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ABSTRACT

Fatigue crack growth rate tests, at a load ratio of 0.2, have been
conducted on steels of low, medium and high sulfur contents (0.004%,
0.013% and 0.025%) in PWR water at both low and high flow rates.
Crack growth rates show no dependence on flow rate, bu t are strongly
dependent on sulfur content, with a large proportion of environmental
assistance for the highest sulfur contents. Tests of low and high
-sulfur content steels at a load ratio of 0.7 show relatively little
environmental assistance in either case. The fractography of these
specimens shows the usual brittle appearance for environmentally-
assisted fatigue crack growth. In addition, the opposing fracture
surfaces match perfectly, indicating that little or no dissolution of
the . metal matrix has occurred, _ and there is very little plastic flow
associated with the fatigue cracking process. The X-ray photoelectron
emission examination of the fracture surf ace oxides shows that FeS and
FeS2 e exist in the oxide layer, suggesting that the conditions within
the crack enclave involved near-neutral pH and cathodic potentials.
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1. INTRODUCTION

Several variables influence fatigue crack growth rates of i piping and
pressure vessel s teels in light water reactor (LWR) environments.
Since the first research results became available in 1971 and the
present time, the identity and degree of influence of several of these
variables have been well quantified. On the other hand, several

i

variables have resisted accurate and convincing enumeration owing to
inconsistent results from different laboratories performing nominally
the same test, of ten with specimens f rom the same heat of steel. The
research described in this report was carried out in an attempt to
accurately define the role of sulfur chemistry and water flow rate on
the fatigue crack growth rates in PWR environments. The tests were
conducted using multiple-specimen " daisy chains" of steels with
differing sulfur contents, to allow the direct comparison of crack
growth rates under conditions which were common to all the speci-
mens. The crack growth rate results are supported by fractographic
investigations, and examinations of the fatigue fracture surface
oxides using X-ray photoelectron spectroscopic (XPS) techniques.

2. REVIEW OF PUBLISHED RESULTS

The suggestion that sulfur content could have an effect on the fatigue
crack growth rates of pressure vessel steels in pressurized water
reactor (PWR) environments began to enter the literature about 1981
(Ref. 1). As the idea began to develop in more depth, the Inter-
national Cyclic Crack Growth Rate group endorsed research to address
this topic in particular, as a way to sort out some of the apparent
discrepancies in results between various laboratories. Several
research efforts sprang out of this interest. Examples of these
results and conclusions are described below. A composite table giving
the chemical compositions of the steels .ested at the various labora-
tories is given in Table 1, and the sulfur contents are given in the
legends of the appropriate graphs. The orientation designations are
given using the ASTM nomenclature (Ref. 2), which is illustrated in
Fig. 1.

The most comprehensive series of tests has been conducted by Bamford
(Refs. 3 to 5), who has completed a matrix of tests of steels with
various sulfur contents, using specimens of different orientations,
tested at load ratios (R) of 0.2 and 0.7, and a 17-mHz sinusoidal
waveform. Examples of these results are shown in Figs. 2 through 4.
These data sets, for a low sulfur steel, show an increase in growth
rates with an increase in load ratio, and little, if any, dependence
on specimen orientation. Figure 4, for a steel of higher sulfur
content, should be compared with Fig. 2, for the same load ratio.
This comparison shows a significant increase in growth rates, along
with a partitioning of the data for the different specimen orienta-
tions at the higher AK levels.

Parallel results have been obtained by Slama and coworkers (Ref. 1).
Figure 5 shows results for steels of two sulfur levels, tested under
PWR conditions at a load ratio of 0.2 and a 17 mHz triangular

1
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Table 1 Q1emical Compositions of Steels Described in '1his Report

