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LOCAL FORMULATION OF INTERFACIAL AREA CONCENTRATION AND ITS I

MEASUREMENTS IN TWO-PHASE FLOW

by

Isao Kataoka,* Mamoru Ishii, and Akimi Serizawa**

ABSTRACT

The interfacial area concentration is one of the most important parame-
ters in analyzing two-phase flow based on the two-fluid model. The local in-

stantaneous formulation of the interfacial area concentration is introduced
here. Based on this formulation, time and spatial averaged interfacial area
concentrations are derived, and the local ergodic theorem (the equivalency of
the time and spatial averaged values) is obtained for stationary developed
two-phase flow. On the other hand, the global ergodic theorem is derived for
general two-phase flow. Measurement methods are discussed in detail in rela-
tion to the present analysis. The three-probe method, with which local inter-
facial area concentration can be measured accurately, has been preposed. The,

one probe method under some statistical assumptions has also been proposed.
In collaboration with the experimental data for the interfacial velocity,

radial profiles of the local interfacial area concentration are obtained based
on the one probe method. The result indicates that the local interfacial area
concentration has a peak value near the tube wall in bubbly flow, while in
slug flow it shows a higher value in the central region of the tube for that

| particular set of data.
|
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EXECUTIVE SUPNARY

r

!' .Recently two-phase flow analyses based on a two-fluid model formulation

have been applied to some engineering problems, particulary in the area of4

safety evaluations of itght water reactor and fast breeder reactor. This is
4

because the two-fluid model is considered to be the most accurate model among

the models available today. In theory it can predict two-phase flow phenomena
under transient and developing conditions better than previous mixture models

j such as the homogeneous or drift flux model,

i In the two-fluid model formulation, interfacial transfer terms which cou-
ple equations for gas and liquid are quite important. In terms of the first
order effects, these interfacial transfer terms are proportional to the inter-

;

| facial area concentration (area of gas-liquid interface in unit volume).

| Therefore, an accurate correlation for the interfacial area is indispensable
' for two-phase flow analyses based on the two-fluid model.
j However, the knowledge of the interfacial area concentration is quite
; limited due to considerable difficulties in experimental measurements. Par-

) ticularly, there is little knowledge on the local interfacial area concentra-
tion in spite of its necessity in two or three dimensional analyses. In view;

f of this, the local interfacial area concentration has been studied in detail
' both theoretically and experimentally in this report.

The local instantaneous formulation of the interfacial area concentration
;

; has been obtained. It can be applied to any two-phase flow regime. Based on
I the formulation, spatial and time averaged interfacial area concentrations

j have been derived in terms of observable parameters of two-phase flow. For
; stationary and developed two-phase flow, it has been proved that the time av-

| Graging and spatial averaging are equivalent in terms of both local and over-

|
all values. This fact is quite important in practical application because one

! can measure the local interfacial area concentration by time averaging of

| Cbserved signals obtained by a local probe.
i New measurement methods for the interfacial area concentration are indi-

| cated based on the presently developed theory. A three-probe method which

| gives a measurement of the local interfacial area concentration is proposed

| and discussed in detail. A one-probe method based on some statistical as-
I sumptions of two-phase flow characteristics is also proposed and discussed.

This method is proven to be practical and quite useful. Using this
i

I

'

_....- - . - - . - - - - - . _ - - _ . . - . - _ . _ _ _ _ - . - - - . _ - _ _ - - - _ - _ -



.. .

_ _ _ _ _ _ _ ___

'

2

s

measurement technique, one can measure the local interfacial area concentra-
tion with considerable accuracy when some statistical characteristics of
interfacial motions are known.

The above one-probe method is applied to experimental data of interfacial
velocities. From this, transverse profiles of local interfacial area concen-

tration are obtained for bubbly and slug flow. In bubbly flow, the local in- i

terfacial area concentration indicated a ringwise peak near the wall for these
experiments. On the other hand, in slug flow the local interfacial area con-
centration had a peak value at the center.

The proposed measurement methods can be applied to obtain a broad data

base for modeling the interfacial area concentration. They can be used for
both local and area averaged interfacial area concentrations. Such experi-
ments will be quite useful for developing accurate constitutive relations for
interfacial transfer terms. The present research has established a firm theo-
retical base for these measurements as well as demonstrated the applicability
of the methods by obtaining the experimentally measured interfacial area con-
centrations in two-phase flow.

I. INTRODUCTION

In order to analyze the thermal-hydraulics of two-phase flow, various
formulations such as the homogeneous flow model, drift-flux model [1-3], and
two-fluid model have been proposed [4,5]. Among these models, the two-fluid
formulation can be considered the most accurate model because of its detailed
treatment of the phase interactions at the interface. The two-fluid model is
formulated by considering each phase separately in terms of two sets of con-
servation equations which govern the balance of mass, nomentum, and energy of
each phase. These balance equations represent the macroscopic fields of each
phase and are obtained from proper averaging methods. Since the macroscopic
fields of each phase are not independent of the other phase, the phase inter-
action terms which couple the transport of mass, momentum, and energy of each
phase appear in the field equations. It is expected that the two-fluid model
can predict mechanical and thermal nonequilibrium between phases accurately.
In particular, for transient or entrance flow involving acceleration of one
phase with respect to the other, inertia terms of each phase should be con-
sidered separately by use of the two-fluid model. However, it is noted that
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the interfacial transfer terms should be modeled accurately for the two-fluid

model to be useful. In the present state of the arts, the constitutive equa-
tions for these interfacial terms are the weakest link in the two-fluid
model. The difficulties arise due to the complicated transfer mechanisms at,

' the interfaces coupled with the motion and geometry of the interfaces. Fur-
thermore, the constitutive equations should be expressed by macroscopic
variables based on proper averaging.

As has been shown in detail [4], the interfacial transfer terms in a two-
fluid model appear as averaging of local instant transfers of mass, momentum,
and energy. However, these terms appear as ::ource terms in the field equa-,

tions, therefore, it is necessary to model each term by identifying proper
transport mechanisms and using experimental data.

