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STRESS~INTENSITY-FACTOR INFLUENCE COEFFICIENTS FOR
SURFACE FLAWS IN PRESSURE VESSELS

. *
D, G, Ball J. W. Bryson
B. R. Bass”™ R. D. Cheverton
: e
J. B. Drake

ABSTRACT

In the fracture-mechanics analysis of reactor pressure
vessels, stress-intensity-factor influence coefficients are
used in conjunction with superposition techniques to reduce
the cost of calculating stress-intensity factors. The pres-
ent study uses a finite-element code, together with a vir-
tual crack extension technique, to obtain influence cocffi-
cients for semielliptical surface flaws in a cylinder, and
particular emphasis was placed on mesh convergence (less
than 1% error was sought in the results from any one mesh
construction parameter). Comparison of the coefficients
with those obtained by other investigators shows good agree-
ment . Furthermore, stress-intensity factors obtained by
superposition for a severe thermal-transient loading con-
dition agree within 1% of the values calculated by a direct
finite-element method.

Influence coefficients were calculated for three spe-
cific axially oriented semielliptical surface flaws. The
first was a 2-m-long inner-surface flaw in a nuclear reactor
pressure vessel with depth-to-wall-thickness ratios between
0.2 and 0.9. The second was an inner-surface flaw in the
reactor vessel with a surface-length-to-depth ritio of 6 and
with depth-to-wall-thickness ratios between 0.0 and 0.2.
The third was a l-m~long flaw on the outer surface of a test
vessel with depth-to-wall-thickness ratios between 0.1 and
0.9. For the reactor vessel, separate coefficients were
calculated for the cladding on the inner surface and for the
base-material region, This allows for an accurate account-
ing of the effect of thermal stresses in the cladding on the
stress~intensity factor for surface flaws that extend through
the cladding into the base material.

1. INTRODUCTION

An evaluation of pressurized-water reactor (PWR) pressure-vessel in-
tegrity during postulated overcooling accidents! requires the application

Computing and Telecommunications Division.




of linear-elastic fracture mechanics (LEFM). This involves the calcula-
tion of stress-intensity factors (K;) for both two-dimensional (2-D) and
three-dimensional (3-D) surface flaws subjected to combined thermal and
pressure loadings. Under these circumstances, a sufficiencly accurate
Aetermination of K; requires the use of finite-element (FE) analysis, an
approach that has gcen developed and applied by numerous investigators
(for eramples see Refs. 2-6). However, computer costs for the direct FE
analysi: of cracks can be prohibitive when a large nunber of calculations
must be made, as is the case for parametric, reactor transient, and proba-
bilistic studies.

In the last several years, an alternative approach to the direct FE
method has been promoted that makes use of supergocition techniques and
stress-intensity~factor influence coefficients’~12 that correspond to
simple basic load distributions on the crack face. The coefficients must
be obtained from FE analyses of specific structures and flaws of inter-
est; however, once available, the coefficients can be weighted by any
actual crack-free stress distribution normal te the plane of the crack
face and summed to obtain the total K; value. Because only the predeter-
mined influence coefficients and the crack-free stress distributions are
necessary to calculate K;, this alternative approach is particularly
suitable for parametric studies of a specific PWR pressure vessel,

In this report, the use of influence coefficients with superposition
techniques 1s described; mesh-convergence studies conducted to ensure
reasonable accuracy for the influence coefficients are discussed; K, val-
ues obtained by supzrposition for severe thermal-shock loading conditions
are compared with values calculated with the direct FE method; coeffi-
clents are compared with those obtained by other investigators; and in-
fluence coefficlents are calculated for three specific axially oriented,
semielliptical surface flaws in a cylinder. Two of these flaws are on
the inner su:face »f a PWR reactor pressure vessel, and the other is on
the outer surface uof a test vessel. One of the reactor vessel flaws has
a length of 1.8 m (referred to as the 2-m flaw), while the other has a
surface~length-to-depth ratio of 6 (6/1 flaw). The test vessel flaw has
a surface length of 1.0 m (l-m flaw).