Reference Identification C Pti P S Si Mo Ni Cr Cu Al Co Sn V

6 63758.1 0.185 1.395 0.01 0.006 0.195 0.485 0.655 0.130 0.095 0.002

6 C8938 0.21 1.24 0.016 0.012 0.2 0.49 0.66 0.08 0.09 0.013 0.012

3 'lW 0.21 1.38 0.008 0.004 0.21 0.56 0.67 0.08

w
4 PN 0.21 1.33 0.012 0.016 0.22 0.53 0.56 0.13

This report 1HT 0.19 1.280 0.009 0.013 0.250 0.550 0.610 0.040 0.100 0.004

Ref. 4 and
CQ2 0.21 1.28 0.006 0.025 0.24 0.53 0.56 0.12

this report

This report W7 0.23 1.40 0.005 0.004 0.25 0.57 0.70

7 0.025%S 0.23 1.33 0.011 0.025 0.23 0.48 0.66

7 0.006%S 0.185 1.395 0.01 0.006 0.195 0.485 0.655 0.130 0.095 0.002
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Fig. 1 A schematic showing the orientation nomenclature used in
this report. This is the standard nomenclature from
ASTM E 399.
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waveform. Concurrent research, also described in Reference 1, showed
that triangular waveforms yielded consis::ently lower growth rates than
sinusoidal waveforms, at least for steels of 0.009% and 0.013% sulfur
contents. However, these data sets show that increasing the sulfur
content to 0.018% results in growth - rates which reside well outside
the ASME reference line for R < 0.25, in spite of the triangular wave-
form.

y Concurrent research at the UKAEA-Harwell laboratory produced crack
growth rate results which were consistently lower than results at

4

other laboratories, and Scott and Bamford engaged in a two-laboratory
intercomparison study (Ref. 6) to t ry to sort out the reason for the
discrepancy. Results of nominally identical tests of low (0.006%) and
medium (0.012%) sulfur steels at both laboratories yielded the results
shown in - Fig. 6, with the UKAEA results (shaded symbols) a factor of
ten or more lower than the Westinghouse results. Additional tests at
Harwell, on steels of even higher sulfur contents, consistently
yielded results well below the ASME reference lines for the appro-
priate load ratio (Ref. 9). However, Scott has published results of
tests at considerably higher test frequencies and load ratios which
show higher growth rates and a " plateau" or AK-independent range.
Scott has developed a strain-rate model which accounts for the
increase in growth rates with increasing load ratio and frequency.

Van Der Sluys (Ref. 7) has completed a unique test of a composite
specimen, composed of sections of steel of different sulfur contents,
. electron beam welded together and formed into a specimen such that the
crack proceeded through the various sections. The results of constant
oK tests on this specimen are shown in Fig. 7. These results show
clearly ' the influence of the sulfur content on crack growth rates, and
the dependence on test frequency, for the higher sulfur content
section, appears to show increasing growth rates with decreasing test
frequency. Growth rates at 10 mHz, the closest comparison to the
17-mHz frequency cited above, straddle the ASME wattr environment
reference line for the high sulfur steel, but are just above the air
environment reference line for the lower sulfur content section.

Against this background, MEA undertook a series of two multispecimen
tests, using steels of three different sulfur contents in each daisy
chain, and conducted one test in a low-flow rate environment, and the
other test in a high flow rate environment.

3. EXPERIMENTAL PROCEDURES

The MEA tests were carried out in a nultispecimen autoclave capable of
testing four 2T-CT [51-nsa (2-in.) thick] specimens in a daisy chain.
Each specimen was instrumented with an LVDT* in order to measure' the
crack mouth opening of the specimen. Crack mouth opening and load
readings were used in an experimentally-determined formula to

* Linear Variable Differential Transformer

8
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calculate - the crack lengths- in the specimen while the tests were
underway. Data acquisition was carried out by a computer-based, data
acquisition system which also monitored the cycle counts, system water
chemistry, and other system parameters. The operation of these
systems'is described in earlier reports (Refs.-10 and 11).

