

REPORT

ON

CRANKSHAFT TORSIONAL STRESSES

TRANSAMERICA DELAVAL MODEL DSR-48

Serial No. 74010/12

for

LONG ISLAND LIGHTING COMPANY

Roland Yang. April 4. 1984 Transamerica Delaval In Dakland, CA. -03

8412170299 841001 PDR ADDCK 05000322 G PDR

TABLE OF CONTENTS

'		Introduction	Pages i	8	11
Section	One	Torsional Analysis	Pages (to	17
Section	Two	Torsiograph Tests	'' 18	to	21
Section	Three	Strain Gauge Tests (FaAA)	0	to	
Section	Four	Operating Hours Logged		to	

INTRODUCTION

This report consists of four sections and contains calculations. test data and operating experience, which Transamerica Delaval Inc. (TDI) considers relevant material to establish the adequacy of these DSR-48 engine generator sets.

The application of these units are for emergency standby service in the LILCO Shoreham Nuclear Power Plant. These units are rated at 3500 KW and have an overload rating of 3900 KW (111.4%) allowed two hours per day of twenty four hours.

Section One. Torsional Analysis.

A four page introduction is included here, explaining the method and nomenclature used in the torsional critical speed analysis. The mass elastic system in the analysis reflects the piston skirt which has since been superceded. The extra reciprocating weights due to the heavier replacement piston shirt have been evaluated and the change concluded to be negligible. The effect of the 111.44 overload on torsional stress levels are shown in pages 12 to 15. Due to the close proximity of the calculated stresses to the ABS allowable stress, we elected to include Section Two.

Also included in this section are mass elastic system parameters of other DSR-48 engine generators of identical rating, to establish the similarity of these units, especially from a torsional standpoint. Section Two. Torsiograph Tests.

Measurements by FaAA/SWEC and TDI are presented here , along with TDI measurements on other DSR-48 engine generators of identical rating and similar mass elastic system. Here again, the intent is to establish the similiarity between the various DSR-48 engine generators. The stresses evaluated from the torsiograph measurements are still in close proximity to the ABS allowable and therefore in Section Three, we present the actual strain gage measurements, taken on the subject shaft in January, 1984.

Section Three. Strain Gage Test.

Here the measured strains are listed along with the corresponding stresses. With the similar grade of crankshaft material, the endurance limit of the shaft is established and finally the margin of safety determined using the Goodman diagram. A factor of safety of the replacement crankshaft is 1.48 without the benefit of shot peening. The factor of safety is 1.75 as determined by FaAA, when the effect of shot peening is taken into account and taken to increase the endurance limit by 20%.

Section Four. Operating Hours Logged.

There are seventeen engine generator sets of similar configuration and identical rating in Saudi Arabia with considerable operating hours. These similar units are running regularly and generating power today. Worthy of note are the DSR-48 units at Rafha, with 5500 hours at 3200 KW on one unit and 6200 hours at 3300 KW and 8250 hours at 3200 KW for the other two. The similarity of these units are listed in page 17. Examination of the mass elastic data (1 & K) and the torsional natural frequencies (N) listed, will show that there are no essential differences between LILCO and the rest of the units. The LILCO units are undergoing performance tests at their Shoreham Nuclear Power Station, the total hours logged at loads of 3500 KW and above, are shown on page 28.

Summary.

Based on the foregoing calculations, test data and operating logs. Transamerica Delaval, Inc. considers the adequacy of these DSR-48 engine generator sets to be established for the intended service at the LILCO Shoreham Nuclear Power Station.

INTRODUCTION

TO

TORSIONAL CRITICAL SPEED ANALYSIS

The engine generator system is modeled as a system of moments of inertia interconnected by torsional springs.

The standard procedure is to concentrate all the moment of inertia of each crankthrow, including rod and piston at the corresponding cylinder center position. The moment of inertia per cylinder is obtained by summing the moment of inertias of the journal, crankpin, two crankwebs, counterweights (if used), rotating part of connecting rod and the equivalent inertia of the reciprocating parts, (namely the upper end weight of the rod and the piston).

The moment of inertia (I) is calculated by dividing the WK² by gravitational acceleration (g). WK² is obtained by multiplying the weight of the part by the square of the radius of gyration (K). WK² therefore, would be in Lb. In.² or Lb.Ft.² units and inertia (I) in Lb.In.Sec.² or Lb.Ft.Sec.² units. The inertia values, thus represent the concentrated inertia of the moving parts at each crankthrow.

From our torsional vibration analysis data files, we obtained the appropriate values of inertia or stiffness to make up the model.

The procedure and notations used in this analysis are explained below.

NATURAL FREQUENCY EVALUATION

This is done by Holzer's method. In our Holzer's tabulation, the definition of the notations are as follows:

- w² EIGENVALUE (Omega squared), in 10⁶ radian/second²
- NO. Mass number, counted from the free end of the engine
- INERTIA Inertia of the various masses, in 15.in.sec.²
- THETA Relative amplitude or angular position, in radians.
- IOM2T Product of INERTIA $\frac{1}{2}$ THETA, and is the vibratory torgue due to each mass, in 10⁶ ft.1b.
- SIGNAM Summation of the vibratory torques, in 10⁶ ft.1b.
- SHAFTK Torsional stiffness of shaft, in 100 ft.1b/radian.
- DTHETA Quotient of SIGNAM divided by SHAFTK. This is the relative angular displacement between masses. The unit is radians.

STRESS EVALUATION

From the Holzer Tabulation, we determine the following, which are later used in the stress calculations.

SIGMA I * THEIA ** 2 This is the summation of the products of INERTIA and THEIA squared. The first of the two printed, is that of the engine up to and including the last crankthrow and the second, that of the whole system.

T INT and T EXT

These are the maximum stresses in the shafting within the engine (INTernal) and outside of the engine (EXTernal). The stresses are evaluated for each section of shafting by this formula:

Only the maximums are printed out.

STRESSED DIAMETER OF EXTERNAL SHAFT

This is the diameter of the external shaft at which the maximum stress occurs.