A three-dimensional two-fluid model has been obtained by using temporal

or statistical averaging [4]. The model is expressed in terms of two sets of
conservation equations governing the balance of mass, momentum, and energy in

| each phase. For most practical applications, the model developed by Ishii [4]
can be simplified to the following forms:

Continuity Equation

0"k k +
# +

(1)## "*

at kkk k'

Momentum Equation
:

l

8"kkk+V'("#v#)"~"V
#i t

k (=*k +*k)
++

P +V'
at kkkk k k

+ + +
(2)+apg+v r+M - vg . Tg

Enthalpy Energy EquationI

8 #
t kkkk + =

9 ) + *k g ki

k k"k'k N p"~ *# k| at k
|

|

|
L
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'

+H r+( +6 (3)g
s

+ l

Here r ' Mik' Ti' ki, and ok are the mass generation, generalized interfacial '

k
drag, interfacial shear stress, interfacial heat flux, and dissipation, re-
spectively. The subscript k denotes k phase, and i stands for the value at

'' the. interface. L denotes the length scale at the interface, and 1/L has thes s
physical meaning of the interfacial area per unit volume [4]. Thus,

1 , Interfacial Aren g)
L, , ,i Mixture Volume

The above field equations indicate that several interfacial transfer
,

terms appear on the right-hand sides of the equations. Since these interfa-
cial transfer terms also should obey the balance laws at the interface, inter-
facial transfer conditions could be obtained from an average of the local jump
conditions [4]. They are given by

[r =0
k

[M =0 (5)g
k

; -

8

[ (r H +q"/L,)=0.

g
k

!

Therefore, constitutive equations for Mik' 9gi/l,andq)g/L are necessarys s
for the interfacial transfer terms. The enthalpy interfacial transfer condi-
tion indicates that specifying the heat flux at the interface for both phases
is equivalent to the constitutive relation for rk if the mechanical-energy
transfer terms can be neglected [4]. This aspect greatly simplifies the
development of the constitutive relations for interfacial transfer terns.4

<

._ ..,.._n - - - - - - ,



5

By introducing the mean mass transfer per unit area, mk, defined by

rk ' *1"k *

the interfacial energy-transfer term in Eq. (3) can be rewritten as

Nki
k ki L 1 "k"ki 9I "# i

s

The heat flux at the interface should be modeled using the driving force or
the potential for an energy transfer. Thus,

g (T -T) (8)q" =h

where Tj and Tk are the interfacial and bulk temperatures based on the mean
enthalpy. A similar treatment of the interfacial momentum transfer term is
also possible. In view of the above, the importance of the interfacial area,

aj, in developing constitutive relation for this tenn is evident. The inter-
facial transfer terms are now expressed as a product of the interfacial area
and the driving force. It is essential to make a conceptual distinction be-
tween the effects of these two parameters. The interfacial transfer of mass,
momentum, and energy increases with an interfacial-area concentration toward
the mechanical and thermal equilibrium.

Thus, in general, the interfacial transfer terms are given in terms of
the interfacial area concentration aj and driving force [4,6,7] as

(Interfacial Transfer Term) = ag x (Driving Force) (9)

The area concentration defined as the interfacial area per unit volume of the
cixture characterizes the geometrical effects; therefore, it must be related
to the structure of the two-phase flow field. On the other hand, the driving
forces for the interfacial transport characterize the local transport mecha-
nisms such as the turbulent and molecular diffusions.

In two-phase flow systems, the void fraction and interfacial area concen-
tration are two of the most important geometrical parameters. The void

_ -
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|
fraction is treated as a variable to be solved from a set of balance equa- )
tions, whereas the interfacial area concentration should be specified by a
constitutive relation or by introducing an additional transport equation for
aj [4,6]. As the above fonnulation indicates, the knowledge of the interfa- j

cial area concentration is indispensable in the two-fluid model.
Although a number of studies [6-43] have been made in this area, the in-

terfacial area concentration in two-phase flow has not been sufficiently in-
'

vestigated both experimentally and analytically. Most of the previous studies
are for steady state flow without phase change. Available experimental data
are limited to volume averaged interfacial area concentration over a section
of a flow chantiel . Detailed review of these are given in Refs. [6] and [7].
There are a number of shortcomings in measurement techniques. Furthermore,
there are very few established theoretical foundations for relating this in-
terfacial area to some easily measurable quantities. In particular, there

seems to be no information available on a local value of the interfacial area
concentration. However, this local interfacial area concentration is very
important for two or three dimensional analyses using the two-fluid model.

There is one problem dealing with the definition of the interfacial area
concentration locally and instantaneously. Since the Lebesgue measure of an
interface is zero, the local instantaneous interfacial area concentration can-

not be represented by an ordinary function [44,45]. To avoid this problem, an
integral method has been used in the analysis of the interfacial area [4,5].
However, by introducing a distribution which is a generalized function [44,
45], one can express the local instantaneous interfacial area concentration.

Based on this local instantaneous formulation and the assumptions of the
statistical characteristics of two-phase flow, fundamental relations for the
interfacial area concentration have been derived. These equations relate the
local value of the interfacial area to observable parameters of the two-phase
fl ow. Based on this theory, some measurement techniques of the local interfa-
cial area concentration have been proposed. Finally, using the existing ex-
perimental data on flow measurements, radial profiles of the local interfacial
concentration have been obtained.

