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Availetzhty of Reference Matenals Cited m NRC Pubications .

Most documents cited n NRC pubbcations we be avaiable from one of the fotoweg
sources.

1. The NRC Put*c Document Room,1717 H Street, N W., Washmgton, DC 20555

2. The NRC/GPO Sales Program, U S. Nuclear Regulatory Comrmosen, Washmoton,
DC 20555

3. The Nabonal Techncat informanon Servce, Sonnghold VA 22161

Although the batmg that fo80ws represents the masonty of documents cded m NRC pubhca-
tions, d is not intended to be exhaushve

Referenced documents available for mspection and copymg for a fee from the NRC Pubhc
Document Room melude NRC correspondence and internal NRC memoranda; NRC Office
of Inspection and Enforcement butetos, circulars, informaton nonces, inspeccon and invee-

. tigation notces, Licensee Event Reports; vendor reports and correspondence Convreasson
papers, and appbcant and bcensee documents and correspondence

The followeg documents in the NUREG senes are available for ,mrchase from the
NRCtGPO Sales Program: formal NRC staff and contractor reports, NRCraponsored con-
forence proceedmos, and NRC booklets and brochures. Also available are Reguletary
Guides, NRC regulahons in the Code of Federal Hoguistions, and ferdmar Repudefory Corr >
mrsson issuances.

Documents available from the Nahonal TechncalInformata Sennce indude NUREG sense
reports and techncal reports prepared by other federal agencess and reports prepared by
the Atomic Energy Commisson, forerunner agency to the f+eimar Regulatory Comrma==w ,

Documents available from pubhc and special techncal librarios mchade as open hierature
items, such as books, journal and perodical arteles, and transactone. Federal Regiefer
notees, federal and state legislation, and congressonal reports can usua5y be oblemed

4
from these hbranos.

Documents such as theses, dissertabans, foreign reports and translations, and non-NRC
conference proceedogs are available for purchase from the orgarizahon sponsonng the
pubhcation cited.

Single copies of NRC draft reports are availeNa free, to the extent of supply, upon wntlen
. request to the Dnneen cf Technmal informahon and Document Control, U.S. Nuclear Regu- .
latory Comminason, Washmgton, DC 20555

Copies of industry codes and standards used in a substanhve manner in the f#IC regula-
tory process are mentamed at the NRC Library, 7920 Norfolk Avenue, Betheads. Mary-
land, and are available there for reference use by the pubhc. Codes and standarda are
usua8y copyrighted and may be purchased from the origmateg organization or, if they are
Amercan Natonal Standards, frorn the Amencan Nahonal Standards instdute,1430 Broad
way New York, NY 10018.
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Notee

This report was prepared as an account of work sponsored by en agency of the Unded
States Government. Nedhe* the Unded States Government not any agency thereof, nor
any of their employees, makes any warranty, express or imphed, or assumes any legal ha-
bility or responsibitty for the accuracy, completeness, or usefulness of any information,
apparatus, product, or procesa disclosed, or represents that its use would not ininnge ,

pnvately owned rights. Reference herem to any specific commercial product, process, or
sonnce by trade name, trademark, manufacturer, or otherwine, does not neceesenly con-
stitute or imply its endorsement, recommendaton, or favonng by the United States Govern-
ment or arty om thereof. Ths views and opmions of authors expressed herem do not .,

necessar#y state or reflect those of the Unded States Government or any agency thereof.
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POREWORD :

\*

The work reported here was performed at_0ak Ridge National Laboratory
(ORNL) under the Heavy-Section Steel Technology Program, C. E. Pugh, j,

Program Manager.. The program is sponsored by the Office of Nuclear
Regulatory Research, U.S. Nuclear Regulatory Commission (NRC). The tech- )
nical monitor for the NRC is Milton Vagins. )

LThis report is designated Heavy-Section Steel Technology Program
. Technical Report 74. Prior reports in this series are listed below.

1. S. Tuka'wa, Evaluation of Periodic Proof Testing and Warm
Prestressing Procedures for Nuclear Reactor Vessels, HSSTP-TR-1, General
Electric Co., Schenectady, N.Y., July 1, 1969.

2. L. W. Loeche1, The Effect of Testing Variables on the Transition
Temperature in Steel, MCR-69-189, Martin Marietta Corporation, Denver,
Nov. 20, 1969.

