RE-21 CORE OPERATING LIMITS REPORT # CYCLE 5 COLR RE DEPT SUPERVISOR **OPERATIONS MANAGER** REVISION 01-05-02 #### 1.0 Core Operating Limits Report This Core Operating Limits Report for Seabrook Station Unit 1, Cycle 5 has been prepared in accordance with the requirements of Technical Specification 6.8.1.6. The Technical Specifications affected by this report are: - 1) 2.2.1 Limiting Safety System Settings - 2) 3.1.1.1 Shutdown Margin Limit for MODES 1, 2, 3, 4 - 3) 3.1.1.2 Shutdown Margin Limit for MODE 5 - 4) 3.1.1.3 Moderator Temperature Coefficient - 5) 3.1.3.5 Shutdown Rod Insertion Limit - 6) 3.1.3.6 Control Rod Insertion Limits - 7) 3.2.1 Axial Flux Difference - 8) 3.2.2 Heat Flux Hot Channel Factor - 9) 3.2.3 Nuclear Enthalpy Rise Hot Channel Factor #### 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.8.1.6. 2.1 Limiting Safety System Settings: (Specification 2.2.1) 2.1.1 Cycle Dependent Overtemperature ΔT Trip Setpoint Parameters and Function Modifier: $$2..1.1.1$$ $K_i = 1.145$ $$2.1.1.2$$ $K_2 = 0.020 / {}^{\circ}F$ $$2.1.1.3$$ $K_3 = 0.001 / psig$ - 2.1.1.5 Channel Z = N.A. - 2.1.1.6 Channel Sensor Error (S) = N.A. - 2.1.1.7 Allowable Value The channel's maximum Trip Setpoint shall not exceed its computed Trip Setpoint by more than 2.2% of ΔT span (150 PU_ΔT). - 2.1.1.8 $F_1(\Delta I)$ is a function of the indicated difference between top and bottom detectors of the power-range neutron ion chambers with gains to be selected based on measured instrument response during plant startup tests. $F_1(\Delta I)$ is specified in Figure 1.1. - 2.1.2 Cycle Dependent Overpower AT Trip Setpoint Parameters and Function Modifier: - $2.1.2.1 \text{ K}_4 = 1.070$ - 2.1.2.2 $K_5 = 0.020$ / F for increasing average temperature and $K_5 = 0.0$ for decreasing average temperature. - 2.1.2.3 $K_6 = -0.00196$ / °F for T > T" and $K_6 = 0.0$ for $T \le T$ ", where: T = Average temperature (°F), and T" = Indicated T_{avg} at RATED THERMAL POWER (Calibration temperature for ΔT instrumentation ≤ 588.5 °F). - 2.1.2.4 Channel Total Allowance (TA) = N.A. - 2.1.2.5 Channel Z = N.A. - 2.1.2.6 Channel Sensor Error (S) = N.A. - 2.1.2.7 Allowable Value The channel's maximum Trip Setpoint shall not exceed its computed Trip Setpoint by more than 2.1% of ΔT span (150 PU_ΔT). - 2.1.2.8 $F_2(\Delta I)$ is a function of the indicated difference between top and bottom detectors of the power-range neutron ion chambers with gains to be selected based on measured instrument response during plant startup tests. $F_2(\Delta I)$ is specified in Figure 1.2. - 2.2 Shutdown Margin Limit For MODES 1, 2, 3, and 4: (Specification 3.1.1.1) - A) The Shutdown Margin shall be greater than or equal to 1.3 % ΔK/K, in MODES 1, 2, 3. - B) The Shutdown Margin shall be greater than or equal to 1.8 % ΔK/K in MODE 4. - 2.3 Shutdown Margin Limit For MODE 5: (Specification 3.1.1.2) The Shutdown Margin shall be greater than or equal to 1.8 % $\Delta K/K$. - 2.4 Moderator Temperature Coefficient: (Specification 3.1.1.3) - 2.4.1 The Moderator Temperature Coefficient (MTC) shall be less positive than +2.19 x 10⁻⁵ ΔK/K/°F for Beginning of Cycle Life (BOL), All Rods Out (ARO), Hot Zero Thermal Power conditions. - 2.4.2 MTC shall be less negative than -4.2 x 10⁻⁴ ΔK/K/°F for End of Cycle Life (EOL), ARO, Rated Thermal Power conditions. - 2.4.3 The 300 ppm ARO, Rated Thermal Power MTC shall be less negative than -3.3 x 10⁻⁴ ΔK/K/°F (300 ppm Surveillance Limit) - 2.5 Shutdown Rod Insertion Limit: (Specification 3.1.3.5) - 2.5.1 The shutdown rods shall be fully withdrawn. The fully withdrawn position is defined as the interval within 225 steps withdrawn to the mechanical fully withdrawn position inclusive. - 2.6 Control Rod Insertion Limits: (Specification 3.1.3.6) - 2.6.1 The control rod banks shall be limited in phys. I insertion as specified in Figure 2. - 2.7 Axial Flux