_ _ _ _ _ _ _ _ . . _
-- . -- _
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II. LOCAL INSTANTANEOUS INTERFACIAL AREA CONCENTRATION

By considering a simple system shown in Fig.1, where there is only one
gas-liquid interface, the location of the ; terface is represented by

(10)x=xo

Now a control volume is define /d by

Y-f<x<Y+f (11)

Then the spatial averaged interfacial area concentration iy in the control
volume, is given by

|Y-x|<ffora =

(12)

=0 for |Y - x | >9

By taking the limit of ax + 0, the local interfacial area concentration aj(x)
in a one-dimensional fonn is given by

a(x)=6(x-x) (13)
y

Here 6(x - x ) is the delta function [44-46] which satisfieso

f 6(x - x,)dx = 1 , 6(x - x,) = 0 for x * x, (14)<

One of the special characteristics of the delta function is that for any
smooth function $(x), it gives

_ - - _ _ __ _ _.
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f 6(x - x ) ((x)dx = +(x ) (15)

This result can be extended to any gas-liquid interface in a three dimensional
space. By considering a moving gas-liquid interface which is smooth and rep-
resented by

'

f(x,y,z,t) = 0 , (16),

the local instantaneous interfacial area concentration is given by

ag(x,y,z,t) = |gfad f| 6(f(x,y,z,t)) (17)

where|gfadf|isdefinedas

| grad fl = [ grad f grad f = [( )+( )+( ) (18)

In bubbly or droplet flow, the gas-liquid interface is composed of many
separate surfaces of bubbles or droplets. For this case, the surface of the
jth bubble or droplet is represented by

f (x,y,z,t) = 0 (19)j

Then the local instantaneous interfacial area concentration is given by
|
|

!

a (x,y,z,t) = { | grad f | 6(f (x,y,z,t)) (20)
9 3 3

i J

i

! The above analysis shows that the local instantaneous formulations of interfa-
cial area concentration can be obtained in terms of a distribution, as in Eq.

,

(20). This formulation is valid for any flow regime of two-phase flow.
Since the distribution, 6(x - x ), is not observable experimentally, ito

is necessary to apply appropriate averaging of Eq. (17) or Eq. (20) to obtain

_ _ _ . _ _
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|
a measurable representation of the interfacial area concentration. Time and )
spatial averaging will be discussed in this relation in the next section.

!
A. Spatial Averaging of Interfacial Area |

In general, there are three types of spatial averaging of at(x,y,z,t),
which are linear, surface, and volume averaging. These are given below.

Linear Average

gp1 , f a (x,y,z,t)dss 9
(21)i J,ds

dx = ds cosex
dy = ds cosey
dz = ds cosez

(cose,cose,cose);directioncosinesofdsx y z

Surface Average

]f # (x,y,z,t)dS
-2 S 1

(22)a =

i fl dS3

dydz = dS cosex
dzdx = dS cosey
dxdy = dS cosez

.

(cose , cose , cose ); direction cosines of the normal vector of dSx y z
|
t

Volume Average

|
.

!!! *i **#'**-p3 V
(23)a =

i lll dVy

|

_ _ _ _ . . . _ ._ _ _ _ _ _ _ .
- .-.
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dV = dxdydz

Now, in view of its practical importance for the present study, the

linear averaging along z axis is discussed in detail. For fixed x , yo, ando

t , the spatial average of Eq. (20) is given byo.

SE (x,,y ,t,) = h ff a (x ,y ,z,t,)dzg g 9

{f |g ad f | 6(f (x ,y ,z,t ))dz (24)=

J

By defining zj as the value which satis,fies

f (x ,y ,z ,t ) = 0 (25) -

Equation (24) can be rewritten as

iPz (x ,y ,t ) = f [ {|gfad f |/ } (26)
J

Here the right hand side is calculated at (x ,yn,zj,t ) and for jth interfaceo o

satisfying z < zj < z + L. By denoting the angle between z axis and the

direction of the jth surface normal vector at (x ,yo,zj,t ) as ej (see Fig.o o
2), it can be shown that

.

af
cose /|gadf| (27)

j az

Therefore, Eq. (26) becomes

.
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'!);
28)* *#o' o cose " L cose

"

o
j

Here j is arranged such that zj is in an increasing order

z < ... zj_t < zj < zj,1 ... < z + L (29)

Furthermore, it is asumed that the following uniformity of the two-phase flow
exists in the z direction for a reasonably large number of samples.

n

m ( 0)gima 2n + 1 *j+1 - *j =
j=-n

'

Then it can be shown that for large L,,

1 = L/1 (31)

Substituting Eq. (31) into Eq. (28), one finally obtains

|
|

Pz (x ,y ,t ) = (1/cose) (32)a
9

|. :

{
i

Here (1/cose) is the reciprocal of a harmonic mean of cosej given by

,j 'j. k j{}/
/ (33)(1/cose) =, [i

|
l

On the other hand, by denoting the number of bubbles or droplets per unit!

length of z axis by N ,1 can be given byZ

-_
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1
A (34)

2N
Z

Here the factor 2 indicates that bubble or droplet has two interfaces (upper
and lower) in z direction. Then Eq. (32) can be rewritten as

* (x ,y ,t ) = 2 NZ (1/c s ) (35)a

Equation (35) implies that the interfacial area concentration can be obtained
by measuring the number of bubbles or droplets per unit length and the har-

monic average of cosej along z direction. If ej is not known, one can esti-
mate (1/cose) by assuming certain statistical characteristics of two-phase
flow. For a large number of interfaces, Eq. (33) can be approximated by an
integral form given by

(1/cose)=f de (36)

where p(0) is tce probability density function of a between e and a + de. If-

one assumes that the bubbles or droplets are sphere and every part of sphere
is intersected by z axis with equal probability, p(0) can be given by

p(0) = 2cosesine (37)

Then by sub;tituting Eq. (37) into Eq. (36),

/2 2cose "
(1/cose)-=f de = 2 (38)

se

In this case, i{z is given by the following simple form,

- _ - -_
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(x ,y ,t ) = 4 N (39)a
Z

B. Time Averaging of Interfacial Area
For fixed x , y , and z , the time averaging of Eq. (20) is given by

o o o

if(x,y,z)= f a (x,,y ,z,,t)dt = {f |gradf|6(f)dt(40)
9 9 9 g j j

J

Now tj is defined as the time which satisfies

f (x ,yn,z ,tj) = 0 (41)j o o

Then Eq. (40) can be rewritten as

if(x,y,z)= { | grad f |/ (42)-

which applies for j satisfying T < tj < T + n.
By defining $3 as the angle between the velocity of the jth interface,

793, and the direction of the surface normal vector at (x ,yo,z ,tj) (see Fig.o o
3), the following relation can be obtained

d|gradf|/ (43)=

| v. |cos

Substituting Eq. (43) into Eq. (42), one gets

if (x,,y ,z ) = [
j | |cos$ ,(j|vg|cos4) j\[. (44)= . ,

v /g

_ -. - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _
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i

for all j satisfying T < tj < T + n. The above result has been obtained also
by Ishii [4] and Delhaye [47,48] using the integral method.

