A PRESSURIZED THERMAL SHOCK EVALUATION OF THE h. B. RCBINSON UNIT 2 nuclear poiver plant

Appendix B: Pressurized Thermal Shock Initiating Event Frequency and Branch Probability Screening Estimates for the H. B. Pobinson Uuit 2 Nuclear Power Station

```
written by
```

J. W. Minarick R. A. Austin Science Applications, Inc.

for
The PTS Study Group
of
Oak Ridge National Laboratory

Date of Draft: November 20, 1984

> NOTICE: This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

[^0]B.0. PRESSURIZED THERMAL SHOCK INITIATING EVENT FREQUENCY AND BRANCH PROBABILITY SCREENING ESTIMATES
h. B. POBINSON UNIT 2 NUCLEAR POFER STATION
B.1. Introduction
B.2. Initiating Event Frequency Estimates
B.3. Branch Failure Probability Estinates
References
Attachment A. Development of Main Feedwater End State Probability Estimates for Non-Specific Reactor Trip Initiator
Attachment B. Development of Main Feedwater Isolation Failure Probability Estimates (All Initiators Except Reactor Trip)

Attachment C. Development of Multiple Steam Generator Blowdown Frequency Estimates

October 1984

PRESSURIZED THERMAL SHOCX DAITIATING EVENT FRERUENCY ALD BRAMCY PROBABILITI SCREESIIG ESTINATES

 g.B. ROBINSOM UNIT 2 HOCLEAR POWER STATIOM

 g.B. ROBINSOM UNIT 2 HOCLEAR POWER STATIOM}

B.1. Introf csion

Initiating event frequency and event tree branch probability estimates have been developed for use in quantifying event sequences in the Robinson 2 pressurized thermal shock evaluation. These estimates have been developed for initiators and system/component failures specified by ORNL.

The complete LER data base for Robinson 2 was reviewed for initiating event occurrences and system fallures, as well as for a general overview of the performance of plant systems of interest. However, in lieu of relying solely on Robinson information, Westinghouse-specific and PWR-specific operational information was employed when available and when it was considered that Robinson operational experience did not provide an adequate data base. Additional information was obtained from the NREP Generic Data Base (Ref. 1), the Nuclear Power Plant Operating Experience Summaries (Ref. 2, 3, 4 and 5), as well as other sources. With the constraints imposed by programmatic needs and the availability of operational data, only simplified approaches to frequency and probability estimation were permitted. The estimates are, however, considered acceptable for use as screening estimates. Table 1 includes the estimates developel, the rationale used, relevant information, and information sources.

As stated above, a number of ths estimates included in Table 1 have been developed from generic sources. This is necessary, since many of the failures of interest are sufficiently infrequent that they will only be seen (if at ali) over a large operating period. The estimates may not be representative of Robinson failure probabilities if Robinson systems and components differ significantiy from systems and components used throughout the industry; although potential differences have been considered in developing the astimates in Table 1.

A number of inftiating transients have been found to be of significance from previous pressurized thermal shock analyses. In ger oral these include three initiator classes: (1) reactor trip; (2) steam liae break (SLB); and, (3) loss of coolant accident (LOCA), including steam generator tube ruptures. Several LOCA and SLB situations are of interest - whether a break is small or large; whether it is isolable or noniso able; and whether the plart is at full power or at bot standby. Although separate event trees may be appropriate to describe all these situations, wany of the plant responses of interest are expected to be common among the trees. Also, considering the amount of data available, the frequency estimate developed for one of the initiating events is sometimes an appropriate estimate for others.

B.2. Initiating Event Frequency Estimates

Initiating event frequencies have beea developed based on the number of observed events within selected periods of operation. The calculational method is consistent with that developed in Ref. 9 , and utilized the χ^{2} distribution to estimate a conservative lower bound on mean time between failures, and hence a conservative upper bound on frequency. This frequency estimate is $\chi^{2}{ }_{1-\alpha}(2 r+2) / 2 T$, where $1-\alpha$ is the confidence level, r the number of observed fallures, and T the total observation time. A 50% confidence level was employed.

For some initiators, it may be necessary to estimate the frequency of events in a particular operating mode. The 1980,1981 and 1982 operating experience of Robinson 2 identified in References 4 and 5 was reviewed to estimate the fraction of time the units were at power and in hot shutdown and cold shutdown modes. The fractions of time in these three stateswere: power operation, 61.38 ; hot shutdown, 1.28 ; and cold shutdown, 37.58.

For medium and large steam line breaks and medium break LOCAs, no data exists as to the relative incidence of these initiators at power and hot shutdown; and fractions based on the amount of time in hot shutdown and at power were used. These fractions are: power operation, 98.1\%; hot shutdown, 1.9\%.

Historic small steam line breaks and small LOCAs identified in reference 6 and 7 were revicwed to estimate the fraction of these initiators occurring at hot shutdown and at power. For small steam line breaks, 25% occurred at hot shutdown and 75% occurred at power. For small break LOCAs, 9\% occurred at hot shutdown and 91\% occurred at power.

