

PERRY NUCLEAR POWER PLANT

10 CENTER ROAD PERRY, OHIO 44081 (216) 259-3737 Mail Address: PO BOX 97 PERRY, OHIO 44081

Michael D. Lyster VICE PRESIDENT - NUCLEAR

July 13, 1992 PY-CEI/NRR-1521 L

U. S. Nuclear Regulatory Commission Document Control Desk Washington, D. C 20555

> Perry Nuclear Power Plant Docket No. 50-440 Inservice Examination Program (ISEP) Relief Requests Post-RF03

Gentlemen:

Pursuant to 10CFR50.55a(g)(5), we are hereby submitting four relief requests for the PNPP Unit 1 Inservice Examination Program (ISEP) generated upon completion of PNPP's third refueling outage. Three of the relief requests are revisions to those previously submitted and granted by the NRC staff. The remaining relief request is a new submittal. Attachment 1 contains a summary of the proposed relief requests. The relief requests are provided in Attachment 2.

If you have any questions, please feel free to call.

Sincerely,

Michael D. Lyster

MDL: CJF:ss

Attachments

cc: NRC Project Manager
NRC Resident Inspector Office
NRC Region III
W. Zimmerman (ANII)
State of Ohio

200021

Operating Companies Cleveland Electric Illuminating

9207200097 920713 PDR ADOCK 05000440 P PDR A047.

Summary of Proposed PNPP Inservice Examination Program Relief Requests

Relief Request Number	Status	Description oi Revision or New Relief Request
IR-001, Rev. 1	Rev. O submitted to NRR by PY-CEI/NRR- 0919L dated 11/18/88 and granted by NRR on 04/25/90.	Updated operating experience narrative and anded two components.
IR-021, Rev. 2	Rev. 1 submitted to NRR by PY-CEI/NRR- 1334L dated 03/19/91 and granted by NRR on 02/14/92.	Updated operating experience narrative and added two components.
IR-022, Rev. 2	Rev. 1 submitted to NRR by PY-CEI/NRR- 1334L dated 03/19/91 and granted by NRR on 02/14/92.	Updated operating experience narrative and added four components.
IR-027, Rev. 0	New Relief Request	Requests relief from visual exams on 3 integral attachments buried in Pyrocrete. Proposes alternate visual exam of Pyrocrete for conditions indicating structural degradation.

Sheet 1 of 11

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-001, REV. 1

I. Identification of Components

System: Reactor Fressure Vessel, Class I

A. Category: B-A, Pressure Retaining Welds

Component Description (See attached table for component identification numbers)

- 1. Shell welds (Item No. B1.11, B1.12)
- 2. Head welds (Item No. B1.21, B1.22)
- 3. Head to flange (Item No. B1.40)
- B. Category: B-D, Full Penetration Welds of Nozzles in Vessels

Component Description: (See attached table for component identification numbers)

- 1. Nozzle to shell welds (Item No. B3.90)
- 2. Nozzle inside radius section (Item No. B3.100)
- C. Category: B-F, Pressure Retaining Dissimilar Metal Welds

Component Description: (See attached table for component identification numbers)

1. Nozzle to safe end welds (Item No. B5.10)

II. ASME B&PV Section XI Requirements

ASME Code requires 100% volumetric examination of welds and required volume.

III. Relief Requested

Relief requested from 100% volumetric examination (See attached table for percent completion of each specific component) at the first and subsequent examinations as scheduled in Section 2.6 of the ISEP.

IV. Basis for Relief

The structural integrity of the reactor pressure vessel welds was demonstrated during construction by meeting the requirements of the ASME Code Section III, and additionally by meeting the requirements of ASME Section XI during preservice inspections. All welds were examined in

Sheet 2 of 11

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-001, REV. 1

accordance with the appropriate Code requirements, weld techniques and welders were qualified in accordance with Code requirements, and materials were purchased and traced in accordance with the appropriate Code and NRC requirements and guidelines. The Perry Unit 1 reactor vessel had no reportable indications from preservice inspection results.

The pressure boundary passed the required hydrostatic test; following startup testing the plant has operated between 60% and 70% capacity factor for a total of about 1,106 equivalent full power days between November 1987 and March 1992, without detectable pressure boundary leakage.

Complete examinations meeting the requirements of the ASME Code Section XI will continue to be performed on welds of similar configurations utilizing similar weld techniques, procedures and materials. The inspected wilds are subject to the same operating and environmental conditions as the partially examined or unexamined welds.

It is, therefore, reasonable to apply the results from examined welds to the partially examined welds in the attached table.

In addition, catastrophic reactor vessel failure is precluded by avoiding nil ductile temperatures at significant stress levels according to the design, surveillance and operating provisions described in the Perry USAR Sections 5.3.1 and 5.3.2 and the Technical Specifications 3/4.4.6.

In summary, because of initial vessel condition free of reportable indications, successful code hydrotest and operating experience without leakage indications, the capability to examine most vessel welds on a continuing basis, the canability to detect pressure boundary leakage, and protections against brittle reactor vessel failure, it is concluded that there is no significant impact on the overall level of plant quality and safety.

