NUREG/CR-6430
UCRI~ID-122514

Software Safety Hazard Analysis

T i e 2 W oot R RN BT Bo o - A U el o B0 b . i T Sk T TRl S TR B SRS R SE AT DTS, /PR, s
—— e

Prepared by
J. D. Lawrence

Lawrence Livermore National Laboratory

Prepared for
U.S. Nuclear Regulatory Commission

9602290270 960229
PDR NUREG ‘
CR-6430 R PDR

AVAILABILITY NOTICE
fvallability of Reterence Materiais Cited in NRC Publicatons

Most documents cited in NP™ publications will be available from one of the following sources
1 The NRC Public Document Room, 2120 L Street, NW. ., Lower Level, Washingtyn DC 20855-0001

2 The Superintendent of Documents. U S Government Printing Office. P. O Box 37082, Washington, DC
20402-9328

3. The National Technical information Service. Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications . it is not in-
tended tc be exhaustive.

Referenced documents availabie for inspection and copying for & fee from the NRC Public Document Room
include NRC correspondence and internal NRC memoranda . NRC bulietins . circulars infarmation notices . in-
spection and investigation notices . licensee event reports . vendor reports and corresponaence. Commission
papers. ard applicant and licensee documents and correspondence

The following documents in the NUREG series are available for purchase from the Government Printing Otfice
formal NRC staff and contractor reports, NRC-sponisored conference proceedings. international agreement
reports, grantee reports, and NRC booklets and brochures. Also availabie are regulatory guides, NRC regula-
tions in the Code of Federal Reguiations, and Nuclear Regulatory Commission Issuances

Documents avallable from the National Technical information Service include NUREG- series reports and tech-
nical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission,
forerunner agency to the Nuclear Regulatory Commission

Docurmnents available from public and special technical libraries include all open literature items . such as books,
journal articles, and transactions. Federal Register notices Federal and State legisiation, and congressional
reports can usually be obtained from these libraries

Documents such as theses, dissertations foreign reports and transiations. and non-NRC conference pro-
ceedings are avallable for purchase from the organization sponsoring the publication cited

Single coples of NRC draft reports are available free to the extent of supply . upon written request to the Office
of Administration. Distribution and Mail Services Section, U.§ Nuclear Regulatory Commission, Washington
DC 20555-0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are main-
tained at the NRC Libriiry. Two White Flint North, 11545 Rockville Pike . Rockville, MG 20852-2738. for use by
the public. Codes and standards are usually copyrighted and may be purchased from the originating organiza-
tion or, if they are American National Standards . from the American National Standards Institute . 1430 Broad-
way, New York, NY 10018-3308

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor arty of their employees, makes any warranty,
expressed or implied, or assumas any legal liability or responsibility tor any third party's use, or the results of
such use, of any information, apparatus, product, or process disclosed in this repon, or represents that its use
by such third party would not infringe privately ownec nghts

NUREG/CR-6430
UCRL~ID-122514

Software Safety Hazard Analysis

e— S —————15 S — - ——— ——————————————————————————

et ——————————ee

Manuscript Completed: October 1995
Date Published: February 1996

Prenared by
J. D. Lawrence

Lawrence Livermore National Laboratory
7000 East Avenue
Livermore, CA 94550

J. Gallagher, NRC Technical Monitor

Prepared for

Division of Reactor Controls and Human Factors
Office of Nuclear Reactor Regulation

U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

NRC Job Code L1867

Software Safety Hazard Analysis

ABSTRACT

Technigues for analyzing the safety and reliability of analog-based electronic protection systems that
serve to mitigate haz. vds in process control systems hzve been developed over many years, and are
reasonably well understood. An example is the protection system in a nuclear power plant The extension
of these techniques to systems which include digital computers is not well developed, and there is little
consensus among software engineering experts and safety experts on how to analyze such systems.

One possible technigue is to extend hazard analysis to include digital computer-based systems. Software
is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in
control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully
cover the software. A method for performing software hazard analysis is proposed in this paper.

i NUREG/CR-6430

Software Safety Hazard Analysis

CONTENTS
ACKBOWEIABIIONLcovnuseuunsesiseusnmsisssossrsssssnsssansisassessssnsssssnsasssessss a4sss 4480 4RLS SR8 00IREESSELFRSE 1SRN RS SIRRIRRNARSHRRSRASS vii
ADDBVABRIOREc.on vocsuinssobmansssasnesssnsssssstsnsssuios sioiisisnssbihssssssnonsssisensivsssish (4s4EASRRIROERAIAERIIELAIAIINIEIISIALOESRENEFHINIRSERHSSSLIISS viii
L. EIRPOMRICHION.ocorcroniarsnssssaonsessusssssassssnsmtsssssarhssssshusssusesssssssnssressassess ssnsshsmssbasas sohs nattssasssssns s60asssssnnssnsasenssnainassssn asnsnse .
L0 IUIEPOBE ... cicvcoionnmassnansninssnsissoss snssasssistnssssssnssssssnssassss 04s40eHHe RN SRS IERSHSSHRARRSRASE AR S1RRSRRE AL IRSE AT ERERSH B AR RA SRS SA 1S o |
1.2 ROPOIE SIUCIITE .occvivivnrs wunmussasssanasssossssssossassssstssssnssssessssshismnensss ssssssssssss s esssirss nsss sisesaes ssas assssbsssassasnasstasaress 1
1.3, TOIMUNOIORY ... wevoe coomuraiminusessmmrssssssssssssrssnssssssssssnsss sassnssnssessssassss s essssesrsashss assssnass oAt 10 EatARRLRSRRRRAS HA1SEESSASIRSSS -2
2. Introduction 1o the Software Hazard Analysis PrOCESSoccuiiimiiimmiimimmmmsiemssmm st ssssssss s s 3
2.1. Software Hazard Analysis as Part of System Safety Analysis............oooimmm o
2.2. Software Hazard Analysis as Part of Software DeSign ... B
2.3. General Approach to Software Hazard ABBIYSIS4
2.4. Prerequisites 10 Software HAzZard ANBIYSIS ..o s 5
3, ROQUITCIMENIS HAZAIA ANBIYEIS............coocvoreuniiersassmsnresssssissonsssssssssts s sss s 5821844000084 888 818081150 18RRS4 .8
3.1. Inputs to Software Requirements Hazard Analysis...........coooviiiiiimmm i 14
3.2, ADBIYBIS PrOOBAUIESovcoiiunsmnssnessesssossusessussssnsnssassssnsssnsentsasessssss assssssssssssss sasssasssssss ssssssassasss sssssssssnss .14
3.3. Outputs of Software Requirements Hazard Analysis. ... 15
4, Architectural Design HAzard ANBLYSIScooumimmmmmmimmmimiisinm s s s ass s ssssns sy sasssssssss .18
4.1. Inputs 1o Software Architecture HAzard ARBLYSIS ..o 16
8.2, ADBIYSIS POCOAUIESooooiivesimsssisassmmsinsinsesasessssssiss sossssses s assbssbess o ssnsen s esd i 10se18us 8s 804 ARSI SRS 0 - 16
4.3. Outputs of Software Architecture Hazard AIYSIS ... i .18
S. Detailed Design HAZarg ADBIYSIS...........cc.cocuvmmimmmmmmsemssssinississss hisssssssssissssmsion sessssmssssassssisssssssinasssssssssessens .18
5.1. Inputs to Software Detailed Design Hazard Analysis ... 19
5.2, ADRIYEIE PTOCOGUIESooommumarsssmmussisssunsermsssissssssass sosssssis ashsssssrssiesss6ssstesssss oo shssasssnsensssss s ssssssssssssasssss - 19
5.3. Outputs of Software Detailed Design Hazard Analysis19
6. CoB0 TIABRIE ADBIYEISo0.croceressrsossonssnsorissssssnsssnssmssussssssnessesesssatrsssmssssssenssssanssssssssssssssessesssssssstbsiossssnsssssesssasesns 19
6.1. Inputs to Software Code Hazard ANBIYSIS ..o st ssss s .20
B8, AR PRI «.ocrvvoncisomsommmsiaservamssssrmasessssosirmssnsshipssirsgortivmatrinystisssivavires T Y Pl el . 20
6.3. Outputs of Software Code Hazard Analym .. .20
7. Summary and Conclusions ..o e, . s SR DR R O T - 30
B REfErENCESs.o.ovcviiiieiriiiicninsnissicns = N TSR PN e 7" —OL NS AL oM N sy, el Wy -2 X - &3
ADDIRIEE A BURBIOMIM ... cocioniosnsruimsnsinmssssosonmssssmsasssisasnapssessssnessassnsss s essssssss spasarssnsersassastdsssestes iopmasssiessasssonsansonts -
T T R I et T S T RN RS PR S S, O R g 25
A3 ANONE DTNt OURMNE IRIIRINEE .0t 0abodamitisssassionsansitiiss aisizeitiisnssdirmiat s esisdesis BT SRS 33
A.3. NIST Review of Software Hazard ARRBIYSESc..comimmimomismsmmsssmmmsiosismsssis oo . 38
AA. Review of the Published LIBIAIUIEccouivmemmsiisisimmirssmmssmisssssssssimmmssmsssssntssssrarsssssassssssssassssssassasassesss -3
Appendix B. Potential Software Safety Analysis Methods ... A ok 41
APDEX C. BoBwans Tooks For TIaatd ABBIEEIE.cccnvmmissorissnimsmnsassorsssnsivassossassanssissssonssosmemersosssssssasssssssiatssnss . 45
0 IR RN AR o cr00svonmmmanssanesvibispmmsssassraspns asmsravis s RS TR e T AR C RTINS ke 45
e [TR TR T S R e e s IS T R T s Y e L T . 46
BT I TR oot sshdictost pimututs s Puhmobid ek nale st it as s i o e s eian s cnd st bA S Ao 46
e I N SN <o i rmsbusnninaiipnshydtnssomicitn s ssnsesss insaivniurt sniass soveasiimO LA ATmabs P ATy S4B A .47
s T TR TN v i vicinscoinins otnionns oot cehsnaistnsisa nibomsoons Basvs ePVAAOEA SRS ot sk aaveuiay . 47

v NUREG/CR-6430

Software Safety Hazard Analysis

FIGURES
Plows 1. Watorfall Life Cycle MOlcoccnmisrmssmammsamissestinssissmsassnsssssssssnstparssssssssbsosnsssessasesssossarsaisesssinsos uss 6
Figure 2. Software Hazard Analysis within the Software Life Cycle |
Figure 3. Hazard Severity CoBBOMES...............ovivimmsrrssissusismssiesmssssssssssssssassssssssssssissstssssnessssstns sesssssssiesssbiassssassrssss .
Figure 4. Hazard Probability Levels................ccinmimimmmimmsmmsmmsisimsmsssnsmms st essssiissssassssss sssessassasssssmsssssnsss .9
Figure 5. Example Matrix for Determining Risko s s . 10
Figure 6. Software Qualities Relating 1o Potential HAzards ... s 10
Figure 7. Guide Phrases for Sofware QUALIESocccoiiumiimiiimisimiinimimr i siessssss s sesssasesissssssssssisss]
Figure 8. Example of 8 SORWAE ATCRHBOINIEoniscarveimisnsisesrerssnimmmsommesssssssonsssasrassssnssnsssssasssissssssssasssssessasons o ¥
Figure 9. Determination of Architecture Risk LEVEIS ..o i 18
Figure 10. Outline of 8 Software Safety PIaN ... s .26
Figure 11. IEEE 1228 Suggested Safety ARBIYSES..........ccooimmmemnn & sosrsmssssissmsssmmisssssssissssisssssntsassassusssssss .27
Figure 12. Hazard Severity Categories (from Mil-Std BB2C) ... s e ko, 28
Figure 13. Hazard Probability Levels (from Mil-Std BB2C)o 28
Figure 14, Detailed Safety Tasks (from Mil-Std BB2C) ..o srssissrssssssisssssmissns .29
Figure 15. Example Matrix for Residual Risk (from Mil-Std BB2C) ..o, R T et T g -29
Figure 16. Example Software Hazard Criticality Matrix (from Mil-Std B82C) 31
Figure 17. Summary of Safety System ACEs Ientification ..o i iissssssimsaie 35
Figure 18. Summary of Software Requirements ACEs Identfication33
Figure 19, Summary of Software Design ACEs Ientification ..., 36
Figure 20. Summary of Software Code ACES IdentifiCationot s . 36
Figure 21. Summary of General Guidelines for ACE ReSOIUON ... 37
Figure 22. Clanses of Hazards (HAmmer 19T2)........c.. crviscsisonossssmmussimssssnssssissssssssassanssissssssassssssbassorsessesisssnsions 38
APPIRBE € FRRuron: POMITEREGiiiicvcirmsimsusinssmisssasssarsassessissisessansavessarsasssossasnsoss SRIRROIN ALY -t % .48
Appendix C Figures: HAZOPtumizer P AR SRS L S ST T L « 35
APDOREIR © TUBIION: HIAETIRE . ..icovcovisusinromsirsnsssssimmssmssvesansoriorsessossnsosonsasrassssmssronsssassasasssibassss sasessasnasssbaniessss sansasnessstss 61
AATIINE I TRRUINE: URIRIIED ... cocvriissoinisansonesivemiossipinsssssssstesusbhssssssspinsnsmnss 1emansspsspmET R RIS IR OO RS TRRTS SRR I0S 70
AR £ TR AT ..o cossrssscaissiosiosssmommsiosmsriosssenssiantinssaosniomassnsssmsarreiistsassasiresisbeitefiamsin At eI GIYAS .76

NUREG/CR-6430 vi

Software Safety Hazard Analysis

ACKNOWLEDGMENT

The author thanks and acknowledges the efforts of Mr. John Gallagher from the Nuclear Regulatory
Commission who reviewed this work and provided insights and comments.

il NUKEG/CR-6430

NUREG/CR-6430

ACE
CHA
COTS
DOD
ETA

FMECA
FSE
FTA
HAZOP
1&C

MOD
NFP
NSCCA
O&SHA
PHA
PHL
PIE
PRA

SAD
SDD
SHA
SRS
SSp
SwHA
V&V

ABBREVIATIONS

Abnormal Condition or Event
Component Hazard Analysis
Commercial Off-the-Shelf

Department of Defense

Event Trec Analysis

Failure Modes and Effects Analysis
Failure Modes, Effects and Criticality Aalysis
Functions, Systems and Equipment
Fault Tree Analysis

Hazard and Operability Analysis
Instrumentation and Control

Institute of Electronic and Electrical Engineers
Ministry of Defense

Nuclear Power Plant

Nuclear Safety Cross-Check Analysis
Operating and Support Hazard Analysis
Preliminary Hazard Analysis
Preliminary Hazard List

Postulated Initiating Event
Probabilistic Risk Assessment

Reactor Protection System

Software Architecture Description
Software Design Description

System Hazard Analysis

Software Requirements Specification
Software Safety Plan

Software Hazard Analysis
Verification and Vahidation

Section 1. Introduction

SOFTWARE SAFETY HAZARD ANALYSIS

1. INTRODUCTION

1.1. Purpose

Techiniques for analyzing the safety and
reliability of analog-based electronic protection
systems that serve to mitigate hazards in process
control systems have been developed over many
years, and are reasonably well understood. An
example is the protection system in a nuclear
power plant. The extension of these techniques
to systems which include digital computers is
not well developed, and there is little consensus
among software engineering experts and safety
experts on how 10 analyze such systems.

One possible technique is to extend hazard
analysis to include digital computer-based
systems. If safety is considered to be a measure
of the degree of freedom from risk, then
software safety ensures that the software in the
computer system will execute within the
application system without resulting in
unacceptable risk. Hazard analysis is a method
of identifying portions of a system which have
the potential for unacceptable hazards; the
purpose is to (1) encourage design changes
which will reduce or eliminate hazards, or (2)
carry out special analyses and tests which can
provide increased confidence in especially
vuinerable portions of the svstem.

Software is frequently overlooked during system
hazard analyses, but this is unacceptable when
the software is in control of a potentially
hazardous operation. In such cases, hazard
analysis should be extended to fully cover the
software. A method for performing software
hazard analysis is proposed in this paper.'

The report considers only those hazar.'s affected
by software. Only the software portion of the
digital computer system is considered. In

! Neither this proposed method of hazard anwdysis nor any other
specific method has been endorsed by the U S Nuclear
Regulatory Commussion

particular, it is assumed that the computer
hardware operates without failure.?

As a consequence of the above assumptions, the
report concentrates on two guestions.

« If the software operates correctly (i.e.,
follows its specifications), what is the
potential effect on system hazards?

« If the software operates incorrectly (i.e.,
deviates from specifications), what is the
notential effect on system hazards?

