

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

WOLF CREEK NUCLEAR OPERATING CORPORATION WOLF CREEK GENERATING STATION DOCKET NO. 50-482

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 95 License No. NPF-42

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment to the Wolf Creek Generating Station (the facility) Facility Operating License No. NPF-42 filed by the Wolf Creek Nuclear Operating Corporation (the Corporation), dated November 22, 1995, as supplemented by letter dated February 8, 1996, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, as amended, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance: (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this license amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

 Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment and Paragraph 2.C.(2) of Facility Operating License No. NPF-42 is hereby amended to read as follows:

2. Technical Specifications

The Technical Specifications contained in Appendix A, as revised through Amendment No. 95, and the Environmental Protection Plan contained in Appendix B, both of which are attached hereto, are hereby incorporated in the license. The Corporation shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

 The license amendment is effective as of its date of issuance and shall be implemented within 30 days of the date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Kushne mThomas for

James C. Stone, Senior Project Manager Project Directorate IV-2 Division of Reactor Projects III/IV Office of Nuclear Reactor Regulation

Attachment: Changes to the Technical Specifications

Date of Issuance: February 28, 1996

FACILITY OPERATING LICENSE NO. NPF-42

DOCKET NO. 50-482

Replace the following pages of the Appendix A Technical Specifications with the attached pages. The revised pages are identified by Amendment number and contain marginal lines indicating the areas of change. The corresponding overleaf pages are also provided to maintain document completeness.

	REMOVE		INSERT			
	3/4	9-4		3/4	9-4	
B	3/4	9-1	В	3/4	9-1	
B	3/4	9-2	В	3/4	9-2	
B	3/4	9-3	В	3/4	9-3	

REFUELING OPERATIONS

3/4.9.4 CONTAINMENT BUILDING PENETRATIONS

LIMITING CONDITION FOR OPERATION

- 3.9.4 The containment building penetrations shall be in the following status:
 - a. The equipment door closed and held in place by a minimum of four bolts,
 - b. A minimum of one door in the emergency airlock is closed* and one door in the personnel airlock is capable of being closed, and
 - c. Each penetration providing direct access from the containment atmosphere to the outside atmosphere shall be either:
 - Closed by an isolation valve, blind flange, manual valve, or approved functional equivalent, or
 - Be capable of being closed by an OPERABLE automatic containment purge isolation valve.

APPLICABILITY: During CORE ALTERATIONS or movement of irradiated fuel within the containment.

ACTION:

With the requirements of the above specification not satisfied, immediately suspend all operations involving CORE ALTERATIONS or movement of irradiated fuel in the containment building.

SURVEILLANCE REQUIREMENTS

- 4.9.4 Each of the above required containment building penetrations shall be determined to be either in its required condition or capable of being closed by an OPERABLE automatic containment purge isolation valve within 100 hours prior to the start of and at least once per 7 days during CORE ALTERATIONS or movement of irradiated fuel in the containment building by:
 - a. Verifying the penetrations are in their required condition, or
 - Testing the containment purge isolation valves per the applicable portions of Specification 4.6.3.2.

^{*}An emergency escape hatch temporary closure device is an acceptable replacement for that airlock door.

3/4.9.1 BORON CONCENTRATION

The limitations on reactivity conditions during REFUELING ensure that: (1) the reactor will remain subcritical during CORE ALTERATIONS, and (2) a uniform boron concentration is maintained for reactivity control in the water volume having direct access to the reactor vessel. The limitation on Keff of no greater than 0.95 is sufficient to prevent reactor criticality during refueling operations. The locking closed of the required valves during refueling operations precludes the possibility of uncontrolled boron dilution of the filled portions of the Reactor Coolant System. This action prevents flow to the RCS of unborated water by closing flow paths from sources of unborated water. These limitations are consistent with the initial conditions assumed for the boron dilution incident in the safety analyses.

3/4.9.2 INSTRUMENTATION

The OPERABILITY of the Source Range Neutron Flux Monitors ensures that redundant monitoring capability is available to detect changes in the reactivity condition of the core.

When determining compliance with action statement requirements, addition to the RCS of borated water with a concentration greater than or equal to the minimum required RWST concentration shall not be considered to be a positive reactivity change.