The water pressurization and circulation system for these autoclaves
is a recirculating system, . with the system change rate being about
two-to-three : gallons per hour. Pressurized, hi gh-temperature water
pumps - are used to obtain . the -circulation rates within the autoclave.
The flow . rates are established by throttle -valves and measured by-
calibrated flow meters. The flow rates used in these tests were
50 liters per hour and 1000 liters per hour. The autoclave volume is
about 140-liters. Water was directed towards the front faces of the
specimens, and into the n'tch by a manifold system shown in Fig. 8.o

The water used in this autoclave system had the nominal PWR chemistry
which is specified in Table 2. Typical analyses of the water for
these and other constituents are shown in Table 3. The chloride
content is slightly above the specification, and is probably due to
leakage tion the dissolved oxygen sensor. The sulf ate and phosphate
contents are not covered in che specification, but are felt to be
moderately high, but not to the point which would cause measureable
change in the fatigue crack growth results. Since the time of these
tests,' an on-line water cleanup system has been installed - on this
autoclave circulation loop.

_

Specimens were prepared f rom plate pieces which were provided to MEA
by Westinghouse (CQ2) ~ and Electric Power Research Institute (lHT).
The W7 plate and W8B weld were from MEA stock. The identification and
chemical composition for these steels is given in Table 1. The micro-
structures of ' the steels are shown in Fig. 9. The CQ2 steel may have
a small amount of tempered martensite mixed in with the predominately
bainitic mat-ix. The other steels are bainitic. The orientation of
all specimens was T-L, using the standard ASIM designations.

Table 2 Water Chemistry Specifications

Boron (as boric acid) 1000 ppa
Lithium (as lithium hydroxide) I ppm
Chloride ions < 0.15 ppm
Fluoride ions < 0.10 ppm
Dissolved oxygen iI fpb
Dissolved hydrogen (saturation) 30 to 50 cm /kg water

All other metallic or ionic species should be at about trace levels.
Some iron, both in solid and soluble form is the inevitable result of
a corroding specimen.

11
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Table 3 Results of MEA Water Analyses

After Mixed with After

Deionization B & Li Autoclaving

(All in ppb, except as noted)

Boron 0 995 ppm 1092 ppm
Lithium 0 0.95 ppm 1.3 ppm
Fluoride <10 ~10 45

Chloride <10 75 150

Sulfate 2 15 110

Phosphate 8 12 180

These tests were carried out using constant load amplitude cycling, at
a test frequency of 17 mHz and a load ratio (R) of 0.2. In accord

with the test practice of earlier ICCGR round robins (Ref. 12), the
initial AK was 27.5 MPa[m (25 ksi/in.). The specimens were installed
in the load train, placed in the autoclave which was filled with
water, and brought to ~ 90*C for 12 to 14 hours to degas the water.
The system was then pressurized and brought to 288'C (550*F). The

cycling. was initiated within 24 hours after the temperature was
stabilized. In a departure from the usual MEA practice, but in agree-
ment with the ICCGR methodology, the initial phase of this test was at
17 mHz.

The conduct of multiple specimen tests is somewhat different from the
conduct of single specimen tests. In both cases, it is important to
create a beachmark to accurately define the final crack length for
each specimen tested. In the case of single-specimen tests, this is
normally done by terminating the test, removing the specimen from the
autoclave, chilling and fracturing the specimen. In the case of
multiple-specimen tests, crack extension proceeds at different rates
in different specimens, and thus the desired terminal crack length on
individual specimens will be reached at different cyclic counts. In

this case, when the first of the specimens reaches the final crack
length, the loads (minimum and maximum) on the daisy chain of speci-
mens are reduced to 50% of their original values, and the test
frequency is increased to 1 Hz. Cycling is continued with these new
parameters, until the specimen (s) with the longest crack lengths
either break completely, or undergo significant crack extension.
Crack extension on specimens with shorter cracks is generally very
small or nonexistent. The test parameters are then returned to their
original values, and the test continues on specimens remaining in the
daisy chain.

At the conclusion of the series of tests, the autoclave is cooled and
opened, the specimens removed and broken open, and the initial and
final crack lengths, and any significant beachmarks in between are
measured using- micrometer-mounted optical microscopes. These

14



directly-measured crack lengths are used as input to a post-test
I correction procedure described in an earlier report (Ref. 13). This

correction procedure not only takes into account changes in crack
front morphology due to tunneling, but also corrects for any instru-
mentation errors which may have developed during these somewhat
lengthy tests. Normally, deviations from compliance-calculated and
optically measured crack lengths are less than 1.5%. Macrophotographs
of the specimens from the two multispecimen tests are shown in,

i Fig. 10.