3. P. N. Randall, Gross Strain Measure of Fracture Toughness of
Steels, HSSTP-TR-3, TRW Systems Group, Redondo Beach, Calif.,
Nov. 1, 1969.

.

; 4. C. Visser, S. E. Gabrielse, and W. VanBuren, A Two-Dimensional
Elastic-Plastic Analysis of Fracture Test Specimens, WCAP-7368,

* -
. Westinghouse Electric Corp., PWR Systems Div., Pittsburgh, October 1969.
i

! 5. T. R. Mager and F. O. Thomas, Evaluation by Linear Elastic
Fracture Mechanics of Radiation D1 mage to Pressure Vessel Steels,

,
.WCAP-7328 (Rev.), Westinghouse Electric Corp., PWR Systems Div.,
Pittsburgh, October 1969.

6. W. O. Shabbits, W. H. Pryle, and E. T. Wessel, Heavy-Section-
. Fracture Toughness Properties of AS33 Grade B Class 1 Steel Plate and
Submerged Arc Weldment, WCAP-7414, Westinghouse Electric Corp.,
PWR Systems Div., Pittsburgh, December 1969.

7. .P. J. Loss, Dynamic Tear Test Investigations of the Fracture
Toughness of Thick-Section Steel, NRL-7056, Naval Research Laboratory,
Washington, D.C., May 14, 1970.

8. P. B. Crosley and E. J. Ripling, Crack Arrest Fracture Toughness
of A533 Grade B Class 1 Pressure Vessel Steel, HSSTP-TR-8, Materials
Research Laboratory, Inc., Glenwood, Ill., March 1970.

,

t 9. T. K. Mager, Post-Irradiation Testing of 2T Compact Tension
.

| Specimens, WCAP-7561, Westinghouse Electric Corp., PWR Systems Div.,
,

| Pittsburgh, August 1970.

1
y
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10. T. R. Mager, Fracture Toughness Characterisation Study of AS33,
Grade B, Class 1 Steet, WCAP-7578, Westinghouse Electric Corp., PWR *

Systems Div., Pittsburgh, October 1970.

11. T. R. Mager, Notch Preparation in Compact Tension Specimens, '

_

WCAP-7579, Westinghouse Electric Corp., PWR Systems Div.,_Pittsburgh',
November 1970.

12. . N. Levy and P. V. Marcal, Three-Dimensional Elastic-Plastic-
Stress and Strain Analysis for Fracture Mechanica, Phase I: Simple Flaved
Specimens, HSSTP-TR-12, Brown University, Providence, R.I., December 1970.

13. W. O. Shabbits, Dynamic Fracture Toughness Properties of Heavy,

Section~AS33 Grade B Class 1 Steel Plate, WCAP-7623, Westinghouse Electric
Corp., PWR Systems Div., Pittsburgh, December 1970.

14. - P. N. Randa11, Gross Strain Crack Tolerance of AS$3-B Steel,
.

~

HSSTP-TR-14, TRW Systems Group, Redondo Beach, Calif., May 1, 1971.

15. H. T. Corten and R.; H. Sailors, Relationship Between Mzterial
Fracture Toughness Using Fracture Mechanics _ and Transition Temperature
Tests, TEAM Report 346, University of Illinois, Urbana, Aug. 1, 1971.

'

16. T. R. Mager and V. J. McLoughlin, The Effect of an Environment
of High Temperature Primary Grade Nuclear Reactor Water on the Fatigue
Crack Growth Characteristics of AS33 Grade B Class 1 Plate and Weldment ,

Material, WCAP-7776, Westinghouse Electric Corp., PWR Systems Div.,
Pittsburgh, October 1971.

17. N. Levy and P.^ V. Marca1, Three-Dimensional Elastic-Plastic
Stress and Strain Analysis for Fracture Mechanica, Phase II: Improved
Modelling, HSSTP-TR-17, Brown University, Providence, R.I., November 1971.

18. S. C. Grigory, Tests of 6-Inch-Thick Flaved Tensile Specimens,
First Technical Swrnary Report, Longitudinal Specimens Numbers 1 Through 7,
RSSTP-TR-18, Southwest Research Institute, San Antonio, Tex., June 1972.

19. P. H. Randall, Effects of Strain Gradients on the Gross Strain
Crack Tolerance of AS33-B Steet, HSSTP-TR-19, TRW Systems Group, Redondo
Beach, Calif., June 15, 1972.