EQUILIBRIUM AMFLITUDE If the applied and resisting torques are applied and suddenly removed, the shaft is put into a state of free vibration and the curve of angular displacement can be analyzed into a series of normal elastic curves, each corresponding to one of the normal modes of free vibration of which the system is capable. The amplitdude of any of these modes of vibration under the above conditions is referred to as the EQUILIBRIUM AMPLITUDE, since it is the amplitude which is attained without any magnification due to resonance with an external pulsating couple. It is determined by:

> Piston Area * Crank Radius * 180 T_N * N W- * 10° * SIG-TT

This is left in the form- - - - Constant $_1 * T_N * \Sigma \Theta_N$

F IN

FE

The work output into the system and is determined by: * Piston Area * Crank Radius * \mathscr{G} * $T_N \Sigma \Theta_N$ This is left in the form - - - -Constant 2 * T_N * $\Sigma \Theta_N \not\in$

Hysteresis damping due to friction, etc. and is determined by:

$$\frac{\pi \star \omega^2 \star 10^6 \star \Xi 1 e^2 \star \phi^2}{25}$$

70

Viscous Damper damping, from this expression:

FCR Rubber coupling damping, and is determined by:

Coupling Stiffness * (.00037(D-20) (D-30)) * DTHETA of cplg²

D is the durometer of the coupling rubber.

FCS Steel coupling damping, and is determined by: Damping coefficient * DTHETA of coupling ²

FP Propeller damping from this expression:

- F INT Static Stress INTernal, which is the product of T INT and EQUILIBRIUM AMPLITUDE. This is left in the form ------ Constant 3 * T_N * $\Sigma \theta_N$
- F EXT Static Stress EXTernal, which is the product of T EXT and EQUILIBRIUM AMPLITUDE. This is left in the form ------ Constant $_4$ * T_N * $\Sigma \Theta_N$

Total damping is the sum of FE + FD + FCR + FCS + FF

In the stress calculation tabulation we have the following columns, some of which are calculated from the values previously determined.

- ORDER Harmonic of the mode of vibration.
- RPM Resonant speed of the harmonic, or critical speed.
- TN TN, which is the harmonic component determined from the Fourier Analysis of a cylinder pressure diagram.
- VEC $2\theta_N$, This is the vector summation of THETA of the crankthrows, for the engine's firing order, of the particular harmonic.
- TSTINT Static stress INTernal and is determined by F INT, which is:

Constant 3* TN * 29

- TSTEXT Static stress EXTernal and is determined by F EXT, which is: Constant , * T_N * Σe_N
- PHI ¢, the front end amplitude in degrees at resonance, and is determined by:

F IN = Total Damping

Maximum internal resonance stress in PSI, which is:

٠

PHI * T INT

TMAXI

ž.,

1

Maximum external resonance stresses in PSI, which is:

. PHI * T EXT

When plotting the stresses versus RPM, the off resonant stresses are determined by:

1

	TSINT or 7	STEXT			
	MAGNIFICATIO	FACTOR		/	2
			10	RPM	
where	Magnification	Factor =		Resonant RPM	1

THAN

.

SECTION ONE

TORSIONAL ANALYSIS

TORSIONAL AND LATERAL CRITICAL SPEED ANALYSIS

ENGINE NUMBERS 74010/12 DELAVAL-ENTERPRISE ENGINE MODEL DSR-48 3500 KW/4889 BHP AT 450 RPM

FOR

STONE & WEBSTER ENGINEERING CORP. LONG ISLAND LIGHTING COMPANY

TRANSAMERICA DELAVAL ENGINE & COMPRESSOR DIVISION

550 - 85th AVENUE OAKLAND, CALIFORNIA 94621

> By: ROLAND YANG AUGUST 22, 1983

de.

NOTE: The reciprocating weight used above are based on 800 lb. The replacement "AE" psiton skirt is 26 lb. heavier. We have evaluated the effect of this weight difference and conclude that the change in natural frequencies and stresses is less than .5% and therefore negligible.

Front gear ro Cylinder No. 1	8''
Crankpin	12''
Cylinder No. 8 to Fiywheel	12''
Generator Shaft	16''

Flywheel Weight	6935 16.
Gen. Rotor Weight	17150 16.

Torsional Natural Frequencies

Generator Shaft	Lateral Natura	1 Frequency
Third Mode	7000 vp	-
Second Mode	5575 VP	n
First Mode	2323 VP	7

MOD	E 1					
OME	GA SQUARED	IN (RADIAN	S/SECOND)		'ð 2	
NAT	URAL FREQUE	ENCY IN V.P	.m. = 23.	.3.19		
NO.	INERTIA	THETA	IOM2T	SIGMA M	SHAFT K	DTHETA
	6.8	1.00000	. 423	. 403	58.1	. 00693
-	43.2	993.87	2.893	3.296	84.7	. 03890
-	47.3	35417	2.705	6.002	84.7	. 07064
2	47 9	AA777	2.505	8.508	84.7	. 10041
4	-7.5	70000	2 221	10.728	84.7	. 12662
5	47.3	. / 9231	1. 461	12.590	84.7	. 14859
6	47.3	. 53527	1.440	14.030	84.7	. 16559
7	47.3	. 36770	970	15.000	84.7	. 17704
8	47.9	. 34611	4:33	15 440	76.9	. 20132
Э	50.1	.16507	. 4 90	10.400	216 9	04744
10	1100.1	03625	-2.360	13.130	6/0.0	
11	2650.4	08369	-13.123	. 001		

