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FOREWORD

The work reported here was performed at Oak Ridge National Laboratory
(ORNL) under the Heavy-Section Steel Technology Program, C. E. Pugh,
Program Manager. The program is sponsored by the Office of Nuclear
Regulatory Research, U.S. Nuclear Regulatory Commission (NRC). The tech-
nical monitor for the NRC is Milton Vagins.

This report is designated Heavy-Section Steel Technology Program
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CHARPY TOUGHNESS AND TENSILE PROPERTIES OF A NEUTRON-IRRADIATED
TA SS EL SUBMERGED ARC WELD CLADDING RLAY

W. R. Corwin, R. G. Berggren, and R. K. Nanstad
ABSTRACT

The ability of stainless steel cladding to increase the
resistance of an operating nuclear reactor pressure vessel to
extension of surface flaws depends greatly on the properties
of the irradiated cladding. Therefore, weld overlay cladding
irradiated at temperatures and fluences relevant to power
reactor operation was examined. The cladding was applied to a
pressure vessel steel plate by the submerged arc, single-wire,
oscillating-electrode method. Three layers of cladding provided
a thickness adequate for fabrication of test spr:imens. The
first layer was type 309, and the upper two layers were type 308
stainless steel. The type 309 was diluted considerably by
excessive melting of the base plate. Specimens were takea from
near the base plate—cladding interface and also from the upper
layers. Charpy V-notch and tensile specimens wer2 irradiated
at 288°C to a fluence of 2 x 1023 neutrons/m? (>1 MeV).

When irradiated, both types 308 and 309 cladding increased
5 to 40% in yield strength and slightly increased in ductility
in the temperature range from 25 to 288°C. All cladding
exhipited ductile-~to-brittle transition behavior during impact
testing. The type 308 cladding, microstructurally typical of
that in reactor pressure vessels, showed very little degradatiou
in either upper-shelf energy or trausition temperature due to
irradiaticn. Conversely, the impact properties f the specimens
containing the highly diluted type 309 cladding, microstruc-
turally similar to that produced during some off-normal weldiag
conditiocns in existing reactors, experienced significant
increases in transition temperature and drops of up to 50% in
upper-shelf energy. The impact energies of the Charpy specimens
containing the type 309 layer strongly reflected the amount of
the type 309 actually in the specimen, falling into two distinct
high- and low-encrgy populations with the low-energy population
corresponding to a higher fraction of type 309 in the specimen.

INTRODUCTION

It has be¢n proposed that the existence of a tough surface layer of
weld-deposited stainless steel cladding on the interior of a reactor
pressure vessel (RPV) can keep a short surface flaw from becoming long,
either by impeding the initiation of extension of a static flaw and/or by
arresting a running flaw. To ubtain preliminary material properties typi-
cal of those needed to make such an evaluation for light-water reactors



(LWRs), a program has been established to obtain data on the degradation
(or lack thereof) of the fracture properties of stainless steel weld
overlay cladding. A recent review of the literature! has indicated that
fracture properties of stainless steel weld metal can degrade signifi-
cantly under irradiation conditions relevant to LWRs. To evaluate this
potential degradation, tensile, Charpy V-notch, and precracked Charpy
specimens of stainless steel weld overlay cladding were irradiated to
about 2 X 1023 peutrons/m? (>1 MaV) at 288°C. The results of tensile and
Charpy V-notch tests are reported here and compared with the properties of
unirradiated cladding.

MATERIALS

The specimens were all taken from a single laboratory weldment
fabricated by the automated single-wire oscillating submerged arc proce-
dure for a companion program investigating structural effects of stainless
steel cladding on composite four-point bend specimens.2v3 The weldment
consisted of a lower layer of type 309 stainless steel deposited on A 533
grade B class 1 plate, followed by two upper layers of type 308 stainless
steel cladding.

The welding wires for both the types 308 and 309 stainless steel were
4 mm in diameter and chosen to be representative of cladding formerly
applied in industry. The cladding was deposited on plates that were

114 mm thick by 406 mm wide by 914 mm long to minimize distortion and
provide an adequate heat sink. The clad plates were then postweld heat
treated (PWHT) at 621°C for 40 h to represent commercial practice.