See the attached table for specific causes of NDE limitation for each component.

V. Alternate Examination

None

M

Sheet 3 of 11

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-001, Rev. 1

				≈ COMPLETE		
NO.	WELD I.D.	DESCRIPTION	CODE	上	11	
B1.11	1-B13-AA	Lower head to shell #1 circ. weld	BA	50	50	Examination performed from shell side only due to support skirt and base ring obstruction on lower head.
81.12	1-B13-B4	Shell #1 long. seam at 17°	BA	70	78	Obstructions presented by N1 and N2 recirculation nozzles.
B1.12	1-B13-BB	Shell #1 long. seam at 137°	BA	74	76	Obstructions presented by N2 recirculation nozzles.
B1.12	1-B13-BC	Shell #1 long. seam at 257°	BA	75	75	Obstructions presented by N2 recirculation nozzles.
B1.11	1-B13-AB	Shell #1 to shell #2 circ. weld	BA	85	99	Obstructions presented by N1 and N2 recirculation nozzles.
B1.12	1-B13-BE	Shell #2 long. seam at 160°	BA	92	90	Obstructions presented by N12 instrumentation nozzle.
B1.11	1-813-AC	Shell #2 to shell #3 circ. weld	BA	91	100	Obstructions presented by the four N12 instrumentation nozzles on shell #2.
B1.12	1-B13-BG	Shell #3 long. seam at 79°	BA	70	75	Obstructions presented by N4 feedwater and N6 RHR/LPCI nozzles.
B1.12	1-B13-BJ	Shell #3 long. seam at 199°	BA	69	68	Obstructions presented by N13 instrumentation and N4 feedwater nozzles.
B1.12	1-B13-BK	Shell #3 long. seam at 319°	BA	88	100	Perpendicular examination obstructed N4 feed- water nozzle. Complete parallel scan performed.

Perpendicular scan
Parallel scan

Sheet 4 of 11

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-001, Rev. 1

				% COM	PLETE	
NO.	WELD I.D.	DESCRIPTION	CODE	1	11	
B1.11	1-B13-AD	Shell #3 to shell #4 circ. weld	BA	99	97	Parallel scan could not be performed for approximately 30" along taper between shell #3 and shell #4.
B1.12	1-B13-BN	Shell #4 long. seam at 48°	BA	64	69	Obstruction presented by N3 main steam nozzle and mechanical limits of scanner.
B1.12	1-B13-BP	Shell #4 long. seam at 168°	BA	85	88	Perpendicular examination obstructed by N16 vibration instrumentation nozzle, N14 instrumentation nozzle and mechanical limits of scanner. Parallel examination obstructed by N14 and mechanical limits of scanner.
B1.12	1-B13-BR	Shell #4 long. seam at 288°	BA	89	86	Obstructions presented by N3 main steam nozzle and mechanical limits of scanner.
B3.90	1-813-N1A-KA	N1 nozzle to shell weld weld	BD	89	46	*Scan path obstructed by nozzle geometry and mechanical limits of scanner.
B3.100	1-B13-N1A-IR	N1 nozzle inner radĭus area	BD	92	N/A	Shell side examination limited by taper between shell #1 and shell #2.
B3.90	1-B13-N1B-KA	N1 nozzle to shell meld	BD	83	10	*Scan path obstructed by nozzle geometry and mechanical limits of scanner.
B3.100	1-B13-N1B-IR	N1 nozzle inner radius area	BD	92	N/A	Shell side examination limited by taper between shell #1 and shell #2.
B3.90	1-B13-N2A-KA	N2 nozzle to shell weld	BD	65	36	*Scan path obstructed by nozzle geometry biowall doors and mechanical limits of scanner.

Perpendicular scan

[/] Parallel scan

^{*} Perpendicular weld examination limited to one direction toward nozzle centerline.

Sheet 5 of 11

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-001, Rev. 1

				% COM	PLETE	
ITEM NO.	WELD I.D.	DESCRIPTION	CATEGORY	工	//	
вз.100	1-B13-N2A-IR	N2 nozzle inner radius area	BD	88	N/A	Shell side examination limited by taper between shell #1 and shell #2.
B5.10	1-B13-N2A-KB	N2 nozzle to safe end weld	BF	55	75	Scan path obstructed by nozzle geometry and permanent vessel track at 20° Az.
B3.90	1-B13-N2B-KA	N2 nozzle to shell weld	BD	86	49	*Scan path obstructed by nozzle geometry and mechanical limits of scanner.
B3.100	1-B13-N2B-IR	N2 nozzle inner radius area	BD	88	N/A	Shell side examination limited by taper between shell #1 and shell #2.
B5.10	1-B13-N2B-KB	N2 nozzle to safe end weld	BP	74	87	Scan path obstructed by nozzle geometry and OD weld contour.
B3.90	1-B13-N2C-KA	N2 nozzle to shell weld	BD	86	74	*Scan path obstructed by nozzle geometry, N9 jet pump instrumentation nozzle and mechanical limits of scanner.
B3.100	1-B13-N2C-IR	N2 nozzle inner radius area	BD	86	N/A	Shell side examination limited by taper between shell #1 and shell #2 and N9 jet pump instrumentation nozzle.
B5.10	1-B13-N2C-KB	N2 nozzle to safe end weld	BF	22	75	Scan path obstructed by nozzle geometry and OD weld contour.
вз.90	1-B13-N2D-KA	N2 nozzle to shell weld	BD	74	46	*Scan path obstructed by nozzle geometry, N9 jet pump instrumentation nozzle, permanent vessel tracks at 110° and 135° Az., and mechanical limits of scanner.