The crack length (a) vs. cyclic count (N) plots for the two daisy
chains of specimens involved in this study are shown in Figs. 11
and 12. As can be seen, the CQ2 and lHT specimens reached their final

^

crack lengths after about 30000 cycles, at which time the loads were
reduced and the frequency increased. In both tests, the two specimens
either broke, or the cracks were extended, and the tests were resumed

i with the original test parameters. Additional test phases proceeded
in much the same manner, until the last specimen had broken, and the
autoclave was cooled and opened. It is important to note that this
multiphase approach to f atigue crack growth testing does not appear to
produce transient behavior in the crack growth rates. As seen in both
Figs. 11 and 12 for the code W7 specimen, following each phase of
reduced load and 1-Hz beachmarking, crack extension resumes
immediately upon resumption of cycling at test loads. As shown below,
crack growth rates recommence at their former values and increase
smoothly from there.

,

,

4. RESULTS AND DISCUSSION OF CRACK GROWTH RATE STUDIES

Fatigue crack growth rate vs. applied AK plots are shown in Figs. 13
and 14 for the low and high flow rate tests. There is virtually no
difference in crack growth rates for either the low, medium or high
sulfur content steels in . either flow rate case. The steels with the
two highest sulfur contents (codes IHT and CQ2) have roughly the same,

growth rates, while the low sulfur steel (code W7) exhibits substan-
tially lower crack growth rates. The results for the remaining
specimen in Fig. 13 (code W8B) which had 0.011% sulfur, reside some-

, where in between the results for steels of lower and high sulfur
! contents, although this submerged-arc weld has a considerably

different micros tructure than the A 533-B plate specimens. These
latter results are shown for completeness rather than because they
lend support to the correlation between sulfur content and crack
growth rates.

The fact that the results for the code W7 steel show little environ-
mentally-induced acceleration eases the concern over whether the
100 to 200 ppb levels of sulf ates, chlorides and other contaminents in
the water have any ef fect on crack growth rates. A recent study by
Van Der Sluys (Ref. 7) has shown that addition of 135 ppb chloride to
an autoclave environment did not change crack growth rates. Scott has
shown that addition of 1000 ppb sulfate ion as sulfuric acid does
result in significant increases in crack growth rates. In spite of
this observation, MEA is taking steps to install a water clean-up loop

j in its various autoclave systems.

i
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The observations '~from the two multispecimen tests are straight-
forward. For a load ratio of 0.2 and a PWR environment, crack growth
rates increase monotonically with sulfur ' content of the steels, while
' flow rate, over the range investigated, has no measureable effect.
These results support the previous work on the effect of sulfur*

content, but are in contrast with the UKAEA results (Ref. 6),.which
show lower growth rates for steels covering the same range of sulfur
contents. It is possible that the ultralow contaminent level in the
autoclave water at the UKAEA test facility may have something to do
with the lack of environmental assistance in the high sulfur content

. steels. This is tantamount to suggesting that it is some kind of.

twofold interaction of contaminents in the bulk water, together with
,

sulfite / sulfate ion production within the crack tip enciave from
solvating manganese sulfide inclusions which provides the. conditions
leading to the increase in crack growth rates.

Two other tests were conducted at a load ratio of 0.7 to determine if
the sulfur contents of the code W7 and CQ2 steels (0.004% and 0.025%,

respectively) provided the same relative levels of environmentally-
assisted fatigue crack growth rates as at the lower load ratio. These
tests were conducted in slowly flowing water, using constant amplitude
loading, and the multispecimen test techniques described above. The
fatigue crack growth rate vs. applied AK plots for these two tests are
shown in Figs. 15a. and 15b. These results show that there is
virtually no difference in growth rates between the two steels, and
that there is relatively little environmental assistance when compared..

