone and in the riprapped area of the shoreline. In addition, like most other sunfish, bluegill are prolific breeders (Douglas, 1974) and impingement should result in minimal ampact to the bluegill population of Monticello Reservoir.

亡argemouth Bass (Micropterus salmoides) - The collection of impinged largemouth bass was limited to one individual, comprising only 0.02 percent of the total number of impinged fish (Figure 5). This low number illustrates this important sport species is not being impacted by the VCSNS intake screens. Although largemouth bass are common in the vicinity of the intake structure, their sedentary nature and a highly developed sensory system enhances their avoidance of the intake screens.

INTERPRETATION AND ANALYSIS

The previous section indicates that, although fish are being removed from Monticello Reservoir by impingement, these losses should result in minimal impact to the resident adult fish community. The following section expands this thesis by discussing these issues:

1. The perturbation to the fish community caused by the intake structure.
2. The characteristics of the fish community potentially affected by the intake structure, as illustrated by:
a. A composite description of the fish community in Monticello Reservoir, based on electrofishing and gillnet data, standing crop estimates, and impingement studies.
b. Life history data on important fish species, emphasizing preferred habitats, spawning time, and location.
3. The results of impingement on the available fish community, to include:
a. Community stability, evaluated using previous studies on Monticello Reservoir (Dames \& Moore, 1983).
b. Impairment of ecological function.
c. Reduction in optimum sustained yield of sport fish or other important species.
d. Unmitigable loss to the ecosystem.

Following the examination of the above issues: A rationale is provided for predicting continued stability in the fishes community of the Monticello Reservoir, and the effect of impingement of this community is evaluated.

The Perturbation Produced by the Intake Structure. - In assessing the impact of intake structure on fish communities it is important to understand the nature of the action of these structures on individual populations, whicn, as McFadden notes (1977), can be compared to predation:

> "Most of the current environmental awareness is built on public recognition of these two classes of problems wholesale destruction of environmental resources and the release of exotic toxic substances. A third class of man-caused problems - the imposition on a population of increased mortality that takes a form similar to natural predarion - has an entirely different effect on most species. This is the kind of impact to which the
population has been adapted by thousands or millions of years of evolutionary experience. The agent of mortality - predatory fish, commercial or sport fishermen, or power plants - is an indifferent matter from the standpoint of population response. When the population is reduced in numbers, the survival rate or reproductive rate among the remaining members tends to increase; a compensating response is generated."

Furthermore, the effect of predation by the VCSNS is limited primarily to the populations of young-of-the-year fish, as shown in a previous section. Therefore, the following assessment is a characterization of the adult fish community that results from predation by the generating station on the young-of-the-year fish in Monticello Reservoir.

AVAILABLE FISH COMMUNITY

Electrofishing and Gillnetting - Sampling adult fish on Monticello Reservoir by electrofishing and gillnetting has been performed since 1978 (Dames \& Moore 1978, 1979, 1979a, 1980, 1981, 1982, 1983). This sampling was performed in shoreline (littoral) areas and was thus biased against open water fishes. These data demonstrated a community comprising 35 species, 28 of which were collected in the immediate vicinity of the plant intake during the impingement study. The results of the 1984 (Dames \& Moore, 1985 Biological Monitoring Report, in press) collections near the VCSNS intake (Station M) are shown in Table 2. The most abundant species collected were bluegill and gizzard shad, although sport and pan fish such as largemouth bass, white cat fish, channel catfish, and yellow perch were common in the area.

Standing Crop - Annual standing crop estimates have been from 1978 through 1984 (Dames \& Moore 1978, 1979, 1979a, 1980, 1981, 1982, 1983). These estimates were made by applying rotenone near Stations I and K in Monticello Reservoir. Although neither station is in proxirity to the intake structure of the VCSNS, the figures from these two sites are considered representative of the reservoir an a whole and, therefore,
are of value in assessing the impact of impingement on the fish community of the reservoir. Standing crop estimates for 1984 are presented in Table 1.

Impingement - Impingement studies were performed at the VCSNS from October 1983 through September 1984. These studies indicate impingement was selective for certain species (i.e., gizzard shad and yellow perch, Figure 5), and certain size classes of fish (i.e., young-of-the-year and first-year class fish, Figure 6). These findings are similar to those reported in previous studies (Dames \& Moore, 1977). Fishes which have more sedentary behavior (i.e., sunfish, bullheads) come in contact with the intake structure less than the more active species (i.e., gizzard shad, yellow perch, white eatfish). Also, more active species of fishes usually occur in large schools (i.e., gizzard shad, yellow perch) and, therefore, are more likely to be impinged in great numbers. The sedentary species, on the other hand, are often solitary or occur in small schools and are likely to be impinged in fewer numbers.

Summary - The results from the individual sampling programs discussed above demonstrated a difference in the dominant fish populations. The active sampling programs, use data from electrofish, gillnet, and standing crop studies, indicated that bluegill were most abundant, followed closely by gizzard shad, while yellow perch were very low in density. However, the passive sampling data obtained by analysis of impinged fish, resulted in much higher numbers of gizzard shad and yellow perch than of bluegill. However, the habits of these taxa appear to explain these skewed differences. As noted above, gizzard shad are very susceptible to cold shock, while yellow perch typically occur in large schools, both species thereby becoming more susceptible to intake currents. Bluegill, however, kend to remain in the littoral area along the shoreline, resulting in fewer individuals being impinged by the intake.

Effects on Community Stability - On the basis of data presented in past Dames \& Moore reports (1978, 1979, 1979a, 1980, 1981, 1982, 1983, 1984) it seems likely that the fish in Monticello Reservoir are representative of a stable ecosystem. This stability has occurred through preadaptive responses of the community to the artificial perturbations associated with the VCSNS operation. Additional stresses, such as high temperature and low dissolved oxygen in the summer, introduced during critical time periods may affect this stability and result in seasonal mass mortality of sensitive forage fish species such as gizzard shad.

Effect on Ecosystem - Due to the relatively low percentages of fish being impinged and the apparent stability of Monticello Reservoir, the impingement of organisms appears to have little impact on the aquatic ecosystem of the reservoir.

Sustained Yield of Sport Fish or Other Important Species - As illustrated in Figure 5, the numbers of sport fish impinged per year is minimal. These findings indicate that there is no reduction in optimum sustained yield of sport or other important fish.

Unmitigable Loss to the Ecosystem - The highest percentage of the fish populations being impinged are those species with the highest reproductive potential. Therefore, there appears to be no unmitigable loss to the ecosystem due to impingement.

Explanations for Projected Phenomena - The numbers of fishes impinged by the VCSNS appear sufficiently low so as to have minimal effect on the fish community. The numbers of fish being impinged could probably be greater and still have little significant effect. The basis for these projections are:

1. The action of intake structures is similar to predation, a process to which most natural fish populations are preadapted to chstand.
2. The majority of the fish affected by impingement are young-of-the-year. The effect of removing young-of-the-year fish was discussed by McFadden (1977) as follows:
"It turns out that the question whether it is different (possibiy worse) to kill young fish than to kill older fish was answered more than 20 years ago by Ricker (1954, p. 607) :

Exploitation that takes fish at an age when natural mortality is still compensatory means, for practical purposes, a fishery for young during the first year or two of their life the earlier the better. The removal of such young is at least partly balanced by increased survival and/or growth of the remainder.
...it is clear that any general prejudice against exploiting young fish is unsound."

This theorem is applicable to the removal of fish by impingement in that the loss of some individuals of a particular year/age class can increase the survivorship of those remaining, thus, minimizing the effect of impingement on the stability of the adult community. In Monticello Reservoir, where gizzard shad and yellow perch are the species most heavily affected by the intake structure, the abundance of adult populations should remain constant or increase. Adaptation for survival of these species is expected, considering the naturally high mortality rate of newly hatched fish, and the fact that the generating station is removing these iisn during the first year of life, a period of naturally high mortality.

INTRODUCTION

Entrainment is used in this study to describe the passage of organisms through an intake screen into the cooling water system of a generating station. Entrained organisms generally suffer very high to total mortality. Of particular concern are fish, which have long reproductive cycles and delicate life stages. Smaller organisms and life stages with limited swimming ability are generally more subject to entrainment. Phytoplankton and zooplankton are entrained in cooling systems, but their loss is generally of minimal importance compared to larval fish (ichthyoplankton) because of their high abundance and relatively rapid reproductive cycle. In addition, the amount of water used daily for condensor cooling at the VCSNS represents only 0.5 percent of the total Monticello Reservoir volume (SCDHEC, 1978), further minimizing substantive impacts to these communities.

In conventional intake systems, screens allow passage of fish eggs, larvae, juveniles, and the adults of small species. All species of fish in Monticello Reservoir produce eggs and larvae of a size that can be entrained through such systems. Larval fish, which are suspended in the water column, become entrained when the water which they inhabit is drawn into the plant. The fishes may either be planktonic (free floating) or actively swimming but unable to overcome the water velocity at the intake. Therefore, the entrained loss of fish is more a function of their availability than plant operational features.

The primary means of reducing the number of organisms entrained by conventional intake syetems include: (1) locating the intake in an area where the numbers of organisms available for entrainment are lower (generally offshote, awsy from more productive nearshore aras); and (2) reducing the approach velocity by reducing intake water volume requirements or by intake design modifications.

The objective of the entrainment monitoring program was to demonstrate utilization of the best technology available by evaluating the ichthyoplankton community in Monticello Reservoir. The monitoring program was established following the approach specified in the study plan issued by SCDHEC, 1978. No samples were taken inside the VCSNS to determine the number of organisms that passed through the intake screens, but rather collections of ichthyoplankton were made at selected locations (Stations I, L, and M) in Monticello Reservoir (Figure 1). This approach assumed all fish available in the water column would be lost by entrainment and, therefore, provided a conservative estimate of the larval fish community affected.

Station M in Monticello Reservoir was the closest sampling station to the VCSNS intake and Station I at the extreme northern section of Monticello Reservoir served as the control station. Station L was located near the intake for the Fairfield Pumped Storage Facility, and was included in the study to assess distribution of larval fish in this area of the reservoir. Samples were collected at the stations during the same time period (usually within 1 hour of each other) and, at Stations I and M, samples were collected approximately one-half hour after sunset. In addition to sampling at Stations I, L, and M to address the entrainment section of the 316 (b) study, larval fish also were sampled at Stations J, K, N, and O. The purpose of sampling at these latter locations was to determine if the distribution of larval fish was uniform throughout Monticello Reservoir. The sampling procedure for ichthyoplankton is described in Appendix A.

STUDY RESULTS

The results of the ichthyoplankton collections throughout the study period are presented in Tables 3 and $/ 5$. Table 3 summarizes the total
densities for each station throughout the study period, while Table 4 shows the density distribution by months among the sampling locations. Table 5 provides a statistical comparison of the mean total densities at Stations I, L, and M. This sampling program resulted in the collection of nine taxa that represented six families. The clupeid family probably consisting mostly of gizzard shad was the most dominant taxon collected at all the stations (both surface and mid-depth), and the white bass was the next most abundant organism. The greatest density of larval fish from surface collections occurred at Station M, located in front of the intake structure of the VCSNS. The highest density values from mid-depth collections occurred at the control area, Station I, located at the northern end of the Monticello Reservoir (Figure 1).