Now j is rearranged so that tj is in increasing order as

. . . < tj _ t < tj < tj +1 < tj +2 < . . . (45)

Then by assuming the following uniformity of the time intervals

"
1

[im.2n+1 [ |t),g - t)| = T (46)
j=-n

one obtains the following relation for large n

[ = D/T (47)

Substituting Eq. (47) into Eq. (44) yields

-t (x ,y ,z ) = 1 (48)
1

a

|h|cos$

Here the reciprocal of a harmonic mean of |vjj|cos$j is given by

1 1

j\[ (49)- [ .
|v |cos$ j|v |cos4 /

g

Now the number of bubbles or droplets which pass the point (x ,yo,z ) pero o
unit time is denoted by N , then T can be given by

t

1

i = 2N (50)
;

:

._ _ _ , _ _ __ _ . _ - _ _ _ _ . _ . _
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Here the factor 2 indicates that one bubble or droplet passing (x ,yo z ) haso o
two interfaces associatec with it. Thus, Eq. (48) can be rewritten by

-t 1
, a h ,y ,z ) = 2N (51)

9 o 0 o
t |+ |cos+

9

This equation indicates that the time-averaged interfacial area concentration

can be obtained by counting Nt and knowing |7 |cos4j for each interface.93

If one assumes that and has no correlation, one obtains (see
Appendix A) IVg| J

1 1 1
M, ,

cos4
|v*i|cos4 |v*i|

where

* E +1 [1\ (53)
1

l *,1 JIv,j l \J/

and

1
_

1 g (54)~

(cost cos,

Then by substituting Eq. (52) into Eq. (51), it can be shown that

-t 1 1

* '#o ' o "t (55)*

1 o cos4

.
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C. Ergodic Hypothesis of Interfacial Area Concentration

In the previous sections, spatial and time averaging of the interfacial
area concentration has been discussed. However, there is one interesting and
practically important problem to consider. This is related to the ergodic hy- '

pothesis. It is essential to know under what conditions, the time and spatial
averages coincide. A general answer to this problem is quite difficult to ob-
tain and beyond the scope of this report. However, for stationary and devel-
oped two-phase flow this ergodic hypothesis can be demonstrated as shown
below.

First, the integration of aj(x,y,z,t) in volume domain V and time domain
n is considered. This is given by

I(V,n)=fff a (x,y,z,t)dxdydzdt (56)Va 9

This integral represents the total area of interface in the volume domain V
and over the time interval n. The sequential integration in time domain n and
volume V coincides with I(V,n), thus

fff {f a (x,y,z,t)dt}dxdydzy n 9

= fn f [V a (x,y,z,t)dxdydz}dt (57)
9

,

The average value of the interfacial area concentration can be obtained by
dividing Eq. (57) by Vn. Then, in view of Eqs. (23) and (40), Eq. (57) can be
rewritten as

3=P (58)
'

i i i,

|
|

|

This shows that the volume average of the time averaged local interfacial area
concentration is identical to the time average of the volume averaged concen-
tration. This result is similar to that which Delhaye has proved based on the

,

! integral method using the Leibnitz rule [47,48]. Equation (58) might be cal-
led the overall ergodic theorem. Although Eq. (58) does not require any

|
\

___ _ __ - - _ _.-
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i

statistical assumptions on the characteristic of two-phase flow, its validity
is limited to finite volume and time domains. However, this theorem shows a

; very important relationship between the time and spatial averages. The

|_ crgodic theorem indicates that these two averages are consistent and they
| represent fundamentally similar physical quantities. It is shown below that
I by introducing some additional conditions, one can obtain the ergodic theorem

which is valid locally.

The integration of ay(x,y,z,t) in the domain of z from Z to Z + L and t
from T to T + n is defined by

[ I(L,n) = ff a (x,y,z,t)dzdt (59)
L,n

This integral has an important physical meaning because it represents the area
of interface in the domain from I to Z + L and from T to T + n. Now by chang-

ing the sequence of integrations,

2 T T+n Z+Li

| l+L ! +n *1 'Y'** ** # 'Y'** *
Z T T Z 1

Thus by dividing Eq. (60) by La one obtains

I 1 Z 1 T+n

| {f+L lii T *i 'Y'** *
7

,

f {hf *i(x,y,z,t)dz}dt (61)=
Z

|
The above equation is a special case of the general ergodic theorem for

.

the interfacial area concentration given by Eq. (58). A ergodic theorem ap-
,

f plicable to the local interfacial area concentration can be obtained by con-
sidering stationary and developed two-phase flow. For this type of two-phase

' flow, appropriately averaged two-phase flow parameters are independent of time
|

.. .. - _ . - . - _. - . - . . _ - - -- -



20

and axial location. By applying these characteristics to the interfacial area
concentration, the following results can be obtained. |

!

