101 California Street, Suite 1000, San Francisco, CA 94111-5894

415 397-5600

June 30, 1984 84042.023

50-445

Mrs. Juanita Ellis President, CASE 1426 S. Polk Dallas, Texas 75224

Subject: Responses to Cygna Design Control, Pipe Support, and Pipe Stress

Questions

Comanche Peak Steam Electric Station Independent Assessment Program - Phase 3 Texas Utilities Generating Company

Job No. 84042

Dear Mrs. Ellis:

Enclosed please find copies of additional responses to Cygna design control, pipe support and pipe stress questions.

Feel free to call me if you have any questions or wish to discuss the enclosed documents.

Very truly yours,

N.H. Williams
Project Manager

Attachments

cc: Mr. S. Treby, NRC, w/attachments

Mr. S. Burwell, NRC, w/attachments

Mr. D. Wade, TUGCO, w/o attachments

Mr. G. Grace, TUGCO, w/o attachments

Mr. D. Pigott, Orrick, Herrington & Sutcliffe, w/o attachments

8412120336 840630 PDR ADDCK 05000445 A PDR USE PER S. DAME!

Mrs. Juanita Ellis July 2, 1984 Page 2

ATTACHMENTS

- A. Vega (TUGCO) memorandum to D. Smedley (Cygna), "Transmitting IR's," June 7, 1984, TUQ-219.
- A. Vega (TUGCO) letter to N. Wiliams (Cygna), "Comanche Peak Steam Electric Station, Cygna Review Questions (Inspection Report)," June 12, 1984.
- R.E. Ballard (G&H) letter to J.B. George (TUGCO), GTN-69118, "Texas Utilities Generating Company, Comanche Peak Steam Electric Station, G&H Project No. 2323, Phase 3 Cygna Pipe Support Questions, WOS-046/DOW-3464," June 14, 1984.
- 4. G. Grace (TUGCO/EBASCO) memorandum to N. Williams/J. Minichiello (Cygna), "Attachment C to June 8th letter to N. Williams (Cygna) from L. Popplewell (TUGCO)," June 18, 1984.
- 5. A. Vega (TUGCO) letter to N. Williams (Cygna) "Comanche Peak Steam Electric Station, Cygna Review Questions (Inspection Report)," June 18, 1984.
- 6. R. E. Ballard (G&H) letter to J. B. George (TUGCO), GTN-69135, "Texas Utilities Generating Company, Comanche Peak Steam Electric Station, G&H Project No. 2323, Phase 3 Cygna Support Questions, WOS-046/DOW-3464," June 21, 1984
- 7. R.E. Ballard (G&H) letter to J.B. George (TUGCO), GTN-69162, "Texas Utilities Generating Company, Comanche Peak Steam Electric Station, G&H Project No. 2323, Proposed Mass Participation Fraction Sensitivity Study," June 26, 1984.

TEXAS UTILITIES GENERATING COMPANY

OFFICE MEMORANDUM

SubjectATTACHMENT C TO JUNE 8TH LETTER T	TO N. WILLIAMS (CYGN L (TUGCO)	(A)
The calculation for hanger CC-1-028-007-53		
Attached is the revised calculation.	JOB NO : DATE LOSGED: LOG NO : FILL:	211. 12 m

GEG:pew

cc: J. C. Finneran D. M. Rencher D. H. Wade

Distribution 84042 PF g. Minubillo N. Williams

The second supplied the second state

Table of Barrier Carrier

Lote - 100 Chillie Lines - 12-

TEXAS UTILITIES GENERATING COMPANY

P. O. BOX 1002 - GI.EN ROSE, TEXAS 76043

June 18, 1984

Distribute

CYGNA Energy Services 101 California Street Suite 1000 San Francisco, CA 94111

Attention: Ms. Nancy Williams, Project Manager

SUBJECT: COMANCHE PEAK STEAM FLECTRIC STATION

CYGNA REVIEW QUESTIONS

(Inspection Reports)

CROSS REF. FILE

Reference: June 7, 1984 Letter to J. B. George (TUGCO)

from N. Williams (CYGNA)

Dear Ms. Williams:

Transmitted herewith are TUGCO's supplemental responses to the above referenced letter concerning Items Nos. 1 & 2.

If there are any additional questions, please contact the undersigned at Ext. 321 or B. C. Scott at Ext. 859.

Very truly yours,

TEXAS UTILITIES GENERATING COMPANY QUALITY ASSURANCE DEPARTMENT

CYGNA

DATE LOGGED:

JOB NO :

LOG NO . :

A. Vega

TUGCO Site QA Manager

AV/BCS/bll Attachments cc: D. N. Chapman D. H. Wade

Supplemental Response Item #1

An unsatisfactory inspection report will remain open until the condition is verified to be satisfactory. In addition to the inspection report, accountability of IR is maintained through an IR log which reflects the open/closed status. Also, the unsatisfactory condition is identified in the Master System Data Base Punchlist as an open work item.

The worst case condition would be losing an inspection report. However, as explained above the unsatisfactory report would continue to be identified and statused as an open item.

The unsatisfactory condition has to be verified acceptable after rework by craft. Any work performed during the time the IR was lost and later identified as an open item would have to be redone. This worst case condition is not a safety concern in that inadvertent use is precluded, but rather an economic consideration.

Procedural controls historically and current are CP-QP-18.0, titled "Inspection Report".

Supplemental Repsonse Item #2

In some cases Engineering will issue a DCA/CMC accepting an unsatisfactory condition when a rework disposition is not practicable. In such cases the DCA/CMC number will be referenced on the inspection report reflecting acceptance of the as-built condition.

REBallard/SMMarano/077, TDHawkins/HMLapinig, HWMentel/SLim (17), MAVivirito (19), JLEichler/CMJan 416), OUTGOING ELBezkor RECEIVED: 21 Jun 34 Dec 10 6/22 June 21, 1984 GTN- 69135 CYGNA Texas Utilities Generating Company Post Office Box 1002 JOB NO : Glen Rose, Texas 76043 DA . E LOGGED : Attention: Mr. J. B. George, Vice President/Project Gen. Mgr. 2.1.1 Inc. UR. FILE: 21 me. CR. Log Gentlemen: CROS REF. FILE TEXAS UTILITIES GENERATING COMPANY COMANCHE PEAK STEAM ELECTRIC STATION G&H PROJECT NO. 2323 PHASE 3 CYGNA PIPE SUPPORT QUESTIONS WOS-046/DOW-3464 Our response to your telecon request of June 12, 1984 is as follows: Question 1: Is there a calculation developing the allowable ultimate pullout load/bolt for 9 or 12 bolt groups with 20 inch spacing? If so, please provide it to justify the 50% reduction noted in GTN-41315. Is there a calculation for the same group based on 10 inch spacing? Please provide.

Answers to 1 and 2 :

G&H Calculation Book SRB-123C, Set 1 provides the general guidelines as well as some specific sample examples for the evaluation of the embedment capacity of anchor bolts and Richmond inserts. The specific cases referenced in Ouestion 1 and 2 are not included in the sample examples.

is/21/84, 2 pm

However, reference is made to GTT-10394 where the subject cases in Item 5 of GTN-41315 are modified. The modified note limits the number of bolus in a group within which the 50% of the maximum ultimate tensile capacity may be used. Pertinent calculations are in G&H Book No. SRB-123C, Set. 5, Rev. 0.

GTT-10395 requests the site to reconfirm that for support design by other than G&H, the limiting bolt group stipulations are adhered to.

Please note that for G&4 support designs using anchor bolts in groups, actual pullout capacity is calculated rather than using the 50% criteria.

Question 3: What thickness wall is needed in this calculation to develop the calculated load in the concrete?

Answer to

3

: The calculation referenced above (SRB-123C, Set 5, Rev. 0) indicate the necessary concrete thicknesses to develop the calculated loads.

Question 4: What justification or calculation does G&H have for the Richmond insert loads presented in GTN-61623?

Answer to

: Please refer to GTN-69118 for the response.

Very truly yours,

GIBBS & HILL, Inc.

Robert E. Ballard, Jr.

Project Manager

ARMS (B&R Site) OL

REBa/ELB: gw

1 Letter

G. Grace/J. Minichiello (TUSI Site) 1L

P.M. Milam/F. Bleck (TUSI/NY) 1L

TUSI SITE

TELECOPY

JUNE 2 1, is d

GTT - 10 3 95

ATTENTION: J.B. GEORGE/M.R. MC BAY/C.R. HOOTON

JOB: 2323

SUBJECT: CRITERIA FOR EMBEDDED ANCHOR BOLT ALLOWABLE LOADS

WOS-464/DOW-3465

REF: 1. GTT- 10394

2. GTN-41315

IT IS OUR UNDERSTANDING THAT FOR SUPPORTS DESIGNED BY OTHER THAN G&H, NO GROUP OF BOLTS USED EXCEEDS THE GUIDELINES INDICATED IN ABOVE REF. 1, EXCEPT ONE NPSI PIPE SUPPORT DESIGN (MK NO. MS-1-002-007-C72K). THIS PIPE SUPPORT IS DESIGNED PER GUIDELINES GIVEN IN GTN-64940 AND NOT GOVERNED BY REF. 2. PLEASE RECONFIRM.

R.E. BALLARD/E.L. BEZKOR/A.M. KENKRE/S. SENGUPTA

Confirmation: Gerry Winfrey, 11th Floor

6/21/84 11 tim

REBa/375, ELB/AMK/55 autgoing. TDH/HULL P.M. Nilam/Rill Whom/ TUSI SITE

TELECOPY

JUNE 21, 1984

GTT- 10394

ATTENTION: J.B. GEORGE/M.R. MC BAY/C.R. HOOTON

JOB: 2323

SUBJECT: CRITERIA FOR EMBEDDED ANCHOR BOLT

ALLOWABLE LOADS

WOS-464/DOW-3465

REFERENCE: GTN-41315

THE ABOVE REFERENCE PROVIDES THE CAPACITY OF ANCHOR BOLTS WHEN LOADED IN TENSION AND/OR SHEAR. HOWEVER, ITEM 5 OF THE REFERENCE SHOULD BE MODIFIED AND READ AS FOLLOWS:

- 5. PULLOUT CAPACITY AS GOVERNED BY CONCRETE, USE 50 PERCENT
 OF THE MAXIMUM ULTIMATE TENSILE CAPACITY WHERE 4 OR MORE
 BOLTS IN A GROUP ARE USED, BUT NOT TO EXCEED FOR;
 - a. 1 1/2 DIA. BOLTS 9 IN A GROUP
 - b. 2 DIA. BOLTS 6 IN A GROUP

FOR A GROUP OF BOLTS EXCEEDING THIS LIMIT, ACTUAL EVALUATION OF CAPACITY SHOULD BE MADE.

R.E. BALLARD/E.L. BEZKOR/S. SENGUPTA

6/21/84 11 tam

Confirmation: Gerry Winfrey, 11th Floor,

Elba 375 ELB /5.5.

REBON 375 ELB /5.5.

autoris, Tout Hula

autoris, Tout Hula

Parlor F. Re

GIBBS & Hill, Fine. Job No. 2323 Client TUGED
Subject CONC. PULLOUT CAPACITY OF A.Bs IN GROUPS
Calculation Number SRB - 123C SET 5 Sheet No. 2

Revision	Original	Date	Rev.	Dete	Rev.	Dete	Rev.	Date	Rev.	Date
Chackery	1			\sim				$>\!\!<$		><
Preparer	SSL	6.20 84								
Checker	CP	6.20.84								

PURPOSE OF CALCULATION:	
TO DETERMINE THE PULLOV	T CAPACITY OF
ANCHOR BOLTS IN A GROUP CONCRETE AND TO ESTABLIS ACTION UPTO WHICH 50 % OULTIMATE TENSILE CAPACITY MA	H THE LIMIT OF GROUP OF THE MAXIMUM AY RE USED (SEE
REFERENCE ND 3 BELOW.	
PER REF 1, 3 CASES AR	
(i) 1/2" \$ BOLT 5x5 ANCHOR (ii) 1/2" \$ BOLT 5x6 " (iii) 2" \$ BOLT 7x7 "	
RELEVANT DETAILS CHOSEN ARE	FROM
(a) 64H DWG S1-0566 R/4 1 (b) 64H DWG S1-0567 R/4	1/2" P BOLT
RELEVANT REFERENCES	1. GTN-41315 2. CALC NO SRB-123C SET 1 3 CYGNA QUESTIONS (#142) (SH 16 AND 17)
	4. ACI 349-76

Checking Method #

Line-by-line checking
Alternative Calculation Results compared
identical Calculation Results compared
Compare inputs and results of computer with corresponding inputs and results of size

F-166, 7-82

GIBBS & HILL, Inc. JOBNO. 2323 Client TUGCO Subject CONC. PULLOUT CAPACITY OF A.BS IN GROUPS

Calculation Number SRB-123 C SET 5 Sheet No. 3

Revision	Chigaras	Date	Rev.	Date	Rev.	Date	Rev.	Date	PARK.	Date
Checking Marked 3	1			$>\!<$		$>\!<$		><		><
Preparer	Sse	6.18.84								
Checker	C.P.	6.18.84								

n = NO OF BOLTS IN A GROUP : A = AREA OF ANCHOR PE

Ac = conc. PULLOUT AREA (REF SRB-1230 SET | REV 0)
= The 2+ axb+2ld (a+b)-a'xb'-nA . Act 349.76

Puc = cone, PULLOUT CAPACITY / BOLT

= 4 \$\rightarrow{Fe} A /n = 0.164438 A/n KIPS [fe' = 4000 PSI ; \$\phi = 0.65]

Client TUGCO Gibbs & Hill, Inc. Job No. 2323 Subject CONC. PULL-OUT CAPACITY OF A.B.S IN GROUPS Calculation Number SRB - 123C SET 5 Sheet No. 4 C.F. 6.18.84 Checker 10 TYPE |a 4 BOLTS @ 10 EW WITH 5x5 PL -- H - H - W - 1 7x7 H 10 TYPE 20 G BOUTS @ 10 EW WITH 5x5 P 26 6 " EW " 6x6" 0 20 EW " 7x7" 5.610 Z @10 TYPE 3a. 9 BOLTS @ 10 EW WITH 5x5 8 6x6 P 36 3C 7×7 12 TYPE 40 12 BOLTS @ 10 EW WITH 5x5 PE H GXGP F-166, 7-82 Checking Method #

Gibbs & Hill, Inc. Job No. 2323 Client TUGCO Subject CONC. PULL-DUT CAPACITY OF A.B. IN GROUPS Sheet No. 5 Calculation Number SRB-123C SET 5 618.84 Preparer Checker OF 6.18.84 TYPETIA 4 BOLTS @ ZOEW WITH 5x5 PL 646 u 116 W ... 7x7u HC TYPE 120 G BOUS @ 20 EW WITH 5x5 P 6 " * EW " 6x6" 120 2020 2@20 TYPE 13a 9 BOLTS @ 20 EW WITH 5x5 R 6x6 136. 7×7 12 13C 0 N TYPE 14a 12 BOLTS @ 20 EW WITH 5x5 FE 146 H GXGP 1 1 1 20 H 14C 7×7 " " 20 " 20 F-166, 7-82 Checking Method #

Gibbs & Hill, Inc. Job No. 2323 Client TUGCO Subject CONC. PULL-OUT CAPACITY OF A.B.S IN GROUPS Calculation Number SRB-123C SET 5 Sheet No. 6.19.14 Checker 552 4 @ 10 15 BOLTS @10 WITH 5x5 # TYPE 50 6x6 15 56 7x 7 / 5C 3 € 10 BOLTS @10 EW WITH 5x5 # TYPE 60 66 6x6 P 16 7x7 8 6 C 16 4@20 WITH 5x5# 15 BOLTS @ 20 15 a TYPE 6x6 # 156 15 7x 7 12 15C 15 36 20 169 16 BOLTS @ 20 EW WITH 5x5 PL 165 1 6x6 12 16 フ×フた 16C 16 F-166, 7-82 Checking Method #

Client TUGCO Job No. 2323 Gibbs & Hill, Inc. PULL-OUT CAPACITY OF A.B.S IN GROUPS CONC. Subject Sheet No. SET 5 Calculation Number SRB- 123C Dete Revision Preparer 6.19.84 MLK CP. Checker 3 45.8 38.7 M 49.7 77.6 41.6 39.7 0 45.2 63. 1. 3 5 0 Ac= #12+4.6p wo 868 9 3794 B 8 2309 5804 3299 1889 272 4 O. W 0 0 a 35 S 3 5 M 0 N GROUP To Berg 0 00 0 ó 0 0 0 ó 0 BOLT B. Bex 29 6 0 -0 0 0 0 0 0 S S S 25 3 5 5 5 5 5 4 S 1/2" 4 5 M N N N N N 3 S 35 S 5 S S S N S 8 S S S 3 4 4 2 3 N 3 2 4 10 16 0 O 10 0 16 9 U 0 0 0 3 1 33 4 33 33 42 33 33 2 3 DIXO 10 110 400 OXOI 0/x 01 10410 10410 10 ×10 10×10 0 SXS SXS 5 5 545 SXS X S SXS 58 2× 5 59 8 60 0 ٩ 9 30 9 202 8 9 9 4 9 5 4 2

Gibbs & Hill, Inc. Job No. 2323 Client TUGCO CONC. PULL-OUT CAPACITY OF A.B.S IN GROUPS Subject SRB-123C SET 5 Sheet No. Calculation Number Revision Charles Station 3 Preparer C.P. 6.18.81 Checker 65,6 75.7 70.3 103 3758 6388 6413 GROUP 2004 43 69 BOLT 53 43 6 22 0; 2 45 1414 65 85 8 65 45 0 91 24 20x20 20,720 5×5 2 140 130 160 150

MAR	526	SPACING.	opis o	DENTH OF ONE	œ	Ь	2.21d-dr	P428.24	Ac = π 2+a.b +2 y(a+b) -a'. b- mA	P40,003819/n	MLK CF.	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ulation Nur
16		10410	33	22	16	16	0	0	3041	125.0	6.19.84	8	mber SA
26	616	10 × 10	33	22	26	16	4	0	3569	97.8		2	£8-1
36	6x6	10×10	33	22	26	26	4.	4.	4145	75.7		X P	536
46	6×6	10:10	33	22	36	26	14.	4.	4697	64.3		7	SE1 5
				22		26	24	4	5249	57.5			5
	1			22		36	14	14	5213	53.6		N ³	9
												7	Neer N
												X	S
												3	
											++	V.	
							11.					V.	

0 2929 120 10 11 4019 110 5363 98 90.5 51 7853 86 80 7828 7828 78	Size situal period or portion	Site of the state of the state of	and bords	on bords	a bond	Porto	220		612 B		Puc asely		Joulation Number	Subject CONC	0
5 11 51 7853 86 PM DE SET 5 31 31 7828 80 PM DE SET 5						-	5	0				20.00			3
45 65 11 31 6608 90.5 45 85 11 51 7853 86 33 16 65 65 31 31 7828 80 78 86 78 87 5			-	#		45	45						BAS	1	
5x5 20x20 33 16 65 65 31 31 7828 80 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	-					65	.11	31	6608	90.5	W.	3/-	100	3
5x5 20x2d 33 16 65 65 31 31 7828 80 W		9	,		1	45	85	11	51	7853	86	III W		3:	0
		5×5	20x20	33	16	65	65	31	31	7828	80	7	135	1340	202
												III N°		OF.	Clerk 7

2 26 26 4 4 4 4325 178 5573 153 56 6 6 24 24 6785 124 7997 109.5 78 78 78 78 78 78 78 78 78 78 78 78 78	STE SOLONG DERN DES	ON THE DER'S DES	DER'S DER	DES.	KO KO	1/2"		3027	GAO	A -1,2101	Puo asoly	Nacion Office Co. P.	Gibbs & Subject Calculation N
6x6 20x20 33 22 24 24 5573 153 8 8 8 8 8 8 8 8 8 8 9 9 9 101 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		5	(m)	32.5	enga)	a	b	* " O	PSIN	-a', 8-nA	* O.	rIII	
26 46 4 24 24 6785 124	16	6.6	20,20	33	22	26	26	4	4	4325		6.70 B	
3b	26	-	A	- 1	1	26	46	4	24	5573	153	800	3777
46 66 24 44 7997 109.5 No. 2323 Short TUGCO No. 2323 Chan TugCO No	36					46	46	24	24	6785	124	3	
15 b 46 86 24 64 9209 101 APACITY OF A 8.5 IN GROUND 11 OF A 8.5 I						46	66	24	44	7997	109.5	11/10	- No.
16b 66 20x20 33 22 66 66 44 44 97/3 94 Park Par	-				1.1-	46	86	24	64	9209	101	Ma	11/01/21
Clert TUSCO OF A.B.S IN GROU Sheet No. 11 The control of the cont	166	6.6	20×20	33	22	66	66	44	44	9173	94	3	323 4017
TUGCO IN GROU												X	11011
No or												7	Sheet N
The state of the s												X §	156
												2	OPS
												X	

K

C 1x7 10x10 33 23 17 17 0 0 3326 136.4 36.8 20 27 17 7 0 3851 105.5 30 1 27 27 7. 7. 4385 80.1 30 40 40 40 33 23 37 27 17. 7. 4898 67.10 59.3 50 50 50 50 50 50 50 5	406	426	SOA CING	oon on	DENTH DENTH	a			612 d.2h	GROVP Ac=π 2+a.b +2 y(a+b) -a', y-nA	P40,003019	CO S	ASSOCIATION OF THE PARTY OF THE	culation Na
2C 27 17 7 0 3851 105.5 18 105.5 18 105.5 18 105.5 18 105.5 18 105.5 18 105.5 18 105.5 18 105.5 18 105.5 18 105.5 18 105.5 18 105.5 18 105.5 18 105.5 18 105.5			G.	33	23			-	-			20	V	11-1
3C 1 1 27 27 7. 7. 4385 80.7 4C 7x7 10x10 33 23 37 27 17. 7. 4898 67:10 5C 1 47 27 27 7 5410 59.3 6C 7x7 10x10 33 23 37 37 17 17 5362 55:10				1	1			7	0	3851	105.5	700	V .	5
AC 7x7 10x10 33 23 37 27 17 7. 4898 67:10 5C		-	P	-,-	-	-		7.	7.	4385	80.1		2	1001
5C	-	7×7	10 110	33	23			17.	7.	4898	67:10		1	10
		T		1	1	47	27	27	7	5410	59.3		\ §	0
Sheet No. 12	60	7×7	10×10	33	23	37	37	17	17	5362	55.10		7	SET
													X.	11 1
													7	
													X	5
		1										$\parallel \parallel$	3	12
													V P	

Checking Method # GROUP a 11C 7×7 20x20 .5852 12C BC 14C 15C 16C 20x20

& Hill. Inc.

Job No.

CAPACITY

OF

1.85

IN GADUAS

rueco

CONC.

PULL- DUT

F-166, 7-82

THECO 2323 Client Gibbs & Hill, Inc. Job No. A.BI IN GROUPS CAPACITY CONC. PULLOUT OF Subject Calculation Number SRB-123C SET Sheet No. 14 Prepara Checker MLK 6:2084 39.7 55. Q 53 57.5 PATTERN 200 az 5 53 w 7 45.2 67.1 64 33 5 80,1 0 × 11 75 1 0 RESULTS 0 WAL / SLAB 2 02 U 105 63 97. 36.4 e 25 4 77 80 96 46 0 D PATTERIN 8 103 5 0 O 109.5 90.5 112 SUMMARY 2 20 なむ 4 28 OD 20.× 0 9 2 09 10 3 10 W. 30 20 78 4 0 T 20 PN F × 4 Ā Line-by-line checking
 Alarmative Calculation Results compared
 Identical Calculation Results compared
 Compare sputs and results of computer with corresponding inputs and results of similar cod
 Compare sputs and results of computer with corresponding inputs and results of similar cod Checking Method #

F-166, 7-82

TUGCO Client Job No. Gibbs & Hill, Inc. Subject CONC. PULLONT CAPACITY
Calculation Number SRB-123 C SET 5 OF ABS IN GROVES Sheet No. 36. V 10 X 10 PATTERN n. 38 42.8 7 49.7 0 SLAB/ WALL 633 U RESULT 4 0 20 x20 PATTERN 5 75.7 7 DEPTH SUMMARY 8 0 60 U 4 B SZE Ā F-166, 7-82 Checking Method #

Communications Report

njeck	S Telegan	D Conference Report	
		data No.	
		Dete	
rpieds		Time	
والكاليبين والانتيار		Peor	
y Noiparks			
			-
-	So the a calcu	n Regis	ction
17 CAPACITY OF A.B. SING 23 SETS Rev. 0	apacing. Please what thickness is the calculated to calculated to concerts. What justifies the Gells and I the Rechmond of	tions to deadys and in the time or calculation all have for	

TUECO Gibbs & Hill, Inc. Job No. 2323 Client Subject CONC. PULLOUT CAPACITY OF A.B.S GROVPS IN Calculation Number SRB-123C SET Sheet No. PULLAUT CAPACITY AS GOVERNED BY CONCLUSION: CONCRETE, USE 50 % OF THE MAXIMUM ULTIMATE TENSILE CAPACITY (REF 1 ITEM 2) WHERE 4 OR MORE BOLTS IN A GROVP ARE USED BUT NOT TO EXCEED FOR (a) 1/2" & BOLTS - 9 IN A GROUP (b) Z" & BOLTS - G IN A GROVP.

Checking Method #

F-166, 7-82

588-123C 94 H JA No. 2323 Muclear Safety Related" fy = 105 Ksi ft = 47 Ksi for Elastic Design

Gibbe & Hill, Inc.

carryana. or . S. Sengusta Subject TUSI : PIPE .. WHIP .. RESTRAINT.

CONNECTION DESIGN

ASTM A 320 BOLTS (1) ANCHOR BOLTS:

fut = 125 Ksi

Use tensile area of bott

At = Tensile Area of 11/2 4 bott = 1.49 in2

2" \$ bolt = 2.77 102

2/2 4 bolt = 4.44 in2

(B) TENSILE CAPACITY:

___ AUS .: 1978 ..

Cale B. P. K. BANFRJEI

Connection capacity in tension is governed by one of the following types of failures :

(ii) Tensile Capacity of Bolt V (ii) Pull-out Strength of concrete Use the lowest value (iii) Anchorage Capacity based on for design purpose. bearing stress of Anchor Plate.

(i) TENSILE CAPACITY OF BOLT: (Ft)

Assume 2" \$ A320 Bolt: At = 2.77 in2

Allowable stress: either 0.9 fy = 0.9 x 105 = 94.5 rsi or 1.6 ft = 1.6 x 47 = 75.2 ksi ($\frac{60 \text{ VERNS}}{1.6 \text{ St}}$)

. Tensile capacity = At x (1.6ft) = 2.77 x 75.2 = 208 K

(I) PULL- OUT STRENGTH OF CONCRETE :

For details, See Sheets 2 thru 5

(Hi) ANCHORAGE CAPACITY: Limiting bearing Stress on Concrete = 4 Ksi Dian of Hole in Anchor plate for 20 Anch. Bott = 21/4" Assume 2"x 8"x 8" Anchor Pl. .. Net Area of Anch. Pl. = (8x8- T/4 x 2.252) = 60 in2 .. Anchorage Capacity = Net Area x Bearing Stress = 60x4 = 240K

.... AUG. 1978.

Care Dy . P.KB. Stengutte

GIBBS & HIII, Inc.