B.3. Branch Failure Probability Estimates

Branch failure probability estimates on a per-demand basis were developed using the effective number of failures observed within a period of time and estimating the number of demands expected within that same period, if no failures on demand were observed, and no other information was available with which to estimate a failure-on-demand probability, then a poisson approximation of a Binomial process (the number of demands was always large) was assumed applicable and the probability estimated by assuming there was a 50\% probability of observing the zero failures actually observed. In such a case,
$P(r=0)=e^{-m}(m) 0 / 01$, where r is che number of failures and m the expected number of fallures.

The expected number of failures, m, is equal to the probability of failure (p) multiplied by the number of demands (D). If the probability of zero observations is 0.5 , then $P(r=0)=0.5=e^{-m}=e^{-p D}$. If an estimate of D is available, $p \approx .7 / D$. (It is interesting to note that the initiating event frequency estimate reduces to - .7/T for zero observed events.)

[^1]In estimating the likelihood of multiple valve failures, conditional probabilities of subsequent component failure given fallure of the first component were developed based on the multiple failure rates identified in Reference 10. These estimates are:

- For air-operated valves in a system of three valves; 0.094 for a specific second valve failing given the first is failed, and 0.081 for both remaining valves failing given the first is failed.
- For motor-operated valves in a system of three valves, 0.020 for a specific second valve failing given the first is failed, and 0.012 for both remaining valves failing given the first is failed.

As with all event trees, the probability associated with a particular branch is conditional on the prior branches in the sequence. Althougb event tree development was not in the scope of this phase of the work, certain conditionalities were accounted for when appropriate. Questions of conditionality and potential system interaction effects (vhich are being considered separately) must be carefully considered prior to the use of Table iestimates with a particular event tree. In addition, quantification of human error was not in the scope of the study, and many of the estimates included in Table 1 do not consider plant-specific potential operator recovery actions.

It should also be noted that, for traceability, numerical values included in Table 1 have been developed to two significant figures. This is not to imply a lack of error bands on the estimates. The error bands associated with many of the estimates are expected to be large - at least an order of magnitude in either direction considering the generic nature of much of the data base and the small amount of information on partioular initiators and multiple component failures available.

References

1. Generic Data Base for Data and Models Chapter of the National Reliability Evaluation Program (NREP), EGG-EA-5887, June 1982.
2. Nuclear Power Plant Operating Experience - 1978, NUREG-0618, December 1979.
3. Nuclear Power Plant Operating Experience - 1979, NUREG/CR-1460, May 1981.
4. Nuclear Power Plant Operating Experience - 1980, NUREG/CR-2378, October 1982.
5. Operating Units Status Reports - Licensed Operating Reactors, NUREG-0020, published monthly.
6. Precursors to Potential Severe Core Damage Accidents: 1969-1979, A Status Report, NUREG/CR-2497, June 1982.
7. Precursors to Potential Severe Core Damage Accidents: 1980-1981, A Status Report, NUREG/CR-3591, July 1984.
8. Generic Evaiuation of Feedwater Transients and Small Break Loss-ofCoolant for Acoidents in Westinghouse-Designed Operating Plants, NUREG0611 , January 1980.
9. Mann, Schafer, and Singpurwalla, Methods for Statistical Analysis of Reliability and Life Data, John Wiley and Sons, New York, 1974.
10. Common Cause Fault Rates for Valves, NUREG/CR-2770, February 1983.
11. In-Plant Reliability Data Base for Nuclear Plant Components: The Valve Component, NUREG/CR-3154, November 1983.
12. R.B. Robinson Unit 2 Nuclear Station, Updated Final Safety Analysis Report.
13. Staff Report on the Generic Assessment of Feedwater Transients in Pressurized Water Reactors Design by the Babcock \& Wilcox Company -NUREG-0560, May 1979.

Table 1. Event Tree Frequencies and Branch Probabillties for Screening Purposes

Function	Discussion	Screening Eatimate

Initiators

1) Reactor Trip
2) Steam Line Break
a) Large Break
b) Small Break

During 1980, 1981, and 1982 Robinson 2 experienced 26 manual and auto scrams from power (Ref. 4, Ref. 5). This results in a reactor trip estimate of $26 / 3$ years $=8.7 / \mathrm{yr}$.
b)

Two early events of potential impor- $1.2 \times 10^{-3} /$ ry tance to steam line break frequency have been recorded in the LER data:

1) Turkey Point Safety Valve Header Failure
2) Robinson Safety Valve Header Failure

Both of these events occurred before oriticality and in view of the fact that no large breaks have been observed in the 577 combined BWR and PWR years of post-oritical operation, an alternate estimate of main steam line break frequency has been developed. Using the χ^{2} distribution and zero observations with a 50% conficence level, this estimate is $1.2 \times 10^{13} /$ year. This estimate applies for breaks greater in area than typical valve-dominsted small break and for both isolable and nonisolable breaks.