MODE			1					
OMEGA	SQUARE	D		. 0592				
NATURA	L FREQU	LENCY	232	3.1900				
SIGMA	I+THET!	2++2	238	5.7810				
SIGMA	I+THET!	A++2	272	7.4896				
T INT		9561	. 73					
T EXT		3413	. 27					
STRESS	ED DIA	METER OF	EXTERN	AL SHAFT		10.4	12	
EQUILI	BRIUM	AMPLITUD	E		. 0006	00210.01		
FIN		7487	.33					
F INT		e	. 15					
FEXT		ê	2. 91					
FE		177446	529.					
FD			e.					
= 24			ø.					
# CS			0.					
FP			0.					
	2.00	TN	VEC	TETINT	TSTEXT	PHI	TMAXI	TMAXE
	1010		7.21	AA9.A	3:8.2	.738	7053.	2522.
	4540	155.00	145	112.7	40.3	. 158	1513.	541.
1.0	2323	34.00	1 394	1471.3	526.1	1.454	13904.	4972.
1.3	1040	127.02	276	125.7	45.0	. 672	6428.	2292.
2.0	1161	41.00	. 376	A14.6	291.3	1.050	10036.	3589.
2.5	323	16 16	1.354	19.3	6.9	. 044	423.	151.
3.0	000	10.10	731	244.3	87.4	. 376	3596.	1286.
3.0	603	46. 75	5 245	1191.1	425. 3	2.066	19750.	7063.
4.0	500	27.00	701	135.7	48.5	. 216	2063.	738.
4.0	210	17 77	145	20.7	7.4	.061	587.	210.
5.0	404	17.3/	1 794	145.8	52.2	. 433	4138.	1480.
5.5	422	12.04	276	17.4	6.2	. 252	494.	176.
E. 0		5.00	1. 394	51.0	18.2	. 151	1447.	517.
6.3		7 49	145	4.4	1.6	. 213	125.	45.
7.0	221	7 35	. 7.3 :	17.4	6.2	. 052	494.	176.
7.5	200	2.4.2	5.285	128.4	38.8	. 322 .	3076.	1100.
0.0	177	2.24	. 701	12.9	4.6	. 038	366.	131.
8.0	25.4	1.97	. 146	2.3	. 8	. 227	67.	24.
3.0	200	1.57	1. 394	17.3	6.2	. 051	492.	176.
3.0		1.00	376	3.9	1.4	.012	1:0.	39.
	222	1.14	1. 294	:3.0	4.5	. 038	368.	132.
	211	1.03	.146	1.2	. 4	. 204	34.	12.
	2.3.2		. 731	5.1	1.8	. 015	144.	51.
	1 2 2	.73	5.465	33.9	12.1	. 120	961.	344.
							1.1	

MODE 2 OMEGA SQUARED IN (RADIANS/ELCOND) +2 = . 34090021 NATURAL FREQUENCY IN V.P.M. . 5575.52 DTHETA IOMAT SIGMA M SHAFT K NO. INERTIA THETA . 0399: 58.1 6.8 1.00000 2.320 2.320 1 84.7 . 21752 18.430 . 96009 16.110 49.2 2 . 36070 84.7 .74257 12.131 32.561 47.3 2 84.7 . 43433 6.238 36.799 . 38167 47.3 4 84.7 . 42421 35.942 -.857 5 47.9 -. 05246 . 33230 84.7 28.155 -. 47667 -7.787 £ 47.9 . 17632 84.7 -13.216 14.939 -. 80838 7 47.3 -16.096 -1.157 84.7 -. 01366 8 47.9 -.98530 76.9 -. 23093 -17.768 -16.611 50.1 -.97164 -16.611 -17.768 1100.1 -.74070 -277.770 -295.536 50.1 -. 97164 9 276.8 -1.06780 10 2550.4 .327:0 295.542 . 004 11

MODE			4					
OMEGA	SQUARE	D		. 3409				
NATLAA	- FRED	VENCY	557	5.5200				
SIGMA	I+THET	2**A	257	8.9556				
SIGMA	I+THET.	A**2	1332	6.1514				
TINT		21715	. 43					
TEXT		76963	. 22					
STREES	ED DIA	METER OF	EXTERN	VAL SPAFT		16.0	2	
EGLILI	BRIUM	AMPLITUS	E		. 0000	30:0370	3	
= IN		7487	1.33					
F INT			. 68					
FEXT			2.32					
F E		1104733	Sæ1.					
= 0			0.	1. The second				
F CR			2.					
F CS			0.				10.00	
= p			ø.					
	0.5.00	TN	VEC	TSTINT	TETEXT	PHI	TMAXI	TMAXE
LAUEA			. 5.22	160.7	5.44.E	.255	5792.	19624.
. 5	11151	123.85	1.200	16. 3	55.4	. 244	337.	3379.
1.0	22/2		7 783	335.6	1137.0	.635	14418.	42351.
1.0	3/1/	129.00	702	19.7	66.8	. 201	4567.	15474.
2.0	2757	41.00	- 700	145. A	629.5	. 458	12427.	35260.
2.5	2230	/1. /1	3. 703	2.6	9.5	.012	279.	545.
3.0	1658	16.16	. 536	44.1	149.5	. 130	2953.	10006.
3.5	1593	42.73	1.000	22.3	77.6	. 076	1726.	5849.
4.0	1393	27.66	1.211	24 5	87.0	. 275	1694.	5739.
4.5	1239	23.70	1.000	3.0	:0.2	. 223	209.	703.
5.0	1115	17.37	. 200	77.3	112.7	. 125	2386.	8085.
5.5	1013	12.04	3. 703	5.5	18.6	.015	352.	1192.
E. Ø	929	11.42	2 702	27.5	79.7	. 266	1500.	5084.
6.5	857	7.00	3. /03	1.3	4.5	. 204	82.	278.
7.0	736	7.61	. 536	6.4	21.6	. 018	405.	1373.
7.5	743	5.17	1.211	4.1	14.0	. 2:2	269.	911.
6.0	676	5.00	. 5.38	4.9	16.6	.013	300.	1216.
6.5	625	4. 74	25.3	.7	2.4	. 022	44.	149.
3.0	613	4.60	7 7 4 3	5.7	22.6	. 022	510.	1728.
9.5	286	2.20	702	. 9	3.0	. 203	73.	266.
	357		7.783	4.4	14. A	. 217	382.	1293.
12.5	531	1.07	2.707		. A	.001	23.	77.
11.0	200	1.42		1.2	4.0	. 225	118.	423.
11.5	434	1.15	1.000		2.7	.005	103.	343.
12.2	464		*****				1.1.1	

