

TECHNICAL REPORT NE-876 - Rev. 0

NORTH ANNA UNIT 2, CYCLE 8 CORE PERFORMANCE REPORT

NUCLEAR ANALYSIS AND FUEL POWER ENGINEERING SERVICES VIRGINIA POWER MAY, 1992

PREPARED BY: T. T. Nguyen 5/20/92 T. T. Nguyen Date REVIEWED BY: T. S. Psuik 5/20192. Date REVIEWED BY: T. A. Brookmire <u>5-28-42</u> Date REVIEWED BY: A. P. Main Date APPROVED BY: D. Dziedosz 5-29-92 Date

QA Category: Nuclear Safety Related

Keywords: N2C8, Core Performance

TABLE OF CONTENTS

Table of	Cont	ents	1.5				i.		ź		y,									÷		1	
List of	Table	S	1				1	*	3	4					1		Ľ.		1	ł	Ľ,	2	
List of	Figur	es, ,	• •	1.1	1	÷.				-		ł	ŝ	1	×.	ł	ł			ł	4	3	
Section	1	Introd	lucti	on a	ind	Su	ama	ı y	ł	۰.	ł.		ł		•	×.		4	ł	÷	ł	5	
Section	2	Burnup						i.	ł.	ł	ŝ		÷.			4				ł	ł	12	
Section	3	React	ivity	Dej	let	tior	۱.		2	ł,	×		ł.	ŝ	1	ł	ł		k		1	23	
Section	4	Power	Dist	;ibi	it i	oņ.	ĸ		2	×		ł	4	ģ	×	÷	ł	1	×	ŝ	×.	25	
Section	5	Prima	ry Co	ola	nt .	Act	ívi	t y			ł	5	1			÷		*	1		ł	45	
Section	6	Concl	usion	s.					÷	÷		2					-	ł	×		ł	50	
Saction	7	Refer	ences	i, 1.							ł		k					1				51	

PAGE

LIST OF TABLES

TABLE

1

TITLE

PAGE

÷ ...

LIST OF FIGURES

TITLE

FIGURE

1.1	Core Loading Map	
1.2	Burnable Poison and Source Assembly Locations 9	
1.3	Movable Detector Locations	
1.4	Control Rod Locations	
2.1	Core Burnup History	
2.2	Monthly Average Load Factors	
2.3	Assemblywise Accumulated Burnup: Measured and Predicted 16	1
2.4	Assemblywise Accumulated Burnup: Comparison of	
	Measured and Fredicted	
2.5A	Sub-Batch Burnup Sharing	ŝ
2.5B	Sub-Batch Burnup Sharing	ł
2.50	Sub-Batch Burnup Sharing	
2.5D	Sub-Batch Burnup Sharing	i.
2.5E	Sub-Betch Burnup Sharing	- 24
3.1	Critical Boron Concentration versus Burnup - HFP-ARO	-
4.1	Assemblywise Power Distribution - N2-8-07	D
4.2	Assemblywise Power Distribution - N2-8-14	1
4.3	Assemblywise Power Distribution - N2-8-25	2
4.4	Hot Channel Factor Normalized Operating Envelope	3
4.5	Heat Flux Hot Channel Factor, $F_0(Z) = N2+8=07$	4
4.6	Heat Flux Hot Channel Factor, F _O (Z) - N2-8-14	5
4.7	Heat Flux Hot Channel Factor, F ₀ (Z) - N2-8-25	6
4.8	Maximum Heat Flux Hot Channel Factor, Fo(Z)*P. vs.	
	Axial Position	7

9. ...

PAGE

LIST OF FIGURES CONT'D

FIGURE

TITLE

4.9 Maximum Heat Flux Hot Channel Factor, $F_{\rm Q}(Z),$ vs. Burnup . . . 38 4.10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs.

	Burnup	x x x x x			4.4	8	c's	×		÷	39
4.11	Target Delta	Flux versus	Burnup					ł	4		40
4.12	Core Average	Axial Power	Distribution	- N2-8-	07						41
4.13	Core Average	Axial Power	Distribution	- N2-8-	14	÷	1.1				42
4.14	Core Average	Axial Power	Distribution	- N2-8-	25			i,	÷		43
4.15	Core Average	Axial Peakir	ng Factor vs.	Burnup	ж. к		2 - 4				44
5.1	Dose Equivale	nt I-131 vs.	. Time		ъ. з						48
5.2	I-131/1-133 A	ctivity Rat:	io vs. Time				21	1	1		49

Page 4 of 51

PAGE

Section 1

INTRODUCTION AND SUMMARY

On February 26, 1992, North Anna Unit 2 completed Cycle 8. Since the initial criticality of Cycle 8 on November 1, 1990, the reactor core produced approximately 1.0862×10^8 MBTU (18,239 Megawatt days per metric ton of contained uranium). The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 8. The physics tests that were performed during the startup of this cycle were covered in the North Anna Unit 2, Cycle 8 Startup Physics Test Report¹ and, therefore, will not be included here.

North Anna Unit 2 was in coastdown from January 14, 1992, at which time the burnup was approximately 16,829 MWD/MTU. The coastdown accounted for an additional core burnup of roughly 1,410 MWD/MTU from the end of full power reactivity.

The Cycle 8 core consisted of 14 sub-batches of fuel: four once-burned batches from Cycle 7 (batches 9A, 9B, N1/10A, and N1/10B); seven twice-burned batches, one from North Anna 1 Cycles 3 and 4 (batch N1/5), one from North Anna 2 Cycle 5 and North Anna 1 Cycle 4 (batch N1/6), one from North Anna 1 Cycles 5 and 6 (batch N1/7), one from North Anna 2 Cycles 2 and 3 (batch 4), one from North Anna 2 Cycles 3 and 4 (batch 5A), and two from North Anna 2 Cycles 6 and 7 (batches 8A and 8B); one

NE-876 N2C8 Core Performance Report

thrice-burned batch from North Anna 2 Cycles 5,6, and 7 (batch 7A); and two fresh batches (batches 10A and 10B). The North Anna 2 Cycle 8 core loading map specifying the fuel batch identification, and fuel assembly locations is shown in Figure 1.1. The burnable poison locations and source assembly locations is shown in Figure 1.2. Movable detector locations are shown in Figure 1.3. Control rod locations are shown in Figure 1.4.

Routine core follow involves the analysis of four principal performance indicators. These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity. The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted. Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed. and to indicate at what burnup level refueling will be required. Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications² limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained. Lastly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the North Anna Unit 2 Technical Specifications². A radioiodine analysis based on the iodine-131 concentration in the coolant is performed to assess the integrity of the fuel.