5RB-123C

Subject T.USI .. P.J.P.E ... WHIP .. RESTRAINT

forces (tensile Loading) at an anchor head,

Side Cover (Edge) distance shall not be

Less than the following: 1/2"\$\phi\$ bolt = 9"

2' \$\phi\$ bolt = 12"

2\frac{1}{2}"\$\phi\$ bolt = 15"

(ii) CAPACITY AS GOVERNED BY CONCRETE:

: Ae = 4075-64 = 4,011 in2

Pull-out Load = Tensile stress x Eg. Area = $(4\phi)f_c$ × Ae $\phi = 0.65$

.: Pull-out Load = (4 x 0.65 x 4000) x 4011 = 659 K

Dam .AU.G .. 1978 ...

Gibbs & Hill, Inc.

1/3

Shoot No. 3...OI..

Seventa

New York

6 H Jan No. 2323

TUSI : PIPE WHIP RESTRAINS

-

PULL-OUT CAP. = 659K ANCHORAGE CAP. = 240K

.. Tensile Cap. of Bolt controls.

EXAMPLE 2:

Overlapping Stress Cones.

(Limited Thickness.

Apex of Group shear cone OUTSIDE Slab difth)

2' \$\phi\$ Bolts @ 1'-6" \$ 1'-0' 9'c

other data same as Example 1

Doto . AUG . 1278

1/4

Shoot No. 4 ... OI 44HJAN. 2323

TUSI . PIPE . WHIT.

Eff. Stress Area Ae = (Projected Area of Stress cone) - (Area reduction for limited depth) - (Total bearing area for

. A = [* x(31) + 2 × 80 × 31 + 2 × 44 × 81 + 80 × 44 - [80 + 2 × 31 - 2 × 48) × (44+2×31-2×48) - 20×8×8

 $14227 - 460 - 1280 = 12,487 \text{ in}^2$

= 4\$ Jfc x Ae .. Pull-out Load (Group Load) 4x 0.65 \4000 x 12487 = 2,053 K .. Load per bolt = $\frac{2053}{20} = \frac{102^{k}}{20}$

BOLT CAP. = 208 K PULL-OUT CAR = 102K ANCHORAGE CAP. = 240K

.. Pull-out capacity controls.

Dets . AUG . 1978 ..

EXAMPLE 3

Z \$ Bots @ 1-6" \$ 1-0" % Other data same as Example 1

(Limited Thickness.

Apex of Group Shear Cone INSIDE Slab depth in one direction and OUTSIDE Slab depth in other direction.)

Apex of shear cone falls outside in one direction only. Length (6+24-2h) is small. b+24-2h=44+2×31-2×48=10" Hence this is neglected in

.. As a conservative measure, it will be assumed that apex of stres Cones falls IN SIDE in both directions. Eff. Stress area computation similar to Example 2.

A= TX(31)+ 2×26×31+2×44×31+26×44 - (8×8×8) .. Ac = 8503 - 512 = 7991 in2

. Pull-out Load Puc = 4x0.65 /4000 x 7991 .: Load/bott = 1314 =

PULL- OUT CAP .- 164 K.

Pull-out capacity controls.

Cele Dy ... PKB. ... Bugineers, Designers, CONSTRUCTORS

CAN'S Appel. By ... Sugarfu

1/6

Basel No. . G OI 94 H Jah No. 2323

Subject TUSIS PIPE WHIP RESTRAINTS.

(C) SHEAR CAPACITY: (FOR ANCHOR BOLTS)

Connection capacity in shear as governed by concrete (Vuc) will be computed using Shear friction concept: Vuc = \$ fg 14 Auf

DIAM.	TENSILE AREA AUF	Vuc (KIPS)
1/2	1.49	73 1
2	2.77	136
21/2	4.45	218

Ф = 0.85 V ty = 105 Ksi M = 0.55V Auf = Tensile Area of Anchor Bott

2/2" p bolt = 13"

For futt development of Shear Stringth of Anchor Botts to control design, Side Cover (edge) distance toward a free edge Shall not be less than the following:

11/2" + bolt = 24" -

2" \$ bolt = 32"v

2½" bolt = 40" /

If side cover (edge) distance is less than as specified above, ultimate concrete shear strength (Vu'c) have to be reduced.

To prevent side blow out come failures and loss of anchorage, minimum side cover (edge) distance toward a free edge shall not be less than the following: 1/2" \$ bolt = 8"/ 2" \$ bot = 10/2"V

5R8-123C

Cole By . P.KB ... Slen and the

GIBBO & HIII, Inc.

1/7

Subject .TUST .: PIPE .WHIP . RESTRAINT

(D) COMBINED TENSION & SHEAR:

for lension & shear separately and then add for Combined effect.

EXAMPLE: Allow. struct for anchor boll = 0.3 Fy = 0.9 x 105 = 94.3 Ksi

OR 1.6 ft = 1.6 x 47 = 75.2 Ksi (GOVERNS)

Area read for Tension = $A_t = \frac{T}{1.6 \text{ ft}}$ Area read for Shear = $A_0 = \frac{V}{\Phi fy \mu}$ $\therefore \sum A \text{ read.} = (A_t + A_0) \leq \text{Area of Anch. Bott}$

(ii) MINIMUM CAPACITY: Effect due to Axial Tension and/or Tension due to moment and Shear in a bolt or a group of bolts shall be added. This should not exceed the minimum capacity as governed by bolt or concrete puli-out or anchorage capacity (Su Sh. 1)

Tension in bolt due to Shear V

= Applied Shear V

BY BOLT OR CONC. PULL-OUT OR PL. BEARING.

Calc By PKB Stengafte

GIBBS & HIII, Inc.

1/8

Rel. Dwg./Spec. No.

NOTE ON DETERMINATION OF PULL-OUT CAPACITY: (DUE TO COMBINED TENSION & SHEAR)

For computing Pull-out load of concrete, due care must be exercised in evaluating effective stress area Ae as shown on Pages 2 to 5.

when a base section is subjected to moment & shear, determine the tension due to moment ONLY FOR THOSE BOLTS IN THE GROUP which are assumed to be effective. The tension due to shear is assumed to be resisted equally by all botts in the ENTIRE group.

If the magnitude of tension per both due to moment is large compared to tension due to shear, effective stress area Ae will be computed only for those botts in the group subjected to both tension & shear and NOT for the entire group of botts.

However, if the tension per bolt due to shear is high compared to tension per bolt due to moment then the <u>ENTIRE</u> group of bolts to be used in computing effective Strust area he for pull-out.

SRB-123C AUG. 1978. Gibbe & Hill, Inc. Pilling Code 1/9 Boot No. 9 ... 01 Cale By .. P.KB. Q4HJ4H. 2323 TUST: PIPE WHIP RESTRAINT. (2) 1 4 1/2 4 CONCRETE INSERTS : (RICHMOND SCREN ANCHOR) 1" of Insert: Type EC2 & EC2W 1 1/2 d Insert: Type ECG & ECGW Richmond Inserts will be used with A 325 bolts. (A) AREA: Use Tensile Area of Bolt: 1/2" & Bolt with 6 threads/inch: At = 1.405 in 1" & But with 8 threads/inch: At = 0.606 in2) NOTE: 1/2 4 Bolts with 8 threads (inch (At = 1.49 is2) will NOT be used as standard. If this is required for design, proper reference must be made in the drawing such as 1/2" \$ Botts with 8 threads/inch. TENSILE CAPACITY: Capacity in tension (Puc) is governed by one of the following three types of failures: (ii) Tensile capacity of Insert
(ii) Tensile capacity of A325 bolt Use the lowest value for design purpose. (11) Pull-out Strength of Concrete (i) Tensile Capacity of Inserts: From Laboratory Test data and results as supplied

by Richmond Screw Anch Co. (Bulletin # 6, dated 1972):

Tensile Capacity of 1" \$ Type EC-2 Inserts = 24.6K Allowable Tensile Capacity = 0.9x24.6 = 22K

Tensile cap of 1/2 \$ Type EC-6 Insert = 64.5K Allowable Tensile Capacity = 0.9 × 64.5 = 58k - AUG .. 1278 ..

1/n .

Cale By ... P.KB.

BUDGET . TUST : PIPE WHIP RESTRAINT ...

44 HJAN 12323

Pull-out Cap. = 50K

Finsert = 58K .: Pull-out of conc. controls.

Minimum spacing for development of full shear Cones = 221/4"

(overlapping of cones @ 201% is very little. It is neglected;

EXAMPLE 2:

overlapping Stress cones in one direction (Apex of shear cone inside slab depth) 11/2" | Insurts @ 10" \$ 20" %

Other data same as Example 1.

configuration of Stress cones as shown.

Effective Stress Area AL = [Tx(10)2+20x10] - 1/4x(3.25) Ae = 514 - 16 = 498 in2 Pull-out Load = 40 Fc × Ae

= 4 x 0.65 x 4000 x 498

. Load per Insert = B2 = 41 K

.: Pull-out of concrete Controls.

Gibbs & Hill, Inc.

112

Sheet No. . 12. . 01 . . .

Cale by ... PKB.

NEW YORK

G. H. Jan. 2323

TUSI : PIPE WHIP RESTRAINT

EXAMPLE 3 :

Overlapping of stress cones in both directions.

(Apex of shear cone inside slab depth)

1/2" + Inserts @ 10°C/c bothways

Other data Same as Example 1.

Effective Stress Area

$$Ae = \left[\pi \times (10)^{2} + 2 \times 10 \times 10 + 2 \times 40 \times 10 + 40 \times 10\right] - 10 \times \frac{\pi}{4} \times (3.25)^{2}$$

= 4×0.65× \4000 × 1631

2-90

.. Load per Insert = 268 = 27K

.: Pull-out of Concrete controls.

AUG. 1978

Gibbs & Hill, Inc.

1/13

RESTRAINT

H Jan No. 2323

XAMPLE 4:

overlapping of Stress comes in both directions (Limited Thickness. Apex of Shear cone inside slab depth in one direction & outside slab depth in other direction)

1/2" D Insurts @ 10 % bothways. Other data same as Example 1.

NOTE: As a conservative measure, it will be assumed that apex of Stress comes falls INSIDE in both directions. Assumptions for eff. Stress area computation Similar to Example 3 of Anchor Bolt.

Ae = Tx(10) + 2x10x 10 +2×60×10 + 60×10

- 14 x 7/4 x (13-5)2

.. Ac = 2314 - 116 = 2198 in

.: Puc = 4x0.65x /4000 x 2198 = 361 K

361 . Load bu Insert =

. Pull-out of concrete controls. PREP. BY Vapiwala CHKO. BYPK Bange CHECK METHOD

SR8-123C ENGINEERS, DESIGNERS, CONSTRUCTORS AUS ... 1978 1/14 Shoot No. 14 . . OI GEN JAN. 2323 ... TUSI: PIPE WHIP RESTRAINT C) SHEAR CAPACITY: · connection capacity in shear (Vué) is governed by one of the following: Use the Lowest (i) Shear capacity of Insert value for design purpose (ii) shear Capacity of A325 Bolt. (111) Shear capacity of Concrete NOTE: To increase shear capacity, A 490 bolts may be used (i) Shear Capacity of Inserts: in place of A 325 bolts From Laboratory Test data and results as supplied by Richmond Screw Anchor Co. (Bulletin # 6 dated 1975)

Shuar strength of 1/2" of Type Ec. G Insert

(safity factor 3:1) = 3 × 18 × 0.9 = 48.6 K

Shear strength of 1" p Type EC-2 Insert = 3 x 8x0.9 = 21.6K

Shear Capacity of A-325 bolts: Design as per F.S.A.R. & A.I.S.

11se Tensile area of Bolt (Threads NOT excluded from steer plane)

Yield stress for 1/24 bolt. 81 KSI, Yield stress for 100 bolt = 92 KSI

Allowable 'shear stress = 0.5 fy = 0.5 x 81 = 41 KSI

OR 15 x 1.6 = 24 KSI (GOVERNS)

Shear Capacity of 1/2" b bolt = 1.405 x 24 = 337 K

SRB-1230

Dan. AUS. 1978.

GIBBE & HIII, INC.

1/15

Shoot No. . 15.01.....

Cale By PKB ... S. Sugaple

TUST .. PIPE WHIP PESTRANT ...

SHEAR CAPACITY AS GOVERNED BY CONCRETE:

ultimate concrete shear strength will be assumed to be equal to Ditimate Concrete Pull-out strength Puc provided side cour (edge) distance toward a free edge is at least 1-10" for 1/4" Insert and 1-4" for 1"\$\phi\$ Insert.

If side cover (edge) distance is less than as specified above, ultimate concrete shear Strength have to be reduced.

(D) COMBINED TENSION & SHEAR:

$$\left[\frac{P_{u}}{P_{u'_{c}}}\right]^{4/3} + \left[\frac{V_{u}}{V_{u'_{c}}}\right]^{4/3} \leqslant 1$$

Pu = Actual Tensile force on Insert connection

Vn = Actual Shear applied to connection.

Puć = Minimum Capacity as governed by Inset or Structural bolt or bull-out of Concrete (See Sheet 9)

Vuc = Minimum Shear Capacity as governed by Insert or Struct bolt or Concrete.

(See sh. 14)

AUG. 1978

1/16

TUSI; PIPE WHIP RESTRAINT

TENSION & SHEAR :

Assumi further that this load is being applied on an insert group as shown in Page 12
$$\left[\frac{Pu}{Pu'_c}\right]^{4/3} + \left[\frac{Vu}{Vu'_c}\right]^{4/3} < 1.0$$

$$(\frac{15}{27})^{4/3} + (\frac{10}{27})^{4/3} = 0.46 + 0.27 = 0.73 < 1.0$$

FOR COMBINED TENSION & SHEAR &

A 325 bolt SEE PAGE 10 \$ PAGE 4

Allowable Tensile stress = 64 Ksi

Allowable Shear Striss = 24 Ksi (Threads not excluded)

1/2" A 325 bolt, Tensil Aru = 1.405 in2 Pus = 1.405 x 64 = 90K Vus = 1.405 x 24 = 33.7 x

$$\left[\frac{P_u}{P_{us}}\right]^2 + \left[\frac{v_u}{v_{us}}\right]^2 \leq 1.0$$

$$: \left(\frac{15}{90}\right)^2 + \left(\frac{10}{33.7}\right)^2 = 0.03 + 0.09 = 0.12 < 1.0$$

5RB-123C

Des .. AU.G .. 1978 Cale By ... D.M .. C.

Gibbs & Hill. Inc.

1/18

D= 56

Sheet No. 1.8. Ot .

G4HJ4H 2323

.T.USI .. FIPE WHIP RESTRAINT.

CONNECTION DESIGN WITH ANCHOR BOLTS.

TO FIND FORCES IN BOLTS DUE TO MOMENT.

EQUATING MOMENTS OF THE

[(53-n)+(48-n)]

SOLUING n = 17.1 1

TO FIND THE CENTROID

OF FORCES T, & T2.

T, & d-n tc = 53-17-1 fc

. = 2.1 fc/

T2 & d-n-10 te = 43-17.1 te

1.52 te

Z FROM T, = 1.52 fc x 18

2.1 fe + 1.52 fe

MOMENT ABOUT THE CENTROID OF T, & T2

43.1 = 835.26 K.

te = 835.26 +2

CO.45 tc O. K.

MAVIVITITO, JLEICHIET/CMJan, ELBezkor/AMKenkre, HWMentel, PTHuang, SMMarano/077 REBallard TDHawkins/HMLapinig , OUTGOING Telescopy to Nancy Williams Domestic: 127636/968694 International: 428813/234475 A Dravo Company @ George Grace Distribution N. Williams June 26, 1984 Weigust GTN- 69162 Texas Utilities Generating Company Post Office Box 1002 Glen Rose, Texas 76043 M. Shulman Attention: Mr. J. B. George Vice President/Project Gen. Mgr. Gentlemen: TEXAS UTILITIES GENERATING COMPANY COMANCHE PEAK STEAM ELECTRIC STATION GER PROJECT NO. 2323 PROPOSED MASS PARTICIPATION FRACTION SENSITIVITY STUDY By copy of this letter to Nancy Williams of CYGNA, attached is Gibbs & Hill's proposed plan of action regarding the Mass Participation Fraction Sensitivity Study. This plan is additional work by way of follow-up on the initial response on seismic analysis of piping presented in GTN-69098 dated June 11, 1984. Should you have any questions or comments regarding the proposed plan contact Henry W. Mentel. Very truly yours, GIBBS & HILL, Inc. 1 n marco REBA-HWMe: 10 Robert E. Ballard, Jr. 1 Letter + 1 Attachment Project Manager ARMS (B&R Site) OL + 1A N. Williams (CYGNA, Calif.) IL IA G. Bjorkman (CYGNA, Boston) ILpis G. Grace (CPPE Site) 1L 1A CYGNA D. Wade (CPPE Site) 11 1A JOB NO : CATE LOGGED: LOG NO. : CROSS REF. FILE

SEISMIC ANALYSIS OF PIPING EFFECT OF HIGHER ORDER MODES/MASS PARTICIPATION

PROPOSED MASS PARTICIPATION FRACTION SENSITIVITY STUDY

Gibbs & Hill presented its initial position regarding the effect of higher order seismic modes in a response to CYGNA Energy Services transmitted via GTN-69098 dated June 11, 1984. Based upon that response and following several discussions with CYGNA, Gibbs & Hill proposes the following plan of action:

- 1. An expanded explanation will be provided of the preliminary results of the mass participation survey conducted by Gibbs & Hill. In Gibbs & Hill's present response a simplified table of results indicating an average of 46.5 percent mass participation is presented. The basis for this and the means by which this number was arrived at will be expounded upon.
- 2. A selected number of stress problems will be re-analyzed. This re-analysis would be performed on a later version of ADLPIPE which accounts for the non-participating masses of the higher order modes. (Our present analysis is based upon versions 1C and 2C of ADLPIPE obtained from DIS/ADLPIPE, Inc., which has the program imposed limitation of not considering in the modal combination those modes exhibiting a deflection of less than .001 inch.) The selection and re-analysis would be done according to the following steps:
 - a. The selection being based upon

Problems presently exhibiting low mass participation fractions in all directions (x, y & z) as well as problems with isolated low fractions i.e., 'y' only.

The selection being from various pipe sizes and piping systems.

The selection covering a variety of buildings and elevations.

The selected problems being a mix of those which do and do not contain a seismic anchor movement load case.

- b. The selected problem input data would remain as is except for necessary modifications to make them adaptable to the later version of ADLPIPE utilized.
- c. The results of the re-analysis of the selected problems will be compared with the original as-built analysis.

To be compared would be:

Resulting Code equation stress levels

Support loads on the basis of individual load contributions as well as loading conditions i.e., normal, upset, emergency and faulted.

Participating modes and higher order modal deflections.

Equipment loads, where applicable.

2. Upon completion of the re-analysis a preliminary report will be made to CYGNA Energy Services. It will be at that time that Gibbs & Hill will be in a better position to ascertain whether additional work is required.

TUQ-2169

TEXAS UTILITIES GENERATING COMPANY

OFFICE MEMORANDUM

То	Dave Smedley	Glen	Rose,	Texas_	June	7. 1984	
Subject	Transm	itting IR's					

Attached are the copies of the Inspection Reports that you requested copies of:

BP-00258 BP-00341 ME-25096 ✓

On Inspection Report ME-25096, the original was not in the package at the time of your review, it was a copy of the IR. The copy is still in the package along with the original which was closed on May 15, 1984.

We are also transmitting copies of the Master IR Log which shows the two BP reports to still be Unsat and open.

A. Vega TUGCo Site QA Manager

AV/d1 cc: D.N. Chapman D. Wade

Distribution 84042 PF N. Williams 5.B.b0 CYGNA

JOB NO:

DATE LOGGED:

LOG NO.:

FILE:

CROSS REF. FILE 2.1 hr. CR Log

W. 11 Loc Full (# 16)

INSPECTION REPORT LOG

INSPECTION REPORT REPORT CLOSED UNSAT ROOM# | DATE SAT DATE SYSTEM BLDG. # HANGER # NUMBER 338 2.937 800339 TRANSMANDS PFGO 12083 Transmand CABO 2 Trans 2 56H 6H.8 ż 7 CNEI 2 BICK CM+L MA -27-83 2 56#1 5 12.17-6

3:12

INSPECTION REPORT LOG

INSPECTION REPORT NUMBER	- HANGER #	SYSTEM	BLDG.#	ROOM#	REPORT	SAT	UNSAT	CLOSED
B000247	HC5:2-AB:010:0013	C5	nux	215	12-13-02	V	1	1-8-83
BP00348	HC51-AB-013-000-3	CS	nux	215	12 13-82	1	V	5-4-83
80000049	HCS1-AB-C39-002-3	05	AUY	215	12-13-12	~	-	2.248
000000	CSI-AB:039:001-3	CS	AUX	215	1947-95	V	1	2-18-83
BPODESI	C52 032 001 A 538	CS	AUX	215	12-13-53	/	-	3/30/82
BP00353	052-007-700-A538	CS	AUX	215	12-13-12	1	1	1.8-83
	HB2X AB . DI3 COI-5		AUX	215	3-13-82		1	
BPODES	151- 273-001- A53R	cs	AUX	215	13-13-13	1	-	13 pol85
£100355	HCS1- AB-C3C 001-3	2.5	AUX	215	12-13-12	/	V	-8-83
BP00256	14.259.700.453R	cs	Aux	عَاجَ	12·14·8	1	1	[] [] []
BP00257	HC51- AB- 032-001-3	cs	AUL	215	1214.15	1	V	1-1-13
APODES.	SI- 300-700 - A538	CS	AUX	215	19-14-79		1	
BP00254	561066.000 ASSK	58	ALIX	215	₩-14-Y	~	V	''धिक्र
Berezue	561.002.001. ASSR	53	AUX	215	12-14-62	/	~	13 20 kg
врооди	50.0106.001.ASER	SB	Au	215	12-14-82	/	r	'केश
Blocala	581.045.001.ASSK	SB	Aux	215	19-14-10	V.	-	13/82
	582.062.001.ASSR		Aux	215	12:13:82	/		
1	582-000-002-ASSK	50	ALIX	215	12-13-13	1		
	FB2-044-001-455k	1	AUX	215	12:15-62	V		
	542-036-005 ASER		Aux	215	12-13-82	~		
1	582-035-004 PSOR		ALIX	215	2.13.82	-		

	COMPLETED, ALL APPLICABLE ITEMS SATISFACTORY 2/8/0+ 3/9	2		PECTION	
ITEM NO.	INSPECTION ATTRIBUTES	SAT	WISAT.	DATE	SIG
1.	Gap does not exceed 5" at any point between baseplate and concrete surface. Para. 3.1.	-			
2.	Gap does not exceed 1/16" for 80% or more of baseplate bearing surface Pana. 3.1.	F	L		
3.	For floor mounted equipment gap does not exceed 1/16" between cured cement grout and equipment base (without engineering approval). Para. 3.2.	VA			
4.	Shims installed. Para. 3.1				
	North wall mount EX 848'6' 3'3" East of JA 7'3' North of 4A				
				1	
			+	1	
REMARKS (DWG	od in Ra #215 access from EL. 852'				

_/			114.00	PECTION	
S meaned more	COMPLETED, ALL APPLICABLE ITEMS SATISFACTORY COMPLETED, UNSATISFACTORY ITEMS LISTED BELOW OC INSPECTO	R	200		12 12/1/ TE
ITEM NO.	INSPECTION ATTRIBUTES	SAT	UNSAT	DATE	Q C SIGNATURE
1.	Gap does not exceed 5" at any point between baseplate	1			
	and concrete surface. Para. 3.1.	+			
	C d 1/16"	+	H	-	
2.	Gap does not exceed 1/16" for 80% or more of baseplate	+	4		
	bearing surface Pana. 3.1.	+			
3.	For floor mounted equipment gap does not exceed 1/16"	1,	9/2		
3.	between cured cement grout and equipment base (without engineering approval). Para. 3.2.				
4.	Shims installed. Para. 3.1	1			
#	LOCATION OF SUPPORT #1	1			
	EL' 8/4'	+	-		
	3150.0F 4-5	+	-		
	15'-6" W. OF F/S	+	-		
	LOCATED ON WALL ARMS PERM PLT. RECORD	+	1		
	ARMS PERM 171.99.21	+	-	1	
	INDEXED TO NO.	+=		7	
	INDEXED SUB CONDUIT NO.	T			
	DATE	1			
		1			
REMARKS (DW	S, SPECS, ETC.) NA				
RELATED NCR	NO. LE CLOSED TO DATE SIGNATURE				-
1.04	A IS I.R. CLOSED THE SIGNATURE		-	SPECTO	THE RESERVE AND PARTY.

TEXAS UTILITIES GENERATING COMPANY

P. O. BOX 1002 - GI.EN ROSE, TEXAS 76043

June 12, 1984

CYGNA Energy Services 101 California Street Suite 1000 San Francisco, CA 94111

Attention: Ms. Nancy Williams, Project Manager

SUBJECT: COMANCHE PEAK STEAM ELECTRIC STATION

CYGNA REVIEW QUESTIONS

(Inspection Reports)

Reference: June 7, 1984 Letter to J. B. George (TUGO

from N. Williams (CYGNA)

FILE:

DATE LOGGED:

Jos no :

OFG NO . :

CROSS REF. FILE 2.1 mi CR LO

Dear Ms. Williams:

Enclosed are TUGCO's responses to the above referenced letter.

If there are any further questions, please contact the undersigned at Ext. 321 or B. C. Scott at Ext. 859.

Very truly yours,

TEXAS UTILITIES GENERATING COMPANY QUALITY ASSURANCE DEPARTMENT

TUGCO Site QA Manager

AV/BCS/bll Attachments cc: D. N. Chapman D. H. Wade

Item #1

No methods were identified to address the segregation of deficient items documented on Inspection Reports (IR's) to preclude inadvertent use of or further work to the items. The concern is that a deficiency could be made irretrievable or the condition could be made worse without some type of restraint. What procedural guidelines existed historically and exist currently to address this area?

Response

The Inspection Report is used to document field inspections. The inspection is identified as either being satisfactory or unsatisfactory. Inspection reports which reflect unsatisfactory inspection results remain open until such time they become satisfactory.

Please refer to ANSI N45.2, Section 9 "Identification and Control of Materials, Parts and Components" which states in part "...where physical identification is either impractical or insufficient, physical separation, procedural control or other appropriate means shall be employed. Identification may be either on the item or or or records traceable to the item, as appropriate." In all cases unsatisfactory inspection reports are traceable to the item and are verified acceptable prior to closing the inspection report.

Item #2

Inspection Reports which identify unsatisfactory conditions do not appear to identify corrective actions which were taken to correct the unsatisfactory condition. What documentation exists delineating corrective action steps taken to eliminate the deficiencies?

Response

Inspection Reports (IR's) document either satisfactory/unsatisfactory conditions as implemented through comprehensive inspection instructions. Unsatisfactory conditions which can be corrected by rework, and then found acceptable, are documented as satisfactory on the IR. Unsatisfactory conditions which require a repair mented as satisfactory on the IR. Unsatisfactory conditions which requires Engineering review or use-as-is disposition are documented on a NCR which requires Engineering review for corrective action.

Item #3

A review of CP-QP-16.0, "Nonconformances" and CP-QP-18.0, "Inspection Reports" does not appear to address specific guidelines for determining when an Inspector should issue an unsatisfactory Inspection Report or a Nonconformance Report. What procedural guidelines were available historically and are available now to quality control inspectors which delineate when an unsatisfactory IR is generating instead of a Nonconformance Report.

Response

Please refer to Procedure CP-QP-16.0 (copy attached) "Nonconformances", paragraph 2.1 under NOTE: "When nonconformances are detected by inspection and testing, they shall be reported in accordance with quality procedures/instructions describing the inspection or testing functions (IR's). Where specific guidelines are not given in quality procedure/instructions, the provisions of this procedure shall govern (NCR's)." In other words, each inspection instruction establishes specific inspection attributes to be inspected. When an attribute is found unsatisfactory an unsatisfactory IR is written. In cases where unsatisfactory conditions are found that are not within the scope of an inspection procedure/instruction an NCR is written. For example, please see attached Inspection Instruction QI-QP-11.3-26.