9

MODE	- 5204	ED IN (RADIANS	SECOND		373842	7	
NATUR	RAL FRE	IQUENCY	IN V.P.	M. =	7000.26			
NC.	INERT	-IA	THETA	IOME	T SIGM	AM	SHAFT K	DTHETA
	6.6	1.00	320	3.657	3.65	7	58.1	. 06292
2	43.2	. 93	728	24.787	28.44	4	84.7	. 33571
3	47.5	.60	:37	15.487	43.93	1	84.7	. 5:650
4	47.3	. 28	288	2.134	46.06	5	84.7	. 54369
5	47.3	46	081	-11.867	34.19	8	84.7	. 40362
6	47.3	86	443	-22.261	11.93	6	84.7	. 14288
7	47.3	-1.00	531	-25.883	-13.95	3	84.7	16468
8	47.5	84	263	-21.648	-35.60	1	84.7	42019
3	50.1	42	244	-11.331	-46.93	2	76.9	60337
10	1120.1	. 18	953	112.041	65.12	9	276.8	. 23524
::	2650.4	04	571	-65.109	. 00	0		
MODE			3					
OMEGA	SQUARE			. 5374				
NATUR:	AL FRED	DENCY	70	20.2500 75.2154				
513.H	1.7.75	0	20					
- · · · -	14.05	1842	3 77	31.4110				
		1695	5.47					
STRES	SED DIA	METER O	EXTER	NAL SHAF	7	16.	00	
EGUIL	TRALLY	AMPLITU	DE		. 2202	847733	54	
FIN		748	7.33					
F 167			2.46					
FEXT			1.44					
FE		162397	580.					
FD			ø.					
F 29			0.					
- CS			0.					
= 2			0.					
IADER	RAM	TN	VEC	TSTINT	TSTEXT	Pel	TMAXI	TMAXE
. 5	:4000	155.86	. 955	365.7	2:4.0	.111	3223.	1887.
1.0	7000	34.58	. 557	199.0	116.4	. 102	2969.	1738.
1.5	4EEE	129.52	3.103	986.9	577.6	. 358	10371.	6070.
2.0	3200	41.05	2.525	254.6	149.0	. 498	14432.	8446.
4.5	2000	71.71	3.103	546.4	319.8	.258	7486.	4381.
3.0	2333	16.16	. 857	34.0	19.9	. 029	831.	480.
3.5	2000	42.79	. 300	100.4	58.8	. 057	1644.	962.
4.0	1750	27.00	1. 9/0	133.3	18.3	. 685	2408.	1442.
# . D	1000	23.70	. 300	36.5	21.4	. 633	543.	202.
	1 2 7 2	12 34	7 1.37	07.0			1717	1335
4.0	1166	11.43	3. 103	70.8	41.4	. 039	1111	1000.
£. 5	1076	9. 38	3. 102	69.2	40.5	.037	1079.	672
7.0	10.00	7.61	A57	16.0	9.4	, ana	245	147
7.5	637	6.17	. 955	14.5	8.5	. 008	226	132
6.0	875	5.00	1. 370	34.2	14.2	. 013	384.	225
6.5	843	4.74	. 955	11.1	6.5	. 005	167.	98.
3.0	777	4.08	. 857	8.6	5.0	. 005	131.	77.
9.5	736	2.58	3.103	19.7	11.5	.013	367.	215.
:0.0	700	1.87	2.525	11.6	6.8	. 229	248.	145.
:0.5	EEE	1.69	3.103	12.9	7.5	.009	275.	161.
11.0	636	1.42	.857	3.0	1.7	. 002	67.	39.
11.5	638	1.15	. 925	2.7	1.6	. 695	66.	38.
1	100 AM		1	50		10 10 10		

*** 4-I 25, THE Man downterwheidertro, 12" and Nicolin 17346.9 FLYWHEE STNCHRONOUS SPEED LNGIZ 5 LAND 3 -45 NAE 440 Transmencia delaval enteriori de lour EAF 21: desce bit desce with each other ABS A -ENGINE SERIAL NO 74010/12 NATURN Mar Nor Nor VPM 19.1 YNAMOD BHITHEL ONAUGI DNO WK2 - 05275 6282 01.00 229 BMET 1 2 いろう DUNAE JENERATOR **B**utt ž-Z-0 7 * . 2 --200 2 .15 11 12 .1. 11 10 2-÷ 1.1. 174HU XIND t 1 STHE -1 2 . 44 . . . 1-1-1 2 2000 0000 4000 0 000001 8000

The preceeding pages show the analysis based on the nameplate rating of the engines. To illustrate the changes in amplitudes and stress levels when operating at 111.4% (3900 KW) or overload condition allowed for two hours per day, we supplemented the analysis with the following pages.

The changes in the amplitude and stress between the two load conditions are reflected in the "T sub n" (T_n) values. The following is a listing of the 111.4% T_n divided by the 100% T_n for the orders or harmonics calculated. The ratios show the increase in amplitude and stress level due to the extra load at 111.4% load operation.

ORDER	FIRST MODE	SECOND MODE	THIRD MODE
.5	1,1040	1.1040	1.1040
1.0	1.0777	1.0777	1.0777
1.5	1.0963	1.0963	1.0963
2.0	.8877	.8877	.8877
2.5	1.0817	1.0817	1.0817
3.0	1,1733	1.1733	1.1733
3.5	1.0694	1.0694	1.0694
4.0	1.0600	1.0600	1.0600
4.5	1.0669	1.0669	1.0669
5.0	1,0662	1.0662	1.0662
5.5	1.0639	1.0639	1.0639
6.0	1.0370	1.0727	1.0727
6.5	1.0379	1.0727	1-0727
7.0	1.0379	1.0749	1.0749
7.5	1.0361	1.0729	1.0729
8.0	1.0357	1.0700	1.0700
8.5	1.0398	1.0738	1.0738
9.0	1.0406	1.0735	1.0735
9.5	1.0196	1.0581	1.0581
10.0	1.0157	1.0431	1.0481
10.5	1.0175	1.0473	1.0473
11.0	1.0098	1.0423	1.0423
11.5	1.0112	1.0261	1.0261
12.0	1.0000	1.0313	1.0313

From the above, the increase in amplitude or stress level due to the fourth order at 111.4% load will be about 6% higher than that at 100°. If we calculate the stress levels at 450 RPM due to the .5. 1.5. 2.5. 4.0. 4.5. 5.0. 5.5 orders and sum these by the Square Boot of the Sum of the Squares, the overall amplitude at 111.4% (4154 psi) will be about 7% higher than that (3879 psi) at 100% load.