Difference: (Specification 3.2.1) - 2.7.1 For operation with the Fixed Incore Detector Alarm OPERABLE, the indicated AFD must be within the Acceptable Operation Limits specified in Figure 3.1. - 2.7.2 For operation with the Fixed Incore Detector Alarm inoperable, the indicated AFD must be within the Acceptable Operation Limits specified in Figure 3.2. - 2.8 Heat Flux Hot Channel Factor: (Specification 3.2.2) - $2.8.1 \quad F^{RTP}_{Q} = 2.50$ - 2.8.2 For operation with the Fixed Incore Detector Alarm OPERABLE, the K(z) used to satisfy surveillance requirements 4.2.2.2 and 4.2.2.4 is specified in Figure 4.1. - 2.8.3 For operation with the Fixed Incore Detector Alarm inoperable, the K(z) used to satisfy surveillance requirement 4.2.1.2 is specified in Figures 4.2, 4.3, 4.4, and 4.5. - 2.9 Nuclear Enthalpy Rise Hot Channel Factor: (Specification 3.2.3) The limits on $F^N_{\Delta H}$ are specified in Figure 5. The limits apply to $F^N_{\Delta H}$ measured using either the fixed or movable incore detectors since a bounding measurement error has been allowed for in determination of the design DNBR limit value. Overtemperature ΔT Trip F,(ΔI) Axial Flux Imbalance Penalty Function FIGURE 1.1 Overpower ΔT Trip $F_z(\Delta I)$ Axial Flux Imbalance Penalty Function FIGURE 1.2 Bank A must be fully withdrawn prior to power operation. Fully Withdrawn is defined as the All-Rods-Out position. The control rod insertion limits have been revised to permit ARO repositioning between 225 and 231 steps withdrawn. | | Rod Bank Insertion Limits versus Thermal Power | | |--|--|--| | SEABROOK STATION CYCLE 5
CORE OPERATING LIMITS REPORT | Four-Loop Operation | | | | FIGURE 2 | | Axial Flux Difference Limits as a Function of Rated Thermal Power for Operation With Fixed Incore Detector System Alarm OPERABLE FIGURE 3.1 Axial Flux Difference Limits as a Function of Rated Thermal Power for Operation With Fixed Incore Detector System Alarm Inoperable FIGURE 3.2 F_q (Z) Limit As A Function of Core Height for Operation with Fixed Incore Detector System Alarm OPERABLE F_g (Z) Limit As A Function of Core Height for Operation with Fixed Incore Detector System Alarm Inoperable and Cycle Average Burnup < 3.0 GWD/Mtu F_g (Z) Limit As A Function of Core Height for Operation with Fixed Incore Detector System Alarm Inoperable and Cycle Average Burnup 3.0 to 8.0 GWD/Mtu FIGURE 4.2A F_g (Z) Limit As A Function of Core Height for Operation with Fixed Incore Detector System Alarm Inoperable and Cycle Average Burnup 8.0 to 14.0 GWD/Mtu F_g (Z) Limit As A Function of Core Height for Operation with Fixed Incore Detector System Alarm Inoperable and Cycle Average Burnup > 14.0 GWD/Mtu ## $K(Z) \times F_q^{RTP}$ | Linials (in a) | 0.0.014/0/44 | | | | |--|---|---|---|--| | Height (feet) | <3.0 GWD/Mtu | 3.0-8.0 GWD/Mtu | 8.0-14.0 GWD/Mtu | >14.0 GWD/Mtt | | 0.250
0.750
1.250
1.750
2.250
2.750
3.250
3.750
4.250
4.750
5.250
5.750
6.250
6.750
7.250
7.750
8.250
8.750
9.250
9.750
10.250
10.750
11.250
11.750 | 1.931
1.952
1.973
2.000
2.035
2.076
2.050
1.987
1.934
1.913
1.926
1.934
1.917
1.929
1.945
1.951
1.950
1.939
1.951
1.950
1.939
1.927
1.919
1.914
1.906
1.890
1.856 | 1.931
1.952
1.973
2.000
2.035
2.076
2.124
2.129
2.079
2.053
2.057
2.051
2.002
1.957
1.944
1.951
1.950
1.939
1.927
1.919
1.914
1.905
1.890
1.890
1.856 | 1.953
1.965
1.986
2.014
2.053
2.103
2.063
1.986
1.917
1.884
1.886
1.859
1.836
1.844
1.875
1.926
1.950
1.941
1.935
1.934
1.933
1.933
1.923
1.923
1.890 | 1.953
1.965
1.986
2.014
2.053
2.103
1.972
1.843
1.766
1.740
1.736
1.715
1.718
1.750
1.805
1.899
1.939
1.968
1.983
1.980
1.962
1.906 | Basis: F_q^{ATP} = 2.50 SEABROOK STATION CYCLE 5 CORE OPERATING LIMITS REPORT Coordinates for Fq (Z) Limit As A Function of Core Height for Operation with Fixed Incore Detector System Alarm Inoperable All-Rods-Out Nuclear Enthalpy Rise Hot Channel Factor Versus Power Level FIGURE 5