TEXAS UTILITIES GENERATING CO	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
CPSES	CP-QP-16.0	13	MAR 2 6 1984	1 of 14
NONCONFORMANCES	PREPARED BY:	Beorge U	Ille	3-16-54 DATE
	APPROVED BY:_	my	sher	3/22/8 DATE/

1.0 REFERENCES

EGG INCUDARTICL ONLA CP-OP-15.0, "Tagging System" 1-A

2.0 GENERAL

PURPOSE AND SCOPE 2.1

> The purpose of this procedure is to establish a method of documenting the identification, resolution, and closeout of nonconformances as defined in Paragraph 2.2. It is the responsibility of all site employees to report items of nonconformance to their supervisor or to the TUGCO Site The requirements contained herein are QA Supervisor. applicable to nonconformances identified for materials, services or items associated with safety-related structures, systems and components not under the jurisdiction of the ASME Code, Section III, Division 1.

NOTE:

When nonconformances are detected by inspection and testing, they shall be reported in accordance with quality procedures/instructions describing inspection or testing functions. specific guidelines are not given in quality procedure/instructions, the provisions of this procedure shall govern.

In Oct. 1983, a Building/Matrix Management Organization was established for the completion of Unit 1 and Common. Section 3.1 and 3.3 of this procedure describe the processing of nonconformances under this system. Section 3.1 and 3.2 describe the processing of nonconformances for Unit 2 and areas not under the Matrix organization.

2.2 DEFINITION

2.2.1 Nonconformance

A deficiency in characteristic, documentation, or procedure which renders the quality of an item unacceptable or indeterminate.

TEXAS UTILITIES GENERATING CO. CPSES	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE	
	CP-QP-16.0	13	MAR 2 6 1984	2 of 14	

.. 3.0 PROCEDURE

3.1 NONCONFORMANCE IDENTIFICATION

3.1.1 Field Identification

When a nonconforming condition as defined in Paragraph 2.2.1 is identified, the individual shall immediately apply a Hold Tag, when practical, (Reference 1-A) and note his name and telephone extension on the tag. He shall return and note on the Hold Tag the appropriate NCR number when obtained from the TUGCO NCR Coordinator.

NOTE:

For electrical activities, the inspector may use his judgement to apply a Hold Tag to a nonconforming internal component. For example, the inspector may apply a Hold Tag to a broken/damaged terminal strip and note on the Hold Tag wording such as "Applied to Terminal Strip Only." On the NCR the statement would be "Applied to Terminal Strip Only - other unrelated activities may proceed."

3.1.2 Reporting

Nonconforming conditions shall be reported on the NCR form (Attachment 2). Supporting documentation, e.g., Inspection Reports, NDE reports, drawings shall also be attached to the NCR where appropriate. The location of the nonconforming condition (structure, room number, elevation and area code) and the system/subsystem number shall be recorded on the NCR form.

NOTE:

The system/subsystem number is not required for discrepancies relating to conduit, cable trays, protective coatings, cable tray hangers or anchor bolt locations provided that the structure is identified.

3.1.3 Numbering the NCR

Before sending the NCR to the Quality Control Supervisor, or his designee, the individual reporting the nonconformance shall obtain a number from the TUGCO NCR Coordinator. This number shall be noted on the NCR and on the Hold Tag per Reference 1-A that is applied to the nonconforming item/equipment.

TEXAS UTILITIES GENERATING CO.	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
CPSES	CP-QP-16.0	13	MAR 2 6 1984	3 of 14

The TUGCO NCR Coordinator shall assign numbers as follows:

e.g. NCR M - 80 -

sequential NCR number for that year

Discipline (Mechanical, Electrical Instumentation, Civil)

00214

For NCR's on items/components turned over to TUGCO, the TUGCO NCR Coordinator shall add the letter "S" after the NCR number and forward a copy to TUGCO Startup for information.

The TUGCO NCR Coordinator enters the NCR number and brief description of the nonconforming condition in the Master NCR Log (Attachment 3).

NOTE: The TUGCO NCR Coordinator shall periodically review the Master NCR Log (at least annually) to ensure accuracy.

3.2 PROCESSING NONCONFORMANCE REPORTS FOR UNIT 2 AND AREAS NOT UNDER THE MATRIX ORGANIZATION

3.2.1 Draft NCR

The inspector will sign and forward the draft NCR to the Discipline QC Supervisor or designee. When individuals assigned to departments other than QA/QC are reporting a nonconformting condition, they shall forward the draft Nonconformance Report to the TUGCO NCR Coordinator for processing in accordance with this procedure.

3.2.2 Pre-Issuance Review and Preparation

The reported nonconformance shall be evaluated by the Discipline Quality Control Supervisor or his designee for clarity, accuracy, validity, specificity and legibility.

3.2.2.1 NCR's may be voided at any time if it is determined that nonconforming conditions do not exist, the nonconformance was previously reported on another NCR or other similar conditions exist. In the event that an NCR is determined to be invalid, "Void" shall be entered in bold letters in the disposition block with the reason and justification

TEXAS UTILITIES GENERATING CO.	PROCEDURE NUMBER	REVISION	ISSUE	PAGE
CPSES CPSES	CP-QP-16.0	13	MAR 2 6 1984	4 of 14

for voiding the NCR. Any pertinent supporting documentation shall be attached to the NCR and referenced in the reason/justification statements. Voiding of NCR's shall be approved by the QA/QC Supervisor or his designee by placing his signature and the date under the reason/justification statement. The original voided NCR will be forwarded to the TUGCO NCR Coordinator.

3.2.2.2 If the NCR is determined to be valid, the Discipline QC Supervisor signs and forwards the draft NCR to the TUGCO NCR Coordinator.

3.2.3 NCR Issue

The TUGCO NCR Coordinator enters the date issued in the NCR Log, maintains the original and forwards a copy of the NCR to an "Action Addressee".

(The "Action Adressee" normally is the responsible Engineering Supervisor who evaluates and dispostitions the reported nonconformances.)

3.2.4 Disposition

3.2.4.1 Final Disposition (Rework, Repair, Scrap, Use-as-is)

The "Action Addressee" shall evaluate each reported nonconforming condition and determine an appropriate disposition to correct and/or resolve the nonconformance. The disposition shall be clearly and concisely recorded in the "Disposition" space on each NCR according to the following:

- The respective disposition block(s) shall be checked (i.e., Rework, Repair, Use-As-Is and/or Scrap).
- b. Rework Dispositions shall specify the rework actions required to correct the nonconforming conditions and bring the affected items into compliance with the specified requirements.
- c. Repair Dispositions shall specify the repair actions required to bring the nonconforming characteristic(s) to a condition such that the capability of the affected item to function reliably and safely is unimpaired, even though the item still may not conform to specified requirements. Repair dispositions shall also include appropriate Engineering technical justification for acceptance of the item with characteristics that do not comply with specified design requirements.

TEXAS UTILITIES GENERATING CO.	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
CPSES	CP-QP-16.0	13	MAR 2 6 1984	5 of 14

- d. Use-As-Is Dispositions shall include sufficient Engineering technical justification to establish that the nonconforming characteristic will result in no adverse conditions and that the affected item will continue to meet all Engineering functional requirements, including performance, maintainability, fit and safety.
- e. Scrap Dispositions shall be made when it is determined that an item is unsuitable for its intended purpose and cannot be feasibly or economically reworked or repaired.

3.2.4.2 Temporary Waiver

For those nonconforming items which Construction/Engineering desires to continue to process on a "risk removal" basis, authorization shall be requested in the NCR disposition. In order to receive this authorization to continue the process, the following conditions must be satisfied:

- a. The NCR disposition shall include sufficient information and direction for accomplishing the work. Detail shall be provided to permit adequate evaluation of potential impact to affected parties (i.e., construction, engineering, QA/QC, records, start-up and operations);
- Engineer Review/Approval shall be by the Engineering Group Supervisor or above;
- c. Quality Assurance Review/Approval shall be by the Discipline QA/QC Supervisors or above.

After approval of the disposition a Blue Temporary Waiver Tag, per Reference 1-A, shall be affixed to the item. The NCR number shall be noted on the Temporary Waiver Tag.

3.2.5 Engineering Review/Approval

Engineering review/approval of NCR disposition shall be authorized by the Site Engineering Manager or his designee. For weld related nonconformances in which "rework" only is specified, the Site Welding Engineer is authorized to approve the disposition. For Construction procedural violation NCR's in which hardware is not affected, the Construction Manager or his designee is authorized to sign the Engineering Review/Approval block.

TEXAS UTILITIES GENERATING CO. CPSES	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
	CP-QP-16.0	13	MAR 2 6 1984	6 of 14

3.2.6 Quality Assurance Review

The NCR disposition shall be reviewed by the Discipline Quality Engineer for adequacy and conformance to applicable specifications, code requirements and current drawing/design change.

If the review is satisfactory the TUGCO NCR Coordinator will have the disposition entered on the original, obtain the required signatures, and enter the date on the NCR log. If the disposition is not satisfactory, the Quality Engineer shall resolve all comments with the Engineer who dispositioned the NCR.

Based on his review, the QE may recommend voiding in accordance with Section 3.2.2.1.

Upon Quality Engineering approval of the disposition, and prior to beginning any rework/repair, QC shall remove the red hold tag and blue waiver tag (if applicable).

3.2.7 Revision of Nonconformance Reports

When changes are required to the nonconforming condition or disposition, the NCR shall be revised. This revision shall be denoted on the NCR number and the reason(s) for revision included in the comments section. The necessary approvals shall be obtained in accordance with this procedure for the portion affected by revision.

3.2.8 Implementation of the Disposition

NCR's dispositioned "Rework", "Repair" or "Scrap" shall be sent by the TUGCO NCR Coordinator to the appropriate department responsible for scheduling/coordinating work activities for implementation of the disposition.

NCR disposition "Use As Is" shall be sent to the Non-ASME discipline Level III QE for approval as designated by the QA/QC Supervisor.

For NCR's dispositioned as "Rework", "Repair", or "Scrap" and identified with an "S" after the NCR number, an information copy will also be sent to TUGCO Startup.

TEXAS UTILITIES GENERATING CO. CPSES	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
	CP-QP-16.0	13	MAR 2 6 1984	7 of 14

3.2.9 Verification/Closure

The Discipline QC Supervisor shall ensure that the NCR disposition work items are verified and/or witnessed by QC. QC shall document their inspections (via, inspection reports, checklists, travelers, etc. as required). These documents shall be either attached to or referenced on the NCR as appropriate.

The QA/QC Supervisors, or their designee, shall close the NCR by signing the "Verification" block of the original.

The closed NCR will then be transmitted by the NCR Coordinator to the Permanent Plant Records Vault and the date entered in the NCR log.

3.3 PROCESSING NONCONFORMANCE REPORTS FOR UNIT 1 AND COMMON (SEE ATTACHMENT 1 FOR NCR FLOW)

3.3.1 Draft NCR

Following completion of activities specified in Section 3.1, the inspector will sign and forward the draft NCR to the Building QC Supervisor or designee. When individuals assigned to departments other than QA/QC are reporting a nonconforming condition, they shall forward the draft Nonconformance Report to the Building NCR Coordinator for processing in accordance with this procedure.

3.3.2 Pre-Issuance Review and Preparation

The reported nonconformance shall be evaluated by the Building Quality Control Supervisor or his designee for clarity, accuracy, validity, specificity and legibility.

3.3.2.1 NCR's may be voided by the Building QC Supervisor if it is determined that nonconforming conditions do not exist, the nonconformance was previously reported on another NCR or other similar conditions exits. In the event that an NCR is determined to be invalid, "Void" shall be entered in bold letters in the disposition block with the reason and justification for voiding the NCR. Any pertinent supporting documentation shall be attached to the NCR and referenced in the reason/justification statements. The original voided NCR with supporting documentation shall be filed in the PPRV and a copy forwarded to the TUGCO NCR Coordinator.

YEXAS UTILITIES GENERATING CO. CPSES	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
	CP-QP-16.0	13	MAR 2 6 1984	8 of 14

3.3.2.2 If the NCR is determined to be valid, the Building QC Supervisor signs and forwards the draft NCR to the Building NCR Coordinator. The Building NCR Coordinator sends a duplicate copy to the TUGCO NCR Coordinator for reduntant filing.

3.3.3 NCR Issue

The Building NCR Coordinator enters the date issued in the Building NCR Log and forwards the original NCR to an "Action Addressee". (The Building NCR Log will be similar to the Master Log maintained by the TUGCO NCR Coordinator.)

(The "Action Adressee" normally is the responsible Construction/Engineering Building Supervisor who evaluates and dispositions the reported nonconformances.)

3.3.4 Disposition

3.3.4.1 Final Disposition (Rework, Repair, Scrap, Use-as-is)

The "Action Addressee" shall evaluate each reported nonconforming condition and determine an appropriate disposition to correct and/or resolve the nonconformance. The disposition shall be clearly and concisely recorded in the "Disposition" space on each NCR according to the following:

- a. The respective disposition block(s) shall be checked (i.e., Rework, Repair, Use-As-Is and/or Scrap).
- b. Rework Dispositions shall specify the rework actions required to correct the nonconforming conditions and bring the affected items into compliance with the specified requirements.
- c. Repair Dispositions shall specify the repair actions required to bring the nonconforming characteristic(s) to a condition such that the capability of the affected item to function reliably and safely is unimpaired, even though the item still may not conform to specified requirements. Repair dispositions shall also include appropriate Engineering technical justification for acceptance of the item with characteristics that do not comply with specified design requirements.

TEXAS UTILITIES GENERATING CO. CPSES	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
	CP-QP-16.0	13	MAR 2 6 1984	9 of 14

- d. Use-As-Is Dispositions shall include sufficient Engineering technical justification to establish that the nonconforming characteristic will result in no adverse conditions and that the affected item will continue to meet all Engineering functional requirements, including performance, maintainability, fit and safety.
- e. Scrap Dispositions shall be made when it is determined that an item is unsuitable for its intended purpose and cannot be feasibly or economically reworked or repaired.

3.3.4.2 Temporary Waiver

For those nonconforming items which Construction/Engineering desires to continue to process on a "risk removal" basis, authorization shall be requested in the NCR disposition. In order to receive this authorization to continue the process, the following conditions must be satisfied:

- a. The NCR disposition shall include sufficient information and direction for accomplishing the work. Detail shall be provided to permit adequate evaluation of potential impact to affected parties (i.e., construction, engineering, QA/QC, records, start-up and operations);
- Engineer Review/Approval shall be by the Building Group Supervisor or above;
- c. Quality Assurance Review/Approval shall be by the Building QA/QC Supervisors or above.

After approval of the disposition a Blue Temporary Waiver Tag, per Reference 1-A, shall be affixed to the item. The NCR number shall be noted on the Temporary Waiver Tag.

3.3.5 Quality Assurance Review

The NCR disposition shall be reviewed by Quality Assurance for adequacy and conformance to applicable specifications, code requirements and current drawing/design change. Disposition for scrap, rework, and standard repairs are approved by the Building QC Supervisor. Dispositions for use-as-is and non-standard repairs shall be approved by the Non-ASME discipline Level III QE as designated by the QA/QC Supervisor.

TEXAS UTILITIES GENERATING CO.	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
CPSES	CP-QP-16.0	13	MAR 2 6 1984	10 of 14

If review is satisfactory the Building NCR Coordinator shall enter the date on the NCR log. If the disposition is not satisfactory, the Building QC Supervisor or Non-ASM2 discipline Level III QE as designated by the QA/QC Supervisor, as appropriate, shall resolve all comments with the Engineer who dispositioned the NCR. The Building NCR Coordinator sends a duplicate dispositioned copy to the TUGCO NCR Coordinator.

Upon Quality Assurance approval of the disposition, and prior to beginning any rework/repair, QC shall remove the red hold tag and blue waiver tag (if applicable).

3.3.6 Revision of Nonconformance Reports

When changes are required to the nonconforming condition or disposition, the NCR shall be revised. This revision shall be denoted on the NCR number and the reason(s) for revision included in the comments section. The necessary approvals shall be obtained in accordance with this procedure for the portion affected by revision.

3.3.7 Implementation of the Disposition

NCR's dispositioned "Rework", "Repair" or "Scrap" shall be sent by the Building NCR Coordinator to the appropriate building department responsible for scheduling/coordinating work activities for implementation of the disposition.

For NCR's dispositioned as "Rework", "Repair", or "Scrap" and identified with an "S" after the NCR number, an information copy will also be sent to TUGCO Startup.

3.3.8 Verification/Closure

The QC Building Supervisor shall ensure that the NCR disposition work items are verified and/or witnessed by QC. QC shall document their inspections (via, inspection reports, checklists, travelers, etc. as required). These documents shall be either attached to or referenced on the NCR as appropriate.

The QE or QC Supervisors, as appropriate, or their designees, shall close the NCR by signing the "Verification" block of the original.

TENNA UTUUTIES OFNERATING CO	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
TEXAS UTILITIES GENERATING CO. CPSES	CP-QP-16.0	13	MAR 2 6 1984	11 of 14

Copies of closed NCR's will be distributed by the cognizant Building NCR Coordinator as follows:

- a. The original will be sent to the appropriate building Paper Flow Group who will transmit to the Permanent Plant Records Vault (PPRV).
- b. A copy of the closed NCR will be sent to the TUGCO NCR Coordinator for Master Log updating and duplicate filing.

TEXAS UTILITIES GENERATING CO.	PROCEDURE NUMBER	REVISION	DATE	PAGE
CPSES	CP-QP-16.0	14		12 of 14

ATTACHMENT 1

UNIT 1 AND COMMON

TEXAS UTILITIES GENERATING CO.	INSTRUCTION NUMBER	REVISION	DATE	PAGE
CPSES	CP-QP-16.0	14		13 of 14

· TEXAS UTILITIES GENERATING CO		K STEAM ELECTRIC		NCR No	
in Clint	1100				700
NONCONFORMING CONDITION	1	1		- !	- Land 11
REFERENCE DOCUMENT			RčV	PARA	DATE
QE REVIEW/APPROVAL] DA	TE	
ACTION ADDRESSEE	REPAIR	USE AS IS	DEPARTM	/ I	
ACTION ADDRESSEE	REPAIR	USE AS IS	DEPARTM	/ I	
ACTION ADDRESSEE DISPOSITION REWORK	REPAIR	USE AS IS	DEPARTM	/ I	DATE / /
ACTION ADDRESSEE DISPOSITION REWORK ENG. REVIEW/APPROVAL	DATE:	ANTT REVIEW A	DEPARTM	/ I	DATE / / DATE
ACTION ADDRESSEE DISPOSITION REWORK ENG. REVIEW/APPROVAL	DATE:		DEPARTM	/ I	DATE / /

TEXAS UTILITIES GENERATING CO.	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
CPSES	CP-QP-16.0	14		14 of 14

ATTACHMENT 3

TO BE AND THE COMPILED COMPINDO COMPILED COMPILED COMPILED COMPILED COMPILED COMPILED COMPILE				The second name of the second	-	-	The second secon				
		MONCONFORMING CONDITION		_	-	ACT TON ADDRESSEE	-			OF REVIEW	
							-	1		300	5
					T			+	1	-	
	+							+	1	1	_
								-			
	-		1	1	1	1					
								-			
	-		1	1	1	1			,		
					_						
	-		-	1				-			
	+				1			-			
								-		-	L
	+							-			
								+			1
	+		+	1	1						
						_		-			
	-		+	1	+	1					
	+		+	1	+	1					
3								4			
3				\dagger	+	1	+	+	1		
	*	***		t day.				+	1		

TEXAS UTILITIES GENERATING CO. CPSES	INSTRUCTION	REVISION	ISSUE DATE	PAGE
	QI-QP-11.3-26	22	JUN 8 1984	1 of 9
ELECTRICAL CABLE INSTALLATION INSPECTIONS	PREPARED BY:	est()	rofts	6-7-84 DATE
	APPROVED BY:	Ambi.	feldt.	6-7-84 DATE

1.0 REFERENCES

- CP-QP-11.3, "Electrical Inspection Activities" 1-A
- CP-QP-18.0, "Inspection Report" 1-B
- CP-OP-16.0, "Nonconformances " 1-C
- 2.0 GENERAL
- PURPOSE AND SCOPE 2.1

FOR INFORMATION ONLY This Quality Instruction supplements Reference 1-A and is established to assure the adequacy of Class 1E electrical cable installations at Comanche Peak Steam Electric Station.

- 3.0 INSTRUCTION
- 3.1 INSPECTION FREQUENCY AND SCOPE

The frequency of inspection efforts, as a minimum, shall be established within this instruction or its daughter documents. The QC Supervisor or his designee may direct inspection to a greater frequency should circumstances warrant this action.

The complexity of particular cable installations may vary; the following are the required minimum inspection frequencies:

Class 1E raceways will be verified to be free from cable pulling hazards; It is acceptable to pull cable in cable tray which has Thermo-Lag applied without removal of Thermo-Lag. Quality Control verification of tray section has been established prior to installation of Thermo-Lag.

TEXAS UTILITIES GENERATING CO.	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
CPSES	QI-QP-11.3-26	22	JUN 8 1984	2 of 9

- b. Class 1E cables not requiring tension monitoring--This Instruction authorizes a monitoring of <u>all</u> Class 1E cable pulling operations.
- Class 1E cables requiring tension monitoring device--QC shall witness that the maximum allowable tension is not exceeded. In addition, QC shall provide a continous monitoring of the cable pulling operations.
- d. Class 1E cable installation will be verified to be free from damage, properly identified, maintained spacing if required and tied down.
- e. Prior to any NIS triaxal cable installation, the Electrical QC Inspector shall verify that the cable has been in Class "A" storage for a minimum of 48 hours and the cable reel test is complete.

3.2 DOCUMENTATION

Inspection results shall be documented on the Inspection Report (Figure 1, 2, 3, 4 or 5) in accordance with Reference 1-B.

If a cable is partially pulled, the Inspector shall accurately describe in the space provided (Item #7) of the Inspection Report, the raceway(s) through which the cable had been pulled. If no deficiencies are noted, except incomplete processing of the cable, no entries will be made in the "Sat-Unsat" attribute blocks, items 1 through 6, of the IR. Item #7 shall be checked "Unsat", signed and dated by the inspector in the spaces provided. To prevent further processing of the incompleted cable, the QC Inspector shall apply a "hold" tag to both ends of the incompleted cable. A brief explanation should be noted in the "Remarks" section of the IR showing why the cable was partially pulled.

The QC Inspector completing the cable pull shall check all attributes on the IR (Sat - Unsat - NA) and process the IR in accordance with Reference 1-B.

If cable is reworked (cable physically moved in raceway) it shall be documented on the appropriate Inspection Report. The portion of the route pulled back shall be described in the remarks section. If cable was completely repulled through the entire raceway, "complete re-pull" shall be noted in remarks.

TEXAS UTILITIES GENERATING CO.	PROCEDURE NUMBER	REVISION	ISSUE DATE	PAGE
CPSES	QI-QP-11.3-26	22	JUN 9 1984	3 of 9

Handling of revisions to cable cards when the new card set is received with changes which do not affect the actual installation, such as a new card showing a change in system number, will have the information from the old card transferred to the new card and the revision number of the old cards noted on the new card by craft. This information is to be reviewed for accuracy by QC and this review documented on Figure 4 for filing in vault. The new set of cards are now handled as completed, the old card may be destroyed.

3.3 DISCREPANCIES

Discrepancies found during inspection shall be documented on the IR (Figures 1, 2, 3, 4 or 5) and/or a NCR per References I-B and I-C respectively, as directed by the QA/QC Supervisor.

TUGCO OA

TEXAS UTILITIES GENERATING CO.	INSTRUCTION NUMBER	REVISION	ISSUE DATE	PAGE
CPSES	QI-QP-11.3-26	22	JUN 8 1984	4 of 9

FIGURE 1

	CABLE INSTALLATION - CABLE .	-		RMs
PECNO.	NEV. REP 3.C COC & NEV & CHANGE NO. MEASURE CR TEST	234	DATE	
IN MOCES	SIN PRE INSTALLATION INSTALLATION FINAL	D P	ME TEST	
MSP. RESULTS				
INSPECTION	COMPLETED, ALL APPLICABLE ITEMS SATISFACTORY			MIE
- INSPECTION	COMPLETED, UNSATISFACTORY ITEMS LISTED BELOW			M/E
ITEM NO.	INSPECTION ATTRIBUTES	SAT	DATE	SIGNATUR
1.	Verify Cable Pull Card (Refer to QI-QP-11.3-26.2)			1
	A. Multiple pull required			
	B. Calculation sheet required	-		1
2.				
	A. Verify Cable Color and Type			
	R Cable Free of Defects			
	C. Verify NIS Cable Reel Test is Complete			
	D. Verify Triaxial Cable installed Inside Containment			
	is Tefzel Insulated			1
	E. Verify Triaxial Cable Installed Outside Containment			
	is XLPE Insulated			
3.	Verify Conduit Raceway Swabbed (Refer to 01-QP-11.3-26.4	-	+.	-
4.	Monitor Cable Pulling "Set-Up" (Refer to 01-QP-11.3-26.5			
	A. Monitor immediate cable pulling is free of			
	! pulling hazard			
	B. Verify tension device properly calibrated and			
	properly attached (if required)	-	-	1
5.	Verify Cable Pulling Operations (Refer to QI-QP-11.3-26.	6)		1
	A. Verify cable lubricant is Engineering approved	1		
	(if required)			
	B. Witness Tension Device (if required)			
	1) Actual tension witnessed:			
	2) Maximum tension allowed:			
	C. Verify cable pulling operation (routing)			
	D. Ensure that cable oull boxes are actually utilized			
	E. Verify cable did not sustain damage as a result			
	of the process			1

TEXAS UTILITIES GENERATING CO. CPSES INSTRUCTION REVISION ISSUE DATE PAGE QI-QP-11.3-26 '22 JUN 8 1984 5 of 9

FIGURE 1 cont.