This report does not discuss how to determine
whether a software item is correct or not.
Software analyses, reviews and tests directed at
finding faults in the software are not considered
to be a direct part of software hazard analysis.
See Lawrence (1993) for a discussion of these
Verification and Validation (V& V) topics within
the software life cycle.

Although V&V is not considered to be part of
hazard analysis, the results of a V&V effort may
well be of use. For example, the use of testing to
estimate the reliability of a software item might
be used within a fault tree analysis to estimate
the probability of a hazard occurring.

The performance of software hazard analysis
can be facilitated by the use of automated or
semi-automated tools. Examples of such tools
are considered in Appendix C.

1.2. Report Structure

Software hazard analysis is discussed in general
terms in Chapter 2. This chapter includes a list
of desirable prerequisites to software hazard
analysis, and a general discussion of the
approach proposed in the remainder of the

report.

Chapters 3-6 provide the details of the proposed
software hazard avalysis process. Considerable
emphasis is placed on the requirements and

2A separate hardware hazard analysis and—for complex computer
systems—a separate computer system hazard analysis, are
recommended to supplement the software hazard analysis

NUREG/CR-6430

Section 1. Introduction

architecture design phases of the sofiware life * A system hazard is an application system
cyclz to reflect the belief that faults in condition that is a prerequisite to an
requirements and architecture design accident.

specifications have a greater potential impact on
systern hazards than faults in the detailed design
or coding phases.

Tool support can be very helpful when
performing hazard analyses. A representative set
of tools is discussed briefly in Appendix C. The
goal here is to indicate the availability of
different types of tools. The tools were selected
for discussion based on availability on a PC
platform and on price. No endorsement of
specific tools is implied.

That is, the system states can be divided into
two sets. No state in the first set (of
nonhazardous states) can directly lead to an
accident, while accidents may result from
any state in the second set (of hazardous
states). Note that a system can be in a
hazardous state without an accident
occurring. It is the potential for causing an
accident that creates the hazard, not
necessarily the actuality, because conditions
that convert the hazard to an accident are not
concurrently present. A hazard is a potential
for an accident that can be converted to
actuality by encountering a triggering event
or condition within the foreseeable
operational enve'ope of the system.

The software hazard analysis process proposed
in this report 1s based on a variety of standards
and techinical papers described in Appendix A.
The report continues with a list of possible

safety analysis technijues taken from a System
Safety Society report (Appendix B). * The term risk is used to designate a measure

t combines the likelihood that a system

1.3. Terminology o et o

hazard will occur, the likelihood that an
Safety engineering has special terminology of its accndgnl will occur and ey of the
ol Thegfoll owi:g deﬁmons. Sased prigmnrily severity of the worst piausible accident.
on those contained in IEEE Standard 1228, are
used in this report. They are reasonably standard
definitions that have been specialized to
computer software in a few places.

The simplest measure is to simply multiply
the probability that a hazard occurs, the
conditional probability that a triggering
event or condition will occur while the

* An accident is an unplanned event or series hazard is present, and the estimated worst-

of events that result in death, injury, illness,
environmental damage, or damage to or loss
of equipment or property. (The word mishap
is sometimes used to mean an accident,

case severity of the accident.

Safety-critical software? is software whose
inadvertent response to stimuli, failure to
respond when required, response out-of-

financial loss or public relations loss.) sequence, of response in unplanned

combination with others can result in an
accident or the exacerbation of an accident.
This includes software whose operation or
failure to operate can lead to a hazardous
state, software intended to recover from
equipment malfunctions or

Accidents generally can be divided into two
categories: those that involve the unplanned
release of energy and those that involve the
unplanned release of toxicity.

3qu= word “critical.” as used in this report, refers 1o software
enticality, not nuclear criticality

NUREG/CR-6430 2

Section 2. Introduction to the Software Hazard Analysis Process

external insults, and software intended to
mitigate the severity of, or .ecover from, an
accident *

* A critical system is a system whose failure
may lead to unacceptable consequences. The
results of failure may affect the developers
of the system, its direct users, their
customers or the general public. The
consequences may involve loss of life or
property, financial loss, legal liability,
regulatory actions or even the loss of good
will if that is extremely important. The term
safety critical refers to a system whose
failure could lead to loss of life, injury, or
damage to the environment. For nuclear
reactors, this includes radiation releases or
exposure to the public or operators and
reactor workers.

* The term safety is used to mean the extent to
which a system 1s free from system hazard.

* Hazard analysis is the process of identifying
and evaluating the hazards of a system, and
then either eliminating the hazard or
reducing its risk to an acceptable level.
(NIST 1993)

* Software hazard analysis *. . . eliminates or
controls software hazards and hazards
related to interfaces between the software
and the system (including hardware and
human components). It includes analyzing
the requirements, design, code, user
interfaces and changes.” (NIST 1993)

2. INTRODUCTION TO THE
SOFTWARE HAZARD
ANALYSIS PROCESS

2.1. Software Hazard Analysis as
Part of System Safety Analysis

Software hazard analysis should be performed
within the context of the overall system design,

‘Mmcmuwbchwﬂwmmmancmmhymm
software can cause @ hazard An example is a fire
MMMMW ons for
equipment, causing & hazard in case of fire due 10
myﬁnﬁdmuomupmm Such cases are

for both those attributes of the system design
that contribute to the system’s ability to perform
the assigned tasks that are derived from the
plant’s safety mission as well as the assigned
tasks derived from the plant’s primary mission
that could be detrimental to the plant’s safety
mission. Consequently, those performing the
software hazard analysis must understand the
role of the software in the performance of the
system safety functions and also in the
performance of the system control and
monitoring functions, and the effect of the
software acting within the system with respect to
its potential impact on the accomplishment of
the plant's safety mission. This understanding is
obtained from the system safety analysis; in
particular, the system’s hazard analysis. [EEE
Standard 1228 presents the relationship between
the system safety analysis and the software
safety analysis in more detail. The following
discussion provides an overview of the safety
case for a nuclear power plant.

The safety properti . of a nuclear reactor design
are fundamenrally affected by three broad design
principles: quality, diversity and defense-in-
depth. These principles may be applied at
various levels of the design; determining where
and how to apply the principles is one of the
more important activities of the design process.
All three principles should have wide
applicability to other forms of process control
systems.

The main hazards in a nuclear reactor are the
possibility of a rapid, energetic fission reaction
(e.g., Chernobyl) and the release of radioactive
fission products which are the waste products of
the fission reaction. 'n the U.S. (and many other
countries), regulations mandate that the physics
of the core design make rapid reactions self
limiting. This leaves the prevention of the
release of fission products as the main hazard to
be controlled.

Three levels of defense-in-depth are provided to
control the release of fission products. Each is
sufficient to prevent public exposure to any
significant level of radiation. First, each element
of the fuel is surrounded by a barrier. In light
water reactors, the fuel 1s composed of

NUREG/CR-6430

Section 2. Introduction to the Software Hazard Analysis Process

numerous metal tubes, each tube containing fuel
pellets and associated fissior products. Second,
fission products that might be released from the
fuel are further contained by the reactor coolant
systems. Should some event cause breach of
both of these barriers, a third barrier, the
containment building, surrounds the reactor
coolant system. Each of these barriers is
fundamentally different in design, providing
diversity at each level of defense-in-depth.

Barrier integrity is maintained first by building
in a high degree of quality, and second by
ensuring the barriers are not expused to
environmental conditions that exceed design
assumptions. Active systems are provided to
enforce these environmental limits. For example,
the most important environmental considerations
for the fuel are that the heat generated by the
fuel be limited, and that the heat that 1s
generated be taken away. These are the safety
functions that must be accomplished to ensure
the barrier (fuel clad) immediately surrounding
the fuel 2~d fission products remains intact.
Diversity and defense-in-depth are provided for
these functions. For example, power can be
limited by dropping solid neutron absorbers
(control rods) or injecting liquid absorber into
the coolant system.

Each function can be actuated by multiple
independent systems. For example, the control
rods may be inserted automatically by the
control system, the reactor protection system,
the ATWS (Anticipated Transient Without
Scram) Mitigation System, the Engineered
Safety Actuation System (ESFAS), or the
reactor operator. In proposed U. S. advanced
reactor designs that invelve computer-based
control anc protection systems, at least two
diverse, automatic systems must be capable of
initiating each safety function such that the
consequences of each postulated accident are
acceptable. Furthermore, sufficient information
and manual controls must be provided to allow
the operator to start and coutrol each safety
function.

This diversity may be accomplished via
diversity in the computer systems Hardware
diversity may include multiple CPU types and

NUREG/CR-6430

multiple communication paths. Software
diversity could involve independent calculations
of the process state using different types of
information—temperature and pressure
calculations in one piece of software compared
to pressure and neutron flux in another piece—
either of which is sufficient to determine, in
time, if backup systems must be started to
achieve safety functions.

Finally, quality parts and design are used to
reduce the probability of any individual failures
from occurring.

2.2. Software Hazard Analysis as
Part of Software Design

The ultimate objectives of any hazard analysis
program are to identify and correct deficiencies
and to provide information on the necessary
safeguards. This is certainly true of Software
Hazard Analysis. There is no point to the
analysis unless appropriate action is taken. At
ieast four types of actions may be appropriate,
depending on the circumstances:

1. The system design may be changed to
eliminate identified hazards which are
affected by software or are not adequately
handled by software, or to reduce the
hazards to acceptable levels, or to adjust the
system architecture so that identified
hazards are compensated by defense-in-
depth.

2. The software design may be changed to
eliminate identified hazards, or reduce them
to acceptable levels.

3. The quality of the software may be
improved sufficiently to reduce the
probability ~f a hazard to an acceptable
level.

4. The application system may be rejected if it
is considered 100 hazardous.

2.3. General Approach to Software
Hazard Analysis

Software hazard analysis should be a defined
aspect of the software life cycle. No specific life

Section 2. Introduction to the Software Hazard Analysis Process

cycle is endorsed here (see Lawrence (1993) for
a discussion of life cycles). To provide some
specificity to the discussion, a waterfall life
cycle is assumed, as shown in Figure 1. Not all
the phases in the figure are included in the
hazard analysis.

Hazard analysis begins with analyses of the
reactor design which identify parameter limits of
the safe operating region for the thermal-
hydraulic properties of the reactor. This provides
a vanety of documents which serve as the
starting point for the software hazard analysis.
The general approach is shown in Figure 2,
which shows the technical development
activities (requirements, architecture, design,
code), the V&V activities, and the hazard
analysis activities. Results of the various
software hazard analyses are used, as
appropriate, to change the protection system
design, change the software architecture or
design, and to identify portions of the software
which require increased attention to quality.

This report does not discuss methods or
techmques for performing the recommended
hazard analyses. Little extensive experience with
analysis techniques has been reported in the
literature. Hazard and Operability Analysis
(HAZOP), Failure Modes and Effects Analysis
(FMEA) and Fault Tree Analysis (FTA) are
possibilities (see Appendix A). Other potential
possibilities are listed in Appendix B.

2.4. Prerequisites to Software
Hazard Analysis

Considerable work is required before a software
hazard analysis process can begin. The
following list will generally require some
modifications to fit specific projects. Since
iterations of analyses are necessary as the
software development proceeds, no strict
chronological rigidity is implied. For example, a
Preliminary Hazard Analysis is needed before a
Software Requirements Hazard Analysis can
take place. However, the results of that analysis
or some other requirements analysis might result
in a system design change, which in turn might
require modifications to the Preliminary Hazard
Analysis.

Each of the prerequisite steps should resuit in
one or more documents. These will be required
in order to perform the various software hazard
analyses.

1. Prepare a Preliminary Hazard List (PHL) for
the application system. This will contain a
list of all identified hazards, and will
generally be based on the reactor Safety
Analysis Report and the list of Postulated
Initiating Events (PIE).

2. Prepare a Preliminary Hazard Analysis
(PHA) for the application system and
subsystems which have impact on the
software. This evaluates each of the hazards
contained in the PHL., and should describe
the expected impact of the software on each
hazard.

It is recommended that the PHA assign a
preliminary severity level to each hazard.
Tle method outlined in IEC 1226 1s
acceptable (see Appendix A.1.4 fora
discussion). This method assigns a level
code of A, B or C to each hazard, where “A"
is assigned to the most critical software.

3. Carry out the required hazard investigations

and evaluations at the application system
and application subsystem level. This should
include an evaluation of the impact of
software on hazards.

There are at least four potential impacts of
software on each hazard (see IEEE 1228,
discussed in Appendix A.1.1). These are:

a. The software may challenge the reactor
safety systems; failure of the software to
operate correctly has the potential for
creating a hazardous condition that must
be removed or mitigated by some other
system. An example is a software-based
reactor control system whose failure
may initiate a reactor transient that
causes reactor operation to diverge
toward an unsafe operating region.

NUR":G/CR-6430

Section 2. Introduction to the Software Hazard Analysis Process

Systems Design

Reguirements
Specification
Architecture
Design

1

Software Design

Y

Software
Implementation

==
P
AN

instaliation

oo,

Operation and
Maintenance

Figure 1. Waterfali Life Cycle Model

NUREG/CR-6430

Section 2. Introduction to the Software Hazard Analysis Process

V&V Organization

Figure 2. Software Hazard Analysis within the Software Life Cycle

Abbreviations
PHA Preliminary Hazard Analysis
PHL Preliminary Hazard Analysis
SAD Software Architecture Description
SAR Safety Analysis Report
SDD Software Design Description

SRS Software Requirements Specification

Section 3. Requirements Hazard Analysis

b. The software may be responsibie for
preventing a hazard from progressing to
an incident: failure of the software to
operate correctly has the potential for
converting the hazard to an accident. An
example is software control of the
reactor trip system, where potential
failure of this system during an
emergency would permit a reactor
transient to progress to a significant
event.

¢. The software may be used to move the
system from a hazardous state to a
nonhazardous state, where the huzardous
state is caused by some portion »f the
application system other than the
software. Software controlling the
emergency core cooling systems is an
example of this, where decay heat is
removed to move a reactor from hot to
cold shutdown when other cooling
systems are unavailable.

d. The software may be used to mitigate
the consequences of an accident. An
example is software controlling the
containment isolation system, which
prevents a radiation release inside the
containment structure from escaping and
affecting the general pubiic.

4. Assign a consequence level and probability
of occurrence to each identified hazard. The
tables shown in Figures 3 and 4 can be used
as a basis for this. These tables are based on
[EC 1226 and MiiStd 882C, and are
discussed in Appendix A 1.4 and A.]1.2,
respectively.

5. Prepare a table like that in Figure 5 from the
tables created in step 4. This table can be
used to derive an estimate of risk for each
hazard.

This table matches the hazard severity
categonies of Figure 3 to the hazard
probability levels of Figure 4 to obtain a
measure of overall risk. Thus, events with
critical severity and occasional probability
of occurrence are judged to have high risk.

6. For each hazard identified in the PHL, PHA
or other hazard analyses, identify its risk
level using the table prepared in step 5.

7. Prepare an application system requirements
specification.

8. Create and document a system design,
which shows the allocation of safety
functions to software components and other
system components and shows how the
software component and the remaining
application system components will
coordinate to address the hazards discovered
in previous analyses.

9. Prepare the remaining documents to the
extent required in order to specify, design,
implement, verify and analyze the software
component of the RPS. This includes
analysis of additional hazards introduced by
choice of specific digital hardware,
computer language, compiler, software
architecture, software design techniques, and
design rules. This analysis will be revisited
as digital system design and software design
are elaborated.

3. REQUIREMENTS HAZARD
ANALYSIS

Software requirements hazard analysis
investigates the impact of the software
requirements specification on system hazards.
Requ.rements can generally be divided into sets,
each of which addresses some aspect of the
software. These sets are termed gualities here. A
recommended list of qualities to be considered
during software hazard analysis is given in
Figure 6. Some variations may be required to
match special situations

The general intent of software requirements
hazard analysis is to examine each quality, and
each requirement within the quality, to assess
the likely impact on hazards. McDermid et al.
{1994, 1995) suggest the use of guide words to
assess impact; this idea is adapted here. A set of
guide phrases is supplied for each quality that
can be used to help assess the impact on hazards
of each requirement associated with the quality.