2, SUPERPOSITION AND INFLUENCE COEFFICIENTS

The superposition technique, used in conjunction with the influence
coefficients, makes use of the stresses in the uncracked structure, and,
as discussed in Ref., Il and {llustrated in Fig. 2.1, only that portion of
the stress distribution corresponding to the location of the crack face
needs to be used. For an arbitrary stress distribution, such as that
shown in Fig. 2.1, and for the case of a 2-D (long) flaw, the K; value
corresponding to the truncated stress distribution can be obtained by di-
viding the distribution into a reasonable number of equivalent forces on
the crack face and then rdding the K; values corresponding to each of the
forces. For convenience, normalized Ky values can be calculated for a
number of individual unit loads along the crack face for all crack depths
of interest (Fig. 2.2). These normalized K; values, referred to as K¥
and/or influence coefficients in these studies, can be weighted by an
truncated stress distribution and added to obtain the total Ky value as
indicated by Eq. (1).

n

Kya) = 121 o, ba, K#(a],a) , (0

where

Aal = an increment of about a“,

> bag - s

-

a; = radial distance from open end of crack (cylinder surface)
to point of application of unit load,

[
L)

o, = average stress over A'i for equivalent problem,

Kg = gtreses-intensity factor per unit load applied at ai per
unit length of cylinder,

n = number of points along length of crack for which K* values
are available,

The K; values are dependent on the nature of the structure in which
the cracks reside. However, for a given atructure, the same set of K¥
values can be used for any stress distribution provided there are enough
K* values along the face of the crack to adequately represent the stress
distribution., As indicated in Ref. 12, the authors have used no less
than 6 K* values for very shallow inner-surface flaws in thick-walled
cylinder‘. and as many as 46 for deep flaws (these K; values were calcu-
lated using the FE code FMECH3),
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Fig. 2.1. Graphical representation of method for calculating K1
using equivalent problem.
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The influence coefficients for 3-D flaws are obtained in a somewhat
different manner, For these flaws, the truncated stiress distribution is
approximated with a polynomial as indicated by Eq. (2):

s o vy (&) 0 (£ + e (£

where o(a”) 1is the stress normal to the crack plane at radial position
a”, and a” and a are defined in Fig. 2.3, The K; values are calculated
for each of the individual terms (stress distributions) in Eq. (2) and
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Fig. 2.3. Axially oriented semielliptical flaw on inner surface of
cylinder.

are then added to obtain the total K; value as indicated by Eq. (3):

3 3

K (a) = § xu(a) B ;;) cj /%a K’j* (a) , (3)
where

x;(a) = K‘ij(a)/(C3 /na) . (4)

Values of Ki (a)/C7 are calculated for each of the normalized stress
diutributioni corrésponding to each term in Eq. (2) (see Fig. 2.4), using
a 3-D finite-element analysis and an arbitrary value of C?, such as unity.
The quantity K*(a) is referred to as the influence coeffiCient and, as
indicated by « (4), is dimensionless. Once the influence coefficiente
are obtained, they can be used with any values of CJ to obtain corre-
sponding values of K;(a).

For 3-D flaws, {*(a) values can be calculated for several points
along the crack front! in which case Eq. (3) becomes

Ki(9) = ;:, ¢; /ra K3(s) , (5)
=()
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Fig. 2.4, Crack-surface loading cases for determining 3~D flaw
influence coefficients.

where ¢ is the elliptical angle denoting the point on tha2 crack front,
and the crack-depth notation (a) has been dropped.