COMMANCHE PEAK STEAM ELECTRIC STATION

Sheet 2 of 2 (SUPPLEMENTAL) FOR FULL HEADINGS, SEE SHEET 1 NO. HO. INSPECTION ATTRIBUTES 1 F. Verify cable slack is acceptable where required. G. Verify proper cable spacing for power cables.H. Verify cable tie down is acceptable. Verify cable identification is acceptable.
 Verify cable is routed per cable pull card. Yerify compliance with seperation requirements. (Refer to QI-QP-11.3-26.7) Partial Pulls Refer to QI-QP-11.3-26

Cable # was partially pulled. through.
All attributes listed above. Beginning Raceway (I through 6) are satisfactory, unless marked otherwise. QC INSPECTOR: Date: REMARKS: (DWGS, SPECS, ETC.) Reel no. WELLTED HER HE I.A. CLOSED SIGNATURE. OC MEMECTOR

ISSUE INSTRUCTION REVISION PAGE DATE NUMBER TEXAS UTILITIES GENERATING CO. CPSES 8 1984 JUN 22 6 of 9 QI-QP-11.3-26 FIGURE 2 COMMICHE PEAK STEAM ELECTRIC STATION REPORT INSPECTION ECTION CABLE & SYSTEM / STRUCTURE DESIGNATION EM DESCRIPTION ELECTRICAL CABLE INSPECTION TEST EQUIP. IDENT_ NO. N/A QI-QP-11.3-26, Rev. PRE INSTALLATION | METALLATION PRE TEST FINAL IN MOCESS MER RESULTS MSPECTION COMPLETED, ALL APPLICABLE ITEMS SATISFACTORY OC INSPECTOR DATE THEFECTION COMPLETED, UNBATISFACTORY ITEMS LISTED BELOW QC INSPECTION ATTRIBUTES SHATURE Verify raceway acceptable for cable pull (y) 1 (Refer to 01-09-11.3-26.1) Verify no pulling hazards Verify raceway identification Evaluation of OA Hold Tags applied. (V) 2. Verify Cable Pull Card in agreement with Revision Code E1/E2-1700, Section 98. (Refer to 01-09-11.3-26.2) (V) 3. Verify unscheduled pull boxes (Refer to GI-QP-11.3-26.5) (Y) 4 Verify compliance with separation requirements (Refer 01-09-11 3-26 7) REMARKS (DWGE, SPECS, ETC.) LATED NCR NO. SIGNATURE. LR. CLOSED OC MISPECTOR

- TUGCO OA -

UTILITIES	GENERATING CO.	INSTRUCTION NUMBER	REVISION			SSUE		PAC
CPS	SES	QI-QP-11.3-26	22	JI	JN	8	1984	7 of .
	789	Figure	3					
		E PEAK STEAM ELE			HET.		or	_
ITEM DESCRIPTION	ON	IDENTIFICATION NO.	SYSTEM / STRUC	TURE	DES			-
SPECINO.	REV. REF Q.C. DOC.	A REV. & CHANGE NO.	MEASURE OR TES	T EO	UIP. I		M#	
ES-100	3	3-26, Rev.	7	_	_			
IN PROCESS	PRE INSTALLA	TION INSTALLATION	FINAL		INS	EST		
INSP. RESULTS		y iday muha ka						
	COMPLETED, ALL APPLICAS		OC INSPECT	OR		DA	TE	-
	COMPLETED, UNSATISFACT	ONT ITEMS LISTED BELOW						10
ITEM NO.	1	NSPECTION ATTRIBUTE	ES	12 A 8	UNSAT	DATE	SIGNA	
1.	VERIFY CABLE REMOVA	AL OPERATIONS		12 01	3			- 13
		11.3-26.6)		1	1			
		,	Jura - Juraha	T				
		L BOXES ARE UTILIZED		15	1			-
		NOT SUSTAIN DAMAGE A	S A RESULT OF TH	12	H		-	
	C. VERIFY PROPER C	RIE IDENTIFICATION		+	H	-		
	D. VERIFY PROPER C			+	H			-
	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	CABLE TENSION PARAME	TERS WERE	+	1			
	NOT EXCEEDED			T				
	F. VERIFY CABLE EN	S ARE SEALED						
				1	П			
				+	H			
				+	H	-		_
				+	H			
				+	1			
				T				
				I				-
				1				
				+	H			-
REMARKS (DWG	S SPECS FTC)				Ш			-
IRN #	-,,,							
1101								
					_			- 16
RELATED NOR N	I.R. CLOS	ED D DATE	SIGNATURE	QC	INS	PECTO	•	_
REVIEW	ED BY:	LEVEL	DATE:					

TEXAS UTILITIES GENERATING CO. CPSES INSTRUCTION NUMBER REVISION ISSUE DATE PAGE QI-QP-11.3-26 QI-QP-11.3-26 122 JUN 8 1984 8 of 9

FIGURE 4

ECTRICAL C	ABLE INSTALLATION 2 CABLE # NEV. REF QC DOC. & REV. & CHANGE NO. MEASURE OR TES			R	40
IN PROCESS	PARE INSTALLATION INSPECTION FINAL INSPECTION		INS	PECTION	
BR RESULTS					Bive:
	COMPLETED, ALL APPLICABLE ITEMS SATISFACTORY COMPLETED, UNSATISFACTORY ITEMS LISTED BELOW OC INSPECT	OR.	_	DA	TE
17EM 40.	INSPECTION ATTRIBUTES	1 46	UNGAT	DATE	Q C SIGNATUR
		+	\vdash		
	Cable Card Revision	+	-		
	All Info on Previous Card Transcribed	+	1		
	(No Installation Change Required)	+	-		
	Revision Number of Old Card Noted:	+	-		
	Revision Number of New Card:	+	+		
-		+	H		
-		+	-		
		+	-		
		+	H		
-		+	+		
-		+	+		
		+	+		
-		+	+		
		+	-		
		+	H		
		+	-		
		+	+		
		+	H		
		+	H		
-		+	-		
		+	T		
MARKS (DINGS,	MG (E)				
(5-43)					
ATED NOR NO	I.R. CLOSED C DATE SIGNATURE		-		

TUGCO OA -

INSTRUCTION ISSUE REVISION PAGE DATE NUMBER TEXAS UTILITIES GENERATING CO. CPSES JUN 8 1384 22 9 of 9 QI-QP-11.3-26 FIGURE 5 COMMINCHE PEAK STEAM ELECTRIC STATION INSPECTION REPORT SYSTEM / STRUCTURE DESIGNATION RMS DENTIFICATION NO. ITEM DESCRIPTION Electrical Cable Install MET ac DOC. a REV. a CHAN EASURE OR TEST ES-100 QI-QP-11.3-26 R. N/A FINAL IN MOCESS PRE INSTALLATION | INSTALLATION PRETEST INSPECTION MER RESULTS MENECTION COMPLETED, ALL APPLICABLE ITEMS SATISFACTORY GC INSPECTOR INSPECTION COMPLETED, UNSATISFACTORY ITEMS LISTED BELOW ITEM NO. INSPECTION ATTRIBUTES (V) Verify Cable Identification Change TO: Cable changed from: b. Revcode: DCA: (V) Verify color code Verify cable type (V) REMARKS (DWGS, SPECS, ETC.) MELATED HER HO SIGNATURE. I.R. CLOSED C. OC INSPECTOR REVIEWED BY: LEVEL DATE: - TUGCO OA

Marie Jane

Gibbs & Hill, Inc.

11 Penn Plaza New York, New York 10001 212 760- 4438 Domestic: 127636/968694 International: 428813/234475 1-84012 6108 COPY TO

June 14, 1984 CYGNA

DATE LOGGED:

CROSS REF. FILE

JOB NO :

LOG NO .:

FILE:

GTN- 69118

A Dravo Company

Texas Utilities Generating Company Post Office Box 1002 Glen Rose, Texas 76043

Attention: Mr. J. B. George,

Vice President/Project Gen. Mgr.

Gentlemen:

TEXAS UTILITIES GENERATING COMPANY COMANCHE PEAK STEAM ELECTRIC STATION G&H PROJECT NO. 2323 PHASE 3 CYGNA PIPE SUPPORT QUESTIONS WOS-046/DOW-3464

84042

2.1.1 Inc. UK

2.1 me. of Log

In accordance with your telecon request of June 12, 1984, we are sending the attached in response to Item 4 of the telecon.

Very truly yours,

& HILL, Inc.

Robert E. Ballard, Jr.

Project Manager

REBa/ELB/PTH: gw 1 Letter

cc: ARMS (B&R Site) OL

S. Grace/J. Minichello (TUSI Site) 1L, 1A

P.M. Milam/F. Bleck (TUSI/NY) 1L

March 14, 1984

Revision A April 27, 1984

Item 8(i)

BASIS FOR ESTABLISHING ALLOWABLE LOADS ON RICHMOND INSERTS

Recommended allowable tension loads by the Richmond Screw Anchor Co. are based on tension tests conducted at the Polytechnic Institute of Brooklyn in 1957. Two tension tests each were performed on 1" @ and 15" @ inserts in concrete test blocks with moderate reinforcement with the following results:

1" 0 15" 0 2850 psi 2950 psi Avg. Conc. Strength 65000#* 25050# Avg. Ultimate Load Bolt Conc. Failure Mode threads pullout

*Ultimate strength of 13" Ø insert mechanism or of concrete failure cone not determined.

Richmond's recommended allowable tension loads are based on their average ultimate test loads and a factor of safety which has varied over the years, i.e.,

Richmond	Recommended	Allowable	Tension	Load (F	actor
Bulletin	1"0	15"0		of	Safety
#6, 1961	11.0k(2.3)	25k (2.6)			
# 6, 1971	10.0k(2.5)	25k (2.6)			
# 6. 1975	8.27k(3.0)	21.67k(3.	0)		

Design Approach - It was recognized that the CPSES 4000 psi design concrete strength, being significantly greater than the nominal 3000 psi concrete used in the Richmond tests, would result in higher ultimate capacities for the inserts than the Richmond test values. It was also evident very early in construction that the concrete strengths actually being achieved were between 4500 and 5000 psi, which would further increase the ultimate capacity of the inserts. In addition, the heavier surface seinforcement used in

FOR LAWTER'S ATTEMPTOR ONLY

MAVivirito (JLEichler (2) RIotti (Ebasco), JFinneran (TUSI), ELBezkor, PTHuang, CMJan, REBallard, SMMarano/TDHawkins/077 the actual construction at CPSES as compared to that used in the test blocks for the Richmond tests would tend to result in yet higher concrete pullout cone tensile strengths. The design approach used was to calculate the ultimate insert capacity based on 4000 psi using the ultimate concrete tension value 4% f'c over the projected area of the postulated cone pullout, where Ø = 0.65 as recommended in ACI 349, Appendix B and, checking for an equivalency to the actual test results. Because of the conservatism inherent in discounting the high concrete strength test values being achieved and the effects of heavier surface rebar described above, a factor of 2 was applied to these values to establish allowable loads. On this basis there is good agreement between the Richmond test values and the calculated ultimate load:

	Richmond Test Load	Ø = 0.65 f'c = 4000, Safety For Calculated Ultimate Load	Allowable Load
Size	25.05k	23.1k	11.5 ^k
		62.6k	31.3k for
15"0	65k	62.6~	A325/A490 28.1k for A307/A36

However, the tabulated values in A above, do not consider that the Richmond test results would indicate an actual Ø = 0.84 and that f'c at CPSES was significantly higher. A more accurate safety factor considering these higher values is shown in B:

B. Estimated Ultimate Tensile Loads & Safety Factors

Size		Allowable Load	Est. Ult. Lo	4500 ps1	3000 PEE
1"0		11.5k	29.8k(2.6)	31.6k(2.7)	33.4k (2.9
		31.3k	80.9k(2.6)	85.8k(2.7)	90.4k(2.9
		(W/A325,A4	90 Bolt)		1k12
	.84*	28.1k (w/A307,A36		85.8 ^k (3.0)	90.4" (3

*Used 1 % value as calculated % of 0.79 for 15 % based on bolt thread failure not concrete pullout.

Thus the actual minimum safety factors range from 2.6 to 2.9 for 4000 psi concrete to 2.9 to 3.2 for 5000 psi concrete. An evaluation of the concrete strength tests indicates that the actual minimum design strength of the concrete produced at CPSES is about 5500 psi.

The estimated loads in B, are based on concrete considerations only. Actual ultimate capacities of 1"Ø and 1½"Ø inserts have not been determined by the manufacturer. However, the following results, obtained from tests conducted for other purposes provide some insight into the capacity of the inserts.

TOP DISCOVERABLE

- 1. Two tensile tests on 15 mg inserts were run for Richmond on 11/18/76 to establish the capacity of threaded rods. These tests were run only to predetermined levels of 70 and 72 kips respectively, not to failure. These values are both above the 65 kip Richmond test load for the 15 mg insert.
- Shear tests were conducted on 15" inserts in March, 1983 at CPSES and were run to between 88.1 kips and 95.4 kips without failure of concrete or insert.
- 3. Tests run on 1½ 0 inserts on 8/23/79 at PCA for Richmond indicated that one insert failed by simultaneous pullout and insert failure at 91.4 kips.

A similar approach was taken to establish allowable shear values for the 1°0 and 1½°0 Richmond inserts. Shear tests conducted by Richmond in 1965 on 1°0 inserts an average load at failure of 27 kips. Failure mode was by shearing of the bolts. Allowable shear values were established based on AISC bolt values for the materials used, but were not permitted to exceed the allowable tension loads in A, above. As shear tests did not involve concrete failure, the concrete shear capacity of the insert could only be estimated using f'c = 4000 psi and assuming 0 = 0.84 as for tensile loads discussed above. Finally, shear tests conducted in 1983 on 1½°0 inserts indicated that ultimate capacities were governed by bolt material, and varied between 88.1 and 95.4 kips. Ultimate capacity of the insert and of concrete in shear were not reached.

C. Allowable and Ultimate Shear Capacities and (Safety

Size	Factors	Allowabl	e Loads	Est. Ult. Conc. Shear Strength 4000 psi/0=0.84	Test Ult.
		Richmond	CPSES		
1"0	A-307	8.0 ^k	7.85 ^k	29.7 ^k (3.8)	-
1"Ø	A-325	_	11.5k	29.7 ^k (2.6)	
15"9	A-307	18.0 ^k	17.67 ^k	80.5 ^k (4.6)	88.1-95.4 (5 5
15"9	A-325	-	26.51 ^k	80.5 ^k (3.0)	88.1-95.4(3

To put the factors of safety utilized for the Richmond anchors at CPSES in perspective, it is useful to look at the factors of safety required by the FSAR (and NRC Standard Review Plan) for steel and concrete structures. (See FSAR paragraphs 3.8.3.3.2, 3.8.3.3.3, 3.8.3.5.2 and 3.8.3.5.4). These safety factors can be as low as 1.56 for concrete and 2.0 for steel under normal and upset load conditions when compared to the ultimate strength of the materials.

of safety for the CPSES Richmond inserts, their reliability should be considered. The manufacturing process for the inserts furnished for CPSES use is controlled by QA/QC procedures to assure that the anchor material and fabrication conforms to or exceeds requirements necessary to assure material capability to meet capacity requirements. Construction procedures and tolerance requirements are controlled by site QA/QC regulations. Failures to meet these procedures and requirements are visually identified upon removal of concrete forms. When out-of-tolerance placement or improperly consolidated concrete around the insert is observed, corrective action or abandonment of the insert is required.

Gibbs & Hill, Inc.

Calculation Cover Sheet

SH. 1

G&H Job	No. 2	323		•		Client		TUGCO
Calculation	on Number	565	- 1	228	c	SET	*	1
Number	of Sheets in	Original Is	sue	1	To	10		
Subject	RICHM	GNO	INSE	ERT	0	PAPACIT	IE	5

- Muclear Safety Related
- □ Non-Nuclear Safety Related QA Program Applicable
- □ Non-Nuclear Safety Related

	Sheets	Sheets	Sheets	Job Engi	neer
	Sheets Deleted	Sheets Added	Sheets Revised	Signature	Date
Original				5/ Parla	3 -13-84
T					
			The state of the state of		
				Albert Awar	
		le de la constant	100 to 120		
Hevision					
1 1					
		100000000000000000000000000000000000000			
			100		
1 1		Activities to the second	The second section in		

F-167 4-81

Gibbs & Hill, Inc. Job No. 2323 Client TUGC.
Subject Richmond Input Capacities
Calculation Number 565 - 2286 557 #1 Sheet No. 2

Revision	Organs	Dete	Rev.	Dete	Rev.	Dete	Rev.	Dete	Rev.	Dette
Pectury destroo	1			><		><		$>\!\!<$		><
Preparer	4024	3/8/64								
Checker	18	3-9-84								

Purpose: The purpose of This calculation no to shallish The design basis, the design approach and to evaluate the lone. alternate & allowable loads for The 1" of \$112" of Rechmond Inputs.

References: 11) Cook Leguerement- for Nuclear Sefety
Related Concotte 5 touctures - ACI. 349-80
Appendix B

- (2) Richmond Balletin * 6, 1961, 1971 * 1975 proting
- 1) Test Report by Polytechnic Implatelete of Brooklyn on 1" & # 11" + Richmond Input dated 10/11/57 \$ 12/20/57
- 14) Letter from Mr. Harry B. Lanulot of
 Richmond Screw Anchor Co. Inc to Mr Oily;
 Patenthar of 5+H at Commode Part dated
 1/3./44

Revision	Orgna	Date	Rev.	Date	Rev.	Date	Rev.	Date	Rev.	Dette
Declary Marroe	01					><		\sim		><
Preparer	774	3/8/84						1		+
Checker	JB	3-9-84								-

The following is a summary of reference 13) test report FOR 1" & Richmond Input

Ave. Come Strengths:

2850 pai

Are. Ultimote (test) load: \$ (24600+ 25500)= 25050 A Failure Mode : concrete pullont

For 12" & Richmond Insut

Are. Come. Strong on:

2950 per

Are Ult. (tot) load: \$ (65500 + 64500) = 65000 \$

Failure Mode :

Both Threads (reference 4) Note: Ullimate strong th of Input

mechanism or of concrete failure come mit determined

Design Basis, Drugn Approach and the Capacity Values

- The Richard Allowables for the COSES project is estilled based on 4000 psi concrete strength which is the diagn concrete strength most for the entire project.

- The ultimate concrete pullout capacity is - based on reference (1) recommendation

... The allowable concrete pullout capacity is based on The alternate capacity divide by 2 recognizing the following inherent empervations (1) Actual tot looks (on waker conc.) are higher than the design pullant strongth (on storager conc.) 12) The actual emerete strength is higher than the design enc strength of 4001 pai (3) Heavier purpose rebare used in the plant explaction than that of the test specimen. F-166, 7-82

FOR LAWYER'S ATTRIFION ONLY

NOT DISCOVERABLE

Gibbs & Hill. Inc. Job No. 2322 Client Tugco

Subject Rehmonal Input Capacitus

Calculation Number 5C5 - 228 C SET* | Sheet No. 4

Revision Com Doil Rev. Doil

Pd = 4 \$ Tfi Ac

fi' = Specified compressive strength of Court

Ac. Effective stress area which is defined by the projected area of stress come radiating Toward the attachment from the bearing edge of the anchor

For 1" & Richmond Input

Pd = 4 + If Ae = 4 x 0.65 × 4000 x 140.4 = 23087 4

7 he allowable load is PA = 1 PA = 11544"

Mae Pg = 11500"

Checking Method # 1 tre by the creamy cale. on broke Ses-17c put 1 slats \$1343, all fails Checking Method # 1 tre by the creamy needs compared F-166, 7-82

GIBBS E HIII, Inc. Job No. 2323 Client Tug Co Subject Richmond Ingert Copacities Calculation Number SCS - 228 C SET * 1 Sheet No. 5

Revision	Compres	Deste	Rev.	Date	Rev.	Date	Rev.	Date	Rev.	Date
Dessery	2			$>\!\!<$		$>\!\!<$		><		><
Preparer	BX	3/8/84								
Checker	J'B	3-9-84								

- For 12" & Richmond Input

Ac = 71 (11. 125)2- 7 (3.25)2

= 380.53 in 2

Pd = 4 + Jfi' Ae = 4 x 0.65 Jano x 380.53 m = 62574 #

The allowable had ne

Pa = 1 Pd = 31287 " MSE 31300 "

Establishment of Allimate Lorado & Safety factore

The above design allowables are calculated based on ACS 349 Appendix B formale using Their recommended of value (0.65). However, by comparing with the test result values (reference 3), it so observes that the operation was the calculation is two comparing that the possible used in the calculation is two compensative since The calculated concrete pullent strength for a 4000 pai concrete is less than that of a 2850 pai concrete. Therefore, a more realistic of is derived based on the actual test result and this calculated of value is used to establish the theoretical estimate altimate loads.

Gibbs & Hill, Inc. 2323 Client Job No. Subject Richmond input Capacities Calculation Number SCS - 228 C SET* | Sheet No.

Revision	Crepros	Date	Rev.	Deze	Rev	Date	Rev.	Dete	Rev.	Dette
Decory Market	7	><		><		><		><		><
Preparer	BX	¥8/84								
Checker	JB'	3-9-64			Part No.					

For 1' & input

PT = 4 \$ TE AC

where P = test or actual pullont strength

= 25050 4

fe = test or actual concrete compressive streng th

= 2850 pai

Al = projected area of the postulated come pullout

= 140.4 in

\$ = \frac{P_T}{4 \sqrt{fi'Ae}} = \frac{25050}{4 \sqrt{2850 x K40.4}}

= 0.836 use \$=0.84

For 15" & ment

PT = 65000 "

fi' = 2950 poi

Ae = 380.53 m

\$ = \frac{65000}{4\sqrt{2950} \cdot \cdot

However, the failure mode for This size upent is bolt thread failure not concrete pullant . The pullat capacity would be higher Than 65000", Thus use \$ = 0.84 for This sign report also

Checking Method #

Gibbs & Hill, Inc. Job No. 2323 Client Tug Co Subject Richmond Input Capacities Calculation Number SCS-228 C SET# | Sheet No. 7

Revision	Organia	Date	Rev.	Dete	Rev.	Deste	Rov.	Deste	Rev.	Date
Section 3	01			$>\!<$		><		$>\!\!<$		><
Preparer	154	8/6/84								
Checker	JB	3-9-84								

The estimate lone . Ultimate load can be calculated by using the following formale

The following table lists the concrete altimate boad and the corresponding factors of safety (for the barying fe) for the 1" of 411" of uponto

** Design allowable for 12" + supert with A 307 or A36 bolt is 28.1 " see G+H spec. 2323-55-30 rev. 1

FOR LAWNER'S ATTENTION ONLY

Signed:

Louis J. Pigutaro

Asst. Professor of Civil Engineering

PREP.

12/20/57

for

Richmond Screw Anchor Co., Inc.

CHCK'D. BY JB3-9-8.

1 1/2" x 9 1/2" Richmond E.C. Type Insert (six struts) with machine thread coil pulled from 18" x 18" x 12" concrete block by means of 1 1/2" x 36" Anchor Stud Bolt with nuts. The setback of the insert in the concrete was 1/8". The concrete block was heavily reinforced with a cage 14" square and 12" high. The cage was made of .442 wire spaced 5" o.c. in the horizontal direction and 6" o.c. in the vertical direction. The strength of the concrete

was 2950 p.s.i., and the slip dial indicator was zeroed in at a load of 2000 lbs.

Failure occurred in both specimens due to a shear failure of the machine threads on the anchor stud and in the insert. There was no evidence whatsoever of the insert pulling out of the concrete block. Prior to failure,

four fine cracks emanated from the insert on the top of the block on both specimens. The first crack appeared with a load of about 48000 lbs. on

both specimens.

6 0 0 10 0 112 0 114 0 116 0 118 0 1		2 6 8 10 12 14 16 18 20 22 24	No. 2 Slip, in. 0 0.017 0.035 0.048 0.058 0.068 0.077 0.086 0.095 0.103 0.111 0.119			-9 : -
2 4 0 6 0 8 0 10 0 12 0 14 0 16 0 18 0 20 0 22 0 24 0 26 0 28 0 30 0 32 0 32 0 34 0 36 0 40 0 42 0 44 0 46 0	0 0.011 0.022 0.031 0.039 0.047 0.054 0.061 0.067 0.072 0.080	2 6 8 10 12 14 16 18 20 22 24	0 0.017 0.035 0.048 0.058 0.068 0.077 0.086 0.095 0.103 0.111		-	-9:
6 0 0 8 0 0 10 0 112 0 0 114 0 116 0 118 0 0 118 0 0 118 0 0 118 0 0 118 0 0 118 0 0 118 0 0 118 0 0 118 0 0 118 0 0 118 0 0 118 0 0 118 0 0 118 0 0 118 0 1	0.011 0.022 0.031 0.039 0.047 0.054 0.061 0.067 0.072	8 10 12 14 16 18 20 22 24	0.017 0.035 0.048 0.058 0.068 0.077 0.086 0.095 0.103 0.111			INSERT
6 0 0 10 0 112 0 114 0 116 0 118 0 1	0.022 0.031 0.039 0.047 0.054 0.061 0.067 0.072 0.080	8 10 12 14 16 18 20 22 24	0.035 0.048 0.058 0.068 0.077 0.086 0.095 0.103 0.111			INSERT
8 0 10 0 12 0 14 0 16 0 18 0 20 0 22 0 24 0 26 0 30 0 32 0 32 0 34 0 36 0 36 0 36 0 40 0 42 0 44 0 45 0	0.031 0.039 0.047 0.054 0.061 0.067 0.072 0.080	8 10 12 14 16 18 20 22 24	0.048 0.058 0.068 0.077 0.086 0.095 0.103 0.111			INSERT .
10 0 0 12 0 14 0 16 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.039 0.047 0.054 0.061 0.067 0.072 0.080	10 12 14 16 18 20 22 24	0.058 0.068 0.077 0.086 0.095 0.103 0.111			
12 0 14 0 16 18 0 18 0 18 0 18 0 18 0 18 0 18 0	0.047 0.054 0.061 0.067 0.072 0.080	12 14 16 18 20 22 24	0.068 0.077 0.086 0.095 0.103 0.111			
14 0.16 0.18 0.18 0.20 0.20 0.22 0.24 0.26 0.30 0.32 0.32 0.34 0.36 0.36 0.40 0.42 0.44 0.46 0.48 0.48	0.054 0.061 0.067 0.072 0.080 0.085	14 16 18 20 22 24	0.077 0.086 0.095 0.103 0.111			
16 0. 18 0. 20 0. 22 0. 24 0. 26 0. 28 0. 30 0. 32 0. 34 0. 36 0. 36 0. 40 0. 42 0. 44 0. 46 0. 48 0.	0.061 0.067 0.072 0.080 0.085	16 18 20 22 24	0.086 0.095 0.103 0.111			
18 0. 20 0. 22 0. 24 0. 26 0. 30 0. 32 0. 34 0. 36 0. 36 0. 40 0. 42 0. 44 0. 46 0. 48 0.	0.067 0.072 0.080 0.085	18 20 22 24	0.095 0.103 0.111			
20 0. 22 0. 24 0. 26 0. 28 0. 30 0. 32 0. 34 0. 36 0. 36 0. 40 0. 42 0. 44 0. 46 0. 48 0.	0.072 0.080 0.085	20 22 24	0.103 0.111			
22 0. 24 0. 25 0. 28 0. 30 0. 32 0. 34 0. 36 0. 36 0. 40 0. 42 0. 44 0. 45 0. 48 0.	0.080	22 24	0.111			
24 0. 26 0. 28 0. 30 0. 32 0. 34 0. 36 0. 40 0. 42 0. 44 0. 46 0. 48 0.	.085	24				
26 0. 28 0. 30 0. 32 0. 34 0. 36 0. 36 0. 40 0. 42 0. 44 0. 46 0. 48 0.			0.119			
28 0. 30 0. 32 0. 34 0. 36 0. 38 0. 40 0. 42 0. 44 0. 46 0. 48 0.	7. UJI					
30 0. 32 0. 34 0. 36 0. 38 0. 40 0. 42 0. 44 0. 46 0. 48 0.	.096	26	0.126			
32 0. 34 0. 36 0. 38 0. 40 0. 42 0. 44 0. 46 0. 48 0.	.101	28	0.135			
34 0. 36 0. 38 0. 40 0. 42 0. 44 0. 46 0. 48 0.	.106	30	0.143			
36 0. 38 0. 40 0. 42 0. 44 0. 46 0. 48 0.	.111	32	0.152	FOR I		
36 0. 40 0. 42 0. 44 0. 46 0. 48 0.	.117	34	0.159	a Cht	AND DESCRIPTION	TITON COLL
40 0. 42 0. 44 0. 46 0. 48 0.		36	0.170		MOD DISCOVE	TABLE
42 0. 44 0. 46 0. 48 0.	.121	38	0.178			
44 0. 46 0. 48 0.	.127	40	0.188			
46 0. 48 0.	.132	42	0.197			
48 0.	.138	44	0.206			
	.147	46	0.217			
	.169	48	0.437			
	.537	50	0.520	-0.001		
THE RESERVE TO SERVE THE PARTY OF THE PARTY	.608	52	0.659	.0		
	.675	54	0.690	Lau	J. Pigni	tour
	.748	56	0.739 Sign	ed:	0170	
58 O. 60 O.	.830	58	0.929		Louis J. Pignat	

Ultimate Load = 65500 lbs. Ultimate Load = 64500 lbs.