Perpendicular scan

Parallel scan

Perpendicular weld examination limited to one direction toward nozzle centerline.

Sheet 6 of 11

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-001, Rev. 1

				% COM	PLETE	
NO.	WELD I.D.	DESCRIPTION	CATEGORY	上	//	
B3.100	1-B13-N2D-IR	N2 nozzle inner radius area	BD	86	N/A	Shell side examination limited by taper between shell #1 and shell #2 and N9 jet pump instrumentation nozzle.
B5.10	1-B13-N2D-KB	N2 nozzle to safe end weld	BF	47	100	Scan path obstructed by nozzle geometry and OD weld contour
B3.90	1-B13-N2E-KA	N2 nozzle to shell weld	BD	73	67	*Scan path obstructed by nozzle geometry, permanent vessel track of 135° Az., and mechanical limits of scanner.
B3.100	1-B13-N2E-IR	N2 nozzle inner radius area	BD	88	N/A	Shell side examination limited by taper between shell #1 and shell #2.
B5.10	1-B13-N2E-KB	N2 nozzle to safe end weld	BF	75	88	Scan path obstructed by nozzle geometry.
B3.90	1-B13-N2F-KA	N2 nozzle to shell weld	BD	87	37	*Scan path obstructed by nozzle geometry, permanent vessel track at 200° Az., and mechanical limits of scanner.
33.100	1-B13-N2F-IR	N2 nozzle inner radius area	BD	88	N/A	Shell side examination limited by taper between shell #1 and shell #2.
B5.10	1-B13-N2F-KB	N2 nozzle to safe end weld	BF	12	85	Scan path obstructed by nozzle geometry and OD weld contour.
B3.90	1-B13-N2G-KA	N2 nozzle to shell weld	BD	83	37	*Scan path obstructed by nozzle geometry and mechanical limits of scanner.

Perpendicular scan

^{//} Parallel scan

^{*} Perpendicular weld examination limited to one direction toward nozzle centerline.

Sheet 7 of 11

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-001, Rev. 1

				% COM	PLETE	
NO.	WELD I.D.	DESCRIPTION	CODE	<u></u>	11	
вз.100	1-B13-N2G-IR	N2 nozzle inner radius area	BD	88	N/A	Shell side examination limited by taper between shell #1 and shell #2.
B5.10	1-B13-N2G-KB	N2 nozzle to safe end weld	BF	24	97	Scan path obstructed by nozzle geometry and OD weld contour.
B3.90	1-B13-N2H-KA	N2 nozzle to shell weld	BD	89	37	*Scan path obstructed by nozzle geometry, N9 jet pump instrumentation nozzle and mechanical limits of scanner.
B3.100	1-B13-N2H-IR	N2 nozzle inner radius area	BD	86	N/A	Shell side examination limited by taper between shell #1 and shell #2 and jet pump instrumentation nozzle.
B5.10	1-B13-N2H-KB	N2 nozzle to safe end weld	BF	57	97	Scan path obstructed by nozzle geometry and OD weld contour.
B3.90	1-B13-N2J-KA	N2 nozzle to shell weld	BD	88	53	*Scan path obstructed by nozzle geometry, *19 jet pump instrumentation nozzle and mechanical limits of scanner.
B3.100	1-B13-N2J-IR	N2 nozzle inner radius area	BD	86	N/A	Shell side examination limited by taper between shell #1 and shell #2 and jet pump instrumenta- tion nozzle.
B5.10	1-B13-N2J-KB	N2 nozzle to safe end weld.	BF	83	88	Scan path obstructed by nozzle geometry.
B3.90	1-B13-N2K-KA	N2 nozzle to shell weld	BD	36	46	*Scan path obstructed by nozzle geometry, permanent vessel track at 340° Az., and mechanical limits of scanner.
Dan	mandicular mann					

___ Perpendicular scan

⁷ Paraliel scan

Perpendicular weld examination limited to one direction toward nozzle centerline.

