July 23, 1992 Dr. Thomas E. Murley, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20553 Attn: Document Control Desk Subject: Quad Cities Nuclear Station Unit 2 Startup Test Report Summary NRC Docket No. 50-265 Dr. Murley: Enclosed is the Quad Cities Nuclear Station Unit 2 Cycle 12 Startup Test Report. This report is submitted in accordance with the Quad Cities Technical Specifications and provided for your Staff's Information and use. If there are any questions regarding this report, please contact me at (708) 515-7283. 1100/12 Nuclear Licensing Administrator cc: A. Bert Davis, Regional Administrator-RIII L.N. Olshan, Project Manager-NRR T.E. Taylor, Senior Resident Inspector-Qued Cities 9207270215 920723 PDR ADDCK 05000265 PDR PDR /sc1:1316:71 270010 JEZ6 ! QUAD-CITIES NUCLE IR POWER STATION UNIT 2 CYCLE 12 STARTUP TEST RESULTS ## TABLE OF CONTENTS | Test No. | Title | Page | |----------|--|------| | 1 | Shutdown Margin | 1 | | 2 | Core Verification | 2 | | 3 | Initial Critical | 3 | | 4 | TIP Reproducibility and
Core Power Symmetry | 3 | ## 1. Shutdown Margin Demonstration and Control Rod Fur Conal Checks #### Purpose The purpose of this test is to demonstrate for this core loading in the most reactive condition during the operating cycle, that the reactor is subcritical with the strongest control rod full out and all other rods fully inserted. #### Criteria If a shutdown margin of 0.333% Δ K (=0.25% + R + B₄C settling penalty) cannot be demonstrated with the strongest control rod fully withdrawn, the core loading must be altered to achieve this margin. The core reactivity has been calculated to be at a maximum 4000 MWd/ST into the cycle and R is given as 0.033% Δ K. The control rod B₄C settling penalty for Unit Two is 0.05% Δ K. #### Results and Discussion On April 11, 1992, control rod H-9 was fully withdrawn to demonstrate that the reactor would remain subcritical with the strongest rod out. This rod was calculated by GE to have the highest worth with the core fully loaded at the beginning of the cycle. The strongest rod out maneuver was performed to allow single control rod withdrawals for CRD testing. Control Rod functional subcritical checks were performed as part of control rod friction testing. No unexpected reactivity insertions were observed when any of the 177 control rods were withdrawn. General Electric provided rod worth information for the two strongest diagonally adjacent rods G-10 and J-10 with rod H-9 fully withdrawn. This method provided an adequate reactivity insertion to demonstrate the desired shutdown margin. On April 11, 1992, a diagonally adjacent shutdown margin demonstration was successfully performed. Using the G.E. supplied rod worth for H-9 (the strongest rod) and diagonally adjacent rod G-10, it was determined that with H-9 at position 48, and G-10 at position 24, a moderator temperature of 137°F, and the reactor subcritical, a shutdown margin of 0.592% ΔK was demonstrated. The G.E. calculated shutdown margin with H-9 withdrawn and 68°F reactor water temperature was 3.001% ΔK at the beginning of Cycle 12. At approximately 4000 MWd/ST into Cycle 12 a minimum calculated shutdown margin of 2.968% ΔF will occur with E-4 fully withdrawn. G.E.'s ability to determine rod worth was demonstrated by the accuracy of their in-sequence criticality prediction. The ΔK difference between the expected critical rod pattern and the actual critical rod pattern was determined to be 0.2894% ΔK . This initial critical demonstrated that the actual shutdown margin at the beginning