POLYTECHNIC INSTITUTE OF BROOKLYN

	DEPARTMENT	NOT DISCOVEMENTE
BY L.P. DATE	SUBJECT Test Report	SHEET NO
TEST DATE	for	JOS NO
	Richmond Screw Anchor Co., Inc.	

Product: Richmond 1" diameter E.C.-2 Structural Concrete Insert sheared from 18"

x 18" x 12" concrete block by means of a testing plate: 45" long, 3 1/2"

wide, 1 1/4" thick. The block was clamped on top of the testing machine

with two 4" x 4" x 3/4" bracing angles. The insert was placed at the

center of the 18" x 18" face and installed flush with the surface of the

concrete. The concrete block was reinforced with a .440 wire mat, 6" x

6" center opening, located at mid-depth of the block. The strength of

the concrete was 3220 psi, and the slip dial indicator was zeroed in at

a load of 2000 lbs. The testing bolt was snugly tightened using a 12"

monkey wrench. The shear load was applied perpendicular to the plane

of the struts.

Failure occurred in both specimens due to a shear failure of the testing bolt at the face of the block. The concrete spalled in a 3" radius, semi-circular patch below the insert, and there was no further cracking of concrete.

Detail:

- TESTING PLATE		- 1
_=:=	-	WWW.

		Specimen	10 2 ···	123257
Speciance	No. 1			
Trad, kins	Slip. in.	Load, kips	sii, in.	
2	0	2	0 —	
	0.027	4	0.022	
	0.050	6	0.043	
	0.070	. 6	0.063	
30	C. 0E2	10	0.081	
	0.097	 12	0.100	." .
17	0.110	14	0.120	19
. 14		- 16	0.140	
16	0.123			
. 18	0.140	.78	0.162	
. 20	0.161	- 20	0.192	
22	0.214	. 22	0.265	
24	0.315	: 24	0.400	
26	0.445	.26	0.515	

Ultimate Load = 26,800 lbs .- Ultimate load = 27,200 lbs.

aue: 27,000

FACTOR OF SAFETY OF RICHMOND INSERT FOR CPSES BASED ON THE 1983 & 1984 FIELD TEST DATA

Background

The maximum working allowables for the 1°0 and 1 1/2°0 Richmond inserts recommended by the Richmond Screw Insert Anchor Co. in their Bulletin No. 5 are based on limited tension and shear tests conducted at the Polytechnic Institute of Brooklyn in 1957 and 1965. These test inserts were embedded in concrete with a nominal ultimate compressive strength of 3000 psi with minimal reinforcement.

The inserts at CPSES are embedded in concrete with a minimum ultimate compressive strength of 4000 psi (actual compressive strength is about 4500 psi) and more heavily reinforced. For this reason, G&H established the allowable values as shown in Specification SS-30 Appendix 3 which are moderately higher than those recommended by the Richmond Screw Anchor Co. Consequently, the G&H allowables result in a factor of safety of less than 3 when compared with the Richmond test loads. The basis and the methodology used in establishing the G&H allowables are explained in the response to ASLB question Item 8(i).

FIELD TEST PROGRAM

To put the factors of safety utilized for the Richmond anchors at CPSES in prospective and to establish the actual factors of safety, a series of controlled tests were performed utilizing the

same concrete mix and representative reinforcing steel as used for the plant construction. The test was in accordance with ASTM E-488 "Standard Test Methods for Strength of Anchors in Concrete and Masonry Elements."

Five tests each on shear tension and combined shear and tension were performed in April 1984 on the 1" \emptyset and 1 1/2" \emptyset inserts. Also, nine 1 1/2" \emptyset inserts were tested in shear in March 1983.

FACTORS OF SAFETY OF INSERTS

(a) Service Load Conditions (Normal & Upset Conditions):

Maximum allowable working loads specified in G&H Specification SS-30 are used and compared with the test failure loads to establish the factors of safety. These are the factors of safety against insert failures (failure of insert, insert shear cone or both). The factors of safety of the anchor bolts used with the insert are not part of the test program as the anchor bolt working allowables used in SS-30 are based on AISC specification allowable values.

The factors of safety for the service load conditions are above 3 for tension shear and the combined tension and shear test loads on the 1"Ø and 1 1/2"Ø inserts. Table A lists the factors of safety for each group of inserts. The factors of safety for the combined loads are based on insert interaction

formula given in SS-30 Appendix 3, Page 2 of 10.

$$\left(\frac{T}{T'}\right)^{4/3} + \left(\frac{S}{S'}\right)^{4/3} \le 1$$

Since the minimum factor of safety, in all cases, is above 3 which exceeds the Richmond's factor of safety recommendation of 3, the working allowables in SS-30 for Richmond inserts are well justified and are conservative.

(b) Factored Load Conditions (Emergency and Faulted Conditions):
Allowable loads under factored load conditions are higher than those of the service load conditions. Based on FSAR, for steel design, the factored load allowables are equal to 1.6 times the normal (service) allowable loads. By applying the same ratio on the inserts, 3 ÷ 1.6 the minimum factor of safety is reduced to 1.87 for the factored load conditions.

ACI-349 "Code Requirements for Nuclear Safety Related Concrete Structures", Appendix B - Steel Embedments Section B.8.1 and B.9.2 stated that "Design allowable shall be based on actual test data of tests performed on inserts embedded in concrete...., A Ø factor of 0.5 shall be applied to the average test failure loads in determining strength requirements." This implied that a factor of safety of 2 for insert for factored loads.

Similarly, ASME code allows increased allowable for the

factored loads. However, no specific values are given for the inserts.

Based on the above understanding, the recommended factor of safety for Richmond inserts under factored load conditions should be in the range of 1.8 to 2.0 and 1.8 as a minimum.

In 1992, G&H issued allowable loads for the Emergency and Faulted conditions for the 1"0 and 1 1/2"Ø Richmond inserts. These allowable loads are shown on DCA-15338. The factors of safety for these allowables against the test failure loads range from a low of 1.8 to a high of 4.5 which meet or exceed the recommended minimum factor of safety requirement for inserts under factored loads. Thus, the above DCA factored load values are justified and are valid for use. Table B lists in detail the factors of safety results.

F.S. OF R.I. UNDER

SERVICE LOAD CONDITIONS

Maximum allowable working loads specified in Specification SS-30 are used and compared with the test failure loads to establish the factors of safety.

GROUP A: BASED ON THE 1984 TEST

			ss-30	Test	*Failur	e
Size	Bolt Type	Load	Allowables	Failure Load	Mode	F.S.
	A307/A36	Tension	11.5 ^K	41.28 ^K	C&I	3.6
		Shear	7.85 ^K	40.28 ^K	B,I&C	5.1
1"Ø		Combined	11.5 ^K & 7.85	28.36 ^K	В	5.2
	A325/A490	Tension	11.5 ^K	41.28 ^K	CSI	3.6
		Shear	11.5 ^K	40.28 ^K	B,I&C	3.5
		Combined	11.5 ^K & 11.5 ^K	28.36 ^K	В	4.2
	A307/A36	Tension	28.11 ^K	101.96 ^K	B,I&C	3.6
1 <u>†</u> "Ø		Shear	17.67 ^K	94.34 ^K	В	5.3
		Combined	28.11 ^K &	63.47 ^K	B&I	5.0
	A325/A490	Tenson	17.67 ^K 31.3 ^K	101.96 ^K	B,I&C	3.3
		Shear	26.51 ^K	94.34 ^K	В	3.6
		Combined	31.3 ^K 26.51 ^K	63.47 ^K	B&I	3.7

GRCUP B: BASED ON THE 1983 TEST

Size	Bolt Type	Load	SS-30 Allowables	Test Failure Load	Failure Mode	F.S.
	A307/A36	Shear	17.67 ^K	61.83 ^K		3.5
1½"Ø						
	A325/A490	Shear	26.51 ^K	92.42 ^K	**	3.5

^{*} Failure Mode: B = Bolt; I = Insert; C = Concrete Cone

^{**} Tests were halted before failure.

F.S. OF R.I. UNDER

EMERGENCY (E) & FAULTED (F) CONDITIONS

Allowable loads as shown on DCA-15338 are used and compared with the test failure loads to establish the factors of safety.

GROUP A - BASED ON THE 1984 TEST

Size	Bolt Type	Load	Condition	DCA Allowables	Test Failure Load	*Failure Mode	<u>F.</u> §
	A307/A36	Tension	ESF	19.4 ^K	41.28 ^K	G&I	2.1
		Shear	E	8.78 ^K	40.28 ^K	B,I&C	4.€
1"Ø		Shear	F	9.7 ^K	40.28 ^K	B,I&C	4.2
1 9		Combined	F	19.4 ^K & 9.7 ^K	28.36 ^K	В	3.8
	A325/A490	Tension	E&F	22 ^K	41.28 ^K	C&I	1.9
		Shear	E	18.17 ^K	40.28 ^K	B,I&C	2.2
		Shear	F	18.85 ^K	40.28 ^K	B,ISC	2.1
		Combined	F	22 ^K & K	28.36 ^K	В	2.4
	A307/A36	Tension	E&F	45.12 ^K	101.96 ^K	B,I&C	2.3
		Shear	E	20.56 ^K	94.34 ^K	В	4.6
1 <u>†</u> "Ø		Shear	F	22.56 ^K	94.34 ^K	В	4.2
		Combined	F	45.12 ^K & 22.56 ^K	63.47 ^K	B&I	3.6
	A325/A490	Tension	ESF	58 ^K	101.96 ^K	B,I&C	1.8
		Shear	E	37.23 ^K	94.34 ^K	В	2.5
		Shear	F	42.4 ^K	94.34 ^K	В	2.2
		Combined	F	58 ^K & 42.4 ^K	63.47 ^K	B&I	2.2

1

GROUP B - BASED ON THE 1983 TEST

Size	Bolt Type	Load	Condition	DCA Allowables	Test Mode	Failure Mode	F.S.
	A307/A36	Shear	E	20.56 ^K	61.83 ^K		3.0
1½"Ø		Shear	F	22.56 ^K	61.83 ^K	**	2.8
	A325/A490	Shear	E	37.23 ^K	92.42 ^K		2.5
		Shear	F	42.4 ^K	92.42 ^K		2.2

-2-

\$

^{*}Failure Mode: B = Bolt; I = Insert; C = Concrete Cone

^{**}Tests were halted before failure.

ALLOWABLE LOADS OF 1/2" & RICHMOND INSERTS (EC6W) AND BOLTS TO BE USED IN INTERACTION FORMULAS FOR WALLS, SLABS & COLUMNS

I: INSERT CAPACITY B: BOLT CAPACITY

T: TENSION

S: SHEAR

		INSERT S	PACING ON	20"C/C BOT	H WAYS	15.5 (2.5)	SPACING ON	the second second like the	A CANADA DI ACADO
THICKNESS						A-307 BOLTS OR A-36 THD. RODS USED WITH INSERT		A-325 OR BETTER BOLTS USED WITH INSERT	
		7	S/	1	S/	T	S	T	8
101	I	25	25	25	25	The Factor Con-	A CONTRACTOR	31.3	
12" OR THICKER	8	2811	17.67	58.21	26.51	28.11	17.67		26.51

TABLE I (Contd.)

PAGE 70F 10

ALLOWABLE LOADS OF I"# RICHMOND INSERTS (EC2W) AND BOLTS TO BE USED IN INTERACTION FORMULAS FOR WALLS, SLABS & COLUMNS

I: INSERT CAPACITY B: BOLT CAPACITY T: TENSION S: SHEAR

				PACING OTH WA	YS	12"	12"C/C BOTH WAYS				INSERT SPACING ON 14 C/C OR MORE BOTH WAYS (FULL CAPACITY			
CONCRETE THICKNESS		A-307 BO A-36 THE USED W/	O. RODS	A-325 OF BOLTS I W/INSE	USED	A-36 TH	D. RODS	A-325 OF BOLTS U W/INSE	JSED	A-36 TH	OLTS OR ID.RODS /INSERT	BOLTS		
		T	S	T	8	T	S	T	8	T	S	T	S	
10" OR	I	6	6	6	6	8.85	8.85	8.85	8.85	11.5		11.5	11.5	
THICKER	B	12.11	7.85	24.23	#28	124	7.85	24.23	11.78	4	7.85			

TABLE I (Contd.)

<<- 2A

B = BOLT_	CA		INSER	T. SPAC	ING O	YS	OR MC		THWA	15
CONCRET			A307.80	LTS OR	BOLTS I	BETTER USED	A307BO A3GTHR USED W/	D MOUS!	DULID.	UDEL
		•	T	5	Т	5/	ा	S	. T	S
		E	_12	72-	12	-12		يَ	22	12
10"	I	F	_15	-12	12	.12			. 22	
THICKER	В	E	□19.4	8.78	48.36	18.17	19.4	8.78	1	18.1
		F	19.4	9.7.	50.18	18.85	19.4	9.7		18.8
	A	LL	OWAB!	ELC	ADS_	N-12"	\$.INS	ERTS		
			INSEF	ST SPAC	ING O	N	DRMO	T SPAC	AWHT	Y5
CONCRE			A3GTHE	RDRODS	A325 OR BOLTS	USED.	TARG TH	PLTS OR RD:RODS //INSERT	BOLTS	USED
			7	_5A	===	3/	T-	s		s
	1	E	-50	48.6	50	48.6			58	
	I	F	_50-	48.6	50-	48.6			58	
THICKER	В	E	45.12	20.50	98.45	37.23	45.12	20.56		37.2
	1	E	45.12	22.56	102.8	42.4	45.12	22.56		42.
FOR	IN:	SER	5: TA) ² +{- TA) ² +{- TA) ⁴ 3+ TA) TEN	SA)4/3	≤1	T/INSE	RT INSERT		10-6	8Z

DCA-15338

ATTACHMENT A

TEST REPORT

SHEAR TESTS

ON

RICHMOND 1 1/2-INCH TYPE EC-6W INSERTS

MARCH 30, 1983

Prepared by

Approved by

J.C. Gilbreth Civil Engineer

R.M. Kissinger Project Civil Engineer

TABLE OF CONTENTS

- 1.0 REFERENCES
- 2.0 GENERAL
 - 2.1 PURPOSE AND SCOPE
 - 2.2 RESPONSIBILITY
 - 2.3 TEST APPARATUS
- 3.0 PROCEDURE
- 4.0 RESULTS
- 5.0 CONCLUSIONS
- 6.0 APPENDICES
 - APPENDIX 1 - DRAWING NO. FSC-00464, SHT. 1
 - CONCRETE COMPRESSIVE TEST REPORT
 - APPENDIX 2 - TEST DATA SHEETS
 - APPENDIX 3 - LOAD-DEFLECTION CURVES

TEST REPORT

SHEAR TESTS

ON

RICHMOND 1 1/2-INCH TYPE EC-6W INSERTS

1.0 REFERENCES

1-A CP-EP-13.0 Test Control

1-B CP-EI-13.0-8 1 1/2" Richmond Insert Shear Tests

2.0 GENERAL

2.1 PURPOSE AND SCOPE

These tests were performed to determine the characteristics of Richmond 1 1/2-Inch Type EC-6W Inserts when installed in concrete representative of that used in the power block structures at CPSES and subjected to shear-type loading. The strength, deflections, and type of deformations produced by this loading were the qualities to be determined. This series of tests employed only 1 1/2"-Inch Type EC-6W Inserts subjected to shear loads.

2.2 RESPONSIBILITY

The tests were performed under the direction of the CP Project Civil Engineer. Witnesses to the tests were: A Nuclear Regulatory Commission (NRC) Representative from the Arlington, Texas Regional Office, the NRC Inspector stationed at CPSES, a TUSI site Quality Assurance representative, and other site engineering personnel.

2.3 TEST APPARATUS

The arrangement and details of the test apparatus are shown on Drawing No. FSC-00464, Sheet 1, included in Appendix 1 to this report. The insert specimens tested were taken at random from the Constructor's stock on site and were; therefore, representative of those installed in the plant structures. They were placed in a thick concrete slab cast specifically for these tests and which was composed of materials and reinforcement similar to those elements of the plant buildings. This is "4000-pound concrete" (28-day strength). The laboratory test report on the concrete of which this slab is composed is included here in Appendix 1.

An apparatus for applying shear loads to the specimens was designed and built on site. This facility employed a 60-ton capacity manually operated hydraulic ram whose thrust against a crosshead was transmitted by tension rods to a 1 1/2-inch thick shear plate bolted to the insert specimen. Base reaction of the ram was transmitted through a structural steel grillage to the outer face of the concrete slab. Ram thrust was determined by multiplying the fluid pressure (PSI), as indicated by a gauge on the pump, by a number equal to the ram piston area in square inches. Deflections were measured by a dial indicator mounted on a remotely anchored bracket and with its springloaded probe in contact with the specimen bolt head or bottom nut where threaded rods were used. These instruments bore valid stickers showing them to be currently in calibration.

3.0 PROCEDURE

In performance of the tests, inserts were cleaned of concrete mortar and other trash that would affect bolt thread engagement. The shear plate was attached to the specimen insert by a suitable length bolt or threaded rod of type shown on the test data sheets, Appendix 2. A new and different bolt was used for each insert. These fasteners were tighteded "snug tight". On three specimens the shear plate was attached in direct contact with the top of the insert. On six other specmens a 1-inch thick plate was inserted between the shear plate and the insert, representing the "washer" used frequently at this location in pipe hanger installation. Shear loads were applied by the ram by operation of the manual pump. As the load increased from zero (o), indications of fluid pressure (later converted to load) and bolt head deflection were read at regular intervals . These intervals were at 400 PSI on the pressure gauge, corresponding to 5300 pounds thrust. Load application on each specimen was halted before failure occured and when the load had reached a size considered to be sufficient in comparison with the design load values. At this point in each test, the NRC Representative indicated his concurrence with this consideration. After this, the load was removed, the apparatus detached, and observation was made of the condition of the specimen.

4.0 RESULTS

As can be seen on the test data sheets, the maximum load applied to specimens or which ASTM A490 bolts were used ranged from 88,110 lb. to 95,400 lb.. The bolts could be seen, after removal from the insert, to be slightly bent. By measuring the distance of the bolt tip from a line perpendicular to the bolt head these deflections were approximately as follows:

Fastener Type	Specimen No.	Bolt Length	Deflection of Tip
A-490	1	4 1/2-in.	0.0 in.
A-490	2	5 1/2 in.	0.05 fn.
A-490	3	5 1/2 in.	0.10 in.
A-490	4	4 1/2 in.	0.05 in.
A-490	5	5 1/2 in.	0.10 fn.
A-490	6	4 1/2 in.	0.0 in.

Other than these deformations, no bolt showed signs of incipient failure.

Loading of the three specimens employing a double-nutted SA-36 threaded rod for attaching the shear plate and including the 1-inch washer plate produced a reverse curve in the threaded rod. The offset between the approximately parallel ends of each rod was approximately as follows:

Specimen No.	Offset
7	0.4 in.
8	.4 in.
9	.4 fn.

The fact that the end portions of rods were not truly parallel accounts for the difference in deflection measured at the bottom nut on the rods. Although these deflections were experienced, there was no sign of imminent failure of either the threaded rod, the insert, or the concrete.

There was small spalling of concrete around the top of some inserts. This allowed the top of insert to deflect laterally and in the case of Specimen No. 1 to deform to a small extent. However, in no part of any test specimen did breakage or complete failure appear to be imminent. In each case at the time operation of the hydraulic pump was halted, the applied load was increasing, showing that neither the insert nor fastener had reached its maximum load carrying capability.

The factor of safety for each specimen based on these maximum applied loads is shown in the following table.

FACTORS OF SAFETY

BASED ON

MAXIMUM APPLIED LOAD

Fastener	Specimen Number	Maximum Applied Shear Load (Kips)	Factor of Safety F.S. = Max Applied Load Design Allowable Load
	1	88.1 *	88.1/26.51 = 3.32
A-490 Bolt	3	90.1	90.1/26.51 = 3.40
W I" Shim P	5	95.4	95.4/26.51 = 3.60
	2	95.4	95.4/26.51 = 3.60
A-490 Bolt	4	95.4	95.4/26.51 = 3.60
70 7 0 12	6	90.1	90.1/26.51 = 3.40
	7	58.3	58.3/7.67 = 3.30
SA-36 Threade	8	63.6	63.6/17.67 = 3.60
W/ I" Shim P	9	63.6	63.6/17.67 = 3.60

^{*} Load halted due to dial indicator for deflection having reached its limit of travel.

5.0 CONCLUSION

These test results show that the performance capabilities of the Richmond Insert in shear exceed the design allowable by a ratio of more than 3 to 1. Thus, a minimum factor of safety of 3 is indicated. The test results for the specimens with the 1" thick washer are comparable to the test results for the specimens without the washer. This indicates that the presence of the washer had little effect on the performance of the bolt or the Richmond Insert. If additional bending stresses are introduced into the bolt as a result of the presence of the 1" thick washer, the test results show that it is not significant enough to distinguish the difference.

Based on this test, the design allowables for shear loading are acceptable for use without further investigation or additional calculations.

APPENDIX 1

APPENDIX 2

TEST DATA SHEETS

DEFLECTION (IN.)	GAUGE PRESSURE (P.S.I.)	JACK* THRUST (LBS).	NOTES - FAILURE MODE
2-190	200		
. 4	200		
_20	7200	- C. L 100	
1.023	400	5,300	
2.04	ice	10,600	
.655	1200	15,900	
.000	1600	21,200	
.105	2000	26.500	
.138	2400	31,800	
.168	2800	37,100	
,200	3200	42,400	
.230	3600	47,700	
,270	4000	53,000	自由中华中国中国中国 中国
.200	4400	58300	Sweeth Yield - Jack box Host
. 360	4800	63,600	Sweeth Yield - Jack book Hosts du probably to pune heig
.452	5200	68,900	
.530	5600	74,200	学生现实的专业性。由于10年,即于10年的
.413	6000	79,500	
-377	6400	84,800	, ,
1.000	6600	88,110	on the set over - hely me

PRESSURE GAUGE: MATE NUMBER 1821 DUE DATE: 9 June 83

DIAL GAUGE: MATE NUMBER 2094 DUE DATE: 20 june 23

PERFORMED BY: WITNESSED BY:

DATE DATE

JACK: EQUIPMENT NUMBER ACH 606

SPECIMEN NUMBER: 2		DATE 22 march '83
BOLT SPEC: 4 - 490	W/SHIM PL.	W/O SHIM PL.

DEFLECTION (IN.)	GAUGE PRESSURE (P.S.I.)	JACK* THRUST (LBS).	NOTES - FAILURE MODE
0.010	400	5,300	
.028	800	10,600	
.062	1200	15,900	
.094	1600	21,200	Sale Les part de Sentil : L'émbe de disprés de
.130	2000	26,500	等种类和现在的 类型类型的
.172	2400	31,800	
. 2/2	2800	37,100	
.254	3200	42,400	
.285	3400	47,700	
.306	4000	53,000	
,326	4400	58,300	
.348	4800	63,600	
.371	5200	68,900	
.400	5600	74,200	
.434	6000	79.500	化 原子是不是一种,但是一种的
.472	6400	24,000	
.513	6800	90,100	
560	7200	95,400	Concerte d'ailei - com Est
			in Belle - Prying estion.
			Sixn: - anice of dian.

*JACK THRUST EQUAL SHEAR LOAD ON INSERT.

JACK THRUST (LBS) - GAUGE PRESSURE (P.S.I.) TIMES 13.25

JACK: EQUIPMENT NUMBER RCH 606

QUIPMENT NUMBER / C/7 600

PRESSURE GAUGE: MATE NUMBER 1821

DIAL GAUGE: MATE NUMBER 2094

DUE DATE: 9 ine 23

DUE DATE: 20 me 83

WITNESSED BY:

DATE SALZETY - 22 . 20

PERFORMED BY:

DA REPRESENTATIVE DATE

SPECIMEN NUMBER: 3 DATE 22 Truck 93 BOLT SPEC: A- 4-90 W/O SHIM PL.

DEFLECTION (IN.)	GAUGE PRESSURE (P.S.I.)	JACK* THRUST (LBS).	NOTES - FAILURE MODE
1.018	400	5,300	Suff Man Mining and the state of the state o
0, 053	800	10,600	
0,086	1200	15,900	
0.130	1600	21,200	
.145	2000	26,500	
.175	2400	31,800	
.207	2800	57,100	
.248	3200	46,400	
. 304	3600	47.700	
. 365	4000	53,000	
.417	4400	58 300	
.463	4800	63,600	
.508	5200	68,900	以下的时间 他的国际的一个
.559	5600	74,200	Concrete startic isall
.612	6000	79,500	
.668	6400	84,800	
.725	6800	90,100	
			Correcte spalled around up
	HARTURE		part & insert permetter istal
			deflection of insert.

*JACK THRUST EQUAL SHEAR LOAD ON INSERT.

JACK THRUST (LBS) = GAUGE PRESSURE (P.S.I.) TIMES /3.25

JACK: EQUIPMENT NUMBER RCH 606

PRESSURE GAUGE: MATE NUMBER 2021

DIAL GAUGE: MATE NUMBER 2074

PERFORMED BY:

DUE DATE: 9 June 83

DUE DATE: 20 june 83

WITNESSED BY:

DATE 22 71 Lm 83 SPECIMEN NUMBER: BOLT SPEC: A-490

DEFLECTION (IN.)	GAUGE PRESSURE (P.S.I.)	JACK* THRUST (LBS).	NOTES - FAILURE MODE
0.004	400	5,300	
.019	800	10,600	
.043	1200	15,900	
.070	1600	21,200	
.160	2000	26500	
.132	2400	31,800	
.165	2800	37 100	
.198	3200	42,400	
.224	3400	+7700	
.308	4000	53,000	
.380	4400	58,300	
.448	4800	65,800	
.5-//	5200	68,900	
.536	5600	74,200	. Concerte exiles at elec.
.571	6,000	79,500	slat at juck and of ion
.604	6400	84,800	
.646	6800	90,100	
.688	7200	95,000	
			Correcte serlich a issue all
			letial delection of specime

*JACK THRUST EQUAL SHEAR LOAD ON INSERT.

JACK THRUST (LBS) = GAUGE PRESSURE (P.S.I.) TIMES /3.25

JACK: EQUIPMENT NUMBER RCH COW

PRESSURE GAUGE: MATE NUMBER 1821

DIAL GAUGE: MATE NUMBER 2094

WITNESSED BY:

PERFORMED BY:

DUE DATE: " June 83

DUE DATE: 20 June 83

- C Charl 3-22-93

SPECIMEN NUMBER: 5

BOLT SPEC: A-490 W/SHIM PL. W/O SHIM PL. Atticity

DEFLECTION (IN.)	GAUGE PRESSURE (P.S.I.)	JACK* THRUST (LBS).	NOTES - FAILURE MODE
C.013	400	5,300	
.052	800	10,600	
.091	1200	15,900	
./32	1600	21 200	
.180	2000	26,500	
.220	2000	31,800	
.265	2800	37.100	
.303	3200	42,400	
.334	3600	47.700	
1365	4000	53,000	
-391	4400	58,300	
.415	4800	63,600	
.446	5200	68,900	
.479	5400	74,200	Concerte scalled Mi Kitly -
.509	4000	79,500	edge of slat worder fick says
.538	6400	84,800	, ,
.570	6800	90,100	
.616	7200	95,400	- pullet in local spelling -7 as
			at insert persitting lettral more
			ment of inect.

*JACK THRUST EQUAL SHEAR LOAD ON INSERT.

