I-MOSBA-262 ## Amount of Water in Humid Air at any Pressure '95 not 20 P4:50 OFFICE OF SECRETARY DOCKETING & SERVICE 1 cubic foot of humid air ## At Any Pressure | Dewpoint
Temp. F | Vapor Pressure
Water (in. Hg.) * | |---------------------|--------------------------------------| | 95 | 1.66 | | 90 | 1.42 | | 86 | 1.25 | | 80 | 1.03 | | 60 | .522 | | 50 | .362 | | 35 | .204 | | | | ### **EQUATIONS FROM EGG MANUAL** SECTION 7 : Parts Per Million by Volume = PPM Partial pressure H 2O vapor x 10 E6 Partial Pressure of Dry Air * Perry's Chemical Engineer's Hdbk. Fourth Edition Partial pressure Water Vapor = Vapor pressure of Water at given temperature Partial Pressure Dry Air = Total pressure - Vapor Pressure of Water at given Temp. Parts Per Million by Weight = PPM w Mol wt. of H O Mol. Wt. Air 9601220295 950919 PDR ADOCK 05000424 | - 10 | NUCLEAR | REGULATORY | COMMISSION | |------|---------|------------|------------| | | | | | Docket No. 50-424/425-DLA-3 EXHIBIT NO. 74 - 26 2 In the matter of Georgia Power Co. et al., Vogtle Units 1 & 2 Staff Applicant Afritervenor Other ☐ Identified ☐ Rejected Date 9/19/95 Witness HILL and WARD ## **SECTION 7** ## GENERAL DEW POINT MEASUREMENT INFORMATION # basic humidity definitions #### DALTON'S LAW John Dalton was the first to surmise that the total pressure, p_m, exerted by a mixture of gases or vapors is the sum of the pressures of each gas if it were to occupy the same volume by itself. The pressure which each gas component of a multiple constituent gas (such as air) exerts is called its partial pressure. If p_x, p_y, and p_z represent the respective partial pressures of gases X, Y, and Z in a mixture, Dalton's Law states: Elementary as it may seem, the concept of Dalton's Law is often overlooked in considering problems in humidity, because one forgets that the "water" in a gas is actually a gas itself and must be treated in accordance with the gas laws. Air must be considered a mixture of gases - oxygen, nitrogen, and water vapor (neglecting the minor constituents). All discussions of humidity can then be reduced to discussions of water vapor pressure, and all definitions encountered in humidity can be expressed in terms of vapor pressure. #### **DEW POINT** Dew Point is that unique temperature to which the air (or any gas) must be cooled in order that it shall be saturated with respect to water. #### FROST POINT Frost Point is that unique temperature to which the air (or any gas) must be cooled in order that it shall be saturated with respect to ice. The dew point or frost point DEFINES the partial pressure of the water vapor in the gas, from the Smithsonian Meteorological Tables. #### RELATIVE HUMIDITY Relative Humidity is the ratio of the actual vapor