NE-876 N2C8 Core Performance Report

Each of the four performance indicators is discussed in detail for the North Anna Unit 2, Cycle 8 core in the body of this report. The results are summarized below:

1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than $\pm 0.30\%$ with the burnup accumulation in each batch deviating from design prediction by no more than 1.69%.

2. Reactivity Depletion - The critical boron concentration, used to monitor reactivity depletion, was consistently within $\pm 0.39\%$ $\Delta K/K$ of the design prediction which is within the $\pm 1\%$ $\Delta K/K$ margin allowed by Section 4.1.1.1.2 of the Technical Specifications.

3. Power Distribution - Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by a maximum average difference of 2.5%. All hot channel factors met their respective Technical Specifications limits.

4. Primary Coolant Activity - The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 8 was approximately 0.0242 µCi/gm. This corresponds to less than 3% of the operating limit for the concentration of radioiodine in the primary coolant. Radioiodine analysis indicated several fuel rod defects, which prompted ultrasonic testing (UT) during the Cycle 8 to Cycle 9 refueling outage. During UT testing, it was confirmed that eight fuel rods in five fuel assemblies were defective.

Figure 1.1 NORTH ANNA UNIT 2 - CYCLE 8 CORE LOADING MAP

R	P	N	H	. s	Χ	1	44	6	F	E	0	G	8	
					1	54 531	88 1 ₩50	5A 524						
				8A W17	N1710A K06	108 Y33	98 X57	108 ¥56	N1/10A	8A W13				
			7A V22	1 108 1 760	10A Y02	98 x39	108 ¥39	98 X24	10A Y26	108 463	7A V01			
		7A V26	98 X 16	10B Y42	9А X18	108 Y48	9A X07	108 1965	9A X08	108 Y53	98 852	7 A ¥35		
	8A 1919	108 ¥39	10A Y51	101/10A	10A 709	я <u>я</u> 850	98 133	98 832	10A ¥17	N1/104	108 Y36	10B 1758	8.A H11	
	1 K1 / 10A	16A Y07	9A X01	1 10A 1 Y20	9A X15	10A 724	N1/5 E13	10A Y03	9A X03	10.8	9A X11	1 10A 1 111	1H1/10A1	
iA iSń	108 Y55	98 X48	10B Y65	98 ×41	401 ¥26	98 X40	1 10A 1 721	98 835	10A Y}6	98 X42	108 Y61	98 X47	1 108 1 Y46	54 506
88 #35	1 98 1 X25	108 ¥45	9A - X17	98 345	4 827	10A 715	1 N1/7 1 630	10A Y03	4 R18	98 851	94 X06	10P Y32	98 X31	88 ₩64
5A 534	108 Y29	98 X34	108 ¥38	98 X43	10A ¥23	98 x22	10A 81V	N1/108 K41	10A ¥28	98 1 x29	108 Y41	98 X49	1 108 1 ¥54	5A \$36
	N1/10A	10A ¥12	9A X05	10A Y04	9A X15	10A V06	N175 E56	1 10A 1 10A	94 X62	104 701	9A X16	10A Y08	N1/10A X 04	
	8A ₩18	10B 752	108 ¥35	IN1/10A	10A 919	98 X.50	98 X26	98 X.36	10A Y15	N1/10A K08	108 757	108 Y37	8A ₩25	
		N126 F57	1 98 1 826	108 ¥62	40 05x	108 1750	9A X04	108 Y59	9A X14	10P Y31	98 X23	1 7A 1 ¥32		
			7A V10	1 108 1 Yu4	10A 1 Y10	98 X38	108 1 940	80 I X21	10A Y25	1 108 1 947	74 V36			
			 Communities 	88 19	N1/10A	108 ¥30	98 1 98 758	108 1949	1H1/10A	8A 1 ND4				
	1 BAT	сн				SA S02	88 ₩43	5A SA1						

FUEL ASSEMBLY DESIGN PARAMETERS

							SUB BAIC	1						
and the start of the	N1/5	M1/6	N1/7	N1/10A	H1/103	- Pa	SA	7.A.	A.B	88	9.K	98	104	
INITIAL ENRICHMENT (W/O U-235)	3.40	3.59	3.60	3.80	4.00	3.41	5.59	3.60	3.79	4.80	3.80	4.01	3.99	
ASSEMULY TYPE	17x17	17x17	17817	17x17	17x17	17×17	17×17	17x17	17×17	17×17	17×17	17×17	17817	
NUMBER OF ASSEMBLIES	2	1	-1	12	λ	2	6	7	8	- 4	16	31	28	
FUEL RODS PER ASSEMBLY	264	264	264	264	264	264	264	234	264	264	264	264	264	

NE-876 N2C8 Core Performance Report Page 8 of 51

24

1.0

11

12

13

14

2011

SECONDARY SOURCE

10

NE-876 N2C8 Core Performance Report

Figure 1.4 NORTH ANNA UNIT 2 - CYCLE 8 CONTROL ROD LOCATIONS

8

8

8

8

8

8

8

Ø C £ 8

NE-876 N2C8 Core Ferformance Report Page 11 of 51

Contro! Bank D

Control Bank C

Control Sank &

Control Bank A

Shutdown Bank SB

Shutdown Bank SA

SP (Spare Rod Locations)

A

Section 2

BURNUP

The burnup history for the North Anna Unit 2, Cycle 8 core is graphically depicted in Figure 2.1. The North Anna 2, Cycle 8 core achieved a burnup of 18,239 MWD/MTU. As shown in Figure 2.2, the average load factor for Cycle 8 was 95.2% when referenced to rated thermal power (2893 MW(t)). Unit 2 performed a power coastdown starting on January 14, 1992 until shutdown for refueling on February 26, 1992.

Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis. The NEWTOTE¹ computer code is used to calculate these assemblywise burnups. Figure 2.3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 8 operation is given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 8 operation is also given. As can be seen from this figure, the accumulated assembly burnups were generally within $\pm 2.98\%$ of the predicted values. In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than $\pm 6.30\%$.

The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch

NE-876 N2C8 Core Performance Report

burnup predictions to be made for use in reload fuel design studies. Batch definitions are given in Figure 1.1. As seen in Figures 2.5A, 2.5B, 2.5C, 2.5D, and 2.5E the batch burnup sharing for North Anna 2, Cycle 8 followed design predictions closely with no batch deviating from prediction by more than 1.69%. Symmetric burnup in conjunction with agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 8 core did deplete as designed.

00

.

Figure 2.1 NORTH ANNA UNIT 2 - CYCLE 8 CORE BURNUP HISTORY

43

٥.

--- WAXIMUW DESIGN BURNUP - 19800 WWD/WTU

NE-876 N2C8 Core Performance Report

Page 14 of 51

Figure 2.2 NORTH ANNA UNIT 2 - CYCLE 8 MONTHLY AVERAGE LOAD FACTORS

MONTH

NE-876 N2Cd Core Performance Report

.

