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Goal: maximize impact 
with limited resources.
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Outline

• Aging Concerns & Program Justification
• Electrical Cables in Nuclear Power Plants
• FDR Theory
• 2016 Systems Compared
• 2017 Modeling/Test
• Observations/Conclusions/Future Plans
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Nuclear Power Plants (NPPs)

• NPPs contain thousands of miles of electrical cable and wire of 
several hundred different types and sizes.

• Ramifications of cable failure can be significant, especially for 
cables connecting to: off-site power, emergency service water 
(ESW), emergency diesel generators (EDG).

4



Why the Concern for Aging?

• Arc Flash failure can be dramatic and dangerous as an event.
• Following an Arc Flash, the cable load or sensor is no longer 

functional and this can further compromise plant integrity. 

Left – Arc Flash in 120 VAC house cable.  Right – Damaged cable and 
insulation following Arc Flash.  (Image courtesy of Underwriters Labs) 
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Cables in Nuclear Power Plants

Application
• Power cables
• Control cables
• Instrument cables
• Thermocouple cables
• Specialty cables

Usage
• 61% Control
• 20% Instrumentation
• 13% AC power
• 5% Communication
• 1% DC power

SAND 96-0344Design
• Low-voltage (≤2 kV)
• Medium-voltage (2-46 kV)
• High-voltage (>46 kV)
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Electrical Cable Systems

• Cables
– Conductor
– Insulation
– Jacket

• Terminations
• Splices
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FDR Cable Test System 
Architecture
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FDR Test 
Configuration
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FDR Transformed to Time Domain 
can be Related to Distance by 
Wave Velocity
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TR = IFT(FR)
DR = TR*V/2
where:
FR = Frequency response
IFT = Inverse Fourier Transform
V = propagation velocity
TR = Time response
DR = Distance response
2 included because wave travels 
both to and from reflection points. 



2016: Two different cable FDR comparisons among 
3 instruments

• Responses are similar but 
not identical – particularly at 
low amplitude (grey)

• Significant peaks (above 
grey) are at same frequency 
and similar amplitude

• Trending should use the 
same instrument/ 
normalization approach
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2016 Comparison of 3 FDR systems
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2016 Cables were routed along floor and 
not moved while FDR systems were 
sequentially connected
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2016 FDR Advantages/Disadvantages
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Inspection of entire cable length from single-ended access
Low voltage safe, non-destructive test
Rapid inspection times (several minutes)
Systems commercially available
Sensitive detection and location of localized degradations
In most cases, no need to de-terminate cable ends
Global aging indicators still in development
Baseline trend data helpful to assess cable condition 
Specialized training required for operation and analysis
May not detect all degradations of concern
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2017 Co-axial and Triad Shielded 
Cable and FEM Models with 
Mechanical Damage
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HFSS S-Parameter Circuit Model 
Used to Simulate FDR Responses
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(L) Measurement and (R) ANSYS 
Simulation of 1.5 in. long Mechanical 
Damage of RG-58 Coaxial Cable
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(L) Measurement and (R) Simulation 
of 1.5 in. long Mechanical Damaged 
Section of Triad Shielded Cable 
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Simulated Insulation Dielectric 
Constant Influence on FDR
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Simulated Defect Length (for 5% 
increase in Dielectric Constant in 
Shielded Triad Cable)
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Defect Length Influence 
Confirmation with Multiple Loop 
Artificially Aged Samples
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LIRA Measurements for a 
Uniformly Aged (left) 1.5 ft. and 
(right) 7.25 ft. Shielded Triad Cable
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Simulated Single Sided Ramp 
Defect Profile Influence on FDR
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Simulated Two-sided Ramped 
Capacitance Change Profile 
Influence on FDR
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Simulated Influence of Cable 
Length on FDR Response
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Number and Location of Defect 
Influence on FDR
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Simulated Influence of Termination 
Load on Shielded Triad Cable with 
3 ft. Defect @ 50 ft.
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Conclusions

Physics-Based Model was developed and validated with other 
model and with test data.

FDRs were affected by:
• Defect length
• Defect profile
• Environment around 

defect (air, water, 
conductor)

• Cable length/Frequency 
BW/ Loss/attenuation

FDRs were not affected by:
• Number of defects
• Location of defects
• Length of low-loss cable
• Distal end impedance 

(termination)
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Questions?

Bill.Glass@pnnl.gov
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Backup
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Time Domain Reflectometry
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Comparison between EAB and specific 
capacitance C at 0.1 Hz. (The color indicates the 
color of the wire held at positive potential) 

Courtesy 
of Iowa 
State 
University
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