pressure (as defined by the Tables) in the mixture to the saturation vapor pressure, with respect to water, at the prevailing dry bulb temperature. Example 1. (Metric Units) If dew point = 10°C and dry bulb = 25°C: $$=\frac{12.272 \text{ mb}}{31.671 \text{ mb}}=38.7\%$$ If frost point = -45°C and dry bulb = -40°C. RH = Vapor Pressure at - 45°C (Actual) Vapor Pressure at - 40°C (with respect to water) $$=\frac{0.07198 \text{ mb}}{0.1891 \text{ mb}} = 38.1\%$$ Example 2. (English Units) If dew point = 50°F and dry bulb = 90°F: RH = Vapor Pressure at 50°F Vapor Pressure at 90°F If frost point = -50°F and dry bulb = - 40°F; RH = Vapor Pressure at - 50°F (Actual) Vapor Pressure at - 40°F (with respect to water) NOTE: RH is arbitrarily defined with respect to water even though it seems that it should be with respect to ice at -40°C (-40°F). #### PPM BY VOLUME Parts per million (PPM) by volume is the ratio of the partial pressure of the water vapor to the partial pressure of the dry gas. Example 1. (Metric Units) If frost point = -60°C and system total pressure is 1013 mb (14.7 PSIA) Example 2. (English Units) If frost point = -70°F and system total pressure is 14.7 PSIA (29.92"Hg): $$= \frac{4.974 \times 10^{-4}'' \text{ Hg}}{(29.92 - .004974)'' \text{Hg}} \times 10^{\circ}$$ = 17PPM(by volume) #### PPM BY WEIGHT PPM by weight of dry gas is identical to PPM by volume except that the weight ratio changes with the molecular weight of the carrier gas. #### Example 1. (Metric Units) If frost point $= -60^{\circ}$ C, system total pressure is 1013 mb, and the carrier gas is hydrogen: = $$10.7 \times \frac{18}{2} = 96.3PPM$$ (by weight) #### Example 2. (English Units) If frost point = -70°F, system total pressure is 14.7 PSIA, and the carrier gas is hydrogen: = 17 $$\times \frac{18}{2}$$ = 153 PPM (by weight) #### MOLECULAR WEIGHT OF COMMON GASES | Acetylene | 26 | Helium | 4 | |-----------------|----|----------------|----| | Air | 29 | Hydrogen | 2 | | Ammonia | 17 | Methane | 16 | | Argon | 40 | Nitrogen | 28 | | CO ₂ | 44 | Oxygen | 32 | | CO | 28 | Sulfur Dioxide | 64 | | Ethylene | 28 | Water | 18 | #### DEW POINT/FROST POINT RELATIONSHIPS Below 0°C (32°F), dew point hygrometers measure the frost point temperature rather than the dew point. The tables below permit conversion from dew to frost point. For a more accurate conversion, consult Table 102 of Smithsonian Meteorological Tables. | Metric U | nits (°C) | | | | | | | |----------|-----------|------|--------|------|--------|------|--------| | F.P. | D.P. | F.P. | D.P. | F.P. | D.P. | F.P. | DP. | | 0 | 0 | - 12 | - 13.4 | - 24 | - 26.6 | - 36 | - 39.4 | | - 1 | - 1.2 | - 13 | - 14.5 | - 25 | -27.7 | - 37 | - 40.5 | | - 2 | - 2.3 | - 14 | - 15.6 | - 26 | - 28.8 | - 38 | - 41.6 | | - 3 | - 3.4 | - 15 | - 16.7 | - 27 | - 29.9 | - 39 | - 42.6 | | - 4 | - 4.5 | - 16 | - 17.8 | - 28 | - 30.9 | - 40 | - 43.7 | | - 5 | - 5.6 | - 17 | - 18.9 | - 29 | - 32.0 | -41 | - 44.7 | | - 6 | - 6.8 | - 18 | -20.0 | - 30 | - 33.0 | - 42 | - 45.8 | | - 7 | - 7.9 | - 19 | -21.1 | - 31 | - 34.1 | - 43 | - 46.8 | | - 8 | - 9.0 | - 20 | - 22.2 | - 32 | - 35.2 | - 44 | - 47.9 | | - 9 | - 10.1 | - 21 | - 23.3 | - 33 | - 36.2 | - 45 | - 49.0 | | -10 | -11.2 | - 22 | -24.4 | - 34 | -37.3 | - 46 | - 50.0 | | -11 | -12.3 | - 23 | - 25.5 | - 35 | - 38.4 | | | | F.P. | D.P. | F.P. | D.P. | F.P. | D.P. | F.P. | D.P. | |------|--------|------|--------|------|--------|------|--------| | + 32 | + 32 | + 10 | + 7.4 | - 12 | - 16.7 | - 34 | -40.3 | | + 31 | + 30.8 | + 9 | + 6.3 | - 13 | - 17.8 | - 35 | -41.4 | | + 30 | + 29.7 | + 8 | + 5.2 | - 14 | - 18.9 | - 36 | -42.4 | | + 29 | + 28.6 | + 7 | + 4.1 | - 15 | - 20.0 | - 37 | -43.5 | | + 28 | + 27.5 | + 6 | + 2.9 | - 16 | -21.1 | - 38 | -44.5 | | + 27 | + 26.4 | + 5 | + 1.8 | - 17 | - 22.2 | - 39 | -45.6 | | + 26 | + 25.2 | + 4 | + 0.7 | - 18 | -23.3 | - 40 | - 46.6 | | + 25 | + 24.1 | + 3 | - 0.4 | - 19 | -24.3 | - 41 | -47.7 | | + 24 | + 22.9 | + 2 | - 1.5 | - 20 | - 25.4 | - 42 | -48.7 | | + 23 | +21.8 | + 1 | - 2.6 | - 21 | - 26.4 | - 43 | -49.8 | | + 22 | +20.7 | 0 | - 3.7 | - 22 | -27.5 | - 44 | -50.8 | | + 21 | + 19.6 | - 1 | - 4.8 | - 23 | - 28.6 | - 45 | -51.9 | | + 20 | + 18.5 | - 2 | - 5.8 | -24 | - 29.6 | - 46 | -52.9 | | + 19 | +17.4 | - 3 | - 6.9 | - 25 | -30.6 | - 47 | -54.0 | | + 18 | +16.2 | - 4 | - 8.0 | - 26 | -31.7 | - 48 | -55.0 | | + 17 | + 15.1 | - 5 | - 9.1 | - 27 | - 32.8 | - 49 | -56.1 | | + 16 | +14.0 | - 6 | -10.2 | - 28 | - 33.9 | - 50 | -57.1 | | + 15 | + 12.9 | - 7 | -11.3 | - 29 | -35.0 | -51 | -58.2 | | + 14 | +11.8 | - 8 | -12.4 | - 30 | -36.1 | - 52 | -59.2 | | + 13 | +10.7 | - 9 | -13.5 | -31 | -37.2 | - 53 | -60.3 | | + 12 | + 9.6 | -10 | -14.6 | - 32 | -38.2 | | 00.0 | | + 11 | + 8.5 | -11 | - 15.6 | - 33 | - 39.3 | | | REFERENCE: Smithsonian Meteorological Tables, Sixth Revised Edition, List, Robert J., Publication No. 4014, Smithsonian Institution, Washington, D.C. Table 15-1. Thermodynamic Properties of Moist Air (Standard Atmospheric Pressure, 29.921 in. Hg) | Ta | Table 15-1. Thermodynamic Properties of Moist Air | | | | | Standa | magajatata ina reist tendr | nospher | NAME AND ADDRESS OF TAXABLE | AND THE RESIDENCE OF THE PERSON NAMED IN COLUMN 1 | STREET, STREET | mg) | | | |---|---|--|--------------------------------------|--|--|---|--|--|--|--|--|---|--|-------| | 70 | Saturation | (9) | Volume,
(t./fb. dry | sir | Enthalpy,
B.t.u./ib. dry air | | | B.t.u./(*F.)(lb. dev air) | | | Condensed water Enthalpy, Entropy, Vapor | | | Tem | | Temp. | humidity