Page 15 of 51

Figure 2.3 NORTH ANNA UNIT 2 - CYCLE 8 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU)

1

J H G

														1						3	9.	131	41	.8 .8	41 01	39. 39.	301											PE	EAS	SUR ICT	ED	
														-	61	. 25		35.	65	1 1	9.	161	35	.6	11	19.	251 141	35	,99 .67	1 4	1.3	591 531										
												14 fa 14 fa	98	1	19 19	.74	1	22.	27	1 3	9.	35) 681	23	.8	71	39.	691	22	. 69 . 61	1 2	19.6	201	45.	901								
							-	61	5	26		54	37	1	23	.73	a i	44. 44.	55 93	1 2	4.1	671	44	.1	01 41	24	611	44	.62	1 1	23.9	951	35.	061	44	. 60	1					
				l	40	83	91	1	ų. 0.	52		23 23	18	1	44 44	. 07 . 56	1	24. 24.	38 65	14	X., 3.,	26.1	43	.1	91	43	611	24 24	.85		44.5 44.5	501 561	23.	.441 751	19	.72	1	(1.) (1.)	(4.) (4.)			
				1	35 35	5.	01	2.2	2.	36	1	444 454	57	1	24	.39		43.	95 62	12.72	5.	241	62 61	.0	11	25.	121	44 44	.52	1 1	24.1	30 65	44.	1-1	22	.29	1	\$5.4 \$5.6	21			
	3 3	9.,	10	1	19 19	1	31	3	9.	27 69		24	13	1	42	. 61	1	24	17	1 4	6. : (4. :	471	25	.2	8 ! 1	44.	66	25	.10	1 4	42.4	841 101	23 24	591	38	.86 .69	1	18.1	151	38	.67	
1	4 4	2.	13	1	36	6.6	21	2 2	3. 5.	59 97		93 44	85	1	42	.63	ł	42.42	57 88	1 2	14. 14.	281	53	.0	3.1 0.1	24	641	42	. 78	1 4	42.1	761	93 99	381	23	.40	1	\$5.3 \$5.6	1.01	41 43	.98.	ì
1	3131	9.	09	1	18	.9	01	33	8.	50 69		24	23		42	.21	ł	24	45.70	1 4	4.	431	25	.1	31 11	45 94	111	24	.64		43.	421	24 24	56	39 39	.69 .69	1	19.1	101	38 39	.75	1
				-	35	2.6	41	22	2.	92		44 44	. 60	1	24	. 75	1	44 44	33	1 2 2	4.	56 83	142 641	.2	01 71	24	421 831	66 65	.17		24.1	531 651	44 44	. 69) . 92	22	.98	1	55. 55.	751			
				-	41 61	2.3	81	1	9.	76		23	.90	1	44	. 6.6 . 5.6	1	24	28 65		3.	04) 18)	41	1.1	01 51	42	321	24 24	.62		64.) 99.	381 561	24 23	19	20 19	.14	1	43.3	\$71			
							1	4.4	ñ.	10	l	35	10	1	23	.93	1	44	18	1	5.	91 71	4	1.5	81	24 24	06.	44	.38		23. 23.	711 741	35	. 5.5) . 61)	-43 -64	.76	1					
											1	45 44	95		19	. 89	i i	21	63		8.	751	21	1.1	51	58. 39	58	21	.18	1	19. 19.	581 691	.66 66	. 57 68								
														1	42	. 33	1	35	93		9.	16]	31		181	18	58	35	.17		41. 41.	091 331										
																				-	8.	721	4	.8	121	38	52															

NE+876 N2C8 Core Performance Report

58

Page 16 of 51

ä

1.5

Figure 2.4 NORTH ANNA UNIT 2 - CYCLE 8 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (GWD/MTU)

K J H

12

			39.13[41.84] 39.30] 8.31[0.09] 0.75]			MEASLIRED 1 M/P 2 DIFF 1
2		41.25 35.65 -0.201 -0.05	19.161 35.611 19.25 0.071 -0.021 0.551	35.991 41.391 0.891 0.131		
5	1	44.981 19.741 27.22 0.841 0.241 -1.751	39.391 23.871 39.691 -0.731 -0.371 0.021	22.991 20.201 45 1.671 2.591 2	. 901 . 921	
	1 45.261 1 1.451	34.37 23.75 44.55 -0.69 -0.02 -0.0+	24.62 44.10 24.61 -0.36 -0.77 -0.40	54.621 23.951 35 -0.671 0.881 1	.061 44.401 .321 -0.471	
•	40.89 19.52 1 -1.07 -1.95	23.18 44.07 24.38 +2.391 -1.101 -1.12	45.261 43.191 45.611 0.181 0.071 0.991	29.851 99.501 23 9.791 -* 131 -1	.661 19.721 .241 0.101	\$1.441 0.741
6	1 55.201 22.561 1 -1.331 -1.111	44,571 24,591 53,951 -0,801 -1.041 -1.501	25.24 42.01 2*, 12 1.64 0.34 1.19	5.1	.141 22.291 .741 -1.42	35.621 -0.141
6	39.10 19.13 39.27 0.17 -0.09 -1.04	24.13 42.61 24.17 -2.21 -1.12i -2.17	44.471 25.281 44.66 (0.431 2.311 0.01	25.10 42.84 2 1.61 -0.58 -0	1.59] 38.86 (45] 2.08	18.851 38.671 -1.521 -0.951
6	42.13 36.62 23.59 0.78 2.79 -1.58	43.851 42.631 42.571 -1.281 -0.601 -0.711	24.281 53.031 24.64 -1.471 -0.321 -0.04	92.781 92.761 9 -0.221 -0.481 -	. (81 23.40) 2.341 -2.38	35. "9) 41.981 0.451 0.421
9	39.09 18.90 38.50 0.14 -1.31 -2.98	29,231,62,211,24,451 -1,831,-2,061,-1,011	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.641.45.421.20 -0.251.0.751	1.201 0.01	19,201 38,751 3,26(-0,75]
0	$\begin{smallmatrix} 1 & 55.241 & 21.921 \\ -1.211 & -3.051 \end{smallmatrix}$	44.601 24.751 44.331 -0.721 0.421 -0.651	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99.171 29.531 9 -0.991 -0.981 -1	4.691 22.98 0.521 1.62	(35.75) (0.24)
	41.28 19.76 -0.13 0.30	23.901 44.661 24.281 0 511 0.231 (1.51)	43.041 42.501 42.52 -0.341 -1.511 -2.00	24.621 44.381 2 -0.121 -0.591	4.191 20 14 1.841 2.29	61 671 0.571
2	45.10 1.15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.911 43.481 29.06 -3.221 -2.121 -2.64	94.38 23.71 3 -1.22 -0.111	5.531 45.76 2.671 2.57	1
3		45.951 19.801 21.631 3.011 0.591 -4.351	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.18 19.58 4 -1.92 -0.55 -	4.571 0.071	ARITHMETIC AVG 1
6		42,341 35,931 2,451 0,751	19.161 55.361 18.58 0.081 -0.671 -2.93	55.17 41.09 1.60 -0.59		International and the second second
5	I STANDARD DEV 1 1 9 0.93 1		38.771 41.821 18.52 0.611 0.041 1.25			1 AVC ABS PCT 1 1 DIFF = 1.12 1