20. S. C. Grigory, Tests of 6-Inch-Thick Flaved Tensile Specimens,
Second Technical Sumary Report, Transverse Specimens Numbers 8 Through
10, Welded Specimens Numbers il Through 13, HSSTP-TR-20, Southwest
Research Institute, San Antonio, Tex., June 1972. .

21. L. A. James and J. A. Williams, Heavy Section Steel Technology
Program Technical Report No. 21, The Effect of Temperature and ' Neutron .

Irradiation Upon the Fatigue-Crack Propagation Behavior of ASTM AS33
Grade B, Class 1 Steet, HEDL-TME 72-132, Hanford Engineering Development
Laboratory, Richland, Wash., September 1972.

vi
.

1



..
. _ _ _ _ .

22. ' S. C. Grigory, Tests of 6-Inch Thick' Flawd Tensite Specimens,
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16, Unflawd Specimen Number 17, HSSTP-TR-22, Southwest Research

.

Institute, San Antonio, Tex., October 1972..
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24. S. P. Ying and S. C. Grigory, Tests of 6-Inch-Thick Tensite
Specimens, Fifth Technical Sumary Report, Acoustic Dnission Monitoring of
1-Inch and 6-Inch Thick Tensite Specimens, HSSTP-TR-24, Southwest Research
Institute, San Antonio, Tex., November 1972.

25. R. W. Derby, J. G. Merkle, G. C. Robinson, G. D. Whitman, and
F. J. Witt, Tests of 6-Inch-Thick Pressure Vessels. Series 1: Inter-
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CHARPY TOUGHNESS AND TENSILE PROPERTIES OF A NEUTRON-IRRADIATED
STAINLESS STEEL SUBMERGED ARC WELD CLADDING OVERLAY

W. R. Corwin .R..G. Berggren, and R. K. Nanstad-

f . ABSTRACT.

.

3 The ability of stainless steel cladding to increase the

.i 4 resistance of an operating nuclear reactor pressure vessel to
.' '

extension of surface flaws depends greatly on the properties
of the irradiated cladding. Therefore, weld ~ overlay cladding
irradiated at temperatures and fluences relevant to power
reactor operation was examined. The cladding was applied to a

F pressure -vessel steel plate by the submerged arc, single-wire,
oscillating-electrode method. Three layers of cladding provided

J a thickness adequate for fabrication of test specimens. The
first layer was type 309, and the upper two layers were type 308
stainless steele The type 309 was diluted considerably by
excessive melting of the base plate.. Specimens were taken from
near the base plate-cladding interface and also from the upper*

'
layers. Charpy V-notch and tensile specimens were irradiated
at'288*C to a fluence.of 2'x 1023 neutrons /m2 ()1 g,y),

'*

, sWhen-irradiated, both types 308.and 309 cladding increased
5 to'40% in yield strength and slightly. increased in ductility
in the temperature range from-25 to 288*C. All cladding*

exhibited ductile-to-brittle transition behavior during impact,

testing. The type 308 cladding, microstructurally typical of
that in reactor pressure vessels, showed very little degradation
in either. upper-shelf energy or transition temperature due to
irtadiatica. . Conversely, the impact properties of the specimens.

,

containing.the highly diluted type.309 cladding, microstruc-
,

turally.similar to that produced during some off-normal welding
conditions in existing reactors, experienced significant
increases in transition temperature and drops of up to 50% in'

'

upper-shelf energy.- The impact energies of the Charpy specimens

. .1 y containing the type 309 layer strongly reflected-the amount of
E# 1 the type 309 actually in_the specimen, falling into two distinct-

_i high- and low-energy populations with the low-energy population
,

1 corresponding to a higher fraction of type 309 in the specimen.,

er
i

,

INTRODUCTION

It'has_been proposed that the existence of a tough surface layer of-.r

|~. weld-deposited stainless steel cladding on the interior of a reactor -
pressure vessel (RPV)-can keep a short surface flaw from becoming long,' '

'

;- either by impeding the initiation of extension of a static flaw and/or-by
arresting a running flaw. To obtsin preliminary material properties typi-

I cal of those needed to make such an evaluation for light-water reactors

i
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(LWRs), a program has been established to obtain data on the degradation 2(or lack thereof) of the fracture properties of stainless steel weld
l has indicated that !overlay cladding. A recent review of the literature

-
- -

fracture properties of stainless steel weld metal can degrade signifi-
cantly under irradiation conditions relevant to LWRs. To evaluate this ' g

d
potential degradation, tensile, Charpy V-notch, and precracked Charpy

-

specimens of stainless steel weld overlay cladding were irradiated to
- "

- - Jabout 2 x 1023 neutrons /m2 (>l MeV) at .288'C. The results of tensile and
Charpy V-notch tests are reported here and compared with the properties of . ,

unirradiated cladding. _

_

:=

MATERIALS |j
:
.