Station I. The total density of larval fish both at the surface $\left(18.3 / 100 \mathrm{~m}^{3}\right)$ and mid-depth $\left(17.9 / 100 \mathrm{~m}^{3}\right)$ were similar. Gizzard shad was the most dominant organism collected and comprised approximately 93 percent for combined surface and mid-depth samples of the organisms collected. Other taxa collected in small numbers included: white bass, perch, crappie, and sunfish.

Station L. Collections at this station showed that the gizzard shad comprised about 80 percent of all larval fish collected, followed by white bass which represented about 12 pe.cent of the collection. Other taxa collected in small numbers included: minnows, suckers, sunfish, and perch. Approximately 87 percent of the larvae were collected from the surface samples.

Station M. The overall surface density at Station M during the study period was 53.9 larval fish per $100 \mathrm{ma}^{3}$ of water, and at the mid-depth ievel there vere $11.8 \mathrm{fish} / 100 \mathrm{~m}^{3}$ of water. Gizzard shad dominated the collections at both depths $\left(61.9 / 100 \mathrm{~m}^{3}\right)$ and represented 94 percent of the collection. Combined white bass density for both depths was $3.1 / 100 \mathrm{~m}^{3}$ and represented approximately 5 percent of the
smples. Other taxa collected at Station M, in small numbers, included: minnows, suckers, sunfish, and perch. Total densities at the surface of Station M were more than four and one-half times those at mid-depth.

Monthly Distribution. The results of the monthly sampling effort are presented in Table 4. During this study program the first larval fish were collected during February 1984, at Stations K through N. The surface samples produced white bass at quantities of $10.1 / 100 \mathrm{~m}^{3}$ and $11.5 / 100 \mathrm{~m}^{3}$ at Stations L and M, respectively. Mid-depth collections showed white bass to be abundant at Stations M and $N\left(5.61 / 100 \mathrm{~m}^{3}\right.$ and $11.2 / 100 \mathrm{~m}^{3}$, respectively).

During March the collections includes shad (Stations K and N) and perch at Stations J, K, and 0 , aiong with white bass at all stations. In April six taxa were collected among the sampling stations. Dorosoma spp. and percids appeared at all stations, and white bass were found at all stations except K. During May the larval fish reached their greatest total density for all stations in the res rvoir ($664 / 100 \mathrm{~m}^{3}$). The greatest total density $\left(209 / 100 \mathrm{~m}^{3}\right)$ for both the surface and mid-depths occurred at Station I; shad comprised more than 96 percent of the collection. At Station M, in front of the VCSNS intake, the total number of larval fish was $96.8 / 100 \mathrm{~m}^{3}$ at both surface and mid-depth collections; shad again comprised more than 96 percent of the collection at this station.

Surface and mid-depth collections at Station N (near the discharge canal) produced ε total of $84.0 / 100 \mathrm{~m}^{3}$ fish larva. At Station I mid-depth collections produced a total of $209 / 100 \mathrm{~m}^{3}$ ichchyoplankton. In general, at all stations the shad appeared in similar numbers at the surfsce and mid-depth samples. The exception to this occurred at Stations L and 0 . At Station L, surface vs. mid-depth densities were $24.3 / 100 \mathrm{~m}^{3}$ vs. $12.5 / 100 \mathrm{~m}^{3}$; at Station 0 the surface densities were three times greater than mid-depth, $45.4-14.3 / 100 \mathrm{~m}^{3}$, respectively.

During June, large numbers of larval fish continued to be present in the collections (total of $592.1 / 100 \mathrm{~m}^{3}$), again with shad dominating at all stations. These organisms were particularly abundant at Station $M\left(338 / 100 \mathrm{~m}^{3}\right)$; the surface collections f fuced $310 / 100 \mathrm{~m}^{3}$ and the mid-depth samples $28 / 100 \mathrm{~m}^{3}$. The shad represented more than 99 percent of all the larvae collected at this location. During June, Station 0 had the most diversity, five identified taxa were collected from surface or mid-depth samples. During July, August, and September the collections yielded low densities and few taxa. The number of organisms collected in the individual samples during these months ranged from $0.16 / 100 \mathrm{~m}^{3}$ to $3.2 / 100 \mathrm{~m}^{3}$. Shad were the only larve collected through September, but only at the surface at Station I. A comparison of the frequency of fish larvae present throughout the study period for Stations I and M shows that organisms were collected at least 7 of the 8 months during the study period at these locations. At four of the other stations ($\mathrm{J}, \mathrm{K}, \mathrm{L}$, and N) the fish larvae appeared during 5 months, and only 4 months at Station 0.

A statistical comparison, using the Students t-test, of the mean larval fish densities at Stations I, L, and M during the months of April, May, and June was completed and the results are presented in Table 5. These tests showed a significant difference between the stations during the sampling period.

During May and June at all the locations, with the exception of Stations I and L in June, the values showed a highly significant difference.

DISCUSSION

An analysis of the larval fish collected at Station M and the abundance of adult fish at Station M shows the potential entrainable species
during the course of a year. The entrainment of any component of the fish community is related to the reproductive season of the separate fish populations, with entrainment most likely to occur between spawning and the time the larvae either grow too large to pass through the 0.4×0.35 inch traveling screen mesh, or become strong enough to swim against the intake current. An analysis of the fishery survey data and observations of the fish community during the past several years (Dames \& Moore, 1982 and 1983) indicate that the extreme southwest part of Monticello Reservoir (that area bordered on the east by the jetty separating the intake and discharge structure of the VCSNS, and on the west by the main dam south of the Fairfield Pumped Storage Facility (FPSF) intake, Figure 3) is supporting a large number (both density and diversity) of fish (Dames \& Moore, 1982, 1983). This area is rich in nutrients since the water is replenished from the Broad River through the pumping operation of the FPSF. Some fish are also probably transported to Monticello Reservoir through the FPSF operation and colonize this area.

The larval fish data for the study period indicate that the greatest density of larval fish occur in the south end of the reservoir in the vicinity of Station M. These data indicate that the larval fish are not evenly distributed in the reservoir with the density at Station M nearly two (1.8) times that at the control Station I, although this number is skewed somewhat by the large number ($339 / 100 \mathrm{~m}^{3}$) of shad collected during June. These data suggest that the most abundent species near Station M, and therefore, the species that are most susceptible to entrainment are the clupeids (gizzard and threadfin shad), particularly during the months of May and June.

CONCLUSIONS

Section 316(b) of P.L. 92-500 requires that the "...location, design, construction, and capacity of the cooling water intake structures reflect the best technology available for minimizing adverse environmental impact." What constitutes the "best technology available,"
however, must be determined on a case-by-case basis because of the biological characteristics of the water bodies where the generating structure is located, and the variation in the operating characteristics of the power plant.

The 316(b) Environmental Protection Agency Guidance Manual (May 1977) contains the following statement:

Abstract

Adverse environmental impact from the location, design, construction, and capability of cooling water intake structures, for the purpose of this document is damage to individuals, populations, or communities of organisms such that:

1. The ecological functioning of the unit is impaired or reduced to the point such that long term stability at pre-existing levels is decreased; or
2. A reduction in optimum sustained yield to sport and/or commercial fisheries results; or
3. Threatened or endangered species of aquatic life are directly or indirectly adversely affected; or
4. The magnitude of the damage constituents an unmitigable loss to the aquatic system.

The following conclusions concerning the impact of the VCSNS's intake structures on the aquatic organisms of Monticello Reservoir are preaented in terms of these four criteria.

Question 1: Is the ecological functioning of the unit (ecological community) impaired or reduced to the point such that long-term stability at pre-existing levels is decreased?

The answer to this question is no. The fish community of Monticello Reservoir is comprised primarily of gizzard shad and sunfish. Although the study results show that 83 percent of the fish impinged were gizzard shad, the loss is easily sustained by this species. Gizzard shad have a high reproductive potential and rapid rate of growth (Jester \& Jensen, 1972), and is the second most abundant species in the reservoir, having an average standing crop of about $14 \mathrm{~kg} / \mathrm{ha}$ (based on rotenone sampling conducted by Dames \& Moore in 1984). Given a normal pool surface area of 6,800 acres and even distribution, the total standing crop of gizzard shad in the reservoir is estimated at $37,679 \mathrm{~kg}$. Because the standing crop estimates are conducted in cove areas, it is likely that the standing crop of open water species, such as shad, were underestimated. The VCSNS was estimated to impinge a total of only 16 kg of shad during the study period.

Question 2. Do the VCSNS intake structures cause a reduction in optimum sustained yield to sport and/or commercial fisheries results?

The answer to this question is no. There is no reported commercial fishing in Monticello Reservoir. Even if there were commercial fishing, the losses sustained by the two major species impinged by the plani would not affect the results of such fishing. The effect on sport species and their prey is minimal and constitutes no risk to those species.

Question 3. Are threatened or endangered species of aquatic life directly or indirectly adversely affected by the intake structure of the VCSNS.

The answer to this question is no, since no rare or endangered species of aquatic life are found in the water body and none ware found in the impingement collections.

Question 4. Does the magnitude of the damage caused by the VCSNS intake structures constitute an unmitigable loss to the aquatic system?

The answer to this question is no. The effect of entrainment of fish eggs and larvae on fish populations of the Monticello Reservoir depends on a number of factors, particularly the ratio of total removed to the total entrainable. Because the total number of entrainable organisms is unknown, the impact of plant entrainment was estimated by considering the distribution of larval fish in Monticello Reservoir. There are no apparent ill effects on the fish community of Monticello Reservoir due to impingement and entrainment by the VCSNS.

Monticello Reservoir my be considered as a young, recently stabilized, warm water impoundment. The fish community in this water body is characterized by a moderately high diversity, dominated in numbers and biomass by highly productive species (gizzard shad and bluegill).

An evaluation in terms of the criteria provided in the USEPA 316(b) guidelines demonstrates that the VCSNS intake structures are comparable in function to the role of a predator, removing primarily only the young-of-the-year fish, mainly the gizzard shad in Monticello Reservoir. However, based on standing crop information, the impact is considered to be negligible and should not destabilize the adult fish community. The VCSNS design has no features that are clearly attracting fish into the immediate vicinity of the intake structure. However, the area near the intake has high densities of larval fish present, and supports a large community of adult fish. This skewed distribution in Monticello Reservoir may be attributed to the area being rich in nutrients since the water is replenished by the purping operations of the FPSF.

The continued success and stability of the dominant fish populations in the Monticello Reservoir, during the 7 years of monitoring, along with the relatively low percentage of these populations impinged by the plant's intake structures, demonstrate that the VCSNS is not causing any apparent ill effects to the aquatic community of the reservoir.

REFERENCES

*Bell, M.C., 1973. Fisheries handbook of engineering requirements and biological criteria. Fisheries Engineering Research Program, Corps of Engineers. North Pacific Division, Portland, Oregon.
*Calhoun, Alex, ed., 1966. Inland fisheries management department of fish and game. State of California, 546 pp .
*Carlander, K.D., 1969. Handbook of freshwater fishery biology, Volume I. Lowa State University Press. 752 pp.

Clay, William M., 1975. The fishes of Kentucky. Kentucky Department of Fish and Wildlife Resources, Frankfort, Ken. 416 pp.

Dames \& Moore, 1976. 316(b) Report - Allen Steam Plant. 36 pp.
\qquad , 1977. 316(b) demonstration for the Cayuga and Wabash River Generating Stations. 76 pp .
, 1978. Environmental monitoring report June 1978 - December 1978. For the Federal Energy Regulatory Commission project license number 1894 and the South Carolina Department of Health and Environmental Control. Distributed - May 1979.
_, 1979. Environmental monitoring report January 1979 - June 1979. For South Carolina Department of Health and Environmental Control. Distributed - November 1979.