P N N

BATCH SHARING

8 J

BATCH	NO. OF ASSEMBLIES	BOC BATCH BURNUP	EOC BATCH BURNUP	CYCLE BURNUF
N1/5	2	22,603	42,104	19;501
N1/6	1	37,921	45,097	7,176
N1/7	1	34,556	53,027	18,471
N1/10A	12	23,945	38,513	14,568
N1/108	1	23,443	45,108	21,665
4	2	23,869	42,678	18,809
5A	8	33,607	38,916	5,304
7A	7	38,225	45,258	7,033
8A	8	34,997	41,407	6,410
88	9	35,965	41,945	6,480
9A	16	23,632	44,219	20,587
98	31	20,543	40,134	19,591
104	28	0	23,953	23,953
108	36	0	21,890	21,890

BURNUP TILT

NW = -0.10 | NE = 0.30

SW = -0.15 | SE = -0.04

NE-876 N2C8 Core Performance Report

Page 17 of 51

Figure 2.5A NORTH ANNA UNIT 2 - CYCLE 8 SUB-BATCH BURNUP SHARING

Figure 2.5B NORTH ANNA UNIT 2 - CYCLE 8 SUB-BATCH BURNUP SHARING

Page 19 of 51

Figure 2.5C NORTH ANNA UNIT 2 - CYCLE 8 SUB-BATCH BURNUP SHARING

0

Figure 2.5D NORTH ANNA UNIT 2 - CYCLE 8 SUB-BATCH BURNUP SHARING

Figure 2.5E NORTH ANNA UNIT 2 - CYCLE 8 SUB-BATCH BURNUP SHARING

Section 3

REACTIVITY DEPLETION

The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLLOW* computer code was used to normalize "actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon concentration, moderator temperature, and power level. The normalized critical boron concentration versus burnup curve for the North Anna 2. Cycle 8 core is shown in Figure 3.1. It can be seen that the measured data typically compared to within 58 ppm of the design prediction. This corresponds to ±0.39% AK/K which is within the ±1% AK/K criterion for reactivity anomalies set forth in Section 4.1.1.1.2 of the T-chnical Specifications. In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 8 core depleted as expected without any reactivity anomalies.

Page 13 of 51

Figure 3.1 NORTH ANNA UNIT 2 ~ CYCLE 8 CRITICAL DORON CONCENTRATION vs. BURNUP (HFP,ARO)

a

13(3

2

NE-876 N2C8 Core Performance Report

Page 24 of 51

A MAN

Section 4

POWER DISTRIBUTION

Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is operating without any abnormal conditions which could cause an 'uneven" burnup distribution. Three-dimensional core power distributions are determined from movable detoctor flux map measurements using the INCORE⁵ computer program. A summary of all full core flux maps taken since the completion of startup physics testing for North Anna 2, Cycle 8 is given in Table 4.1. Power distribution maps were generally taken at monthly incervals with addi...onal waps taken as needed.

Radial (X-Y) core power distribution for a representative series of incore flux aps are given in Figures 4.1, 4.2, and 4.3. Figure 4.1 show a power distribution map that was taken early in cycle life. Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup. Figure 4.3 shows a map that was taken near the end of cle 8. The measured relative assembly powers were generally within 7.0% and the maximum average percent difference was equal to 2.5%. In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for each case.

An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors. Verification that these factors are within Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity. North Anna Unit 2 Technical Specification 3.2.2 limited the axially dependent heat flux hot channel factor, $F_Q(Z)$, to 2.19 x K(Z), where K(Z) is the hot channel factor normalized operating envelope, and 2.19 is the Fq limit at rated thermal power, both as specified in the Core Operations Limit Report (COLR)⁴ Figure 4.4 is a plot of the K(Z) curve associated with the 2.19 $F_Q(Z)$ limit.

The axially dependent heat flux hot channel factors, $F_Q(Z)$, for a representative set of flux maps are given in Figures 4.5, 4.6, and 4.7. Throughout Cycle 8, the measured values of $F_Q(Z)$ were within the Technical Specifications limit. A summary of the maximum values of axially-dependent heat thus hot channel factors measured during Cycle 8 is given in Figure 4.8. This figure indicates that the minimum margin to the F_Q limit in the axial region covered by the Technical Specification 4.2.2.2 is 11.4%. (Technical Specification 4.2.2.2.g states that F_Q surveillence is not applicable in the lower core region from 0% to 15% inclusive, and the upper core region from 85% to 100% inclusive.)

Figure 4.9 shows the maximum values for the heat flux hot channel factor measured during Cycle 8. As can be seen from the figure, there was an approximite 16.00% margin from the maximum $F_Q(Z)$ to the 2.19 limit at the beginning of the cycle, which was the minimum margin seen for the cycle.

NE+876 N2C8 Core Performance Report

The value of the enthalpy rise hot channel factor, F*delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The Technical Specifications limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated. Additionally, the F-delta-H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation. North Anna Technical Specification 3.2.3 limited the enthalpy rise hot channel factor to 1.49(1+0.3(1+P)) for Cycle 8, where 1.49 is the F-delta-H at rated thermal power and 0.3 is the power factor multiplier, both as specified in the COLR. A summary of the maximum values for the enthalpy rise hot channel factor mensured during Cycle 8 is given in Figure 4.10. As can be seen from this figure, the minimum margin to the limit was approximately 2.2%.

The target delta flux* is the delta flux which would occur at conditions of full ; ower, all rods out, and equilibrium kenon. The delte flux is measured with the core at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.

The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -1.4% at the

* Delta Flux = ---- X 100 where Pt = power in top of core (MW(t)) 2893 Pb = power in bottom of core (MW(t))

Page 27 of 51

beginning of Cycle 8. Delta flux values decreased steadily to =5.3% near a cycle burnep of 14,300 MWD/MTU, where it then gradually increased to -3.6% before the coastdown. At the end of Cycle 8, the target delta flux increased to +4.2% due to the coastdown. This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14. In Map N2-8-07 (Figure 4.12), taken at 1505 MWD/MTU, the axial power distribution had a shape peaked toward the middle of the core with a peaking factor of 1.208. In Map N2-8-14 (Figure 4.13), taken at approximately 9129 MWO/MTU, the axial power distribution peaked slightly toward the bottom of the core with an axial peaking factor of 1.157 Finally, in Map N2-8-25 (Figure 4.14), taken at 16,640 MWD/MTU, the axial peaking factor was 1.157, with the axial power distribution shifted slightly back toward the top. The history of F-2 during the cycle can be seen more clearly in a plot of F-2 versus burnup given in Figure 4.15.