-205 0~294	SCJAR	ED IN G	RACIANS	SECOND) .	•2 = .	0591670	1	
NOTUS	INER	14	-E76	r. = 3 10~17	1313.19 SIG	MA M	SHAFT K	55-7
	6.8 47.3 47.3 47.3 47.3 47.3 5 5 5 5 6 6 .1 1 2 6 6 .1 1 2 6 6 .2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.000 .993 .955 .885 .785 .505 .345 .505 .345 .165 .505 .345 .165 .505 .345 .165	800 307 417 233 291 291 291 209 770 211 507 255 369	. 423 2. 893 2. 706 2. 505 2. 221 1. 861 1. 440 . 970 . 450 -2. 360 -13. 129	4 8 8 57 5 8 8 4 1 5 6 8 7 5 8 8 8 4 1 5 5 1 7 5 8 8 4 1 5 5 1 7 5 7 5 8 8 4 1 5 5 1 7 5 7 5 8 8 4 1 5 5 1 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 8 8 8 4 1 5 5 7 5 7 5 8 8 8 4 1 5 5 7 5 7 5 8 8 8 4 1 5 5 7 5 7 5 8 8 8 4 1 5 5 7 5 7 5 8 8 8 4 1 5 5 7 5 7 5 8 8 8 4 1 5 5 7 5 7 5 8 8 4 1 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	23 96 26 26 26 26 26 26 26 26 26 26 26 26 26	58.1 64.7 64.7 64.7 64.7 64.7 7 7 8 8 4 4.7 7 7 7 7 8 8 4 4.7 7 7 7 8 8 4 6 8 4 6 8 4 6 8 4 8 4 8 8 4 8 8 4 8 8 4 8 7 7 7 7 7 7	. 2017 . 0365 . 0705 . 1206 . 1206 . 1206 . 1206 . 1206 . 1207 . 1207
	SOUARI I FREG I + THET I + T - ET I ED DIA	ED QUENCY TA++1 74+1 956 341 956 341 956 341 956 17744	1 2327 737 TE 27.2	.0533 23.1900 25.7810 27.4836 ~1_ 5-25	. 992	16. 652:310	02	
	* 050 - 54 55 04 87 7 - 6 5 50 4 8 18 5 5 4 9 4 0 87 0 0 - 0 80 55 6 7 6 4 88 - 6 80 8 0 8 5 - 6 7 0 9 5 4 4 8 5 5 6 7 6 4 8 - 18 - 18 5 4 9 1 1	7739470000000000000000000000000000000000	UE21646461516464646151646464615 1.137544989497544989494979469 1.335344989754498949464615 1.3533449884949794491 1.353344988 1.353349888 1.353348 1.35348 1.35448 1.35448 1.35448 1.35448	T 5 7 4 5 7 6 1 6 7 5 7 1 2 6 7 6 6 7 6 7 4 4 8 6 2 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	+ 3480 114080040 000000447480 213000000111700081000447480 534751 000 00 1001004 014 100 100 00 100100 10000000000	1.0400000000000000000000000000000000000	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	

MODE Omega	5 44002 4	ED IN (RADIANS	SECOND)		408990	3	
NATU	RAL FRE	DUENCY	IN V.P.	M. =	5575. 51			
NU.	INEN		HETA	IDME	510m		3 F	r= -
1	6.8	1.000	295	2.320	2.33	2	58.1	. 0299.
2	49.2	. 960	203	16.110	18.43	2	84.7	. 2:751
-	47.3	. 74	257	12.13:	38.56	-	64.7	. 36676
e.	47.3	- 05	246	- 457	35. 75	2	84.7	. 43 - 31
é	47.9	476	LE7	-7.787	28.15	Ē	84.7	. 23232
71	47.3	80	897	-13.216	14.93	Э	84.7	. 17E32
e	47.9	98	530	-16.096	-1.15	7	84.7	01366
3	50.1	97	164	-16.611	-17.76	8	76.9	230 53
1.0	1100.1	74	700 -	225 578	-275.53	101	2/0.0	-1.02/20
**	2000.4		103	233.220		•		
MODE			2					
OMEGA	SOUGRE	10	S. M	. 3409				
NATUR	A_ FREG	DUENCY	55	75.5100				
SIGME	TATHET	0		18. 3003				
TINT	**!!!!	227:	5. 47					
TEXT		7696	3.28					
STREE	SED DIA	METER D	FEXTER	~A_ 5-AF	•	16.	23	
ECUIL	IBRIUM	AMPLITU	DE		. 0000	30:038	57	
E IN		748	7.33					
= 10			. 25					
FE		110478	542.					
F D			2.					
F CR	* 11		e.					
F CS			2.					
			۷.					
CRDE=	RPM	TN	VEC	TSTINT	TSTEXT	PHI	TMAYI	TMAKE
. 5	11151	172.07	1.506	177.4	601.2	. 275	6331.	21451.
1.0	5575	101.93	. 253	17.6	59.7	. 046	1036.	3509.
1.5	27.7	141.93	3.783	367.3	1246.5	.681	15460.	Salei.
2.0	2230	35.44	7 7 9 9	201 0	531 0	. 198	10052	10224.
3.0	1858	18.96	. 253	3.3	11.1	. 012	266.	903.
3.5	1593	45.76	1.508	47.2	159.9	.134	3051.	10341.
4.0	1393	29.32	1.211	24.3	82.2	. 078	1771.	5999.
4.5	1239	25.35	1.508	26.1	88.6	. 077	1747.	5919.
5.0	1115	18.52	. 253	3.2	10.8	. 003	216.	731.
5.5	1013	13.66	3.789	35.4	119.9	. 108	2455.	8316.
5.5	857	9.74	3.789	25.2	85.5	. 068	1554	5.27
7.0	796	8.18	. 253	1.4	4.8	. 004	85.	285.
7.5	743	6.62	1.508	E.8	23.1	.019	430.	1424.
8.0	696	5.35	1.211	4.4	15.0	. 012	278.	943.
8.5	655	5.03	1.508	5.3	17.8	. 014	312.	1058.
9.0	619	4.38	. 253	.8	2.6	. 665	46.	155.
9.5	586	2.73	3.789	7.1	24.0	.013	523.	1771.
10.5	5.71	1. 77	3.783		3.2	. 004	50.	271.
11.0	SOE	1.48	. 253			. 001	23.	78.
11.5	484	1.18	1.508	1.2	4.1	. 005	119.	424.
12.0	464	. 99	1.211	.8	2.8	. 005	106.	358.