H _∗ × 10* | 1, | fax | f, | Au | has | A. | žą. | far | ă. | B.s.u./lb. | B.t.u./
(lb.)(*F.) | Dress | 4, * | | -160
-155
-150
-145
-140 | 0 2120
3867
6932
1 219
2 109 | 7 520
7 647
7 775
7 902
8 029 | 000
000
000
000
000 | 7 520
7 647
7 775
7 962
8 029 | - 38 504
- 37 296
- 36 088
- 34 881
- 33 674 | 0 000
.000
.000
.000
.000 | - 38 504
- 37 296
- 36 088
- 34 881
- 33 674 | -0 10300
-0 09901
-0 09508
-0 09121
-0 08740 | .00000
.00000 | -0 10300
-0 09901
-0 09508
-0 09121
-0 08740 | -220 40
-218 77
-217 12 | -0.4907
-0.4853
-0.4800
-0.4747
-0.4695 | 0.1009
1842
3301
5807
1.0€4 | | | -135
-130 | 3 566
6 000 | 8.156
8.283 | .000 | 8.156
8.283 | -32 468
-31 262 | .000 | -32.468
-31.262 | -0 08365
-0 07997 | .00000 | -0 08365
-0 07997 | | -0.4642
-0.4590 | 1 707
2 858
p, × 10 ^a | -1 | | - 125
- 120
- 115
- 110
- 105 | H. × 10°
0. 9887
1. 606
2. 571
4. 063
6. 340 | 8 411
8 537
8 664
8 792
8 919 | .000
.000
.000
.000
.000 | 8.411
8.537
8.664
8.792
8.919 | -30 057
-28 852
-27 648
-26 444
-25 240 | .000
.000
.000
.000
.000 | - 30 057
- 28 852
- 27 648
- 26 444
- 25 239 | -0 07634
-0 07277
-0 06924
-0 06577
-0 06234 | .00000
.00000
.00000
.00000
.00000 | -0.07634
-0.07277
-0.06924
-0.06577
-0.06234 | - 206 73 | -0 4538
-0 4485
-0 4433
-0 4381
-0 4329 | | | | - 100 | 9.772 | 9.046 | 000 | 9.046 | -24 037 | .001 | -24 036 | -0 05897 | .00000 | -0.05897 | -201 23 | -0 4277 | 4 666
p ₄ × 104 | -1 | | -95
-90
-85
-80
-75 | H, × 10*
1 489
2 242
3 342
4 930
7 196 | 9 173
9 300
9 426
9 553
9 680 | 000
000
000
000
000 | 9 173
9 300
9 426
9 553
9 680 | - 22 835
- 21 631
- 20 428
- 19 225
- 18 022 | .002
.002
.003
.005
.007 | -20 425
-19 220 | -0.05565
-0.05237
-0.04913
-0.04595
-0.04280 | .00000
00001
.00001
.00001 | -0 05565
-0 05236
-0 04912
-0 04594
-0 04278 | -195.51
-193.55 | -0 4225
-0 4173
-0 4121
-0 4069
-0 4017 | 0 7111
1 071
1 597
2 356
3 441 | 11111 | | 70
65 | 10 40
14 91
H, × 10 ^a | 9 806
9 932 | .000 | 9 806
9 932 | - 16 820
- 15 617 | .011 | | -0 03969
-0 03663 | 00003
00005 | -0 03966
-0 03658 | | -0 3965
-0 3913 | 4 976
7 130
p. × 10 ^a | = | | -60
-55
-50
-45
-40 | 2 118
2 982
4 163
5 766
7 925 | 10 059
10 186
10 313
10 440
10 566 | 000
000
001
001 | 10 059
10 186
10 314
10 441
10 567 | -14 416
-13 214
-12 012
-10 811
-9 609 | 022
031
043
060
083 | -13.183
-11.969
-10.751 | -0 03360
-0 03061
-0 02766
-0 02474
-0 02186 | .00006
00009
.00012
.00015
.00021 | -0 03354
-0 03052
-0 02754
-0 02459
-0 02165 | -183 39
-181 29
-179 16 | -0 3861
-0 3810
-0 3758
-0 3707
-0 3655 | 1 0127
1 4258
1 9910
2 7578
3 7906 | 11111 | | 35 | 10.81 | 10 693 | 002 | 10 695 | 8.408 | 113 | -8.295 | -0 01902 | 00028 | -0 01874 | -174.84 | -0 3604 | 5 1713
p. × 10 ⁹ | _= | | -30