3. CALCULATION AND EVALUATION OF INFLUENCE
COEFFICIENTS FOR SPECIFIC 3-D FLAWS

3.1 Computer Codes

For the present study, K* was computed using the three-prozram sys-

tem, ORMGEN!3 -ADINA!“ <ORVIRT,!S which addresses linear or nonlinear
fracture in 2- or 3-D crack configurations., ORMGEN automatically gener-
ates a complete 3-D finite element model of the cracked structure and
creates data files that have formats compatible with ADINA, which is a
structural analysis program. ADINA was modified to allow the application
of the crack-face loads shown in Fig. 2.4, Special elements that intro-
duce the appropriate stress singularity are used along the crack front,

ORVIRT acts as a postprocessor of the conventional ADINA analysis.
It employs a virtual crack-extension technique for the calculation of
energy release rates at specified points along the crack front,

3.2 Mesh Design

Figures 3.1 and 3.2 illustrate a typical ORMGEN mesh design for a
semielliptical surface flaw and show the mesh in the plane of the flaw
and in a plane normal to the fracture surfaces. For this particular de-
sign, the number of elements in the azimuthal and axial directions, the
number of rings of elements in the ligament from the crack front to the
outer wall, the number of elements along the crack front, and the number
of elements through the cladding must be included. A geometric progres-
sion factor was used with the first three categories of elements.

3.3 Mesh Conveg;gnce Studies

In the process of calculating the influence coefficients, careful
attention was paid to using adequately converged FE meshes and appropri-
ate cylinder lengths. The number of elements in each category of ele-
ments was Increased, one category at a time, to the point where the addi-
tion of one element in a single category changed the value of K; by less
than 1Z. The resultant converged meshes for a 90°, half-length segment
of the cylinder had ~8700 degrees of freedom.

Convergence of the K; values was examined at all points along the
crack front, except for the case in which the number of elements along
the crack front was varied; for this case, only the Ky value at the deepest
point was examined. Also, because convergence was more sensitive to de-
tails of the mesh design for the deeper flaws, most of the mesh conver-
gence studies were based on rather deep flaws (a/w = 0.8).
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3.4 90° vs 180° Model

To minimize demands on the computer, only a 90° segment of the cylin-
der was used in the calculation of the influence coefficients (Fig. 3.3).
This corresponds to having flaws at 0° and 180° (two flaws opposite each
other); however, as illustrated below, the error in using these same
coefficiente for a single flaw, which would require a 180° segment to be
exact, is reasonably small for the flaws of interest,

The difference in K; values assoclated with the 90° and 180° models
increases with the length and depth of the flaw., Reference 10 states
that the difference for a 2-D flaw with a/w = 0.8 is only 2%, but it ap-
peared that this conclusion was based on an analysis that used an inap-
propriate model. Thus, a separate comparison analysis was performed for
a 2-D inner-surface axial flaw in a typical PWR vessel. The 90° and 180°
models are shown in Fig. 3.3. The cylinder dimensions were those indi-
cated in this figure, and the thermal loading was that shown in Fig. 3.4.
This loading is characteristic of a typical postulated severe thermal
transient for a PWR,

Results of the 2-D comparison analysis (Table 3.1) show that for
a/w = 0,8, the 90° model results in a 302 higher value of K;. Because
this value is rather large, a similar comparison was made for the 2-m
flaw with a/w = 0.3, For this case, the K; value for the 90° model was
only 4% higher. Because the difference would be even less for shallower
flaws of the same length, and because this study was not concerned with
3-D flaw lengths greater than 2 m, it was coucluded that for the purposes
at hand, the difference between the 90° and 180° models was negligible.

DWG NO % /G- 842634
w

FLAW

9COMODEL 180°MODEL

Fig. 3.3. 90° and 180° models used for determining difference in K;
values for single axial flaw and two opposite flaws.
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Fig. 3.4. Thermal stress profile in PWR used for comparison
calculation of K; in Table 3.1.

Table 3.1. Comparison of K values for 2-D
flaws in 90° and 180° models

K (90°) — K;(180°)

./' x 102
Ky (180°)
(0
0.1 0.4
0.4 3s3
0.8 30.4
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3.5 Length of Cylinder

With regard to cylinder length, a minimum incremental length of
cylinder that could be added to the length of the flaw to negate end ef-
fects was estimated from Eq. (6) (Ref, 16):

l'-B—, (6)

2 o2
R1 w

=
—
it

radius cf cylinder,
wall thickness,
Poisson's ratio.