One event at Robinson 2 was observed involving fallure of steam side rellef valves to olose (NSIC 76461). In addition, 4 small sLB occurrences were observed in the Acoident Sequence Precursor (ASP) program (Ref. 6, Ref. 7) over a 288 year observation period. This soreening estimate has been developed using the χ^{2} distribution with 5 occurrences in 288 reactor years. This estimate, $2 \times 10^{-2} / \mathrm{yr}$, does not include the
$2.0 \times 10^{-2} / \mathrm{ry}$

Table 1. (Continued)

Function			Discussion	Screening Bstimate
	Loss of Coolant Accident		potential for recovery. Small steam ine break occurrences observed in the ASP program were considered 40% nonrecoverable. However, the steam-side PORV's at Robinson 2 are not isolable using a series isolation valve; and therefore small SLB's associated with these PORV's will be less recoverable than in the industry in general, unless the valve failures are dominated by valve operator fallures and the valve operators are accessible.	
		Due to Failed Open Safety Valve	No major erents involving stuck open safety valves have been observed. However, a safety valve apparently did open below set point pressure at St. Lucie 1 and depressurized the RCS from 2410 to 1670 psig in late 1981. Because of a lack of detailed information concerning this event, it has not been used in developing a frequency estimate. Uaing the χ^{2} distribution with zero observations and an observation period from 1969 through July 1983 (406 PNR reactor years), a value of 1.7×10^{-3} is estimated.	$1.7 \times 10^{-3} / \mathrm{ry}$
		Due to an Open PORV	NOREG-0611 (Ref. 8) reports 50 applicable PORV iffts at Westinghouse plants. Assuming NUREG-0611 covered the period up to September 1979, which includes 164 Westinghouse reactor years of operation, the Westinghouse PORV iift rate 1s: $50 /(164$ Westinghouse RY) $=$ $0.30 / \mathrm{ry}$. A value of 0.027 for PORV failure to close, once open, is developed from Reference 13 (4 failures to alose in approximately 150 actuations). Utilizing these two values results in an estimate for LOCA due to an open PORV of: $0.30 / \mathrm{ry}$ * 2 valves * 0.027 , or	$1.6 \times 10^{-2 / r y}$

Table 1. (Continued)

Table 1. (Continued)

It should be noted that several of the operational events used to develop the above estimates were associated with Robinson 2. While each of these events was considered a random event across the entire reactor population for the purposes of developing these screening estimates, the number which occurred at Robinson 2 may indicate an actual frequency for such events at this plant higher than that for the iadustry as a whole.

Branch Probabilities

1) Turbine Fails to Trip on Demand

PNR LERs were reviewed for turbine

$$
4 \times 10^{-5}
$$

trip, turbine stop valve, etc., fallures. While there have been several failures of individual stop valves (single steam line) to close, only one event (NSIC 92449 at Turkey Point 3, 4) identified a total fallure of turbine stop valves. Assuming "12 shutdowns/plant year (Ref, 3) and -406 PNR years applicable to this review, the number of turbine stop valve demands is $" 4900$. One fallure in this number of desands results in a failure estimate of ${ }^{-2 \times 10^{-4}}$. This estimate

Table 1. (Continued)

		Screening
Function	Discussion	Estimate

2) Steam Side PORV's Fail to Close on Demand
does not consider use of the turbine control valves in isolating the turbine if the turbine stop valves fall to close. Consideration of the turbine control valves would reduce this estimate somewhat, perhaps by a factor of up to 10. Assuming a value of 0.2 for the conditional probability of control valve failure given stop valve failure results in a soreening estimate of $2 \times 10^{-4} 0.2$ or 4×10^{-5}. (Considering zero observed fallures of the turbine to isolate on demand over the " 406 year period results in an estimate of -1.4×10-4 based on observation alone.)

Based on a review of the Robinson 2 FSAR, these valves appear to open on power runbacks of greater than 708. Two failure-to-olose occurrences at Robinson 2 were reported in the same LER (NSIC 76461). Since the fallures did not occur simultaneously, no deductions were made concerning common mode coupling and the events were assumed to be independent. The estimates provided here were based on the 2 failures and a demand estimate. The number of demands was estimated based on the number of reactor trips at Robinson 2 from greater than $70 \$$ power In 1978, 1979 and 1980 (15), the number of PORV's (3), and 12.7 reactor years of operation at Robinson from oriticality through May 1983:
$\frac{15 \text { demands/valye }}{3 \text { years }} 12.7$ reactor years

$$
\text { - } 3 \text { valves }=190 \text { demands }
$$

Recognizing that the valves open only on trips above 708, the following effective demand probability estimates
for a general reactor trip result:

Table 1. (Continued)

Function	Discussion					Screening
Estimate						

${ }^{*}$ Reference 10 indicates no substantial differences in failure rates for airoperated valves in syatems of greater than three components than those in three component systems.