The specimens were all taken from a single laboratory weldment
fabricated by the automated single-wire oscillating submerged are proce- J

dure for a companion program investigating structural effects of stainless i;
'

steel cladding on composite four point bend specimens.2,3 The weldment -

consisted of a lower layer of type 309 stainless steel deposited on A 533
~igrade B class 1 plate, followed by two upper layers of type 308 stainless -|

steel cladding.
1

The welding wires for both the types 308 and 309 stainless steel were j
z

4 mm in diameter and chosen to be representative of cladding formerly ,' -

applied in industry. The cladding was deposited on plates that were - -

114 mm thick by 406 mm wide by 914 mm long to minimize distortion and
-

.-

provide an adequate heat sink. The clad plates were then postweld heat .'.

treated (PWHT) at 621*C for 40 h to represent commercial practice. .

,

The single-wire oscillating submerged are welding process used
-

involved a preheat temperature of 121*C and an interpass temperature below
-

288'C. The welding parameters were as follows: .

1. wire extension, 27.0 mm; _ ,

7, oscillation width, 19.0 mm;

3. frequency, 0.3 Hz; ; _

4. de, 500 A; j g

5. de straight polarity voltage, 36 V; and ,

6. forward travel speed, 2.1 mm/s. |
,

The three layers of cladding were applied to provide adequate f;

cladding thickness (~20 mm) to cbtain test specimens. The material
3

compositions of each layer of weld metal are given in Table 1. This

contrasts with typical commercial practice, in which a single layer of
overlay approximately 5 mm thick is applied by either multiple wire or .

strip-cladding submerged are procedures. Subsequent metallographic ;
examination showed that the upper layer appeared typical of LWR stainless .

steel overlay, whereas the lower layer had incurred excessive dilution as
a result of base metal melting during welding. Photomicrographs of the -

4three passes illustrate the radically different microstructures in the

4

s
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Table 1. Chemical composition of overlay weldsents

ContentG (wt- %)-

Layer
C Cr Ni Mo Mn Si Co Cu V Al Ti P S

Lower 0.145 13.46 6.90 0.47 1.47 0.56 0.066 0.14 0.02 0.014 <0.005 0.018 0.01 w

Middle 0.081 18.52 8.81 0.27 1.47 0.70 0.092 0.10 0.04 0.010 <0.005 0.021 0.01,

Upper 0.065 20.01 9.36 .0.21 1.49 0.76 0.100 0.09 0.04 0.16 0.006 0.022 0.01

aBalance Fe, with Nb, <0.01; Ta, <0.01; As, <0.03; and B, <0.001 for all layers.

1
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finished weldment. The upper pass (Fig. 1) shows a distribution of
6-ferrite in an austenite matrix quite typical of microstructures seen

ingoodgracticecommercialweldoverlaycladdinginreactorpressure
vessels. The effect of the 40-h PWT on these materials is to partially .

transform the 6-ferrite to sigma phase. Although this is difficult to
resolve in the optical micrographs, magnetic etching with ferrofluid, the .

use of a colloidal suspension of magnetic particles in the presence of a .

local magnetic field,5 and color staining techniques verified that the .

partial transformation had occurred.
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Fig. 1. The microstructure of the top layer of type 308 stainless
steel weld overlay is typical of reactor pressure vessel cladding with
6-ferrite in an austenite matrix.

.

The lower.and middle layers of cladding, on the other hand, formed ,

atypical microstructures as a result of the excessive dilution (approxi-
'

mately 50%) by the base metal and lower pass weldment, respectively.
Amounts of dilution in good practice cladding are typically in the range .

of 10 to 25%. The middle layer (Fig. 2) contains 6-ferrite dispersed in
austenite but in addition contains limited regions in which martensite
is also present. The bottom layer had sufficient dilution to move it

,
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Fig. 2. The middle layer of the overlay (type 308 stainless steel).

includes patches of martensite (light gray) in addition to the 6-ferrite
in an austenite matrix.