5E f *i(x,y,z,t)dt = A(x,y) (62)T

i

i

and
,

I

i E f a (x,y,z,t)dz = B(x,y) (63)g

j where z is the direction of flow. By substituting Eqs. (62) and (63) into Eq.
(61) and integrating it, it can be shown that

1 Z 1 T
{J+L A(x,y)dz = 3 TJ +n B(x,y)dt (64)j Z

t

This can be satisfied for arbitrary values of x and y only if
<

A(x,y) = B(x,y) (65)
'

,

i Therefore, for stationary and developed two-phase flow, the linear averaging
i(Z and the time averaging if becomes identical when the linear averaging isi

taken along the flow direction. Thus,

if* = if (for stationary and developed flow) (66)

! In comparison with the general ergodic theorem given by Eq. (58), Eq. (66) can
be called the local ergodic theorem. From Eqs. (32) and (48) this ergodic
theorem can be modified to

1(1/cose)=b (67)
; |v| costj
<

1

-- - - _ . . . - ~ , - . _ _ , .___ ____ ___ _ ____ __
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The local ergodic theorem given by Eq. (66) is quite important in terms of
practical applications. This is because the theorem indicates that the line
averaged interfacial area concentration can be obtained from the time-averaged
local interfacial area concentration. The latter can be related to measurable
quantities in a two-phase flow system. For example, the time-averaged local
interfacial area concentration can be measured from the number of bubbles or
drops and the interfacial velocity as shown in Eq. (51).

III. MEASUREMENT METHOD OF LOCAL INTERFACIAL AREA CONCENTRATION

As discussed in the preceeding sections, there are two possible methods
for measuring the local interfacial area concentration. The first approach is
to use the principle indicated by Eq. (35). Equations (33) and (34) show that
one has to measure the number of bubbles or droplets and a direction cosine of
a normal vector of each interface in the sufficiently large z axis distance

between Z and Z + L. For this, it is necessary to use a sensor which scans
distance L in a negligible time duration. In other words, the sensor velocity

must be much larger than the velocity of interfaces. The optical techniques
such as a photography or light attenuation method may be applied for this
purpose. Several attempts have been made based on these methods [31,39,40].
However, at present, this approach has a limited success only for very low
void fraction two-phase flow. At higher void fraction, the light scattering
and refraction at multiple interfaces become a very serious problem. Due to
these difficulties in the experimental technique, a complete measurement of
the local interfacial area concentration based on Eqs. (33), (34), and (35)
has not been accomplished yet.

Another approach is to use a principle indicated by Eq. (51). In view of
Eqs. (49) and (50), this method requires a sensor located in a fixed point in
two-phase flow and being capable of measuring the number of bubbles or drop-
lets, their interfacial velocity and the angle between the interfacial veloc-
ity and normal vector of the interface. For this purpose', electrical resist-
ivity probe, optical probe, and anemometer which are often used in two-phase
flow measurements [49,50] may be suitable. In what follows, the measurement

using an electrical resistivity probe will be discussed in detail.
Figure 4 schematically shows a double-sensored electrical resistivity

probe. Sensors 1 and 2 detect gas and liquid phase by means of the difference

_ ___-_ ______ __



.. -- ._ _. __

22
,

I
i

|

|

|

1

Double Sensored Probe
:

S'
SeO

* S'TOd
9eO

i

YNj N~
l

i

1

'|

j th Interface
\

|
l

Fig. 4. Double Sensored Probe and jth Interface

. - - . _ _ _ . _ _ - _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ _ ___



23

between gas and liquid electrical resistivity. Therefore, from the electrical
signals out of these sensors, a gas liquid interface can be detected. There-
fore, using these sensors, the number of interfaces passing the probe per unit j
time, N , can be measured. Furthermore, by measuring the time difference at |t

for an interface to pass sensors 1 and 2, the velocity of interface passing
the probe can be measured. Here this velocity is denoted by v which is givens

by

(68)v =
3

Now consider a unit vector, iT , which direction is same as that of a
s

double sensored probe (Fig. 4). Its direction cosines are represented by

(cosn,c,osn,cosn). The position of sensor 1 is given by (x ,yo,z ), then |x y z o o

the position of sensor 2 is given by (x +Ascosn , yo+Ascosn , z +Ascosn ). Byo x y o z
considering the jth interface passing the sensors 1 and 2, with the passing

velocity of v j and the interval of atj, the following relation exists.s

(69)v =

Since the jth surface is represented by Eq. (19), the surface equation should
satisfy

fj(x ,yo,z ,tj ) = 0 (70)o o

f (x +ascosn , y +Ascosn , z +ascosn , t +at)=0 (71)

where tj is the time when the jth interface passes the sensor 1. When as is
'

small, Eqs. (70) and (71) give the following approximate relation

as(grad f ) n, = - at (72) ,

3

|

|

-. _ _ . . . _ _ . . - . - - - -- -- .
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In view of Eq. (69), the above equation can be transformed to

af
|j

-

at
(73)v "

sj
(g+ rad f ) n,

+

The angle between it and n which is the surface unit normal vector ofs j

the jth interface is denoted by (j as shown in Fig. 4, then it can be shown
that

(grad f ) n,
3. .

n, = cost (74)n =

|gr,ad f |

From Eqs. (73), (74), and (43),

|v | cost =| |cos$ (75)

On the other hand, Eq. (73) can be rewritten as

af
3af af af

3 9
(76)cosn + cosn =-

ax ay C 8"y + az y
sj

Equation (76) indicates that it is possible to calculate the value given by
Eq. (75) by using three double-sensored probes with a connon sensor. It is

schematically shown in Fig. 5. The unit vector and its direction cosines for
probe k are represented by ilsk and (cosn k, cosn k, cosn k) with k = 1, 2,x y z
3. The passing velocity of the jth interface over probe k, is denoted by

v kj. Then from Eq. (76) one obtainss

af af af af

xk * ay C 8"yk * azcosn cosnzk " atax vskj

___ _ _ _ _ _ __--
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The directions of three probes can be made independent, then it implies |
|

cosn i, cosn t, cosn ix y z

|A|E cosn 2, cosn 2, cosn 2 *O (78)o x y z

cosn 3, cosn 3, cosn 3x y z

Under this condition, Eq. (77) has a solution. From this solution, it can be
shown that

af
d [| A |

at o g79)

9*
j A| +|A| +|A

2 3

where | A |, | A |, and | A | are given by
1 2 3

1, cosn t, cosn iy z

|A|5 1, cosn 2, cosn 2 (801 y zv
slj

1, cosn 3, cosn 3y z

cosn i, 1, cosn ix z
1|A|E cosn 2, 1, cosn 2 (81)i

2 x zy
s2j

cosn 3, 1, cosn 3x z

:

i cosn i, cosnyt, 1x
1|A|E cosn 2, cosn 2, 1 (82)3 x yy
s3j

cosn 3, cosn 3. Ix y

In view of Eq. (43), the above result gives
,

!