1979a. Environmental monitoring report July 1979 December 1979. For the Federal Energy Regulatory Commission Project License Number 1894 and the South Carolina Department of Health and Environmental Control. Distributed - May 1980.
, 1980. Environmental monitoring report January 1980 December 1980. For the Federal Energy Regulatory Commission Project License Number 1894 and the South Carolina Department of Health and Environmental Control. Distributed - June 1981.
, 1981. Environmental monitoring report January 1981 December 1981. For the Federal Energy Regulatory Commission Project License Number 1894 and the South Carolina Department of Health and Environmental Control. Distributed - September 1982.

- 1982. Environmental monitoring report January 1982 December 1982. For the Federal Energy Regulatory Comnission Project License Number 1894. 196 pp. Distributed - January 1984.
- 1983. Environmental monitoring report, January 1983 September 1983. For the South Carolina Department of Health and Environmental Control, and the Nuclear Regulatory Commission. Distributed - February 1984.
, 1984. Environmental monitoring report, October 1983-March 1984. For the South Carolina Department of Health and Environmental Control, and the Nuclear Regulatory Commission. Distributed - June 1984.
*Douglas, Neil, 1974. Freshwater fishes of Louisiana. La. Wildlife and Fisheries Commission, Baton Rouge, La. 443 pp.

Jester, D.B. and Buddy L. Jensen, 1972. Life history and ecology of the gizzard shad, Dorosoma cepedianum, with reference to Elephant Butte Lake. New Mexico State University, Agricultural Experiment Station Research, Report 218, 56 pp.

Loar, L.M., J.S. Griffith, and K.D. Kumar, 1978. An analysis of factors influencing the impingement of threadfin shad at power plants in the southern United States. pp. 245-255. In Jensen, L.D., ed., Fourth National Workshop on Entrainment and Impingement. Chicago, Il1., December 5, 1977. Ecological Analysis, Inc., Melville, NY, 415 pp .

McClane, A.J., 1974. McClane's field guide to freshwater fishes of North America. Holt, Reinhart, and Winston. 212 pp .

McFadden, J.T., 1977. An argument supporting the reality of compensation in fish populations and a plea to let them exercise it, pp. 153-183. In Proceedings of the Conference on Assessing the Effects of Power-Plant-Induced Morality on Fish Populations. Gatlinburg, Tenn., May 3-6, 1977. Oak Ridge National Laboratory, Oak Ridge, Tenn. 361 pp.

McLean, R.B., P.T. Singley, and D. Lodge, 1981. Threadfin shad impingement, population response. 70 pp .

Pflieger, William L., 1975. The fishes of Missouri. The Misaouri Department of Conservation, 343 pp.
*Scott, W.B., and E.J. Crosman, 1973. Freshwater fishes of Canade. Bulletin 184. Fisheries Research Board of Canada, Ottawa, Canada. 966 p.

South Carolina Department of Health and Environmental Control (SCDHEC), 1978. 316(b) Demonstration Study Plan. South Carolina Electric \& Gas Company, Virgil C. Summer Nuclear Station, Unit 1, NPDES Permit Number SC0030856.
U.S. Environmental Protection Agency (USEPA), 1977. Guidance for evaluating the adverse impact of cooling water intake structures on the aquatic environment: Section 316(b) P.L. 92-500.

* Not cited.

Table 1. Standing crop of fish in Monticello Reservoir based on rotenone sampling at Stations I and K during 1984.

	$\begin{array}{r} \text { Mean } \\ \mathrm{kg} / \mathrm{ha} \\ \hline \end{array}$	Total Standing Crop in Reservoir (kg)
Bluegill	14.69	40,430.99
Gizzard shad	13.69	37,678.71
Pumpkinseed	3.48	9,577.93
Channel catfish	2.78	7,651.34
Warmouth	0.98	2,697.23
White catfish	0.70	1,926.60
Largemouth bass	1.04	2,362.37
Brown bullhead	0.61	1,678.89
Yellow perch	0.59	1,623.85
Redear	0.49	1,348.62
Silver redhorse	0.20	550.46
Threadfin shad	0.14	385.32
Whitefin shiner	0.46	1,266.05
Flat bullhead	0.15	412.84
Black crappie	0.03	82.57
Tesselated darter	0.07	192.66
Silver minnow	0.02	55.05
Swamp darter	0.01	27.52
Total	40.13	110,449.00

Table 2. Fish species collected by gillnetting and electrofishing (Station M) during the quarterly surveys in 1984.

SpeciesNumber Collected
Longnose gar 1
Gizzard shad 145
Threadfin shad 30
Carp 3
Silvery Minnow 11
Whitefin shiner 9
White sucker 1
Quillback 59
Shorthead redhorse 1
Silver redhorse 19
Striped jumprock 1
White catfish 69
Yellow bullhead 3
Brown bullhead 5
Channel cat fish 57
Flat bullhead 9
Snail bullhead 6
White bass 7
Hybrid sunfish 3
Redbreast sunfish 20
Warmouth 23
Bluegill 510
Pumpkinseed 27
Redear sunfish 8
Largemouth bass 69
White crappie 1
Black crappie 3
Yellow perch 13

Table 3 Mean density of larval fish (number/100 m^{3}) for Stations I through o during October 1983 through September 1984.

	Species	Scientific Name	Station	I	J	K	L	M	N	0
	Gizzard shad	Dorosoma	Surface Mid-depth	$\begin{aligned} & 16.37 \\ & 17.38 \end{aligned}$	$\begin{aligned} & 6.77 \\ & 6.86 \end{aligned}$	$\begin{aligned} & 12.96 \\ & 11.96 \end{aligned}$	$\begin{array}{r} 10.84 \\ 1.71 \end{array}$	$\begin{aligned} & 51.57 \\ & 10.33 \end{aligned}$	$\begin{aligned} & 8.95 \\ & 9.05 \end{aligned}$	$\begin{aligned} & 9.88 \\ & 3.13 \end{aligned}$
	Minnow	Cyprinidae	Surface Mid-depth	--	--	--	0.06	$\begin{aligned} & 0.11 \\ & 0.15 \end{aligned}$	--	0.04
	Sucker	Catostomidae	Surface Mid-depth	--	--	--	0.61	0.11	--	$\begin{aligned} & 0.24 \\ & 0.00 \end{aligned}$
	White bass	Morone chrysops	Surface Mid-depth	$\begin{aligned} & 0.08 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.12 \end{aligned}$	0.83	$\begin{aligned} & 1.64 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 1.94 \\ & 1.13 \end{aligned}$	$\begin{aligned} & 1.67 \\ & 1.86 \end{aligned}$	$\begin{aligned} & 2.29 \\ & 0.34 \end{aligned}$
$\stackrel{1}{\omega}$	Sunfish	Centrarchidae	Surface Mid-depth	0.04	--	--	--	0.03	--	--
1	Sunfish	Lepomis spp.	Surface Mid-depth	0.09	--	--	0.04	0.04	--	0.20
	Crappie	Pomoxis spp.	Surface Mid-depth	$\begin{aligned} & 0.12 \\ & 0.03 \end{aligned}$	--	--	0.03	--	--	$\begin{aligned} & 0.08 \\ & 0.04 \end{aligned}$
	Yellow perch	Perca flavescens	Surface Mid-depth	0.10		0.01	--	--	--	--
	Percid	Percidae	Surface Mid-depth	$\begin{aligned} & 0.86 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.04 \end{aligned}$	0.08	$\begin{aligned} & 0.17 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 0.04 \end{aligned}$
		Damaged Unid.	Surface Mid-depth	$\begin{aligned} & 0.74 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.09 \end{aligned}$	0.23	$\begin{aligned} & 0.07 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.19 \end{aligned}$	0.15
	Total Surfac Total Mid-De			$\begin{aligned} & 18.34 \\ & 17.89 \end{aligned}$	$\begin{aligned} & 7.03 \\ & 7.14 \end{aligned}$	$\begin{aligned} & 13.07 \\ & 12.58 \end{aligned}$	$\begin{array}{r} 13.60 \\ 2.06 \end{array}$	$\begin{aligned} & 53.92 \\ & 11.82 \end{aligned}$	$\begin{aligned} & 10.93 \\ & 11.12 \end{aligned}$	$\begin{array}{r} 14.25 \\ 2.55 \end{array}$

Table 4 Mean monthly densities of larval fish (number/ $100 \mathrm{~m}^{3}$) collected in net tows, October 1983 through September 1984. (Larval fish first appeared in the February 1984 collections.)

FEBRUARY 1984								Page 1 of 6	
Scientific or Family Name	Common Name	Station	I	J	K	L	M	N	0
Morone chrysops	White bass	Sfc Mid	--		$1 . \overline{82}$	$\begin{array}{r} 10.13 \\ \hline \end{array}$	$\begin{array}{r} 11.53 \\ 5.61 \\ \hline \end{array}$	$\begin{array}{r} 3.99 \\ 11.19 \\ \hline \end{array}$	--
Total		Sfc Mid	--	--	1.82	10.13	$\begin{array}{r} 11.53 \\ 5.61 \end{array}$	$\begin{array}{r} 8.99 \\ 11.19 \end{array}$	--

Scientific or Family Name	Common Name	Station	1	J	K	L	M	N	0
Dorosoma spp.	Shad	Sfe	--	--	--	--	--	0.70	--
		Mid	--	--	0.12	--	--	0.45	--
Morone chrysops	White bass	Sfe	--	0.27	--	0.40	1.28	1.00	0.85
		Mid	0.13	0.29	0.29	0.32	0.92	0.57	--
Perca flavescens	Perch	Sfe	--	--	---	--	--	--	--
		Mid	-	--	0.09	--	--	--	--
Percidae	Perch	Sfc	--	0.27	0.11	--	--	--	1.99
		Mid	--	0.29	0.72	--	--	--	0.26
Total		Sfe	--	0.54	0.11	0.40	1.28	1.60	2.83
		Mid	0.13	0.58	1.22	0.32	0.92	1.02	0.26

Table 4 (Continued)

APRIL 1984

Family Name	Common Name		I	J	K	L	M	N	0
Dorosoma spp.	Shad	Sfe	--	--	--	--	1.30	2.17	0.76
Dorosoma spp.		Mid	0.26	0.28	0.20	0.29	0.60	12.32	0.60
Cyprinidae	Minnows	Sfe	--	--	--	--	--	--	--
		Mid	--	--	--	0.28	--	--	--
Morone chrysops	White bass	Sfe	0.53	--	--	0.48	0.78	1.31	15.19
		Mid	--	0.56	--	--	0.60	0.21	2.38
Centrarchidae	Sunfish	Sfc	--	--	--	--	--	--	--
		Mid	0.26	--	--	--	--	--	--
Pomoxis spp.	Crappie	Sfc	0.47	--	--	--	--	--	.--
		Mid	--	--	--	--	--	--	0.30
Percidae	Perch	Sfe	5.64	0.57	--	0.25	0.25	0.97	3.88
		Mid	0.81	0.58	0.43	0.26	-	--	--
Damaged Unid.		Sfc	--	--	--	--	--	--	0.51
		Mid	--	--	-	--	--	0.21	\sim
Total		Sfe	6.63	0.57	--	0.73	2.33	4.49	20.34
		Mid	1.32	1.43	0.63	0.84	1.20	12.73	3.27