6entirely from the 6-ferrite-forming region of the Schaeffler diagram
and into the austenite plus-martensite region (these are the dominant
phases). Examination of its microstructure (Fig. 3), however, shows three
distinct regions. The use of the ferrofluid magnetic etching technique'

and studies in the transmission electron microscope verified the lightest
regions to be austenite, the light gray regions tempered martensite, and
the dark regions 6-ferrite decorated with M C23 6-

Although the investigation of high-dilution cladding was not the
initial aim of the cladding studies, it may well be highly germane to the
question of the effects of cladding on RPV integrity. High base metal
dilution of cladding, caused by inadaquate control of welding procedures,.

7and the resulting microstructures have been documented ,8 in commercial-
,

| RPVs. Typically, the resulting material has poorer mechanical and/or.

corrosion properties in the unirradiated condition; no information is
available on the irradiation damage of such material. The inclusion of-

such material may provide insight into the behavior of substandard weld
overlay cladding representative of irradiated material actually in the
field.

_
_ , - - .



- _ _ _ _ _ _ _ _ _ _ _ - _ _

6

Y-190520

s- - - - . ..; .~ - f,:;
'

1 .'p . -. RQ' Q( [' 4, Y~ ' ') I *^ '

7 .,
,

.

6
.

A . L .,,f._, i[ f,
: ''~, %& . oj. *

. , . ;
''

--c
i ,

*O ;* -r . . . , ,..
,
_

- s. .
; ~- ;

*

, .i .y f * ,{'

s l- " ~

,t,g , .1, _ ,

.t~~,,09,4 i - , ,'c":,p . -

p Y.f 3 p- .

u ).:
.

' -. :..' W e e-
.

,. .- 6. ._A .] q ._ ;;.
; .,

E h N *

,'.'3pa g. . ., ,

'|~
' '' ? g.. , _ . . .. , , ,

a i ;
,

a ,L.
; u.- , c., I.

6<_.G ~ U' ".
.(/

-0-

...3
-

y ,y ,3 yi

.f ..
. ,.,,

1 - o
, o/..)yq ;, s,.m

,

f, .M .sF
' '* ;. . . . , ,; ,

f '. ,

,

. ,
'

' 'o -

1 . Q.
* -

~ ~ , .& , .f*.
y ; 't

_

',*
. ,

5 %, g \ ;c. : ; ..-n ' ,, ..
I'

- I k,.
..d5? Y , f (. 1

*

}<,j t
,

_ ,Ax,d .1, - :/ .. s s . es a
,

* '
.-

.

40pm ,,
.

Fig. 3. The high base metal dilution of the lowest layer of cladding,
type 309 stainless steel, resulted in a three phase microstructure of
austenite (lightest region), martensite (light gray), and 6-ferrite deco-
rated with additional carbides (black).

To examine the effects of the varying microstructures, two sets of
tensile and Charpy V-notch specimens were carefully fabricated to be con-
tained as fully as possible within either the upper two layers (nominally
type 308 specimens) or the lower layer (nominally type 309 specimens).
All specimens were fabricated with the specimen axis parallel to the
welding direction. The Charpy specimens were notched on the surface
parallel to and nearer the base metal in all cases.

Ferrite numbers were measured on the finished Charpy specimens with
| a Ferrite Scope, which locally measures the percentage of ferromagnetic

material in the sample. The nominally type 308 specimens consistently .

had ferrite numbers of 2 to 6 (corresponding roughly to percentages of
ferrite), as did the portion of nominally type 309 specimens composed of ,

upper weld pass layers. The notched side of the nominally type 309
specimens closest to the base metal interface exhibited a wide range of .

ferrite numbers from 2 to greater than 30 (off scale). This wide range

. _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .. ._
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- was presumably due to the volume of material over which the Ferrite Scope
takes a measurement and to the inclusion, in some cases where the amount-
of type 309 weldsent was thin, of some of the type 308 upper layer
cladding. Optical examination of the microstructure of the type 309

*

layer indicates the amounte of.martensite and' ferrite to be 30 to 45% and
10 to 15%, respectively.