In conclusion, the North Anna 2, Cycle 8 core performed satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the $F_Q(Z)$ and F-delta-H hot channel factors were within the limits of the Technical Specifications.

NE+876 N2C8 Core Performance Report

Page 28 of 51

SUMMARY	OF FLUI	(MAPS)	FOR RO	UTINE (OPERATION	

Table 4.1 NORTH ANNA UNIT 2 - CYCLE 8

I S IMAP	DATE	BURN UP NVII/	1040	EANK D	F-Q11 CHANNEL	7 HOT FACTOR	I F-DH(R) HOT I CHNL, FACTOR	CORE E(2) 1 INAX	FIXYI I	111 A	AXIAL HO. UNT UNT
F		610	12.1		ASSYLPIN	AXIAL POINT F-Q(T)	ASSYLDIN (F-DH(H)	AZ]AL F(Z) PU(1)(1)		HAX ILCICI	COL BLES
1784 110 111 111 113 114 115 117	$\begin{array}{c} (1.2 - 14 - 90) \\ (0.1 - 80 - 81) \\ (0.2 - 12 - 91) \\ (0.3 - 0.2 - 91) \\ (0.4 - 2.5 - 91) \\ (0.4 - 2.5 - 91) \\ (0.4 - 2.5 - 91) \\ (0.4 - 2.5 - 91) \\ (0.4 - 2.5 - 91) \\ (0.4 - 2.5 - 91) \\ (0.4 - 1.7 - 91) \\ (0.8 - 1.3 - 91) \\ (0.9 - 1.3 - 91) \end{array}$	1505 2556 5856 58575 56575 575129 19106 11118 12550	100 100 100 100 100 100 100 100 100 100	1 228 228 228 228 228 228 228 228 228 1 228 1 228 1 228 1 228 1 228	1 011 J IP 1 05 J IP 1 05 J IP 1 007 J 1		011 1P 1 4P H07 1 1 4P H07 1 1 4S H07 1 4 4S	$ \begin{bmatrix} 56 & 11, 2008 \\ 56 & 11, 191 \\ 57 & 11, 171 \\ 58 & 11, 186 \\ 96 & 11, 186 \\ 96 & 11, 187 \\ 1, 66 & 11, 187 \\ 68 & 11, 187 \\ 1, 68 & 11, 187 \\ 1, 68 & 11, 185 \\ 1, 68 & 11, 185 \\ 1, 68 & 11, 156 \\ 1, 68 & 11, 156 \\ 1, 1, 1, 156 \\ 1, 1, 1, 156 \\ 1, 1, 1, 156 \\ 1, 1, 1, 156 \\ 1, 1, 1, 156 \\ 1, 1, 1, 1, 156 \\ 1, 1, 1, 1, 156 \\ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, $	 4,428 4,445 4,445 4,455 <l< td=""><td>1,004,1 ME 1,007,1 ME 1,007,</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></l<>	1,004,1 ME 1,007,1 ME 1,007,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
118 120 125 124 124 124	$\begin{array}{c} 1 0 9 - 2 h - 9 \\ 1 1 0 - 0 1 - 9 1 1 \\ 1 1 0 - 1 h - 9 1 1 \\ 1 1 1 - 1 h - 9 1 1 \\ 1 1 h - 1 h - 9 1 1 \\ 1 h - 1 h - 9 1 1 \\ 1 0 1 - h - 9 h 1 \\ 1 0 1 - h - 9 h 1 \\ 1 0 h - h - 1$	12640 12733 13286 14567 14692 16640 16640	1 400 1 100 1 100 1 400 1 400 1 100 1 100 1 100	151 228 228 228 228 228 228 228 228	1 106 1 33 1 007 1 1 1 MD7 1 1 1 MD7 1 1 1 MD7 1 1 1 M07 1 1 1 M07 1 1	1 29 1 1.870 1 53 1 1.855 1 54 1 1.855 1 54 1 1.855 1 54 1 1.865 1 54 1 1.848 1 54 1 1.837 1 1.1 1 1.805	.304 H1 1 , 565 FG7 FH 1 , 655 H071 1 1 , 655 H071 1 1 , 655 H071 1 1 , 626 707 FH 1 , 626 706 EF 1 , 05	$ \begin{bmatrix} 36 & 11, 177 \\ 52 & 11, 172 \\ 55 & 11, 172 \\ 55 & 11, 172 \\ 55 & 11, 174 \\ 55 & 11, 174 \\ 55 & 11, 187 \\ 15 & 11, 187 \\ 1 & 14, 196 \\ \end{bmatrix} $	1.467 1.468 1.465 1.455 1.455 1.455 1.459 1.459	11.0151 MW 11.0061 ME 11.0061 ME 11.0061 ME 11.0061 ME 11.0061 ME 11.0061 ME	 5. 2701 48 5. 2861 46 5. 2861 46 6. 2861 46 6. 6191 46 6. 6751 46 6. 6751 46 6. 6251 66

NOTES HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS (F.C. N-8 IS THE LINTER OF CORE ASSEMBLY), FOLLOWED BY THE PIN COCATION TDENDILD BY THE "Y" COORDINATE WITH THE SEVENTEEN ROWS OF FUEL RODS LETTERED & THROUGH R AND THE "X" COORDINATE DESIGNATED IN A SIMILAR MANNER). IN THE "2" BIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE.