Table 1. (Continued)

Function	Discussion	Screening Estimate

4) Main Feedwater

System Fails tc Correctly Run
Back Following
Non-Specific
Reactor Trip
(not applicable
for other
initiators)

Potential main feedwater end states following a non-specific reactor trip are developed in Attachment A. Based on the frequency estimates developed in Attachment A, the following endstate conditional probability estimates are developed:
a) Probability of utilizing main 0.89 feedwater system and bypass valves following non-specific reactor $\operatorname{trip}\left(\left(\lambda_{R T}-\lambda_{t O F W}[1 / r y]\right) / \lambda_{R T}\right)$ $=((8.7-1) / 8.7)=0.89$.
b) Probability of requiring auxiliary 0.14
feedvater following RT ($\lambda_{\text {RT }}$ -

Development of steam generator overfill probabilities requires development of failure probabilities for main feedwater control valve closure and main feed pump trip:

Main Feedwater Control Valves Fail to Close on Demand. The feedwater control valves on Robinson 2 are run back on each shutdown. Failure to runback is usually not reportable, but has occurred at some PW's. Because of the lack of observational information concerning these valves, the failure probability for an air operated valve isoluded in reference 1 (1×10^{-3}) has been utilized in oonjunetion with conditional probabilities of multiple valve failures developed from reference 10. This results in the following estimates:

- For a single valve failure, 1×10^{-3}.
- For fallure of any one of 3 valves, $3 C_{1}=1.0 \times 10^{-3}=3 \times 10^{-3}$.

Table 1. (Continued)

Function \quad Discussion \quad| Screening |
| :--- |
| Estimate |

- For failure of any two of three valves, ${ }^{3 C_{2}} \cdot 1 \times 10^{-3} \cdot 0.094$)
$=2.8 \times 10^{2}$.
- For fallure of three valves, $1 \times 10^{-3} \cdot 0.081=8.1 \times 10^{-5}$.

Main Feedwater Pumps Fail to Trip on Demand. The main feedwater pumps are tripped on high SG level ($2 / 3$ signals in any SG) and by a safety injection signal. Given the exdstence of one of these signals, the likelihood of main feedwater trip, is considered high. A value of 10^{-3} per pump is recommended.

Using the failure $\log \mathrm{c} c$ combinations developed in Attachment A, and recognizing that the probability of failing to generate a main feed pump trip signal on high steam generator level is small compared to the likelihood of failing to trip a main feed pump given the trip signal has been generated, the following probabilities of ateam generator overfead given a non-specific reactor trip are estimated:
c) Probability of one stean generator 5.3×10^{-6} overfeed following RT ($\lambda_{R T}$ $\lambda_{\text {LOFW }}$) P $P($ any one feed control valve falls to olose) * $P(e 1 t h e r$ main feed pump fails to trip/SG high level signal or fallure to generate Sc high level signal)/ $\lambda_{\text {RT }}=$ $(8.7-1) \cdot\left(3 \times 10^{-3}\right) \cdot\left(2 \times 10^{-3}\right) /$ $8.7=5.3 \times 10^{-6}$ 。
d) Probability of two uteam generators 5.0×10^{-7} overfeed following RT ($\left(\lambda_{\text {RT }}\right.$ -
$\lambda_{\text {LOFW }}$ * P(two of three feed control valves fall to close) * P(either main feed pump falls to trip/SG high level signal or failure to generate $S G$ high level

Table 1. (Continued)

Func	tion	Discussion	Screening Estimate
		$\begin{aligned} & \text { signal)/ } \lambda \\ & \left(2.8 \times 10^{-4}\right) \\ & =5.0 \times 10^{-7} . \end{aligned}$ e) Probability of three steam generator overfeed following RT ($\left(\lambda_{\text {RT }}\right.$ $\lambda_{\text {LOFW }}$) P (all three feed control valves fail to close) " $P($ elther main feed pump fails to trip/SG high level signal or failure to generate SG high level signal)/ $\lambda_{\text {BT }}=$ $\left((8.7-1) \cdot\left(8.1 \times 10^{-5}\right) \quad\left(2 \times 10^{-3}\right) /\right.$ $8.7=1.4 \times 10^{-7}$.	1.4×10^{-7}
5)	Failure of Engineered Safety Features System to Actuate	Failure to actuate ESFS will result in unavailability of trip signals for main steam line isolation, main feedwater isolation, and SI initiation, necessitating manual trip of the affected components and manual initiation of AFW and SI. A general multichannel instrumentation failure probability of 3×10^{-5} is recommended for screening purposes.	3×10^{-5}
6)	Failure to Isolate Main Feedwater Following Initiators Other Than Non-Specific Reactor Trip (not applicable for non-specific reactor trip)	Boolean expressions for the probability of continued main feed flow to one or more steam generators are developed in Attachment B. Development of numeric estimates requires estimation of main feed isolation valve failure to close probabilities: MFIV s Fail to Close. A preliminary estimate developed in the IPRDS program (Ref. 11) for the fallure of a motor operated valve to close, based on review of maintenance records at a small number of PNR plants is $6.4 \times 10^{-3} /$ demand. No fallures of these valves have been observed at Robinson 2. Since these valves are tested quarterly, a failure estimate of $0.7 /(12.7 \mathrm{ry}$ - 3 valyes/test 4 tests/ry) = 4.6×10^{-3} can be developed, which is consistent with the IPRDS value.	

Table 1. (Continued)

Function	Discussion	Sereening Estimate

The failure probability estimates for combinations of these valves are:

- Any one of three valyes fail to close (${ }_{3} \mathrm{C}, 4.6 \times 10^{-3}=$ $\left.1.4 \times 10^{32}\right\}$.
- Any two of three valves fail to close (${ }_{3} C_{2} * 4.6 \times 10^{-3} \cdot 0.020$ $\left.=2.8 x^{\left(0^{2} 4\right.}\right)$.
o All three valves fail to close $\left(4.6 \times 10^{-3} \cdot 0.012=5.5 \times 10^{-5}\right)$.