Section 3. Requirements Hazard Analysis

These guide phrases are shown in Figure 7. This Letters are:

figure suggests concepts to be examuned for each

requirement that relates to specific software
qualities. In some cases, a requirement may

R Requirements
A Architectural Design

affect more than one quality. The figure lists the D Detailed Design

various qualities; in some cases, these are further C Coding

divided into aspects of the quality. The third

column contains a code for the life cycle phase The last column contains the guide phrases. In

during which use of the guide phrase i1s

addition to the phrases listed, the analyst should

recommended. examine the impact on hazards if the
requirement is actually met.
Description Category Definition
Catastrophic A Death, system loss, or severe environmental damage
Critical B Severe injury, severe occupational illness, major
system or environmental damage
Marginal e Minor injury, minor occupational illness or minor
system or environmental damage
Negligible -- Less than minor injury, occupational illness or less
than minor system or environmental damage
Figure 3. Hazard Severity Categories

(based on [EC 1126)

Description Level Estimate of Probability
Frequent A Likely to occur frequently
Probabie B Will occur several times in the
life of an item

Occasional C Likely to occur some time in the
life of an item

Remote D Unlikely but possible to occur
in the life of an item

Improbable E So unlikely, it can be assumed
occurrence may not be
expenenced

Figure 4. Hazard Probability Levels
(based on Mil-Std 882C)

9 NUREG/CR-6430

Section 3. Requirements Hazard Analysis

Negligible
High
Probable High High Medium Low
Occasional High High Medium Low
Remote High Medium Low Low
Improbable Medium Low Low Low

Figure 5. Example Matrix for Determining Risk

I Quality l Description of Quality I
Accuracy The term accuracy denotes the degree of freedom from error of sensor and

operator input, the degree of exactness possessed by an approximation or
measurement, and the degree of freedom of actuator output from error.

Capacity

The terms capacity denotes the ability of the software system to achieve its
objectives within the hardware constraints imposed by the computing
system being used. The main factors of capacity are Execution Capacity
(timing) and Storage Capacity (sizing). These refer, respectively, to the
availability of sufficient processing time and memory resources to satisfy
the software requirements.

Functionality

The term functionality denotes the operations which must be carried out by
the software. Functions generally transform input information into output
infermation in order to affect the reactor operation. Inputs may be obtained
from sensors, operators, other equipment or other software as appropniate.
Outputs may be directed to actuators, operators, other equipment or other
software as appropnate.

Reliability

The term reliability denotes the degree to which a software system or
component operates without failure. This definition does not consider the
consequences of failure, only the existence of failure. Reliability
requirements may be derived from the general system reliability
requirements by imposing reliability requirements on the software
components of the application system which are sufficient to meet the
overall system reliability requirements.

Robustness

The term robustness denotes the ability of a software system or component
to function correctly in the presence of invalid inputs or stressful
environmental conditions. This includes the ability to function correctly
despite some violation of the assumptions in its specification.

Safety

The term safety is used here to denote those properties and characteristics
of the software system that directly affect or interact with system safety
considerations. The other qualities discussed in this table are important
contributors to the overall safety of the software-controlled protection
system, but are primarily concerned with the internal operauion of the
software. This quality is primarily concerned with the affect of the software
on system hazards and the measures taken to control those hazards.

Security

The term security denotes the ability to prevent unauthorized, undesired
and unsafe intrusions. Security is a safety concern in so far as such
intrusions can affect the safety-related functions of the software.

NUREG/CR-6430

Figure 6. Software Qualities Relating to Potential Hazards

Section 3. Requirements Hazard Analysis

Quaiity
Accuracy

Aspect Phase Guide Phrases
Sensor RADC Stuck at all zeroes
RADC Stuck at all ones
RADC Stuck elsewhere
RADC Below minimum range
RADC Above maximum range
RADC Within range, but wrong
RADC Physical units are incorrect
RADC Wrong data type or data size
Actuator RADC Stuck at all zeroes
RADC Stuck at all ones
RADC Stuck elsewhere
RADC Below minimum range
RADC Above maximum range
PRAD(' Within range, but wrong
RADC Physical units are incorrect
RADC Wrong data type or data size
Operator Input & | RA Numerical value below acceptable range
Output
RA Numenical value above acceptable range
RA Numerical value within range, but wrong
RA Numerical value has wrong physical units
RA Numerical value has wrong data type or data
size
RA Non-numerical value incorrect
Calculation RDC Calculated result is outside acceptable error
bounds (too low)
RDC Calculated result is outside acceptable error
bounds (too high)
RDC Formula or equation is wrong
RDC Physical units are incorrect
RDC Wrong data type or data size

Figure 7. Guide Phrases for Software Qualities

11 NUREG/CR-6430

Section 3. Requirements Hazard Analysis

g

Capacity Message RADC Message volume is below stated minimum
RADC Message volume exceeds stated maximum
RADC Message volume is erratic
RADC Message rate is below stated minimum
RADC Message rate exceeds stated maximurn
RADC Message rate 1s erratic
RADC Message contents are incorrect, but plausible
RADC Message contents are obviously scrambled
Timing RADC Input signal fails to arrive
RADC Input signal occurs too soon
RADC Input signal occurs too late
RADC input signal occurs unexpectedly
RADC System behavior 1s not deterministic
RADC Output signal fails to arrive at actuator
RADC Output signal arrives too soon
RADC Output signal arrives too late
RADC Output signal arrives unexpectedly
R Insufficient time allowed for operator action
AD Processing occurs in an incorrect sequence
DC Code enters non-terminating loop
DC Deadlock occurs
» Interrupt loses data
C Interrupt loses control information
Functionality RA Function is not carnied out as specified (for
each mode of operation)
RA Function is not initialized properly before
being executed
RA Function executes when trigger conditions
are not satisfied
RA Trigger conditions are satisfied but function
fails to execute
RA Function continues to execute after
termination conditions are satisfied
RA Termination conditions are not satisfied but
function terminates
RA Function terminates before necessary actions,
calculations, events, etc. are completed
R Function is executed i incorrect operating
mode
R Function uses incorrect inputs
R Function produces incorrect outputs
Figure 7. Guide Phrases for Software Qualities, continued
NUREG/CR-6430 12

Section 3. Requirements Hazard Analysis

[Software 15 less reliable than required

Software is more reliable than required

oftware reliability is not known when the
system goes into production use

RA Software does not degrade gracefully when
required (crashes instead)

RA Software fault tolerance requirements (if
any) are not met

[RA Reliability varies among the different modes

of operation

Software fails in-service test

Software fails

Hardware unit fails

Software failure propagates to uninvolved
processes

Software fails to recover from failure

Hardware or software failure is not reported
to operator

Software fails to detect inappropnate
operation action

'.Robusmess

Data 15 passed to incorrect process

Software fails in the presence of unexpected

input data

Software fails in the presence of incorrect
input data

Software fails when anomalous conditions
occur

Software fails to recover itself when required

Software fails duning message overload

Software fails when messages missed

Safety

—
Software causes system to move to a
hazardous state

Software fails to move system from
hazardous to nonhazardous state

Software fails to initiate emergency
shutdown when required to do so

Software fails to recognize hazardous reactor
state

l *
Security

Unauthorized person has access to software
system

Unauthonzed changes have been made to
software

Unauthorized changes have been made to
plant data

Figure 7. Guide Phrases for Software Qualities, centinued

13 NUREG/CR-(430

Section 3. Requirements Hazard Analysis

Numerous traditional qualities generally
considered necessary to an adequate software
requirements specification are not included in
Figure 7. Completeness, consistency,
correctness, traceability, unambiguity and
verifiability are, of course, necessary, but should
be handled as part of requirements analysis and
verification, not as part of hazards analysis.

For example, the first quality is sensor accuracy.
Suppose there were an accuracy requirement for
a particular sensor that “The value from sensor
123 shail be between 100 and 500, with an error
of no more than 5% .” Then, the following

questions should be asked:

* What is the effect on hazards if the sensor
reading satisfies the requirement? In
particular, what if the reading 1s 5% away
from the actual value?

* What is the effect on hazards if the sensor is
stuck at all zeros?

* What if the sensor is stuck at all ones?
¢ What if the sensor value 1s less than 1007
* What if the sensor value is greater than S00?

* What if the sensor value is between 100 and
500, but 1s not within 5% of the actual
value?

It is important that this analysis not be
sidetracked into asking how such conditions
might occur, or into arguments on the
impossibility of the conditions. For hazard
analysis, assume that the conditions can occur,
and examine the consequences.

3.1. Inputs to Software
Requirements Hazard Analysis

The following information should be available
to perform the requirements hazard analysis.

* Preliminary Hazard List
* Preliminary Hazard Analysis

NUREG/CR-6430

Safety Analysis Report
¢ Protection System Design Description

Software Requirements Specification

3.2. Analysis Procedures

The following steps may be used to carry out the
requirements hazard analysis. The steps are
meant to help organize the process. Variations in
the process, as well as overlap in time among the
steps, is to be expected.

1. Identify the hazards for which software is in
any way responsible. This identification
includes an estimate of the risk associated
with each hazard.

2. Identify the software criticality level
associated with each hazard and control
category, using the table in Figure 5.

3. Match each safety-critical requirement in the
software requirements specification (SRS)
against the system hazards and hazard
categories in order to assign a criticality
level to each requirement.

4. Analyze each requirement using the guide
phrases in Figure 7 which are marked with
an “R.” These guide phrases are meant to
initiate discussion and suggest possibilities
to consider, not to bound the analysis.

There are a great many phrases in Figure 7.
For any particular requirement, most of
these will not apply. For example, only
about eight of the phrases would apply to the
example given at the beginning of Section 3.
Part of the analysis of this step is to select
the quality or qualities that apply to the
requirement, so that only applicable phrases
are used.

5. Document the results of the analysis.

14

The information collected during this hazard
analysis can be of onsiderable use later during
software development. The combination of
criticality level assigned to the various software
requirements and the guide phrase analysis
provides information on the assignment of
resources during further development,
verification and testing. It can also suggest the
need for redesign of the application system to
reduce software-affected hazards.

It is possible that the Software Requirements
Hazard Analysis leads to the conclusion that
some changes should be made to the system
design. In particular, it might be discovered that
some system requirements assigned to software
can be better met through hardware.

It is likely that the hazard analysis will conclude
that some requirements do not pose hazards—
that is, there are no circumstances where failure
to satisfy the requirements can cause a hazard.
Such requirements probably do not need to be
considered in the following analysis steps.

There are many ways to carry out the analysis of
step 4. The technique mos: prominently
documented in the literature is Fault Tree
Analysis (FTA) (see Appendix A.4 for a
discussion). Event Tree Analysis (ETA) should
also be considered, using the guide phrases as
top events in the tree and expanding the tree to
consider consequences. The choice of technique
depends on what information is known to the
analyst and what information is sought.

3.3. Outputs of Software
Requirements Hazard Analysis

The products of the requirements hazard
analysis consist of the following item::

* A list of software hazards.

* A cnticality level for each hazard that can be
affected by the software.

* A criticality level for each software
requirement.

* An analysis of the impact on hazards of the
software when it operates correctly or

15

Section 4. Architectural Design Hazard Analysis

incorrectly with respect to meeting each
requirement.

4. ARCHITECTURAL DESIGN
HAZARD ANALYSIS

Software design hazard analysis is divided here
into two sections: one which examines the
computer system architecture, and one which
examines the detailed software design. The
former is discussed in this chapter.

A computer system architecture consists of three
segments: the hardware architecture, the
software architecture and the mapping between
them. The hardware architecture describes the
various hardware elements: processors,
memories, disk drives, display devices and
communication lines. The software architecture
describes the various software processes, data
stores, screen layouts and logical
communication paths. The mapping describes
how the software will operate on the hardware;
this includes identifying which processes will
operate on which processors, where the various
data stores will be located, where the various
screens will be displayed, and how logical
communications will take place over physical

paths.

Some architectures may introduce complex
functions or may have failure modes that other
architectures do not have. These represent
additional hazards introduced by design choices
and which are not identified by previous hazards
analyses.

The architectural design documents should
contain a two-way trace between requirements
and design elements. Each requirement is traced
to the design elements that implement that
requirement, and each design element is traced
back to the requirements which it implements. If
this trace does not exist, it should be created
before the architecture hazard analysis begins.

The analysis here builds on the requirements
hazard analysis by extending the latter to the
software architecture. A similar analysis is
recommended for the hardware architecture and

NUREG/CR-6430

Section 4. Architectural Design Hazard Analysis

the overall computer system architecture
(hardware, software and mapping).

For example, suppose there is a timing
requirenient that a certain signal be sent to a
particular valve actuator within five seconds of
receiving an overload signal from a particular
sensor. This requirement would have been
analyzed as part of the software requirements
hazard analysis. Now, suppose the logical data
path is as shown in Figure 8. Among other guide
phrases that apply, the analyst should consider
the effect on the hazard if the message to be sent
on path “c” never arrives. In this instance, a
hazard that did not exist previously has been
added by the decision to implement the logical
data path “c.”

4.1. Inputs to Software Architecture
Hazard Analysis

The following information should be available
to perform the architecture hazard analysis.

* Preliminary Hazard List

* Preliminary Hazard Analysis

* Safety Analysis Repornt

* Software Requirements Specification

* Software Requirements Hazard Analysis

* Requirements to Architecture Trace Matrix

* Software Architecture Description

4.2. Analysis Procedures

The following steps may be used to carry out ihe
software architecture hazard analysis.

1. For each software architectural element,
determine all the requirements affected by
the element. This results from the trace
matrix.

2. Assign arisk level 1o each software
architectural element, based on the risk
associated with all the reguirements affected

NUREG/CR-6430

6

by the element. Figure 9 shows one method
of doing this. The figure uses the risk levels
taken from Figure §, and considers the
number of requirements of various risk
levels affected by the element in order to
assign a risk to the element. The suggested
algorithm is as follows:

a. Pick one requirement. Assign the
architectural element severity level to be
the same as that of the requirement. If
the requirement has medium severity,
for example, then the initial element
level s also “medium.”

b. For each additional requirement,
accumnlate an architectural element
severity estimate by estimating the
sevenity of consequences should all of
the identified requirements fail to be met
simultaneously.

¢. Continue until all requirements affected
by the architectural element have been
considered. The final architectural
element risk level is the design failure
probability of the architectural element
times the accumulated severity
associated with failure.

Analyze eacl, safety-critical architectural

| element using the guide phrases in Figure 7

marked “A." These phrases are meant to
nitiate discussion and suggest possibilities
to consider, not to bound the analysis.

As with the requirements discussion in
Section 4.2, there are a great many phrases
in Figure 7 marked “A.” For any particular
architectural element, many of these will not
apply. Part of the analysis of this step is to
select the quality or qualities that apply to
the architectural element, so that only
applicable phrases are used.

4. Document the results of the analysis.

Section 4. Architectural Design Hazard Analysis

Figure 8. Example of 2 Software Architecture

17 NUREG/CR-6430

Section 5. Detailed Design Hazard Analysis

Architecture Element

Risk Level from Adding a Requirement

Risk

Level

Very High Very High

High Very High High High
Medium High Medium Medium
Low High Medium Low

Figure 9. Determination of Architecture Risk Levels

The information collected during this analysis
can supplement that of the software
requirements hazard analysis. In particular, if
several architectural elements are classified as
very-high-risk, consideration should be given to
redesigning the architecture, either to lower the
risk associated with the software architecture or
to provide compensatory mechani<ms to lower
overall application system risk. As with the
requirements hazard analysis, assignment of
resources to further development, verification,
and testing can be based on this hazard analysis.

Architecture hazard analysis is likely to
demonstrate that some architectural elements are
nonhazardous; that 1s, the analysis shows that no
possible failure of the element can affect a
systern hazard. Such elements require only
muinimal attention during design and
implementation hazard analysis.

If FTA or ETA were used during the
requirements hazard analysis, they may be
extended 10 include the software and hardware
architectures. The value of the trees comes
mostly in the information contained in the
structure of the trees. It 1s not likely to be
possible to make a convincing assignment of
failure probabilities to architectural elements, so
using the tree to attempi to calculate the
probability of root evenis should be used as a
reality check and resource allocation tool only.

4.3. Outputs of Software
Architecture Hazard Analysis

The products of the architecture hazard analysis
consist of the following items:

* A list of software architectural design
elements with assigned risk ievel

NUREG/CR-6430

* Analysic of the impact on hazards of the
software when the specified architecture is
used.

¢ A list of design constraints and coding
constraints which are required to mitigate
hazards associated with the chosen
architecture.

* Recommendations for design changes which
will reduce the hazard criticality level of
software elements.

* Recommendations for increased analysis
and testing to be carried out during detailed
design V&V, code V&V and final system
validation analysis and testing.

5. DETAILED DESIGN HAZARD
ANALYSIS

The detailed design documents should contain a
two-way trace among the software requirements,
the software architecture and the detailed design.
Each requirement is traced through the
architecture to the detailed design elements that
implement the requirement. Each detailed design
element is traced back through the architecture
to the requirements which it implements. If this
trace does not exist, it should be created before
ihis hazard analysis begins.

The primary task here is to see if the detailed
design changes any of the results of the
requirements or architecture hazard analyses. If
the latter have been performed carefully and
completely, there should be little more to do.
Verification becomes of increasing importance
at this point in the life cycle, using the results of
the hazard analyses to direct the verification
activities.