JACK THRUST (LBS) - GAUGE PRESSURE (P.S.I.) TIMES 13.25

JACK: EQUIPMENT NUMBER RCH 606

PRESSURE GAUGE: MATE NUMBER 1821

DIAL GAUGE: MATE NUMBER 2094

PERFORMED BY:

DUE DATE: 9 June

DUE DATE: 20 June 183

WITNESSED BY:

J. C. Vilhal 3-22-83

DA REPRESENTATIVE DATE

DATE 22 march 83 SPECIMEN NUMBER: 7 W/O SHIM PL. HHT WELL BOLT SPEC: SA 36 Rod W/SHIM PL. DEFLECTION GAUGE JACK* NOTES - FAILURE MODE (IN.) PRESSURE THRUST (P.S.I.) (LBS). 5,300 0.081 400 800 ,232 10,600 1200 .400 15,900 1600 .43 21.200 2000 26,500 ,516 .568 2400 31,800 2800 .465 37,100 .732 42,400 3200 .811 36.00 47,700 53,000 . 843 2000 Diel jame ittened and 58300 4400 all discernable deflictions

were blormation of fact

DA REPRESENTATIVE DATE

*JACK THRUST EQUAL SHEAR LOAD ON	INSERT.
JACK THRUST (LBS) = GAUGE PRESSU	RE (P.S.I.) TIMES .13. 25
JACK: EQUIPMENT NUMBER ACH	606
PRESSURE GAUGE: MATE NUMBER /	094 DUE DATE: 20 june '83
DIAL GAUGE: MATE NUMBER 2	094 DUE DATE: 20 june 83
PERFORMED BY:	WITNESSED BY:
J. C. Gilbuth 3-22-83	
3-22-83	DA REPRESENTATIVE DATE
DATE	MA KEPKESENIALIVE DATE

(IN.)	GAUGE PRESSURE (P.S.I.)	JACK* THRUST (LBS).	NOTES - FAILURE MODE
0.029	400	5.300	
.190	800	10,600	
.345	1200	15,900	
.408	1600	24,200	
.457	2000	26,500	
.526	2400	31,800	
418	200	37, 100	
.698	3200	42,400	
.745	3600	47,700	
. 815	4000	53,000	
.890	4900	58,300	Slight opalling of concerte
.992	4800	63,680	aut practically
			all illomotion were in
Walanto L.			tolt, it being deformed
		Indiana.	then:
			//
			THE RESERVE AND A SECOND PROPERTY.
			La constant L
ACK THRUST	(LBS) = G PMENT NUMB		URE (P.S.I.) TIMES 13.25 CH 606 1821 DUE DATE: 9 June 83

(IN.)	GAUGE PRESSURE (P.S.I.)	JACK* THRUST (LBS).	NOTES - FAILURE MODE
.027	400	5,300	
.071	800	10,600	
.120	1200	15,900	
.179.	1600	21,200	
. 225	2000	26,500	
-266	2400	31,800	
.340	2300	37,100	
.440	3200	42,900	
-526	3600	47,700	
-609	4000	53,000	
6.98	4400	58,300	
.821	4300	65,600	
			all defletic un renet
lead to be N			deformation of bott. m
			deformation of bott. on
			diformation.

DA REPRESENTATIVE DATE

2.0. Silkert 3-22-83 DATE APPENDIX 3

LOAD-DEFLECTION CURVES

LOAD - DEFLECTION CURVES

ATTACHMENT B

TEST REPORT

SHEAR AND TENSION LOADING OF

RICHMOND INSERTS

1 1/2-INCH TYPE EC-6W 1-INCH TYPE EC-2W

APRIL 19, 1984

Civil Engineer

Approved by

R.M. Kissinger P.E. Project Civil Engineer

TABLE OF CONTENTS

- 1.0 REFERENCES
- 2.0 GENERAL
 - 2.1 DEFINITIONS
 - 2.2 PURPOSE AND SCOPE
 - 2.3 RESPONSIBILITY
 - 2.4 TEST APPARATUS
 - 2.4.1 EMBEDMENTS
 - 2.4.2 SHEAR TEST APPARATUS
 - 2.4.3 TENSION TEST APPARATUS
 - 2.4.4 COMBINED SHEAR AND TENSION TEST APPARATUS
- 3.0 TEST PROCEDURE
- 4.0 RESULTS
 - 4.1 1 1/2-INCH RICHMOND INSERTS
 - 4.1.1 SHEAR TESTS
 - 4.1.2 TENSION TESTS
 - 4.1.3 COMBINED SHEAR AND TENSION TESTS
 - 4.2 1-INCH RICHMOND INSERTS
 - 4.2.1 SHEAR TESTS
 - 4.2.2 TENSION TESTS .
 - 4.2.3 COMBINED SHEAR AND TENSION TESTS
- 5.0 CONCLUSIONS

TABLE OF CONTENTS (Cont.)

6.0 APPENDICES

APPENDIX 1 - DRAWING NO. FSC-00464 SHT. 1, 2 & 3

APPENDIX 2 - CONCRETE COMPRESSIVE TEST REPORT

TEST DATA SHEETS

APPENDIX 3 - LOAD-DEFLECTION CURVES

APPENDIX 4 - PICTURES OF ACTUAL TEST APPARATUS

TEST REPORT

SHEAR AND TENSION LOADING

OF

RICHMOND INSERTS

1 1/2-INCH TYPE EC-6W

AND

1-INCH TYPE EC-2W

1.0 REFERENCES

- A CP-EP-13.0 Test Control
- B CP-EI-13.0-13 1 1/2" and 1" Richmond Insert Shear and Tension Tests

2.0 GENERAL

2.1 DEFINITIONS

Ulimate Load - The load applied to the specimen which caused a physical rupture of the specimen.

Failure Load - The load applied to the specimen beyond which, deflections increased considerably without substantial increase in the applied load.

2.2 PURPOSE AND SCOPE

These tests were performed to determine the characteristics of 1 1/2-Inch Type EC-6W and 1-Inch Type EC-2W Richmond Inserts when installed in concrete representative of that used in the power block structures at CPSES. The test specimens were subjected to shear, tension, and combined shear and tension loadings. The strength, deflections, and type of deformations produced by these loadings were the qualities to be determined.

2.3 RESPONSIBILITY

The tests were performed under the direction of the CP Project Civil Engineer. Witnesses to the tests were: A TUGCO site Quality Assurance representative and other site engineering personnel.

2.4 TEST APPARATUS

2.4.1 CONCRETE SLAB & EMBEDMENTS

The arrangement and details of the test apparatus are shown on Drawing No. FSC-00464, Sheet 1, 2 and 3, which are included in Appendix 1 to this report. (Note that only MK C-14, C-15, C-16 and Assembly 'D' on Sheet 1 were used in this test.) The insert specimens tested were taken at random from the Constructor's stock on site and therefore, were representative of those installed in the plant structures. They were placed in a concrete slab cast specifically for these tests and which was composed of materials and reinforcement similar to those elements of the plant buildings. The concrete used was based on having a minimum design strength of 4000 pounds per square inch at 28 days. The laboratory test report on the concrete of which this slab is composed is included here in Appendix X. 2.

2.4.2 SHEAR TEST APPARATUS

An apparatus for applying shear loads to the specimens was designed and built on site. This facility employed a 60-ton capacity, manually operated hydraulic ram whose thrust against a cross head was transmitted by tension rods to a 1 1/2-inch thick shear plate bolted to the insert specimen. The base reaction of the jack was transmitted through a structural steel "bridge" to the outer face of the concrete test slab. This arrangement, as shown in Appendix 1, provided a horizontal shear load on the vertically positioned insert without producing secondary or reactive concrete stresses in the vicinity of the specimen. Ram thrust was determined by multiplying the fluid pressure (PSI), as indicated by a calibrated gauge on the pump, by a number equal to the ram piston area in square inches. Deflections were measured by a calibrated dial indicator mounted on a remotely anchored bracket and with its spring loaded probe in contact with a lug welded to the shear plate directly behind the bolt head or threaded rod.

2.4.3 TENSION TEST APPARATUS

An apparatus for applying tension loads to the specimens was also designed and built on site. This facility employed a 60-ton capacity, manually operated hydraulic ram which serves as an end loading on a built-up steel beam. The other end of the beam was bearing against a well-supported round bar which served as a fulcrum and provided the other end reaction of the beam when the jack was operated to load the specimen. A threaded rod protruded through the beam at mid-span, through a nut and bearing plate on the beam with the opposite and threaded into the Richmond Insert. This arrangement caused the load on the rod to be equal to twice the force applied to the jack. Location of the base plates for the reactions of the beam provided clearance from the insert of at least 4 times the overall insert height; i.e., at least 39 1/2 inches for the 1 1/2 inch inserts and 23 inches for the 1 inch inserts. Ram thrust was determined by miltiplying the fluid pressure (PSI), as indicated by a calibrated gauge on the pump, by a number equal to the ram piston area in square inches. Deflections were measured by a calibrated dial indicator mounted on a remotely anchored bracket and with its spring loaded probe in contact with a bracket which was securely clamped to the nut on the threaded rod, as shown in the sketch below.

2.4.4 COMBINED SHEAR AND TENSION TEST

The apparatus for the combined shear and tension test utilized the same equipment as that used on the individual shear and tension tests. For the shear portion, the equipment was set up identically to the individual shear test. For the tension portion, the equipment was arranged in a slightly different fashion. The hydraulic ram was not placed under the end of the beam, but instead, on the center of the beam on top. The ram thrust was applied directly to the threaded rod, which passed through the center of the ram, by means of a plate which was placed on top of the ram. The base reaction was resisted by the tension beam, loading which was supported by two wide flange stands at sufficient distance from the insert so as not to induce secondary or reactive concrete stresses in the vicinity of the specimen. This arrangement caused the load on the rod to be equal to the ram thrust. Both rams (one applying tension and one applying shear) were operated by a single hand pump with a calibrated pressure gauge. In this fashion, the shear and tension loads applied to the test specimen would be equal at all times.

3.0 TEST PROCEDURE

In performance of all of the tests, inserts were cleaned of concrete mortar and other trash that would affect boil thread engagement. A new bolt (A-490) or threaded rod (SA-193 Grade B7) was used for each insert. The fasteners were all tightened "snug tight". The application of all loads was applied by the ram by operation of the manual hydraulic pump. As the load increased from zero (0), indications of fluid pressure (later converted to load) and simultaneous bolt head deflection were read at regular intervals. These intervals were at 400 PSI on the pressure gauge, corresponding to 5300 pounds thrust with the exception of the direct tension tests. On the direct tension test, these intervals were at 200 PSI on the pressure gauge, which also corresponded to 5300 pounds thrust on the specimen due to the configuration used. The load as indicated by these gauge pressures was maintained as constant as possible for a period of two (2) minutes. At the end of this time period, the deflection was again observed and noted. Load application on each specimen was carried out until ultimate failure of the specimen occured (except specimen no. 1, which was tested in shear). At this point, observations were made of the condition of the specimens and the failure mode.

4.0 RESULTS

4.1 1 1/2-INCH RICHMOND INSERTS

4.1.1 SHEAR TESTS

As can be seen on the test data sheets, the ultimate load applied to the specimens ranged from 90,100 lbs, to 106,000 lbs.. The failure loads ranged from 84,800 lbs. to 106,000 lbs.. All bolts sheared abruptly (except specimen #1; test was halted prior to ultimate failure), with minor spalling of the concrete on the compression side of the Richmond Insert. All five (5) specimens were utilizing A-990 bolts.

SPECIMEN NO.	ULTIMATE LOAD (16s)	FAILURE LOAD (165)
1	90,100	84,800
2	95,400	90,100
3	95,400	90,100
4	106,000	100,700
5	106,000	106,000
Avera	ge 98,580	94,340

Using the allowable insert lands given in specification 2323-SS-30 for 1 1/2-inch Richmond Inserts, the factor of safety is determined.

Allowable Shear = 27.0k

Factor of Safety (F.S.) = Average Failure Ld.
Design Allowable Ld.

SPECIMEN NO.'s	AVERAGE FAILURE LOAD (k)	FACTOR OF SAFETY
1 thru 5	94.34	$\frac{94.34}{27.0} = 3.49$

4.1.2 TENSION TESTS

The ultimate load applied to the tension test specimens ranged from 87,650 lbs. to 114,150 lbs.. The failure loads ranged from 87,650 lbs. to 108,850 lbs.. The failure mode for specimens 11 and 12 was by striping the threads between the threaded rod and the Richmond Insert. Specimen 13 failed in the Richmond Insert by a failure of the welds between the axial strut rods to the upper threaded coil. Specimens 14 and 15 failed by concrete shear cone failures. All specimens were utilizing SA-193 Grade B7 threaded material.

SPECIMEN NO.	ULTIMATE LOAD	FAILURE LOAD
11 .	106,200	103,550
12	114,150	108,850
13	114,150	108,850
14	87,650	87,650
15	100,900	100,900
Average	104,610	101,960

Allowable Tension = 31.3k

Factor of Safety (F.S.) = Average Failure Ld.
Design Allowable Ld.

SPECIMEN NO.'s	AVERAGE FAILURE LOAD (k)	FACTOR OF SAFETY
11 thru 15	101.96	101.96/31.3 = 3.26

4.1.3 COMBINED SHEAR AND TENSION TESTS

The shear and tension loads applied to the specimens under this loading condition are equal and the ultimate loads ranged from 60,950 lbs. to 68,900 lbs.. The failure loads ranged from 58,300 lbs. to 67,575 lbs.. Specimens 6 through 9 failed by an abrupt shearing of the threaded rod. There was some deformation of the rod in bending at the shear zone (ranging for 20° to 45° bend). Upper insert washer moved from 1/2 inch to 3/4 inch with some concrete spalling on the compression side of the insert. Specimen 10 failed by striping the threads between the threaded rod and the insert. This failure lifted the upper insert washer from the struts, but the insert remained in place.

SPECIMEN NO.	UL.	TIMATE LOAD (165)	FAILURE LOAD (165)
6		68,900	67,575
7		67,575	67,575
8		60,950	58,300
9		61,613	61,613
10		64,925	62,275
	Average	64,793	63,468

Allowable Tension = 31.3k

Allowable Shear = 27.0k

Factor of Safety (F.S.)

SPECIMEN NO'S.	TENSION AND SHEAR AVERAGE FAILURE LOAD (k)	FACTOR OF SAFETY
6 thru 10	63.47	$\left(\frac{63.47}{31.3 \times F.S.}\right)^{4/3} + \left(\frac{63.47}{27.0 \times F.S.}\right)^{4}$
		F.S. = 3.68

4.2 1-INCH RICHMOND INSERTS

4.2.1 SHEAR TESTS

From the test data sheets, the ultimate load applied to the specimens ranged from 39,750 lbs. to 50,350 lbs.. The failure loads ranged from 37,100 lbs. to 42,400 lbs.. Specimens 16 thru 19 failed by shear failure of the A-490 bolt. The top portion of the inserts deflected from 1/8 inch to 7/8 inch with some spalling on the compression side of the insert. Specimen 16 showed some rotation of the top of the insert. Specimen 17 and 18 showed no apparent sign of rotation. Specimen 19 failed by breaking the weld between the upper coil and the struts. The bolt then failed in bending after rotating with the upper portion of the coil. Specimen 20 failed by crushing the concrete on the compression side of the insert. The insert then rotated intact and the bolt ultimately failed in bending.

SPECIMEN NO.	UL	TIMATE LOAD (165)	FAILURE LOAD (165)
16		46,375	42,400
17		43,050	37,100
18		50,350	42,400
19		46,375	42,400
20		39,750	37,100
	Average	45,182	40,280

Allowable Shear = 11.5k

Factor of Safety (F.S.) = Average Failure Ld.
Design Allowable Ld.

SPECIMEN NO'S.	Average Failure Load (k)	Factor of Safety
16 thru 20	40.28	40.28/11.5 = 3.50

4.2.2 TENSION TESTS

The ultimate load applied to the specimens ranged from 41,270 lbs. to 43,920 lbs.. The failure foads ranged from 39,950 lbs. to 43,920 lbs.. Specimens 26, 28 and 29 failed by concrete shear cone failure. Specimens 27 and 30 failed by Richmond Insert failure. The inserts failed by a failure of the welds between the struts and the lower coil. There was some surface spalling associated with these failures.

SPECIMEN NO.	UL	TIMATE LOAD (1bs)	FAILURE LOAD (165)
26		42,600	42,600
27		43,920	43,920
28		42,600	39,950
29		42,600	39,950
30		41,270	39,950
	Average	42,598	41,276

Allowable Tension = 11.5k

Factor of Safety (F.S.) = Average Failure Ld.
Design Allowable Ld.

SPECIMEN NO'S.	AVERAGE FAILURE LOAD (k)	FACTOR OF SAFETY
26 thru 30	41.276	41.276/11.5 - 3.59

4.2.3 COMBINED SHEAR AND TENSION TESTS

The shear and tension loads applied to the specimens under this loading condition are equal and the ultimate loads ranged from 27,825 lbs. to 30,475 lbs.. The failure loads ranged from 27,825 to 29,150 lbs.. Specimens 21 thru 25 failed abruptly due to shear failure of the threaded rod. All inserts remained intact with only surface spalling of the concrete.

SPECIMEN NO.	ULTIMATE LOAD (165)	FAILURE LOAD (1bs)
21	27,825	27,825
22	29,150	29,150
23	30,475	29,150
24	29,150	27,825
25	28,487	27,825
Avera	ge 29,017	28,355

Allowable Tension = 11.5k

Allowable Shear = 11.5k

Factor of Safety (F.S.)

(Average Failure Tension Design Allowable Shear x F.S.) 4/3=1.0

SPECIMEN NO'S	TENSION AND SHEAR AVERAGE FAILURE LOAD (k)	FACTOR OF SAFETY
21 thru 25	28,355 (3	$\frac{28.36}{11.5 \times F.S.}$)4/3+ $(\frac{28.36}{11.5 \times F.S.})$ 4/3
		•1.0

F.S. - 4.15

5.0 CONCLUSIONS

These test results show that the performance capabilities of the 1 1/2-inch type EC-6W and the 1-inch type EC-2W Richmond Inserts in shear, tension and combined shear and tension exceed the design allowable by a ratio of more than 3 to 1. These conclusions are valid for the design allowables shown in Specification 2323-SS-30, based on a spacing of the Richmond Inserts such that a full shear cone can develop.

Based on this test, the design allowables for shear, tension and combined shear and tension are acceptable for use without further investigation or additional calculations. Richmond's recommendation of a minimum safety factor of 3 has been complied with.

APPENDIX 1

DRAWING NO. FSC-00464 SHT. 1, 2 & 3

II FOR OFFICE AND L. WINEFRING

THE BASTA LATIONS ANT HON SAFETY RELATED - (1844)

RT TESTS	SE GRANESE BAC	TEN BOSE NEVAS
RICHMOND BALE	MAN MAN WAS AND MAN AN	- TO 100 - 1
		11
man	-	-
Brown & Root, Inc	difference of the same	1
. Bell Branchel .		
a		
-321.	. 02 ave " 4,04. At 6 ave wto 000	

APPENDIX 2

CONCRETE COMPRESSIVE TEST REPORT

AND THE STATE OF STATE OF

TUGCO . .

APPENDIX 2

TEST DATA SHEETS

COMANCHE PEAK SES

SHEAR TESTS

RICHMOND 15 - INCH, TYPE INSERT

Reference: CP-EI-13.0- 13,c4

Specimen Number: 1 Bolt Spec: A-490 Date: 3 Apr. 84

(First Insert @ west end of conc. s/86)

DEFLECT	TON (IN.)	GAUGE	JACK *	NOTES-FAILURE MODE
INITIAL	AFTER 2-MIN.	PRESSURE (P.S.I.)	(Lbs.)	
c.003	10.003	£ 400	5300	
.032	1 .035	800	10600 1	
.060	1 .060	1200	15 900	
.076	.079	1600	2/200	
.0.5	1 .098	2000	26500	
.111	1 .116	2400	3/800	
.128	.132	2800	37 100	
.144	./50	2200	42 400	
. 160	1 367 1	2600	1 47700	
-178	1 .185	2000	53000	
.196	.206	4400	58300	
.220	.233 1	4800	63600	
,250	.24	5200	62 900	
.277	. 297	5600	74 200	
.304	.348	6000	19500	Bolt deformed.
.380	.429	6400	1 84 800	Crushing of concrete was
.510	1 1.125	6800	90 100	orincipal failure. No increase
	+		1	tion. Did not load to destruction
The state of	1	Burned o	ff tolthead	for removel. Insert stayed fast
Silver and Silver		in coner	ete	•

Jack Thrust equal Shear Load on Insert. Jack Thrust (Lbs.) = Gauge Pressure (PSI) x	13.25
Jack Equipment Number ACH 600	
Pressure Gauge: M & TE Number 2335	Due Date: 16 con eq
Dial Gauge: M & TE Number 2949	Due Gate: 29 Jan . 84

Performed By:

Q C. Gilbrett 3 april 84

Witnessed By:

Africa Prity & 4-3-84

QA Representative Date

.

EC-GW RICHMOND / - INCH TYPE INSERT

Reference: CP-EI-13.0=18 pch

Specimen Number: 2

Bolt Spec: A-490 Date: 4 april 84

- (2nd from west end)

DEFLECTI	ION (IN.)	GAUGE	JACK *	
INITIAL	AFTER	PRESSURE	THRUST	NOTES-FAILURE MODE
	2-MIN.	(P.S.I.)	(Lbs.)	
1.002	0.002	400	5,300	
.021	,022	800	10,600 1	2010年,1910年,1910年,1910年
.074	. 036	1200	15,900	
.049	.051	1600	21,200	
.063	.066	2000	26,500	
.080	.003	2400	31,800	
.096	1 .102 1	2800	37 100 1	
.115	1 ./2/	3200	42 400	
.133	. 1421	3600	47700	
.157	. 166	4000	53 000	
.180	.192!	4400	58 300	
. 208 .	2/7	4800	63.600	
-237 '	. 247	5200	68,900	
.263	.276	5600	74,200	
.293	.3/4:	6000	79,500	
.338	.370	6400	89.800	
. 480	.555	€ 800	90 100	
. 770	1.110	7200	95,400	Boit sheared abruptly. Concret
				spalled on compression side of in
	April	14 . dieb L	incing out	to zero @ 7' sway. Suall cop
	B. A010	de near my	erti	

Jack Thrust equal Shear Load on Insert. Jack Thrust (Lbs.) = Gauge Pressure (PSI) x 13.25 Jack:.....Equipment Number RCN 606

Pressure Gauge: M & TE Number 2949 Due Date: 16 Apr 84

Dial Gauge:..... M & TE Number 2949 Due Date: 29 Jun My

Insert top dette

Performed By:

C. Hilleth + april Ba

Witnessed By:

COMANCHE PEAK SES

SHEAR TESTS

EC-EW RICHMOND / - INCH, TYPE INSERT

Reference: CP-EI-13.0-X /3 pod

Bolt Spec: 4-490 Date: 4 April 84 Specimen Number:

.. (3d from West End)

DEFLECTIO	ON (IN.)	GAUGE	JACK *	NOTES-FAILURE MODE
INITIAL	AFTER	PRESSURE	THRUST	NOTES-PATEURE MODE
	2-MIN.	(P.S.I.)	(Lbs.)	
0.004	.000	400	5300	
-002	.002 1	800	10 600	
.003	.003	1200	15 900	
.006	.007	1600	2/200	
.0/2	.018	2000	26500	
.032	.036	2400	3/800	
.049	.052	2800	37/00	
.067	.069	3200	42 400	
.078	.083	3600	47700	
,096	.107	4000	1 53 000	
.126	.131	000	58300	
.144	.154	4800	63600	
.174	.182	5200	68 900 1	
.206	.218	5400	74200	
.242	.259	6000	79 500	
.283	.315	6400	84800	
.365	.399	6200	90/00	
.540	1 (1.2)	7200		Bolt sheared abruptly conc
		called I'd	eep @ inse	rt tapering to zero deptin
	1 (4)	5" out (0)	n' compressio	on side of insert). Insert
Burger 18	6	leformed whe	re visible (Insit	In concrete

deformed where visible (/ns, /e) . Injert	SCEIM	mally intact	M1/6/ 6
Jack Thrust equal Shear Load on Insert. Jack Thrust (Lbs.) = Gauge Pressure (PSI) x 13,25	in.	concrete	0

Pressure Gauge: M & TE Number 2355 Dial Gauge:.... M & TE Number 2949

Due Date: 16 Apr 84 Due Date: 29 Jun 84

Witnessed By:

Insert tow deflected abt %

Performed By:

COMANCHE PEAK SES

SHEAR TESTS EC-GW

RICHMOND 16-INCH, TYPE INSERT

Reference: CP-EI-13.0-X/3 gent

Specimen Number: 4	Bolt Spec: A -490	Date: 4 April 84

(4th from West End)

DEFLECTIO	N (IN.)	GAUGE PRESSURE	JACK * THRUST	NOTES-FAILURE MODE
INITIAL	AFTER 2-MIN.	(P.S.I.)	(Lbs.)	
.0005	.0005	400	5,300	
.003	.003	800	10,600	
1	.013	1200	15,900	
.024	.026	1600	21,200	
.035	.038	2000	26,500	
.047	.048	2400	31,800	
	.059	2800	37,100	
.058	.070	3200	1 42,400	
.067	.081	3600	47, 700	
.078	.094	4000	53,000	
.089		9400	_	accidental opening of series - Lord restrict
	.109	4800	1 58 300	
.107	.120	4800	63600	
.116	./23	5200	1 68,900	
-	-146	5600	74,200	
.142	1.164	6000	1 79,500	
.173	1 .181	6400	84.800	
.292	.303	6800	1 90,100	
.3/5	.333	7200	95,400	
.360	1 .389	7600	1 100,700	
	1	8000	106 000	: Boit sheared abrustly, Concrete sus

Jack Thrust equal Shear Load on Insert. Jack Thrust (Lbs.) = Gauge Pressure (PSI) x	13.25	mer Side at
lack Equipment Number ACH 606		Topid
A Cause M & TE Number 2755	Due Date: 16 Apr 84 Due Date: 27 Jun 84	

Witnessed By:

Performed By:

Q.C. Silket 4 april 84

Date

RICHMOND / -INCH, TYPE___INSERT

Reference: CP-EI-13.0-X/2 pc#

Specimen Number: 5 Bolt Spec: 4-490 Date: 4 April 84

(5th from West End)

DEFLECTIO	N (IN,)	GAUGE	JACK *	NOTES-FAILURE MODE
INITIAL	AFTER	PRESSURE	THRUST	NOTES - NIEUNE PRODE
	2-MIN.	(P.S.I.)	(Lbs.)	
0.002	0.002	400	5 300	
.004	.005	800	10 600	
.013	.015	1200	15900	
.035	.037	1600	21 200	
.057 i	.063	2000	26500	
-090 i	,094	2400	31 800	
.117	.124	2800	37 100	
.150	.157 1	3200	1 42 400 1	
.176	.183	3600	47 700	
.200	.209	4000	53 000	
,223	.236	4400	58300	
.248	.261 1	4800	63,600	
.276	.295	5200	68,900	
,307	.322	5600	1 74,200	
.338	356	6000	79,500	
.370 1	.389	6400	84,800	
.408	.428	6800	1 90,100	
.447	.479 !	7200	1 95,400 1	
.506 !	.556	7600	100 700	
.58,-	1	8000	10 Bolt she	ared abrowtly. Concrete spelk

	. 77	· + / / ·	1200					
	.506 !	.556	7600	100 7				
	.58,-		8000			abruptly.	Concrete	Spe/k
_	1	1.1" € 8	reak ! I'deen	E insert to	0"E4" OUT	6" WIDE		
	Jack Thru	ust equal She ust (Lbs.) = Equipment	Gauge Pressure Number RC	sert. e (PSI) x _ H GOG	13.25	*L: 0	Insert top	deflect
	Pressure Dial Gaug	Gauge: M & ge:M &	TE Number 2	Company of the Compan	Due Date: /4 Due Date: 25	Jun '84		
	Performed LC.		1 days	P>-	Albert	actor	4-4-84	
	Name	74 201 - 010	Cate		dA Represent	ative -	ate	

COMANCHE PEAK SES RICHMOND LIK-Inch, Type Insert
Reference: CP-E1-13.0-17.0-

Specimen Humber: 6 (64 from wort) Inserted Load Rod: A-193 Date: 10 April 09 SHEAR TENSION Common 1.0 44 Jack **Beflection** Gauge Deflection **Gauge** Jack Net Insert (Inch) Press. Thrust Press. Thrust Jack (Inch) Load Notes - Failure Mode After Thrust After (PSI) (Lb.) Init. 2-Hin. (PSI) (Lb.) (Lb.) (Lb.) Init. 2-Min. 400 5 300 0.007 0.007 5300 0.0015 0.00/5 800 10 600 .023 .024 .005 10 600 .005 1200 15 900 -091 .042 15 900 0095 .0105 1600 21 200 21 200 .018 .062 .069 .019 2 000 26 500 .000 26 500 .034 .095 .031 2400 31,800 .153 .146 31.800 .046 .040 2800 37,100 .192 056 .199 37,100 054 3200 42400 . 236 .846 42,400 .062 0635 3600 47.700 47,700 ,290 .304 074 0715 9000 53,000 , 339 .382 53,000 .087 OAS 4250 56,313 .420 56.313 4300 56,975 ,460 56,975 4400 58300 .475 .557 58 300 .115 .159 45'00 59625 .56 59,625 4600 60.950 .670 60,950

1-* Jack Thrust . Shear Load on Insert.