The single-wire oscillating submerged arc welding process used
involved a preheat temperature of 121°C and an interpass temperature below
288°C. The welding parameters were as follows:

wire extension, 27.0 mm;

osclllation width, 19.0 mm;

frequency, 0.3 Hz;

de, 500 A;

dc straight polarity voltage, 36 V; and
forward travel speed, 2.1 mm/s.

The three layers of cladding were applied to prcvide adequate
cladding thickness (~20 mm) to <btain rest specimens. The material
compositions of each liyer of weld metal are given in Table 1. This
contrasts with typical commercial practice, in which a single layer of
overlay approximately 5 mm thick is applied by either multiple wire or
strip-cladding submerged arc procedures. Subsequeni metallographic
examination showed that the upper layer appeared typical of LWR stainless
steel overlay, whereas the lower layer had incurred excessive dilution as
a result of base metal melting during welding. Photomicrographs of the
three passes illustrate the radically different microstructures in the




Table 1. Chemical composition of overlay weldments

Content? (wt %)
Layer

C Cr Ni Mo Mn Si Co Cu \ Al Ti P S

Lower 0.145 13.46 6.90 0.47 1.47 0.56 0.066 0.14 0.02 0.014 <0.005 0.018 0.01 w
Middle 0.081 18.52 8.81 0.27 1.47 0.70 0.092 0.10 9.04 0.010 <0.005 0.021 0.01

Upper 0.065 20.01 9.36 0.21 1.49 0.76 0.100 0.09 0.04 0.16 0.006 0.022 0.01

3Balance Fe, with Nb, <0.01; Ta, <0.01; As, <0.03; and B, <0.001 for all layers.



finished weldment. The upper pass (Fig. 1) shows a distribution of
S-ferrite in an austenite matrix quite typical of microstructures seen
in good practice commercial weld overlay cladding in reactor pressure
ssels.' The effect of the 40-h PWHT on these materials is to partially
transform the 8-ferrite to sigma phase. Althcugh this is difficult to
resolve in the optical micrographs, magnetic etching with ferrofluid, the
use of a colloidal suspension of magnetic particles in the presence of a
local magnetic field,” and color staining techniques verified that the
partial transformation had occurred.

190287

40 pm

Fig. 1. The microstructure of the top layer of type 308 stainless

steel weld overlay is typical of reactor pressure vessel cladding with
S5-ferrite in an austenite matrix.

The lower and middle layers of cladding, on the other hand, formed
atypical microstructures as a result of the excessive dilution (approxi-
mately 50%Z) by the base metal and lower pass weldment, respectively
Amounts of dilution in good practice cladding are typically in the range
of 10 to 25%. The middle layer (Fig. 2) contains &-ferrite dispersed in
austenite but in addition contains limited regions in which martensite
is also present. The bottom layer had sufficient dilution to move it
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Fig. 2. The middle layer of the overlay (type 308 stainless steel)
includes patches of martensite (light gray) in addition to the S-ferrite
in an austenite matrix.

entirely from the S-ferrite-forming region of the Schaeffler diagrams

and into the austenite-plus-martensite region (these are the dominant
phases). Examination of its microstructure (Fig. 3), however, shows three
distinct regions. The use of the ferrofluid magnetic etching technique
and studies in *he transmission electron microscope verified the lightest
regions to be austenite, the light gray regions tempered martensite, and
the dark regions S-ferrite decorated with M;3Cq.

Although the investigation of high-dilution cladding was not the
initial aim of the cladding studies, it may well be highly germane to the
question of the effects of cladding on RPV integrity. High base metal
dilution of cladding, caused by inadequate control of welding procedures,
and the resulting microstructures have been documented”»® in commercial
RPVs. Typically, the resulting material has poorer mechanical and/or
corrosion properties in the unirradiated condition; no information 1is
availabl? on the irradiation damage of such material. The inclusion of
such material may provide insight into the behavior of substandard weld
overlay cladding represcntative of irradiated material actually in the

field.
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Fig. 3. The high base metal dilution of the lowest layer of cladding
type 309 stainless steel, resulted in a three-phase microstructure of
austenite (lightest region), martensite (light gray), and S-ferrite deco~
rated with additional carbides (black).