*

,

.,

i IRRADIATION HISTORY
1

1-

4 The specimens were irradiated by Materials Engineering Associates
'

'n the -core of the 2-MW pool reactor (UBR) at the Nuclear Science and.

| Technology Facility, Buffalo, New York. Two separate capsules were used,
i one each for the types 308 and 309 stainless steel specimens. The

capsules were ' instrumented with thermocouples and dosimeters and were
rotated 180* once during the irradiation for fluence balancing. The

- capsule containing the type 308 specimens reached an average fluence of
2.09 x 1023 neutrons /m2 (>l Nev) .:t 10% during 679 h of irradiation. The,

capsule containing the type 309 specimens reached an. average fluence of
2.02 x 1023 neutrons /m2 (>l MeV) 1 5% in 508 h. The fluences are for a4

calculated spectrum based on Fe, Ni, and Co dosimetry wires. Temperatures
were maintained at 288 i 14*C except for the initial week of irradiation.<

During that time, temperatures as low as 263*C were recorded for the, ,

type 308 specimens..

.

RESULTS AND DISCUSSION.

Tensile testing was conducted at room temperature, 149'C, and 288'C.
Irradiation increased the yield strength of the type 309 specimens by
30 to 40%, whereas the increase of the type 308 specimens was only
5 to 25% (Fig. 4). Surprisingly, the total elongation and reduction of

,

area of both materials increased during irradiation (Fig. 5). Tensile
properties are detailed in Table 2.'

; ..
~

The effect of irradiation on the Charpy. impact properties of the
type 308 weld metal representative of typical weld overlay cladding was
relatively small (Fig. 6). Only a very slight upward shif t in transition.

temperature (~15*C) and drop in upper shelf -(<10%) were observed. It
,

: should be noted for both the control and irradiated specimens that Charpy
curves more typical of ferritic materials'than'of austenitic stainless
steel were observed with respect to the abrupt transition from high- to
low-energy fracture. Fracture surfaces of selected ' specimens were

; . examined in the lower transition and upper-shelf regions. ' Macrographs*

[- - of the irradiated type 308 specimens tested at temperatures low in the
transition show flat fracture with clear definition of some of_the large.

L grains produced during welding (Fig. 7). By comparison, specimens at
.

j upper-shelf temperatures produced fracture' surfaces more typical of*

: wrought stainless steel with deep shear lips and a dull appearance.

L Scanning electron microscopy (SEM) of unirradiated specimens tested in the
[- - lower transition and upper-shelf regions clearly show the transition from

i

A
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Table 2. Tensile properties of stainless steel cladding before
and after irradiation at 288 1 14*C

Flucace, Test Strength (MPa) Total ReductionMaterial >l MeV temperature elongation of areaSpecimen atype (neu rons/m ) (*C) Yield Ultimate (%) (%)2

CPL-80 309 0 27 299 593 28.4 30.6
CPL-83 309 0 27 273 586 49.5 55.5
CPC-72 308 0 27 268 589 40.0 55.0
CPC-73 308 0 27 276 568 42.4 58.0
CPL-81 309 2.0 x 1023 29 388 606 39.4 48.0
CPL-85 309 2.0 29 364 624 45.4 58.0

j CPC-70 308 2.1 29 289 605 51.5 62.3
CPC-75 308 2.1 29 300 589 60.1 67.1
CPL-86 309 0 149 213 4a8 31.9 55.5
CPL-89 309 0 149 236 450 30.4 63.4
CPC-77 308 0 149 221 445 31.3 44.0 e
CPC-78 308 0 149 213 444 32.4 52.0
CPL-82 309 2.0 149 297 508 57.2 57.9
CPL-87 309 2.0 149 345 526 48.6 60.4
CPC-71 308 2.1 149 290 501 56.3 59.3
CPC-76 308 2.1 149 262 485 53.8 58.1
CPL-90 309 0 288 195 429 31.7 51.5
CPL-91 309 0 288 207 423 32.4' 52.2
CPC-79 308 0 288 205 393 ~ 28.5 51.4
CPC-80 308 0 288 205 402 27.6 53.3

i CPL-84 309 2.0 288 277 475 52.9 56.6
CPL-88 309 2.0 288 290 501 56.3 59.3
CPC-74 308 2.1 288 198 422 51.9 55.0
CPC-81 308 2.1- 288 232 427 49.5 59.8

aType 309 consists primarily of the first metal pass, type 308 primarily the third
(last pass).

bGage length / diameter = 7.
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a cleavage or quasi cleavage to a fibrous fracture mode (Fig'. 8 . This
behavior. compares well with the work'of.other researchers,9,10 )ho havew