< €
o

For the cylinder radial dimensions given in Fig. 3.3, £ = 3300 mm. A 3-D
analysis, using the 2-m flaw and a typical transient, indicated that this
added length was not sufficient to reduce end effects below ~5% at all
points on the crack front, and that the required length to reduce end ef-
fects below 2% would be greater than the length of a typical PWR vessel
between the lower head and the nozzle ring. It was decided that for the
2= flaw, a cylinder length of 7010 mm would be appropriate, A similar
analysis for the 6/1, inner-surface, semielliptical flaw with a maximum
fractional depth of 0.2 indicated an appropriate length of 4670 mm. In
both cases, the ends of the cylinder were free.

3.6 Adequacy of Third-Order Polynomial to Represent
Stress Distribution

The adequacy of a third-order polynomial to represent the stress
distribution was investigated by calculating Ky values by both the super-
position and direct FE techniques. The first comparison was for the 2-m
inner-surface flaw in a PWR with a/w = 0.6 and the loading indicated in
Fig. 3.5. The results of this comparison analysis indicate a maximum
difference of ~1% along the crack front (Fig. 3.6).

The second comparison was for the l-m, axially oriented, outer-surface
flaw in a pressurized-thermal-shock-experiment (PTSE) test vessel (a/w =
0.1 and 0.6). The applied load is shown in Fig. 3.7, and the results are
given in Fig. 3.8, Again, good agreement was obtained.




14

ORNL-UWG 846348 ETD
600 T T T T T T T ™ T

CIRCUMFERENTIAL STRESS (MPa)

00 01 0.2 03 04 05 06 0.7 08 09 1.0
alw

Fig. 3.5. Thermal stress profile in PWR used to calculate K; given
in Fig. 3.6.
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0.6) in PWR vessel during severe thermal transient,
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Fig. 3.8. Comparison of 3-D superposition with 3-D direct analysis
for axially oriented, outer-surface l-m flaw in PTSE test vessel,

3.7 Accommodation of Cladding

The presence of a thin layer of stainless steel cladding on the
inner surface of PWR pressure vessels has a significant effect on the K;
values ior inner-surface flaws because of very high thermal stresses
generated in the cladding during a thermal transient. To accommodate the
stress discontinuity associated with the cladding, influence coefficients
were calculated for the cladding stresses alone; the corresponding K;
value can then be superimposed on the K; value due to the stresses in the
base material. As indicated in Fig. 3.9, this is accomplished by first
calculating a K; value for a continuous-function stress distribution that
is obtained by a linear extrapolation into the cladding of the stress
distribution in the base material. Then a K; value is calculated for a
stress distribution in the cladding that is obtained by subtracting the
extrapolated distribution from the actual distribution in the cladding,
which is also assumed to be linear. The total Ky value is simply the sum
of the two. Because the stress distribution in the cladding is essen-
tially linear, it is represented by a first-order polynomial.



18

ORNL-DWG 83-5503 ETD

e -

/

e ACTUAL STRESS

— - - EXTRAPOLATION

N\ \ /-—T!P OF FLAW

I |
) |

/
—bl CLADDING - BASE MATERIAL >

Fig. 3.9. Stress distributions used in superposition techniques for
including effect of cladding on Ky.
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4, COMPARISON WITH OTHER INVESTIGATORS

A comparison of some of the 3-D influence coefficients derived herein
with similar coefficients obtained by other 1nvestigatorse'1° is shown
in Figs. 4.1-4.3. (To compare the coefficients with those obtained from
the closed-form solution for a buried elliptic flaw in an infinite medium
with a uniform stress normal to the crack plane, the influence coeffi-
cients in Figs. 4.1—4.3 represent K; values divided by /ma/Q, where Q is
the square of the complete elliptic integral of the second kind.) As in-
dicated in the figures, the coefficients being compared pertain to axi-
ally oriented, inner-surface flaws in a long cylinder with a/w = 0,2, 0.5,
and 0,8; c/a = 2.5 and 3.0; and RO/R1 = 1,10 (refer to Fig. 2.3).