To examine the effects cf the varying microstructures, two sets of
tensile and Charpy V-notch specimens were carefully fabricated to be con-
tained as fully as possible within either the upper two layers (nominally
type 308 specimens) or the lower layer (nominally type 309 specimens).
All specimens were fabricated with the specimen axis parallel to the
welding direction. The Charpy specimens were notched on the surface
parallel to and nearer the base metal irn all cases.

Ferrite numbers were measured on the finished Charpy specimens with
a Ferrite Scope, which locally measures the percentage of ferromagnetic
material in the sample. The nominally type 308 specimens consistently
had ferrite numbers of 2 to 6 (corresponding roughly to percentages of
ferrite), as did the portion of nominaily type 309 specimens composed of
upper weld pass layers. The notched side of the nominally type 309
specimens closest to the base metal interface exhibited a wide range of
ferrite numbers from 2 to greater than 30 (off scale). This wide range




was presumably due to the volume of material over which the Ferrite Scope
takes a measurement and to the inclusion, in some cases where the amount
of type 309 weldment was thin, of some of the type 308 upper laye:
cladding. Optical examination of the microstructure of the type 309
layer indicates the amounte of martensite and ferrite to be 30 to 45Z and
10 to 15%, respectively.

IRRADIATION HISTORY

The specimens were irradiated by Materials Engineering Associates
‘n “he core of the 2-MW pool reactor (UBR) at the Nuclear Science and
Technology Facility, Buffalo, New York. Two separate capsules were used,
one cach for the types 308 and 309 stainless steel specimens. The
capsules were instrumented with thermocouples and dosimeters and were
rotated 180° once during the irradiation for fluence balancing. The
capsule containing the type 308 specimens reached an average fluence of
2.09 x 1023 peutrons/m? (>1 MeV) * 10% during 679 h of irradiation. The
capsule containing the type 309 specimens reached an average fluence of
2.02 x 1023 peutrons/m? (>1 MeV) * 5% in 508 h. The fluences are for a
calculated spectrum based on Fe, Ni, and Co dosimetry wires. Temperatures
were maintained at 288 % 14°C except for the initial week of irradiation.
During that time, temperatures as low as 263°C were recorded for the
type 308 epeciaens.

RESULTS AND DISCUSSION

Tensile testing was conducted at room temperature, 149°C, and 288°C.
Irradiation increased the yield strength of the type 309 specimens by
30 to 40Z, whereas the increase of the type 308 specimens was only
5 to 25% (Fig. 4). Surprisingly, the total elongation and reduction of
area of both materials increased during irradiation (Fig. 5). Tensile
properties are detailed in Table 2.

The effect of irradiation on the Charpy impact properties of the
type 308 weld metal representative of typical weld overlay cladding was
relatively small (Fig. 6). Only a very slight upward shift in transition
temperature (~15°C) and drop in upper shelf (<10Z) were observed. It
should be noted for hoth the control and irradiated specimens that Charpy
curves more typical of ferritic materials than of austenitlic stainless
steel were observed with respect to the abrupt transition from high- to
low-energy fracture. Fracture surfaces of selected specimens were
examined in the lower transition and upper-shelf regions. Macrographs
of the irradiated type 308 specimens tested at temperatures low in the
transition show flat fracture with clear definition of some of the large
grains produced during welding (Fig. 7). By comparison, specimens at
upper-shelf temperatures produced fracture surfaces more typical of
wrought stainless steel with deep shear lips and a dull appearance.
Scanning electron microscopy (SEM) of unirvadiated specimens tested in the
lower transition and upper-shelf regions clearly show the transition from



irradiation at 288°C to a Fig. 5. Effect of irradiation at 288°C to a
fluence of 2 X 1023 peutrons/m* (>1 MeV) on the fluence of 2 X 1023 peutrons/m* (>1 MeV) on the
i tensile ductility of the nominally types 308 and

Fig. 4. Effect of

tensile strength of the nominally types 308 and

309 stainless steel weld metal. 309 stainless steel weld metal.