Based on this development, other component failure probabilities developed previously, the Attachment B Boolean expressions, and assuming limited failure coupling between main feed control valves and main feed isolation valves (a conditional probability of 0.01 was assumed, to recognize some maintenance coupling), the following estimates can be made:
a) Continued feed flow to any one 2.8×10^{-7} generator $=6$ (probability of one MFW pump failing to trip) (probability of a single MFIV failing to close) (probability of the associated MFCV failing to olose) $=6 \cdot 1 \times 10^{-3} \cdot 4.6 \times 10^{-3}$ $0.01=2.8 \times 10^{-7}$.
b) Continued feed flow to any two steam generators $=6$ (probability of one MFW pump failing to trip) (probability of two MFIV s failing to alose) (probability of both associated MFCVs failing to close) $=6 \cdot 1 \times 10^{-3} \cdot 2,8 \times 10^{-4} \cdot(0.01$. 0.094) $=1.5 \times 10^{-9}$.
c) Continued feed flow to all three 1×10^{-10} steam generators $=2$ (probability of one MFW pump failing to trip) (probability of all three MFIVs failing to close) (probability of

Table 1. (Continued)

Screening
Function
Discussion
Estimate

```
all three MFCV failing to close) \(=\)
2 * \(1 \times 10^{-3} \cdot 5.5 \times 10^{-5} \cdot(0.01\) *
\(0.081)=1.0 \times 10^{-10}\).
```

The attachment B expressions for failure of main feedwater isolation while in hot shutdown require estimation of the probability of the main feed bypass valves failing to close on demand. These valves are normally closed during power operation but are opened for decay heat removal using the main feed system while in hot shutdown. For this development, fallure probability and common-mode coupling values equivalent to those used for the MFCVs have been assumed. Based on these values, the probability estimates for continued main feedwater flow given SI and while in hot shutdown are:
a) Continued feed flow to any one 9×10^{-6} steam generator $=3^{*}$ (probability of MFW pump failing to trip) (probability of single MFBV failing to olose) $=3 \times 10^{-3} \cdot 3 \times 10^{-3}=$ 9×10^{-6}.
b) Continued feed f1ow to any two 8.4×10^{-7}
steam generators $=3^{\text {* }}$ (probability of MFW pump failing to trip) * (probability of two MFBV falling to alose) $=3 \times 10^{-3} \cdot 2.8 \times 10^{-4}=$ 8.4×10^{-7}.
c) Continued feed flow to all three 8.1×10^{-8} steam generators $=$ (probability of MFW pump failing to trip) (probability of three MFBV s failing to alose) $=10^{-3} \cdot 8.1 \times 10^{-5}=$ 8.1×10^{-8}.

It ahould be noted that the above failure estimates have been developed without considering potential commoncause fallure effects, which, for the multiple stean generator overfeed

Table 1. (Continued)

Table 1. (Continued)

Function	Discussion	Soreening Estimate

> (partial stroke testing) 3 valves) $=2.2 \times 10^{-3}$. Based on a reviev of all MSIV LER's, the number of failures to close for single valves is on the same order as for multiple valves failing to close. Thus it can be coacluded that the potential for comnon mode coupling among these valves is large. Consistent with these observations, 0.3 was chosen for the conditional probability of a specific second valve failing, given that one has failed; and 0.8 was chosen for the conditional probability of the third valve failing given that the other two have failed. This results in the following estimates:

- For failure of a particular MSIV 2.2×10^{-3} to alose: 2.2×10^{-3}.
- For fallure of a partioular set 6.6×10^{-4} of two MSIV's to close: $2.2 \times 10^{-3} \cdot 0.3=6.6 \times 10^{-4}$.
- For fallure of three MSIV's to 5.3×10^{-4} close: $2.2 \times 10^{-3} * 0.3 * 0.8=$ 5.3×10^{-4}.

Based on the probability expressions developed in Attachment C and the above valve failure probabilities, the following probabilities of steam generator blowdown following an arbitrary large stean line break can be estimated:
a) No steam generator blows down. 0.5
b) One steam generator blows down. 0.5
c) Tro steam generators blow down 9.9×10^{-4} (1.5 6.6×10-4).
d) Three steam generators blow down 1.7×10^{-4}

The above estimates are also applicable to small steam line breaks which result in MSIV closure. For small breaks which

Function	Discussion	Screening Estimate

do not result in MSIV closure, the following estimates, developed in Attachment C, are applicable:
a) No steam generator blows down. 0.0
b) One steam generator blows down. 0.5
c) Two steam generators blow down. 0.0
d) Three steam generators blow down. 0.5

Operator action to close the MSIVs would reduce the estimate for three steam generator blowdown by the operator action probability.
9) High Pressure Safety Injection Fails to Occur on Demand

At Robinson 2, four failures of SI 6.1×10^{-4} pumps were reported in LERs in 1979 and subsequent years. Assuming half of the number of Robinson years of operation, since all the failures occurred after 1976, yields a demand estimate of 12 demands $/ \mathrm{yr}$ * 6.4 yrs * 3 pumps $=228$ demands; and a demand failure probability estimate of 1.7×10^{-2} per pump. With conditionel probabilities of 0.1 and 0.3 applied for subsequent fallures of a second pump and then the third, respectively, a fallure probability for the system of 5.2×10^{-4} is estimated. This is consistent with the estimate available from the ASP data base for Westinghouse plants of 4.8×10^{-4}. (The estimate with potential recovery considered is lower by a factor of 0.34.) The recommended estimate is 4.8×10^{-4}, from the larger data base.