Sheet 8 of 11

Perry Nuclear Power Plant Unit 1 RELIFF REQUEST #IR-001, Rev. 1

				% COM	PLETE	
ITEM NO.	WELD I.D.	DESCRIPTION	CODE		11	
B3.100	1-B133-N2K-IR	N2 nozzle inner radius area	BD	88	N/A	Shell side examination limited by taper between shell #1 and shell #2.
35.10	1-B13-N2K-KB	M2 nozzle to safe end weld	BF	74	88	Scan path obstructed by nozzle geometry.
вз.90	1-B13-K4A-KA	N4 nozzle to shell weld	BD	97	32	*Scan path obstructed by nozzle geometry.
вз.100	1-813-N4A-IR	N4 nozzle inner radius area	BD	96	N/A	Shell side examination limited by N13 instrumentation nozzle at 15° Az.
Б3.10	1-513-N4A-KB	N4 nozzle to safe end weld	BF	87	100	Scan path obstructed by nozzle geometry.
E3.90	1-B13-N4B-KA	N4 nozzle to shell weld	BD	99	59	*Scan path obstructed by nozzle geometry.
B5.10	1-B13-N4B-KB	N4 nozzle to safe end weld	BF	77	98	Scan path obstructed by nozzle geometry.
B3.90	1-B13-N4C-KA	N4 nozzle to shell weld	BD	93	32	*Scan path obstructed by nozzle geometry.
B3.100	1-B13-N4C-IR	N4 nozzle inner radius area	BD	96	N/A	Shell side examination limited by N13 instrumentation nozzle at 165° Az.
B5.10	1-B13-N4C-KB	N4 nozzle to safe end weld	BF	83	98	Scan path obstructed by nozzle geometry.
вз.90	1-B13-N4D-KA	N4 nozzle to shell weld	BD	83	32	*Scan path obstructed by nozzle geometry and permanent vessel track at 200° Az.

Perpendicular scan

Parallel scan

Perpendicular weld examination limited to one direction toward nozzle centerline.

Sheet 9 of 11

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-001, Rev. 1

				% COM	PLETE	
NO.	WELD I.D.	DESCRIPTION	CODE	工	11	
RJ.10	1-B13-N4D-KB	N4 nozzle to safe end weld	PF	83	98	Scan path obstructed by nozzle geometry.
B3.100	1-B13-N4D-IR	N4 nozzle inner radius area	BD	96	N/A	Shell side examination limited by N13 instrumentation nozzle at 195° Az.
B3.90	1-B13-N4E-KA	N4 nozzle to shell weld	BD	98	59	*Scan path obstructed by nozzle geometry.
B5.10	1-B13-N4E-KB	N4 nozzle to safe end weld	BF	80	98	Scan path obstructed by nozzle geometry.
B3.90	1-B13-N4F-KA	N4 nozzle to shell weld	BD	97	59	*Scan path obstructed by nozzle geometry.
B3.100	1-B13-N4F-IR	N4 nozzle inner radius area	BD	96	N/A	Shell side examination limited by N13 instrumentation nozzle at 345° Az.
B5.10	1-B13-N4F-KB	N4 nozzle to safe end weld	BF	79	73	Scan path obstructed by nozzl; geometry and OD weld contour.
B3.90	1-B13-N5A-KA	N5 nozzle to shell weld	BD	98	61	*Scan path obstructed by nozzle geometry.
B5.10	1-813-N5A-KB	N5 nozzle to safe end weld	ВF	86	100	Scan path obstructed by safe end transition taper.
B3.90	1-B13-N5B-KA	N5 nozzle to shell weld	BD	98	29	*Scan path obstructed by nozzle geometry.
B5.10	1-B13-N5B-K8	N5 nozzle to safe end weld	bF .	86	100	Scan path obstructed by safe and transition taper.
B3.90	1-B13-N6A-KA	N6 nozzle to shell weld	BD	95	56	*Scan path obstructed by nozzle geometry.

Perpendicular scan

Parallel scan

^{*} Perpendicular weld examination limited to one direction toward nozzle centerline.

Sheet 10 of 11

Perry Muclear Power Plant Unit 1 RELIEF REQUEST #IR-001, Rev. 1

				% COM	PLETE	
NO.	WELD I.D.	DESCRIPTIO C	CODE	工	//	
B5.10	1-B13-N6A-KB	N6 nozzle to safe end weld	of	91	100	Scan path obstructed by nozzle geometry and safe end transition taper.
B3.90	1-B13-N6B-KA	N6 nozzle to shell weld	BD	93	70	*Scan path obstructed by nozzle geometry.
B5.10	1-B13-N6B-KB	N6 nozzle to safe end weld	BF	93	74	Scan path obstructed by nozzie geometry, safe end transition taper and 00 weld contour.
B3.90	1-B13-N6C-KA	N6 nozzle to shell weld	BD	95	56	*Scan path obstructed by nozzle geometry.
B5.10	1-B13-N6C-KB	N6 nozzle to safe end weld	BF	95	82	Scan path obstructed by nozzle geometry, safe end transition and OD weld contour.
B1.40	1-B13-AG	Top head to top head flange weld	BA	50	50	Scan path restricted on top head side only.
B1.21	1-B13-AH	Top head dollar plate to side plate weld	BA	96	100	Scan path obstructed by four lifting lugs at 0°, 90°, 180°, and 270° Az.
B3.90	1-B13-N7-KA	N7 head spare nozzle to top head weld	BD	89	100	*Scan path obstructed by N8 head spray nozzle.
B3.100	1-B13-N7-IR	N7 head spare nozzle inner radius area	BD	94	N/A	hell side examination limited by N8 head spray nozzle.
B3.90	1-B13-N8-KA	N8 head spray nozzle	BD	89	100	*Scan path obstructed by N7 head spare nozzle.
B3.100	1-B13-N8-IR	N8 head spray nozzle inner radius area	BD	94	N/A	Shell side examination limited by N7 head spare nozzle.