5.1. Inputs to Software Detailed
Design Hazard Analysis

The following information should be available
to perform the architecture hazard analysis.

* Preliminary Hazard List

¢ Preliminary Hazard Analysis

» Safety Analysis Report

* Software Requirements Specification
* Software Architecture Description

e Software Detailed Design Description

* Sofiware Requirements and Architecture
Hazard Analyses

* Trace Matrix, Requirements to Architecture
to Detailed Design

5.2. Analysis Procedures

The following steps may be used to carry out the
software detailed design hazard analysis.

1. For each software architecture element,
prepare a list of detailed design elements
which together constitute the architectural
element. It may happen that some design
elements are used in more than one
architectural element. For example, low
level communication software may be used
by almost every element of the architecture.
Device drivers are additional examples.

o

For each design element, use the guide
phrases in Figure 7 that are marked “D" to
determine if the hazards associated with the
architecture elements have changed. This
may occur if design elements, design rules,
design tools, or design techniques introduce
common-mode failure mechanisms to two or
more architectural elements. If so, previous
hazard analyses may need to be redone.

3. Document the results.

If resources do not exist to analyze all design
elements, choose those elements that (1)
constitute architectural elements of very high or
high risk and (2) those elements that uccur in

19

Section 6. Code Hazard Analysis

many architectural elements. The latter are most
likely service elements, such as communications
modules, device drivers or file managers.

It should be expected that, in most cases, the
analysis will quickly determine that there has
been no change to systems hazards due to the
detailed design. That is, if a careful job has been
done in identifying, controlling and mitigating
hazards during the requirements and architecture
phrases, there should be little left to do at the
detailed design phase. If this is true, emphasis
can start shifting from the global concern of
systems hazards to the more local concern of
implementation correctness.

The information collected during this analysis
can help provide assurance that no new hazards
have been introduced by the detailed design. It
can also help with the assignment of resources
for coding and testing.

5.3. Outputs of Software Detailed
Design Hazard Analysis

The product of the software detailed design
hazard analysis consists of the documented
analysis.

6. CODE HAZARD ANALYSIS

The software documents should contain a two-
way trace between the detailed design element
and the code elements which implement the
design elements. If this trace does not exist, it
should be created before code hazard analysis
begins.

Correctness is much more a concern at this point
than hazard analysis, provided that the previous
three analyses have been performed well. The
main emphasis is on making sure that nothing in
the code changes the previous analyses or
creates a new hazard. Results of the previous
analyses can be used to direct verification and
testing resources to the most critical code
elements.

NUREG/CR-6430

Section 7. Summary and Conclusions

6.1. Inputs to Software Code
Hazard Analysis

The following information should be available
to perform the architecture hazard analysis.

¢ Preliminary Hazard List

¢ Preliminary Hazard Analysis

* Safety Analysis Report

* Software Requirements Specification
* Software Architecture Description

* Software Detailed Design Description
* Code

* Software Requirements, Architecture and
Design Hazard Analyses

* Trace Matrix, Requirements for Architecture
to Design to Code ™ :ments

6.2. Analysis Procedures

The following steps may be used to carry out the
code hazard analysis.

1. For each code element, use the guide
phrases in Figure 7 that are marked “C" to
determine if the results of the design hazard
analysis need to be modified or if new
hazards have been introduced. If so, some or
all of the previous analyses may need to be
redone.

Resources are not likely to exist to analyze
all code elements. Concentrate on those that
encode the most risky design elements and
those that support basic computing system
functions.

2. Examine tools, computer language, and
coding techniques for their potential to
introduce common-mode failure
mechanisms to all modules. Identify coding
rules or tool-usage rules that avoid risky tool
features or coding techniques. If a pre-
existing operating system will be used,
identify the risky features or functions that
should be avoided.

3. Document the results.

NUREG/CR-6430

20

6.3. Outputs of Software Code
Hazarc Analysis

The product of the code hazard analysis consists
of the documented analysis.

7. SUMMARY AND
CONCLUSIONS

The software hazard analysis described in
Sections 3-6 could require a significant effort
when applied to the digital computer-based 1&C
system for modern reactor control and protection
systems or another process I&C system whose
failure could result in significant adverse public,
environmental, or financial consequences. It
must be recognized that in reality, software
hazards analysis is only one of several activities
necessary for the development of software to be
used in safety-critical applications. Principal
activities in this regard include configuration
management, verification and validation, and
quality assurance activities. A detailed
discussion of the life cycle activities for the
development of safety-critical software is given
in Lawrence (1993). A summary of design
factors important to the realization of high-
quality software that is “fit for duty” in safety-
critical applications 1s given in Lawrence (1994).

With the above view in mind, one can then
consider where software hazards analysis offers
a unigue capability to improve the integrity of
safety-critical software. Section 2 provides an
overview of the objectives of the hazards
analysis activities for both system hazards and
software hazards and the relation between
hazards analysis activities and other principal
software development life cycle activities. A
major impact of the results from the software
hazards analysis is on changes to the software
requirements specification for the purpose of
eliminating identified hazards that are affected
by the software or that are not adequately
managed by the software. Another major impact
of these results is on the software architecture, in
particular the addition . f software architectural
features that impr- ve t 1¢ management of
hazards b= ugh the concept of defense-in-depth.

I'he impact of software hazards analysis on the
software design specification, with the exception
of the use of potentially complex operations
associated with data flow and control flow. 15
overshadowed by the need to address concerns
related to correctness through the traceability
and V&V aspects discussed in Section 5. The
emphasis on correctness is even more true for
the software code. The discussion in Section 6
provides guidance on matters that are more
effectively dealt with through correctness
coencems

The more detailed presentation of the software
hazards analysis in Section 3, Requirements
Hazards Analysis, includes an approach to guide
the assessment of the impact on hazards of each
requirement as it 1s related to the qualities given
in Figuie 6. The guide phrases for this

assessment are preserted in Figure 7

I'he selection of applicable guide phrases t«
particular requirements must be governed by the
potential impact of each software hazard on the

Sectuon 7. Summary and Conclusions

system, as presented in item 3 of section 2.4 and
the accompanying risk associated with that
hazard, as given in Figure 5. Similar selection
considerations are applicable for the
architectural design hazards analysis described
in Section 4

In conclusion, limiting the bulk of the software
hazards investigation to the software
requirements specification and the software
architectural design and the judicious selection
of the events to be assessed should lead to a
hazards analysis result that (1) minimizes the
probability of occurrence of those hazards with

the more significant consequences and (2)

minimizes the in rease in design requirements
that cculd have the potential for an increase n
the complexity of the design

The process outlined in Chapters 3-6 1s based on
the documen.s listed in the References. It has not
been tested or evaluated in the field

NUREG/CR-6430

Section 8. References

8. REFERENCES

Air Force Inspection and Safety Center. 1985,
Software System Safety. Headquarters Air Force
Inspection and Safety Center, AFISC SSH 1-1,
September 5.

Bowman, William C., Glenn H. Archinoff, Vijay
M. Raina, David R. Tremaine and Nancy G.
Leveson. 1991. “An Application of Fault Tree
Analysis to Safety Critical Software at Ontario
Hydro.” Probabilistic Safety Assessment and
Management, G. Apostolakis, ed. (1991): 363-
368.

Brown, Michael L. 1985. “Software Safety for
Complex Systems. [EEE Annual Conf. of the
Eng. in Medicine and Biology Society (1985):
210-216.

Center for Chemical Process Safety. 1992. 1992.
Guidelines for Hazard Evaluation Procedures,
American Institute of Chemical Engineers.

Clarke, Stephen J. and John A. McDermid.
1993. “Software Fault Trees and Weakest
P:econditions: a Comparison and Analysis.”
Soft. Eng. J. 8, no. 4 (July): 225-236.

Conaclly, Brian. 1989. “Software Safety Goal
Verification Using Fault Tree Techniques: A
Critically Iil Patient Monitor Example.”
Computer Assurance Conf. (Compass) (June):
18-21.

Elahi, B. John. 1993. “Safety and Hazard
Analysis for Software Controlled Medical
Devices.” Sixth Annual IEEE Symp. On Comp.-
Based Med. Syst (June): 10-15.

Froome, P. K. D. 1992. Interim Def Stan 00-56:
Hazard Analysis and Safety Classification of the
Computer and Programmable Electronic System
Elements of Defense Equipment,” Centre for
Software Reliability, Ninth Annual Conf. on Soft.

Safety, Luxembourg (April): 1-14.

Gowen, Lon D., James S. Collofello and Frank

W. Calliss. 1992. “Preliminary Hazard Analysis
for Safety-Critical Software Systems,” Phoenix
Conf. Comp. and Comm. (April): 501-508.

23

Hammer, Willie. 1972. Handbook of System and
Froduct Safety. Prentice-Hall.

IEC 1226. 1993. Nuclear Power Plants—
Instrumentation and Control Systems Important
for Safety—Classification. International
Electrotechnical Commission.

IEEE 7-4.3.2. 1993. IEEE Siandard Criteria for
Digital Computers in Safety Systems of Nuclear
Power Generating Stations. Institute of
Electronic and Electrical Engineers.

IEEE 1228. 1994. [EEE Standard for Software
Safety Plans. Institute of Electronic and
Electrical Enginee .

Lal-Gabe, Anshoo. 1990. “Hazards Analysis and
its Application to Build Confidence in Software
Test Results.” Third Annual IEEE Symp. On
Comp.-Based Med. Syst. (June): 129-134.

Lawrence, J. Dennis. 1993. Software Reliability
and Safety in Nuclear Reactor Protection
Systems. NUREG/CR-6101, UCRL-ID-114839,
Lawrence Livermore National Laboratory,
November.

Lawrence, J. Dennis and G. Gary Preckshot.
1994. Design Factors for Safety-Critical
Software, NUREG/CR-6294, Lawrence
Livermore National Laboratory, December.

Levan, David G. 1992. “Preliminary Procedure
for Software Hazard Analysis of Safety-Critical
Software.” Prepared for Ontario Hydro Nuclear
Safety Department by DLSF Systems, Inc.,
January.

Leveson, Nancy G. and Peter R. Harvey. 1983,
“Analyzing Software Safety.” IEEE Trans. Soft.
Eng. 9, no. 5 (September): 569-579.

Leveson, Nancy G. 1991a. “Safety Assessment
and Management Applied to Software ™
Probabilistic Safety Assessment and
Management, G. Apostolakis, ed. 377-382.

Leveson, Nancy G. 1991b. “Safety.” Aerospace
Software Engineering Chnistine Anderson and
Merlin Dorfman, ed., AIAA, 319-336.

NUREG/CR-6430

Section 8. References

Leveson, Nancy G., Stephen S. Cha and
Timothy J. Shimeall, 1991c. “Safety
Venification of Ada Programs Using Software
Fault Trees.” IEEE Software (July): 48-59.

Levinson, Stanley H. and H. Tazewell
Doughtrey. 1993. “Risk Analysis of Software-
Dependent Systems.” Prob. Safety Assessment
Int’l. Topical Meeting (January).

McDermid, J. A, and D. J. Pumfrey. 1994.”°A
Development of Hazard Analysis to Aid
Software Design."” Computer Assurance
(Compass) (June): 17-25.

McDermid, John A., M. Nicholson, D J.
Pumfrey and P. Fenelon. 1995. “Experience with
the Application of HAZOP to Computer-Based
Systems.” Computer Assurance (Compass)
{(June): 37-48

McKinlay, Archibald. 1991. “The State of
Software Safety Engineering.” Probabilistic
Safety Assessment and Management, G.
Apostolakis, ed. (1991): 369-376.

Mil-Hdbk-764. 1990. System Safety Engineering
Design Guide for Army Materiel. U.S. Dept. of
Defense (January 12).

NUREG/CR-6430

24

Mil-Std 882C. 1993. System Safety Program
Regquirements. U.S. Dept. of Defense (January).

MOD 00-56. 1991. Hazard Analysis and Safety
Classification of the Computer and
Programmable Electronic System Elements of
Defense Equipment. Defence Standard 00-56,
Ministry of Defence, Great Britain (April).

Mojdehbakhsh, Ramin, Satish Subramanian,
Ramakrishna Vishnuvajjala, Wei-Tek Tsai and
Lynn Elliott. 1994. “A Process for Software
Requirements Safety Analysis.” Int'l Symp. on
Software Reliability Engineering, (November):
45-54.

NIST 1993. Review of Software Hazard
Analyses. National Institutes of Standards and
Technology. Draft (June 4).

Stephans, Richard A. and Warner W. Talso.
1993, System Safety Analysis Handbook. System
Safety Society, New Mexico Chapter,
Albuguerque, NM, July.

Appendix A. Background

APPENDIX A. BACKGROUND
A.l. Standards Review ¢. Sequences of actions intended to return
the application system from a hazardous
g'}e:ylEEE 1228, Standard for Software state to a nonhazardous state.

IEEE 1228 Standard, Standard for Software
Safety Plans, “describes the minimum
acceptable requirements for the content of a
Software Safety Plan.” A Software Safety Plan
developed to satisfy this Standard will contain
information on both management and technical
aspects of the development activity. The
recommended contents of a Software Safety
Plan, as given by the Standard, are shown in
Figure 10.

Only the analyses which are required in Sections
4.2-4.4 of the Safety Plan (sections 44.2-4 4.4
of the Standard) are relevant to the scope of this
report. The Standard itself does not require any
particular types of analyses. It does contain an
appendix which lists some suggested analyses.

The Standard distinguishes between the
Application System and the Software System. In
the context of reactors, for cxample, the
application system might be the entire reactor, or
the entire reactor protection system, and the
software system is the software which 1s
contained in the reactor control system or reactor
protection system, respectively. The word
“system,” used here 'vithout modification, will
always refer to the entire application system.

The Standard assumes that certain information
will be available prior to performing any safety
analyses. This information is listed next.

1. A Preliminary Hazard Analysis (PHA) and
any other hazard analyses which have been
performed on the entire application system
or any portion of it should be available.
These analyses must include the following
information:

a. Hazardous application system states.

b. Sequences of actions that can cause the
application system to enter a hazardous
state.

25

d. Actions intended to mitigate the
consequences of an accident.

2. A high-level application system design
should exist and specify:

a. The functions which will be performed
by the software contained in the
application system.

b. Any actions that will be required of the
software in order to prevent the
application system from entering a
hazardous state.

¢. Any actions that will be required of the
software in order to move the
application system from a hazardous
state to a nonhazardous state.

d. Any actions that will be required of the
software to mitigate the consequences of
an accident.

3. The interfaces between the software and the
rest of the application system should be
completely defined.

4. A software safety plan (SSP) should exist. It
will describe fully the means by which
software safety analyses will be carmied out
for the application system. IEEE Standard
1228 may be used as a model for the SSP If
the developer prefers, the software safety
plan may be included in the general system
safety plan

These will be referred to as the System Hazard
Analyses, the System Design, the System
Interface Specification and the Software Safety
Plan, respectively.

The Appendix to the Standard suggests certain
analyses which may be performed during
software develc pment. These are shown in
Figure 11.

NUREG/CR-6430

Appendix A. Background

w e

Purpose
Definitions, Acronyms and References

Software Safety Management
3.1. Organization and Responsibilities
32. Resources
33, Staff Qualifications and Training
34. Software Life Cycle
35. Documentation Requirements
36. Software Safety Program Records
317. Software Configuration Management Activities
38. Software Quality Assurance Activities
39. Software Venfication and Validation Activities
3.10. Tool Support and Approval
3.11. Previously Developed or Purchased Software
3.12. Subcontract Management
3.13. Process Certification
Software Safety Analyses
4.1. Software Safety Analyses Preparation
42 Software Safety Requirements Analysis
43 Software Safety Design Analysis
44 Software Safety Code Analysis
45 Software Safety Test Analysis
46. Software Safety Change Analysis
Post-Development
5.1. Training
5.2. Deployment
5.2.1. Installation
5.2.2. Startup and Transition
§.2.3. Operations Support
53. Monttoring
54. Maintenance
5.5. Retirements and Notification
Plan Approval

NUREG/CR-6430

Figure 10. Outline of a Software Safety Plan

Appendix A. Background

Software Safety Requirements Analysis
Criticality Analysis
Specification Anelysis
Timing and Sizing Analysis

Software Safety Design Analysis
Logic Analysis
Data Analysis
Interface Analysis
Constraint Analysis
Functional Analysis
Module Analysis
Revised Timing and Sizing Analysis

Software Safety Code Analysis
Logic Analysis
Data Analysis
Interface Analysis
Constraint Analysis
Programming Style Analysis
Non-critical Code Analysis
Revised Timing and Sizing Analysis

Software Safety Test Analysis
Unit Test Analysis
Interface Test Analysis
Subsystem Test Analysis
System-level Test Analysis
Stress Test Analysis

Regression Test Analysis

Figure 11. IEEE 1228 Suggested Safety Analyses

A.1.2. Mil-Std 882C, System Safety credible accident. These are shown in Figure 12.
Program Requirements A second table, reproduced here in Figure 13,
categorizes the probability that a hazard will be
created during the planned life expectancy of the
system. This latter table is also qualitative, and
is given both in terms of specific individual
items, and in terms of all items in the inventory.
The Standard points out that the two tables may
The Standard defines hazard severity categories need to be modified in some cases to fit

which provide a qualitative measure of the worst individual situations.