of cycle 11 was 3.2895% ΔK and 3.2574 ΔK at 4000 MWd/ST into cycle 12. #### 2. Core Verification #### Purpose The purpose of this test is to verify proper core location and orientation for each core fuel assembly. #### Criteria Prior to reactor startup, the actual core configuration shall be verified to be identical to the planned core configuration. #### Results and Discussion The Unit Two Cycle 12 core was verified on March 17, 1992. Fuel assembly orientation, seating, and ID serial number were verified for each assembly. Two inspection passes were made over each assembly. The first pass was made to verify orientation and seating of assemblies. The second pass was made to verify bundle ID numbers. A video camera was used during the inspection. All assemblies were found to be properly seated and orientated in their designated locations. On March 21, 1992, 24 fuel assemblies were reverified due to the unload and reload of 4 fuel assemblies for control rod J-14 drive replacement. Two passes were again made for orientation, seating and ID verification. All 24 assemblies were found to be properly seated and orientated in their designated location. Similarly, on March 23, 1992, 22 fuel assemblies were reverified due to the unload and reload of eight fuel assemblies to allow drive replacement for control rods P-10 and P-11. Two passes were again made for orientation, seating and ID verification. All 22 fuel assemblies were found to be properly seated and orientated in the designated locations. The bundle ID numbers are shown in Figure 1. ## 3. Initial Critical Prediction #### Purpose The purpose of this test is to demonstrate General Electric's ability to calculate control rod worths and shutdown margin by predicting the insequence critical. #### Criteria General Electric's prediction for the critical rod pattern must agree within 1% ΔK to actual rod pattern. A discrepancy greater than 1% ΔK will be cause for an On-Site Review and investigation by Nuclear Fuel Services. #### Results and Discussion On May 8, 1992, at 2041 hours the reactor was brought critical with reactor water temperature at the time of criticality of 165°F. The ΔK difference between the expected critical rod pattern at 68°F and the actual critical rod pattern at 165°F was 0.002894 from rod worth tables supplied by General Electric. The temperature effect was -0.00145 ΔK from General Electric supplied corrections. The excess reactivity yielding the 215 second positive period was 0.00029 ΔK . These reactivities resulted in a 0.001154 ΔK difference (0.1154% ΔK) between the expected critical rod pattern and the actual rod pattern. This is within the 1% ΔK required in the criteria of this test, and General Electric's ability to predict control rod worth is, therefore, successfully demonstrated. ## 4. Core Power Distribution Symmetry Analysis #### Purpose The purpose of this test was to determine the magnitude of indicated core power distribution asymmetries using data (TIP traces and OD-1) collected in conjunction with the CMC update. ### Criteria - A. The total TIP uncertainty (including random noise and geometric uncertainties obtained by averaging the uncertainties for all data sets) must be less than 9%. - B. The gross check of TIP signal symmetry should yield a maximum deviation between symmetrically located pairs of less than 25%. #### Results and Discussion Core power symmetry calculations were performed based upon computer program OD-1 dat. runs on May 20 at 1303 and 2045 hours, both at 99.2.