MODE	- 5004	ED IN (RADIANS	SELOND) .		373642	4	
NATU	RAL FRE	EQUENCY	IN V.P.	M. =	7000.26			
NO.	INERT	AI I	THETA	ICM3.	\$10*		2	
1	6.1	5 1.00	000	3.657	3.65	.7	59.1	. 06291
ż	49.3	. 93	708	24.787	28.44	. 4	84.7	.3257:
3	47.1	.60	137	15.487	43.93	31	84.7	.5:850
4	47. 9	9 .08	288	2.134	46.06	15	84.7	. 54367
5	47.	9 46	081	-11.867	34.13	-8	84.7	. 48362
6	47.9	986	443	-22.261	11.9.	36	84.7	. 14225
01	47.	-1.00	531	-25.883	-13. 3.	21	84.7	- 432.5
0	50	04	244	-11 771	-46 9	10	76.9	6.2 337
10	1100.	1 . 18	35.7	112.041	65.10	23	276.8	.23524
11	2650.	4 04	571	-65.109	. 04	00		
MODE								
OMEGA	SOUARE	D	-	. 5374				
NATURA	AL FRED	UENCY	78	00.2502				
SIGMA	1+THE	A++2	23	75.2154				
SIGMA	I+THE?	A++3	29	37.4770				
TINT		2837	0.37					
TEXT		1695	5.47					
FOULT		OME EN L	DE LAIER	NH- 20H-	. 0000	15.	e 2	
FIN	* 5 * * *	748	7.33					
F INT			2.46					
FEXT			1.44					
FE		160337	57:.					
FD			e.					
FCR			8.					
			<i>v</i> .					
			e.					
ORDER	REW	TN	VEC	TSTINT	TSTEXT	P-I	TMEXI	TMIXE
. 5	14000	172.07	. 955	423.7	236.3	.122	3523.	2061.
1.0	7000	101.93	. 857	214.4	125.5	. 10e	3084.	1621.
1.5	4666	141.39	3.103	1061.9	633.2	. 354	11121.	EEC .
2.0	2000	35.44	2.525	225.0	132.3	. 490	14177.	8312.
2.0	2777	18 55	D. 140	19 9	240.5	037	797	4057.
3.5	2000	45.76	955	197.4	63.8	253	1695.	954
4.2	1750	29.32	1.970	141.9	83.0	.087	2531.	1482
4.5	1555	25.35	. 955	59.5	34.8	. 034	972.	563.
5.0	1400	18.52	.857	39.0	22.8	. 022	E42.	376.
5.5	1272	13.66	3.103	104.1	60.9	. 061	1766.	1034.
6.0	1166	12.25	2.525	75.9	44.4	. 848	1152.	674.
6.5	1076	9.74	3.103	74.2	. 43. "	.039	1119.	655.
7.0	1000	8.18	.857	17.2	10.1	. 693	254.	147.
7.5	933	6.62	. 955	15.5	9.1	. 668	234.	137.
8.0	875	5.35	1.970	25.9	15.2	. 014	398.	233.
0.0	777	0.09	. 955	12.0	5.4	0.05	174.	
9.6	776	2.77	3.107	22.8	12.2	.013	376	212
10.0	700	1.95	2.525	12.2	7.1	.003	252.	145.
10.5	666	1.77	3.103	13.5	7.3	. 0:0	279.	163.
11.0	636	1.48	.857	3.1	1.8	. 002	68.	42.
11.5	608	1.18	. 955	2.8	1.6	. 002	66.	39.
12.0	587	. 93	1.970	4.8	2.8	. 204	1.81.	7:

6

à

-

.

The next page (p.17) is a Tabulation of Mass Elastic Data showing other DSR-48 engines of similar rating. Except for minor differences in flywheel and generator, the torsional characteristic of these units are very similar, as indicated by the similarities between the torsional natural frequencies. A listing of operating hours accymulated for several of these units are included in Section Four of this submittal.

Typical Torsional Mass Elastic System (DSR-48/Generator)

TABULATION OF MASS ELASTIC DATA OF DSR-	48 ENGINES	÷.
---	------------	----

.

.

	74010/	Kousheng Taiwan 75005/ 75008	Culf States 74042 74042	U. of Texas 78029/ 78030	SMUD 81015/ 81016	Saudi Arabia	
123456789011	6.805 49.222 47.922 47.922 47.922 47.922 47.922 47.922 47.922 50.149 100.520 650.432	8.25C 49.222 47.922 47.922 47.922 47.922 47.922 47.922 47.922 50.841 1009.604 2828.371	6.805 49.222 47.922 47.922 47.922 47.922 47.922 47.922 47.922 5049 426.527 4976.067	8.560 54.389 53.090 53.090 53.090 53.090 53.090 53.090 53.090 53.090 53.090 53.090 53.090 53.090 53.090	6.805 49.222 47.922 47.922 47.922 47.922 47.922 47.922 47.922 50.140 1280.633 2650.430	6.805 54.389 53.090 53.090 53.090 53.090 53.090 53.090 53.090 53.090 53.090 53.090 53.316 1280.633 2552.371	
20000000000000000000000000000000000000	58.121 84.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 276.941	58.121 84.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 326.100	58.121 84.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 76.941 309.720	58.121 84.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 76.941	58.121 84.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 76.941 254.397	58.121 64.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 84.727 76.941 252.445	
N 1 N 2 N 3	2323 5576 7000	2280 5988 7064	2277 6421 8792	2143 3669 6307	2317 5146 6913	2219 5125 6619	
стит		•	-	1	•	1	
Note I K CTW	e: St T Co Sa	nertia val tiffness v bunterweig budi Arabi Dhuba Oneiz Wadi Rafha Rabio	ues of mas alues of m ht used at a installa 76010 a 76026 78044 79002 h 80001	to 7601 to 7602 to 7804 to 7900 to 8000	system (1 ic system nkthrow : 4 8 6 4 3	.b. ft. sec. ²) (Million ft.	. 1b. per Radia
N	T	nabig	latural Fre	equencies	of the fi	rst three mode	es (V.P.M.)

õ

.

1

SECTION TWO

TORSIOGRAPH TESTS

TORSIOGRAPH TESTS

One of the three engine (S/N 74010/12) was torsiographed by both Failure Analysis Associates (FaAA) jointly ith Stone & Webster (SWEC) as well as by Transamerica Delaval (TDI). TDI only measured overall torsional amplitudes.

On page 19 are measured results by FaAA/SWEC and those by TDI. FaAA's measurement reflects actual peak to peak amplitudes of the overall composite waveform. FaAA also provided the Square Root of the Sum of the Squares (SRSS), which would be comparable to the overall amplitudes measured by TDI using the Bell & Howell C.E.C. Vibration Meter. Also included in page 19 are test results of other DSR-48 engine generator sets with similar mass elastic system and of identical rating. It can be readily observed that the Fourth Order amplitudes measured by FaAA/SWEC on the subject crankshaft are similar to values measured by TDI on similar DSR-48 engine generators. Aisc the FaAA/SWEC SRSS amplitudes and TDI measured overall amplitudes are very similar. It may also be noted here that the Bell & Howell C.E.C. instrumentation used by TDI is widely used in the trade and although the measurement do not represent a theoretically correct peak to peak amplitude, it does however provide a common method in measuring the combined effects of the various harmonics. On page 20, reference is made to the approval of crankshaft drawing 03-310-05-AC, as well as the corresponding ABS forging report number and physical properties. For comparison of the actual crankshaft minimum tensile property between LILCO, Kousheng and Rafha, we have included the values for the latter two. On page 21, allowable stress levels due to single harmonic and overall

18

are calculated using 1982 and current 1984 ABS Rules.