-25
-20
-15 | H, × 104
1 464
1 969
2 630
3 491 | 10 820
10 946
11 073
11 200 | .002
.004
.005
.006 | 10 822
10 950
11 078
11 206 | -7 207
-6 005
-4 804
-3 603 | .154
207
277
368 | -5 798
-4 527 | -0 01621
-0 01342
-0 01067
-0 00796 | 00038
00051
00068
00089 | -0 01583
-0 01291
-0 00999
-0 00707 | -172 64
-170 42
-168 17
-165 90 | -0 3552
-0 3500
-0 3449
-0 3398 | 0 70046
94212
1 2587
1 6706 | | | -10
-5 | 4 606
6 040 | (1.326
(1.452 | 800 | 11.334
11.463 | -2 402
-1 201 | 487
639 | -1 915
-0 562 | -0.00529
-0.00263 | .00115
00149 | -0 00414
-0 00114 | -163 60
-161 28 | -0 3346
-0 3295 | 2 2035
2 8886 | - | | 0
5
10
15
20 | H, × 10 ⁴ 0 7872 1 020 1 315 1 687 2 152 | 11 578
11 705
11 831
11 958
12 984 | 015
019
025
032
042 | 11 593
11 724
11 856
11 990
12 126 | 0 000
1 201
2 402
3 603
4 804 | 835
1 085
1 401
1 800
2 302 | 0 835
2 286
3 803
5 403
7 106 | 0 00000
00260
00518
00772
01023 | 00192
00246
00314
00399
00504 | 0 00192
00506
00632
01171
01527 | 158 93
156 57
154 17
151 76
149 31 | -0 3244
-0 3193
-0 3141
-0 3090
-0 3039 | 3 7645
4 8779
6 2858
8 0565
10 272 | | | 25
30
32
32
32
34 | 2 733
3 454
3 788
3 788
4 107 | 12 211
12 338
12 368
12 388
12 438 | .054
.068
.075
.075
.082 | 12 265
12 406
12 463
12 463
12 520 | 6 005
7 206
7 686
7 686
8 167 | 2 929
3 709
4 072
4 072
4 418 | 8 934
10 915
11 758
11 758
12 585 | 01273
01519
01617
01617
01715 | 00635
00796
00870
00870
00940 | 01908
02315
02487
02487
02655 | -146 85
-144 36
-143 36
0 04
2.06 | | 16 452
18 035
18 037
19 546 | | | 36
38
40
42
44 | 4 450
4 818
5 213
5 638
6 091 | 12 489
12 540
12 590
12 641
12 691 | 089
097
105
114
124 | 12 578
12 637
12 695
12 755
12 815 | 8 647
9 128
9 608
10 088
10 569 | 4 791
5 191
5 622
6 084
6 580 | 13 438
14 319
15 230
16 172
17 149 | 01812
01909
02005
02101
02197 | 01016
01097
01183
01275
01373 | 02828
03006
03188
03376
03570 | 4 07
6 08
8 09
10 09
12 10 | 0081
0122
0162
0202
0242 | 0.21166
22904
24767
26763
28899 | | | 46
48
50
52
54 | 6 578
7 100
7 658
8 256
8 894 | 12 742
12 792
12 843
12 894
12 944 | 134
146
158
170
185 | 12 876
12 938
13 001
13 064
13 129 | 11 049
11 530
12 010
12 491
12 971 | 7 112
7 681
8 291
8 945
9 644 | 18 161
19 211
20 301
21 436
22 615 | 02293
02387
02481
02575
02669 | 01478
01591
01711
01839
01976 | 03771
03978
04192
04414
04645 | 14 10
16 11
18 11
20 11
22 12 | 0282
0321
0361
0400
0439 | 31185
33629
36240
39028
42004 | | | 56
58
60
62
64 | 9 575
10 30
11 08
11 91
12 86 | 12 995
13 045
13 096
13 147
13 197 | .200
.216
.233
.251
.271 | 13 195
13 261
13 329
13 398
13 468 | 13 452
13 932
14 413
14 893
15 374 | 10 39
11 19
12 05
12 96
13 94 | 23 84
25 12
26 46
27 85
29 31 | 02762
02855
02948
03040
03132 | 02121
02276
02441
02616
02803 | 04883
05131
05389
05636
05935 | 24 12