Perpendicular scan
// Parallel scan

^{*} Perpendicular weld examination limited to one direction toward nozzle centerline.

Sheet 11 of 11

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-001, Rev. 1

SYSTEM: Reactor Pressure Vessel

				% COM	PLETE	
ITEM NO.	WELD I.D.	DESCRIPTION	CATEGORY	1	11	
вз.90	1-B13-N9A-KA	N9 nozzle to shell weld	BD	81	100	*Scan path obstructed by N2 recirculation inlet nozzles at 90° and 120° Az.
B3.100	1-B13-N9A-IR	N9 nozzle inner radius area	BD	96	N/A	Shell side examination limited by N2 recirculation inlet nozzles at 90° and 120° Az.
B3.90	1-B13-N9B-KA	N9 nozzle to shell weld	BD	81	100	*Scan path obstructed by N2 recirculation inlet nozzles at 270° and 300° Az.
B3.100	1-313-N9B-IR	N9 nozzle inner radius area	BD	96	N/A	Shell side examination limited by N2 recirculation inlet nozzles at 270° and 300° Az.
B3.90	1-B13-N15-KA	N15 nozzle to Bottom Head	BD	0	0	Obstruction presented by CRD tube bundle
B3.100	1-B13-N15-IR	N15 nozzle inner radius	BD	0	0	Obstruction presented by CRD tube bundle
B1.22	1-B13-DG	Bottom Head Center Plate to Side Plates, 270° Side	BA	29	29	Obstruction presented by CRD tube bundle and skirt knuckle.
B1.22	1-B13-DH	Bottom Head Center Plate to Side Plates, 90° Side	BA	29	29	Obstruction presented by CRD tube bundle and skirt knuckle.
B5.10	1B13-N1A-KB	N1 nozzle to safe-end welc	l BF	80	100	Scan path obstructed by nozzle geometry.
B5.10	1B13-N1B-KB	NI nozzle to safe-end weld	i BF	80	100	Scan path obstructed by nozzle geometry.

The above listed items can be found on ISI ISO's SS-305-006-102 through 111.

Perpendicular scan

Parallel scan

Perpendicular weld examination limited to one direction toward nozzle centerline.

Sheet 1 of 5

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-021, REV. 2

I. Identification of Components

Class 3, Category D-B, Item D2.20, Integral Attachment: Component supports and restraints. (See attached table for component identification).

II. ASME B&PV Section XI Requirements

Table IWD-2500-1 requires a VT-3 visual examination.

III. Relief Requested

Relief is requested from the required visual examination due to the inaccessibility of the components.

IV. Basis for Relief

The structural integrity of the piping pressure boundary was demonstrated during construction by meeting the requirements of the ASME Code Section III. All welds were inspected in accordance with the appropriate Code requirements. Weld techniques and welders were qualified in accordance with Code requirements and materials were purchased and traced in accordance with the appropriate Code and NRC requirements and guidelines.

Complete examinations meeting the requirements of the ASME Code Section XI were performed on integral attachments with similar configurations which utilized the same weld techniques, procedures and materials.

Since the construction and operating conditions of the inaccessible welded attachments are similar to that of welded attachments that were examined, it is reasonable to extend the satisfactory results of the accessible integral attachments to the inaccessible ones.

The pressure boundary passed the required preservice hydrostatic test and first period inservice system pressure tests, and the plant has operated for the total of about 1,106 equivalent full power days between November 1987 and March 1992.

In summary, because of acceptable initial condition, successful examinations of similar components, and successful test and operating experience, it is concluded that there is no significant impact on the overall level of plant quality and safety.

V. Alternate Examination

No.

Sheet 2 of 5

ITEM NO.	COMPONENT I.D.	SYS./ISI ISO	DESCRIPTION	NATURE OF OBSTRUCTION	EST % COMPLETE
D2.20	1B21-H0050-WA	Main Steam SS-305-605-115	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0157-WA	Main Steam SS-305-605-127	Welded Lugs for Pipe Surport	Underwater, Geometry	0%
D2.20	1B21-H0167-WA	Main Steam SS-305-605-126	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0179-WA	Main Steam SS-305-605-124	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1P42-H0221-WA	Emer. Closed Cool. SS-305-621-104	Weld i Lugs for Pipe Support	Lugs in Penetration Filled w/Sealant	0%
D2.20	1P45-H0643-WA	Emer. Service Wtr. SS-305-791-110	Welded Lugs for Pipe Support	Lugs in Penetration Filled w/Grout	O%
D2.20	2P42-H0009-WA	Emer. Closed Cool. SS-305-623-106	Welded Lugs for Pipe Support	Two of Eight Lugs in Penetration Filled w/Sealant	75%
D2.20	1B21-H0176-WA	Main Steam SS-305-605-130	Welded Lugs for Pipe Support	Underwater, Geometry	oz
D2.20	1B21-H0128-WA	Main Steam SS-305-605-129	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0156-WA	Main Steam SS-305-605-128	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0158-VA	Main Steam SS-305-605-125	Welded Lugs for Pipe Support	Underwater, Geometry	0%