Table 2. Tensile properties of stainless steel cladding before
and after irradiation at 288 * 14°C

Saksedal Flueace, Test Strength (MPa) Total b Reduction

Specimen Suns® >1 MeV temperature elongation of area

ype (neutrons/m?) (°c) Yield Ultimate (2) (%)
CPL-80 309 0 27 299 593 28.4 30.6
CPL-83 309 0 27 273 586 49.5 55.5
CPC-72 308 0 2/ 268 589 40.0 55.0
CPC-73 308 0 27 276 568 42.4 58.0
cPL-81 309 2.0 x 1023 29 388 606 39.4 48.0
CPL-85 309 2.0 29 364 624 45.4 58.0
CPC-70 308 2.1 29 289 605 51.5 62.3
CPC-75 308 2.1 29 300 589 60.1 67.1
CPL-86 309 0 149 213 448 31.9 55.5
CPL-89 309 0 149 236 450 30.4 63.4
CcrPC-77 308 0 149 221 445 31.3 44 .0
CPC-78 308 0 149 213 444 32.4 52.0
CPL-82 309 2.0 149 297 508 57.2 57.9
CPL-87 300 2.0 149 345 526 48.6 60.4
cePCc-71 308 2.1 149 290 501 56.3 59.3
CPC-76 308 2.1 149 262 485 53.8 58.1
CPL-90 309 0 288 195 429 31.7 $1.5
CPL-91 309 0 288 207 423 32.4 52.2
CPC-79 308 0 288 205 393 28.5 51.4
CPC-80 308 0 288 205 402 27.6 53.3
CPL-84 309 2.0 288 277 475 52.9 56.6
CPL-88 309 2.0 288 290 501 56.3 59.3
CPC-74 308 2.1 288 198 422 51.9 55.0
CPC-81 308 2.1 288 232 427 49.5 59.8

AType 309 consists primarily of tue first metal pass, type 308 primarily the third
(last pass).

bCage length/diameter = 7.
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Fig. 6. Effect of irradiation on the Charpy impact energy of
type 308 stainless steel cladding.

a cleavage or quasi cleavage to a fibrous fracture mode (Fig. 8). This
behavior compares well with the work of other renearcherc,’olo who have
shown that fully ductile fracture occurs in as-welded austenitic weld
metal as low as 4 K but that quasi cleavage can occur in weld metal that
has received a PWHT in the temperature range in which carbide precipita-
tion and sigma formation occur. Studies on weld metal examined here indi-
cate that the fracture path preferentially follows the ferritic phases.

At low temperatures the fracture appears typically to follow the &-ferrite
in both the type 308 and 309 weld metals, going through the austenfte or
martensite only where necessary to reach the next S-ferrite island. On
the upper shelf this does not occur because the fracture is no longer
dominated by the ferrite but passes through austenitic and ferritic phases
with equal ease. Therefore, the fallure of ferrite at low temperature,
resulting from {ts inherent ductile~to-brittle behavior, appears to govern
the macroscoplc transition-type failure behavior of the austenitic weld
netal.

The interpretation of the impact results of the nominally type 309
specimens is more complicated. Since the type 309 weld pass was not
thick enough to obtain specimens composed entirely of type 309 weld metal,
a portion of all the specimens nominally called type 309 is indeed
type 308. Macrographs of the irradiated specimen fracture surfaces show
that over the range of the full Charpy curve, the portion composed of
type 309 weldment remains bright and faceted (Fig. 9). The remainder
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(a)

Y-195241

(b)

1 em

Fig. 7. Fracture surfaces of irradiated type 308 stalnless steel
cladding Charpy impact specimens. (a) Specimen CPC-304 tested at —60°C

very low in the transition range. (D) Specimen CPC-290 tested at 150°C on
the upper shelf.
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(b)