!|A l + |A | +|A
i 2 3

|.g|cos$ (83)v =

[|A|! .

|
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If x, y, and z directions are chosen to be the directions of the three probes,
er $sla $s2, and $s3, Eqs. (78) through (83) gives !

|

Icos+j = /(v*13 )*+(v*2j )* + ('s3j )* (84)Iv
ij

3 s

The the time-averaged local interfacial area concentration can be measured in
view of Eqs. (49) and (51) from the following relation.

(x ,y ,z ) = h { (85)a

!(1/v ) + (1/vs2j) + (1/*s3j '

Although in principle this method gives accurate measurement of an interfacial
area concentration, there are some problems in terms of practical applica-
tions. In deriving Eq. (72) from Eqs. (70) and (71), it has been assumed that
As is small. In view of the effect of curvature of bubble or droplet inter-

faces, the accuracy of the measurement increases as As decrease. On the other

hand, Eq. (69) indicates that Atj decreases with decreasing As. This implies
that one has to measure smaller Atj as As decreases. Then the accuracy of
measuring Atj and that of v j decreases as As becomes smaller. Therefore, ins

practical measurements, the determination of optimum As should be an important.

problem which requires utmost attention.
The above described method based on the three double-sensored probes may

be difficult to apply if the required sensor distance is very small. It is

evident that As should be considerably smaller than a bubble or drop diam-
cter. Furthermore, deformations of interfaces by the probes should also be
carefully examined. It can be said that this method will encounter increasing

difficulties as the fluid particle size becomes smaller. In view of the
above, a simpler probe method which can be applied to many two-phase condi-
tions is highly desirable. One possibility is to use a single double-sensored
probe. However, in this case it becomes necessary to assume certain statis-
tical characteristics of two-phase flow.

i

- , . . . - _ _, ..--..c - . - - . .
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Now a double-sensored probe located in z direction is considered where

the mean flow is assumed to also be in the z direction. The velocity and the |
|normal unit vector of the jth interface, 7$3 and d , can be given in terms ofj

unit vectors R , n , and d , using angles with z and y axes given by (aj,8 )x y z 3

and (p ,vj) and shown in Figs. 6 and 7. Thus,j

|vg|{cosa $;+sina cosB n + sina sin 8 n} (86)v =
g 3

n = cos9 $ + sinu cosv n + sinp sinv $ (87)3 7

Then it can be shown that

|v | cost =v -

g

=|vg| {cosa cosp + sina sing cos(S -v}} (88)

Substituting Eq. (88) into Eq. (49) one obtains

+ sina) sinu cos(S) - v )} [\j )
=[ {i (89)

|v| cost j|v9 | {cosa cosp
g

By assuming that there are no statistical correlations between |7 | and (j93
(randomness of 7 ), Eq. (52) can be used. Then in view of Eq. (89),

93

|
1 1={ 3

|v|cos+ j|v |[\jj
'

!

i |

|

|

|

.- - - . - - _ . - - - , .-_. -- - . , _ . _ _ .
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. - t

{cosa cospy + sina sinu Cos(S) - v) J j

When the number of measured interfaces is large, the sumation can be approxi-
mated by an integration. Thus,

1

{cosa) cosp) + sina sinu cos(S - v }}

w/ 2w P ( a,8, p, v)
* ff ,2 jj8,v=0 {cosa cosp + sina sinu cos(8 - v)) dad 6dudv (91)a p=0

where P(o,8,p,v) is a probability density function of a, 8, p, v. Then Eq.

(90) can be rewritten as

1 1 P( a,8, p, v) dad sd udvg (92), ,

|v| cost j |v | kj /, cosa cosp + sina sinu cos(8-vD

On the other hand, in view of Eq. (75), the measured velocity v associ-sz
ated with the jth interface passing the double-sensored probe located in z
direction is given by

|v | cost = |v | cost (93)
J

Since the probe direction is in the z direction,

n " $z I94)s

Substituting Eqs. (87) and (94) into Eq. (74), one gets

costj = cospj (95)

. _ - . ___ ._ _ __ .- - _ _ _ - _ _ _ _ _ _ - , ._ - _.
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In view of Eqs. (93) and (95) and assuming that no statistical correlation

exists between |vtj| and p3, it can be shown- {

I1 1 P(a,8.p,v) cosp dodsdudvq- cosa cosp + sina sinp cos(S-v)} (96)
j szj kj j\ | j

,

where 0 g a, p j w/2, and 0 j 6, v j 2w.
In view of Eqs. (92)., (96), and (48), the time-averaged local interfacial

area concentration is given in terms of the measured velocities of interfaces
and the probability density function. Hence

-t (x ,y ,z ) = 1 ' { {

'

1

a{
, ,

j szj jj
,

P( a,8, p, v) dad sdud v

{Cosa Cosp + sina siny Cos(6-v)}

P(a,6,p,v) cosu dadsdudv
jg {Cosa Cosp + sina sinu Cos(8-v)} gg7)

tEquation (97) indicates that i can be calculated from measured values of the
bubble or droplet number, N , and of the passing velocities of interfaces us-

t

ing one double-sensored probe. However, in addition to these it is necessary
to assume a form of the probability density function, P(a,8,y,v). For this
purpose, it is assumed that the interfaces are composed of spherical bubbles
or droplets and the probe passes very part of bubble or droplet with an equal
probability. Furthermore, it is assumed that the x and y direction components

of vjj is random. Under these assumptions, 8 and v takes any value between 0
and 2x with equal probability and 8 and v are statistically independent of

' each other. Then the probability density function can be reduced to

_ _
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.