This Standard applies to all military systems in
which safety is a factor. The Standard is directed
at DoD program managers, and is meant to assist
them in overseeing contractors. The contractors
are expected to carry out the safety program.

27 NUREG/CR-6430

Appendix A. Background

The Standard presents detailed requirements as
tasks. These are organized into fovr sections,
with specific tasks in each section. This
grouping is intended to facilitate understanding,
and does not imply that the tasks are to be

is shown in Figure 15. This latter table can be
used in a hazard analysis in order to manage
risk. For example, if a hazard falls in the “high”
risk category, it might be possible to redesign
the system or use better quality parts in order to

carried out in the order listed. The task sections
and individual tasks are listed in Figure 14.

move to a “medium” risk category. Figure 15
can also be used to determine where assessment

hould be trated.
It is possible to combine Figures 12 and 13 to s b o

show a hazard risk level. One way of doing this

Description 7 Category Definition

Catastrophic I Death, system loss, or severe environmental damage

Cntical i1 Severe injury, severe occupational illness, major
system or environmental damage

Marginal 1 Minor injury, minor occupational illness or minor
system or environmental damage

Negligibie v Less than minor injury, occupational illness or less
than minor system or environmental damage

Figure 12. Hazard Severity Categories (from Mil-Std 882C)

Description Specific Individval Item Fleet or Inventory
Frequent Likely to occur frequently Continuously experienced
Probable B Will occur several times in the | Will occur frequently
life of an item
b . - » . .

Occasional C Likely to occur some time in th: ; Will occur several times
life of an item

Remote D Unlikely but possible to occur | Unlikely but can reasonahly be
in the life of an item expected to occur

Improbable E So unlikely, it can be assumed | Unlikely to occur, but possible
occurrence may not be
experienced

Figure 13. Hazard Probability Levels (from Mil-Std 882C)

NUREG/CR-6430 28

Appendix A Background

Task Number Task Title

100 Program Management and Control

101 System Safety Program

102 System Safety Program Plan

103 Integration / Management of Associate Contractors, Subcontractors and Architect and
Engineering Firms

104 System Safety Program Reviews and Audits

105 System Safety Group / System Safety Working Group Support

106 Hazard Tracking and Risk Resolution

107 System Safety an Summary’

200 Design and Integration

201 Preliminary Hazard List

202 Preliminary Hazard Analysis

203 Safety Reguirements / Criteria Analysis

204 Subsystemn Hazard Analysis

208 System Hazard Analysis

206 Operating and Support Hazard Analysis

207 Health Hazard Assessment

300 Design Evaluation

301 Safety Assessment

302 Test and Evaluation Safety

303 Safety Review of Engineering Change Proposals, Specification Change Notices,
Software Problem Reports and Requests for Deviation / Waiver

400 Compliance and Verification

401 Safety Venficaton

402 Safety Compliance Assessment

403 Explosive Hazard Classification and Characteristics Data

404 Explosive Ordnance Disposal Data

Figure 14. Detailed Safety Tasks (from Mil-Std 882C)

Hazard Category

Cntical

Medium

Low

High

Occasional High High Medium Low
Remote High Medium Low Low
Wobable Medium Low Low Low

Figure 15, Example Matrix for "lesidual Risk (from Mil-Std 882C)

29 NUREG/CR-6430

Appendix A. Background

An additional assessment of risk is
recommended for software, which considers the
potential hazard severity and the degree of
control that the software exercises over the
application. Four control categories are defined,
as follows.

“Cl. Software exercises autonomous control
over potentially hazardous hardware
systems, subsystems or components
without the possibility of intervention to
preclude the occurrence of a hazard.
Failure of the software or a failure to
prevent an event leads directly to a
hazard's occurrence.

“C2a. Software exercises control over
potentially hazardous hardware systems,
subsystems, or components allowing
time for intervention by independent
safety systems to mitigate the hazard.
However, these systems by themselves
are not considered adequate.

“C2b. Software item displays information
requiring immediate operator action to
mitigate a hazard. Software failures will
allow or fail to preven: the hazard's
occurrence.

“C3a. Software item issues commands over
potentially hazardous hardware systems,
subsystems or components requiring
human action to complete the control
function. There are several, redundant,
independent safety measures for each
hazardous event.

“C3b. Software generates information of a
safety critical nature used to make safety
critical decisions. There are several,
redundant, independent safety measures
for each hazardous event.

“C4. Software does not control safety critical
hardware systems, subsystems or
components and does not provide safety
critical information.”

slnthclm.“hldwm”lefmwdlfmmolqmpm(.w)w

mm:mwm For example, & missile is considered to be

NUREG/CR-6430

From this list and the list of hazard categories, a
software hazard criticality matrix can be defined.
This is shown in Figure 16. Risks range from 1
to 5, which may be interpreted as follows:

1 High risk—significant analysis and
testing is required.

2 Medium risk—requirements and design
analysis and in-depth testing is required.

34 Moderate risk—high level analysis and
testing is acceptable with management
approval.

5 Low risk—acceptable; no additional
analysis is required.

This scheme does not easily fit reactor
protection systems. It addresses a primary
control system which controls potentially
hazardous equipment. A reactor protection
system is an “independent safety system” in the
sense of item C1A.

A.1.3. AFISC SSH 1-1, Software System
Safety Handbook

This is a companion document to Mil-Std 882,
and is designed to specifically address software.®
Software hazards fall into four broad categories:

1. Inadvertent/unauthorized event. An
unexpected/unwanted event occurs.

2. Out-of-sequence event. A known and
planned event occurs but not when desired.

3. Failure of event to occ... A planned event
does not occur (e.g., a hazard is allowed to
propagate because the program does not
detect the occurrence of the hazard or fails
to act).

4. Magnitude or direction of event is wrong.
This is normally indicative of an algorithm
error.

© Another handbook, Mil-Hdbk-764, briefly discusses software
hazards analy. s

Appendix A. Background

Hazard Category

Figure 16. Example Software Hazard Criticality Matrix (from Mil-Std 862C)

The software hazard analysis effort should begin
early in the software life cycle. It is intended to
ensure that the software complies with safety
requirements and to identify potentially
hazardous conditions. Software hazard analysis
(SwHA) must be fully integrated with the
overall system hazard analysis. Two phases are
identified: preliminary software hazard analysis
(PSwHA) and follow-on software hazard
analysis (FSwWHA). However, it is probably
bettor to view these as a single analysis which
starts with the PSWHA and is revised as needed
during sofiware development.

The PSwWHA is based on an analysis of the
following documents:

1. System and subsystem PHAs
System and subsysiem specifications

System allocation and interface documents

2
3
4. Functional flow diagrams ana related data
5. Flow charts or their functional equivalent
6

Storage allocation and program structure
documents

7. Background information related to safety
requirements associated with the
contemplated testing, manufacturing,
storage, repair and use

8. System energy and toxic or hazardous event
sources which are controlled or influenced
by software

The combination of the PHA and the allocation
of system functions to software can be used to
identify the software components which are
critical to safety. These must be investigated in
depth; other components must be analyzed to

3

ensure that their operation or failure cannot
impact or influence safety-critical components.

The software hazard analyses should be revised
from time to time during the development
process. The handbook recommends revision
aftey the critical design review, during coding,
and during integration. Special attention should
be placed on changes to requirements, design,
and coding.

The handbook lists several methods of software
hazard analysis; the list is not meant to be
exhaustive. Software fault tree analysis, software
sneak circuit analysis, nuclear safety cross-check
analysis and Petri net analysis are discussed.

A.1.4. 1EC 1226, Classification of Safety
Systems in Nuclear Power Plants

This Standird also uses a hazard severity
classificatin scheme, but does not weight it by
probability of occurrence. Three categories are
used, labeied A, B and C. The Standard is
specific t) nuclear reactors, so is particularly
appropri ite to this report. See Figure 3.

The foliowing notations are used:

FSE Functions and the associated Systc.ms and
Equipment that implement them

1&” Instrumentation and Control
NPP Nuclear Power Plant

PIE Postulated Initiating Event
A.14.1. Category A

Category A “denotes the FSE which play a
principal role in the achievement or maintenance
of NPP safety.” An 1&C FSE falls into this
category if it meets any of the following critenia:

NUREG/CR-6430

Appendix A. Background

¢+ It is required to mitigate the consequence of
a PIE to prevent it from leading to an
accident.

¢ lts failure when required to operate in
response to a PIE could result in an accident.

* A fault or failure in the FSE would not be
mitigated by another category A FSE, and
would lead directly to an accident.

* It is required to provide information or
control capabilities that allow specified
manual actions to be taken to mitigate the
consequences of a PIE to prevent it from
leading to an accident.

Typical functions of a category A FSE are the
foilowing:

* Reactor shutdown and maintenance of
subcriticality

* Decay heat transport to an ultimate heat sink
* Isolation of containment
* Information for essential operator action

Examples of such FSE are the reactor protection
system, the safety actuation system and safety
system support features. Key instrumentation
and displays that permit operator actions defined
in the operations manual, and required to ensure
safety are also examples of category A FSEs.

A.14.2. Category B

Category B “denotes FSE that play a
complementary role to the category A FSE in
the achievement or maintenance of NPP safety.”
An 1&C FSE falls into this category if it meets
any of the following criteria:

* It controls the plant so that process variables
are maintained within safe limits.

* A requirement for operation of a category A
FSE in order to avoid an accident would
result from faults or failures of the category
B FSE.

* It is used to prevent or mitigate a minor
radioactive release, or minor degradation of
fuel.

NUREG/CR-6430

* Itis provided to alert control room personne!
to failures in category A FSE.

* Itis provided to continuously monitor the
availability of category A FSEs to
accomplish their safety duties.

e Itis used to reduce considerably the
frequency of a PIE.

Typical functions of a category B FSE are:

* Automatic control of the reactor primary and
secondary circuit conditions, keeping
variables within safe limits, and prevention
of events from escalating to accidents.

» Monitoring and controlling performance of
individual systems and items of equipment
during the post-accident phase to gain early
warning of the onset of problems.

¢ Limiting the consequences of internal
hazards.

* Monitoring or controlling the handling of
fuel where a failure could cause a minor
radioactive release.

Examples of category B FSE are the reactor
automatic control system, control room data
processing systems, fire suppression systems
and safety circuits and interlocks of fuel
handling systems used when the reactor is shut
down.

A.1.4.3. Category C

Category C “denotes FSE that play an auxiliary
or indirect role in the achievement or
maintenance of NPP safety.” An 1&C FSE falls
into this category if it meets any of the following
critena:

* It1s used to reduce the expected frequency
of a VIE.

* Itis used to reduce the demands on, or to
ennance the performance of, a category A
FSE.

* It is used for the surveillance or recording of
conditions of FSE, to determine their safety
status.

Appendix A. Background

» It is used to monitor and take mitigating
action following internal haza 4s within the
reactor design bases, such as fir: and fiood.

» itis used to ensure personnel safety during
or following events that involve or result in
release of radioactivity within the reactor, or
risk radiation exposure.

» It is used to wamn personnel of a significant
release of radioactivity in the reactor or of a
risk of radiation exposure.

» It is used to monitor and take mitigating
action following natural events such as
earthquakes and tornadoes.

+ Itis the NPP internal access control.
Typical functions of a category C FSE are:

» Those necessary to warn of internal or
external hazards, such as fire, flood,
explosions, earthquakes.

¢ Those for which operating mistakes could
cause minor radioactive releases, or lead to
radioactive hazard to the operators.

* Access control systems.

Examples include alarm systems, waste stream
monitoring, area radiation monitoring, access
control systems, and emergency
communications systems.

A.1.4.4. Effect of the Classification Scheme

The primary effect is to concentrate
development and assurance efforts on the most
important FSEs—those of category A. An
example 1s the use of redundancy to achieve
reliability. A category A FSE is required to have
redundancy so that no single point of failure
exists, Redundancy is encouraged for category B
FSEs, but is not required if the reliability goals
can be met without it. No redundancy is
generally needed for category C FSEs, though it
can be used if necessary to meet reliability goals.

33

A.1.5. IEEE 7-4.3.2, Annex F, Abnormal
Conditions and Events

Annex F of IEEE 7-4.3.2 discusses the
identification and resolution of abnormal
conditions and events (ACEs).

ACEs are grouped into two categories,
depending on their source. Some are caused by
conditions or events that occur outside the
computer system—a failure of a system
component is an example. Others are caused by
failures within the computer system.

Section F.2.3 of the Annex describes a process
for identifying ACEs based on the software life
cycle. It begins at the system design phase, and
proceeds through computer system design,
software requirements, software design,
software implementation, computer integration
testing and comyuter validation testing. The
Standard lists various considerations for most of
the life cycle phases; these are summarized in
Figures 17-20.

A general procedure is provided for resolving
ACEs. The intent is to eliminate ACEs or reduce
the associated risk where possible. A summary
of the procedure is given in Figure 21.

A.2. General Discussion of Hazard
Analysis

Hammer (1972) lists six functions of hazard
analysis:

1. The investigation and evaluation of the
interrelationshiips of primary, initiating and
contributory hazards that may be present.

2. The investigation and evaluation of the
circumstances, conditions, equipment,
personnel and other factors involved in the
safety of the system and its operation.

3. The investigation and evaluation of the
means of avoiding or eliminating any
specific hazard by using suitable designs,
procedures, processes or materials.

NUREG/CR-6430

Appendix A. Background

4. The investigation and evaluauon of the
controls that may be required to prevent
possible hazards and the best methods for
incorporating those controls in the product
or system.

5. The investigation and evaluation of the
possible damaging effects resulting from
lack or loss of control of any hazard that
cannot be avoided or eliminated.

6. The investigation and evaluation of the

safeguards for preventing injury or damage
if control of the hazard is lost.

Initial hazards analyses must be carried out for
the entire application system. This report
assumes that the five forms of system-level
hazards analyses identified in Mil-Std 882C
have been carried out, except for software
components. The folioving is a brief list of the
types of hazard analysis given in the Standa "

1. Preliminary Hazard List (PHL) identifies
hazards that may require safety design
consideration or special analyses. It occurs
upon completion of the concept definition
phase of the system life cycle.

2. Preliminary Hazara Analysis (PHA)
identifies and evaluates all system hazards.
It starts in the concept definition phase of
the system life cycle, and ends when the
ccmponent-level System Hazard Analysis is
able to begin. The PHA is the foundation for
future system and software hazard analyses.

3. System Hazard Analysis (SHA) examines
the entire system to identify hazards and
assess the risk of the entire system design,

NUREG/CR-6430

34

including software. It starts as the system
design matures, close to the design review,
and is updated until the system design is
complete.

4. Component SHA identifies hazards
associated with the design of the
components, and how those hazards will
affect the entire system. it begins as each
component is designed and is updated as the
component design matures.

5. Operating and Support i{azard A.ialysis
(O&SHA) identifies and evaluates hazards
related to the environment, personnel,
procedures and equipment during a system
operation performed by humans. It begins
before the system test and integration life
cycle phase. O&SHA identifies safety
requirements necessary to eliminate hazards
or mitigate the risk of hazards.

These hazard analyses will identify certain
hazards. The table in Figure 22 suggests broad
classes of hazards that may be present. The
various system hazard analyses will attempt to
eliminate as many hazards as possible, reduce
the probability of occurrence of those that
remain, and reduce the potential damage which
may result from accidents. In the latter two
cases, responsibility will be assigned to specific
system components for the control of
occurrences and consequences. In some cases,
software components may be assigned such
responsibility. If this occurs, software hazard
analysis is a form of component hazard analysis.

Appendix A. Background

Occurrence of design bases conditions identified in the Safety Analysis Report.

Possible independent, dependent and simultaneous ACE events considering failures of
safety equipment.

Interface considerations among various elements of the system.

i i

Environmental constraints.

o

Operating, test, maintenance and emergency procedures.

b

Design and use of test and maintenance equipment that has potential for introducing
damage, software errors or interrupts.

Safety equipment design and possible alternate approaches.

Degradation in a subsystem or the total system from normal operation of another
subsystem including non-safety systems.

Modes of failure, including reasonable human errors as well as single point failures, and
ACEs created when failures occur in subsystem components.