26 12
28 12
30 12
32 12 | 0478
0517
0555
0594
0632 | 45176
48558
52159
55994
60073 | | | 66
68 | 13.74
14.75 | 13.247
13.298 | .292
.315 | 13.539
13.613 | 15.855
16.335 | 14.98
16.09 | 30.83
32.42 | 03223 | 03002 | 06225
06527 | 34 11
36 11 | 0670
0708 | 69019 | | | 70
72
74
76
78 | H, × 10°
1 582
1 697
1 819
1 948
2 086 | 13 348
13 398
13 449
13 499
13 550 | 339
364
392
422
453 | 13 687
13 762
13 841
13 921
14 003 | 16.816
17.297
17.778
18.259
18.740 | 17 27
18 53
19 88
21 31
22 84 | 34 09
35 83
37 66
39 57
41 58 | 03405
03495
03585
03675
03765 | 03437
03675
03928
04197
04482 | 06842
07170
07513
07872
08247 | 38 11
40 11
42 10
44 10
46 10 | .0746
.0784
.0821
.0859
.0896 | 73915
79112
84624
90470
96665 | | Compiled by John A. Goff and S. Gratch. See also Keenan and Kaye, "Thermodynamic Properties of Air," Wiley, New York, 1945. Enthalpy of dry air taken as zero at 32°F. Enthalpy of liquid trater taken as zero at 32°F. * Extrapolated to represent metastable equilibrium with undercooled liquid. -35 - 30 - 25 - 20 - 15 Table 15-1. Thermodynamic Properties of Moist Air (Standard Atmospheric Pressure, 29.921 in. Hg)— (Continued) | | | | Volume,
cu. ft./lb. dry air | | | Enthalpy,
B.t.u./ip. dry air | | | B.t.u./(*F.)(lb. dry air) | | | Condensed water | | | |---------------------------------|---|--|--|--|---|---|--|---|---|---|--|--------------------------------------|--|-----| | emp. | Seturation
humidity
H, × 10 ^a | t _a | Fas | e, | Å _a | has | h. | Au . | tas | ž. | Enthalpy
B.t.u./lb. | B.t.u./
(lb.)(*F.) | press.,
in. Ug | Tem | | 80 | 2 253 | 13 601 | 0.486 | 14 087 | 19 221 | 24 47 | 43 69 | 0.03854 | 0 04784 | 0.08638 | 48.10 | 0 0933 | 1.0323 | - | | 82 | 2 389 | 13 651 | .523 | 14 174 | 19 702 | 26 20 | 45 90 | .03943 | 05105 | 09048 | 50.09 | .0970 | 1.1017 | | | 84 | 2 555 | 13 702 | .560 | 14 262 | 20 183 | 28 04 | 48 22 | .04031 | 05446 | 09477 | 52.09 | .1007 | 1.1752 | | | 86 | 2 731 | 13 752 | .602 | 14 354 | 20 663 | 30 00 | 50 66 | .04119 | 05807 | 09926 | 54.08 | .1043 | 1.2529 | | | 88 | 2 919 | 13 803 | .645 | 14 448 | 21 144 | 32 09 | 53 23 | .04207 | 06189 | 10396 | 56.08 | .1080 | 1.3351 | | | 90 | 3 118 | 13 853 | .692 | 14 545 | 21 625 | 34 31 | 55 93 | 04295 | 06596 | .10890 | 58 08 | .1116 | 1 4219 | | | 92 | 3 330 | 13 904 | .741 | 14 645 | 22 106 | 36 67 | 58 78 | 04382 | 07025 | .11407 | 60 07 | .1153 | 1 5135 | | | 94 | 3 556 | 13 954 | .795 | 14 749 | 22 587 | 39 18 | 61 77 | 04469 | 07480 | .11949 | 62 07 | .1188 | 1 6102 | | | 96 | 3 795 | 14 005 | .851 | 14 856 | 23 968 | 41 85 | 64 92 | 04556 | 07963 | .12519 | 64 06 | .1224 | 1 7123 | | | 98 | 4 049 | 14 056 | .911 | 14 967 | 23 548 | 44 68 | 68 23 | 04643 | 08474 | .13117 | 66 06 | .1260 | 1 8199 | | | 100 | 4 319 | 14 106 | 975 | 15 081 | 24 029 | 47 70 | 71.73 | .04729 | .09016 | 13745 | 68 06 | .1296 | 1 9333 | 1 | | 102 | 4 605 | 14 157 | 1 043 | 15 200 | 24 510 | 50 91 | 75.42 | .04815 | .09591 | 14406 | 70 05 | 1332 | 2 0528 | | | 104 | 4 911 | 14 207 | 1 117 | 15 324 | 24 991 | 54 32 | 79.31 | .04900 | 1020 | 1510 | 72 05 | 1367 | 2 1786 | | | 106