Table 4 (Continued)
Page 3 of 6

Scientific or Family Name	Common Name	Station	1	J	K	L	M	N	0
Dorosoma spp.	Shad	Sfc	89.22	44.73	48.28	18.60	49.75	38.16	43.69
		Mid	113.37	33.87	48.78	10.93	43.08	41.81	14.31
Cyprinidae	Minnows	Sfc	--	--	--	--	-	--	--
		Mid	--	--	--	0.15	0.38	--	--
Catostomidae	Sucker	Sfc	--	--	--	4.26	0.51	--	--
		Mid	--	--	--	--	--	--	--
Morone chrysops	White bass	Sfe	--	--	--	0.47	--	0.37	--
		Mid	0.17	--	0.21	1.41	0.75	1.03	--
Centrarchidae	Sunfish	Sfe	--	--	--	--	--	--	--
		Mid	--	--	--	--	0.19	--	--
Pomoxis spp.	Crappie	Sfe	0.35	--	--	0.24	--	--	0.59
		Mid	0.18	--	--	--	--	--	-
Perca flavescens	Perch	Sfe	0.69	--	--	--	--	--	--
		Mid	--	--	--	--	--	--	--
Percidae	Perch	Sfc	0.35	0.27	--	0.71	0.33	0.19	0.89
		Mid	0.38	--	0.21	--	--	--	--
Damaged Unid.		Sfe	3.08	0.27	0.56	--	0.50	1.29	0.26
		Mid	1.64	0. 27	0.37	-	1.28	1.12	--
Total		Sfc	93.67	45.26	48.85	24.28	51.09	40.01	45.42
		Mid	115.73	34.14	49.55	12.48	45.69	43.96	14.31

Scientific or Family Name	Cormon Name	Station	1	J	K	L	M	N	0
Dorosoma spp.	Shad	Sfe	21.72	2.65	42.30	57.25	309.51	21.39	24.70
		Mid	7.26	13.57	34.62	0.78	28.03	8.78	6.98
Cyprinidae	Minnows	Sfe	--	--	--	--	0.76	--	0.28
		Mid	--	--	--	--	0.31	--	--
Catostomidae	Sucker	Sfe	--	--	--	--	0.25	--	1.69
		Mid	--	--	--	--	--	--	--
Morone chrysops	White bass	Sfe	--	--	--	--	--	--	--
		Mid	--	--	--	--	--	--	--
Lepomis spp.	Sunfish	Sfc	--	--	--	0.27	0.27	--	1.41
		Mid	--	--	--	--	--	--	--
Percidae	Perch	Sfc	--	0.22	0.13	0.53	--	--	2.81
		Mid	--	--	-	--	--	0.14	--
Damaged Unid.		Sfe	1.58	--	--	1.60	--	--	0.28
		Mid	--	--	0.19	--	--	--	--
Total		Sfe	23.30	2.86	42.12	59.65	310.79	21.39	31.17
		Mid	7.26	13.57	34.81	0.78	28.54	8.91	6.98

Table 4 (Continued)

JULY 1984
Scientific or
Family Name
Dorosoma spp.

Damaged Unid.

Total

Common Name	Station	I	J	K	L	M	N	0
Shad	Sfc	3.20	--	--	--	0.27	--	--
	Mid	0.79	0.27	--	--	0.26	--	--
	Sfe	0.49	--	--	--	--	--	--
	Mid	--	--	--	-	--	--	--
	Sfe	3.69	--	--	--	0.27	--	--
	Mid	0.79	0.27	--	--	0.26	--	-

AUGUST 1984
Scientific or
Family Name

Dorosoma spp.

Cyprinidae

Lepomis spp.

Common Name	Station	1	J	K	L	M	N	0
Shad	Sfe	--	--	--	--	0.16	--	--
	Mid	--	--	--	--	0.32	--	--
Minnows	Sfe	--	--	--	--	--	--	--
	Mid	--	--	--	--	0.18	--	--
Sunfish	Sfe	0.62	--	--	--	--	--	--
	Mid	--	--	--	--	--	--	--
	Sfe	0.62	--	--	--	0.16	--	--
	Mid	--	--	--	--	0.50	--	--

Table 4 (Continued)
Page 6 of 6

SEPTEMBER 1984

Scientific or Family Name	Common Name	Station	I	J	K	L	M	N	0
Dorosoma spp.	Shad	Sfe	0.45	--	--	--	--	--	--
		Mid	--	--	--	--	--	--	-
Total		Sfc	0.45	--	--	--	--	--	--
		Mid	--						--

Table 5 A comparison of larval fish mean densities at Stations I, L, and M for the dates indicated. ${ }^{\text {a }}$

$1 \quad \mathrm{~L}$	1	M	L	M
$7.96{ }_{p<0.001}{ }^{1.57}$		$0.05)^{3.53}$	0.01<p. 0.02	
$209.40 \quad p<0.001^{36.76}$	209.40	$\begin{aligned} & 96.78 \\ & 001 \end{aligned}$	$p<0.001$	
$\begin{gathered} 30.52 \quad 60.43 \\ (0.01<p<0.05)^{60} \end{gathered}$	30.52	$\begin{aligned} & 339.33 \\ & 001 \end{aligned}$	$\mathrm{p}<0.001$	

[^0]

"A"ELEVATION $=420^{\prime}-5^{\prime \prime}$ (NORMAL DRAWDOWN)
"B"ELEVATION $=418^{\prime}-0$ " (EMERGENCY DRAWDOWN)
"C"ELEVATION $=415^{\prime}-6^{\prime \prime}$ (BOTTOM OF SKIMMER WALL)

Figure 2. Intake Structure - Condenser Cooling Water V.C. Surmmer Nuclear Station.

Figure 3. Study Area Map

Figure 4. Total Number of Impinged Fish Collected During the Study Period.

Figure 5. Species of Impinged Fish, including percent occurence and weight, collected during the study.

кer
(3) sample size

makimum nean

Figure 9. Total Numbers of Impinged White Catfish, by Month.

Figure 10. Total Numbers of Impinged Bluegill, by Month.

APPENDIX A

SAMPLING PROCEDURES FOR LARVAL AND ADULT FISH

Impingement - The VCSNS pumps approximately $530,000 \mathrm{gpm}$ from Monticello Reservoir through the cooling water intake when the nuclear station is operating at full capacity. The intake structure utilizes six traveling screens which cycle on a pressure differential basis. All impinged organisms were sequentially washed from each of the traveling screens during each cycle into a catch basin.

This 316(b) investigation was conducted by collecting impinged organisms from all six screens approximately every 8 hours over a 24 -hour period. These investigations began within 2 weeks of commercial operation and continued every 2 weeks for 1 year. The screens were washed immediately before each 8 -hour sampling period. At the end of the 8 -hour impingement test, the wash cycle (of approximately 5 minutes duration) was initiated and all impinged organisms were collected in a basket inserted into the catch basin. The impinged organisms were placed in containers, packed in ice, and returned to the laboratory for identification, enumeration, length and weight by species. The fish were also examined for incidence of ectoparasites. Data sheets were completed for impinged organisms and included job number, date and time of collection, number of the traveling screen, and name of collector(s).

Entrainment - The entrainment studies evaluated potential impacts of cooling water intake on the ichthyoplankton during plant operation to confirm utilization of best technology available. Duplicate ichthyoplankton samples were collected at Stations I, L, and M at both the surface and mid-depth. Collections at Stations I and M were obtained approximately one-half hour after sunset. Station L was sampled during the generation phase of the Fairfield Pumped Storage Facility. All samples were collected by towing flow-metered plankton nets, having
0.75 meter diameter mouth openings, and a mesh size of 363 micrometers. Sampling was conducted until approximately 100 cubic meters of water had passed through the net. Sampling frequency was weekly during mid-February through June, every two weeks from July through September, and monthly from October through January.

The collected organisms were preserved and returned to the laboratory for identification, measurement, and enumeration. Densities of egge and larvae collected as ichthyoplankton were compared for spatial ard temporal variations in distribution, with particular emphasis on characterizing the ichthyoplankters in the vicinity of the plant intake (Station M), as compared to those near the Fairfield Pumped Storage Facility intake (Station L), and the farthest point from the intake (Station I).

Data Analysis - A summary of the fish impinged was presented in tabular form by enumeration of species, length and weight, and by collection period.

Analysis for entrained organisms was by comparing ichthyoplankton densities at the northern section (Station I) of Monticello Reservoir with those at the southern section (Stations L and M). Composite sample densities were calculated to determine if significant differences occurred at the stations.

Larval Fish Collections - Larval fish collections were also made at Stations J, K, L, and 0 in Monticello Reservoir as part of the overall biological monitoring requirements for the VCSNS license requirements. The samples were collected at these locations by identical methods as described earlier.

APPENDIX B
AVERAGE INTAKE AND DISCHARGE TEMPERATURES, AVERAGE FLOW, AND GROSS THERMAL POWER ${ }^{1}$

1 All data in Appendix B was provided by SCE\&G personnel.

VIRGIL C. SUMMER HUCLEAR STATION CIRCULATING WATER, 1983-1984

AVERAGE INTAKE TEMPERATURE (${ }^{\circ} \mathrm{F}$)

Day	1983			1984								
	Oct	Nov	$\underline{\text { Dec }}$	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	75.0	68.0	--	48.5	46.1	49.1	--	--	71.5	77.4	79.3	81.0
2	75.1	67.7	--	48.3	46.0	48.9	--	--	71.2	76.85	78.6	80.5
3	74.8	67.9	--	48.2	46.3	49.1	--	58.4	71.0	77.6	78.8	79.6
4	74.6	67.7	--	48.7	48.0	49.3	--	59.7	71.8	76.6	79.5	80.2
5	74.8	67.4	--	48.8	47.0	48.9	--	61.4	71.4	76.5	79.8	80.5
6	75.6	66.8	--	48.9	45.8	51.2	--	62.4	71.0	77.7	80.2	80.1
7	75.8	66.5	--	49.4	46.4	52.7	--	64.0	72.5	78.4	80.4	79.4
8	75.3	66.2	--	49.3	46.4	50.1	--	63.0	72.5	79.4	80.7	78.7
9	75.2	66.0	--	47.9	46.5	49.8	--	63.6	72.9	78.7	80.5	78.2
10	74.8	66.4	--	48.1	46.0	50.1	--	64.0	73.05	78.6	81.6	78.4
11	74.5	65.1	--	49.3	46.9	50.4	--	63.4	73.4	79.0	81.3	78.8
12	74.0	64.5	--	48.3	46.8	49.9	--	64.0	73.8	79.2	81.0	79.1
13	73.5	64.2	56.3	48.1	46.9	50.9	--	65.8	74.4	79.8	80.9	78.9
14	72.9	63.7	55.8	--	48.9	52.2	--	67.0	75.1	79.6	81.0	78.5
15	73.1	63.1	55.7	--	50.7	52.7	--	68.8	75.3	79.4	81.5	78.3
16	72.5	62.7	55.2	47.7	50.9	52.1	--	68.9	75.0	--	81.1	77.6
17	73.0	62.0	55.0	47.5	49.8	52.8	--	68.8	76	--	81.4	76.8
18	72.7	61.5	--	47.0	50.5	54.2	--	67.4	76.5	--	81.1	76.1
19	72.6	61.5	53.7	47.6	50.6	54.2	--	66.3	76.6	--	80.8	76.1
20	72.8	60.9	52.9	47.7	50.4	52.7	--	--	77.9	--	81.5	75.8
21	72.0	61.1	52.5	47.9	52.9	51.5	--	68.5	78.0	--	81.3	75.5
22	70.9	61.3	52.5	47.	53.2	52.4	--	68.3	78.4	--	81.2	75.2
23	69.9	60.9	51.8	46.5	53.8	52.5	-	68.9	78.0	--	81.8	75.9
24	70.2	61.0	51.4	47.4	51.4	-	57.2	72.1	77.7	--	81.7	76.3
25	69.9	60.7	49.7	47.6	51.2	--	58.1	70.5	78.5	80.9	81.6	76.4
26	70.1	-	48.7	47.7	51.6	--	-	70.8	78.7	80.0	80.7	76.5
27	69.4	--	49.3	48.4	50.9	--	--	70.0	76.4	79.6	79.8	78.0
28	69.0	-	49.1	47.7	49.7	--	--	70.2	77.1	79.5	79.6	76.0
29	68.5	--	49.5	47.0	48.6	--	-	71.9	77.8	79.7	79.8	75.0
30	68.1	-	49.2	46.5		--	--	73.6	77.2	79.2	80.2	--
31	67.8	--	48.7	46.6		--	--	73.0	--	79.4	80.5	--