Potential contribution of software, events, faults and occurrences on safety of the system.

Potential common mode failures.

The method of implementation of the software design requirements and corrective actions
will not impair or degrade the safety system nor introduce new ACEs.

m.

The method of controlling design changes during and after system acceptance will not
degrade the safety system nor introduce new ACEs.

Figure 17. Summary of Safety System ACEs ldentification

Software requirements should be evaluated to identify those that are essential to
accomplishing the safety function. These critical requirements should be evaluated
against the ACE to assess their significance.

Requirements for timing and sizing should be included to ensure adequate resources for
execution time, clock time and memory allocations are provided to support the critical
requirements.

<,

In designs involving the integration of multiple software systems, consideration should be
given for interdependencies and interactions between the components of the system.

Existing software should be evaluated to ensure adequate confidence that no “unintended
functions” detrimental to the operation of the safety system are introduced.

Figure 18. Summary of Software Requirements ACEs Identification

35 NUREG/CR-6430

Appendix A. Background

Equations, algorithms and control logic should be evaluated for potential problems.

oy =

Potential computational problems should be evaluated.

¢. Evaluation of data structure and intended use should be performed.

d. Potential data handling problems should be evaluated.

e. Interface design considerations should be reviewed.

g. Adeguate confidence that the design fits within the identified system constraints.
h. Software modules that implement critical functions should be identified.

—

Non-safety modules should be evaluated to provide adequate confidence that they do not
adversely affect safety software.

Figure 19. Summary of Software Design ACEs Identification

a. Evaluate equations, algorithms and control logic for potential problems.

b. Confirm the correctness of algorithms, accuracy, precision and equation discontinuities,
out of range conditions, breakpoints, erroneous inputs, etc.

¢. Evaluate the data structure and usage in the code to provide adequate confidence that the
data items are defined and used properly.

d. Provide adequate interface compatibility of software modules with each other and with
external hardware and software.

e. Provide adequate confidence that the software operates within the imposed constraints.

f. Examine non-critical code to provide adequate confidence that it does not adversely
affect the function of cnitical software.

g Provide adequate confidence that the results cf coding activities are within the timing and
sizing constraints.

Figure 20. Summary of Software Code ACEs Identification

NUREG/CR-6430 36

Appendix A. Background

Eliminate identified ACEs or reduce associated risk through design, if possible.

Ensure that the safety functions are protected from identified ACEs, and that non-safety
functions do not create ACEs for the safety functions.

Identify, evaluate and eliminate ACEs associated with each system throughout the entire
life cycle of a system.

Minimize risk resulting from excessive environmental conditions.

Design to minimize risk created by human error in the operation and support of the
system.

Create unambiguous requirements definitions to minimize the probability of
misinterpretation by developers.

Consider and use historical ACEs data, including lessons learned from other systems.

Minimize risk by using existing designs and test techniques whenever possible.

Analyze for ACEs and document changes in design, configuration or system
requirements.

Document identified ACEs and their resolution.

Figure 21. Summary of General Guidelines for ACE Resolution

KY) NUREG/CR-6430

Appendix A. Background

Acceleration and motion Leakage

Chemical reactions Moisture
Dissociation High humidity
Oxidation Low humidity
Replacement Power source failure
Contamination Pressure
Corrosion High pressure

Electrical Low pressure
System failure Changes
Inadvertent activation Radiation
Shock Thermal
Thermal Electromagnetic

Explosion lonizing

Fire Ultraviolet

Heat and temperature Structural damage or failure
High temperature Stress concentrations
Low temperature Stress reversals
Changes Toxicity

Impact and shock Vibration and noise

Figure 22. Classes of Hazards (Hammer 1972)

A.3. NIST Review of Software The report describes six different software
Hazard Analyses hazard analyses. The following description is
taken from the report.
This draft report, based primarily on Mil-Std . ‘
8828 (the predecessor of 882C), lists three I Software Requirements Hazard Analysis
requirements for software hazard analysis. The (SWRHA) ensures that systera safety
Software Hazard Analysis should: requirements have been properly defined,
and that th~y can be traced from the system
1. Respond to every hazard identified in the requirements to the software requirements;
System Hazard Analysis. software design; and operator, user and

diagnostic manuals. It begins during the

2. Ensure that the operation of the software requirements phase of the system life cycle.

does not interfere with the safety goals or

et ol o The PHL and PHA are inputs to this
— R analysis. SWRHA examines the system
3. Evaluate and mitigate how software could requirements, software requirements and
hinder the safety goals or operation of the software design by reviewing system and
system. software requirements documentation and

program documentation. Recommendations
and design and test requirements are
incorporated into the Software Design

NUREG/CR-6430 38

Documents and the Software Test Plan. The
results of the SWRHA are presented at the
System Requirements Review (draft),
System Design Review (update) and
Software Requirements Review (final).

Software Design Hazard Analysis (SWDHA
identifies safety-critical software
components that require analysis beyond
design. It starts after the Software
Requirements Review and should be mostly
completed before starting software coding.
The PHA, SHA and SWRHA are inputs t0
this analysis. SWDHA defines and analyzes
safety critical software components (e.g.,
assessing their degree of risk and
relationships to other components) and the
design and test plan (e.g., ensuring safety
requirements are properly defined in the
design). Changes are made to the Software
Design Document (to eliminate hazards or
mitigate the risk of hazards), and safety
requirements are integrated into the
Software Test Plan. Recommendations are
made for coding. The results of the SWDHA
are presented at the Software Design
Review.

. Software Code Hazard Analysis (SWCHA)

identifies how to eliminate hazards or
mitigate the risk of hazards during the
coding phase of the life cycle. It starts at the
beginning of that phase and continues until
after system testing has been completed. The
SwDHA is the input to this analysis.
SwCHA analyzes the actual source and
object code, system interfaces, and software
documentation (to ensure safety
requirements are included).
Recommendations are made to change the
software design, code and software testing.
The results of the SWCHA are presented at
the Test Readiness Review. (SWCHA results
for lower level units are given to

programmers during coding.)

. The purpose of Software Safety Testing is to
determine that all hazards have been
eliminated or that each hazard's risk has
been mitigated. Software Safety Testing of
lower-level units starts very soon after their

39

Appendix A. Background

coding is completed. Software Safety
Testing tests safety-critical software
components under normal conditions and
under abnormal environment and input
conditions. It also ensures that the software
performs correctly and safely under system
testing. Software Safety Testing includes
testing of any commercial or government
furnished software present in the system.
The results of Software Safety Testing is to
identify corrections to the software which,
when implemented, will eliminate hazards
or mitigate the risk of hazards. Retests are
then performed on the corrected software
under the same conditions. Testing of the
software at the system level starts following
a successful Test Readiness Review.

5. The Software/User Interface Analysis

manages hazards that were not eliminated or
controlled in the system design phase. For
example, change recommendations are made
to the design that provide hazard detection
and operator warning, hazard recovery, and
event or process termination.

6. Software Change Hazard Analysis analyzes
all changes made to the software to
determine their impact on safety. Software
hazard analysis and testing is performed on
all changes made to the requirements,
design, code, systems, equipment, and test
documentation to ensure that the changes do
not create new hazards or affect existing
hazards and that the cha~ 1s properly
incorporated into the Cow

A.4. Review of the Published
Literature

The published literature on software hazard
analysis is sparse and recent, except for the
application of fault trees to software. Some
general background can be found in (Brown
1985; Leveson 1991b; Gowen 1992; and Elahi
1993).

Leveson (1991a) proposes to augment traditional
software engineering by a form of hazard
analysis; this idea forms the basis for the
approach proposed in this report.

NUREG/CR-6430

Appendix A. Background

The use of fault trees to analyze software has
received considerable attention. The following
may be consulted: Leveson 1983; Fryer 1985,
Connolly 1989; Lal-Gabe 1990; Bowman 1991;
Leveson 1991a; Leveson 1991c; McKinlay
1991; Levan 1992; Clarke 1993, and Levinson
1993. Much of this, however, uses fault trees to
analyze code for correctness. There are two
difficulties with this approach, and it is not
recommended in this report. First, the most
important decisions that may affect hazards
occur early in the life cycle, when the
requirements are specified and the basic
computer system architecture is chosen. A fault
tree constructed after this is done is likely to
overlook the early decisions, resulting in missed
opportunities for improvement. Second, a fault
tree carned to the program language level is
likely to be very large, making it hard to
analyze. There is also the temptation to
concentrate on the leaves (statements), missing
the important intermediate nodes of the tree that
capture combinations of events that can lead to
failures.

The use of fault trees early in the software
development process can be quite useful,
particularly if they are an extension of fault trees
developed for the overall reactor. They should

NUREG/CR-6430

probably be restricted to analysis, since the
assignment of failure probabilities to software
architectural elements is very problematic.

A few articles discuss other technigues. Leveson
(1991a) also includes a discussion of Petri nets
and state charts, and Mojdehbakhsh (1994)
includes Statemate charts within a discussion of
fault trees. Levinson (1993) includes fault trees,
faiiure modes and effects analysis (FMEA) and
Parts Stress Analysis (PSA).

Two articles were most influential on the
development of this report, both by McDermid
(1994, 1995). The first proposes the use of
HAZOP and guide words to structure software
hazard analysis, while the latter describes
experiences in carrying out the technique. This
report extends the approach by McDermid,
placing it into a broader plan for software hazard
analysis, extending the list of guide words to
cover many aspects of software, and specializing
somewhat to the nuclear reactor industry.

Appendix B. Potential Software Safety Analysis Methods

APPENDIX B. POTENTIAL SOFTWARE SAFETY ANALYSIS METHODS

The New Mexico chapter of the System Safety
Society issued a report on safety analysis in
1993. The relevant portion of that report is a
312-page discussion of hazard analysis
technigues. Ninety techniques are discussed to
varying levels of detail. The following topics are
included for each technique:

* alternate names

* purpose

* method

« application

* thoroughness

* mastery reqired

» difficulty of application

+ general comments and references

Many of the techniques do not apply directly to
software (for exampie, Tornado Analysis). Some
of the remaining analyses could have indirect
application to software. Bent Pin Analysis, for
example, applies to connector pins in a cable
connection. If the cable carries computer data, a
bent pin could affect software functions.

He - ever, the analysis is performed on the cable,
not the software, so it is considered to be
indirect.

The 47 technigues that might potentially apply
to software are listed below. The word
“potential” means that it is conceivable that the
technique could be used, not that there is any
evidence of use. For each of these techniques,
the list gives its iame 2nd an extract of the
purpose. In some cases, the purpose sections
were not very complete.

* Accident Analysis evaluates the effect of
scenarios that develop into credible and
incredible accidents. This is expected to be
performed at the system level, but could be
extended to software safety by considering
the effect of software on the prevention,
initiation or mitigation of accidents
identified in the system accident analysis.

41

Cause-Consequence Analysis combines the
inductive reasoning features of Event Tree
Analysis with deductive reasoning features
of Fault Tree Analysis. The result is a
technique that relates specific accident
consequences to their many possible causes.
Computer codes exist to assist in the
performance of this analysis. GENII,
RSAC4, MACCS, ARA, EPA-AJRDOS and
HOTSPOT are examples.

Change Analysis examines the potential
effects of modifications from a starting point
or baseline. The Change Analysis
systematically hypothesizes worst-case
effects from each modification from that
baseline.

Checklist Analysis uses a list of specific
items to identify known types of hazards,
design deficienci2s and potential accident
sitvations associated with common
equipment and operations. The identified
items are compared to appropriate standards.

Common Cause Analysis identifies any
accident sequences in which two or more
events could occur as the result of a
common event or causative mechanism.

Comparison-To-Criteria (CTC) Analysis
provides a formal and structured format that
identifies all safety requirements for a
(software) system and ensures compliance
with those requirements.

Contingency Analysis is a method of
preparing for emergencies by identifying
potential accident-causing conditions and
respective mitigating measures to include
protective systems and equipment.

Critical Incident Technique uses historical
information or personal experience in order
to identify or determine hazardous
conditions and high-risk practices.

Criticality Analysis ranks each potential
failure mode identified in a Failure Modes
and Effects Analysis (FMEA) according to

NUREG/CR-6430

Appendix B. Potential Software Safety Analysis Methods

the combined influence of severity
classification and its probability of
occurrence based on the best available data.
It is often combined with FMEA, forming a
Failure Modes, Effects and Criticality
Analysis (FMECA).

* Digraph Utilization Within System Safety is
used 1o model failure effect scenarios within
large complex systems, thereby modeling
FMEA data. Digraphs can also be used to
model hazardous events and reconstruct
accident scenarios. As a result, both hazard
analysis and acciGent investigation processes
can be improved via modeling event
sequences.

* Event and Casual Factor Charting
reconstructs the event and develops root
cause(s) associated with the event.

* Event Tree Analysis is an analytical tool that
can be used to organize, characterize and
quantify potential accidents in a methodical
manner. An event tree models the sequence
of events that results from a single initiating
event.

* Failure Modes and Effects Analysis
(FMEA) determines the result or effects of
sub-element failures on a system operation
=+ classifies each potential failure
according to its severity.

* Failure Modes, Effects and Criticality
Analysis (FMECA) tabulates a list of
equipment in a process along with all of the
possible failure modes for each item. The
effect of each failure is evaluated.

* Fault Hazard Analysis is a basic inductive
method of analysis used to perform an
evaluation that starts with the most specific
form of the system and integrates individual
examinations into the total system
evaluation. It is a subset of FMEA.

* Fault Isolation Methodology is applied to
large hardware/software systems that are
unmanned and computer-controlled. There
are five specific methods: half-step searc,
sequential removal or replacement, mass

NUREG/CR-6430

42

replacement, lambda search and point of
maximum signal concentration.

Fault Tree Analysis (FTA) assesses a system
by identifying a postulated undesirable end

vent and examines the range of potential
events that could lead to that state or
condition.

Haza 1 and Operability Study (HAZOP) is a
group re ‘iew method that assesses the
significanc. of each way a process element
could malfunction or be incorrectly
operated. The technique is essentially a
structured brainstorming session using
specific rules.

Hardware/Software Safety Analysis
examines an entire computer system so that
the total system will operate at an acceptable
level of risk.

Human Error Analysis is used to identify the
systems and the procedures of a process
where the probability of human error is of
concern. This technique systematically
collects and analyzes the large quantities of
information necessary to make human error
assessments.

Human Factors Analysis allocates functions,
tasks and resources among humans and
machines. '

Interface Analysis idenifies potential
hazards that could occur due to interface
incompatibilities.

Maximum Credible Accident/Worst-Case
Analysis determines the upper bounds on a
potential accident without regard to the
probability of occurrence of the particular
accident identified.

Nuclear Safety Cross-Check Analysis
(NSCCA) verifies and validates software
designs. It is also a reliability hazard
assessment method that is traceable to
requirements-based testing.

Petri Net Analysis provides a technique to
model system components at a wide range
of abstraction levels. It is particularly useful

in modeling interactions of concurrent
components. There are many other
applications.

Preliminary Hazard Analysis (PHA) can be
used in the early stages of system design
(possibly including software design), thus
saving time and money which could have
been required for major redesign if the
hazards were discovered at a later date.

Preliminary Hazard List (PHL) creates a list
of hazards to enable management to choose
any hazardous areas to place management

emphasis.

Probabilistic Risk Assessment (PRA)
provides an analysis technique for low
probability, but catastrophically severe
events. It identifies and delineates the
combinations of events that, if they occur,
will lead to an accident and an estimate of
the frequency of occurrence for each
combination of events, and then estimates
the consequences.

Production System Hazard Analysis
identifies (1) potential hazards that may be
introduced during the production phase of
system development which could impair
safety and (2) their means of control. This
could apply to software if “production” is
replaced by “operation.”

Prototype Development provides a
modeling/simulation analysis technique that
constructs early pre-production products so
that the developer may inspect and test an
early version.

Repetitive Failure Analysis provides a
systematic approach to address, evaiuate and
correct repetitive failures.

Root Cause Analysis identifies causal
factors relating to a mishap or near-miss
incident. The technique goes beyond the
direct causes to identify fundamental
reasons for the fault or failure.

Safety Review assesses a system or
evaluates operator procedures for hazards in

Aopendix B. Potential Software Safety Analysis Methods

the design, the operations, or the associated
maintenance.

Scenario Analysis identifies and corrects
potentially hazardous situations by
postulating accident scenarios where
credible and physically possible events
could cause the accident.

Sequentially-Timed Events Plot (STEP)
Investigation System is a multi-linear events
sequence-based analytical methodology
used to define systems; analysis system
operations to discover, assess and find
problems; find and assess options to
eliminate or control problems; monitor
future performance; and investigate
accidents. STEP results are consistent,
efficiently produced, non-judgmental,
descriptive and explanatory work products
useful over a system’s entire life cycie.