% and 98.9%, power respectively. The average total TIP uncertainty from the two TIP sets was 3.230%. The random noise uncertainty was 1.150%. This yields a geometrical uncertainty of 3.018%. The total TIP uncertainty was well within the 9% limit. Table 1 lists the symmetrical TIP pairs and their respective average deviations. Figure 1 shows the core location of the TIP pairs and the average TIP readings. The maximum deviation between symmetrical TIP pairs was 8.51% for pair 5-33. Thus, the second criterion, mentioned above, was also met. The method used to obtain the uncertainties consisted of calculating the average of the nodal ratio of TIP pairs by: where Rij is the ratio for the ith node of TIP pair j, there being n such pairs, where n=18. Next the standard deviation of the ratios is calculated by: $$\sigma_{-} = \begin{bmatrix} n & 22 \\ \Sigma & \Sigma & (Rij - R)^{2} \\ j=1 & i=5 \\ \hline & (18n - 1) \end{bmatrix}$$ 1/2 σ_R is multiplied by 100 to express σ_R as a percentage of the ideal value of σ_R of 1.0. The total TIP uncertainty is calculated by dividing % o_R by $\sqrt{2}$ in order to account for data being taken at 3 inch intervals and analyzed on a 6 inch nodal basis. In order to calculate random noise uncertainty the average reading at each node for nodes 5 through 22 is calculated by: where NT = number of runs per machine = 5 MT = number of machines = 5 BASE (K) = average reading at nodal level K, K = 5 through 22 The random noise is derived from the average of the nodal variances by: % noise = $$\begin{bmatrix} 22 & \text{MT} & \text{NT} \\ \Sigma & \Sigma & \Sigma \\ \text{K=5} & \text{M=1} & \text{N=1} \end{bmatrix} \begin{bmatrix} \text{BASE (N. M. K)} - \text{BASE (K)} \\ \text{BASE (K)} \end{bmatrix}^2 \times 100$$ Finally the (IP geometric uncertainty can be calculated by: % o geometric = (% $$\sigma$$ total² - % σ noise²)1/2 ## Table 1 # CORE SYMMETRY Based on OD-1's From 05-20-92 at 1303 Hours and 2045 Hours (99.2% and 98.9% Power Pespectively) | SYMMETRICAL TIP PAIR NUMBERS a-b 1-6 2-12 3-19 4-26 5-33 8-13 9-20 10-27 11-34 15-21 16-28 17-35 18-39 23-29 24-36 25-40 31-37 | 5.06
3.32
2.66
3.15
1.43
1.87
1.38
5.51
2.18
3.54
2.60
2.11
1.14
5.57
3.65 | AVERAGE % DEVIATION DEVIATION T/((Ta + Tb)/2) 0.71 5.48 3.33 3.07 8.51 1.28 1.86 1.33 6.07 2.02 3.53 2.52 3.59 1.07 5.56 5.32 7.06 | |---|--|--| | 31-37
32-41 | 6.95
0.46
22
T ₁ = Σ T ₁ (K) /18 | 7.08
1.13
Average Deviation = 3.52 | | | 1=5 | | | | | | YV | | | | | | | | |---|--|--|--|--|--|--|---|---|---|--| | [S | | 176 005
-716 665
-177 177
550 544 | LYA LYA
647 653
LYF LYF
442 496 | 197 199 | LYA LYA
584 591
LYF LYF
551 475 | LYA
S90 | | | | | | \$\begin{array}{c c c c c c c c c c c c c c c c c c c | 428 450
LYU LY | 146 261
170 170
236 203 | 462 463 | LYU J LYU | LYF LYF
497 503
LYG LYG
271 325 | 541 802
(M) (M | LYA L9A
657 597
LYF LYF
479 566 | TOWN | | | | 1717 529 486 425 302 213 29 | 0 LYO LYK
8 212 704
0 YJO YJO
2 214 295 | YJO LYK
297 648
LYU VJO
229 215 | LYK LYK | LYK 130
F97 300
9.60 1.60
216 225 | 178 LYU
668 220
740 740
296 217 | YJO LYU
220 348
LYU YJO
291 218 | LYU LW
324 4#7
LYU LY7
306 499 | | 1/YA
692 | | | 677 432 276 293 635 716 285 70 | 705 764
LYK LYK | Lau T vuo | 17X 17X
773 732
17X 17X
679 671 | V 85 1 1911 | 17K LYK
783 724
17K LYK
689 735 | YJG LYU
294 272
YJG LYU
212 314 | 1,9K 1,7A
885 704
1,7K 1,7K
722 723 | 495 843
170 170 | 1YF LYA
571 554
1YF LYA
502 586 | | | LYA LYF LYU YJO LYU | 296 788
LVU VJD | 130 LYX
287 786
LYU V30
283 201 | YJ0 YJ0
288 289
LYK (YX
672 711 | V.85 1,40 | 1.YK YJ0
789 207
YJO 1.YU
285 305 | LYK LYU
502 250