VIRGIL C. SUMMER NUCLEAR STATION

 CIRCULATING WATER, 1983-1984
AVERAGE DISCHARGE TEMPERATURE (${ }^{\circ} \mathrm{F}$)

	1983			1984								
Day	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Ju1	Aug	Sep
1	99.8	93.2	--	75.7	73.0	74.8	--	--	96.1	97.6	104.3	103.7
2	99.5	92.6	--	75.9	72.9	75.5	--	--	96.4	96.9	103.9	103.0
3	99.5	93.0	--	75.5	73.4	76.1	--	73.5	96.45	97.7	104.35	02.2
4	99.8	92.5	--	75.4	74.6	75.8	--	81.65	97.3	97.1	105.2	102.2
5	99.8	91.5	--	75.1	73.6	74.9	--	67.4	96.8	97.0	105.5	102.2
6	100.2	91.3	--	75.0	72.4	76.7	--	64.9	96.5	98.0	105.9	101.4
7	100.4	91.0	--	74.5	64.3	78.8	--	76.2	98.0	98.7	106.1	100.5
8	99.5	91.2	--	75.3	52.3	76.6	--	87.5	97.9	99.5	106.3	99.8
9	99.6	91.0	--	74.4	49.7	75.3	--	88.1	98.15	98.7	106.2	99.0
10	99.1	91.4	--	75.3	49.1	75.6	--	88.8	98.35	99.0	107.2	99.1
11	98.8	89.5	--	75.6	66.0	76.0	--	88.7	98.7	99.8	106.9	99.6
12	98.9	89.8	--	74.2	73.7	76.0	--	89.5	99.1	100.0	106.5	99.8
13	97.4	89.3	57.8	73.5	74.0	76.6	--	91.25	99.6	100.5	106.3	99.4
14.	95.1	86.5	59.4	--	75.8	77.7	--	92.4	100.4	84.1	106.6	98.9
15	95.6	87.9	59.9		76.4	78.0	--	93.4	100.7	80.3	107.0	98.3
16	95.1	86.9	58.5	74.3	76.8	78.1	--	93.2	99.9	--	98.7	97.3
17	95.	86.3	55.5	61.2	76.1	78.6	--	92.2	99.1	--	83.75	596.4
18	96.3	86.1	--	70.6	76.4	80.1	--	92.2	99.5	--	93.1	95.4
19	97.1	86.4	58.8	79.6	76.9	80.3	--	91.6	99.7	--	101.2	9
20	83.0	85.9	73.5	77.8	76.5	78.8	--	--	100.8	--	100.0	95
21	77.9	85.5	76.4	74.2	79.3	77.1	--	93.9	100.45	--	105.4	94
22	77.4	85.9	78.4	73.7	79.7	78.1	--	93.7	100.5	--	105.9	94
23	73.7	84,4	77.7	73.4	79.3	62.6	--	94.4	98.2	--	106.4	94
24	89.0	62.8	76.5	74.4	77.0	--	82.7	97.2	97.95)	106.3	94
25	95.1	61.9	75.7	74.2	76.6	--	67.7	95.7	98.9	81.8	106.0	94
26	95.2	--	75.3	73.7	76.8	--	--	96.1	99.1	81.2	105.0	94
27	94.2	--	76.0	74.4	76.7	--	--	95.5	96.8	84.4	104.0	95
28	93.7	--	75.8	73.4	76.3	--	--	95.5	97.7	90.3	103.3	91
29	93.6	--	75.7	73.3	75.0	--	--	96.9	98.1	88.2	103.15	575
30	93.0	--	75.4	73.1		--	--	98.0	97.7	92.4	103.4	
31	92.9	--	75.7	73.4		--	--	97.15	5 --	99.6	103.6	

VIRGIL C. SUMMER NUCLEAR StATION CIRCULATING WATER, 1983-1984

AVERAGE FLOW (MGD)

Day	1983			1984								
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	769.0	769.0	--	769.0	769.0	769.0	--	--	769.0	768.96	768.96	768.96
2	769.0	769.0	--	769.0	769.0	769.0	--	--	769.0	768.96	768.96	768.96
3	769.0	769.0	--	769.0	769.0	769.0	--	769.0	769.0	768.96	768.96	768.96
4	769.0	769.0	--	769.0	769.0	769.0	--	769.0	769.0	768.96	768.96	768.96
5	769.0	769.0	--	769.0	769.0	769.0	--	769.0	769.0	768.96	768.96	768.96
6	769.0	769.0	--	769.0	769.0	769.0	--	769.0	769.0	768.96	768.96	768.96
7	769.0	769.0	--	769.0	769.0	769.0	--	769.0	769.0	768.96	768.96	768.96
8	769.0	769.0	--	769.0	769.0	769.0	--	769.0	769.0	768.96	768.96	768.96
9	769.0	769.0		769.0	769.0	769.0	--	769.0	769.0	768.96	768.96	768.96
10	769.0	769.0	--	769.0	769.0	769.0	--	769.0	769.0	768.96	768.96	768.96
11	769.0	769.0		769.0	769.0	769.0	--	769.0	769.0	768.96	768.96	768.96
12	769.0	769.0		769.0	769.0	769.0	--	769.0	769.0	768.96	768.96	768.96
13	769.0	769.0	769.0	769.0	769.0	769.0	--	769.0	769.0	768.96	768.96	768.96
14	769.0	769.0	769.0		769.0	769.0	--	769.0	769.0	566.84	768.96	768.96
15	769.0	769.0	769.0		769.0	769.0	--	769.0	769.0	512.64	768.96	768.96
16	769.0	769.0	769.0	769.0	769.0	769.0	--	769.0	769.0	--	768.96	768.96
17	769.0	769.0	769.0	609.0	769.0	769.0	--	769.0	769.0	--	768.96	768.96
18	769.0	769.0		513.0	769.0	769.0	--	769.0	769.0	--	768.96	768.96
19	769.0	769.0	769.0	513.0	769.0	769.0		769.0	769.0	--	768.96	768.96
20	769.0	769.0	769.0	598.0	769.0	769.0	--	--	769.0	--	768.96	768.9
21	769.0	769.0	769.0	769.0	769.0	769.0		769.0	769.0	--	768.96	768.
22	769.0	769.0	769.0	769.0	769	769.0	--	769.0	769.0	--	768.96	768.
23	769.0	769.0	769.9	769.0	769.0	769.0	--	769.0	769.0	--	768.96	768.
24	769.0	535.0	769.0	769.0	769.0	--	--	--	769.0	768.96	768.96	768.9
25	769.0	513.0	769.9	769.0	769.0	--	769.0	769.0	769.0	768.96	768.96	768.9
26	769.0	--	769.0	769.0	769.0	--	769.0	769.0	769.0	768.96	768.96	768.
27	769.0	--	769.0	769.0	769.0	--	--	769.0	769.0	768.96	768.96	768.
28	769.0	-	769.0	769.0	769.0	--	--	769.0	769.0	768.96	768.96	768.
29	769.0	--	769.0	769.0	769.0	-	--	769.0	769.0	768.96	768.96	480.
30	769.0	--	769.0	769.0		--	--	769.0	769.0	768.96	768.96	--
31	769.0	--	769.0	769.0		--	--	-*	--	768.96	768.96	

TABLE B-4
VIrgil C. SUMMER NUCLEAR STATION gross thermal power

Page 1 of 2
"GROSS MNHT"

Day	1983			1984								
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
26	66,600	0	66,600	66,400	66,267	0	582	66,533	53,146	304	62,204	44,289
27	66,660	0	66,600	66,267	66,400	0	0	66,533	53,146	9,598	61,671	44,289
28	66,600	0	65,934	66,600	66,333	0	111	66,533	53,146	24,916	60,206	37,601
29	66,600	0	66,600	66,600	66,399	0	194	66,600	53,546	20,141	59,274	0
30	69,375	0	66,600	66,600		0	0	66,400	53,013	31,713	59,074	0
31	66,600	-	66,600	66,600		0	--	66,533	--	50,888	58,141	--

APPENDIX C

ORGANISMS IMPINGED ON THE INTAKE SCREENS
V.C. SUMMER NUCLEAR STATION
TABLE C-1
SUMMARY OF ORGANISMS IMPINGED DURING OCTOBER 1983 AT THE VCSNS INTAKE
IMP INGEMENT STUDY FOR THE
VIRGIL C. SUMMER NUCLEAR PLANT

WATER

(4) $03 a$
dw 31
$\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
$\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}$

AVQ (WEIGHT-RANGE)
WEIGHT (GRAMS)

$\begin{array}{cccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \omega & 0 & 1 & N & 1 & 0 & = & 1 & \operatorname{com} & 0 & 0 & 1\end{array}$

IMPINGEMENT STUDY FOR THE
UIRGIL C SUMMER NUCLEAR
UIRGIL C SUMMER NUCLEAR PLANT
AVG (WEIGHT-RANGE) STD.
WEIGHT
(GRAMS) 8888
$8-8$
; 8

(d) $23 a$
dw 31
0
600
00
00
00
0
0
0
0
0
0
0
0
0
0
5 080
m
0
Mn
$\overline{0}$

NOUEMBER NUMBERYEAR 1983	
SPECIES	
GIZZARD SHAD	2
WHITE CATFISH	1
CHANNEL CATF ISH	SH
WHITE BASS	1
HOUR-0400 CDUNT	CIUNT
QIzZARD SHAD	1
WHITE CATFISH	4
BLACK CRAPPIE	1
HOUR-OBOO COUNT	COUNT =
MHITE CATFISH	1
CHANNEL CATE ISH	SH
HOUR-1200 COUNT	COUNT *
Q1ZZARD SHAD	1
WHITE CATFISH	3
HOUR-1600 COUNT	COUNT -
QIzZARD SHAD	1
WHITE CATFISH	3
こHANMEL CATF ISH	SH
WHITE BASS	1
HOUR-2000 COUNT	COUNT $=$
WHITE EATEISH	1
HOUR-0200 COUNT	CDUNT -
WHITE CATFISH	10
BLACK CRAPPIE	1
HOUN-1000 COUNT	COUNT *