Single-Point Failure Analysis identifies
those failures that would produce a
catastrophic event if they were to occur by
themselves.

Sneak-Circuit Analysis ideuisfies unintended
paths or control sequences that may result in
undesired events or inappropriately timed
events.

Software Failure Modes and Effects
Analysis (SFMEA) identifies software-
related design deficiencies through analysis
of process flow charting. It also identifies
interest areas for verification/validation and
test and evaluation.

Software Fault Tree Analysis applies FTA to
software. It can be applied to design or code.

Software Hazard Analysis identifies,
evaluates and eliminates or mitigates
software hazards by means of a structured
analytical approach that is integrated into the
software development process.

Software Sneak Circuit Analysis (SSCA) is
used to discover program logic that could
cause undesired program outputs or inhibits,
or incorrect sequencing/timing.

NUREG/CR-6430

Appendix B. Potential Software Safety Analysis Methods

Subsystem Hazard Analysis (SSHA)
identifies hazards and their effects that may
occur as a result of the design of a
subsystem.

System Hazard Analysis (SHA)
concatenates and assimilates the results of
Subsystem Hazard Analyses into a single
analysis to ensure that hazards or their
controls or monitors are elevated to a system
level and handled as intended.

Systematic Inspection uses checklists, codes,
regulations, industry consensus standards
and guidelines, prior mishap expenence and
common sense to methodically examine a
design, system or process in order to identify
discrepancies representing hazards.

NUREG/CR-6430

Uncertainty Analysis identifies the
incertitude of a result based on the
confidence levels (or lack thereof) and
vanability associated with the inputs.
What-1f Analysis is a brainstorming
approach in which a group of expenienced
individuals asks questions or voices
concerns about possible undesired events in
a process.

What-If/Checklist Analysis is a combination
of What-If Analysis and Checklist Analysis.

Appendix C. Software Tools for Hazard Analysis

APPENDIX C. SGFTWARE TOOLS FOR HAZARD ANALYSIS

Hazard analysis in general, and software hazard
analysis in particular, can be much assisted by
the use of convenient software tools. Many tools
are available that address different aspects of
hazard analysis and run on different platforms.
Costs vary from free to tens of thousands of
dollars. Capabilities and quality also vary
considerably. Platforms include PC, Macintosh,
Sun and other Unix, VAX and other systems.

A smail sample of tools was examined as an
indication of the types of tools available. The
sampling was restricted to tools that use the PC
as a platform (running either under MS-DOS or
Windows 3.x), and tools that cost less than
$500.00. Only one example from each type of
analysis was examined. Results are indicative,
but are not necessarily representative of the tools
available in the marketplace. Tool revisions are
frequent, so the vendors should be contacted
directly for current release information. No
endorsement of any tool is implied by this study.

Six subject areas were used in the study:
* Fault tree analysis (FTA)

* Failure modes, effects and criticality
analysis (FMEA and FMECA)

* HAZOP

* Hazard tracking

* Markov chain modeling

* Reliability growth analysis

The remainder of this appendix describes the
various programs that were investigated. Each
section begins with a brief description of the
program: program name, vendor, platform and
primary functions. A description of the
program’s capabilities follows, with illustrations
of the reports that may be produced. No attempt
is made here to discuss the various techniques
(see Lawrence (1993) and the references given
there for background). Opinions expressed are
those of the author, and apply only to the
software versions actually examined. Most of
the versions examined had minor faults; these
are not discussed. Some major problems are

45

given for a few of the programs when these
appeared to create considerable difficulty in

using the program.

C.1. Fault Tree Analysis

Product Name: FaulTrEase

Product Vendor: Arthur D. Little, Inc.,
Cambndge, MA.

Platform: Windows 3.1. (A

Macintosh version is
available)

FaulTrEase is a program for drawing and
evaluating fault trees. The program provides
considerable help in drawing the trees, since it
calculates the proper position of the entire tree
as nodes and branches are added or deleted. As a
result, a fault tree can be constructed with
considerable ease by concentrating on the
contents of nodes and the connections between
them. Building fault trees using this program is
quite efficient.

Calculations include cut sets, probability
calculations and calculation of importance.

The program is not able to handle n-out-of-m
nodes, which hampers use for analysis of reactor
protection systems, where it is desirable to
include 2-out-of-4 and similar logics. Printing 1s
limited to a single sheet, even though the
program knows that several sheets are required
in order to print the full tree. This makes large
fault trees difficult to document. The solution is
to divide the tree into separate subtrees, perform
calculations on the latter, and manually insert
the results into the main tree. This is subject to
copying errors, and is quite inconvenient.

The figures show an cxample using fault trees
for the AP6UL reactor design. The probability
data shown is that used in the AP600 fault trees
when available; estimates are used when AP600
data was not given.

The approach used was to copy the fault trees
from material provided by the NRC Program
Monitor. Options in the program permit tree
layouts to be compressed to save space, or

NUREG/CR-6430

Appendix C. Software Tools for Hazard Analysis

expanded for better appearance. Both options are
illustrated in the examples. Probability values
are assigned 1o leaves of the tree and the
probability associated with the top node of the
tree can be calculated by the program. If
subtrees are used, they are evaluated first, and
then the value associated with the top node of
the subtree is manually entered into the
corresponding off-page connector of the main
tree. For example, the first page shows the top-
level tree, as printed by the program. Off-page
connecting nodes labe'ed 8, 11, 22 and 24 are all
similar, and use the resvits of the second tree,
“AP600 Failure to Acti ate Valve” tree. This tree
requires two printed pages since it's too large to
fit on a single s"eet; off-page connector “B” 1s
used to connec’ the sheets.

Some additional lower-level charts are
illustrated on succeeding pages.

C.2. FMEA, FYMECA, HAZOP

Product Name: HAZOPumizer

Product Vendor: Arthur D. Little, Inc.,
Cambridge, MA.

Platform: DOS 5.x or Windows 3.1.

HAZOPtimizer is used to organize, store and
print tabular reports used for various types of
hazard analysis. Report columns can be named,
defined and arranged to suit the needs of the
user. The product gives the appearance of a
semni-structured interface to a database.

The primary unit of data collection is termed a
study—which documents the results of a
particular analysis on a particular problem.
Typical analyses include FMEA, FMECA,
HAZOP and PHA. Some pre-defined templates
exist, but were not found useful.

Study results are organized into sheets. Each
sheet has the same definition of data columns;
the use of multiple sheets is for convenience. A
sheet contains lines, upon which the study
results are entered.

The figures show two sample studies. The first is
an FMECA study from the book Guidelines for
Hazard Evaluation Procedures, Center for

NUREG/CR-6430

46

Chemical Process Safety, 1992, page 207. The
second uses data from a 1992 evaluation of the
GE ABWR design performed by LLNL for
NRC/NRR. Only a small portion of that study is
included.

The examples illustrate the flexibility of the
program, since different column definitions were
used by the two different sources.

The program limits each box in the tables to 256
characters; this appears to be a limitation
inherited from the underlying database
management system, and was found to be
extremely inconvenient.

C.3. Hazard Tracking
Product Name: HazTrac
Product Vendor: Hoes Engineering,

Davis, CA.

Piatform: DOS 5.x or Windows 3.1.

HazTrac assists in carrying out a hazard
analysis. It is considerably more structured than
HAZOPtimizer, and is organized to meet the
requirements of Mil Std 882B. HazTrac can be
used to support the analyses specified therein:
PHA, SHA, SSHA, FMEA and OSHA. (There is
also an option specific to the State of California,
which is not discussed here)

Information is erganized into three levels:
hazard, recommendations and status. There is an
entry at the first level for each defined hazard.
This depends on the type of analysis; a PHA, for
example, records the scenario under which the
hazard may occur, the potential effects and an
assessment of risk. The latter use the Mil Std
tables shown earlier in Figures 12 and 13.

The second level permits the recording of
recommendations on eliminating or mitigating
the hazard. The program records the
recommendations and some associated
information, including names of people and
organizations responsible for the
recommendation and due dates.

The third level permits tracking of changes in
the status of each recommendation. This
includes the current status (open, agreed,

dropped or verified) and a historical log of status
events.

This program is considerably easier to use than
HAZOPtimizer, but restricts the user to the
built-in forms. That is, ease of use comes at the
expense of flexibility. Text fields are also
limited to 256 characters, which remains
troublesome. A particularly irritating feature is
the restriction that the program and data must
reside on different disks. The computer used for
examining the program has only a single hard
disk, so the HazTrac data was placed on a floppy
disk. No logical reason for this requirement was
known.

An example of a PHA is shown in the later
figures. It shows a hypothetical analysis of a
chlorine plant, taken from the book Guidelines
for Hazard Evaluation Procedures, Center for
Chemical Process Safety, 1992, pages 270-271.

C.4. Markov Chain Modeling
Product Name: CARMS

Product Vendor: Daina

Platform: Windows 3.1

CARMS is a general Markov modeling program.
It can be used to draw a Markov model, assign
probabilities to transitions and run a simulation.
The latter provides a graph of the calculated
probabilities of the various states through time,
which provides the user with knowledge of how
the state probabilities change with time, and how
fast they move to a steady state.

A model is constructed by defining states,
transitions between states, initial probabilities
for the states, and transition probabilities. The
latter can be defined using equations. Drawing
the model is quite easy using the built-in
capabilities.

CARMS can show the model as a drawing or as
a table. Several examples are shown, giving the
diagram and the results of the simulation. The
screen display of the simulation shows labels for
the various lines in the graph, they are not
printed, however. To show this, the lines in the
graph were annotated by hand below.

47

Appendix C. Software Tools for Hazard Analysis

There's not much more to write about this
program. It does one thing, and does it very
nicely.

C.5. Reliability Growth Modeling

Product Name: CASRE.

Product Vendor: Jet Propulsion Laboratory,
Pasadena, CA.

Platform: Windows 3.1.

Reliability growth modeling is a technique for
predicting the reliability of a product undergoing
test when the product is re-engineered after each
failure. This pattern is wel! suited to software
testing when each failure causes the underlying
fault to be repaired and testing to be resumed
with the modified program.

The primary product for modeling software
reliability growth is SMERFS, a public domain
package available from the Naval Surface
Warfare Center. CASRE uses SMERFS, but has
a window interface and several additional
features.

CASRE can be used starting at any point during
the testing of a module, program or software
system. Failure data is recorded as testing and
repair takes place. Two formats are possible:
recording time units between each failure or
recording the number of failures during each
time interval.

The program analyzes the failure data in various
ways and plots the results on the PC screen or a
printer. Different models can be used to fit the
data and make predictions. Several methods of
displaying the results can be used; all are
illustrated in the example below. This example
uses a sample data set supplied with the product.
Curve fitting 1s done using a Generalized
Poisson model, with a prediction of future
reliability shown as a line on the charts.

The final plot shows the same data fitted to two
other models: the Schneidewind model and a
Yamada S-shaped mode).

NUREG/CR-6430

Appendix C. Figures: FaulTrEase

P

WG - e D
ZpYozpenmy

008 JV 10 s8i) JFis4 1SSNO

48

NUREG/CR-6430

es: FaulTrEase

NUREG/CR-6430

Appendix C. Figur

Qo— X 29

e
E O ey

SAJEA SIETYOY G eunyie4 008dY

Appendix C. Figures: FaulTrEase

,Q@ ...4@

NUREG/CR-6430

Appendix C. Figures: FaulTrEase

X B.u< @

oux Sa<®
SELELNX P 200

12:.4—<®

SHLnX dum | B 300

i x 8.«4 @

HZd M0 P 450

{

|

o

T

|

L3

s s B 00

|

o

|

o= .dqe

UOREOIPU| SV 40} SeuNje] 108USS 008V

NUREG/CR-6430

51

Appendix C. Figures: FaulTrEase

|
® A:m x 16

® Q

]
COCF of temp XMTRS

@Azm-w‘ @Aunto‘

APS00 Sensor Failures

NUREG/CR-6430 52

Appendix C. Figures: FaulTrEase

ANOLS) I0BUES 1O BXWE 4 D08V

NUREG/CR-6430

53

g
3
:
3
g

NUREG/CR-6430

Appendix C. Figures: HAZOPtimizer

Page 1

by Arther D. Little, Inc.

“
| P e P P
4 E

g
Bh. |- |- |- o g
1| PO PSR P CO SR

it it L

(i i i

i

SRL wmw Lv
s o 1 |

R

m— - It~ -~

4
5

55 NUREG/CR-6430

OEP9-HO/OTANN

9s

EAZ0Ptimizer by Arthur D. Little, Isc.

Page 2
Company : Cuidelines for Hazard Evalwmation ProceduresSheet Name: cops_1
Facility: Center for Chemical Process Safety, 1992Reference:
HAZOP Date: 12/08/19%4 Unit:
Leader /Secretary: Drawing Wumber:
Process: Print Date/Time: 9/8/1995 09:36:06
Toan Nembers: Description: Extracted from page 207 of referemced book
Item Componen t Failure Mode Effect Bployee | Production | Bquipment | Frequemcy
nmumber | Descriptiom Safety Cost Cost Catagory
Category | Category | Category
6 Foed gas kmockout ieve] Blowdown of gas to 3 L 3 L
dnm controlier vessels in liquid
fails low service. Damage to
vesse] not designed
for gas flow.
1 Outline Loak Release of feed gas. | 2 1 1 3
Fire likely. Some
damage to P 7
pipe rack.

wRruNgOZvH samdyy O vipuaddy

FAZPtimizer by Arthur D. Little, Iac.

LS

Sheet Name: abwr
Reference LLNL Report to WRC, Sept. 7, 192
mit:
.“*:
Print Date/Time: $/8/1995 09:40:02
Description:
failure Node v.-:t-sm- vm
The LIS consists of %o single failure can By surveillance.
independent input oompletely disable LS.

in other safety systess

The input devices are

all quadrwply redundant.

B single failure of the

input devices has mo

effect on the successful

operation of LS.

The resuitant average of | The resuitant average of | By surveillance.

the divisional average | the divisional averages

is incorrect and lower in the @S for all

than the actual revtrom | divisions is calculated

flmx to be sigaificantly less
than tree value; reactor
will not trip on desired
PR signal.

OEr9-HO/OHANN

|
;

=
¥

!

PungOZVvH samdig) xipuaddy

Appendix C_ Figures: HAZOPtimizer

iy ik
.. i _%Emm,
] N
g . : .
11|
SHIRTRIT
g " m m umnw. mmmmummmm m
& ..mw;fwm.w H kA
j ihi Wi
RH AT
b s
il By L
P e
mm ,ﬁmf.ummmm A unmw ¢mmm
H 2. i}
mm_ km s m Lm
FAELIR i :

NUREGACR-6430

S8

68

0EP9-d/OTANN

RAZOPtimizer by Arthur D. Little, Imc.

Page 4
Company : Liw Shwet Name: abwr
Facility: CE AN Reactor Design Refersnce: LLNL Report to WRC, Sept. 7, 19%2
ERIOP Date 12/09/19%4 Unit:
Leader /Secretary: Drawing tumber :
Procass: Print Date/Time: 9/8/1995 09:40:45
Toan Nembers Description:
Ttem ﬁtq.t 'Mla fhim.b vm-m Vm '—h
rimber
9 vlinnl -mmmww vmdw 'hh-ctusm-. By surveillance. | GE documents show the
Generators to the protection system | gemerator or the ability diese] gemerators being
equipment when normal to initiate ome initiated autematically
power is Jost. generator during LOCA from the protection
system during a LOCA,
but the logic om how
this occurs is
| | | | | Am.

wungOZVH samdiy) xipuaddy

Appendix C. Figures: HazTrac

PRELIMINARY HAZARD ANALYSIS
ABC Chemicals
VCM Plant Conceptual Design

FILE NAME = ABCCHEM.DBF
SHEETS 1 HA CODEjy: 1 ANALYST: D. Lawrence
ID DATE: 12/21/94 REV DATE: 12/22/94 RESOLUTION DATE: F
REVIEWED BY: CONCUR:
LIFE CYCLE: Degign
SUBSYSTEM: Chlorination
COMPONENT: Chlorine line

GENERIC HAZARD: Toxic release

HAZARD SCENARIO:
Chlcrine line gasket / packing leak

EFFRECT:
Small chlorine release on site

RISK ASSESSMENT:

IV. NEGLIGIBLE X

SEVERITY: INITIAL YINAL PROBABILITY: INITIAL FINAL RAC CODES:
I. CATASTROPHIC __ A mAURR INITIAL RAC
I, CRIMIGAL B PROBABLE 1 FINAL RAC
I11. NARGINAL C. OCCASIONAL

D. REMOTE S T

P DOPROBBLE v

]
§

REMARKS OR COMMENTS :

NUREG/CR-6430 60

Appendix C. Figures: HazTrac

PRELIKINARY HAZARD ANALYSIS
ABC Chemicals
VCM Plant Conceptual Design

ELILE NAME = ABCCHEM.DBF

SHEETS 2 HA CODEf: 2 ANALYST: D. Lawrence

ID DATE: 12/21/94 “EV DATE: 09/08/95 RESOLUTION DATE: F O i
REVIEWED BY: CONCUR:

LIFE CYCLE: Nef gn

SUBSYSTEM: Cb .rination

COMPONENT. = .orine line
GENERIC HAZARD:

HAZARD SCENARIO:
Chlorine line rupture (ie, vehicle accident, blocked~in line)

EFFECT:
Large chlorine release, major on-site impact. Potential off-site
impacts.
RISK ASSESSMENT:
SEVERITY: INITIAL FINAL PROBARILITY: INITIAL FIRAL RAC CODES:
1. CATASTROPRIC % . A, FREQUENY e _— INITIAL RAC L
II. CRITICAL =il — B. PROBABLE s s FINAL RAC
[11. MARGINAL s i C. OCCASIONAL L o
IV. MGLIGINE . __ D. RBAOTE o e
E. INPROBMBLE —

RECOMNENDATIONS TO MINIMIZE RISK:
1) Yerify chlorine line is evacuated whenever the VCM plant is down for

extunded time.