P(a,8,y,v)dadsdudv = P| a,y,( 8-v))dadud( 8-v) j

|

= h g(a) sinu cosp dadpd(8-v) (98)

By substituting Eq. (98) into Eq. (97) and in view of Eq. (50), one finally
Cbtains the following result after carrying out the integration

, ,

1-t (x ,y ,z ) = 4N { /{a < ,

4 ,j szj (j
,

1

f g(a) sina in ( ) da

f g(o) cosa da
>

.

Since the main flow is in the z direction, the major component of the in-
terfacial velocity is also the z component, if the mean flow velocity is not
small compared with the fluctuating x and y components. In that case, g(a) is
considered to have a sharp peak at a = 0. Hence as a first approximation,
g(a) may be represented by a delta function as

g(a) = 6(a) (100)

1 -

Then Eq. (99) can be simplified to

o*#o'*o t |v j t |vsz!
" '"

szj

The approximation given by Eq. (100) implies that the interfacial velocity 793
has oni,v the z component. Equation (101)~ has also been obtained by Sekoguchi
-[51-53] and Herringe et al. [543 based on the bubble diameter distribution
assuming spherical bubble.

. . . ._ __ , _ __ _ _ _ , . - _ _ ._
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l
1

A more accurate approximation for f(a) may be given by

1
1g(a) = - for 0 < a < a,

o

fora,<a<f (102)=0

This form of g(a) implies that the angle a made by the interfacial velocity
and the z axis is random with an equal probability within the maximum angle of

Substituting Eq. (102) into Eq. (99), the interfacial area concentrationa.; o

becomes

P

1

"t ' |v |
'

af(x,,y,z)= *
(103)'

7 n (cos 7) - tan 7 n (sin 7)1 - cot i i

Therefore, by knowing the value of a , the time-averaged local interfacialn

area concentration can be calculated from the measured values of Nt and
can be estimated from measured values of statistical parameters ofvszj' o

interfacial velocity as explained below.

As shown in Eq. (86), 193 is composed of x, y, and z components, fjxj,

| 74yj, and vizj, which are given by

|
|

+

= Iv+4 lsina) sins n (104)
+

v

I

+ + +
v = |v |sina cosB n (105)

3

|
!

+ +
v = |v |cosa) n+ (106)

z

!

! .-- . __ _ _ _ _ _ _ - - - _ _ - _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _
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They should satisfy

g3 = v,g + v,,3 + v ,3 (107)v
4

i

If there is no prefered direction for an instantaneous transverse velocity, 8
has a probability density function given by

1

h(B) = p O < S < 2w (108),

Then in view of Eq. (86) with the assumption for g(a) given by Eq. (102), one
gets

= /{ y*ixj} ( { h)
*

i /y
ix y

1

=|v|f* g(a)sinada f * h(6)sinad8 n
g

=0 (109)

'

Similarly,

|

v =0 (110)
g

| On the other hand,
i

=|v|f* g(a)cosada n, = |v | (l1l)v
g , g z9

| o

|

, _
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Here no statistical correlations between |7j3|, a, and S has been assumed.
The mean squares of velocity fluctuations are given by the following ex- !

pressions. For.the x components,

2 , (;ix _ ;ix)2 , ;ix,2 _ ;;ix 2, ;ix,2a
x

= |v | f g(a) sin ada f," h(8) sin Sd8g

= 1 |$ |2 {{ ,1 o} (112)2 1 2 4 a

for the y components,

3(Y -Y)y $y gy =|jyl* |Y l { - }=o (113)c j,.

o

and for the z component,

a-h(iz - iz iz iz i !o
" ~ " g cs izz

{f +
sin 2a

=|v| }-|vj| (114)
g ,

o

On the other hand, from Eq. (101),

|Y | = |Y +h +h
9 jx jy iz

-. . - .
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Furthermore, from an assumption that the velocity fluctuations are equilateral,

o =a =a (116)

~ Then combining the above results given by Eqc. (112) to (116), it can be shown

sin 2a 1-(o/|v *|)*
(117)

1+3(o/|vg| )

Thus by knowing the mean value and fluctuations of z component interfacial
velocity, it is possible to estimate the value of a .

'

n

IV. EXPERIENTAL VALUE OF LOCAL INTERFACIAL AREA CONCENTRATION

,

' As shown in the previous section, the time-averaged local interfacial
area concentration can be calculated from measured values of the bubble or

; droplet number per unit time and mean and fluctuating components of the
! interfacial velocity using Eqs. (103) and (117).

Serizawa et al. [55-583, have measured the above mentioned parameters in
air-water bubbly and slug flow in a vertical tube. Under stationary and de-j

I valoped conditions, they measured the bubble number per unit time, Nt and
sptctrum of passing velocity of interface, |vsz| at various radial post-
tions. The examples of the spectra of |vsz|areshowninFig.8. From these

I sp:ctra, one can calculate the reciprocal of a harmonic mean of |vsz|as

"
1 1 sz

"!=o!

|vsz|"' j|vszj| |vsz| sz
|

,

L.

wh2rew(|vsz|) is the probability density function of |vsz|correspondingto
the normalized spectrum shown .in Fig. 8. Similarly, the square mean of the
fluctuation of |vsz|canbecalculatedfromthespectraas!

i

|.
t
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{(|v |-|v |} [[o =

,J \j>

=f"|v | w(|v |}d|v |-{f"|v | w(|v |}d|v |} (119)
'

where

|v |=f~|v |w(|v |}d|v | (120)