NUMBER AVG (LLENOTH-RANGE) STD

 WATER
TEMP
DEQ(F) NNN \qquad
 nnnnnmin nnnnnnnn nnnn
ogogogogog ogog
ogog

AVG (WEIGHT-RANGE) STD.
WEIGHT (GRAMS)$\begin{array}{rrr}331 & 2 & - \\ 751 & 4- \\ - & - & -\end{array}$ WEIGHT
1 1 73 -
 1
\vdots
in
i

 C-3
AVG（WEIGHT－RANOE）STD．
WEIGHT（GRAMS）
DEV．
 $\begin{array}{ll}\text { AVG（LENGTH－RANGE）STD } \\ \text { LENGTH } \\ \text {（MM）} & \text { DEV }\end{array}$
 ＊OOON0001mingonnoinNotrininooooutioooruningoon

 ～－－－－．．． \qquad ：NNOODON： \qquad

10 ールー～ール ， ～ー～ ${ }^{1}$ いいい。 | 8 |
| :---: |
| 8 |
| 8 |
| 8 | ${ }^{11} 1$ COUNT

＋0000no时笑ORO

\square

$$
0000
$$ 1NnOOD

$\overbrace{}^{\circ}$

$$
1=
$$

mino
 HOUR－OOOO COUNT＝ 126

[^1] QIZZARD SHAD
WHITE BASS BLUEGILL PUMPKINSEED BLACK CRAPPIE
YELLOW PERCH 0091 － H OOH QIZZARD SHAD CHANNEL CATFISH WHITE CRAPPIE BLACK CHAPPIE WHITE CATFISH PUMPKINSEED VELLOW PERCH HOUR－08OO
GIZZARD SHAD
 FLAT BULLHEAD
46.0
46.0
46.0
46.0
46.0
46.0 0000
$\omega \infty \infty \omega \infty$
to

ninngm nimm品 ninn

AVG WE IGHT		(ME: IGHT-RANGE)		STD	TOTAL			INFLOW		
		(GRAMS)		DEV	WEIGHT	TIME-DATE		MILLION		
			(KG)	GAL/DAY						
3	4			12	- 5)	0. 33	0. 257	0100	$02 / 10$	767. 0
24	5	14	45)	20. 50	0. 049	0100	02/10	767.0		
6	b	14	13)	1. 38	0. 131	0100	02/10	767. 0		
- -	-	- - -	- - - -	- - -	HOUR-0100 WEICHT =		437 (GRAMS)			
3	6	12	5)	0. 98	0. 459	0900	02/10	769.0		
B	1	14	7)	1. 79	0. 055	0900	02/10	769.0		
	-	- - -	- - - -	-	HOUR-0700 WEIGHT =		514 (GRAMS)			
3	7	12	9)	0.97	0. 313	1700	02/10	769.0		
3	0	13	3)	O. 00	0. 003	1700	02/10	767.0		
2	0	12	- 2)	-. 00	0. 002	1700	02/10	769.0		
5	B	14	7)	2.05	0. 023	1700	02/10	767.0		
-	-	- - -	- - - -	-	HOUR-1700 WEIGHT *		341 (GRAMS)			
3	3	12	9)	1.58	- 0B2	0100	02/23	769.0		
11	0	12	20)	9.00	-. 022	0100	$02 / 23$	767.0		
4	0	14	4)	0.00	0. 004	0100	02/23	767.0		
3	0	13	3)	O. 30	-. 006	0100	02/27	769.0		
5	7	15	6)	0. 47	0. 017	0100	02/23	767.0		
5	6	14	9)	1. 22	O. 138	0100	$02 / 23$	769.0		
- -	-	-	- - - -	- - -	HOUR-0100 WEIGHT =		249 (GRAMS)			
3	2	12	- 4)	0.63	0. 051	0900	02/23	767.0		
2	0	12	2)	0. 00	0.002	0900	02/23	769.0		
8	0	1 1	B)	0. 00	0. 008	0900	02123	767. 0		
5	0	15	5)	0. 30	0. 005	0900	$02 / 23$	769.0		
0	5	17	11)	150	0. 051	0900	02123	767.0		
- -	-	- -	- - -	-	HOUR-0700 WEIOHT =		117 (QRAMS)			
3	9	12	7)	- 89	-. 104	1700	02/23	769.0		
5	0	15	5)	- 00	-. 005	1700	$02 / 23$	769.0		
θ	4	15	- 121	1. 71	D. 084	1700	02123	769.0		
-	-	- -	- - -	- -	HOUR-1700 WEICHT =		193 (GRAMS)			

 NUMBER FEBRUARY
YEAR 1984
SPECIES

QIZZARD SHAD
HHITE CATFISH
YELLOW PERCH
HDUR-OIOO C
QIZZARD SHAD
YELLOW PERCH
HOUR-O9OO C
QIZZARD SHAD
FLAT BULLHEAD
BLUEQILL
YELLOW PERCH
HDUR-17OO C
GIZZARD SHAD
WHITE CATFISH
PUMPKINSEED
PEDEAR SUNFISH
WHITE CRAPPIE
YELLOW PERCH
HOUR-DIOJ C
GIZZARD SHAD
BLUEGILL
PUMPKINSEED
BLACK ERAPPIE
YELLOW PERCH
HOUR OOOO C
QIZZARD SHAD
BLACK CRAPPIE
YELLDW PERCH
HDUR -17OO CD $\begin{array}{lr}\text { Q122ARD SHAD } & 76 \\ \text { HHITE CATFISH } & 2 \\ \text { YELLOW PERCH } & 20\end{array}$
 YELLOW PERCH aVHS auvz210
$=$ INNOS OObO-anOH HDUR -1700 COUNT

TOTAL COUNT
IMP INGEMENT STUDY FOR THE
PLANT
AVG. (WEIGHT-RANGE) STD. MARCH
YEAR 1984 NUMBER
SPECIES
$110)$
$225)$
71.20

E8888=

nnnnnn

nnmmn $\bar{n} \bar{n} \bar{n} \bar{n}$

TABLE C-7 (Cont inued)
IMP INGEMENT STUOV FOR THE:
VIRGIL C SUMMER NUCLEAR PLANT
かnnnn保加

$$
\begin{aligned}
& \text { INFLOW } \\
& \text { MILLION }
\end{aligned}
$$

$$
\begin{aligned}
& \text { GALILIONY } \\
& \text { CAL }
\end{aligned}
$$

$$
0696
$$

$$
\begin{aligned}
& 0.69 L \\
& 0 \\
& 0 \\
& 0 \\
& \hline 69 L
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& n
\end{aligned}
$$

\qquad
000

Bis

$$
\begin{array}{ll}
\text { GHT } & 3816 \\
0100 & 06 / 28 \\
0100 & 06 / 28 \\
0100 & 05 / 29
\end{array}
$$

os

$$
\begin{gathered}
\text { oobob } \\
0.06
\end{gathered}
$$

$$
\begin{array}{r}
100 . \\
250 \\
250 \\
\hline
\end{array}
$$

$$
\text { IHOI } 3 \text { M OOLI-ZOOH }
$$

$$
\begin{aligned}
& 3 \mathrm{NOO} \\
& 2000
\end{aligned}
$$

$$
7 * 101
$$

$$
\begin{array}{rl}
0.018 & 0100 \\
\text { HOUR-O100 WEIGHT } & 06128 \\
\hline
\end{array}
$$

88888

888
！$: 888$
888 00000

$$
\begin{aligned}
& 11 \\
& 161 \\
& 16 \\
& \hline 16
\end{aligned}
$$

'

$\begin{array}{lll}\text { AVG（LENGTH－RANGE）} & \text { STD } \\ \text { LENGTH（MM）} & \text { DEV }\end{array}$

$64.5,-\overline{45}$

$$
19
$$

＇，$_{188}^{88} 8^{\prime}, 888^{\prime \prime} 88^{\prime}$$18000,000,001$

$$
\begin{aligned}
& 88
\end{aligned}
$$ JUNE

YEAR 1984
SPECIES

QIZZARD SHAD

 THREADFIN SHAD WHITE CATFISHCHANNEL CATFISH BLACK CRAPPIE HOUR－O100
HITE CATFISH BLUEQILL BLACK CRAPPIE YELLOW PERCH THREADFIN SHAD CHANNEL CATFISH YELLOW PERCH QIZZARD SHAD THREADFIN SHAD BLACK CRAPPIE HOUR－O100
WHITE CATFISH WHITE CATFISH
CHANNEL CATFISH HOUR－0900 HHITE CATFISH YELLOW PERCH

TOTAL COUNT

$$
\begin{aligned}
& 7 \\
& 2 \\
& 1 \\
& 2
\end{aligned}
$$

- N00, 00000000,0000, on!
$\begin{array}{cc}\text { AUG. (WE IGHT-RANGE) STD. } \\ \text { HEIGHT } & \text { (GRAMS) } \\ \text { DEV. }\end{array}$ ตֹn

लं!

$3 M 150 \%$
$\angle 00$
100
$3 M 00 \angle 0$ t 200
L 100
100
100
100
M 002

HOUR-0
HOUR-2
Ni

$$
\text { nnon } 1000 \text { no noo } 1000010 \text { N }
$$

$$
---\mathrm{N}-\mathrm{N}-
$$

| AVG (LENGTH-RANGE) STD | AVG (WEIGHT-RANGE) STD | |
| :--- | :--- | :--- | :--- |
| LENGTH (MM) | LEV. | WEIGHT (GRAMS) |

8888
no no
' 88
8
$18898: 8$
$, ~ w o n o: ~$
TOTAL
WEIGHT
(KG)
0.013
0.006
0.010
0.004
HOUR -0730 WE IO
0.001
0.002
0.002
HOUR -2330 WEIO
0.007
0.006
0.102
0.178
HOUR -1300 WEI OH
0367
HDUR-2100 WEI

$\begin{array}{ccc}0 & 367 & 2100 \\ \text { HOUR -2100 WEIOHT }\end{array}=\quad 36716$
$08 / 10$
$08 / 10$
$08 / 10$
$08 / 10$
331 GR
$08 / 10$
$8 / 10$
$3 / 10$ $08 / 23$
$09 / 23$
$08 / 23$
$08 / 23$
ni
N
or
ru
HOUR-2330 WE I GMT
0.007
0.006
0.1300
0.178
HOUR -1300 WEIGHT
O 1300
0

一呙: : mf
noon
IMP INGEMENT STUDY FOR THE
VIRGIL C SUMMER NUCLEAR PL

SUMMARY OF ORGANISMS IMPINGED DURING SEPTEMBER 1984 AT THE VCSNS INTAKE

PLANT

AVG (WEIGHT-RANGE) STD
WEIGHT
(GRAMS) DEV
8888'88
808
00
N
Nิ
n

os
E.