Given HPI actuation success, successful HPI injection is dependent on the primary side pressure dropping low enough and oheck valves in the injection pachs opening. There are 3 oheck valves in each of three injeotion paths that are inside containment and are not typically tested during monthly HPI testing. Using the Ref. I value of

Table 1. (Continued)

Following a general reactor trip, the main feedwater system is run back and an attempt is made (typically successfully) to utilize the main feed pumps and the bypass valves for decay heat removal. Depending on power level and the extent of SG level shriak, AFW can be initiated on RT. Isolation of AFW following such initiation is a normal part of RT recovery, along with manual opening of the bypass valves.

Following a non-specific RT, the following steam generator feed situations are possible:

- Main feedwater using bypass vaives (normal situation).
- Auxiliary feedwater (main feedwater not recovered).
- One steam generator overfeed.
- Two steam generator overfeed.
- Three steam generator overfeed.

For the overfeed situations, auxiliary feedwater would be expected to be provided to the isolated steam generators once low level in one steam generator is reached. Responses which include partially or totally faulted auxiliary feedwater are possible, but have not been included because they are considered less conservative than the above situations with respect to PTS.

The above states require the following responses:
o Main feedwater on, bypass vaives used for flow control operator actions to open bypass valves following control valve closure and secure AFW if initiated due to shrink.

- Auxiliary feedwater - operator action to open bypass valves and use main feedwater not effective or RT due to LOFW.
- One steam generator overfeed - failure of feed control valve in one train to run back and failure of either main feed pump to trip on high SG level.

Two steam generator overfeed - failure of feed control valves in two of three trains to run back and fallure of either main feed pump to trip on high SG level.

0 Three steam generator overfeed - failure of feed control valves in all three trains to run back and failure of either main feed pump to trip on high SG level.

The frequencies associated with the above states can then be written as:

- λ (on bypass valves following RT) $\cong \lambda_{R T}$ P (operator opens bypass valves following runback) $-\lambda_{\text {LOFW }}$.
- $\lambda_{\text {(on AFW following } R T)} \equiv\left(\lambda_{\text {RT }}-\lambda_{\text {LOFW }}\right)$ P(operator falls to open bypass valves following RT) $+\lambda_{\text {LOFW. }}$
 valve fails to close) P(either main feed pump fails to trip/SG high level signal or fallure to generate SG high level signal).
- $\lambda_{\text {(two SG overfeed) }}^{\equiv}\left(\lambda_{R T}-\lambda_{\text {LOFW }}\right)$ - P(two feed control valves fail to close) P(either main feed pump fails to trip/SG high level in aither SG or failure to generate SG high level signal in either SG).
 valves fail to close) (either main feed pump fails to trip/SG high level in any steam generator or failure to generate SG high level in any $S G$).

Main feedwater isolation in the event of overfeed will occur due to closure of the MFIVs on SI if SI occurs. If SI does not occur, or if the applicable MFIV (s) fail to close on demand, then operator action is required to trip the condensate pumps or close the MFIVs (if SI has not been initiated).

Development of Main Feedwater Isolation Failure Probability Estimates (All Initiators Except Reactor Trip)

1. The H. B. Robinson 2 main feedwater system is arranged as follows:

On reactor trip plus safety injection initiation, the main feed control valves and feedwater isolation valves are commanded shut and the main feed pumps are tripped. Continued feedwater flow to a steam generator will occur if both of the valves in the associated feed line fail to close and either main feed pump fails to trip.
2. Continued feedwater flow to one generator will therefore occur if:
(MFP A \cup MFP B) \cap (MFIV A \cap MFCT A $\cap(\overline{M F I V ~ B} \cup \overline{\text { MFCV B }}$) $\cap(\overline{\text { MFIVC }} \cup \overline{\text { MFCF } C}) \cup$ other feed line combinations)
3. Continued feedwater flow to two steam generators will occur if two of the three feed lines fail to isolate and either main feed pump fails to trip:
(MFP A \cup MFP B) \cap (MFIV A \cap MFCV A \cap MFIV B \cap MFCV B $\cap(\overline{M F I V C}$ $\cup \overline{M F C V C} \cup$ ther feed ine combinations)

