

Frequency Domain Reflectometry Modeling for NDE of Nuclear Power Plant Cables

S.W. Glass Pacific Northwest National Laboratory

January 2020

Light Water Reactor Sustainability R&D Program

IWRS

Light Water Reactor Sustainability

Cable Research Collaboration

LWRS

- Leo Fifield (PNNL)
- S.W. (Bill) Glass (PNNL)
- Robert Duckworth (ORNL)
- Thomas Rosseel (ORNL)

Non-LWRS

- Nicola Bowler (ISU) (NEUP)
- Ryan O'Hagan (AMS Corp.)
- Bill Berger (Fauske/ Westinghouse)
- Paolo Fantoni (Wirescan)

<u>Goal</u>: maximize impact with limited resources.

Outline

- Aging Concerns & Program Justification
- Electrical Cables in Nuclear Power Plants
- FDR Theory
- 2016 Systems Compared
- 2017 Modeling/Test
- Observations/Conclusions/Future Plans

Nuclear Power Plants (NPPs)

- NPPs contain thousands of miles of electrical cable and wire of several hundred different types and sizes.
- Ramifications of cable failure can be significant, especially for cables connecting to: off-site power, emergency service water (ESW), emergency diesel generators (EDG).

Why the Concern for Aging?

Left – Arc Flash in 120 VAC house cable. Right – Damaged cable and insulation following Arc Flash. (Image courtesy of Underwriters Labs)

- Arc Flash failure can be dramatic and dangerous as an event.
- Following an Arc Flash, the cable load or sensor is no longer functional and this can further compromise plant integrity.

Cables in Nuclear Power Plants

Application

- Power cables
- Control cables
- Instrument cables
- Thermocouple cables
- Specialty cables

Design

- Low-voltage (≤2 kV)
- Medium-voltage (2-46 kV)
- High-voltage (>46 kV)

Usage

- 61% Control
- 20% Instrumentation
- 13% AC power
- 5% Communication
- 1% DC power

SAND 96-0344

Electrical Cable Systems

- Cables
 - Conductor
 - Insulation
 - Jacket
- Terminations ⁶
- Splices

- A Uncoated copper conductor
- B Semiconducting screen
- C Insulation
- D Insulation screen extruded semiconductor
- E Shielding copper tape with/without drain wire
- Jacket
- Helically applied binder tape

E

G

F

FDR Cable Test System Architecture

FDR Transformed to Time Domain can be Related to Distance by Wave Velocity

TR = IFT(FR)

 $\mathsf{DR} = \mathsf{TR}^*\mathsf{V}/2$

where:

FR = Frequency response

IFT = Inverse Fourier Transform

- **V** = propagation velocity
- **TR =** Time response
- **DR =** Distance response

2 included because wave travels both to and from reflection points.

2016: Two different cable FDR comparisons among 3 instruments Pacific Northwest

NATIONAL LABORATORY

- Responses are similar but not identical – particularly at low amplitude (grey)
- Significant peaks (above grey) are at same frequency and similar amplitude
- Trending should use the same instrument/ normalization approach

2016 Cables were routed along floor and not moved while FDR systems were Northwest sequentially connected

2016 FDR Advantages/Disadvantages

Advantages

Inspection of entire cable length from single-ended access

- Low voltage safe, non-destructive test
- Rapid inspection times (several minutes)
- Systems commercially available
- Sensitive detection and location of localized degradations In most cases, no need to de-terminate cable ends
- **Disadvantages** Global aging indicators still in development
 - Baseline trend data helpful to assess cable condition
 - Specialized training required for operation and analysis
 - May not detect all degradations of concern

2017 Co-axial and Triad Shielded Cable and FEM Models with Mechanical Damage

HFSS S-Parameter Circuit Model Used to Simulate FDR Responses

(L) Measurement and (R) ANSYS Simulation of 1.5 in. long Mechanical Pacific Northwest NATIONAL LABORATORY Damage of RG-58 Coaxial Cable

(L) Measurement and (R) Simulation of 1.5 in. long Mechanical Damaged Section of Triad Shielded Cable

ater Reactor Sustainability

19

Simulated Insulation Dielectric Constant Influence on FDR

Simulated Defect Length (for 5% increase in Dielectric Constant in Shielded Triad Cable)

Defect Length Influence Confirmation with Multiple Loop Artificially Aged Samples

LIRA Measurements for a Uniformly Aged (left) 1.5 ft. and (right) 7.25 ft. Shielded Triad Cable

Simulated Single Sided Ramp Defect Profile Influence on FDR

Pacific Northwest

NATIONAL LABORATORY

Simulated Two-sided Ramped Capacitance Change Profile Influence on FDR

Simulated Influence of Cable Length on FDR Response

Light Water Reactor Sustainability

Number and Location of Defect Influence on FDR

Simulated Influence of Termination Load on Shielded Triad Cable with 3 ft. Defect @ 50 ft.

Conclusions

Physics-Based Model was developed and validated with other model and with test data.

- FDRs were affected by:
- Defect length
- Defect profile
- Environment around defect (air, water, conductor)
- Cable length/Frequency BW/ Loss/attenuation

- FDRs were <u>not</u> affected by:
- Number of defects
- Location of defects
- Length of low-loss cable
- Distal end impedance (termination)

Light Water Reactor Sustainability

Bill.Glass@pnnl.gov

Questions?

Time Domain Reflectometry

Comparison between EAB and specific capacitance C at 0.1 Hz. (The color indicates the Pacific Northwest color of the wire held at positive potential)

> 150 100 (%) 140 Break 80 130 -% 120 60 at 110 ---EaB - Black 100 Elongation ---EaB - Blue υ ---EaB - Pink Da 90 - C- Pink - 0.1 Hz 20 - C - Black - 0.1 Hz 80 () - C - Blue - 0.1 Hz 70 0 200 400 600 800 1000 1200 0 Aging Time (hr.)

Courtesy of Iowa State University