 :8
 HOUR-OBOO WEIGHT = S16IGRAMS)
TOTAL COUNT
GRAND TOTALS FOR ALL COLLECTING PERIODS NUMBERS ALL SPECTES * 5140
WEIGHT IN KILOGRAMS $=31019$
HE I THER WE IGHT NOR LEINGIH TJOR DO THEY INCLUDE CORBICULA
COUNT OF INVERTEBRATES NOT INCLUDED IN ABOVE TOTALS

TABLE C－12

IMP INGEMENT STUDY FOR THE
VIRGIL C SUMMER NUCLEAR PLANT

PATHOL IGY OF ALL SPECIMENS WITH DAMAGE FOUND AT SCREEN INSPECTIDN

 PLUS NI IMPINGEMENT FTIUND AT SCREEN INSPECTION AT DATE－TIME
YEAR 198.3

NO SPECIMENS IMPINOED AT $0345-10-28$ 日 83 INSPECTION DF SCREENS
PATHOLDGY OF WHITE CATFISH IMPINGED AT 10 2日 B3 HOUR 1545 IS DAMAGED，NO ACCURATE BODY WT／LEN POSSIBLE PATHOLDGY OF WHITE CATFISH IMPINGED AT 102863 HOUR 1545 IS DAMAGED，NG ACCURATE BOOY WT／LEN POSSIBLE PATHOLNOY OF WHITE CATFISH IMPINGED AT 10 IMPINGED AT 1028 B3 HOUR 1945 IS DAMAGED，NO ACUURATE BOOY WT／LEN POSSIBLE． NO SPECIMENS IMPINOED AT 2345－10－28 83 INSPECTION DF SCREENS NO SPECIMENS IMPINGED AT OO00－11－09 83 INSPECTION DF SCREENS
PATHOL IGY OF WHITE CATFISH IMPINGED AT 110983 HOUR 1200 IS DAMAGED，NO ACCURATE BUOY WT／LEN POSSIBLE NO SPECIMENS IMPINGED AT 1800－11－22 83 ＂NSPECTIINN DF SCREENS PATHOLNOY OF OIZZARD SHAD PATHOLDGY OF GIZTARD SHAD PATHOLNGY OF GIZZARD SHAD PATHOLNGY OF BLACK CRAPPIE PATHOLNGY OF BLACK CRAPPIE PATHOLIGY OF GIZZARD SHAD PATHOLOGY OF QIZZARD SHAD PATHOLOQY OF GIZZARD SHAD PATHOL OOY OF OIZZARD SHAD PATHOLNGY OF GIZZARD SHAD PATHOLOGY OF GIZZARD SHAD
PATHOLOGY OF GIZZARD SHAD PATHOLOGY OF GIZZARD SHAD PATHOLOGY OF GIZZARD SHAD PATHOLNGY OF WHITE CATFISH PATHOLOGY OF WHITE CATFISH PATHOLOGY OF WHITE CATFISH PATHOLOGY OF GIZZARD SHAD PATHOLOGY OF GIZZARD SHAD PATHOLNOY OF GIZZARD SHAD PATHOLOGY OF GIZZARD SHAD PATHOLOGY OF GIZZARD GHAD PATHOLDGY OF GIZZARD SHAD PATHOLOGY OF GIZZARD SHAD PATHOLNGY OF GIZZARD SHAD PATHOLOGY OF GIIZARD SHAD PATHOLOGY OF GIZZARD GHAD PATHILLOGY OF GIZLARD SHAD PATHOLDGY OF GIZZARD SHAD PATHOLIGY OF GIZ7ARD SHAD PATHOLOGY OF GIZZARD SHAD PATHDLDGY DF GIZZARD SHAU PATHOLOGY OF GIZZAPD SHAD PATHOLDGY OF WHITE CATF ISH PATHOLIIGY OF GI7JARD SHAD PATHOLGOY OF GI77ARD SHAN

PG FHOLIGY OF GIZZARD SHAD IMP INGE AT 1215 E3 HOUR 1600 IS SLIGHT DAMAGE，LESIONS－EYES，FINS MISSING，ETC IMPINGED AT 1229 E3 HOUR 500015 SLIGHT DAMAGE，LESIONS－EYES．FINS MISSING，ETC IMP INGED AT 1229 B3 HOUR 0000 IS SLIGHT OAMAGE，LESIONS－EYES，FINS MISSING，ETC IMP INGED AT 122983 HOUR 0000 IS SLIGHT DAMAGE，LESIONS－EVES，FINS MISSING．ETC IMPINGED AT 1229 日3 HOUR 0000 IS SLIGHT OAMAGE，LESIONS－EVES．FINS MISSING．ETC IMPINGED AT 122983 HOUR 000015 SLIGHT DAMAGE，LESIONS－EYES，FINS MISSING．ETC． IMPINGED AT 122983 HOUR 080015 SL．IGHT DAMAGE，LESIONS－EVES，FINS MISSING，ETC． IMPINGED AT 122983 HOUR OBOO 15 SLIGHT DAMAGE，LESIONS－EYES．FINS MISSING．ETC． IMPINGED AT 1229 日3 HOUR O日O0 IS SLIGHT DAMAGE，LESIONS－EYES，FINS MISSING，ETC IMP INGED AT 122983 HOUR 0800 IS DAMAGED，NO ACCURATE BODY WT／LEN POSSIBLE IMP INGED AT 1229 B3 HOUR O日OO 15 DAMASFD．NO ACCURATE BODY WT／LEN POSSIBLE IMP INGED AT 12
129
IMP INGED AT
12
29
BO HOUR 0900
15
1600
15
SLIGHT DAHIAGE，LESIONS－EYES，FINS MISSING，ETC IMP INGED AT 1229 日3 HOUR 160015 SLIGHT DAHAGE，LESIONS－EYES，FINS MISSING，ETC．
IMPINGED AT 122983 HOUR 160015 SLIGHT DAMAGE，LESIONS－EYES．FINS MISSING，ETC． IMP INGED AT 12 29 83 HOUR 1600 IS SLIGHT DAMAGE，LESIONS－EYES，FINS MISSING．ETC IMPINGED AT 122983 HOUR 160015 SLIGHT DAMAGE，LESIONS－EYES，FINS MISSING．ETC． IMPINGED AT 1229 B3 HOUR 160015 BRUISED
IMOINGED AT 122983 HDUR 160015 BRUISED
IMPINGED AT OI 12 B4 HOUR OOOO 15 SLIGHT DAMAGE，LESIONS－EYES．FINS MISSINQ．ETC IMPINGED AT OI 1284 HOUR OOOO IS DAMAGED，NO ACCURATE BODY WT／LEN POSSIBLE IMPINGED AT OI 1284 HOUR 0000 IS SLIGHT DAMAGE，LESIONS－EVES，FINS MISSINQ，ETC IMP INGED AT OI $12 \mathrm{~B}^{4}$ HOUR OOOO 15 SLIGHT DAMAGE，LESIONS－EVES，FINS MISSINQ，ETC IMPINGED AT OI 1284 HOUR OBOO 15 DAMAGED，NO ACCURATE BODY WT／LEN POGSIBLE． IMPINGED AT OI 12 B4 HOUR OBOO 15 SLIGHT DAMAGE，LESIONS－EYES．FINS MISSING，ETC． IMPINGED AT 011284 HOUR OBOO IS SLIGHT DAMAGE，LESIONS－EYES．FINS MISSING．ETC IMPINGED AT OI 1284 HOUR 080015 DAMAGED．ND ACCURATE BODY WT／LEN PQSSIBLE． IMPINGFD AT 0112 84 HOUR OBOO IS SLIGHT DAMAGE，LESIONS－EYES，FINS MISSING，ETC IMPINGED AT OI 12 日4 HOUR OBOO IG DAMAGED，NO ACCURATE BODY WT／LEN POSSIBLE IMPINGED AT OI 1284 HOUR OGOD 15 SLIGHT DAMAGE．LESIONS－EVES．FINS MISSING．ETC IMP INGED AT OI 12 R4 HOUR OBOO 15 DAMAGED，NO ACCURATE BODY WT／LEN POBSIBLE IMPINGED AT 0112 E4 HOUR 0800 IS SLIGHT DAMAGE，LESIONS－EVES．FINS MISSING．ETC IMPINGED AT OI 12 E 44 HOUR OBOO IS SLIGHT DAMAGE，LESIONS－EYES．FINS MISSING．ETC IMPINGED AT OI 1284 HOUR 080015 SLIGHT DAMAGF，LESIUNS－EYES，FINS MISSING．ETC IMPINGED AT 0112 R4 HOUR OROO 15 DAMAGED．NO ACCURATE DODY WT／LEN POSSIBLE IMPINGYD AT OI 12 日4 HOUR OBOO 13 SLIGHI DAMAGE，LESIONS－EYES．FINS MISSING．ETC． IMPIHKAD AT OI $1=94$ HRUV $160 \% 15$ DAMAOED，NO AC，CURATE ONDY WT／LEN POSSIBLE

$$
\begin{aligned}
& \text { PATHOLIGY OF ALL SPECIMENS WITH DAMAOE FOUND AT SCREEN INSPECTION. } \\
& \text { PLUS NO IMPINGEMENT FDUND AT SCREEN INSPECTION AT DATE-TIME }
\end{aligned}
$$

IMPINGED AT OI 26 B4 HOUR OBOO IS SLIOHT DAMAGE．LESIONS－EVES，FINS MISSING．ETC．

已足
 DAMAGE，LESIONS－EYES．FINS MIGSINQ．ETC
 ARASITE LESIONS－EYES，FINS MISBINQ，ETC
DAMAOE，LESIONS
D，NO ACCUATE BODY WT／LEN POSSIBLE
DAMAGE，LESIONS－EES，FINS MISSING，ETC
D．NO ACCURATE BODY WT／LEN PISSIBLE

IS FUNGUS
IS DAMAGED，NO ACCURATE BODY WT／LEN POSSIBLE．
IS DAMAGED．NO ACCURATE BODY WT／LEN POSSIBLE
IS DAMAGED NO ACCURTE BODY WT／LEN POSSIBLE
IS DAMAGED．NO ACCURATE BODY WT／LEN POSSIBLE

IMP INGEMENT STUDY FOR THE
VIRGIL C. SUMMER NUCLEAR PLANT

PATHOLDGY OF ALL SPECIMENS WITH DAMAGE FOUND AT SCREEN INSPECTION.
PLUS NO IMPINGEMENT FDUND AT SCREEN INSPECTION AT DATE-TIME

YEAR B4

PATHOLOGY OF CHANNEL CATFISH PATHOLOGY OF CHANNEL CATFISH PATHOLOGY OF FLAT BULLHEAD PATHOLOGY OF WARMOUTH PATHOLOGY OF BLUEGILL PATHOLDGY OF DLACK CRAPPIE PATHOLDGY OF WHITE CATFISH PATHOLOGY OF WHITE CATFI SH PATHOLDGY OF CHANNEL CATFISH PATHOLDGY OF CHANINEL CATFISH PATHOLOGY OF CHANNEL CATFISH PATHOLOGY OF WHITE CATFISH PATHOLOGY OF CHANNEL CATF ISH PATHOLOGY OF CHANNEL CATF ISH PATHOLOGY OF CHANNEL CATFISH PATHOLDGY OF WHITE CATFISH PATHOLOGY OF BLUEGILL PATHOLOGY OF CHANNEL CATFISH PATHOLDGY OF THREADFIN SHAD PATHOLDGY OF CHANNEL CATF ISH PATHOLDGY OF DLUEGILL PATHOLNGY OF WHITE CATFISH NO SPECIMENS IMPINGED AT $1500-07$ IMPINGED AT ND SPECIMENS IMPINGED AT $1530-08$