Fig. 8. Scanning electron micrographs of the fracture surfaces of
unirradiated type 308 stainless steel  ladding Charpy impact specimens.
(a) Specimen CPC-283 tested at —100°C on the lower shelf,
predominantly brittle fracture. (D) Snecimen CPC-298 tested at 150°C
on cthe upper shelf, showing fibrous fracture.

showing
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Y-195257

Y-195258

(b)

1 em

Fig. 9. Fracture surfaces of irradiated stainless steel cladding
Charpy impact specimens (nominally type 309) clearly showing the bright
faceted type 309 weld metal directly below the notch and the duller
type 308 weld metal composing the rest of the specimen. (4) Specimen
CPL-515 tested at 0°C in the very low transition region.

() Specimen
CPL-518 tested at 250°C on the upper shelf.
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Fig. 9. Fracture surfaces of irradiated stainless steel cladding
Charpy impact specimens (nominally type 309) clearly showing the bright
faceted type 309 weld metal directly below the notch and the duller
type 308 weld metal composing the rest of the specimen. (42) Specimen
CPL~515 tested at 0°C in the very low transition reeion. (D) Specimen
CPL-518 tested at 250°C on the upper shelf.
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of the fracture surface, coaposed of upper cladding layers of type 308 weld
metal, exhibits the same behavior seen in the fully type 308 specimens.

Scanning electron microscopy of an unirradiated specimen from the
lower transition range (Fig. 10) illustrates the very different fracture
morphology of the type 309 weld metal just below the notch and the rest of
the the fracture surface composed of type 308 weld metal. The type 309 is
very flat and formed predominately by cleavage (Fig. 11) at a temperature
(=32°C) at which the type 308 weld metal is still mixed mode (Fig. 12).

At upper -shelf temperatures, although the tvpe 309 and 308 weld metals

can still be distinguished in the SEM, both fail in a fibrous manner
(Fig. 13).

M-17030

800 um
Csee—

Fig. 10. Scanning electron micrograph of fracture face of unirra-
diated Charpy specimen CPL-516 (nominally type 309 stainless steel) tested
at <32°C in the transition region. The dimpled area at the left is the
specimen notch, the central flat portion is the type 309 weld metal, and
the rough portion at the right is the first type 308 weld pass.

In the nominally type 309 specimens, interpreting the Charpy impact
curves demands that the dual fracture properties of the type 308 and 309
portions of the material be taken into consideration. Examination of the
fracture surfaces shows clearly that the type 308 weld metal has a lower
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M-17019

(@)

M-17020

Fig. 11. Detailed views of the type 309 stainless steel weld metal
fracture surface of specimen CPL-516 (tested at -32°C) showing predomi-
nantly flat fracture with islands of fibrous tearing.
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M-17024

Fig. 12. Detalled views of the type 308 stainless steel weld metal
fracture surface of specimen CPL-516 (tested at 32°C) showing mixed-mode
fracture.




M-17027

(b) 40 um

Fig. 13. Scanning electron micrograph of the fracture surface of
unirradiated nominally type 309 stainless steel Charpy specimen CPL-524
tested at 177°C on the upper shelf. (a) Low-magnification view of the
notch, the type 309 weld layer, and the type 308 weld layer, each consti~
tuting roughly one-third of the micrograph from left to right. (b) Detail
of the type 309 weld layer showing fibrous fracture.



transition temperature than does thL2 type 309. Examining the impact data
reveals a bimodal population related to the amount of the tougher type 308
weld metal present in the sample. The more type 308 in the specimen, the
lower the apparent transition temperature of the specimen. The compila-
tion of the unirradiated and irradiated impact data in Tables 3 and 4,
respectively, includes the percentage of type 308 weld metal measured
visually on each fracture surface. By using this percentage as a cri-
terion, the impact data were divided into low- and high—-energy populations.
The most appropriate criteria for separating the low-energy populations
were arbitrarily chosen to be less than 70 and 80% type 308 weld metal for
the unirradiated and irradiated data sets, respectively (Figs. 14 and 15),
because these produced the most distinct difference between the data sets.