TORSIONAL TEST DATA ON DSR-48 ENGINE GENERATOR SETS.

A. Torsiograph Test Results by FaAA/SWEC

States of the

	350	O KW	3800 KW			
Fourth Order	.30	3108 psi	. 339°	3242 psi		
Overall, Pk to Pk	.693 ^c	6626 psi	.719 ⁰	6875 psi		
Overall, Calculated b, SRSS	. 4240	4054 psi	.454°	4341 psi		
. Torsiograph Test Results b	y TEI. Usi	ng Bell & I	Howell C.E.	C. Model		
1-117-	0001 Vibra	tion Meter	<u>.</u>			

\$

	350	DO KW	3800 KW		
Overall	.425°	4064 psi	.450°	4302 psi	

C. Torsiograph Test Results by TDL, Using Bell & Howell C.E.C. Model 1-117-0001 Vibration Meter, on other DSR-48 Engine Generators.

S/N 76014	350	00 KW	3850 KW		
Fourth Order	. 350°	3365 psi	. 370°	3557 psi	
Overall	.4200	4038 psi	.4600	4423 psi	
S/N 74039					
Fourth Order	. 362°	3385 psi	. 372°	3478 psi	
Overall	. 4500	4208 psi	.480°	4488 psi	

.

PHYSICAL PROPERTIES OF CRANKSHAFTS

ABS REPORT ON CASTINGS OR FORGINGS REPORT NO.	LOWER VALUE VIELD POINT - PSI	LOWER VALUE TENSILE STRENGTH - PS		
LILCO				
83-ES 85280-1031	58291	100777		
83-25 85275-1031	57276	101792		
83-ES 86290-365	48576	100777		
RAFHA, 79004				
79-К078165-232	50500	93700		
KOUSHENG. 75006/08				
	55000	93000		
	54000	93500		
	57000	98000		

Crankshaft material specified is ABS Grade 4 which is A668 - Class E. Minimum yield point is 43000 psi and minimum tensile strength is 83000 psi.

The crankshafts for the DSR-48 carry a part or drawing number 03-310-05-AC, and has ABS approval stamped, dated 2-26-1976.

ALLOWABLE TORSIONAL STRESS CALCULATION. Based on Para. 34.47 of 1984 ABS Rules. $S = \left(\frac{U + 23180}{18}\right)C_{k}C_{d}C_{r}$

where U = Minimum Tensile Strength of Shaft Material 100000 PSI C_k is .55 for propeller shafts and crankshafts C_d is size factor. .35 + 0.487 / 5/12 = .6463 C_r is speed ratio factor, 1.38 for 90% to 105% rated RPM.

S = (100000 + 23180) (.55)(.6463)(1.38)
=3357 PS1 due to single order
Total Allowable Stress = 150% of 3357 = 5035 PS1

ALLOWA	BLE TORSIONAL	STRESS CALCU	LATION.		
Based	on Table 34.3	of 1982 ABS	Rules.		
Engine	Speed 3	x 450 RPM	8 × 450 RPM	195 to 1.0 ×	1.05 × 450RPM
	•	135 RPM	= <u>360 RPM</u>	427.5 to 450	472.5 RDM
Grade	2, 60000 psi	5689 psi	3556 psi	2134 psi	3556 psi
Grade	4, 100000 psi	8217 psi	5136 psi	3082 psi	5136 psi
	Stress limit	multiplier =	2 (100000 - 3 (60000 for adjust	$\frac{60000}{0}$) + 1 = 1 ment from 60000	.4444 psj
			to 100000	nsi material.	

SECTION THREE

STRAIN GAUGE TESTS

. 1

Submittal to the American Bureau of Shipping for the DSR-48 13-Inch by 12-Inch Replacement Crankshafts

Fatigue Analysis of the Replacement Crankshafts

The factor of safety against fatigue failure in the replacement (12-inch crank pins) crankshafts is calculated in this section. The stress levels in the replacement crankshafts are computed from strain gage test data. The endurance limit is first established for the failed crankshafts (11-inch crank pins) from strain gage test data. This endurance limit is then scaled to account for the higher ultimate tensile strength of the replacement crankshaft. The effect of shot peening the replacement crankshafts provides an additional margin against fatigue failure.

Stresses in Replacement Crankshafts

The replacement crankshaft was instrumented with strain gages in the fillet locations of crank pins 5 and 7 and tested under operational conditions at both 3500 kW (100% rated load) and 3800 kW (109% rated load), 450 RPM synchronous speed. The highest stresses were measured in crank pin 5. A dynamic model of the crankshaft confirms that this pin undergoes the greatest range of torque. Three-dimensional finite element models of a quarter crank throw show that the strain gage rosette was placed in the location of highest stress, both within the fillet and around the crank pin. The following strains were 'measured at 3500 kW:

Strain Gage			Maximum	Minimum		
	5-1	(compression)	-195 µc	288	με	
	5-2	(bending)	695 µe	-410	με	
	5-3	(tension)	737 με	-610	με	

PRJ:S-03310A-d/s1w 3/27/84

To account for the simultaneous effects of shear and bending, the stress state is represented by equivalent stresses using Sine's method [1]. For a biaxial stress state, the equivalent alternating stress, S_{qa} , and equivalent mean stress, S_{am} , are given by:

$$s_{qa} = (s_{a_1}^2 - s_{a_1}s_{a_2} + s_{a_2}^2)^{1/2}$$

and $S_{gm} = S_{m1} + S_{m2}$

where S_{a1} and S_{a2} are the alternating components of principal stress, and S_{m_1} and S_{m_2} are the mean components of principal stress. From the test report [2], the equivalent liternating stress, S_{qa} , and equivalent mean stress, S_{qm} , on crank pin 5 were calculated to be:

 $S_{qa} = 24.6 \text{ ksi}$ $S_{am} = 4.8 \text{ ksi}$

Equivalent stresses, $S_{\rm qa}$ and $S_{\rm qm},$ are those alternating and mean unlaxial stresses that can be expected to give the same life as the given multiaxial stresses.