IMPINGED AT O5 1684 HOUR 010013 DAMAGED, NO ACCURATE BODY WT/LEN POSSIBLE. IMPINGED AT 051684 HOUR 0100 IS DAMAGED, NO ACCURATE BODY WT/LEN POSSIBLE. IMPINGED AT 051684 HOUR 010015 SLIGHT DAMAGE, LESIONS-EVES,FINS MISSING, ETC IMPINGED AT OS 16 R4 HOUR 010015 DAMAGED, NO ACCURATE BODY WT/LEN POSSIBLE IMP INGED AT OS 16 B4 HOUR 0100 IS ENDO PARASITE
IMP INGED AT O5 16 B4 HOUR OIOO IS DAMAGED, NO ACCURATE BODY WT/LEN PDSSIBLE. IMP INGED AT OS 1684 HOUR 0900 IS FUNGUS
IMP INGED AT O5 1684 HOUR 090015 DAMAGED, NO ACCURATE BDDY WT/LEN POSSIBLE. IMPINGED AT O5 1684 HOUR 090015 DAMAGED, NO ACCURATE BODY WT/LEN PDSSIBLE. IMPINGED AT O5 1684 HOUR 090015 DAMAGED. NO ACCURATE BODY WT/LEN PDSSIBLE IMPINGED AT O5 1684 HOUR 090015 DAMAGED, ND ACCURATE BODY HT/LEN PDSSIBLE IMPINGED AT OS 1684 HOUR 170015 SLIGHT DAMAGE, LESIONS-EYES, FINS MISSING.ETC. IMPINGED AT O5 16 B4 HOUR 1700 IS DAMAGED, NO ACCURATE BODY WT/LEN POSSIBLE. IMPINGED AT OS 31 B4 HOUR OIOO IS DAMAGED, NO ACCURATE BODY WT/LEN PDSSIBLE. IMPINGED AT O5 3184 HOUR 0900 IS DAMAGED, NO ACCURATE BODY WT/LEN POSSIBLE. IMP INGED AT O6 1484 HOUR 010015 DAMAGED, NO ACCURATE BODY WT/LEN POSSIBLE IMPINGED AT O6 1484 HOUR 090015 SLIGHT DAMAGE, LESIONS-EVES.FINS MISSING, ETC. IMP INGED AT O6 28 日4 HOUR 090015 SLIGHT DAMAGE, LESIONS-EYES, FINS MISSING. ETC. IMPINGED AT 071284 HOUR 260015 DAMAGED, NO ACCURATE BODY WT/LEN PQSSIBLE. IMP INGED AT 071284 HOUR 140015 DAMAGED, NO ACCURATE BUDY WT/LEN POSSIBLE. IMP INGED AT 071284 HOUR 1400 IS DAMAGED, NO ACCURATE BODY WT/LEN PDGSIBLE IMPINGED AT O7 1284 HOUR 2200 IS DAMAGED, NO ACCURATE BODY WT/LEN POSSIBLE. NO SPECIMENS IMPINGED AT $1530-08-10884$ INSPECTION OF SCREENS NO SPECIMENS IMPINGED AT $9500-08-2384$ INSPECTIINN DF SCREETHS PATHOLIGG OF WHITE CATFISH

PATHOLIGY OF CHANNEL CATFISH IMPINGFD AT 090584 HOUR 0330 IS DAMAGED, NO ACCURATE BODY WT/LEN POSSIBLE
IMPINGED AT 09 己O 84 HOUR 5000 IS DAMAGED. NO ACCURATE BOOY WT/LEN POSSIBLE.

APPENDIX D
ECOLOGICAL SUMMARIES OF IMPORTANT FISH SPECIES

APPENDIX D

ECOLOGICAL SUMMARIES OF IMPORTANT FISH SPECIES

Gizzard Shad (Dorosoma cepedianum)

The gizzard shad is highly esteemed as a forage fish, when less than 2 years old, and forms an important link in the food web of game fish as well as other species. Often they tend to overpopulate, especially in impoundments, and an over abundance of large individuals tends to have a negative effect on the sport fishery. The species is tolerant of excessive turbidity and waters that support little or no vegetation and sparse benthic fauna. Studies of food habits indicate that phytoplankton and zooplankton are their most important food items. Gizzard shad, especially young-of-the-year individuals, are typically found in large schools made up of a single age-class of fish.

Gizzard shad spawn during May and June, and a second spawn may occur in late summer. They spawn at temperatures ranging from $17.8^{\circ} \mathrm{C}$ to $23.9^{\circ} \mathrm{C}$ $\left(64^{\circ} \mathrm{F}\right.$ to $\left.75^{\circ} \mathrm{F}\right)$. They spawn pelagically, scattering eggs without any preparation of nest site; they prefer shallow water away from the shore, but have been observed spawning at the surface over deep water. The eggs are very adhesive and may float or sink, or adhere to submerged or floating objects. Fecundity of shad has been determined to be approximately 40,500 ova. A decline in fecundity with increase in size and age of fish has been noted. Gizzard shad are not hardy fish and may quickly succumb to abrupt changes in temperature of the water or reduction in its dissolved oxygen content (Jester, et al., 1972).

Yellow perch range along the Atlantic coastal states from Nova Scotia to South Carolina. Although they may be found in rivers, yellow perch prefer sluggish or still water and are most typically found in lakes. Sandy or rocky bottoms seem to be favored habitat. Yellow perch are found in schools throughout their life.

Spawning takes place early in the spring (early March in Monticello Reservoir) when the water temperature reaches $8^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$. The eggs are imbedded in long gelatinous strings that adhere to the substrate. Fecundity ranges between 10,000 to 75,000 ova and up to one-half the ova may become fertilized under favorable conditions (McClane, 1974). The young are heavily preyed upon and the survival rate is very low during the first year of life. During the second and third years of life, mortality accounts for 60 to 80 percent of the population each year. Sexual maturity is reached at 3 to 4 years.

The food of the yellow perch consists of invertebrates, such as insects, crayfish, snails, and small fish.

White Cat fish (Ictalurus catus)

White catfish are found from New York to Florida in slow flowing streams, rivers, ponds, and lakes. The preferred habitat of white catfish are areas with silty bottoms (although they are common in the riprapped areas of Monticello Reservoir).

Spawning occurs at temperatures of about $20^{\circ} \mathrm{C}$ in a large concave nest. Eggs are adhesive and fecundity is said to be 4,000 ova for a 12 -inch female.

White catfish are omnivorous, but they seem to prefer fish (McClane, 1974).

Bluegill (Lepomis macrochirus)

Bluegill originally ranged from southern Ontario south through the Great Lakes and Mississippi drainages to Georgia, Texas, and Northeastern Mexico. Widespread introduction have greatly extended this range.

The bluegill is found mainly in ponds, lakes, and sluggish streams. They prefer protected areas with clear, quiet water, scattered beds of vegetation, or underwater obstructions, and a bottom of sand or gravel.

Bluegill feed mainly on zooplankton and aquatic insects. Other foods ingested include small fish, fish eggs, snails, small crayfish, and amphipods.

Bluegills spawn over an extended period of time, beginning when water temperatures reach $21^{\circ} \mathrm{C}$ and continue until cool weather occurs in the fall (Pflieger, 1975). The extended period of spawning is due to differential maturity of fish or of eggs within a single fish. The peak of the spawning season usually occurs in May or early June. Fecundity of the bluegill averages about 18,000 ova per fish. The eggs are adhesive and are deposited in a prepared nest which is typically dished out of s and or gravel.

Largemouth Bass (Micropterus salmoides)

The original distribution of the largemouth bass ranged from southeastern Canada throughout the Great Lakes region southward through the Mississippi Valley to Mexico and Florida, and on the Atlantic coast as far north as Virginia. It is one of the most important game fishes, and is widely introduced.

Largemouth bass prefer nonflowing waters such as lakes, ponds, and impoundments that have clear water and aquatic vegetation. Largemouth bass are often found in close association with substrate irregularities such as rocks, stumps, tree tops, or riprap. Turbidity is detrimental to growth and reproduction. Young largemouth bass feed largely on zooplankton and small crustaceans, and as the fish mature they eat larger foods such as aquatic insect larvae; adult largemouth bass eat mainly fish, but they also take worms, mussels, frogs, crayfish, and snails (Clay, 1975).

Largemouth bass normally begin spawning in late April and continue until early July when water temperatures range from $16^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$. Bass prefer a substrate such as sand, gravel, roots, or aquatic vegetation for spawning. They will not spawn on silt bottoms. Fecundity has been estimated to be about 5,000 eggs per fish.

APPENDIX E

LIFE HISTORY INFORMATION OF IMPINGED FISH

TABLE E-1
PREFERRED HABITAT, SPAWNING SITES, SPAWNING TEMPERATURE, TYPE OF EGGS, AND NURSERY AREA OF IMPINGED FISH SPECIES

Page 1 of 2

Species	Preferred Habitat	Spawning Sites	Spawning Temperature $\left({ }^{\circ} \mathrm{C}\right)$ Type of Eggs	Nursery Area
Longnose gar	Lakes, coves, rivers, backwaters; sluggish current or still water	Shallow bays and sloughs	March-August Adhesive Peak in April	Open water
Threadfin shad	Open water; impoundments	Underbrush, floating logs or in open water	$17-21^{\circ} \mathrm{C}$ Adhesive	?
Yellow bullhead	Shallow portions of lakes, sluggish streams, over soft bottoms	Nest under objects or in burrows or holes in bank	? May or June Adhesive	?
Flat bullhead	Streams, lakes, and ponds; soft muck, mud or sand bottoms	Probably in sheltered area	? Adhesive	?
Channel cat fish	Shelter in deep pools in moderate to swiftly flowing streams; feed in riffles	Nest in natural cavities (e.g., hollow logs) in turbid water	$\begin{aligned} & 21-29^{\circ} \mathrm{C} \text { Adhesive } \\ & \text { (opt imum: } 27 \text {) } \end{aligned}$	Riffles, especially
Flier	Typically in small streams, swamps, or backwaters	Shallow water	$17^{\circ} \mathrm{C} \quad$ Adhesive	Shallow water
Pumpkinseed	Standing water, soft bottom, organic debris	Nest in sand and gravel in shallow water	$15-18^{\circ} \mathrm{C}$ Adhesive	Near surface and debri

Species	Preferred Habitat	Spawning Sites	$\begin{aligned} & \text { er at ure } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	Type of Eggs	Nursery Area
Warmouth	Clear waters with abundant vegetation and mucky bottom; low current or, preferably, oxbows and impoundments	Nest over rubble bottom lightly covered with silt or detritus; nest near objects (e.g., stumps)	?	Adhesive; demersal	?
Redear	Large, quite waters with logs, stumps, or obstructions	Nest in vicinity of obstructions	$21-24^{\circ} \mathrm{C}$	Adhesive	Shallow water
White crappie	Stilty rivers and lakes, soft or hard bottom common in southern impoundments	Nest in water up to 8 feet deep		Adhesive	?
Black crappie	Clear, slow, werm deep water over hard or soft bottom; often around aquatic vegetation	Nest in bare spots among aquatic vegetation or along undercut river banks	$17-27^{\circ} \mathrm{C}$	Adhesive; demersal	Move to deep, open water when leaving nest
White bass	School in open; clear water over a hard bottom	Open water over gravel bottom; also riffle areas and shallow water among rocks	$13-16^{\circ} \mathrm{C}$	Adhesive; demersal	Shallow areas near river banks

[^0]: ${ }^{\text {a }}$ Mean densities have been calculated by using combined surface and mid-depth samples, and are given in organisms/ $100 \mathrm{~m}^{3}$.

[^1]: PUMPKIN PEREH HOUR－J8OO