LYU LYK
244 673 | (YU 1.V)
299 243
730 730
203 286 | LYU VJO | 1.YF 1.YA
554 608
1.YF 1.YF
492 555 | 1.YA
592 | | 174 177 178 17U | 702 726
LYK LYK
700 664 | Y3.5 (YU
281 328
LYK Y.40
776 277 | 644 696
17K LYK
657 674 | 7,60 LYK
278 743 | 667 792 | LYU XJ0
346 197
YJ0 LYK
279 741 | LYK LYK
737 666
LYK LYK
683 744 | YJO (YU
198 240
YJO LYK
280 707 | 1901 197
345 475
190 197
190 100 | | | | 7 270 775
270 775
1 170 730
340 265 | | YJG YJB
193 194
LYB LYU
231 241 | 1 VT LYU
522 252
LYU LYT
248 562 | LYX YJ0
750 271
YJ0 LYU
266 347 | 190 Y30
300 272
Y30 LYK
190 733 | 170 730
259 273
730 C | LYU Y.80
260 274
Y.80 LYK
192 **20 | 170 (YF
253 465
(YU 170
242 251 | 197 1.6
569 68
197 1.7
567 64 | | | 634 663 | 185 182
YJO LYU | AAR TOA | LYU YJO | 17K LYK
677 688
LYK LYK
678 686 | LYX Y.30
681 263
LYK Y.30
680 259 | LYK LYK
645 746
LYK LYK
684 759 | LYK YJ0
782 264
LYK YJ0
747 260 | 190 197
249 483
170 198
19 491 | LYF LY
451 80
LYF LY
447 631 | | | 331 256
Y/G CYK | 190 563 | 191 236
191 236
7.0 730
175 176 | LYU LYF
215 557
LYF LYU
572 268 | YJO LYU
256 342
LYK YJO
784 251 | YJO LYK
180 730
LYU YJO
333 252 | YJO LYK
181 749
LYV YJO
210 253 | LYUTYJO | LYU LYU
245 256
LYU LYF
211 474 | TAL TA | | LYA LIFF LYY LYU LYX YJO LYK LYK LYK YJO LYK LYK YJC 638 511 439 264 661 241 725 635 734 242 LYA LIFF LYF LYU LYYU YJO LYK LYK YJO LYK 593 434 422 295 189 171 719 793 172 296 | 760 660
LYK LYK | 767 243
YJO LYU | LYK LYK
641 700
LYK LYK
642 694 | 244 736
LYU T YUO | LYK LYK
690 795
LYK LYK
754 712 | YJO - LYK
245 731
LYU YJO
329 173 | 17K LYK
682 787
LYK LYK
739 738 | | LYU LYF
275 454
LYU LYF
336 487 | | | 17A 17T LYF YJO LYU YJO YJO LYK LYG 677 512 444 165 518 235 166 853 188 LYA LYF LYU YJO LYU LYU LYU LYU 613 573 339 161 263 281 185 898 | 304 236
YaU LYK | 319 167
YAO LYK | 17K LYK
7t0 706
YJO YJO
232 253 | LYK YJO. | | UNU UNK
246 7 (3
UN LYU
691 237 | YJN YJO
169 738
LYU LYO
334 767 | LYU YJO
323 170
YJO LYU
164 337 | LYF LYF
490 560
LYF LYA
552 636 | EYA
600 | | UYA LYF LYU LYU LYK LYK LYU Y.0
675 437 298 279 640 703 320 153
LYA LYF LYF LYF LYA LYK LYU Y.0
612 558 457 427 709 717 192 227 | 768 718
LYK LYK | 1YU YJO
213 158
7JO 17K
228 727 | LYK LYK
695 715
LYK LYK
765 745 | 159 223 | | MAT ORL | | LYU LYU
344 321
LYF LYF
509 467 | LYF LYA
482 661
LYF LYA
564 598 | | | LYA LYT F LYT LYU YJO LYU 706 518 477 436 326 151 306 LYA LYF LYF LYF LYU LYU YJO 642 538 452 317 297 146 | 197 675 | 7JD LYK
221 643 | YJO YJO 223 | 154 224
LYK 736
693 224 | 226 115
LYK LYU
701 228 | 307 156
YUO LYU
150 332 | 10 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m | LYF LYF
453 516
LYF LYA
530 654 | LYA
68.3 | | | LYA LYF LYF LYF LYF LYF TS 155 423 527 458 LYA | 170 LYU
282 717 | 170 170
221 207 | Uni Unu
194 226 | 170 LYU
266 222 | 255 130 | 1YF LYF
468 534 | LW LW
458 561 | | | | | LVA 617 | LYF LYF
507 532
LYA LYA
627 624 | LYF LYF
566 536
LYA LYA
726 649 | LYF LYF
440 493
LYA LYA
581 659 | 57 570 | LYF LYF
535 494
LYA LYA
625 634 | LYA
664 | | | | | | D0 02 04 06 08 10 12 14 16 18 01 01 03 05 07 09 (1 13 05 15 17 16 18 | 20 21 2 | 26 21 | E 1 | .34 .36 | 38 · | 42 44 | 45 A | 8 50 51 | 54 | 6 58 | SOURCE RANGE MONITORS INTERMEDIATE RANCE MONITORS - RUS "A" INTERMEDIATE RANGE MUNITORS - BUS "H" DECAL POWER RANCE MONITORS - LPRM Location (Common location for all TIP machines) - (X) RM Locations - A SRM Locations - Source Lountions UNIT TWO POWER SYMMETRY AVERAGE BASE REALWASS (NODES 5-22) BASED ON OD-1's from May 20, 1992 at 1303 Hours (99.2% Power) May 20, 1992 at 7045 Hours (98.92% Power) BASE AVERAGE STRING NUMBER