1. F-B(1) INCLUDES & TOTAL DICERTAINTY OF 1.85 X 1.03.

2. CORE TILT - DEFINED AS THE AXIAL BUADRANT POWER TILT FROM INCORE.

3. MAPS 21 MUM 22 MERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE/EXCORE CALTBRATION. (1/) CALIBRATION.

Figure 4.1 NORTH ANNA UNIT 2 - CYCLE 8 ASSEMBLYWISE POWER DISTRIBUTION N2-8-07

	н н	- X	* J -	н 6	1.1	9 . C. 8	Α.
. PHEDI HEASU . DIFF	CIED . RED . EREMCE.		. 8.26 . 8.26 . 5.3	. 0.32 . 0.20 0.34 . 0.20 5.5 . 6.1		PREDICTED MEASURED PCT DIFFEPENCE	
		. 0.33 . 0.34 . 4.5	.62 . 1.09 .69 . 1.13 2.9 . 1.8	. 0.05 . 1.05 0.96 . 1.11 . 1.8 . 2.1	0.62.0.33 0.69.0.56 3.2.3.3		
	, 9.3 , 6.3 , 1.	$\frac{6}{6}$, $\frac{1}{1}$, $\frac{10}{10}$, $\frac{1}{6}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 30 \\ 1 \\ 31 \\ 0 \\ 9 \\ 1 \\ 1 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.55 0.56 5.6	
0		$ \frac{6}{6}, \frac{1}{3}, \frac{29}{50}, \frac{1}{3}, \frac{1}{50}, \frac{1}{5}, \frac{1}{50}, \frac{1}{5$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$, 1,14 , 1,37 , 1,15 , 1,33 , 1,4 , 0,7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	9 . 1.16 . 1 7 . 1.14 . 1 51.2 .	$\begin{array}{c} 190 & . & 1.19 \\ 200 & . & 1.25 \\ 0.5 & . & 2.8 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} 0.67 \\ 0.67 \\ 0.67 \\ 0.9 \\ \end{array} $	25 . 1.1 24 . 1.1 5.90.1		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1.06 \\ 1.07 \\ 1.55 \\ 2.9 \\ 2.3 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \frac{6}{7}, \frac{1}{2}, \frac{09}{9}, \frac{1}{1} $	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$ \frac{2}{5} \cdot 1, 19 \cdot 1 \\ 0 \cdot 1, 17 \cdot 1 \\ 5 \cdot 1, 1 \cdot 1 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3,50,+1,19\\ 1,55,-1,21\\ 5,8,-2,7\end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.26 0.26 -0.7
$ \begin{array}{ccccccccccccccccccccccccccccccccc$		$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	00 . 1.50 00 . 2.29 0.0 . 0.5	0.95 . 1.50 0.97 . 1.50 7.0 . 0.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.52 0.53 0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 20 \\ 16 \\ 1.4 \\ -1 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 4 , 51 , 1 , 19 \\ 4 , 51 , 1 , 19 \\ 4 , 51 , 1 , 19 \\ 4 , 0 , 1 , 0 , 2 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.26 0.27 1.8
0.62 . 1 0.60 . 1 -5.5 .	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	6 . 1.29 . 1 9 . 1.50 . 1 7 . 9.7 .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1.05 \\ 1.04 \\ 1.04 \\ 1.31 \\ -0.7 \\ -1.0 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} 0,33 \\ 0,32 \\ 0,5 \end{array} $	10 1 2 09 1 2 1.5 0	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$.29 . 1.19 .26 . 1.18 0.8 . 0.8	· 1.12 , 1.19 · 1.11 , 1.19 · 0.7 , •0.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 0	5 . 0.8 6 . 0.8 9 . 1.		$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	6.3 0.3 1	$ \begin{array}{r} 4 & . & 1 \\ 5 & . & 2 \\ 4 & . & 3 \\ 4 & . & 3 \\ 5 & . & . \\ \end{array} $	$ \begin{array}{r} 25 & \cdot & 1 & 20 \\ 23 & \cdot & 1 & 17 \\ 7 & \cdot & 2 & 9 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 1.25 . 1.10 . 1.24 . 1.09 . 1.2 . 0.7	0,35 0,36 2,1	
		0.55 . 0 0.56 . 0 6.5 .		, 0.93, 1.09 , 0.95, 1.07 , 0.9, 1.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
51 AMU DEV14 =1.1	NRD (10)N (10)N		0.26 0.76 6.5	. 0.32 . 0.26 . 0.33 . 0.26 . 2.1 . 0.9		AVERAGE PCT DIFFERENCE. = 1.5	

SUMMARY

MAP NO: N2-8-07	DATE: 12/14/90	POWER : 100%
CONTROL ROD POSITION:	F+Q(1) = 1.874	QPTR:
D BANK AT 228 STEPS	F-DM(M) = 1,919	NW 1.0035 NE 1.0043
	F(Z) = 1.208	SW 0.9952 ISE 0.9970
	F(XY) = 1.428	
	BURNUP = 1505 MWD/HTU	A.O. = -2.008%

i

2

. 3

- 11

 ~ 5

-6.

17

ð.

3

1.6

1.4

Figure 4.2 NORTH ANNA UNIT 2 ~ CYCLE 8 ASSEMBLYWISE POWER DISTRIBUTION N2-8-14

۰	(* C.		°	. A	÷.	. *	10	× .	s	6		~			
	PRE MEA PCY 51	DICTED SURED FFERENCE				0.28 0.29 5.5	\$.34 \$.35 \$.5	0,28 0,28 3,5				DIFT	YED ED RENCE		
				8,54 9,56 4,5	0.61 0.62 0.9	1.02	0.89 0.89 0.2	1.02.	8.61 · 0.65 · 5.1 ·	0,56 0,55 3.7 1.67	111211				
			0.37 9.8 0.85	0.4	1.21	. 1.15	1.50 -0.7	1.14	1.26	1.10 .	0.39 4.4 0.85	8.37			
	0.34	0.38 1.7 1.07	0.65	0.3 0.3	1.12	1.56	. 1.11 . .0.1 .	1.36 -8.3 1.17	1.16 .	1,82 1,72 1,13	0.86 1.2 1.30	0.58	6.34		
	0.53	1.05.	1.26		1.56	1.14	1.11	1.19	1.59	1.14	1.29 .	1.07 0.6 1.25	0.35 3.5. 2.61		
-	0.61 -0.6 1.62	1.22 .	1,12	. 1.36 : 0.7 	. 1.17 -0.0	, 1.49 , 1.8 , 1.19	1.08	1.40 .	1.19 1.5 1.37	1.36 .	1.11	1.72	0.63 2.3 1.02	8.28	
3.5	1.03	1.12 .	1.54	1.15	1.34 -1.6 1.03	: 1.22 : 2.8 :	1.41	1.21 2.7 1.37	1.60.7	1.17 . 0.1 . 1.89 .	1.51 -3.6 1.11	1.11	1.02 0.8 0.69	0.59	
3.5 3.5	0.89	1.29 . 	1.10	1.08 0.5 	1.05 -0.0 . 1.57	. 1.30 1.0 . 1.19	1.02 2.6 1.37	1.58 9.6 1.19	1.04 0.6 1.37	1.58 .	1.87 .	1.29	0.89 0.4 1.02	0.56	
3.8 	1.01 -0.9 0.61	- 1.40 - 5.1 - 1.83	1.34	. 1.16 0.4 . 1.57	1.56 -0.8	1.17	1.55	1.20	2.6 2.6 1.17	1.18 1.0 1.M	1.15	4.1	1.05 1.0 0.61	8.28 x 2.5 x	
	0.50	- 2.5 . - 2.5 . - 1.67 .	1.10	0.9	0.0	1.1	1.05	1.17	0.7	0.4 1.13	2.7	2.1	0.34		
	6 8 6 4 6 6 7 6 6 7 7 6 6 7 6 7 6 7 6 7	0.8	1.0	1.50	1.13	-2.0	1.9	-1.1	0.2	1.1	2.7 . 8.85 . 8.67	0.57	315 I		
		4.1.4	2.8 6.57 0.39	1.0/ 1.0/	-1.9 1.23 1.18	1.13 1.08	1.81 1.72	-2.1	-0.5 1.25 1.20	0.2 1.87 1.87	3.0 0.57 0.38	8.8			
			4.1	0.39	0.61	1.02 6.1	6.89 0.88	1.02	0.61 0.60	0.1	i dhall i Francis				
	ST ST	ANDARD VIA:TON 1.172				0.28 4.29 3.7	0.54 0.54 1.0	0.28				AVEP 11 0155	AGE ERENCE		
						SU	MMARY								
	MAP N	0: N2-1	8-14		DA	TE: 06	/24/91		PO	WER: 1	002				
	CONTR	OL ROD	POST	TION:	ş.	Q(T)	= 1.83	Ē, i	QP	(Ř.					
	D BAN	IK AT 2	28 51	EPS	ε.	DH(M)	= 1.45	8	NW	0,000	0 I N	E 1.0	068		
					÷.	zi	= 1.15	7	SW	0.993	9 5	E 1.0	002		
					F (XY)	= 1.95	9							
					BU	RNUP	# 9129	HWD/H	tu a.		4.532				