For continued flow to all steam generators, the following is required:
(MFP A $\cup M F P$ B) \cap (MFIV A \cap MFCV A $\cap M F I V B \cap M F C V B \cap M F I V C$ ค MFCV C)
4. To reduce the above equations, it is assumed that system response is symmetric (i.e., the likelihood of pump A failing to trip is equal to the likelihood of pump B failing to trip), and that pump and valve response is loosely coupled.
5. The probability of continued flow to N steam generators is then approximately:

```
P(NOW to 1 SG) \cong6 P(MFP) * P(MFIV) * P(MFCV |MFIV)
P(flOW to 2 SGs) #6 P(MFP) * P(MFIV 1) * P(MFIV2|MFIV1)
    * P(MFCV1|MFIV 1, MFIV 2) * P(MFCV2|MFIV1, MFIV 2, MFCV1)
P(NOW to 3 SGs) #2 * P(MFP) * P(MFIV1) * P(MFIV2|MFIV1)
    * P(MFIV 3\MFIV 1, MFIV 2) * P(MFCV1|MFIV 1,. . .)
    * P(MFCV2|MFIV1,...) * P(MFCV 3!MFIV1,...)
P(NOW to O SGs ) = 1-P(flow to 1 SG ) - P(NOW to 2 SGs)
    -P(Now to 3 SGs)
```

6. In hot shutdown the bypass valves (MFBVs) are used to control feedwater flow to the steam generators. Feed flow is typicaliy provided by one pump. The MFBVs are in parallel with the MFIV, MFCV pairs, and hence the closure or MFP trip is necessary for steam generator isolation. In hot shutdown, then, the probability of continued flow to N staam generators is approximately:
```
P(flow to 1 SG) # 3*P(MFP) * P(MFBV)
P(flow to 2 SGs) # 3*P(MFP) * P(MFBV1) * P(MFBV2|MFBV1)
P(flow to 3 SGs) # 3 P(MFP) * P(MFBV 1) * P(MFBV 2|MFBV1)
    - P(MFBV 3|MFBV 1, MFBV2)
P(RLOW to 0 SGS) = 1-P(NLOW toं 1SG) - P(NLOW to 2 SGs)
    -P(flow to 3 SGs)
```

Development of Multiple Steam Generator Slowdown Frequency Estimates

1. The H.B. Robinson 2 steam line arrangement utilizes both MSIVs and check valves for steam generator isolation:

2. Consider potential breaks at location (1) with frequency λ_{1}, (2) with frequency λ_{2} and (3) with frequency λ_{3}. The break locations and valve states for n steam generator blowdown are:

Considering the frequency of breaks in locations (1), (2), and (3), the frequency of n steam generator blowdown, $\Lambda(n)$, is:

$$
\begin{aligned}
\Lambda(0)= & \lambda_{2}: P[\bar{A} \cap(\overline{C V A} \cup \bar{B} \cap \bar{C})]+\lambda_{3} \cdot P[\bar{A} \cap \bar{B} \cap \bar{C}] \\
\Lambda(1)= & \lambda_{1}: P[\bar{A} \cup \bar{C} \bar{A} \cup \bar{B} \cap \bar{C}]+\lambda_{2}: P[A \cap(\overline{C V A} \cup \\
& \bar{B} \cap \bar{C}) \cup \bar{A} \cap C V A \cap(B \cap \bar{C} \cup \bar{B} \cap \bar{C})]+\lambda_{3} \\
& P[\bar{A} \cap \bar{B} \cap \bar{C} \cup \bar{A} \cap B \cap \bar{C} \cup A \cap \bar{B} \cap \bar{C}] \\
\Lambda(2)= & \lambda_{1}: P[A \cap C V A \cap(B \cap \bar{C} \cup \bar{B} \cap C)]+\lambda_{2} \\
& P[A \cap C V A \cap(\bar{B} \cap C \cup B \cap \bar{C})]+\lambda_{3}: P[A \cap B \cap \bar{C} \\
& \cup A \cap \bar{B} \cap C \cup \bar{A} \cap B \cap C] \\
\Lambda(3)= & \lambda_{1}: P[A \cap C V A \cap B \cap C]+\lambda_{2}: P[A \cap C V A \cap \\
& B \cap C]+\lambda_{3}: P[A \cap B \cap C]
\end{aligned}
$$

The following assumptions have been made in reducing the above equations for an arbitrary large SLB:

1. Because of the proximity of the MSIVs and check valves, λ_{2} is small compared to λ_{1} and λ_{3}.
2. Even if three MSIVs fail to close, the probability of check valve failure is less than 0.1 .
3. Break locations (1) and (2) are equally applicable to all steam generators. Furthermore, because of the lank of data, breaks in locations (1) (for all three steam generators taken together) and (3) are equally likely (1.e., breaks upstream of the MSIVs are as likely as breaks downstream of the MSIVs).