The results of the comparison indicate good agreement, with our val-
ues being slightly higher and the biggest difference (7X%) at the deepest
point occurring for the cubic stress distribution. Furthermore, for a
shallow flaw (a/w = 0,2, see Appendix B) the influence coefficients for
a uniform stress and ¢ = n/2 are ~1,10. This is consistent with esti-
mates of the front-face correction factor that is applied to the buried-
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ellipse K; value to obtain the K; value for a semiell _cical surface flaw
in a semi-infinite medium.!” For deeper flaws, the finiteness of the
wall becomes apparent; that is, the coefficient: become largcr than those
for the semi-infinite medium.
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5. INFLUENCE COEFFICIENTS FOR SPECIFIC APPLICATIONS

5.1 Pressurized-Water Reactor

Flaws in a PWR pressure vescel are most likely to be located in the
welds that join the segments of the vessel. For most of the vessels in
operation today, radiation embrittlement is greater in the welds than in
the base material because of higher concentrations of copper in the welds.
Thus, although a flaw may extend in length as the result of an overcooling
accident (OCA), the length of the flaw tends to be limited to the length
of the weld. For many of the plate-type vessels, which have both axial
and circumferential welds in the belt-line region, the length of the axial
welds is ~2 m, which is equal to the height of a shell course. Recent
calculations!® indicate that the stress-intensity factor for a deep axial
flaw of this length is substantially less than for an infinitely long
(2-D) flaw, which has been used extensively in the evaluation of vessel
integrity during OCAs. Thus, replacement of the 2-D axial flaw with the
2-m axial flaw in crack-growth models could represent a benefit in terms
of projected vessel lifetime. For this reason, influence coefficients
for 2-m semielliptical, axial flaws were calculated and are included in
Appendix A.

Another finite-length flaw of interest, particularly for initial
flaws, is a semielliptical flaw with a surface-length-to-depth ratio of
6/1. There is no particular technical justification for using this spe-
cific initial flaw in the analysis of OCAs except that, presumabhly, ini-
tial flaws are much more likely to be short than long., With this in mind,
and also because other investigators have included the 6/1 flaw in their
studies, coefficients for a 6/1 flaw were calculated and are given in
Appendix B,

5.2 Pressurized-Thermal-Shock-Experiment Test Vessel

An experimental program'? {s under way at Oak Ridge National Labora-
tory (ORNL) to examine the response of surface-cracked test vessels to
time ~-dependent combined pressure and thermal loadings similar to those
calculated for PWR postulated OCAs. The PTSE facility (Fig. 5.1) at ORNL
subjects a heated thick-walled cylindrical test vessel with a long axial
flaw on the outer surface to a sudden flow of chilled 1iquid on the out-
gide surface and to a prescribed pressure transient on the inner sur-
face. Data from these experiments will be used to help validate methods
¢® fracture analysis that are useful in predicting crack behavior for
certain accident scenarios.

Influence coefficients were calculated for the flaw in Fig. 5.1, as-
suming that the flaw was semielliptical in shape and that it would grow
in depth but not length, Coefficients were obtained for several crack
depths and several positions on the crack front. These values are pre-
sented in Appendix C.
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Appendix A

INFLUENCE COEFFICIENTS FOR THE 2-m FLAW IN A PWR

[Influence coefficients are included for the 2-m flaw [an axially
oriented, 1.83-m-long semielliptical inner-surface flaw in a cylinder
with Ri = 2184.4 mm, w = 215.9 mm, and £ = 7010 mm; the cladding thick-
ness 1s 5.4 mm (Table A,1)]. The coefficients are presented in terms of
G;, where G, = K¥ /6, and Q 1s the square of the complete elliptic iate-
gral of the second kind. Figures A.l and A.2 are graphs of the influence

coefficients at the deepest point on the crack front vs a/w for the un-
clad cylinder and for the cladding area.