Endurance Limit for Failed Crankshaft

The failed crankshaft was instrumented with strain gages in the fillet location of crank pin 5. This fillet on the failed crankshaft had previously experienced a fatigue crack during performance testing. After the test, the three-dimensional finite element models of a quarter crank throw showed that the strain gage location on the failed crankshaft was placed close to the location of maximum stress. The measured stress range is used to establish the endurance limit in this analysis as a conservative assumption, although the actual maximum stress range is revealed by the finite element model to be about 15 percent higher at a nearby location. From the test report [3], the following strains were measured at 3500 kW:

PRJ:S-03310A-d/s1w 3/27/84

Strain Gage		At Maximu	m Torque	At Minimum Torque			
5-1	(tension)	1118	με	-707	με		
5-2	(ben ting)	773	μc	-459	με		
5-3	(compression)	-389	νε	265	με		

The equivalent alternating stress, $S_{\rm qa},$ and equivalent mean stress, $S_{\rm om},$ were calculated to be:

S_{qa} = 33.7 ksi S_{om} = 10.9 ksi

From the test logs, it was determined that the shaft had experienced 273 hours at equal to or greater than 100% load, or about 4×10^6 cycles. By using Miner's rule and typical slopes of S-N curves, it was determined that the endurance limit for this mean stress was 32.4 ksi. The ultimate tensile strength for these crankshafts averaged 96 ksi. A line representing this endurance limit is shown on the Goodman diagram [4] in Figure 3.1.

This line is bounded by two lines showing the endurance limit for full scale crackshafts based on other test data [5].

Endurance Limit for Replacement Crankshafts

The replacement crankshafts have a minimum tested ultimate tensile strength of 103 ksi. The endurance limit scales linearly with ultimate tensile strength. On this basis, the endurance limit for the replacement crankshaft is shown in Figure 3.1.

The fillet regions of the replacement crankshafts have been shot peened. The effect of shot peening may produce widely differing increases in fatigue endurance limit; however, a conservative minimal value of this increase is 20% [6]. The endurance limit for the replacement crankshafts, including the effect of shot peening, is shown in Figure 3.1.

PRJ:S-03310A-d/s1w 3/27/84

Factor of Safety Against Fatigue Failure

The factor of safety against fatigue failure of the replacement crankshafts is 1.48 when the effect of shot peening is not considered, and is 1.75 when the effect of shot peening is assumed to increase the endurance limit by 20%;

At 3800 kW, the strain gage test data [1] on the replacement crankshaft shows that the stress level is 4% greater than it is at 3500 kW. At 3900 kW it would be about 5% greater than it is at 3500 kW. Thus, there is an adequate safety margin against fatigue failure at the specified diesel generator set two-hour-per-24-hour period rating of 3900 kW.

PRJ:S-03310A-d/slw 3/27/84

References

- 1. Fuchs, H.O., and Stephens, R. I., "Metal Fatigue in Engineering," Wiley, 1980.
- Bercel, E., and Hall, J.R., "Field Test of Emergency Diesel Generator 103," Stone & Webster Engineering Corporation, March, 1984.
- Bercel, E., and Hall, J.R., "Field Test of Emergency Diesel Generator 101," Stone & Webster Engineering Corporation, October, 1983.
- 4. Collins, J.A., "Failure of Materials in Mechanical Design," Wiley, 1981.
- Nishihara, M., and Fukui, Y., "Fatigue Properties of Full Scale Forged and Cast Steel Crankshafts," Transactions of the Institute of Marine Engineering, Series 8 on Component Design for Highly Pressure-Charged Diesel Engines, London, January, 1976.
- Burrell, N.K., "Controlled Shot Peening to Produce Residual Compressive Stress and Improved Fatigue Life," Proceedings of a Conference on Residual Stress for Designers and Metallurgists, American Society for Metals, April, 1980.

PRJ:S-03310A-d/s1w 3/27/84

Figure 3-1. Goodman diagram for replacement crankshafts.

11

FaAA-84-3-12

SECTION FOUR

ź

OPERATING HOURS LOGGED

SERIAL NUMBER	LOCATION	KILOWATT RATING @ 450 RPM	101	TAL HOURS	DATE LOGGED	AV. LOAD REPORTED	OTH	ER LOADS &	
74010)		(368	4-01-84)	3500	0 KW & Above	114 Hrs.
74011) LILCO, Shoreham	3500	(430	4-01-84	1	3500	O KW & Above	110 115.
74012)		(345	4-01-84	,	3500	U KW & ADOVE	in the mix.
75005	1		(246	3-15-84) Hostly			
75006) water to the	2600	(221	3-15-84	1002			
75007	KOUSHENG, TATWAN	3000	(368	3-15-84)			
75008	;		(299	3-15-84)			
76010	,		(19800	3-17-84)			
76011			(23300	3-17-84)			
76012	DHURA SAUDI ARABIA	3500	(23800	3-17-84)			
76013	j bliobri, shour thistern		(19700	3-17-84)			
76014	1		(23500	3-17-84)			
76026			(16204	3-17-84)			
76020	ONFIZA SAUDI ARABIA	3515	(12428	3-17-84)	30	00/3200 KW	for 9000 Hrs.
76028) one ren, shour charter		(14978	3-17-84)			
78020			(8180	3-15-84	1100 KW			
78030) U. OF TEXAS	3500	í	5385	3-01-84	1100 KW			
79044			(10882	3-17-84	2200/3000	KW		
78044) WADI DAWASIR SAUDI ARA	RIA 3515	i	10832	3-17-84	2200/3000	KW		
78045) WADI DAWASIR, SAUDI ANA		i	11212	3-17-84	2200/3000	KW	1.15	
			,	12667	3-16-84		1	300 KW for 6	200 Hrs.
79002)	25.15	1	11655	3-16-84		3	200 KW for 8	250 Hrs.
79003) RAFI SAUDI ARABIA	3515	1	12186	2-16-84		2	200 KM for 5	500 Hrs.
79004)		(13100	3-10-04				
80001			(10196	3-16-84	2700 KW			
80002	RABIGH, SAUDI ARABIA	3515	(10245	3-16-84	2800 KW			
80003	1		(11602	3-16-84	2800 KW			

AVAILABLE LOGGED HOURS OF OPERATION OF DSR-48, RATED 3500 KW # 450 RPH