'j shown :that fully ductile fracture occurs in as-welded austenitic weld
metal.as low as 4 K but that quasi cleavage can occur in weld metal that
has received a PWHT in.the temperature range in which carbide precipita-
tion and signs formation occur. Studies on weld metal examined here indi-
--cate that the fracture path preferentially follows the ferritic phases.
: At ' low temperatures the fracture appears typically to follow the 6-ferrite

~

,.

| in both the type 308 and 309 weld metals,' going through~the austenite or
! martensite only where~necessary to reach the next 6-ferrite island. On

the upper shelf this~does not occur because the fracture is no longer,-

L dominated by.the ferrite but passes through austenitic and ferritic phases-

|7 . with equal ease. Therefore, the failure of ferrite at low temperature,
j resulting from'its inherent ductile-to-brittle behavior, appears to govern

the macroscopic transition-type failure behavior of the austenitic weld, -

,

metal.,
,

|

I' *
The interpretation of the impact results of the nominally type 309

specimens is more complicated. Since the' type 309 weld pass was not
,,

thick-enough to obtain specimens composed entirely of type 309 weld metal,_;'
a portion of all the specimens nominally called type 309 is indeed

I- type 308. Macrographs of the irradiated specimen fracture surfaces show
i 'that over the range of the full Charpy curve, the portion composed of
;- type 309 weldment remains bright and faceted (Fig. 9). The remainder

1.

(.
I
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Fig. 7. Fracture surfaces of irradiated type 308 stainicss steel. *'

cladding Charpy impact specimens. (a) Specimen CPC-304 tested at --60*C
|* very low in the transition range. (b) Specimen CPC-290 tested at 150*C on
| the upper shelf.
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Fig. 8. Scanning electron micrographs of the fracture surfaces of *

unirradiated type 308 stainless steel cladding Charpy impact specimens.
*(a) Specimen CPC-283 tested at -100*C on the lower shelf, showing

predominantly brittle fracture. (b) Specimen CPC-298 tested at 150'c
on the upper shelf, showing fibrous fracture.
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Fig. 9. Fracture surfaces of irradiated stainless steel cladding
Charpy impact specimena (nominally type 309) clearly showing the bright,

faceted type 309 weld metal directly below the notch and the duller,

type 308 weld metal composing the rest of the specimen. (a) Specimen*

CPL-515 tested at 0*C in the very low transition region. (b) Specimen
CPL-518 tested at 250*C on the upper shelf..
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Fig. 9. Fracture surfaces of irradiated stainless steel cladding
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faceted type 309 weld metal directly below the notch and the duller,

type 308 weld metal composing the rest of the specimen. (a) Specimen
'

CPL-515 tested at O'C in the very low transition reeton. (b) Specimen
CPL-518 tested at 250*C on the upper shelf.,
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of the fracture surface, coinposed of upper cladding layers of type 308 weld
metal, exhibits the same behavior seen in the fully type 308 specimens.

*

Scanning electron microscopy of an unirradiated specimen from the
lower transition range (Fig. 10) illustrates the very different fracture
morphology of the type 309 weld metal just below the notch and the rest of ,'

the tne fracture surface composed of type 308 weld metal. The type 309 is
*

very flat and formed predominately by cleavage (Fig. 11) at a temperature
(-32*C) at which the type 308 weld metal is still mixed mode (Fig.12).
At upper-shelf temperatures, although the type 309 and 308 weld metals
can still be distinguished in the SEM, both fail in a fibrous manner
(Fig. 13).
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Fig. 10. Scanning electron micrograph of fracture face of unirra-
diated Charpy specimen CPL-516 (nominally type 309 stainless steel) tested
at -32*C in the transition region. The dimpled area at the left is the
specimen notch, the central flat portion is the type 309 weld metal, and
the rough portion at the right is the first type 308 weld pass. .

.

