LIST OF TABLES

Table	No.	Page
3.1.1	Reactor Protection System (Scram) Instrument Requirements	28
4.1.1	Scram Instrument Functional Tests - Minimum Functional Test Frequencies for Safety Instrumentation and Control Circuits	32
4.1.2.	Scram Instrument Calibration - Minimum Calibration Frequencies for Rez for Protection Instrument Channels	34
3.2.1	Instrumentation that Initiates Primary Containment Isolation Functions	49
3.2.2	Instrumentation that Initiates Emergency Core Cooling Systems	52
3.2.3	Instrumentation that Initiates Rod Block	57
3.2.4	Instrumentation that Initiates Reactor Building Ventilation Isolation and Standby Gas Treatment System Initiation	59
3.2.5	Instrumentation that Initiates a Recirculation Pump Trip	60
3.2.6	Instrumentation for Safeguards Bus Degraded Voltage and Loss of Voltage Protection	60a
3.2.7	Instrumentation for Safety/Relief Valve Low-Low Set Logic	60b
4.2.1	Minimum Test and Calibration Frequency for Core Cooling, Rod Block and Isolation Instrumentation	61
3.5.1	Safety Related Snubbers	131
3.7.1	Primary Containment Isolation	172
3.8.1	Radioactive Liquid Effluent Monitoring Instrumentation	1391
3.3.2	Radioactive Gaseous Effluent Monitoring Instrumentation	198k
4.3.1	Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements	198m
4.3.2	Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements	198a
4.3.3	Radioactive Liquid Waste Sampling and Analysis Program	1985
4.3.4	Radioactive Gaseous Waste Sampling and Analysis Program	198s
3.11.1	Maximum Average Planar Linear Reat Generation Rate vs. Exposure	215
3.13.1	Safety Related Fire Detection Instruments	22 ⁻ :

71

Bases Continued:

3.2 increases core voiding, a negative reactivity feedback. High pressure sensors initiate the pump trip in the event of an isolation transient. Low level sensors initiate the trip on loss of feedwater (and the resulting MSIV closure). The recirculation pump trip is only required at high reactor power levels, where the safety/relief valves have insufficient capacity to relieve the steam which continues to be generated after reactor isolation in this unlikely postulated event, requiring the trip to be operable only when in the RUN mode is therefore conservative.

Voltage sensing relays are provided on the safeguards bus to transfer the bus to an alternate source when a loss of voltage condition or a degraded voltage condition is sensed. On loss of voltage this transfer occurs immediately. The transfer on degraded voltage has a time delay to prevent transfer during the starting of large loads. The degraded voltage setpoint corresponds to the minimum acceptable safeguards bus voltage for starting and running loads during a loss of coolant accident. An allowance for relay tolerance is included.

Safety/relief valve low-low set logic is provided to prevent any safety/relief valve from opening when there is a elevated water leg in the respective discharge line. A high water log is formed immediately following valve closure due to the vacuum formed when steam condenses in the line. If the valve reopens before the discharge line vacuum breakers act to return water level to normal, water clearing thrust loads on the discharge line may exceed their design limit. The logic reduces the opening setpoint and increases the blowdown range of three non-APRS valves following a scram. A 15-second interval between subsequent valve actuations is provided assuming one valve fails to

3.2 BASES

Amendment No. 29, 30, 31

Bases Continued:

open and instrumentation drift has caused the nominal 80-psi blowdown range to be reduced to 60 psi. Maximum water leg clearing time has been calculated to be less than 6 seconds for the Monticello design. Inhibit timers are provided for each valve to prevent the valve from being manually opened less than 10 seconds following valve closure. Valve opening is sensed by pressure switches in the valve discharge line. Each valve is provided with two trip, or actuation, systems. Each system is provided with two channels of instrumentation for each of the above described functions. A two-out-oftwo-once logic scheme ensures that no single failure will defeat the low-low set function and no single failure will cause spurious operation of a safety/relief valve. Allowable deviations are provided for each specified instrument setpoint. Setpoints within the specified allowable deviations provide assurance that subsequent safety/relief valve actuations are sufficiently spaced to allow for discharge line water leg clearing.

Although the operator will set the set points within the trip settings specified in Tables 3.2.1 through 3.2.4, the actual values of the various set points can differ appreciably from the value the operator is attempting to set. The aeviations could be caused by inherent instrument error, drift of the set point, ect. Therefore, these deviations have been accounted for in the various transient analyses and the actual trip settings may vary by the following amounts:

References: -

1. "Average Power Range Monitor, Rod Block Monitor and Technical Specifications Improvement (ARTS) Program for Monticello Nuclear Generating Plant", NEDC-30492-P, April, 1984.

3.2 BASES

69a

	Trip Function	Deviation
Instrumentation That Initiates Emergency Core Cooling Systems	Low-Low Reactor Water Level	-3 Inches
Table 3.2.2	Reactor Low Pressure (Pump Start) Permissive	-10 ps1
	High Drywell Pressure	+l psi
	Low Reactor Pressure (Valve Permissive)	-10 psi
Instrumentation That Initiates	TRM Downscale	-2/125 of Scale
Rod Block Table 3.2.3	IRM Upscale	+2/125 of Scale
indice starts .	APRN Downscale	-2/125 of Scale
	APRH Upscale	See Basis 3.2
	RBM Downscale	-2/125 of Scale
	RBM Upscale	+2/125 of Scale
	Scram Discharge Volume-High Level	+ 1 gallon
Instrumentation That Initiates	lligh Reactor Pressure	+ 12 psi
Recirculation Pump Trip	Low Reactor Water Level	-3 Inches
Instrumentation for Safeguards	Degraded Voltage	>3897 volts (trip)
Bus Protection		<3975 volts (reset)
		≥ 5 sec ≤ 10 sec (delay)
영상 화장 전 것이 가지 않는 것 같아. 이 것 않는 것 같아.	Loss of Voltage	<3000 volts >2000 volt

1,2 BASES

71

	Trip Function	Deviation
Instrumentation for Safety/Relief Valve .ow Low Set Logic	Reactor Coolant System Pressure for Opening/Closing	±20 psig
	Opening - Closing Pressure	>t) psi
	Discharge Pipe Pressure Inhibit	±10 psid
	Timer Inhibit	-3 sec +10 sec

A violation of this specification is assumed to occur only when a device is knowingly set outside of the limiting trip settings, or, when a sufficient number of devices have been affected by any means such that the automatic function is incapable of operating within the allowable deviation while in a reactor mode in which the specified function must be operable or when actions specified are not initiated as specified.