Sheet 3 of 5

ITEM NO.	COMPONENT I.D.	SYS./ISI ISO	DESCRIPTION	NATURE OF OBSTRUCTION	EST % COMPLET!
D2.20	1B21-H0173-WA	Main Steam SS-305-605-123	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0175-WA	Main Steam SS-305-605-133	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0155-WA	Main Steam SS-305-605-112	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0168-WA	Main Steam SS-305-605-113	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H012G-WA	Main Steam SS-305-605-114	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0159-WA	Main Steam SS-305-605-121	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0160-WA	Main Steam SS-305-605-120	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0186-WA	Main Steam SS-305-605-119	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0177-WA	Main Steam SS-305-605-118	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0163-WA	Main Steam SS-305-605-117	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1B21-H0164-WA	Main Steam SS-305-605-116	Welded Lugs for Pipe Support	Underwater, Geometry	0%
D2.20	1G41-H0396-WA	Fuel Pool Cooling SS-305-655-114	Welded Lugs for Pipe Support	Lugs in Pene. Filled w/Sealant	0%

Sheet 4 of 5

ITEM NO.	COMPONENT I.D.	SYS./ISI ISO	DESCRIPTION	NATURE OF OBSTRUCTION	EST % COMPLETE
D2.20	1P42-H0115-WA	Emer. Closed Cool. SS-305-621-107	Welded Lugs for Pipe Support	Two of four Lugs in Pene. Filled w/Sealant	50%
D2.20	1P42-H0222-WA	Emer. Closed Cool. SS-305-621-104	Welded Lugs for Pipe Support	Lugs in Pene. Filled w/Sealant	0%
D2.20	1P45-B0022-WA	Emer. Service Wtr. SS-305-792-106	Welded Stanchion for Pipe Support	Stanchion in Pene. Filled w/Sealant	0%
D2.20	1P45-H0049-WA	Emer. Service Wtr. SS-305-792-11?	Welded Sleeve for Pipe Support	Sleeve in Pene. Filled w/Sealant	0%
D2.20	1745-H0127-WA	Emer. Service Wtr. SS-305-792-107	Welded Lugs for Pipe Support	Lugs in Pene Filled w/Sealant	0%
D2.20	1P45-H0191-WA	Emer. Service Vtr. SS-305-791-113	Welded Lugs for Pipe Support	Lugs in Pene. Filled w/Sealant	0%
D2.20	1P45-B0271-WA	Emer. Service Wtr. SS-305-791-104	Welded Lugs for Pipe Support	Lugs in Pene. Filled w/Sealant	9%
D2.20	1P45-H0417-VA	Emer. Service Wtr. SS-305-791-101	Welded Lugs for Pipe Support	Lugs in Pene. Filled w/Sealant	0%
D2.20	2P42-H0024-WA	Emer. Closed Cool. SS-305-623-112	Welded Lugs for Pipe Support	Two of Six Lugs in Pene. Filled w/Sealant	66%
D2.20	2P42-H0025-WA	Emer. Closed Cool. SS-305-623-110	Welded Lugs for Pipe Support	Two of Six Lugs in Pene. Filled w/Sealant	66%

PY-CRI/NRR-1521 L Attachment 2 Page 16 of 24

Sheet 5 of 5

ITEM NO.	COMPONENT I.D.	SYS./ISI ISO	DESCRIPTION	NATURE OF OBSTRUCTION	EST % COMPLETE
D2.20	1P45-H0649-WA	Emer. Service Wtr. SS-305-791-110	Welded Lugs for Pipe Support	Lugs Inside Pene. in Limited Access Sump	0%
D2.20	1P45-H0659-WA	Emer. Service Vtr. SS-305-791-110	Welded Lugs for Pipe Guide	Lugs Inside Pene. in Limited Access Sump	0%

Sheet 1 of 5

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-022, Rev. 2

I. Identification of Compo. nts

Class 3, Category F-A, Item F3.10, Component Supports. (See attached table for component identification).

II. ASME B&PV Section XI Requirements

Table IWF-2500-1, requires a VT-3, visual examination.

III. Relief Requested

Relief is requested on that portion of the component that cannot be subjected to the required visual examination. (See attached table for amount of component that is accessible).

IV. Basis for Relief

The structural integrity of the piping pressure boundary was demonstrated during construction by meeting the requirements of the ASME Code Section III. All support were inspected in accordance with the appropriate Code requirements. Weld techniques and welders were qualified in accordance with Code requirements and materials were purchased and traced in accordance with the appropriate Code and NRC requirements and guidelines.

Complete examinations meeting the requirements of the ASME Code Section XI are performed on supports adjacent to the inaccessible supports.

Since the construction and operating conditions of the inaccessible supports are similar to those of supports that were examined, it is reasonable to extend the satisfactory results of the accessible supports to the inaccessible supports.

The pressure boundary passed the required preservie hydrostatic test and first period inservice system pressure tests, and the plant has operated for a total of about 1,106 equivalent full power days between November 1987 and March 1992.

In summary, because of acceptable initial condition, successful examinations of adjacent supports, and successful test and operating experience, it is concluded that there is no significant impact on the overall level of plant quality and safety.