1-* Jack Thrust (Lb.) = Gauge Pressure (PSI) x 13.25 for Shear Load.
2-* Jack Thrust (Lb.) = Gauge Pressure (PSI) x 13.25 for Tension Load.
Total Wt. of Tension Load Beam = 7/4 Lb.

lotal Mt. of Tension Load Beam - Mg [b.

*** Insert Load **Het Jack Thrust-m-2- 186 W

Performed By: Q C. Hilbell, 4-10-00

Shear Apparatus: Jack --- Equipment No: 8CH 608

Pressure Gauge-MATE No: 2355 Due Date: 16 Que per Dial Gauge-MATE No: 2999 Due Date: 29 van 24

Tension Apparatus: Jack-Equipment No: ACM 6037

Pressure Gauge-MATE No: Ligane Due Date: 18 van 24

Dial Gauge-MATE No: 2094 Due Date: 18 van 29

Witnessed by:

Richmond / 2-1nch, Type Insert Reference: (P-EI-13.04 / 2.p.e CONMICHE PEAK SES

-						-	-		-	
Chance	SIEAR					TENSION	ION			
Gauge Press.	Jack Thrust	Berlection (Inch)	ret ion	Gauge Press.	Jack Thrust	Het Jack	Insert	Deflection (Inch)	chion	Motes - Faflare Mode
(121)	(19.)	init.	After 2-film.	(151)	(19.)	Thrust (1b.)	(19.)	-	After 2-Min.	
2084	63600	.750	.800	4	63 600	2	-	14	147	
	66 250	. 84.		_	66 25	~	_			
800/5	578 73	.910		^	67 573	-	~			
	68 700	1.0%			68 900	14	1	98%		
5100	67.575			1/4	17.575	1.4	1/4			Abrupt shearing of Red. Red deformed
				1	_	_	,			in beneins a sheer dose, corruing what
				-	_		>			Watter some 12- horizontally.
1				1	1	1				
+				+	1	+	1	-		
				+		1				
				+	+	+	4	1		
11				#	#	#	4			
1				_	~		~			

for Shear Load. Jack Thrust (Lb.) - Gauge Pressure (Jack Thrust (Lb.) - Gauge Pressure (Intal Ut. of Tension Load Beam - Met Jack Thrust - Total Ihrust Minne 12

:1

ofy Due Date: A Les 89 Witnessed By:

Pressure Gauge-Mill Dial Gauge-M&TE No:

Tension Apparatus:

Performed By: Q C Julyou

COMARCHE PEAK SES

COMBINED SHEAR & TENSION TESTS

Richmond //z-Inch, Type Insert Reference: CP-EI-13.0-12904

Inserted Load Rod: A-/93 Date: // Aut au

Carron	SHEAR	t				TENSI	OM			
Gauge Press. (PSI)	Jack Thrust (Lb.)	Defle (In	ction ch) After 2-Min.	Gauge Press. (PSI)	Jack Thrust (Lb.)	Het Jack Thrust (Lb.)	Insert Load (Lb.)	Defle (In		Notes - Failure Mode
400		0.000		1	5 300	7	5	0.000	6,800	
8.0	10 600	-	.000	-(10 600	-	-5-	.003	,003	
1200	15 900	STATE OF THE PARTY	.026	(15 900)	-	.012	.012	
1600	21200	-	.013	-/	21 200	1	1	130.	.023	
2000	26 500	. 070	.0765		26 500			.039	.043	
2000	3/ Noo 3/100	:/23	1733		3/ 800	1		1984	1886	
3600	92 900	:225	1635	N/A_	\$7.700 \$7.700 \$7.700 \$5.000 \$8.300	11/4	1/4	1132	1-161	
+ 4ae	51000	305	:999	_(_	18 300		-	165	-179	
4600	60 950	.50			60 950	1	1	1195		r vart deflection somer reversed direction du
4700	62 275	,770			62275			,210		to favling of bracket with bending rod.
4800	63600	, FOL	.946		63600	_(_		.206	.198	Total Andrews and the second s
4110	65508	.870			65 588					deflected horizontally some 5/8" Rod dis-
5000	66 250				66 250	_(_	(_			toried to some 30° from vert @ shear gon
	66 913			1_4_	46 9/3		1			I Concrete spalled distily acount insert
5100	67 575	1.100			67 575)			-	aratus: JackEquipment No: ACM 606

1-* Jack Thrust * Shear Load on Insert.

1-* Jack Thrust (Lb.) * Gauge Pressure (PSI) x 13.25 for Shear Load.

2-* Jack Thrust (Lb.) * Gauge Pressure (PSI) x 12.25 for Tension Load.

Total Wt. of Tension Load Beam * NA Lb.

** Net Jack Thrust * Total Thrust Minus 1/2 Wt. of Beam.

** Insert Load * Not Jack Thrust ** 2- 20 K

Performed by: J. C. Helheth, 4-11-80

Pressure Gauge-MATE No: 2355 Due Date: 16 40. 6 Dial Gauge-Matt No: 2747 | Due Date: 29 dun Ru
Tension Apparatus: Jack-Equipment No: 8CM 6037
Pressure Gauge-Matt No: 2094 | Due Date: 18 dun 84

COMBINED SHEAR & TENSION TESTS
RIchmond / F-Inch. Type Inse

Reference: (P-E1-13.0-4.5

Inserted Load Rod:

b.) lait. 2-Min. 0, 000 0, 000 0,	Jack Deflection Gauge Jack Bet Insert Deflection Jack Ihrust Load Ilich Insert Insert Ilich Insert I	Commen	SHEAR	*				TENSION				
(1b.) Init. 2-Nin. (PSI) (1b.) (lb.) Init. 2-Nin. 5-300 6-0000 6-0000 6-0000 6-0000 6-0000 6-0000 6-0000 6-0000 6-0000	(1b.) Init. 2-Ilin. (PSI) (1b.) (1b.) Init. 7-Ilin. 5-200 6-000 0-000 5-200 -021 -021 -021 5-200 -020 0-000 5-200 -021 -021 5-200 -021 -021 5-200 -021 -021 5-200 -021 -021 5-200 -021 -021 5-200 -021 -021 5-200 -021 -021 5-200 -021 -021 5-200 -021	Gust.	Jack Thrust	8	ection ech)	Gauge Press.	Jack	Het Jack	Insert	1	ction	Motes - Failure Mode
# \$ 200 0.000 0.000	# \$ 500 0.00	(121)	(19.)	laft.	2-film.	(154)	(19.)	(tb.)	(16.)		After 2-Hin.	
# 100	# # # # # # # # # # # # # # # # # # #	200	5300	0.00	+	-	\$300	1	1	0 000	-	
# 55 000	# 15 000	800	10 600	.021	120.		10 600			100.	100.	
\$5 500 000 000 000 000 000 000 000 000 0	\$5 500	1200	16900	.096	140.		15 900	_		.00.95	3400.	
27 (m. 1772 1784 178 1984 1984 1984 1984 1984 1984 1984 198	27 (m. 1777 1778 1778 1778 1778 1778 1778 177	7000	86500	.000	.000		26 200	^	_	8000	1000	
### ### ### ### ### ### ### ### ### ##	# # # # # # # # # # # # # # # # # # #	2800	37 /2	:730	:136	-	37 / 000	~		.050	2003	
\$ 50 500	6 0 C S S S S S S S S S S S S S S S S S S	3500	92 700	.632	168	-	43 400		,	200:	886	
60 CBF	60 287	4000	56300	20.	100	1/4	51 300	1/4	Wha	203	.327	
60 C8F 60 29F 60	57 625 60 758 60 236 6	4400	51300	. 9.			50300	l	,	. 50		
60 CSF 60	60 287 60 288 60	4500	59625			~	L	_	7			Die indiadors ramored to propuse donnesse
60 CSF	ack Thrust - Shear load on Insert. Ack Thrust (1b.) - Gauge Pressure (PSI) x 22,25 for Shear 1-ad. Shear Apar. Shear Load.	**	60750			~		J				6 time of failure.
Shear Load on Insert.	- Shear load on Insert. (1b.) - Gauge Pressure (PSI) x 22,25 for Shear 1-ad. (1b.) - Gauge Pressure (PSI) x 23,25 for Tensium Load.	4550	18709			~	80209					Brook! Thear failure of rod. Rod bont
- Shear load on Insert.	- Shear load on Insert. (lb.) - Gauge Pressure (PSI) x 22,25 for Shear 1-ad. (lb.) - Gauge Pressure (PSI) x 23,23 for Tensiue, Load.					1			J			about \$ 30° & sheet room. Washer of
- Shear load on Insert.	- Shear load on Insert. (1b.) - Gauge Pressure (PSI) x 25,25 for Shear 1-ad. (1b.) - Gauge Pressure (PSI) x 25,25 for Tensiue, Load.				1	1		1	7			insect mayed hacisantally 12. & strate
- Shear load on Insert.	- Shear load on Insert. (1b.) - Gauge Pressure (PSI) x 22,25 for Shear 1-ad. (1b.) - Gauge Pressure (PSI) x 23,25 for Tensiue, toad.	1			1	1			1			drate & wald from wester. Loncocke souther
- Shear load on Insert.	(b) - Shear load on Insert. (b) - Sauge Pressure (PSI) x 22,25 for Shear 1-ad. (b) - Sauge Pressure (PSI) x 22,25 for Tensium Load.							~	1			Tdesp to rore & S'out on come sole of min
	Dial Gauge-Malt No: 2005		ck Thrust	- Shear	l ne bao	nsert.			1	8	hear Appa	ratus: Jack Equipment No: RCN 606

Insert Load . Het Jack Thrust + 2.

Dial Gauge-Hälf No: £949 Due Date: # 2m 200 Jack-Equipment No: 1664 603 T Pressure Gauge-Hälf No: 1607 Due Bate:
Dial Gauge-Hälf No: 2090 Due Date: # 1607 E9 Witnessed By:

Tension Apparatus:

Reference: CP-[1-13.0-+/3 COMBINED SHEAR & TENSION IF Richmond /2 - Inch. Type

Inserted toad Rod:

-					-	_		-	-	_			_				**	*
	Notes - Failure Node								Did ason ramed to moved downer		Brook! sheer failure of rod. And show	1000 rotated about 45. Struts on	comp. + tonies side of insert broke	loose from wester & wall washor	moves to hor inentally, Insert below	waither seemed to be intact but threated	coil simile distorted. Conc. water 1 17 x 6, on co	Pressure Gauge-Mile No. 2355 Due Date: 16 Apr 109
	no Ci on	2-Min.	0.000	2000	800	\$20	060	177	7		7							Shear Apparatus:
	Deflection (Inch)	Init.	00000	000	6366	100	182	:6/5	.30									£
	Insert	(19.)	7	1			1	4	1/4	1	^		7	4	1	7	~	
TENSION	Pack .	(19.)	-					1~	2/4	,			-		1	7	~	r Shear Load.
	Jack Thrust	(10.)	5,900	208 20	26. 200	97. 800	2000	36 300	60,950	61979	46,375				-			17.25
	Gauge Press.	(PSI)	1		_	_	~	7	W.	3		4	1	1	1	1		ure (PSI)
	N Ter	2-Min.	0000	N800.	1000	: 47.	:15	6.76				1	1	1	1	1		uge Pressur uge Pressur
	Deflection (Inch)	Init.	0,000	. 050	N. 60.	. doo	.3//	390	.720	.77		1	1	1	1	1		Shear to
SIEAR	Jack	(19.)	5300	13 900	26 500	37.000	47.700	53000	60950	61513	66.375	1	1	1	1	1		Thrust (I
Cammen	Guge Press.	(151)	400	1,300	00003	2000	3600	0000	2600	46.50	3500 4	1	1	1	1	1	-	Fr Jack

** Act dock Ihrust - Total Thrust Mi

Performed By: V

Diel Gauge-M&TE No:

Tension Apparatus: Jack-Cquipment No: Pressure Gauge-Hälf

Witnessed By:

COMBINED SHEAR & TENSION Richmond / - Inch.

Reference: CP-[1-13.0-4 /3

Specimen Bamber: 10 (10 th fram west erry) Inserted Load Rod:

						-	Souther han	111111111111111111111111111111111111111					of water	Inket remaned in alace			The second secon
	Notes - Failure Mode						Reset Tomin did due to its toutine have			7			Threso's stripped. Littled most wather	loose from struke Inket rem			Control of the Contro
	After	2-Hin.	9.000	100	.003	166.	-166	13%					247.			T	-
	Deflection (Inch)	Init.	2.00.0	100	220	200	-480	18/			71.		.230				-
	Insert	(19.)	1	1	_	1		1	W/4	3	4	^	_	^	3	4	
TEMSION	Bet Jack	(19.)	1	-	_	_	-	-	11/4	\$	_	1	_	~	~	+	-
	Jack Jack Thrust	(10.)	5 300	200 37	20 . 00	37 600	42 450	58.50	40 950	68375	63 600	63600	43600	64 925			-
	Gauge Press.	(154)	1					_	Wh	Ī	~	_	-	-		#	-
	After	2-Min.	0.000	400.	040	50%	101	200					388.			1	
	Deflection	luit.	0.00	900	2000	280	101	185	472,	.310	316.	ers.	.600				-
SHEAR	Jack Bhrust	(19.)	5 300	15 200	26 500	37 800	92 730	58 300	05609	512.89	63 600	63600	63600	37669			-
country	Euge Press.	(3)	005	1000	1600	2800	3200	**		01.0	4500	4800		41900	,	T	-

Tension Apparatus: pe Pressure (PSI) x LL &S for Shear load.

1-* Jack Thrust - Sh 1-* Jack Thrust (1b. 2-* Jack Thrust (1b.

: 1

Pertorned By: Q.C. Hilbert

Witnessed By:

Lessure Gauge-NATE No. 2355 Due Date: K. Ar. Och Jack-Iguipment No. 2547 Due Date: 29 Jun 277 Due Date: 29 Jun 277 Dressure Gauge-HATE No. Jackson Due Date: 10 Jun 278 Due Date:

Pressure Gauge-N&IE No:

COMANCHE FEAT SES TENSION TESTS

RICHMOND 1/2-INCH, TYPE INSERT

Reference: CP-EI-13.0- /3, .x

GAUGE	JACK	NET	INSERT	DEFLECTI	ON (IN.)	
PRESS.	THRUST (Lb.)	JACK THRUST (Lb.)	LOAD (Lb.)	INIT.	AFTER 2-MIN.	NOTES-FAILURE MOD
	2650	1425	2850	0.000	0,000	
200	5300	4 075	8150	0,000	0.000	
400	7950	6 725	13450	.000	.000	
800	10 600	9 375	10 750	001	.001	
1000	13 250	12 025	24050	.003	2035	
1200	25900	14 675	27 350	.005	.006	
1400	18 550	17 325	34 650	,009	.011	
1600	21200	19 975	39 950	.0/3	.015	
1800	23 850	22 465	43 250	.0155	.017	
2000	26500	25275	50 550	.0195	,020	
2210	27 150	27 925	55050	.022	,023	
2400	3/800	30 575	61 150	.027	028	
2500	34450	33 225	66 850	.032	.035	
2800	37/00	35 875	7/750	.073	.078	
3000	39750	38525	77050	.096	.099	
3200	42400	4/175	82 350	1./03. +00	-/055	
5400	45050	43825	87650	123	-11/2	
3600	47.700	#6 475	92950		148	
3800	50.350	49 125	A CONTRACTOR OF THE PARTY OF TH	190	.214	
6,00	53 000	53100	108 550	1		rupt failure of
	54 325				ort were	strivied Concept in the stripied Concept is x 15" of expenses
Pres Dial Perf	Thrust (Lb.) I Weight of I Jack Thrust of It Load = Net Sure Gauge: Gauge: M & Tormed By: Thrust (Lb.) Gauge: M & Thrust (Lb.) Thrust (Lb.)	M & TE Num TE Number	ber 2355 2949	Due Dat	e: 16 Aor 8	

COMANCHE PETE SES TENSION TESTS

EC-6W RICHMOND / -INCH, TYPE INSERT

Reference: CP-EI-13.0-\$ 13.04

Load Rod Spec: A. 193 Date: 5 April 84 Specimen Number: /2 (12 from west, 4th from East) JACK NET INSERT GAUGE DEFLECTION (IN.) PRESS." THRUST JACK LOAD NOTES-FAILURE MODE THRUST AFTER P.S.I.) (Lb.) (Lb.) (Lb.) INIT. 2-MIN. 2850 2650 1425 0.000 0.000 200 8150 400 5300 4075 . 000 .000 6725 7950 13 450 6.00 24 050 .002 10600 9375 .0015 800 13 250 12 025 .0035 .0055 000 1200 17 525 29350 .007 .008 15 900 .010 1400 34 650 18 550 .009 19 975 39950 1600 21 200 0115 .012 43250 -0145 22 850 22 625 .014 1000 25 275 50550 .0175 2000 26 500 .017 27 925 .0195 29150 55050 2200 020 ,022 2000 30 575 .0225 31800 61150 .0265 2600 39 450 33 225 66 450 .0245 -028 2800 37 100 35 875 .0295 71 750 77 050 39 750 38 525 .032 .054 3000 45 050 43865 82 350 3200 .036 037 .040 3400 87 650 .043 50 350 98 250 3600 .057 46 475 49 165 3800 .057 .0625 51 775 .070 1075 2000 53 000 103 550 4200 55 650 108 850 .084 .092 Failure by strippe 9400 5030C 57075 114150 .120 threads, Rad to insert. Thread engagemen was "full" stripped length was 3".
Concrete surrace spalled in 18" dis. area
Spalling apparently result of impact was full Concrete Max depth of surface spall Did not expose reber. abrupt! 1. Was * Jack Thrust (Lb.) = Gauge Pressure (PSI) x /3.25 Total Weight of Load Beam . £450 Net Jack Thrust = Total Thrust Minus 1/2 Weight of Beam. (12 Wt. = 1225) Insert Load . Net Jack Thrust x 2. Jack:..... Equipment Number RCH 606 Pressure Gauge: M & TE Number 2355 Due Date: 16 Nor 84 2949 Dial Gauge: M & TE Number Due Date: 29 Vun 84 Performed By: Witnessed By: C. Hithert sape 84 9-5-84

COMANCHE PEAK IES TENSION TESTS

EC-6W RICHMOND /2 - INCH , TYPE ___ INSERT

Reference: CP-EI- 3.0- LT JEE Load Rod Spec: A-193 Date: 5 Apr 84 Specimen Number: 13 (13th from west, 32 from East) *** ** DEFLECTION (IN.) INSERT NET JACK GAUGE NOTES-FAILURE MODE LOAD JACK THRUST PRESS. AFTER THRUST 2-MIN. INIT. (Lb.) (Lb.) (Lb.) P.S.I.) 0.000 0.000 2850 1423 2650 0.000 200 0.000 8150 4075 0,000 5300 400 0.000 13 450 6723 950 0,000 600 0.000 18 750 9375 10 600 0,001 RUD 0.001 24 050 13 250 1000 .001 29 250 .001 14 675 18 550 1200 .00/5 37650 .00/5 17325 1400 ,003 .004 39 950 19975 23 850 .0045 1600 # 3 250 .0045 22 625 .007 10055 1800 50 530 25 275 26500 .000 2000 .0075 29150 2200 .010 .009 30 575 61150 31 800 2400 .012 64 450 .011 34 450 2600 .015 20195 71 750 35 875 .0105 37 /00 .0175 2800 38 525 34 750 023 3000 150, 82 350 92400 41 175 ,0255 . 0285 3200 43825 87650 95 est .0385 34200 ,033 92 950 46 475 47 700 3600 .051 .045 48 250 49 125 1063 50350 3800 10 3 550 .059 54 425 53 000 .080 4000 .074 108 850 55 650 Concrete failed 4:00 On surface in area suma 18" x 18" 114,150 58,300 Structural failure that allowed this was
failure of the word connecting the
axial struct rods to the threaded coil.
This permitted surface spalling of the
concrete. However there was no discent
axe sign of a cone tailure in the cultication of the
Concrete visible a rebar depth looked into
and there was no sound like a void when
tapped with a metal chieft 57.075 4400 * Jack Thrust (Lb.) = Gauge Pressure (PSI) x 13.25
Total Weight of Load Beam = 2450

Net Jack Thrust = Total Thrust Minus 1/2 Weight of Beam. (1 wt. = 1225#) Insert Load . Net Jack Thrust x 2. Jack:.... Equipment Number RCH 606 Due Date: 16 Apr 84 Pressure Gauge: M & TE Number 2355 Due Date: 29 Jun 84 Dial Gauge: M & TE Number 2949 Witnessed By:

C. Wilhett 5apr 82.

4.5.84 OA Representative

COMANCHE PEAK SES TENSION TESTS

RICHMOND / Z-INCH, TYPE INSERT

Reference: CP-EI-13.0- 13 pcH

Load Rod Spec: A - 193 Date: 5 Apr 84 Specimen Number: /4 (14th from West End, 2nd from East) DEFLECTION (IN.) INSERT NET JACK GAUGE NOTES-FAILURE MODE LOAD JACK THRUST PRESS. AFTER THRUST 2-MIN. INIT. (Lb.) (Lb.) (Lb.) (P.S.I.) 0.000 0.000 2 850 1425 2650 200 0.001 0. 0.01 8 150 4075 5300 .0015 -0015 400 13 450 6725 .000 7950 ,002 600 18 750 10 000 004 .004 800 2050 12 025 15 900 .0065 .004 icce 24 350 1+ 675 .0005 1200 .000 34 650 17 325 21 200 .0045 1400 .0095 37 950 19 975 .010 1600 .010 #3250 22 625 .010 23 850 1800 .010 50550 25 275 26500 .010 EUOO .010 55 850 27 425 29 150 .012 2200 .012 30 575 61 850 3/800 .016 2400 .0135 66 450 35 225 .0165 34450 2600 35 875 .016 7/ 750 37 /00 286U .019 77 050 82 350 87 650 .018 38 525 59 750 .024 3000 .055 Concrete failed .020 43825 42 400 cone type tailure. Depth of cone
full dooth of insert Top of
Nimited in size by rebars (@10" E.W.
initial failure rebars lifter 3200 7400 Shear equal Cone sport 3'x5', the long dimen corresponding to the direction of upper COVER of rebar /arer

Jack Thrust (Lb.) = Gauge Pressure (PSI) x 13.25—

Total Weight of Load Beam = 2450

Net Jack Thrust = Total Thrust Minus 1/2 Weight of Beam. (* wh = 1225*)

Insert Load = Net Jack Thrust x 2.

Jack: Equipment Number RCH 606

Pressure Gauge: M & TE Number 2355 Due Date: 10 Apr 84

Dial Gauge: M & TE Number 2947 Due Date: 29 Jun 84

Performed By:

Oc. Hilbutt 5 April 87

Name Date

Date

COMANCHE PEAK SES TENSION TESTS

EC-6W RICHMOND/2 -INCH, TYPE INSERT

Reference: CP-EI-13.0-13cH

Date: 4. April 84 Load Rod Spec: A-193 Specimen Number: 15 (15th from West end - 15 on Esit End) *** ** NET INSERT DEFLECTION (IN.) GAUGE ... JACK LOAD THRUST JACK PRESS. NOTES-FAILURE MODE AFTER THRUST 2-MIN. (Lb.) INIT. (Lb.) (Lb.) (P.S.I.) 0,000 2850 0,000 1425 200 2650 0,000 0.000 4075 8150 400 5300 6725 13 450 0.001 0.001 7950 600 0.003 9 375 18 750 0.003 10 400 300 0.006 0,004 12 025 24 050 1000 13250 .008 29 350 -008 15900 14 675 1200 .000 17 325 21200 34 650 .009 1000 19975 39 950 .010 .012 1600 .015 22 625 45 250 .013 1800 23850 25275 .019 24 500 50550 .0175 2000 .027 .021 2200 27 925 55 850 29 150 .026 61150 30 575 2400 31 800 .028 .031 66450 31225 2660 34450 .036 37/00 71750 .034 2800 .040 38525 77 050 0 38 3000 39 750 .042 H2 350 41175 .04/ 3450 42400 .053 .040 87 650 42825 45050 340€ 47700 42 950 .058 .0 65 3600 46475 49 125 ,069 .081 50 350 3000 .70 concrete foiled 50,450 51,675 100,900 3400 shear cone type. Imitad to in area bu pattern . Concrete at above rebar spolled leval come below about 10" die at top. depth = insert top uf 12 111 conc. to mount, (Abt. restrast 1043

by dynamoter Jack Thrust (Lb.) = Gauge Pressure (PSI) x /3.25 Total Weight of Load Beam = 2450 46. (-2 = 1225) - Net Jack Thrust = Total Thrust Minus 1/2 Weight of Beam. M &TE 1432 due Apr 17,8 Insert Load - Net Jack Thrust x 2. Jack: Equipment Number RCH 666 Due Date: 16 Apr 84 Pressure Gauge: M & TE Number 2355 Due Date: 29 Jun 84 2999 Dial Gauge: M & TE Number Witnessed By:

Performed By:

C. Gilbreth 4 apr 84 Date

QA Representative

RICHMOND / -INCH, TYPE INSERT

Reference: CP-EI-13.0-X/3 ge#

Specimen Number: 16 Bolt Spec: A-193-490 Date: 6 Quil 80 (1st an west end)

DEFLECTI	ON (IN.)	GAUGE	JACK * THRUST	NOTES-FAILURE MODE
INITIAL	AFTER 2-MIN.	PRESSURE (P.S.I.)	(Lbs.)	NOTES - FALSONS 1335
0.000	0.000	400	5,300	
.001	.001	800	10,600	
.0195	150.	1200	15,900	
.042	.004	1600	21,200	
,062	.0655	2009000	26,500	
,085	: .09/	2400	31,800	
+0/12	.12	2800	37,100	
.152	.170	3200	42,400	
.22		3,500-3600	46,375	Failure of both in shear.
		and ope		
		Insert too	deflected	1/8" by crushing of upper
		Innation of	CONCRETE	Within This yield pariers
	-	the top of	insert ro	tated a few degrees.
	1	1		
	1	1		
	!	1		
	-			1

•	Jack Thrust equal Shear Load on Insert. Jack Thrust (Lbs.) = Gauge Pressure (PSI) x	13.25
	took. Faurinment Number Ocal COS	Due Date: 16 Apr 24 Due Date: 29 von 84

Performed By:

grame Hilfiell, & april 's 4

Witnessed By:

A Representative Date

COMANCHE PEAK SES

RICHMOND / -INCH. TYPE INSERT

Reference: CP-EI-13.0-X /3 gc#

Specimen Number:	Specimen' Number:	Both Spec: A-490	Date: 6 Apr 84
------------------	-------------------	------------------	----------------

DEFLECTIO	N (IN.)	Vack	Gauge .	NOTES-FAILURE MODE
INITIAL	AFTER 2-MIN.	Thrust (Lbs)	Presure (PSE)	
0.000	0.000	5300	400	
.020	.020	10,600	800	
.037	.039	15,900	1200	
.060 .	.0645	21200	1600	
.087	,093	26 500	2000	
.127	.129	3/800	2400	
.166	.186	37/00	2600	
.3/3	. 332	42 400	3200	
		1 43 060	3250	Failure by bolt sheer
-		1 ,	+ deflect	d horizontally 3/8", bein
1			- 4 6	which tailire of concre
		1 No	abnarent r	etation of or top of insert
				· .
		1	-	
		-	-	1
			i	l e
		1	A Charles Services In	1
				!