HA CODE#: 2 ACTION DUE: NOT REQ’D
POINT OF CONTACT: RESPONSIBLE ORG:

REC CODE:

STATUS: DROPPED

Status History:

12/21/94 Recommendation identification date

01/14/95 Recommendation proved not feasible; dropped.

61 MUREG/CR-6430

Appendix C. Figures: HazTrac

2) FProvide valves end interiocks to positively isolate the line in the

event of a rupture.

HA CODE#: 2 ACTION DUE: / /
POINT OF CONTACT: RESPONSIBLE ORG:

REC CODE:

STATUS: OPEN
Status History:
12/21/94 Recommendation identification date

3) Train VOM plant personnel to respond to chlorine releases.

HA CODEf: 2 ACTION DUE: / /
POINT OF CONTACT: RESPONSIBLE ORG:
REC CODE:

STATUS: OPEN
Status History:
12/21/94 Recommendation identification date

4) Eguip YOM plant personpel with PPE for chlorine.

HA CODE#: 2 ACTION DUE: i
POINT OF CONTACT: RESPONSIBLE ORG:
REC CODE:

STATUS: OPEN
Status History:
12/21/94 Recommendation identification date

5) De.not hury chlorine pipeline.

HA CODE#: 2 ACTION DUE: > S
POINT OF CONTACT: RESPONSIBLE ORG:
REC CODE:

STATUS: OPEN
Status History:
12/21/94 Recommendation identification date

NUREG/CR-6430 62

Appendix C. Figures: HazTrac

PRELIMINARY HAZARD ANALYSIS
ABC Chemicals
VCM Plant Conceptual Design

FILE NAME = ABCCHEM.DBF
SHEETS 3 KA CODEf: 3 AMALYST: D. Lawrence
ID DATE: 12/21/94 REV DATE: 12/22/94 RESOLUTION DATE: 7y f
REVIEWED BY: CONCUR:
LIFE CYCLE: Design
SUBSYSTEM:

: Chlorination
COMPONENT: Chlorination reactor
GENERIC HAZARD: Toxic release

HAZARD SCEMARIO:
Direct clorination reactor exotherm

EFFECT:
\ Large chlorine / EDC / ethylene release. Depending on reactor size
and operating conditions, potential off-site impacts.

RISK ASSESSHENT:

SEVERITY: INITIAL FINAL PHOBABILIYY: INITIAL FIEAL RAC CODES:
1. CATASTROPHIC] . A. FREQUENT = = INITIAL RAC 2.
I1. CRITICAL o — B. PROBARLE - e FIRAL RAC
111, WARGINAL o — C. OCCASIOMAL __ ==
IV. NEGLIGIBLE — D. RENOTE " -
E. INPROBABLE

REMARKS OR COMMENTS :

RECOMMENDATIONS TO MINIMIZE RISK:
1) Congider moving VOX plant west of Plant Road.

HA CODE#: 3 ACTION DUE: S
POINT OF CONTACT: RESPONSIBLE ORG:
REC CODE:

STATUS: OPEN
Status History:
12/21/94 Recommendation identification date

2) Perform dispersiun studies to assess off-site impact of cihlorine /
EDC relesse due to excotherm.

HA CODE#: 3 ACTION DUE: ¥y
POINT OF CONTACT: RESPONSIBLE ORG: i
REC CODE:

STATUS: OPEN
Status History:

63 NUREG/CR-6430

Appendix C. Figures: HazTrac

12/21/94 Recommendation identificaticn date

3) Yerify reactor pressure relief system can bandle this releass.

HA CODEf: 3 ACTION DUE: J 7
POINT OF CONTACT: RESPONSIBLE ORG:
REC CODE:

STATUS: OPEN
Status History:
12/21/94 Recommendation identification date

NUREG/CR-6430

Appendix C. Figures: HazTrac

PRELIMINARY HAZARD ANALYSIS
ABC Chemicals
VCM Plant Conceptual Design

@ HA CODEf: 4 ANALYST: D. Lawrence
ID DATE: 12/21/94 REV DATE: 12/22/94 RESOLUTION DATE: / 7/
REVIEWED BY: CONCUR ¢
LIFE CYCLE: Design

SUBSYSTEN: Chlorination
COMPONERT: Chlorination reactor
GENERIC HAZARD: Toxic release

HAZARD SCENARIO:
Direct chlorination reactor rupture.

EFVECT:
Large chlorine / EDC / ethylene release. Depending on reactor size
and operating conditions, potential off-site impacts.

SEVERIWY: INITIAL FINAL PROBABILIYY: INITIAL PINAL RAC CODRS:
I CATASTROPRIC 1 __ A omEOBY INITIAL RAC 2
o.Ml . . PROBABLE . PINAL RAC
IIL, MARGIRAL C. OCCASIOMAL .
IV, MGLIGIME . __ D. RENOTE B e
PoDOROBMBLE 0 __
REMARKS OR COMMENTS :
RECOMMENDATIONS TO MINIMIZE RISK:
1) Minisize loventory of chlor'ne / EDC in reactor.
HA CODEf: 4 ACTION DUE: / /
POINT OF CONTACT: RESPONSIBLE ORG:

REC CODE:
STATUS: OPEN

Status History:
12/21/94 Recommendation identification date

65 NUREG/CR-6430

Appendix C. Figures: HazTrac

PRELIMINARY HAZARD ANALYSIS
ABC Chemicals
VCM Plant Conceptual Design

EILE NAME = ABCCHEM.DBF
SHEETS 5 HA CODEf: 5 ANALYST: D. Lawrence
ID DATE: 12/21/94 REV DATE: 12/22/94 RESOLUTION DATE: ¥y
REVIEWED BY: CONCUR :
LIFE CYCLE: Resign

SUBSYSTEN: Chlorination
COMPONENT: Chlorination reactor
GENERIC HAZARD: Toxic release

HAZARD SCENARIO:
Direct chlorination reactor relief valve lift.

EFFECT:
Potential large EDC / chlorine / ethylene release.

SEVERIYY: INITIAL FPIRAL PROBABILIYY: INITIAL FIEAL RAC CODES:
[CATAsTROPRIC . __ A. FREQUENT — - INITIAL RAC)
1. CRITICAL e B. PROBABLE . 4 s FINAL RAC
III. MARGINAL C. OCCASIONAL ___ o
IV, WGLIGIBLE . D. REWOTE n -

E. INPROBABLE -

RECOMMENDATIONS TO MINIMIZE RISK:

Y aalued tohandie this Teleaser o erRLGr-and sonier

HA CODE#: 5 ACTION DUE: r
POINT OF CONTACT: RESPONSIBLE ORG:
REC CODE:

STATUS: OPEN
Status History:
12/21/94 Recommendation identification date

NUREG/CR-6430 66

Appendix C. Figures: HazTrac

PRELIMINARY HAZARD ANALYSIS
ABC Chemicals
VCM Plant Conceptual Design

FILE NAME = ADCCHEN.DEF.
SHEETS 6 HA CODEJ: 6 AKALYST: D. Lawrence
ID DATE: 12/21/94 REV DATE: 12/22/94 RESOLUTION DATE: ¥ F
REVIEWED BY: CONCUR :
LIFE CYCLE: Design
SUBSYSTEM:

Chlorination
COMPONENT: EDC Storage sphere

GENERIC HAZARD: Toxic release

EDC storage sphere rupture.

Large release of EDC, potential off-site impact. kotential river
contamination.

RISK } ESSMENT:

SEVERIYY: INTTIAL FINAL PROBABILITY: INITIAL FINAL RAC CODES:
I, CATASTROPRIC 1 A. FREQUENT ol INIYIAL RAC 2
[I. CRITICAL - T B. PROBABLE . PINAL RAC
IIL. MARGINAL _ C, OOCASIORAL . __
v, mGLIGINE . __ D. REKOTE LA -
BoDPROBAME .
REMARKS OR COMMENTS :
RECONMENDATIONS TO MINIMIZE BISK:
1) Consider moving EBOC sphexe away Lrom river.
HA CODEf#: 6 ACTION DUE: / /
POINT OF CONTACT: RESPONSIBLE ORG:

REC CODE:
STATUS: OPEN

Status History:
12/21/94 Recommendaticn identification date

67 NUREG/CR-6430

Appendix C. Figures: HazTrac

PRELIMINARY HAZARD ANALYSIS
ABC Chemicals
VCM Plant Conceptual Design

FILE NAME = ABCCHEM.DEF
SHEET# & HA CODE#: AMALYST:
ID DATE: £ I REV DATE: A | RESOLUTION DATE: * A
REVIEWED BY: CONCUR :
LIFE CYCLE:
SUBSYSTEM:
COMPONENRT :
GENERIC HAZARD:

HAZARD SCENARIO:

SEVERITY: INITIAL FINAL PROBABILITY: INITIAL FINAL RAC CODES:
I. CATASTROPHIC = ___ A. FREQUENT - = INITIAL RAC
11, CRITICAL L B. PROBABLE o R FINAL RAC
III. MARGIRAL . . C. OCCASIONAL __ S
IV, ERGLIGIBLE = D. RDOTE . .

E. INPROBABLE e

NUREG/CR-6430 68

0EY9-HI/OTANN

2 computers, 1 memo

no computers left

fails

SWY V) samBig D xipuaddy

Appendix C. Figures: CARMS

S4D8A

or'9 09'G 08¢ 00 02t 2Jr'€ 09l 080 000
-nb._wpp jepleandnnitenndnntiindarndninnsntia iR RSB R AR RERS
- -
= =

- II

- IM/// E
3 TN -
3 by \ =
- p
E -
3 =
= ulAw =
3 €d / E
— / -
- -
- —
3 -
s =
- V¢

-4 -
3 E
- -

YT T T T I T N T PP r g e i g rr vy ey eanyesnging i

juDpuUunpepM

R g
AT NALL0O

00"

0’

0871

'&_-‘

70

NUREG/CR-6430

54N0H puBtsnoyj

- - - _— e O

0'9G 0’8y 0'0v 0°¢L O'vl 091 N0°'8 00’0

Alidti i iidiaadin it e diintieaiaeiiiiieiid -P_-p_ 11l

(WY

"

uono

nwig 24N{ID 4 O4AD

= -
= =
3 = <
B 14 ll.l.f </ m
— -
-~
[. -
- e~ -
- JL -
-~ - -
- -
- =
B \ E
e p—
— po
3 \\ E
3 P \| E
= = 1 E
= \L\ E
- pr
o - -
: - e Z/ E
-
P E =4
8 : -
i - ~
(&) TT LIty sn vy yeeeevperngeanganigeny
-
|

NUREG/CR-6430

£L

OEP9-M/OMANN

Sight good Sigh failed
\SSsight 1\

toss f

~ A~
Visual toss gViual toss failed
\"Stoss r\/

SNV samdig D xipuaddy

Appendix C. Figures: CARMS

w

it
Qg

5 Mo

es

Effectiven

Systemn

llulllll et tenno be et et na e taaa i na oot aaniass
e W and
e poe-
- -~ {t -
- I oo L -
- [, - -
- p—
-
= =
o =
- -
p— pr:
= -
- oo
- -
- p—
pu— pose-
- poe
- Auad
p— o
- pose
q poe
d oo
ol -
- & -
e andl
b o
-l -
R pome
- e pr
- Qe -
- l . -
et aud
4
g \\ B
-t aud
—
- N E
v -
- o
~ - p=
o -
""’l'T IR LR AR R R R R R Aot
- - O () O ()
- 00 Qo < N (]
- o O O
a8 - ®) 0 o 0 - = - >

NUREG/CR-6430

74

56.0

48.0

24.0 32.0

16.0

00

.00

Hours

Appendix C. Figures: CASRE

18pIS8) 2) SAIN|IR) USSMIDG SwIl)

NUREG/CR-6430

75

Appendix C. Figures: CASRE

o

+ @8

+

+

e ——

ﬁlﬂ ——

P e s ——

J|pIse) 2) (SJUNOD aunjjed

-,__4},_.._,, IS S r_,__ ISV W ——

76

NUREG/CR-6430

Figures: CASRI

Appendix €

Yv1v1vvr7
2]
o~

fc test.dat
[2
:
&
Test interval Number

Ead
Failure intensity:
]
® i
; —

R

o o
N0} sod seunjjey

0.1000
0.0000

NUREG/CR-6430

|

|
|
-

l
S — _.'p.gé....A.;_.JL__A.

|

’

«

|

|

i

|

|

Appendix C. Figures: CASRE
NUREG/CR-64)

Appendix C. Figures: CASRE

|
e e e de oo e e |
!

NUREG/CR-6430

79

IEPIS8} 2§ SJUNOD aunjiey

Appendix C. Figures: CASRE

00S

000t

g
w0
e

SIN{iE4 jO JOqUINN

00sZ

NUREG/CR-6430

US NUCLEAR REGULATORY COMMISSION § 1 REPORT NUMBER

by NRC. Add Vol,, Supp., Rev,,
- Numbers, H any |
BIBLIOGRAPHIC DATA SHEET

{5ee ingtructions on the reverse)
A 818 e

NUREG/CR-6430
UCRL-ID-122514

2 TITLE AND SUBTITLE
Software Safety Hazard Analysis

3 DATE REPORT PUBLISHED

MONTH VEAR

February 1996

4 FIN OR GRANT NUMBER
L1867

& AUTHOR(S) 6. TYPE OF REPORT
J.D. Lawrence

7. PERIOD COVERED tinclusive Dates)

8 PERFORMING ORGANIZATION - NAME AND ADDRESS (1/ NRC. provide Division, Office ar Region, U.5 Nuclear R y . and matling address if contracton, provide
iy and mailing sdorves

Lawrence Livermore National Laboratory
700 East Avenue
Livermore, CA 94550

8 SPONSORING ORGANIZATION -~ NAME AND ADDRESS (4 NAC, type “Same as above” if tor, ile NRC Dy . Office or Region. U S Nuclesr Reguiatory Commission,
and malfing adovess. |

Division of Reactor Controls and Human Factors
Office of Nuclear Regulation

U.S. Nuclear Regulatory Commission

Washington, DC 20555-0001

4
I'O SUPPLEMENTARY NOTES

J. Gallagher, NRC Project Manager

11 ABSTRACT (200 worts o less/
Techniques for analyzing the safety and reliability of analog-based electronic
protection systems that serve to mitigate hazards in process control systems have
been developed over many years, and are reasonably well understood. An example is
the protection system in a nuclear power plant. The extension of these techniques
t systems which include digital computers is not well developed, and there is
Iattie consensus among software engineering experts and safety experts on how to
analyze such systems. One possible technique is to extend hazard analysis to
inclnde digital computer-based systems. Software is frequently overlooked during
systam hazard analyses, but this is unacceptable when the software is in control
of a potentially hazardous operation. In such cases, hazard analysis should be
extended to fully cover the software. A method for performing software hazard
analysis is proposed in this paper.

12 KEY WORDS/DESCR!PTORS (List wort or phrases that will assist ressarchers in locating the report. | 73 AVAILABILITY STATEMENT

hazard analysis, software, fault tree, failure modes and effects unlimited
analysis (FMEA), hazard and operability analysis (HAZOP) TR CARTICATIoR

This Page)

{ This Report)

% unclassified

unclassified
15 NUMBER OF PAGES

16. PRICE

NRC FORM 136 (28w

on recycled
paper

Federal Recycling Program

WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, $300

SPECIAL FOURTH-CLASS MAIL
POSTAGE AND FEES PAID

PERMIT NO. G67