V. Alternate Examination

No.

Sheet 2 of 5

ITEM NO.	COMPONENT I.D.	SYS./ISI ISO	DESCRIPTION	NATE OF OBSTRUCTION	EST % COMPLETE
F3.10	1B21-H0050	Main Steam SS-3C5-605-115	Pipe Guide	Undervater, Geometry	0%
F3.10	1B21-H0157	Main Steam SS-305-605-115	Pipe Guide	Underwater, Geometry	0%
F3.10	1B21-H0167	Main Steam SS-305-605-115	Pipe Guide	Underwater, Geometry	0%
F3.10	1B21-H0179	Main Steam SS-305-605-115	Pipe Guide	Underwater, Geometry	02
F1.10	1Е12-Н0476	RHR, SS-305-605-124	Pipe Guide	Guide in Pen. Filled w/Sealant	25%
F3.10	1P42-H0221	Emer. Closed Cool. SS-305-621-104	Pipe Guide	Guide in Pen. Filled w/Sealant	0%
F3.10	1P45-#0643	Emer. Service Wtr. SS-305-791-110	Pipe Guide	Guide in Pen. Filled w/Grout	0%
F3.10	2Р42-Н0009	Emer. Closed Cool. SS-305-623-106	Pipe Guide	Guide Partially in Penetration Filled w/Sealant	75%
F3.10	1B21-B0176	Main Steam SS-305-605-130	Pipe Guide	Underwater, Geometry	02
F3.10	1B21-H0128	Main Steam SS-305-605-129	Pipe Guide	Underwater, Geometry	0%
F3.10	1B21-H0156	Main Steam SS-305-605-128	Pipe Guide	Underwater, Geometry	0%

Sheet 3 of 5

ITEM NO.	COMPONENT I.D.	SYS./ISI ISO	DESCRIPTION	MATURE OF OBSTRUCTION	COMPLETE
F3.10	1B21-H0158	Main Steam SS-305-605-125	Pipe Guide	Underwater, Geometry	0%
F3.10	1B21-B0173	Main Steam SS-305-605-123	Pipe Guide	Undervater, Geometry	0%
F3.10	1B21-H0175	Main Steam SS-305-605-122	Pipe Guide	Underwater, Geometry	02
F3.10	1B21-H0155	Main Steam SS-305-605-112	Pipe Guide	Underwater, Geometry	0%
F3.10	1B21-H0168	Main Steam SS-305-605-113	Pipe Guide	Underwater, Geometry	ΟX
F3.10	1B21-H0120	Main Steam SS-305-605-114	Pipe Guide	Underwater, Geometry	0%
F3.10	1B21-B0159	Main Steam SS-305-605-121	Pipe Guide	Underwater, Geometry	02
F3.10	1B21-H0160	Main Steam SS-305-605-120	Pipe Guide	Underwater, Geometry	0%
F3.10	1B21-H0186	Main Steam SS-305-605-119	Pipe Guide	Underwater, Geometry	0%
F3.10	1B21-H0177	Main Steam SS-305-605-118	Pipe Guide	Underwater, Geometry	0%
F3.10	1B21-B0163	Main Steam SS-305-605-117	Pipe Guide	Underwater, Geometry	0%
F3.10	1821-80164	Main Steam SS-305-605-116	Pipe Guide	Underwater, Geometry	0%

Sheet 4 of 5

ITEM NO.	COMPONENT I.D.	SYS./ISI ISO	DESCRIPTION	NATURE OF OBSTRUCTION	EST Z COMPLETE
F3.10	1G41-H0396	Fuel Pool Cleaning SS-305-655-114	Pipe Guide	Guide in Pen. Filled w/Sealant	0%
F3.10	1P42-80115	Emer. Closed Cool. SS-305-621-106	Pipe Guide	Guide Partially in Pen. Filled w/Sealant	50%
F3.10	1Р42-Н0222	Emer. Closed Cool. SS-305-621-104	Pipe Guide	Guide in Pen. Filled w/Sealant	OZ
F3.10	1P45-H0022	Emer. Closed Cool. SS-305-792-106	Pipe Anchor	Anchor in Pen. Filled w/Sealant	0%
F3.10	1P45-H0049	Emer. Closed Cool. SS-305-792-112	Pipe Anchor	Anchor in Pen. Filled w/Sealant	0%
F3.10	1P45-H0127	Emer. Closed Cool. SS-305-792-107	Pipe Anchor	Anchor in Pen. Filled w/Sealant	0%
F3.10	1P45-B0162	Emer. Closed Cool. SS-305-792-104	Pipe Anchor	Anchor in Pen. Filled w/Sealant	0%
F3.10	1P45-H0191	Emer. Service Wtr. SS-305-791-113	Pipe Guide	Guide in Pen. Filled w/Sealant	0%
F3.10	1P45-B0271	Emer. Service Wtr. SS-305-791-104	Pipe Guide	Guide in Pen. Filled w/Sealant	0%
F3.10	1P45-H0397	Emer. Service Wtr. SS-305-791-108	Pipe Guide	Underwater in Limited Access Sump	ox
F3.10	1P45-H0398	Emer. Service Wtr. SS-305-791-108	Pipe Guide	Underwater in Limited Access Sump	0%