Table 3. Charpy impact energy of unirradiated
nominally type 309 stainless steel cladding

Amount of
type 308
weld metal®
(%)

Impact
Specimen temperature energy

("€) (J)

Low-energy populationb
CPL-516 32
CPL-530 30
CPL~534 10
CPL-514 20
CPL-545 50
CPL-542 66
CPL-517

CPL-524

CPL-522 260

. .
~ W

)
G
5
2
Y 4
.6
1
. A
2
. J

High-energy pupulation®

CPL-519 100
CPL-539 73
CPL~-520 40 12.
CPL~-540 30 11.
CPL-52 4 44,
CPL-532 4 54 .
CPL~-547 4 30.
CPL-544 10 65.
CPL-527 20 63.
CPL-535 50 83.
CPL-525 66 69.
CPL-537 150 93.
CPL~-549 150 94.

.
B

WO SN R R « R

NW O -

w

Ips measured on the fracture surface.
} - ,
Less than 70% type 308 weld metal.

At least 70%Z type 308 weld metal.




Table 4. Charpy impact energy of nominally
type 309 stainless steel cladding irra-
diated to 2 x 10?3 peutrons/m?

(>1 MeV) at 288°C

Amount of
type 308
weld metal?

(%)

b

Test Impact
Specimen temperature energy

(°C) J)

Low-energy population

CPL-515 0 10.8 60
CPL~-543 40 17. 75
CPL-541 65 25. 65
CPL-548 85 15. 40
CPL-521 100 25. 60
CPL-523 150 40. 65
CPL-518 250 42, 70
CPL-528 288 36. 75

High-energy population®

CPL-533 -20 12.0 80
CPL-538 0 21. 90
CPL-526 28 40. 100
CPL-531 80 54. 95
CPL-546 120 5l. 80
CPL-536 130 56. 85

9As measured on the fracture surface.
PLess than 80% type 308 weld metal.
At least 80% type 308 weld metal.

Ouce these populations within the type 309 data were established, the
effect of irradiation was seen to be quite appreciable (Fig. 16). Both
populations experienced large drops in upper-shelf energy of up to 50% and
shifts in transition temperature of up to 100°C.

The extensive toughness degradation seen in the type 309 material as
compared with very little in the type 308 is probably due to the higher
fraction of ferritic phases in the type 309 resulting from the excessive
base metal dilution and their intrinsically higher radiation sensitivity.
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Fig. 14. Charpy impact energy of the unirradiated nominally type 309
stainless steel cladding divided into low- and high-energy populations
based on the fraction of type 308 weld metal in the specimen ligament.
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Fig. 15. Charpy impact energy of the irradiated nominally type 309
stainless steel cladding divided into low- and high-energy populations
based on the fraction of type 308 weld metal in the specimen ligament.
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Fig. 16. Effect of irradiation on the Charpy impact energy of high-
and low-energy populations of the specimens of nominal type 309 cladding.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

On the basis of irradiation of one weldment of stainless steel
overlay at a temperature and fluence similar to those at end of life for
an LWR, very little degradation of the notch-impact toughness displayed
by good quality cladding would be expected. In fact, both the tensile
strength and the fracture ductility were improved slightly by irradiation.
It must be stressed, however, that this is only a single case and that no
conclusions, positive or negative, can be drawn regarding welding proce-
dures or compositions leading to material appreciably different from that
studied here.

It would be very valuable to repeat this type of experiment on
d cladding overlays produced by other methods similar to those used for
. existing cladding in LWR reactor pressure vessels (e.g., multiple wire or
strip cladding).

Results from the highly diluted type 309 weld metal do show appre-

clable radiation-induced degradation of notch-impact toughness, even
though both the tensile strength and the tensile fracture ductility were

R L eyt



{mproved slightly by irradiation. In the few known cases where welding
has produced abnormal cladding with excessive dilution in operating reac
tors, the radiation effects on notch-impact toughness may be cause for

concern.
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