to results published by Bamford (Refs. 3 to 5 and Fig. 4). Further-

more, in the- case of the CQ2 specimen, fatigue crack growth rates'

during the 1-Hz phases of the test generally exceeded those growth
rates during the 17-mHz phases. The test of the code W7 specimen
involved such short crack extensions at the 1-Hz test frequency that
growth rates cannot be accurately computed and a similar conclusion
cannot be posed. This result is in general agreement with an earlier
finding by Scott (Ref.'9), which indicated that in order to maximize
the environmental-assistance component of f atigue crack growth in PWR
environments , ' highet test frequencies were required at the higher load
ratios. In the Scott research, test frequencies of I and 5 Hz at
Ra 0.9, 0.5 to 5 Hz at R = 0.8, and 1 to 20 Hz at R = 0.7 were
required to produce a " plateau" in the growth rates, over which Scott
postulated'the corrosion process controlled the growth rates.

5. FRACT0 GRAPHIC OBSERVATIONS

The specimens of the lowest and highest sulfur content steels

(codes W7 and CQ2) from the R = 0.2 tests were examined to determine
the fractographic features which characterized the environmentally-
assisted' fatigue crack morphology. As expected, when the environmen-
tal assistance was significant (in the CQ2 tests), the fatigue
fracture surfaces . are covered with brittle-appearing features, fan-
shaped facets and extended areas covered with brittle striations, as
shown in Figs. 16a and 16b. When the environmental assistance is low
(as in the W7 tests), there is a mix of ductile- and brittle-striation
formation, and overall, a much greater percentage of ductile appearing

22
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areas. An example of this morphology is shown in Fig. 17, showing
that the ductile and brittle striations can be found within the same
general area. Through comparison with Fig. 16, it can be seen that
the brittle s t riations have the same appearance in both the high and
low sulfur steels. These observations confirm earlier studies for
similar crack growth rate tests (Ref. 14).

In spite of the significant difference in fracture surface appearance,
metallographic cross-sections of the fracture surfaces on the two
specimens show that there are no large differences in fracture surface .

roughness or transverse cracking. Overall, the surface is quite
smooth in both cases.

<

These specimens did provide the opportunity to carry out some matching
f racture surface observations, in which specific features which are
micrographed on one face of the fatigue crack face, are matched in
location on the opposite fatigue crack face, thus giving an indication
of the way in which the fatigue crack faces fit together. Examples of
matching fracture surface observations are shown in Figs. 18 and 19
for each of the two codes of specimens. In both cases , the match is
essentially perfect, even down at the striation level, Icading to the
following conclusions:

e The END0X method of removing the oxide (Ref. 15) produced
during crack extension in the PWR environment removes all
of the oxide, and possibly some of the second phase
particles, but does not affect the metal matrix in any
significant way. ,s

e There ia no significant plastic deformation which occurs
on or under the fatigue fracture surface following forma-
tion of the crack. This implies that crack closure does
not occur at this load ratio, and the crack-tip displace-
ment (or stretch) is essentially nonexistent.

e Most importantly, from a micromechanistic point of view,
there is no measureable dissolution of the ferrous matrix,
as would be required by an anodic dissolution mechanism
for environmentally-assisted crack growth.

Study of these fatigue fracture surf aces also provided a second impor-
tant observation which relates to the mechanistic processes which
control environmentally-assisted fatigue crack growth in thesc
material and environment combinations. Figure 20 of the low sulfur |

'

steel, shows evidence of a nearly circular " burst" of crack opening,
centered on what appears to be a small area of intergranular crack-

,

ing. Figure 21 is an enlargement of the above figure showing that the
match of features is perfect, and that there are no striations on this
area, either ductile or brittle. Figures 22 and 23 show a similar
area found on the high sulfur steel, with the burst cente red on an
inclusion site. Lastly, Fig. 24 shows a burst which was found in the
volume ahead of the crack tip which was exposed when the specimen was
chilled and fractured after completion of the fatigue crack growth
test. This indicates that these areas were formed ahead of the actual >
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crack front, and so were formed in the absence of direct contact with
the aqueous environment. For comparison purposes, Fig. 25 shows a
similar burst which was formed during the tensile test of a hydrogen

precharged pressure vessel steel, tested in an air environment. The

likeness in appearance is striking, and extends even to a similar
diameter of the burst.