NE-876 N2C8 Core Performance Report Page 31 of 51

18

14

Figure 4.3 NORTH ANNA UNIT 2 - CYCLE 8 ASSEMBLYWISE POWER DISTRIBUTION N2-8-25

8.	P N	н.	., i	2	H	-6	1	£	JU 0	8	*
	PHEDICTED HEASLARED PCT DIFFEREN	ка.		. 0.3) . 0.33 . 7.2	0.38	0.51 0.53 6.6			PMED PEAS PC1 DIF	ICTED RED ERENCE	
	1-1111111111		. 0.57 . 0.64 . 0.40 . 0.65	1.05	0.91 0.92 1.5	1.63 1.66 2.9	0.64 0.67 5.6	0.57 0.39 6.9	nimir	res repres	
		0.40 0.41 2.6	. 1.06 . 1.2 . 1.08 . 1.2 . 2.0 . 1.1	$\begin{array}{c} & 1 \cdot 12 \\ & 1 \cdot 11 \\ & 0 \cdot 6 \end{array}$	1.58 1.30 0.8	1.12 1.12 0.7	$1.21 \\ 1.25 \\ 3.2$	1.06 . 1.11 . 4.9 .	0.40 0.65 8.2		
	. v.40 . 0.51 . 5.7	4.86 0.87 1.1	$ \begin{array}{c} 1.28 \\ .1.1 \\ .1.50 \\ .1.1 \\ .1.9 \\ .1.1 $	- 1.56 - 1.35 - 0.9	1.10	1.56 1.35 0.8	1.11 1.12 1.0	1.28 1.51 1.8	0.86.0.40 0.88.0.41 2.2.4.2		
	0.37.3.06 0.36.1.06 0.5.0.5	1.28	$ \begin{array}{c} 4.11 \\ 1.29 \\ 2.3 \\ 2.4 \\ 1.4 \end{array} $	1.15 1.16 0.8	1.09	1.15 .	1.36 1.37 0.8	1.1 1.1 0.1	1.23 . 1.06 1.27 . 1.08 -1.1 . 2.2	0.37 6.59 7.5	
8.51	0.64 . 1.22 0.64 . 1.22 0.7 . 0.7	. 1.10	1.37 - 1.19 1.39 - 1.39 -1.9 - 1.3	0.8	1.07	1.37	1.16 . 0.7 .	1.39 .	1.11 + 1.20 1.08 + 1.21 -2.4 + 0.3	0.56 3.6	
0.35 7.4 0.38	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.33 2.3	1.12 1.5	1,19	1.58	1.19 1.5 1.56	1.58 .	1.14 9.8 1.08	1.29 . 1.89 -4.92.3 1.10 . 1.51	1.02	0 51 . 0.4
0.61 7.4	0.92 1.28	1.08 1.5 1.56	1,87, 1,8 1,0, -1,6 1,15, 1,36	1.34 -1.8 1.17	1.03 2.8 1.54	1,56 0.0 1,17	1.04 8.1. 1.56.	1.07 1.7 1.16	1.00 . 1.28 -4.92.5 1.56 . 1.12	8,90 , 1 1 , 1,03	0.58.0.5
7.4	1,09, 1,08 0,3, -5,7 0,69, 1,22 0,62, 1,39	· 1.33 · 2.1	1,15,1,39 0,9,-1,6 ,1,57,1,19	1.15	1.57	1.57	1.36 -0.3 1.16	1.16 / 0.4 /	1 - 39 + 1 - 12 - 1 - 6 - 7 - 0 - 0	0.6	8-52 - 5-0 -
	-2.3 -2.3 0.57 1.06 0.58 1.09	. 0.5. 1.28 1.52	0.6 -0.5	1 15 1 12	1.8 1.09 1.06	2.5	1.30 1.30	0.5 1.11 1.13	2.0 . 3.7 1.78 . 1.06 1.79 . 1.11	. 9.9 . 0.37 . 0.59	
	. 3.1 . 3.1 . 0.40 . 0.43 . 8.4	7.4 0.86 0.90 h.2	1.8 . 2.0 1.78 . 1.11 1.31 . 1.07 1.8 . 1.8	2.9 - 1.36 - 1.31 - 3.6	2.8 1.10 1.06 3.5	2.1 1.56 1.56 2.7	0.6. 1.11. 1.09. -1.0.	1.2 . .28 . .29 .	6.0 . 6.9 0.86 . 0.40 0.90 . 0.42 5.16	. 6.7 	
		0.40 0.45 8.4	1.06 + 1.71 1.08 + 1.15 1.8 - 5.1	$\begin{array}{c} 1.1\%\\ 1.0\%\\ -4.9\end{array}$	$ \begin{array}{c} 1 & .31 \\ 1 & .26 \\ -5 & .6 \end{array} $	1.12 1.09 2.9	1.21 8.20 1.3	1.0α 1.07 1.1	0.40 0.42 6.5		
			0.37.0.00 0.40.0.69 8.9.8.9	1.03 1.05 2.0	0.91 0.91 0.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.69 0.63 1.2	1.32 - 1.36 - 1.9 -			
	DEVIATION			0 51 0 53 8 9	0.38 0.39 9.1	0.31. 0.31. -0.5.			PCT DIFF	ERENCE	

SUMMARY

MAP NO: N2-8-25	DATE: 01/10/92	POWER: 100%
CONTROL ROD POSITION:	F-Q(T) = 1.837	QPTR:
D BANK AT 228 STEPS	F-DH(M) = 1.424	NH 0.9933 NE 1.0050
	F(Z) = 1.157	SW 0.0961 SE 0.9996
	F(XY) = 1.439	
	BURNUP = 16640 MWD/NTU	A.O.=-3.573%

NE-876 N2C8 Core Performance Report

Page 32 of 51

ï.