108
110
112
114 | H, × 10
0 5234
5578
5944
6333
6746 | 14 258
14 308
14 359
14 409
14 460 | 1 194
1 278
1 365
1 460
1 560 | 15 452
15 586
15 724
15 869
16 020 | 25 472
25 953
26 434
26 915
27 397 | 57 95
61 80
65 91
70 27
74 91 | 83 42
87 76
92 34
97 18
102 31 | 04985
05070
05155
05239
05323 | .1085
.1153
.1226
.1302
.1384 | 1584
1660
1742
1826
1916 | 74 04
76 04
78 03
80 03
82 03 | 1403
1438
1472
1508
1543 | 2 3109
2 4502
2 5966
2 7505
2 9123 | 1 1 | | 116 | .7185 | 14 510 | 1 668 | 16 178 | 27 878 | 79 85 | 107 73 | 05407 | 1470 | 2011 | 84 02 | 1577 | 3 0821 | | | 118 | 7652 | 14 561 | 1 762 | 16 343 | 28 359 | 85 10 | 113 46 | 05490 | 1562 | 2111 | 86 02 | 1612 | 3 2603 | | | 120 | 8149 | 14 611 | 1 905 | 16 516 | 28 841 | 90 70 | 119 54 | 05573 | 1659 | 2216 | 88 91 | 1646 | 3 4474 | | | 122 | 8678 | 14 662 | 2 034 | 16 696 | 29 322 | 96 66 | 125 98 | 05656 | 1763 | 2329 | 90 01 | 1681 | 3 6436 | | | 124 | 9242 | 14 712 | 2 124 | 16 886 | 29 804 | 103 9 | 132 8 | 05739 | 1872 | 2446 | 92 01 | 1715 | 3 8493 | | | 126 | 9841 | 14.763 | 2 323 | 17 086 | 30 285 | 109 8 | 140.1 | 05821 | 1989 | 2571 | 94 01 | 1749 | 4 0649 | | | 128 | 1 048 | 14.813 | 2 482 | 17 295 | 30 766 | 117 0 | 147.8 | 05903 | 2113 | 2703 | 96 00 | 1783 | 4 2907 | | | 130 | 1 116 | 14.864 | 2 652 | 17 516 | 31 248 | 124 7 | 155.9 | 05985 | 2245 | 2844 | 98 00 | 1817 | 4 5272 | | | 132 | 1 189 | 14.915 | 2 834 | 17 749 | 31 729 | 133 0 | 164.7 | 05067 | 2386 | 2993 | 100 00 | 1851 | 4 7747 | | | 134 | 1 267 | 14.965 | 3 029 | 17 994 | 32 211 | 141 8 | 174.0 | 06148 | 2536 | 3151 | 102 00 | 1885 | 5 0337 | | | 136
138 | 1.350 | 15.016
15.066 | 3 237
3 462 | 18 253
18 528 | 32 692
33 174 | 151 2
161 2 | 183.9
194.4 | 06229 | .2695
.2865 | 3318 | 104 00
106 00 | .1918 | 5 3046
5 5878 | | | 140
142
144
146
148 | 81,
0.1534
1636
1745
1862
1989 | 15 117
15 167
15 218
15 268
15 319 | 3 702
3 961
4 239
4 539
4 862 | 18 819
19 128
19 457
19 807
20 181 | 33, 655
34, 136
34, 618
35, 099
35, 581 | 172 0
183 6
196 0
209 3
223 7 | 205 7
217 7
230 6
244 4
259 3 | 06390
06470
06549
06629
06708 | 3047
3241
3449
3672
3912 | 3686
3688
4104
4335
4583 | 107 99
109 99
111 99
113 99
115 99 | 1985
2018
2051
2084
2117 | 5 8838
6 1930
6 5160
6 8532