Although an exhaustive inventory of the presence of these burst areas
was not carried out for the two specimens, there were distinctly more
of these on the low sulfur steel than on the high sulfur steel. The

authors speculate that the lower number of overall inclusions in the
cleaner code W7 steel leads to greater concentrations of hydrogen on
the smaller number of inclusions, and thus a larger number of resul-
tant hydrogen cracks.

From this observation, the authors postulate that hydrogen cracking,
and hydrogen-assisted crack growth are the operative mechanisms
accounting for the environmentally-assisted f atigue crack growth rates
in p ressure vessel steels, tested in pressurized, high temperature
water of low oxygen content.

6. X-RAY Pil0T0 ELECTRON SPECTROSCOPY (XPS) OBSERVATIONS

Two of the fatigue fracture surfaces, from the specimens of

codes W7-2C-14 and CQ2-3, tesced at high flow and R = 0.2, were
examined using XPS techniques in order to determine the analysis of
the surface oxide and the manner in which this analysis might change

within the thickness of the oxide. Specimens were examined near the
crack tip and on the flank of the crack closer to the initial crack

beam used in the XPS unit irradiates an area oflength. Thg electronabout 25 mm , and so these results are typical of an overall, rather
than a localized analysis. The procedure is to analyze the photo-
electron spectrum from the solvent-cleaned, but otherwise as-received
surface of the specimen, and then remove several nanometers of the
oxide by inert-gas sputtering, and perform another analysis on the
newly-exposed oxide surface. The process is repeated as desired,
sometimes to the point of complete stripping of the surf ace oxide down
to the bare metal. The irregular profile of the fatigue fracture
surf ace causes nonunif orm removal of the oxide, but for the relatively

shallow depths, such as those studied for this report, the calculated
sputtering depths are reasonably representative. The analyses are

expressed in atomic percentage (a/0) of the individual elements,
normalized to 100%, on the assumption that the five elements recorded
were the essential constituents of the oxide layer. Inclusion of

other elemental possibilities (Ni, Mn, P) would change slightly the
actual numbers, but would not change the relative amounts of the cited
elements.

The results of the composition analysis of oxide at various depths, as
measured from the surface, are presented in Table 4. Magnetite

(Fe3 4) is the predominant oxide phase, as has been demonstrated0
previously (Ref. 16). Intuition suggests that the analysis of
W7-2C-14 near the crack tip (#4 in the table) should be most
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representative of the situation near a growing crack tip, since the
test was terminated and the specimens . removed from the autoclave
shortly after this area developed. However, the two analyses (near
crack tip and on the flank) from each of the two specimens are
remarkably similar, and the initial crack length analysis from W7 and
the crack tip analysis from CQ2 (#2 and #3) should be comparable
because they were exposed to the water for about the same amount of
time. The analysis of the CQ2 oxide on the flank near the initial
crack length (#1) holds the least credibility, especially near the
surface, because of the long postfailure residence in the autoclave
environment.

Table 4 Composition of Fatigue Fracture Surf aces (at-%)
After Various Sputtering Times

Sample Distance from Fe Cl S 0 C

Original
Surface

(nanometers)

CQ-2-3
.

#1 Near 0 4.6 0 0 22.7 72.7
Initial 5 --- --- --- ----

Crack 25 21.6 1.7 1.9 27.5 47.4
45 24.2 1.9 3.2 41.1 29.7

#2 Near 0 4.8 0.9 0 18.3 76.7
Crack 5 15.4 1.5 1.4 38.4 43.3
Tip 25 18.4 1.5 1.3 40.1 38.6

45 18.1 1.6 1.2 45.7 33.4

W7-2C-14

#3 Near 0 1.9 0.6 0.7 24.0 72.7
Initial 5 16.7 1.5 2.3 43.3 36.2
Crack 25 23.9 2.5 2.4 42.6 28.7

45 23.6 3.9 4.1 41.7 26.8

#4 Near 0 2.0 0.5 1.0 22.3 74.3
Crack 5 --- --- ---

Tip 25 15.6 1.9 1.5 24.8 56.8
45 18.2 3.9 4.9 35.1 37.8

The large percentage of carbon cannot be considered valid within the
present study. The specimens were corrosion protected with an oil-
based anticorrodent, which was subsequently removed, just before the
XPS observations, with methyl-ethyl-ketone solvent. Thus, there may
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have been large amounts of hydrocarbon residues which had infiltrated
the oxide layer between test termination and XPS studies.