2

ă.

ŝ,

ĥ

÷

10

11

13

14

NE-876 N2C8 Core Performance Report

ò

Page 33 of 51

ġ

Page 34 of 51

Figure 4.6 NORTH ANNA Unit 2 - CYCLE 8 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z) N2-8-14

ñ

-

Page 35 of 51

Page 36 of 51

BOTTOM OF CORE

TOP OF CORE

NE-876 N2C8 Core Performance Report

Page 38 of 51

Figure 4.11 NORTH ANNA Unit 2 - CYCLE 8 TARGET DELTA FLUX vs. BURNUP

CYCLE BURNUP (GWd/MtU)

1

Page 42 of 51

Page 43 of 51

Figure 4.15 NORTH ANNA Unit 2 - CYCLE 8 CORE AVERAGE AXIAL PEAKING FACTOR vs. SURNUP

Page 44 of 51

Section 5

PRIMARY COOLANT ACTIVITY

The specific activity levels of radioiodines in the primary coolant are important to core and fuel performance as indicators of failed fuel and are important with respect to offsite dose calculations associated with accident analyses.

Two mechanisms are responsible for the presence of radioiodines in the primary coolant. Radioiodines are always present due to direct fission product recoil from trace fissile materials plated onto core components and fuel structured surfaces or trace fissile materials existing as impurities in core structurel materials. This fissile material is generally referred to as "tramp" material, and the resulting iodines are referred to as tramp iodine. Fission products will also diffuse into thprimary coolant if a breach in the cladding (fuel defects) exists. Fuel detects are generally the predominant source of radioiodines in the primary coolant.

North Anna 2 Technical Specification 3.4.8 limits the radioiodines in the primary coolant to a dose equivalent 1-131 value of 1.0 µCi/gm for modes one through five, inclusive. Figure 5.1 shows the dose-equivalent 1-131 activity history for Cycle 8. These data show that the dose equivalent I-131 activity was substantially below the 1.0 µ2i/gm limit for steady state power operation. The average full power equilibrium dose

Page 45 of 51

equivalent I-131 concentration for the cycle was 2.42 X 10^{-2} µCi/gm which corresponds to less than 3% of the Technical Specification limit.

Correcting the 1-131 concentration for tramp iodine involves calculating the I-131 activity from tramp fissile sources and subtracting this value from the measured I-131. The resultant is an estimate of the I-131 activity resulting directly from defective fuel. The magnitude of the tramp-corrected 1-131 can be used as an indication of the number of defective fuel rods. The cycle average tramp corrected iodine-131 concentration was $1.57 \times 10^{+2} \mu$ Ci/gm with an average demineralizer flow rate of approximately 77 gpm during power operation. This magnitude of tramp corrected 1-131 typically indicates the presence of defective fuel rods. Another positive indication of defective fuel is the presence of spikes in radioiodine during large or rapid power transients. Several iodine spikes can be seen on Figure 5.1.

The ratio of the specific activities of 1-131 to 1-133 is used to characterize the type (size) of fuel failure or failures which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours) compared to that of I-131 (approximately eight days). For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more. In the case of larger leaks and tramp material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 3.1. The use of these

NE-876 N2C8 Core Performance Report

Page 46 of 51

ratios with regard to defect size is empirically determined and generally used throughout the commercial nuclear power industry.

Figure 5.2 shows the I=131/I=133 ratio data for North Anna 2 Cycle 8. Aside from the large increases in the ratio during the time when the defects occurred, the I=131/I=133 ratio settled out below a ratio of 0.5 toward the middle and end of cycle. This indicates that the defects in the cladding were likely to be moderately sized.

Fuel ultrasonic testing was performed during the Cycle 8 to Cycle 9 refueling outage. Eight fuel rods in five fuel assemblies were confirmed to be defective. The five fuel assemblies are X49, Y39, Y40, Y42, Y47. Assembly X49 was used for two cycles. Visual confirmation of the defective rod showed a through-wall defect on a corner rod below the bottom grid. This defect appears to be externally generated, but it is not clear whether debris or some other external mechanism induced the primary defect. Extensive hydriding was also observed toward the upper spans of this rod. Assemblies Y39, Y40, Y42, and Y47 are all from the new fuel batch for Cycle 8. No evidence of debris induced failures was found during the visual examination of these assemblies. There was evidence of hydriding of the fuel cladding just above the bottom grid on the failed fuel rods that were visible. Possible failure mechanisms are currently being evaluated with the fuel vendor (Westinghouse). These fuel assemblies will be restricted from further use pending any repair projects to replace the defective fuel rods.

Page 47 of 51

NE-876 N2C8 Core Performance Report Page 48 of 51

Figure 5.1 NORTH ANNA UNIT 2 * C. LE 8

Figure 5.2 NORTH ANNA UNIT 2 - CYCLE 8 1-131 / 1-133 ACTIVITY RATIO vs. TIME

Page 49 of 51

Section 6

CONCLUSIONS

The North Anna 2, Cycle 8 core has completed operation. Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specifications limits were met with significant margin. No significant abnormalities in reactivity or burnup accumulation were detected. Radioiodine enalysis indicated that there were apparent fucl rod defects during Cycle 8. During ultrasonic testing of the fuel, eight fuel rods in five fuel assemblies were determined to be defective. One of the five fuel assemblies was used for two cycles of operation. The remining four asemblies were (sed only one cycle. These five assemblies will be restricted from further use pending repair.

Section 7

REFERENCES

- E. A. Hoffman, "North Anna Under I., vole 8 Startup Physics Test Report," NE-817 January, 1991.
- North Anna Power Station Unit 2 Technical Specifications, Sections 3/4.1, 3/4.2 and 3/4.4.8.
- 3) T. K. Ross, "NEWTOTE Code", VEPCO NFO-CCR-F , Rev. 9, April, 1984.
- 4) R. D. Klatt, W. D. Leggett, (11, and L. D. Eisenhart, "FOLLOW Code," WCAP-7482, February, 1970.
- W. D. Leggett, III and L. D. Eisenhart, "INCORE Code," WCAP-7149, December, 1967.
- Memorandum from R. G. McAndrew to J. R. Hayes, "Core Operating Limits Report (COLR) Tech Spec Amendment 146/130", July 5, 1991.
- T. T. Nguyen, "North Anna 2, Cycle 8 FULOW Input and Calculations", PM-363, Fev. 0, Addendum B, May 1992.