Thevalueofa/| | is not measured in Serizawa's experiment. However, or.2
can approximate this value as

o o
* **

(121)=
,,

|vsz|~i | +Vu|2
|

which is calculated by Eqs. (119) and (120) from the measured spectrum of

|vsz|. Figure 9 shows one example of the profiles of N , 1/(1/|v |},andt

a /|v | calculated from the above procedure. Thus one obtains the local
interfacial area concentration from Eqs. (103) and (117) using the measured,

values of Ntandspectrumof|vsz!*
Figures 10 to 15 show the local interfacial area concentration profiles

based on the above-described method and the experimental data of Serizawa et

al. [55-58]. In the figures, r denotes a radial position and R denotes radius

L Cf flow passage. For bubbly flow the local interfacial area concentration
_

'

shows rather uniform values in the center region of the tube and higher values
near the tube wall. The higher values suggest that in this type of bubbly
flow the interfacial transport of momentum and heat is higher near the tube
t:all . On the other hand, in slug flow and bubbly to slug transition flows the
local interfacial area concentration does not show an appreciable peak value
near the tube wall as indicated in Figs.14 and 15. However, higher values of

,

t
. _ _ - - _ .
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the interfacial area concentration appear at the central region of the tube.
It has been already shown by Ishii et al. [7] and Sekoguchi [53] that the area
averaged interfacial area concentration is strongly dependent on two-phase

' flow regimes. However, the present study has demonstrated that a transverse.

profile of the local interfacial area concentration is also strongly dependent
en the flow regimes. These results indicate that the interfacial transports
of mass, momentum, and energy strongly depend on the overall flow regimes as
well as on detailed transverse structures of flow.

Figure 16 shows the radial profiles of various local parameters of two-
phase flov along with the interfacial area concentration. This figure sug-
gests that the turbulent velocity of the liquid phase tig and the void fraction
& are closely related to the local interfacial area concentration as pointed
out by Serizawa [59] and Herringe et al. [54]. *

Here the local interfacial area concentration has been calculated from
Eqs. (103) and (117) using the experimental data obtained from one double-

ssnsored probe. This procedure is based on several assumptions on statistical
characteristics of the interface motion as described in the previous section,
such as the randomness of the interfacial velocity and equilateral fluctua-
tions of the velocity etc. These assumptions are considered to be valid in
the central region of bubbly flow. However, in the very near wall region of
bubbly flow or slug flow, some of the assumptions are not completely valid.
Furthermore, for two-phase flow where fluid particles cannot be well defined,
such as churn-turbulent flow, the above method may not be appropriate. For
these circumstances, more information on the interfacial velocity is necessary
for an accurate measurement of the local interfacial area concentration. The
three double-sensored probe method which is described in the previous section
is suitable for this purpose. Such detailed measurements are strongly recom-
mended for a better understanding of two-phase flow structures and interfacial
transport phenomena.

V. CONCLUSIONS

The local instantaneous formulation of the interfacial area concentration
has been introduced based on the concept of a distribution. Using a delta
function and the interface equation, the local instantaneous interfacial area
concentration has been defined. Then by integrating the local instantaneous
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:

|
interfacial area concentration, spatial and time averaged interfacial area

i

concentrations have been obtained. For a dispersed two-phase flow the spatial
(linear) averaged interfacial area concentration is given in terms of the num-
ber of interfaces per unit length and the harmonic mean of cose , where ej isj

the angle between the normal vector of jth interface and averaging direc-
ti on. On the other hand, the time averaged interfacial area concentration is
given in terms of the number of interfaces per unit time and the harmonic mean

of |7jj| costj, where |vjjl is the interfacial velocity of jth surface and (j
is the angle between vjj and the normal vector of jth interface.

Based on the local instantaneous formulation of the interfacial area con-
centration, several ergodic theorems concerning the averaged interfacial area
concentration have been derived. The overall ergodic theorem for the time and

spatial averages has been obtained theoretically. For a .ationary and devel-

oped two-phase flow, the local ergodic theorem is obtained. Both theorems are
important in terms of practical applications and interpretations of experi-
mental data.

Based on these theoretical developments, several measurement methods for
the interfacial area concentration have been proposed and discussed in de-
tail. The method using three double-sensored probes located in three inde-
pendent directions has been proposed for a general application. It is shown

that this method enables an accurate measurement of the local interfacial area
concentration. However, it is also pointed out that the required small size
of the whole probe may be an engineering problem.

A much simpler method using one double-sensored probe is also proposed
and discussed in detail. By assuming certain statistical characteristics of
the interfacial motion, an expression for the local interfacial area concen-
tration can be related to measurable quantities from a double-sensored probe.

Applying this one-probe method to experimental data, radial profiles of
the local interfacial area concentration have been obtained for air-water
bubbly and slug flow. The local interfacial area concentration has a peak
value near the tube wall in the bubbly flow, while in slug flow it has higher
values in the untral region of two-phase flow. These results demonstrated
the applicability of the one double-senscred probe method for the measurement
of the local interfacial area concentration.

The formulation of the local interfacial area concentration and measuring
methods developed in this study are basically applicable to any type of two-

. . _ _ _ _ _ _ -
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phase flow. A further experimental study utilizing these methods for
,

measuring the interfacial area concentration is highly desirable. Such a de-
tailed measurement of the local quantities of two-phase flow greatly increases
the understanding of interfacial transport phenomena, structures of two-phase
flow and flow regimes.

:

.

i

!
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APPENDIX A

Product of Two Statistical Variables

By considering two statistical variables Pj and Qj, a correlation coef-
ficient of Pj and Qj, which is denoted by ypg, is defined as

N

[ (P - P)(Q - 6)
(AUYpg =,y y,

[ (P -P) [ (Q - 6)< ,<

, j =1 , ,j = 1

where P and Q are means of Pj and Qj. When Pj and Qj are statistically in-
dependent, there are no correlation between Pj and Q . This implies3

Ypq = 0 (A2)

In this case, Eqs. (A1) and (A2) gives

N

[ (P - E)(Q - 6) = 0 (A3)

J=1

On the other hand,

N N

[ (P - P)(Q - 6) E [ P)Q - N(E6) (A4)
j=1 j=1

because

N N

and 6= {0 (AS)[ P)P=
3j=1 j=1

From Eqs. (A3) and (A4), one finally obtains

t
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N

* [PQJJ
J=1

PQ (A6)=
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