The above equations can then be reduced to:

$$
\begin{aligned}
& \Lambda(0) \cong 3 \cdot \lambda_{2}+\lambda_{3} \\
& \Lambda(1) \equiv 3 \cdot \lambda_{1}+3 * \lambda_{2} \cdot[P(A)+P(B) * P(C \nabla A \mid B)+P(C) \\
& P(C V A: C)]+\lambda_{3}[P(A)+P(B)+P(C)] \\
& \Lambda(2) \cong 3 * \lambda_{1} *[P(A) \cdot P(A \mid B) \cdot P(C \mid A B) * P(C \nabla A \mid A B C) \\
& +P(A) \bullet P(C \mid A) \bullet P(B \mid A C) \bullet P(C V A \mid A C B)] \\
& +3 \cdot \lambda_{2} *[P(A) \cdot P(B \mid A) \cdot P(C \mid A B) \cdot P(C V A \mid A B C) \\
& +P(A) \text { • } P(C \mid A) * P(B \mid A C) * P(C V A \mid A B C)] \\
& +\lambda_{3} \cdot[P(A) * P(B \mid A) \cdot P(C \mid A B)+P(A) * P(C \mid A) \\
& \text { * } P(B \mid A C)+P(B) * P(C \mid B) * P(A \mid B C)] \\
& \Lambda(3) \cong 3 * \lambda_{1} *[P(A) \cdot P(B \mid A) \cdot P(C \mid A B) \cdot P(C V A \mid A B C)] \\
& +3 n \lambda_{2}[P(A) \cdot P(B \mid A) * P(C \mid A B) \cdot P(C \nabla A \mid A B C)] \\
& +\lambda_{3} \cdot[P(A) \cdot P(B \mid A) \cdot P(C \mid A B)]
\end{aligned}
$$

Assumptions one and two result in the following further simplification:

$$
\begin{aligned}
& \Lambda(0) \cong \lambda_{3} \\
& \Lambda(1) \cong 3 * \lambda_{3} * \\
& \Lambda(2) \cong 3 \cdot \lambda_{3} * P(A) \cdot P(B \mid A) \cdot P(C \mid A B) \\
& \Lambda(3) \cong \lambda_{3} * P(A) \cdot P(B \mid A) * P(C \mid A B)
\end{aligned}
$$

since $3 \cdot \lambda_{1} \cong \lambda_{3}$ and $\lambda_{2} \ll \lambda_{3}, \lambda_{1}$, an event tree can be constructed representing potential SG blowdown following an arbitrary large steam line break.

*Since $P(A)$, etc., $\equiv 10^{-2}$.

A review of historic small steam line breaks indicates approximately 50% have been associated with steam line relief valves located upstream of MSIVs, and the remaining have been associated with condenser dump valves, typically located downstream of MSIVs. Because of these ratios, the above development for large steam line breaks is also considered applicable to small steam line breaks, provided the break is sufficiently large to require MSIV closure.

If a small steam line break is large enough to close the appropriate check valve (if it were located upstream of the check valve) but is not large enough to initiate MSIV closure and operator action is not taken to close the MSIVs, then the frequency of multiple steam generator blowdown can be estimated as:

$$
\begin{aligned}
& \Lambda(0) \cong 0 \\
& \Lambda(1) \cong \lambda_{1} \cdot P[C V A]+\lambda_{2} \cdot P[C V A] \\
& \Lambda(2) \cong 0 \\
& \Lambda(3) \cong \lambda_{1} \cdot P[C V A]+\lambda_{2} \cdot P[C V A]+\lambda_{3}
\end{aligned}
$$

Small SUBs upstream of the check valves may be associated with any of the steam generators. Since the number of relief valve related breaks is consistent with the number of condenser dump valve-related breaks and the number of small LBs associated with region (2) is expected to be small compared with valve-related breaks, the following simplifications of the above equations can be made:

$$
\begin{aligned}
& \Lambda(0) \cong 0 \\
& \Lambda_{(1)} \cong 3 \cdot \lambda_{1, \text { SSLB }} \cong 0.5 \cdot \lambda_{\text {SSLB }} \\
& \Lambda_{(2)} \cong 0 \\
& \Lambda_{(3)} \cong \lambda_{3, \text { SSLB }} \cong 0.5 \cdot \lambda_{\text {SSLB }}
\end{aligned}
$$

Potential steam generator blowdown, given a small steam line break which does not initiate MSIV closure, can be represented by the following event tree:

[^2]
TO: Distribution

SUBJECT: Review H. B. Robinson PTS Report Chapter 3 - Development of Overcooling Sequences

Please find enclosed copies of the H. B. Robinson Unit 2 chapter 3 and appendix B. This material has now been reviewed internally and cleared as draft information for comment. It should be noted that some figures, references, and page numbering are incomplete and will be cleaned up shortly. Please review and return comments by Friday, December 14. If additional time is needed for review, please let me know.

Engr. Physics and Mathmetics Div.

DLS:nc

Enclosures (2)

Distribution

G. F. Flanagan
V. E. Johnson, NRC
J. H. Phillips, CP\&L

[^0]: *Research sponsored by U.S. Nuclear Regulatory Commission under Contract No. DE-AC05-840R21400 with the Martin Marietta Energy Systems, Inc. with U.S. Department of Energy.

[^1]: - Failure-per-demand probability estimates developed primarily from test demands may overestimate the actual failure probability up to a factor of two if the actual failures are time dependent and the test demands are spaced at regular intervals. However, based on events dooumented in the ASP program (Ref. 6 and 7), there appears to exist in many cases a greater likelihood of failure on demand following an actual initiating event than that determined based on testing. These two effects tend to offset one another; the per-demand estimates deveioped herein are considered acciptable for screening purposes.

[^2]: H. B. Robinson Review Document Number 2