lable

A.1l. coefficients for

a PWR

Inf luence
2-m flaw in

the

Unclad cylinder

G G G,

i

Cladding

G G,
0 1l

0.200

0.400

0,500

0.184
0.263
0.421
0.579
0.737
0.895
1.000

0.184
0.263
0.421
0.579
0.737
0.895
1.000

0.184
0.263
0.421
0.579
0.737
0.895
1.000

0.184
0.263
0.421
0.579
0.737
0.895
1.000

0,184
0.263
0.421
0.597
0.737
0,895
1.000

0.184
0.263
0.421
0.579
0.737
0.895
1.000

0.641 0.112
0.753 0.197
0.935 0.356
1.082 0.516
e 0.646
1, 2¢ 0.723
1.283 0.752

0.031
0.062
0.167
C.306
0.441
).530
(573

0.010
0.014
0.080
). 195
0.327
0.423

0.485

0.656
0.778
0.974
1 13)
1.245
1e333

1,345

0.119 0,032 0,009
0.208 0.069
0.369 0.175
0.531 0.315
0.663 0.451
0.742 0.540
).770  0.580

0.022
0,088
0.203
0.335
0.431
0.485

0.681 0.12
0.813 0,22

0.035 0.011
0,029

NN
‘1)

. A=
3185 \ Y. 095
. ]

0.548
0.683
0.765
0.793

48 0,210
0.343
0.440
0.489
0.752 0
0.899
1.124
1.309
1.449
1
1

- J
b Y

Nn.,018
0.040
0.109
0.226
0.359
0.457
0.501

0.251
N.420
0.589
0.729 0.486
0.815 0.578
0.842 0.613

0.204
0.347

+335
. 560

0.855
1.016
1.259

0.194 0.064
0.291 0.113
0.464 0.227
1.454 0.638 0,372
1.605 0.781 0.513
1.698 0.870 0.607
1717 0.896 0.640

0.983
1,155
1.400
1.603
1.753
1.842
1.857

0.028
0,052
0.123
0.242
0.377
0.475
0.516

0,238
0.337
0.513
0.687
0.831
0.919

0.944

0.085
0.136
0.251
0.398
0.538
0.632
0.664

0.040
0.065
0.139
0.258
0.393
0.491
0.530

0,172

0.161
0.131
0.120
0.119
0.123
0.129

0.087
0.082
0.066
0.061
0.060
0.062
0.065

0.144
0.134
D:112
0.107
0.108
0.112
0.117

0.073
0.067
0.057
0.054
0.054
0.056
n,058

0.126 0.063
0.116 0,059
0.101 O
0.099
0.101
0.105
0.109

ne
Uetloi

0.049
0,050
0.052

0.054

0.052
0.097 0.049
0.088 0.044
0.089 0.044
0,093 0.046
0.096 0.048
0,099 0.049

0.047
0.044
0.041
0,042
0.044
0.046
0.047

0.104

0.092
0.088
0.083
0.085
0.089
0.092
0.094

0.08¢%
0.085
0.080
0.083
0,086
0.088
0,089

0,044
0.042
C.040
0.041
0.043
0.044

0,044




Table A.l (continued)

Unclad cvlinder Cladding

G
N
0

N.184
0.263
0.421
0.579
0.737
0.895
1.000

N.184
0.263
0.421
0,579
0.737
0.895
1.000

()

0

P

0,737
0.895
1.000




Influence coefficients for 2-m flaw at ¢ = 90°,
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Fig. A.2. Cladding influence coefficients for 2-m flaw at ¢ = 90°,
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Appendix B

INFLUENCE COEFFICIENTS FOR THE 6/1 FLAW IN A PWR

Influence coefficients are included for the 6/1 flaw [an axially
oriented, inner-surface flaw in a cylinder with a surface length-to-depth

ratio of 6 and with

= 2184.4 mm, w = 215.9 mm, and £ = 4670 mm; the
cladding thickness is 5.4 mm (Table B.1)].

The coefficients are presented

in terms of Gj where G; = K* /6, and Q is the square of the complete el-

liptic integral of the second kind.

Figure B.l is a graph of the influ-

ence coefficients at the deepest point on the crack front vs a/w for the

unclad cylinder.