*

In the nominally type 309 specimens, interpreting the Charpy impact
curves demands that the dual fracture properties of the type 308 and 309 *

portions of the material be taken into consideration. Examination of the
fracture surfaces shows clearly that the type 308 weld metal has a louer
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Fig. 11. Detailed views of the type 309 stainless steel weld metal.

fracture surface of specimen CPL-516 (tested at -32*C) showing predomi-
nantly flat fracture with islands of fibrous tearing.
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inotch, the type 309 weld layer, and the type 308 weld layer, each consti-
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of the type 309 weld layer showing fibrous fracture.
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transition temperature than does tha type 309. Examining the impact data
reveals a bimodal population related to the amount of the tougher type 308
weld metal present in the sample. The more type 308 in the specimen, the
lower the apparent transition temperature of the specimen. The compila- ,

tion of the unirradiated and irrediated impact data in Tables 3 and 4,
respectively, includes the percentage of type 308 weld metal measured ,

visually on each fracture surface. By using this percentage as a cri- -

terion, the impact data were divided into low- and high-energy populations. ,

The most appropriate criteria for separating the low-energy populations
were arbitrarily chosen to be less than 70 and 80% type 308 weld metal for
the unirradiated and irradiated data sets, respectively (Figs. 14 and 15),
because these produced the most distinct difference between the data sets.

Table 3. Charpy impact energy of unitradiated
nominally type 309 stainless steel cladding

* ""
Test Impact

,{PSpecimen temperature energy dm ala

bLow-energy population
-

CPL-516 -32 9.5 65
-

CPL-530 -30 12.7 65

CPL-534 10 33.4 60 .

CPL-514 20 28.5 65 *

CPL-545 50 36.2 60

CPL-542 66 34.6 55

CPL-517 93 67.1 60

CPL-524 177 80.3 60

CPL-522 260 72.3 40

8High-energy population

CPL-519 -100 5.4 85

CPL-539 -73 6.9 75

CPL-520 -40 12.9 75

CPL-540 -30 11.5 75

CPL-529 -4 44.7 95

CPL-532 -4 54.2 95

CPL-547 -4 30.5 70

CPL-544 10 65.1 100

CPL-527 20 63.0 80

CPL-535 50 83.9 80

CPL-525 66 69.2 80 *

CPL-537 150 93.3 70 *

CPL-549 150 94.9 70 .

aAs measured on the fracture surface. ,

bless than 70% type 308 weld metal.

cat least 70% type 308 weld metal.

1

.
_
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Table 4. Charpy impact energy of nominally
type 309 stainless steel cladding irra-

diated to 2 x 1023 neutrons /m2.

(>l MeV) at 288'C
.

.

" ""
Test Impact.

YPSpecimen temperature energy , d tala

_ _ _ _ .

bLow-energy population

CPL-515 0 10.8 60
CPL-543 40 17.0 75
CPL-541 65 25.1 65
CPL-548 85 15.6 40
CPL-521 100 25.1 60
CPL-523 150 40.7 65
CPL-518 250 42.7 70
CPL-528 288 36.6 75

8High-energy populatioa

CPL-533 -20 12.0 80
* CPL-538 0 21.7 90
,

CPL-526 28 40.7 100
CPL-531 80 54.2 95'

CPL-546 120 51.5 80
,

CPL-536 130 56.9 85

aAs measured on the fracture surface.
bless than 80% type 308 weld metal.
CAt least 80% type 308 weld metal.

Once these populations within the type 309 data were established, the
effect of irradiation was seen to be quite appreciable (Fig.16). Both
populations experienced large drops in upper-shelf energy of up to 50% and
shifts in transition temperature of up to 100*C.

The extensive toughness degradation seen in the type 309 material as
compared with very little in the type 308 is probably due to the higher
fraction of ferritic phases in the type 309 resulting from the excessive
base metal dilution and their intrinsically higher radiation sensitivity.
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and low-energy populations of the specimens of nominal type 309 cladding.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

On the basis of irradiation of one weldsent of. stainless steel
overlay at a temperature and fluence similar to those at end of life for
an LWR, very little degradation of the notch-impact toughness displayed
by good quality cladding would be expected. In fact, both the tensile

_

strength and the fracture ductility were improved slightly by irradiation.
It must be stressed,'however, that this is only'a single case and that no
conclusions, positive or negative,.can be drawn regarding welding proce-
dures or compositions leading to material appreciably different from that
studied here.

''
It would be very valuable to repeat this type of experiment on

* '.' . cladding overlays produced by other methods similar to those used for'

existing cladding in LWR reactor pressure vessels,(e.g., multiple wire or'

j strip cladding).
,

Results from the highly diluted type 309 weld metal do show appre-
; ciable radiation-induced degradation of notch-impact toughness, even
; though both 'the tensile strength and the tensile fracture ductility were
4
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' improved slightly by irradiation. In the few known cases where welding
'has produced abnormal cladding with excessive dilution in operating reac- .

tors, the radiation effects on notch-impact toughness may be cause for
.concern.

.

.
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