The fact that the sulfur content of the W7 oxide is two to four times
greater than that of the CQ2 oxide, exactly opposite of the chemistry
of the steels themselves, is interesting, but inexplicable by these
authors. There is a strong gradient of sulfur concentration with
depth, approaching zero at the surface, indicating that the sulfur
must occur in some soluble form. The 1.5 a/0 to 3.9 a/0 of chlorine
found in the oxide subsurface does indicate that the chloride does
participate in the oxide formation in some way. There is a correla-
tion between the sulfur and chlorine levels for each of the two
specimens: CQ2 having lower sulfur and chlorine, and W7 having higher
sulfur and -hlorine. It is not likely that the lower levels of these
two elements on CQ2 are due to dissolving of the species in autoclave
water while the crack was open following the early failure of the
specimen, because analyses #3 f rom W7 and #4 f rom CQ2 should represent
oxides formed at roughly the same time, and because analyses #3 and #4
f rom W7 represent vastly dif ferent times of exposure to the autoclave
environment, and yet are remarkably similar in the quantities of
elements, and their gradients with depth.

The spectra which emerge from an XPS analysis reflect not only the |
amounts of individual elemental species, but also the electronic
binding energies of the valence electrons. This information can be

-

combined with the peak height and real analyses to get some informa-
tion on the elemental compounds and their relative proportions. An
example of the peak structure for the initial crack area on the low

sgimen (W7), is shown in Fig. 26. The binding energies ofsulfur

the Fe2p electrons for the compounds Fe3 4, FeS and FeS2 are shown0
on the figure. A peak centered on a particular value of binding
energy indicates presence of that particular compound. On the outside
surface of the oxide, magnetite is the only prevalent specie.
However, as the oxide is sputtered away to reveal the deeper consti-
tuents, strong peaks for both FeS and FeS2 emerge, while the peak for ,

Fe3 4 recedes somewhat. This is an important finding, for it confirms0
the Pourbaix diagram for the Fe-S-H O system, which indicates that2
both compounds should exist for deoxygenated water, of near-neutral pH
and cathodic potentials. Conversely, tath compounds would not exist
if the potentials were anodic or the crack tip environment were
characterized by a low r>! (acidic).

7. CONCLUSIONS

On the basis of this study, involving multispecimen testing, at two
different flow rates, post-test metallographic and fractographic
analyses and X-ray photoelectron spectroscopy of selected specimens,
the following conclusions can be drawn:

o Crack growth rates have a strong dependence on sulfur
content, with the caveat that the shape of the sulfide
inclusion may have an influence on the degree of

environmental assistance.
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e The flow rate of the environment in the vicinity of the
specimens seems to have little effect on the crack growth
rates.

The f ractography can be characterized as follows:e

a. The high sulfur steel exhibited brittle-like features,
including fan-shaped facets and brittle striations
over the entire fatigue fracture surface.

b. The low sulfur steel exhibited a combination of
brittle-like and ductile features, often residing

side-by-side.

c. Evidence of pure hydrogen cracking could be found on
specimens from both heats of steel, although the low
sulfur steel appeared to have more of these " bursts."

d. The fractographic features match perfectly on both
sldes of the fatigue fracture face. This indicates
that there is little, if any, dissolution of metal
. species at the crack tip or along the flanks of the
crack.

e The XPS analyses of the oxides on the flanks of the crack
show that chlorine and sulfur are incorporated into the
oxides, and that both FeS and FeS are present. As
determined in previous tests (Ref. 16)2 the oxide phase is,

magnetite Fe3 4 These facts indicate that cathodic0
potentials and near-neutral pH conditions are obtained at
the crack tip.
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