3/4.9.3 DECAY TIME

The minimum requirement for reactor subcriticality prior to movement of irradiated fuel assemblies in the reactor vessel ensures that sufficient time has elapsed to allow the radioactive decay of the short-lived fission products. This decay time is consistent with the assumptions used in the safety analyses.

3/4.9.4 CONTAINMENT BUILDING PENETRATIONS

The requirements on containment building penetration closure and OPERABILITY ensure that a release of radioactive material from containment will be minimized. The OPERABILITY and closure restrictions are sufficient to restrict radioactive material release from a fuel element rupture based upon the lack of containment pressurization potential while in the REFUELING MODE.

The OPERABILITY of this system ensures the containment purge penetrations will be automatically isolated upon detection of high radiation levels within containment. The OPERABILITY of this system is required to restrict the release of radioactive materials from the containment atmosphere to the environment.

3/4.9.4 CONTAINMENT BUILDING PENETRATIONS (Continued)

Both containment personnel airlock doors may be open during movement of irradiated fuel or CORE ALTERATIONS, provided one airlock door is capable of being closed and the water level in the refueling pool is maintained as required. Administrative controls ensure that 1) appropriate personnel are aware of the open status of the containment during movement of irradiated fuel or CORE ALTERATIONS, 2) specified individuals are designated and readily available to close the airlock following an evacuation that would occur in the event of a fuel handling accident, and 3) any obstructions (e.g., cables and hoses) that could prevent rapid closure of an open airlock can be quickly removed.

Equivalent isolation methods for the emergency personnel escape lock and containment wall penetrations ensure releases from containment are prevented for credible accident scenarios. The isolation techniques must be approved by an engineering evaluation and may include use of a material that can provide a temporary, pressure tight seal capable of maintaining the integrity of the penetrations and airlock to restrict the release of radioactive material from a fuel element rupture.

3/4.9.5 DELETED

3/4.9.6 DELETED

3/4.9.7 DELETED

3/4.9.8 RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION

The requirement that at least one residual heat removal (RHR) loop be in operation ensures that: (1) sufficient cooling capacity is available to remove decay heat and maintain the water in the reactor vessel below 140°F as required during the REFUELING MODE, and (2) sufficient coolant circulation is maintained through the core to minimize the effect of a boron dilution incident and prevent boron stratification. The minimum of 1000 gpm allows flow rates which provide additional margin against vortexing at the RHR pump suction while in a reduced RCS inventory condition.

Addition of borated water with a concentration greater than or equal to the minimum required RWST concentration but less than the actual RCS boron concentration shall not be considered a reduction in boron concentration.

The requirement to have two RHR loops OPERABLE when there is less than 23 feet of water above the reactor vessel flange ensures that a single failure of the operating RHR loop will not result in a complete loss of RHR capability. With the reactor vessel head removed and at least 23 feet of water above the reactor vessel flange, a large heat sink is available for core cooling. Thus, in the event of a failure of the operating RHR loop, adequate time is provided to initiate emergency procedures to cool the core.

3/4.9.9 CONTAINMENT VENTILATION SYSTEM

The OPERABILITY of this system ensures that the containment purge penetrations will be automatically isolated upon detection of high radiation levels within the containment. The OPERABILITY of this system is required to restrict the release of radioactive material from the containment atmosphere to the environment.

3/4.9.10 and 3/4.9.11 WATER LEVEL - REACTOR VESSEL and STORAGE POOL

The restrictions on minimum water level ensure that sufficient water depth is available to remove 99% of the assumed 10% iodine gap activity released from the rupture of an irradiated fuel assembly. The minimum water depth is consistent with the assumptions of the safety analysis.

3/4.9.12 SPENT FUEL ASSEMBLY STORAGE

The restrictions placed on spent fuel assemblies stored in Region 2 of the spent fuel pool ensure inadvertent criticality will not occur.

3/4.9.13 EMERGENCY EXHAUST SYSTEM - FUEL BUILDING

The limitations on the Emergency Exhaust System ensure that all radioactive material released from an irradiated fuel assembly will be filtered through the HEPA filters and charcoal adsorber prior to discharge to the atmosphere. Operation of the system with the heaters operating to maintain low humidity for at least 10 continuous hours in a 31-day period is sufficient to reduce the buildup of moisture on the adsorbers and HEPA filters. The OPERABILITY of this system and the resulting iodine removal capacity are consistent with the assumptions of the safety analyses. ANSI N510-1975 and N510-1980 will be used as procedural guides for surveillance testing.