Table B.1. Influence coefficients for the
6/1 flaw in a PWR
Unclad cylinder Cladding
a/w 2¢/n
) ¢, 6, G, ) G,
0.050 1.000 1,180 0.779 0.611 0.515 a a
0.075 0.18 0,776 0,173 0,051 0,019 a a
0.263 0.874 0.253 0.096 0.042 a a
0.421 0,977 0,398 0,201 0,111 a a
0.579 1.040 0.538 0.336 0,227 a a
0,737 1.087 0.651 0.466 0.359 a a
0.895 1.116 0,717 0,551 0.455 a a
1.000 1.126 0.737 0,579 0.489 a a
0.100 0,18 0,752 0,173 0.053 0.020 a a
0.263 0,843 0,250 0,097 0.043 0.242 0,131
0.421 0.938 0,390 0.199 0,111 0,192 0.105
0.579 1,008 0,525 0,330 0,224 0,159 0.086
0.737 1.066 0.635 0,456 0.352 0.153 0.081
0,895 1,102 0.701 0,538 0,445 0,159 6.083
1.000 1,114 0,721 0.565 0,478 0,163 7,085
0.150 0.184 0,746 0,177 0.056 0.022 0.180 0.093
0.263 0.830 0,252 0,099 0,045 0.171 0.089
0.421 0.923 0,387 0,199 0,111 0.127 0.066
0.579 1.003 0,519 0,326 0.222 0.112 0.058
0.737 1.070 0.627 0.448 0.347 0.113 0.058
0.895 1.110 0,691 0,528 0,437 0.117 0.060
1.000 1.122 0,710 0,555 0.469 0.120 0.061
0,200 0.18 0,751 0.182 0,059 0,024 0.147 0,075
0.263 0.83% 0,256 0,101 0,046 0.134 0.069
0.421 0,928 0.38 0,199 0.112 0.100 0,051
0.579 1,013 0.518 0.325 0.221 0,092 0,047
0.737 1,081 0,624 0.445 0,344 0,094 0,047
n,495 1,120 0.687 0,524 0.433 0,095 0,048
1.000 1,132 0,706 0.550 0.465 0.097 0.049

%Not available at the time of this writing.
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Appendix C

INFLUENCE COEFFICIENTS FOR THE 1-m FLAW
IN A PTSE VESSEL

Influence coefficients are included for the l-m flaw [an axially
oriented, l.0-m~long, semielliptical, outer-surface flaw in a cylinder
with Ri = 342.9 mm and w = 152.4 mm (Table C.1)]. The coefficients are

presented in terms of Gj where GJ = K* /Q, and Q is the square of the

complete elliptic integral of the secgnd kind. Figure C.1 is a graph of

the influence coefficients at the deepest point on the crack front vs a/w.
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Fig. C.1. Influence coefficients for l-m outer-surface flaw at
deepest point (¢ = 90°).
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Influence coefficients for the
l-m flaw in a PTSE test vessel

2¢/n

0.500

0.600

0.900

0.105
0.263
0.421
0.579
0.727
0.895
1.000

0.105
0.263
0.421
0.579
0.737
0,895
1.000

0.105
0.263
0.421
0.579
0.737
0.895
1.000

0.105
0.263
0.421
0.579
0.737
0.635
1.000

0.105
0,263
0.421
0.579
0.737
0.895
1.000

C.105
0.263
0.421
06.579
0.737
0.895
1.000

0.105
0.263
0.421
0.579
0.737
0.895
1.000

0,701
0.945
1.202
1,445
1.646
1.777
1.794

0.809
1.056
1,339
1.617
1.8%0

e 2,001

2,019

1.291
1.534
1.886
2.242
2,534
2.727
2,795

0.123
0.263
0.444
0.635
0.801
0.907
0.933

0.155
0.300
0.491
0.694
0.872
0.985
1.012

0.300
0,459
0.678
0.917
1.134
1.290
1.346

0.036
0.098
0.215
0.372
0.526
0.630
0.664

0.051
0.116
0,240
0.402
0.563
0.671
0.704

0.115
0.192
0.335
0.520
0,709
0.851
0.906
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