•	Jack Thrust equal Shear Load on Insert. Jack Thrust (Lbs.) = Gauge Pressure (PSI) x	13.25
		Oue Date: 16 Apr 84 Due Date: 29 Jun 84

Performed By:

QC Hillett 6 apr 84

A Representative Date 4-6-54

RICHMOND / -INCH, TYPE INSERT

Reference: CP-EI-13.0-X ye w

Bolt Spec: A - 490 Date: 6 Apr 84 Specimen Number: 18

DEFLECTI	ON (IN.)	GAUGE	JACK *	HOTEL FATILIES HOLE
INITIAL	AFTER 2-MIN.	PRESSURE (P.S.I.)	(Lbs.)	NOTES-FAILURE MODE
0.000	0.000	400	5 300	REPARTMENT OF STREET
.603	.004	800	10 600	
.023	.0245	1200	15 900	
.042	.045	1600	21 200	
.060	.063	2000	26,500	
.080	,085	2400	\$1 800	bearing the second
.104	,109	2800	37100	The Street Name and Experiences
.136	.148	3200	42400	
.200	.332	3600	47 700	THE REPORT OF THE PARTY OF THE
.400		3800	50.350	Failure by bolf shear.
				Insart top deflected about 1/8"
				apparent rotation of insert
				Top of concrete crushed
	1			about & in front of insert
			1	The insert washer sheared
			1	from the strutz, thus the
	1		light share and	deflection was after this sh
				failure. Coils & struts did
			1	not move.

•	Jack Thrust equal Shear Load on Insert. Jack Thrust (Lbs.) = Gauge Pressure (PSI) x	13.25
	Pressure Gauge: M & TE Number 2355 Dial Gauge: M & TE Number 2949	Due Date: 16 Apr 80
	Performed By:	Witnessed By:

Performed By:

2 C Gilbroth 6 an 84

RICHMOND / -INCH, TYPE INSERT

Reference: CP-EI-13.0-X CE

Specimen Number: 19	Boit Spec: 4-490	Date: 9 Apr 8	4
14th from west and)		

DEFLECTION (IN.)		GAUGE JACK *		NOTES EATILIES MODE	
INITIAL	AFTER 2-MIN.	PRESSURE (P.S.I.)	(Lbs.)	NOTES-FAILURE MODE	
0.004	0.0035	400	5300		
.036	.036	800	10 600		
.050	.0605	1200	15 900		
.080	081	1600	2/200		
.098	.099	2000	26 500	国教法院的任务 (1985年) 1985年 (1985年) 1985年 (1985年)	
.122	1 ./27	2400	3/800		
. 147	.155	2800	37 /00	Marin Street, and promise to the street, and the	
.190	. 2225 1	3200	72400		
	, 1	3600		"在中国中国的一个中国共和国的国际的	
, 270	i i	3500	46375	Insert failed by brosking	
				weld between upper coil an	
	:			struts, Boit failed after notes	
				with the engaced upper coil	
				thru several degrees. The	
				bolt failed in bending win	
	1			a lesser load than the	
	1			46 375 16.	
	1 1		1		
	!				
	1		1		
	1		1	1	

•	Jack Thrust equal Shear Load on Insert. Jack Thrust (Lbs.) = Gauge Pressure (PSI) x	13.25	
	Pressure Gauge: M & TE Number 2355 Dial Gauge: M & TE Number 2949	Due Date: 16 Apr 80 Due Data: 29 Jun 84	-
	Donformed Rus	Witnessed But	

LC Hillith 9 ani 84
Name Date

A Representative Date

RICHMOND / -INCH. TYPE INSERT

Reference: CP-EI-13.0-5/39e4

O OOO -	AFTER 2-MIN.	PRESSURE	THRUST	NOTES-FAILURE MODE
0,000		(P.S.I.)	(Lbs.)	
	0,007	4.00)
		200		Slack not out of apparatus
	0.000	-400		STACK NOT OUT OF SPEATER
100 8	.001	-600		1
1		+200		<u> </u>
0.003	0,003	400	5300	
.025	.032	840	10600	
.046	,096	1200	15 900	
,063	.064	1600	2/200	1
.085	.087	2000	26500	
.115	2:122	2400	31800	
.154	. 173	2800	37/00	1
.270		9000 3000	39,750	Concrete crushed inser
1	1			remained intact but upper
	1			portion rotated mru a tem
				degrees. Deflaction of upper
i	1			part of insert (washer) 3/8:
				Bolt broke in bending at
				lower lood than the mox
				1 39 750. Rotation caused come st
				to lift on renina side 1/2 occo tiver
		an Lord on Total		less to, pach. soull soul to a le die (1)
" Jack Thr	ust equal Sm	Gauge Pressure (PSI) x /.	3.25
Jack:	Equipmen	t Number RCH		
Pressure	Gauge: M &	TE Number 255) Due	Date: 16 am eu Date: 29 Jun '84
Dial Gau	ige: &	TE Number 294		
Performa	d By:		Wit	nessed By:

COMBINED SHEAR & TENSION TEST

7	SIKAR					TENSION	MO	Appropriate to the second		
See See	Jack	Deflectio	CLION	9	Jack	U.			Deflection	Notes - Failure Node
. ES	(Lb.) Init.	Init.	After 2-Illn.	\ \(\frac{1}{8}\)	(19.)		19	lalt.	After 2-Hin.	
00%	6 100	0.00	0.000	-	5.300	-		0.000	0.000	
800	10 600	100.	100.	-	10,600	-	1	. 000		
1800	15000	.065	190	-	15,900			.022	1270	
1600	2/200	173	100/	~	21,200			640.	. 852	
8000	26500	330	1	-	24,100		_	///:	134	fed
2000	2408/20 27.025			-	27.885	7		71.		Sound of a word brooking. Both sheared
	264	-		M		/1	1/4			@ 217 . 900 x 4 925" Javach washer dether
-				IN		1/4				ed laterally to Some bending of me
-	-	-	1	-		>	~			but tractured surface widicated a
-	-	1		+		-	_			share becark. Too of insert rotated
-				-		-				theu
	-		-	+		-				Concrete walks all around a about
				+		4	-			12" die. 12" deca @ intert, pero dente a co
				+		1	+			
le Jack	Jack Thrust	. Shear	Luad on I	Insert.	1) : (3.25	f for Shear Load.	Load.		Shear Apparatus:	aratus: Jack Equipment No: RCM 606 Pressure Gauge-Nate No: 2355 Due Date: 16 des De

Jack Thrust (Lb.) - Gauge Pressure (PSI) x Jack Thrust (Lb.) - Gauge Pressure (PSI) x Total Mr. of Tension Load Beam - And Act Jack Thrust Mines (FSI) x Insert Load - Act Jack Thrust are to Performed By: (L.

::

Witnessed By:

Dial Gauge-M&TE No: Jack - Equipment No: Pressure Gau Diel Gauge-M&

or De Date: A den by

COMMUNE PEAK SES
COMBINED SHEAR & TENSION TESTS
Richmond Z - Inch., Type Insert
Reference: CP-E1-13.0-P-13.0-p-2

Specimen Number: 22 (74 from Near) Inserted Load Rod:

1				T	T	T	T	T	T	T	T	T	T	T	-	Т	Г	Т
			BOOK STORES - CANADA							Water Swale Sitte nois Cours water	Ked steered. Now had rotated & shoor	line thru appros. 20 when broke.	Concrata spelled doprox 15 diameter	being 18'on tension side 63'on como la	sheer jost side. d' doep & insort	latert commined intact.		
-	-	100	After 2-Min.	1000	\$10.	930.	050	145										
		Deflection	init. 2	TI.	.013		.055	-11.	9/:							1		
	-	نتا	1	11-	-			_		~	1/4	_	7	7	7	7	7	~
TENSION		ئيا	1 () () () () () () () ()						_	//	1/1		7	7	7	7	1	
	-	Jack	(16.)	5.80	10 600	15 900	8/ 200	26.500	29 150	23 800	19875			1	1	1	1	
	-	3.5	(14)							**	"	1	1	1	+	+	1	^
-	-	TION I	After 2-Min.	D. 00.F	.038	10%	305	.428				1	1	1	1	1	1	
	-	Deflectio	Init.	8,006	760.	105	1961	.346	.58	1	1	1	1	1	T	1	1	-
SHEAR	-	Jack	(19.)	£30g	003'01	15,820	81,800	86,500	69 150	63 850	11875	1	1	-	-	1		
Camman		Gauge Press.	(181)	***	000	007/	1600	8000	***	1000	100		1	-	-			

Wilmessed By: Ale Children 4.7

Pressure Gauge-Hill No. Lanne Due Date:

Tension Apparatus:

Shear Apparatus:

Pertorned By: J. C. Hilliotte Propier

COMMONE PEAK SES

Conning	SHEAR	_				TENSION	TENSION			
	-				0.2	**	***		-	
Press.	Jack	Deflection	B 4	Gauge Press.	Jack	Met	Insert	Deflection (Inch)	ct los	Rotes - Fallare Node
(181)	19.	Int.	2-Hin.	(154)	(19.)	(1b.)	(19.)	Intt.	After 2-Min.	
**	5300 0.008	1.00.	2000	-	5 300	-	-	8,000 G.000S	20000	
	10 600	,035	2780	-	10 600		-	800	900	
1200	15 900	188	134	~	159.20		-	0.30	1	
1600	21 200	.290	.269		21 200		1	.075	980 520	
2000	26,500	. 350	.4/0		26 500		-	1/40	140 150	
2200	26/20	.43.		-	29:50	~	-	.20		Defection increased raids
2300	30 975	.640		1/1	30475	1/4	1/4			About feiling he cheer it has been
1	1			7						Washer moved horizontally 1/0" No head and
1		1	1	1		1	4			of insert. Rod rotales some 30 above
T			1	+		1	1			threads of insort. This permitted by
-		1	T	1		1	1			civiling of concrete and probably defer-
-	-	-	1	+		1	4			mation of thresder coil . Rod failure
1		-	1	1			1			was by shoon ofter considerable defor-
-			1	7		1	1			mstion
1				-		^	_			

Jack - Equi Tension Apparatus:

Dial Gauge-MAI

Witnessed By:

Performed By: (

COMBINED SHEAR & TENSION TEST

...!

channed / - Inch, Type Insert Reference: CP-EI-13.0-9-04

nserted Load Rod: A-193

11.

" 10 april PR

Gauge Jack Beffectif Press. Thrust (Inch) (PSI) (Ib.) Init. 2-1 400 5,300 0,001 B. 600 (0,600 ,000		The state of the s		1KM3E4M				
(1b.) Init. 5, 100 0,001 7, 100 0,001		-		: :		9-61		
(1b.) Init. 5,300 0.001 (0,600 .008	(P)	Press.	Thrust	Jack	Load	(Inch)	4	Notes - Fallure Mode
5,300 0,001 800, 009,0)	Z-Min.	(151)	(46.)	(19.)	(16.)	Intt.	2-Nin.	
600 000 00	120		5.500	~	~	446 9001	4000	
13.900	100.		10 600	_	_	.0065	£900·	
THE REAL PROPERTY AND PERSONS NAMED IN COLUMN 1	070.		15 800	~	~	. 027	S.O.	
1530 21 200 153	121	_	2/ 200	>	^	390.	690.	
2000 26 500 ,325	. 390	^	26 500	^	~	.135	1.59	
2100 81 800 , 400			27 825	~	,	21.		Rapid Wiebing begon.
2100 34800 .500		W/a	27.025	1/4	2/4	120		
2200 48 450 .540			29 150			.227		
23- 29 (50 .700			25/67	}	}	.227		
2000 26500		-	26500	^	^			greath, Abrupt steer follows of rod.
		7		7	~			Some 16 novigental deflection of the
		_		~	~			of inert wormitted to restortion crushing
					~			of concrote and defoliation of over
		^	1	>	~			coil of insort. Concrete sported 2" deep -
				~	1 76.	Tenin. 1	86 2°	Mish 2 tot lovert seen to have tilled 50(1), layard bother

2-0 Jack Ihrust (1b.) - Gauge Pressure (PSI) x /2 25for Shear load.
2-0 Jack Ihrust (1b.) - Gauge Pressure (PSI) x /2 25for Tension Load.
Total Mt. of Tension Load Beam - 7/4 1b.

** But lack throat a fotal thrust Minus 1/7-114 of Be

Witnessed By: Ale Older 4:10

Due Date: 62 4

Tension Apparatus:

erformed By: Q. C. Hickory 10 gail 14

COMANCHE PEAK SES COMBINED SHEAR & TENSION TESTS Richmond / -Inch, Type Insert Reference: CP-E1-13.0-FPCH

Specimen Musber: 25 (1045 from Was and) Inserted Load Rod: A-193 Date: 10 April 84 SHEAR TENSION Cominen 1-4 Deflection Jack Jack Deflection Gauge Gauge Insert Thrust (Inch) Press. Thrust Jack (Inch) Press. Load Hotes - Fallure Mode After Thrust After (PS1) (PSI) (Lb.) Init. 2-min. (Lb:) (Lb.) (Lb.) Init. 2-Min. 400 5 300 4.00/5 5 300 0.0015 8.000 0,000 10 600 10 600 800 0.026 .020 0025 .009 15 900 1200 115 .122 15 900 -1005 ,229 21 200 1600 .217 21 200 .010 006 26 500 2 000 . 260 26 500 .304 077 .063 2100 27 825 .120 27 825 .070 Abrupt brook Insert deflected 158"10. 2150 28987 .400 28,487 1080 Rod failed in shear. Shear Apparatus: Jack --- Equipment No: ACH GOS 1.º Jack Thrust . Shear Load on Insert.

1-* Jack Thrust (Lb.) = Gauge Pressure (PSI) x 19.25 for Shear Load.
2-* Jack Thrust (Lb.) = Gauge Pressure (PSI) x 13.25 for Tension Load.
—Total Wt. of Tension Load Beam = N/A Lb.

** Net Jack Thrust = Total Thrust Hims 177 Wt. of Beam.

** Insert Load = Het Jack Thrust - 2.

Performed By: OC Hilleth 10 anil 80

Pressure Gauge-M&TE No: 2355 Due Date: 16 de 10
Dial Gauge-M&TE No: 2949 Due Date: 27 Jun 20
Tension Apparatus: Jack-Equipment No: RCM GOST
Pressure Gauge-M&TE No: starme Due Date:

Dial Gauge-Mate Ho: 2014 Due Date: 18 vien 26

Witnessed By:

TENSION TESTS

RICHMOND / - INCH, TYPE INSERT

Reference: CP-EI-13.0-5 /39c#

GAUGE	JACK	NET	INSERT	DEFLECTI	OH (IN.)	
PRESS.	THRUST (Lb.)	JACK THRUST (Lb.)	LOAD (Lb.)	INIT.	AFTER 2-MIN.	NOTES-FAILURE MO
200	2650	1425	2850	0.000	0.000	
400	5300	4075	8150	.003	.003	
600	7 950	67.25	13450	.007	.0075	
800	10 600	93.75	18750	.012	.0/25	
1000	13 250	12 025	24050	.0175	.019	
1200	15 900	14 675	29350	.037	.038	
1400	18550	17.925	34 650	.070	.070	
1600	21200	19975	39950	.098	.105	
1700	22 525	21300	42,600	.134		Failure.
				mained	intact.	Shear cone to
						rt was jocate
	Company of					E N-S 1-Ebers.
						what by 4- be
			1			ree onbars car
						es, side of inse
						neight of ins
			/es 3/4"			

COMANCHE PEAK SES TENSION TESTS

RICHMOND / -INCH, TYPE INSERT

Reference: CP-EI-13.0- 13,00

	en Number:	West End.		pec: A-19	3 Date	: 6 Apr 84
16-12	FIFTH			east)		T
GAUGE	JACK	NET	INSERT	DEFLECT	IOH (IN.)	
PRESS.	THRUST	JACK THRUST	LOAD		AFTER	NOTES-FAILURE MOD
P.S.I.)	1 (Lb.)	1 (Lb.)	(Lb.)	INIT.	2-MIN.	
200	2650	1425	2850	0.000	0.000	
400	5 300	6725	13450	.000	.000	
600	10600	9375	18750	.0005	10005	and a man also I am applicate
1000	1/3 250	12 025	29 050	-0065	10075	
1200	15 900	14 675	29350	.0/65	.0175	
1400	1 18 550	1 17 325	34 650	.050	.056	
1600	21200	19975	39 950	.080,000	.098	
2000 17	23,188	21.960	43,920	1 .146		Failure
		The second	Failure			e of the insert
		The second secon	Weld be	Aveen lon	er coil	and vertical
			struts	broke. Th	THE BACA, U	pper, coil came
	!		out an	carried	The Two	struts wit.
			Concre	re sparle	11-11 2	40 insert
	-	-	Expose	and I	char lo	gared 3 o.c. fr
			insert.	Rehar	pot dista	rbed only con
		1	I stete	cover re		1
	-	-	<u> </u>			
-	+		-	-	-	
	1	1		1 .		
	1	1				
			<u> </u>			
Tota Het Inse Jack Pres Dial	I Weight of Jack Thrust rt Load = Ne :	Load Beam = = Total Thrust t Jack Thrust quipment Num M & TE Numb	2450 ust Minus 1/2 st x 2. nber RCM per 2355 2949	Due Date	e: 16 Apr e: 29 Jun	84

TENSION TESTE

EC-2W RICHMOND / -INCH, TYPE INSERT

Reference: CP-EI-13.0- /3 pcs

Specimen Number: 28

Load Rod Spec: A - 193 Date: 10 April 84

(300 from east and)

JACK	NET NET	INSERT	DEFLECT	ION (IN.)	
	THRUST (Lb.)	(Lb.)	INIT.	AFTER 2-MIN.	NOTES-FAILURE MODE
2650	1425	2850	0.000	0.000	
5300	4 075	8150	; 800	, 400	
7 950	6725	13450	,000	,000	
10 600	9 375	18 750	.002	200.	
13 250	12.025	24,050	.004	.005	
15,900	14,675	29,350	.009	.010	
18550	17325	34 650	.015	.029	
20 538	19313	38 426	.055	-	
21,200	19.975	39 950	.067	.082	
-	-	42,600	1.15	Marie E.	concrete shes
	THE PERSON		1	failure.	Insert and room
104 25 1					
			-		
					Rebars @ 9" o. C. E.
	THRUST (Lb.) 2650 5300 7950 10600 13250 15,900 18550 20538 21,200	THRUST JACK THRUST (Lb.) 2650 1425 5300 4075 7950 6725 10600 9375 13250 12,025 15,900 14,675 18550 17325 20538 19313	JACK THRUST JACK THRUST (Lb.) (Lb.) (Lb.) (Lb.) (Lb.) 2650	JACK THRUST JACK THRUST (Lb.) (Lb.) (Lb.) (Lb.) (Lb.) (Lb.) (Lb.) (Lb.) INIT. 2650 1425 2850 2000 2650 4075 8150 1000 7950 6725 13450 1000 10600 9375 18750 1002 13250 12025 24,050 1004 15,900 14,475 29,350 1009 18550 17325 34650 1015 20538 19313 38426 1055 21,200 19,975 39,950 1047 22,525 21,300 42,600 15 15,900 14,475 29,350 1009 18550 17325 34650 1015 20538 19313 38426 1055 21,200 19,975 39,950 1047 22,525 21,300 42,600 15 Cone 1600 1600 1600 Rebars 1600 1600 R	JACK THRUST JACK THRUST (Lb.) (Lb.) (Lb.) (Lb.) (Lb.) (Lb.) (Lb.) (Lb.) INIT. AFTER 2-MIN. AFTER 2-MIN.

	The same of the sa	
	Jack Thrust (Lb.) = Gauge Pressure (PSI) x _	
_	Total Weight of Load Beam = 2450 Net Jack Thrust = Total Thrust Minus 1/2 Wei	abs of Boom 1 1/2 wed - 1225 Lb)
	Met Jack Thrust = Total Thrust minus 1/2 wel	gnt of beam. (/2 10/ /2)
***	Insert Load * Net Jack Thrust x 2. Jack:Equipment Number RCH 606	
	Pressure Gauge: M & TE Number 2355	Due Date: 16 ans 84
	Dial Gauge: M & TE Number 2049	Due Date: 18 dum 84
	bial bauge. Ha it humber 2017	and the same of th
	Performed Ry:	Witnessed By:
	Performed By:	1. 0

DC. Gilbrett a.10-84

QA Representative

COMANCHE PEAK SES TENSION TESTS

EC-2W

RICHMOND / -INCH, TYPE INSERT

Reference: CP-EI-13.0- 13 pex

GAUGE	JACK	NET NET	INSERT	DEFLECTIO	OH (IN.)	
PRESS. "	THRUST (Lb.)	JACK THRUST (Lb.)	(Lb.)	INIT.	AFTER 2-MIN.	NOTES-FAILURE MODI
200	2650	1425	2850	0.000	0.000	
4	5300	2075	0 150	.005	,005	
600	7750	9 375	18450	.009	.009	
1000	13 250	12025	24 050	.021	.022	
1200	15-900	14 675	29 350	.033	.037	
1400	18550	17525	31950	-101	.1955	
1600	21 200	19975	3,730	135	.17-5	
2000				de la laction de la contraction de la contractio		" " "
1700	22,525	21,300	42,600	COL	crete fo	iled by the los
	1	-	on inse			har mat An
			then	invert	willed ev	+ taking a sm
	1	1		with It	TOP red	Ar Was DIECEU
			I ID COA	tact will	TO INSERT	Thus contrib
			concre			this large are.
	 	-	1	16 /8//	77 -	
	Total Line		Harris and the			
	1					
		-				
		 	<u> </u>			
		The state of the state of				
	i	1				
		-	-			
	1					
	!					
					للتبين يستني	
Tota Net Inse Jack	1 Weight of Jack Thrust rt Load = Ne :E	Load Beam = = Total Thru: t Jack Thru: quipment Nu:	ust Minus 1/2 st x 2. mber #CH G	Weight of Be		
Pres	sure Gauge:	M & TE Numi	ber 2355		: 16 apr	
04.1	Gauge: M &	TE Number_	2949	Due Date	: 29 June	g a
DIA						
	formed By:			Witnessa		
Perf	ormed By:	7 50	A.		w Cristr	ele 4.5.84

COMANCHE PEAK SES TENSION TESTS

RICHMOND / -INCH, TYPE __INSERT

Reference: CP-EI-13.0-Face

GAUGE	JACK	** NET	INSERT	DEFLECTI	OH (IN.)	
PRESS.	THRUST (Lb.)	JACK THRUST (Lb.)	LOAD (Lb.)	INIT.	AFTER 2-MIN.	NOTES-FAILURE MOI
	1 (65.7	1		1006	-0.000	
400				1 .0035		1-
200	2650	1425	2850	0.000	0.000	
400	5300	4075	8 130	0.000	.000	
600	7950	6725	13450	1 .00/	.006	
800	10 600	9375	24 050	:019	.02/	
1000	15 250	13025	29350	.047	.049	
1200	18 550	17 325	34650	0.106	.109	
1600	2/200	19975	39 450	.153	.174	
2000	21860	20635	4/270	. 250		Load Peaked
7650	1 2,000	120000	1			predking weid
		The facilities	Grant Harris	struts. U	wer co	oped coil came
				Surface	by rems	valled abn 18" d
			T			
Tota Net Inse Jack Pres Dial	1 Weight of Jack Thrust rt Load = No	Load Beam = Total Threet Jack Thru Equipment Num M & TE Num	est Minus 1/ st x 2. mber RCH	Due Date	: 16 Apr	84

APPENDIX 3

LOAD-DEFLECTION CURVES

14-INCH TYPE EC-6W, SHEAR TEST

COMBINED SHEAR & TENSION TEST CHART
RICHMOND 1/2 INCH, TYPE EC-GW INSERT
SPECIMAN U. G

1' INCH, TYPE EC-6W SPECIMEN # 7

DEFLECTION - INCHES

--- DEFL. @ ZMINUTES TENSION CURVE - THITIAL DEFL. SHEAR CURVE COMBINED SHEAR & TEUSION TEST. CURVES LEGEND EC-6W SPECIMEN # 8 IX INCH , TYPE 0.1 0.0 50_ 00 2 0 SdIX - CYOT

DEFLECTION - MCHES

LOAD DEFILETION CONTES FOR 12 & 1712 EC-6W RICHMUND INSERT

LOAD-DEFLECTION CURVES
11/2-INCH TYPE EC-6W, TENSION TEST

LOAD - DEFLECTION CURVES. 1-INCH TYPE EC-2W SHEAR TEST

S. SHEAR T. TEUSION --- DEFL @ 2 MIN. SPECIMEN LO - INITIAL DEFL LEGEND RICHMOND 1 INCH, TYPE EC. 2W INSERT COMBINED SHEAR & TENSION CHART (a) SPECIMEN Ne. 21 2 0 35-35-30.

DEFLECTION INCHES

.50

.40

.30

.20

RICHMOND 1 INCH, TYPE EC- 2W INSERT COMBINED SHEAR & TENSION CHART SPECIMAN Ne. 22

DEFLECTION INCHES

COMBINED SHEAR & TENSION TEST CURVES I LUCH, TYPE EC-2W SPECIMEN # 23

LOAD DEFLECTION CURVES FOR 1" TYPE EC-2W RICHMOND INSERT

DEFLECTION - NCHES

LOAD-DEFLECTION CURVES 1-INCH TYPE EC-2W TENSION TEST

APPENDIX 4

PICTURES OF ACTUAL TEST APPARATUS

SHEAR TEST

TEST APPARATUS

_DIAL INDICATOR ARRANGEMENT

TYPICAL SHEAR FAILURE

TENSION TEST

TEST APPARATUS

DIAL MITICHTOR ARRANGENENT

CONCRETE SHEAR CONE FAILURE

COMBINED SHEAR AND TENSION

TEST_ APPARATUS

_ TEST AFPARATUS

DIAL INDICATOR ARRANGEMET

1/2-INCH SPECIMEN JUST PRIOR TO

12-INCH SPECIMEN AT FAILURE

14-INCH FAILED SPECIMEN

TYPICAL FAILURE