Sheet 5 of 5

ITEM NO.	COMPONENT I.D.	SYS./ISI ISO	DESCRIPTION	NATURE OF OBSTRUCTION	COMPLETE
F3.10	1P45-H0399	Emer. Service Vtr. SS-305-791-109	Pipe Guide	Underwater in Limited Access Sump	0%
F3.10	1P45-H0400	Emer. Service Wtr. SS-305-791-109	Pipe Guide	Underwater in Limited Access Sump	0%
F3.10	1P45-H0417	Emer. Service Wtr. SS-305-791-101	Pipe Guide	Guide in Pen. Filled w/Sealant	0%
F3.10	1P45-B0430	Emer. Service Wtr. SS-305-791-102	Pipe Guide	Guide in Pen. Filled w/Sealant	0%
F3.10	2P42-H0024	Emer. Service Wtr. SS-305-623-112	Pipe Guide	Guide Partially in Pene. Filled w/Sealant	56%
F3.10	2P45-H0025	Emer. Service Wtr. SS-305-623-110	Pipe Guide	Guide Partially in Pene. Filled w/Sealant	66%
F3.10	1P45-H0401	Emerg. Service Wtr. SS-305-791-107	Pipe Guide	Underwater in Limited Access Sump	0%
F3.10	1P45-B0402	Emer. Service Wtr. SS-305-791-107	Pipe Guide	Undervater in Limited Access Sump	oz
F3.10	1P45-F0649	Emer. Service Wtr. SS-305-791-110	Pipe Guide	Guide Inside Pene. in Limited Access Sump	OZ
F3.10	1P45-H0659	Emer. Service Wtr. SS-305-791-110	Pipe Guide	Guide Inside Pene. in Limited Access Sump	02

Sheet 1 of 3

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-027

I. Identification of Components

Class 3, Category D-B, Item D2.20, Integral Attachments: Component supports and restraints. (See attached table for component identification).

II. ASME B&PV Section XI Requirements

Table IWD-2500-1, requires a VT-3, visual examination.

III. Relief Requested

Relief is requested from the required visual examination due to the inaccessibility of the welded attachments.

IV. Basis for Relief

The structural integrity of the pressure boundary was demonstrated during construction by meeting the requirements of the ASMF Code Section III. All welds were inspected in accordance with the appropriate Code requirements. Weld techniques and welders were qualified in accordance with Code requirements and materials were purchased and traced in accordance with the appropriate Code and NRC requirements and guidelines.

The integrally attached (welded) anchors on the fuel oil day tanks are buried in fire retardant Pyrocrete in order to meet the PNPP fire protection program requirements per 10CFR50 Appendix R, and Branch Technical Position APCSB 9.5-1, Appendix A (see PNPP USAR Appendix 9A, Section 9A.5(D)(2)(1)). Pyrocrete is a hard, rigid material. When applied, it is considered as a permanent feature of the system to endure through the life span of the facility. To remove this material from the day tanks would require cutting and chipping.

Complete examinations meeting the requirements of the ASME Code Section XI, Category F-A, have been performed on the accessible portion of two of the day tank component supports. At the time of the support exams, the Pyrocrete covering their integral attachments was examined for any condition which might have indicated their integral attachments were structurally degraded (i.e., severely cracked or missing Pyrocrete, support detached from component, etc.). The examinations produced acceptable results with no visible signs of structural degradation.

The pressure boundary passed the required preservice hydrostatic test and first period system functional pressure tests, and the plant has operated for the total of 1,106 equivalent full power days between November 1987 and March 1992.

Sheet 2 of 3

Perry Nuclear Power Plant Unit 1 RELIEF REQUEST #IR-027

In summary, because of acceptable initial conditions, the ability to detect severe degradation of the integral attachments by examination of the Pyrocrete during their component support examinations, and successful test and operating experience, it is concluded that the requested relief would not pose a significant impact on the overall level of plant quality and safety.

V. Alternate Examination

At the time of the scheduled Category F-A visual examinations of the day tank anchors, the Pyrocrete covering their integral attachments will be examined for conditions which could indicate structural degradation of the buried integral attachment welds.

EST Z

NATURE OF

Sheet 3 of 3

ITEM NO.	COMPONENT I.D.	SYS./ISI ISO	DESCRIPTION	OBSTRUCTION	COMPLETE
D2.20	1R45-A003A-WA	Standby & HPCS Diesel Fuel Oil SS-305-355-10	Integrally Attached Anchor of Div 1 Diesel Fuel Oil Day Tank	Buried in Pyracrete	0%
D2.20	1R45-A003B-VA	Standby & HPCS Diesel Fuel Oil SS-305-355-111	Integrally Attached Anchor of Div 2 Diesel Fuel Oil Day Tark	Buried in Pyrocrete	0%
D2.20	1R45-A005-WA	Standby & HPCS Diesel Fuel Oil SS_305_356-101	Integrally Attached Anchor of HPCS Diesel Fuel Oil Day Tank	Buried in Pyrocrete	OZ