7 2051 | | | 150 | 2125 | 15 369 | 5 211 | 20 580 | 36 063 | 239 2 | 275 3 | 06787 | 4169 | .4848 | 117 99 | .2150 | 7 5722 | | | 152 | 2271 | 15 420 | 5 587 | 21 007 | 36 545 | 255 9 | 292 4 | 06866 | 4445 | 5132 | 119 99 | 2183 | 7 9550 | | | 154 | 2430 | 15 470 | 5 996 | 21 466 | 37 026 | 273 9 | 310 9 | 06945 | 4743 | .5438 | 121 99 | 2216 | 8 3541 | | | 156 | 2602 | 15 521 | 6 439 | 21 960 | 37 508 | 291 5 | 331 0 | 07023 | 5066 | .5768 | 123 99 | 2248 | 8 7701 | | | 158 | 2788 | 15 571 | 6 922 | 22 493 | 37 990 | 314.7 | 352 7 | 07101 | 5415 | 6125 | 125 99 | .2281 | 9 2036 | | | 160 | .2990 | 15 622 | 7 446 | 23 068 | 38 472 | 337 8 | 376.3 | 07179 | 5793 | 6511 | 128 00 | .2313 | 9 6556 | | | 162 | .3211 | 15 672 | 8 020 | 23 692 | 38 954 | 363 0 | 402.0 | 07257 | 6204 | 6930 | 130 00 | 2345 | 10 125 | | | 164 | .3452 | 15 723 | 8 648 | 24 371 | 39 436 | 390 5 | 429.9 | 07334 | 6652 | 7385 | 132 00 | 2377 | 10 614 | | | 166 | .3716 | 15 773 | 9 339 | 25 112 | 39 918 | 420 8 | 460.7 | 07411 | 7142 | 7883 | 134 00 | 2409 | 11 123 | | | 168 | .4007 | 15 824 | 10 098 | 25 922 | 40 400 | 454 0 | 494.4 | 07488 | 7680 | 8429 | 136 01 | 2441 | 11 652 | | | 170 | .4327 | 15 874 | 10 938 | 26 812 | 40 882 | 490 6 | 531 5 | 07565 | 8273 | 9030 | 138 01 | 2473 | 12 203 | | | 172 | .4682 | 15 925 | 11 870 | 27 795 | 41 364 | 531 3 | 572 7 | 07641 | 8927 | 9691 | 140 01 | 2505 | 12 775 | | | 174 | .5078 | 15 975 | 12 911 | 28 886 | 41 846 | 576 5 | 618 3 | 07718 | 9654 | 1 0426 | 142 02 | 2537 | 13 369 | | | 176 | .5519 | 16 026 | 14 074 | 30 100 | 42 328 | 627 1 | 669 4 | 07794 | 1 047 | 1 125 | 144 02 | 2568 | 13 987 | | | 178 | .6016 | 16 076 | 15 386 | 31 462 | 42 810 | 684 1 | 726 9 | 07870 | 1 137 | 1 216 | 146 03 | 2600 | 14 628 | | | 180 | .6578 | 16 127 | 16 870 | 32 997 | 43 292 | 748 5 | 791 8 | 07946 | 1 240 | 1.319 | 148 03 | 2631 | 15.294 | | | 182 | .7218 | 16 177 | 18 565 | 34 742 | 43 775 | 821 9 | 865 7 | 08021 | 1 357 | 1.437 | 150 04 | 2662 | 15.985 | | | 184 | .7953 | 16 228 | 20 513 | 36 741 | 44 257 | 906 2 | 950 5 | 08096 | 1 490 | 1.571 | 152 04 | 2693 | 16.702 | | | 186 | .8805 | 16 278 | 22 775 | 39 053 | 44 740 | 1004 | 1049 | 08171 | 1 645 | 1.727 | 154 05 | 2724 | 17.446 | | | 188 | .9802 | 16 329 | 25 427 | 41 756 | 45 222 | 1119 | 1164 | 08245 | 1 825 | 1.907 | 156 06 | 2755 | 18.217 | | | 190
192
194
196
198 | 1 099
1 241
1 416
1 635
1 917 | 16 379
16 430
16 480
16 531
16 581 | 28.580
32.375
37.036
42.885
50.426 | 44 959
48 805
53 516
59 416
67 007 | 45 704
46 187
46 670
47 153
47 636 | 1255
1418
1619
1671
2195 | 1301
1464
1666
1918
2243 | 08320
08394
08468
08542
08616 | 2.609
3.002 | 2 122
2 380
2 694
3 987
3 593 | 158 07
160 07
162 08
164 09
166 10 | 2786
2817
2848
2879
2910 | 19.017
19.845
20.704
21.594
22.514 | | | 200 | 2 295 | 16 632 | 60 510 | 77 142 | 48 119 | 2629 | 2677 | 08689 | 4 179 | 4.266 | 168.11 | 2940 | 23.468 | 2 |