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Abstract

The influence of irradiation tempetature and
displacement rate have been investigated using a
model based on the reaction rate theory description
of radiation damage. This theory was developed
primarily for the investigation of relatively high
temperature, high-dose radiation effects such as void
swelling and arradiation creep,  Before applying thut
theory 1o the much lower emperature and dose
regimes “haracteristic of Hght water reactor pressure
vessels and support structures, if s necessary 1o
examine the assumptions made in formulating the
theory. The major simphifying assumption that has
commonly been made 18 that the interstitial and
vacancy concentrations reach a gquasi-steady state
condition rapidly enough that the steady state
concontrations can be used in calculating the
obscrvible radiation effects. The results presented
here indicate that the assumption of sieady state
point defect concentrations is not valid for
temperatures much below the light water reactor
pressure vessel operating temperature of about
28R"C. AL lower temiperatures, the time required
for the point defect concentrations 1o reach steady
state can exceed an operating reactor’s lifetime.
Even at 288°C, the point defect transient time ¢an

be long enough 10 influence the interpretation of |
irradiation experiments done in materials test
reactors at accelerated damage rates.

Based on the insights obtained with the simple
models of point defect evolution, a mote detalled
model was developed that incorporates an exphait
description of point defect clustering. These clusters
are potentially responsibie for the fraction of the
radiation-induced hardening that is attributed 1o the
so-called "matrix defect.” The model considers both
interstitial and vacancy clustering  The former are
treated as Frunk loops while the later are treated as
microvoids. The point defect clusters can be formed
cither directly in the displacement cascade or by
diffusive encounters between free point defects, The
tesults of molecular dynamics simulation studies ure
used 10 provide guidance for the clustering
parameters. The hardening due to point defect
Clusters was calculatod using & simple dislocation
barrier model. The results indicate that both
interstitial and vacancy clusters can give rise 1o
significant hardening. The relative importance of
cach cluster type is shown to be a function of
irradiation emperature and displacemont rate.
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Modeling the Influence of Irradiation Temperature and l)tsplaccmcm Rate on
Radiation-Induced Hardening in Ferritic Steels®

R. E. Stoller

Introduction

Neutron irradiation gives rise 10 a number of
phenomena thst have been extensively studied.
These include oid swelling, irradiation creep, solule
segregation, and embrittiement. In many cases, the
observed property change can be correlated with the
tadiation-induced or radiation-enhanced micro-
structural evolution that has occurred and a number
of models have been developed 1o investigate and
describe this microstructural evolution (Brailsford
and Bullough, 1981) (Druce, 1990) (Lucas et al,
1985) (Mansur, 1978) (Mansur, 1979) (Odetie, 1981
(Stoller and Odette, 1982) (Stoller und Oaetie,
19874) (Stoller and Odette, 1987b) (Wolfer ¢t al.,
1977)  The reaction rate theory is most commonly
used in these models. This theoretical description of
radiation damage has been most successfully applicd
o void swelling and irradiation creep (Brailsford and
Bullough, 1981) (Mansur, 1978) (Mansur, 1979)
(Stoller and Odette, 1982) (Stoller and Odette,
1987a) (Stoller and Odette, 1987b) (Woller ¢t al.,
1977). Such work has generally been concerned with
wradiation conditions of relatively high doses [> 1
displacement {::r atom (dpa)| and temperatures
(T>300°C). In this regime, the vacancies and
interstitials rapidly come into equilibrium with the
microstructare and it is safe 10 assume that the point
defect concentrations are at their steady state values.
The steady stite regime has been thoroughly
explored and, in certain limiting cases, analytical
solutions 1o the rate equations have been obtaised
that describe the dependence of a phenomenon such

-

*Resenrch sponsored by the Office of Nuclear Regulatory
Research, Division of Engineermng, US Nuclear Regulatory
Commission tader Interagency Agreement DO 1886810 K]
with the US. Department of Energy under contract DE AT
S4QR21400 with Martin Marielta Fnergy Systems, loc

as swelling on the total dose or the displacement rate
(Mansur, 1978) (Stoller and Mansur, 1990).

The work discussed here was undertaken o
investigate the radiation-induced "matrix defect” that
is believed to contribute to hardening and
embrittiement in the ferrtic steels used for light
water reactor (LWR) components.  Irradiation
temperature and displacemert rate were identified as
two key variables to be explored. The direction of
the investigation was influenced by two recent
observations of greater-than-expected levels of
radiation dumage accemulation following low
temperature neutron irradiation. In one case, high
levels of irradintion creep were obs rved in several
austenitic and ferritic allovs aflter irradiation at
temperatures below 300°C (Grossbeck et al, 1990y,
The second case involved the pressure vessel of the
High Flux Isotope Reactor (HFIR) at the Oak Ridge
National Laboratory (ORNL), where accelerated
embrittlement was observed after irradiation at 50°C
(Nanstad ¢t al, 198%). The displacement rate was a
potentially significant variable in both of these cases
and the irradiation temperatures were sufficiently low
10 warrant an investigation of point defect transient
eifects. Subsequent modeling and analysis of the
low-temperature creep experiment indicated that the
high crecp rates could be attributed 10 the influence
of the point defect transient (Stoller et al, 1992).

Therefore, a simple model was used 10 first conduct
a detailed numerical analysis of the time (dose)
dependence of the point defect concentrations for
irradiation conditions characteristic of LWR pressure
vessels and support structures. The fraction of point
defects that are lost due 1o matrix recombination
reagtions wis used as anothor metric for evaluating
e iafluence ¢f the point defed transient, The
resulis showe ' that the reactor pressure vessel
operating weaperature of 288°C s near a threshold
below which the use of the steady state analysis is
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probably not appropriste (Stoller and Mansur,
1990) The influence of the displacement rale was
also investigated in this transient regime. The dose
rate dependence of the recombination fraction
during the transient was observed 1o be the inverse
Of that observed 3t steady state.

As & result of these experimental and theoretical

| observations, #t was determined that the assumption

‘L' of steady state defect concentrations would not be

| used in the development of the subsequent model

| that was used 10 investigate matrix defect hardening.

| The model s described in detail below.  The results

l obtained with this model indicate that both inter-
stitial and vacancy type clusters could contribute
significantly 10 reactor pressure vessel (RPV) and

| support structure embrittlement, The relative

importance of the two types of defects 1s determined

by the irradiation twemperature and displacement

| rivie. Finally, it is worth noting that the importance
of the point defeot transiont was discussed in
another context many years apo (Sharp and
Foreman, 1968), but computing limitations
prevented more analysis at that tme. [t remained
impractical 1o try 1o carry out the type of
calculations discussed here until vastly improved
computers became generally availahle over about the
last five 10 1en years.

Description of Point Defect Kinetics
and Theoretical Models

A basic description of point defect kingtics and the
reaction rate theory will be given in this section.
Maore details about the theory can be found in
references such as Brailsiord, 1981 and Mansur,
1978 The specific models used here build on carlier
research that is described in detail in Stoller and
Odetle, 1982; Stoller and Odetie, 1987a; Stoller and
Odette, 1987b; and Stoller et al., 1992 That work
investigated radiation effects at much higher
temperatures and therefore applied the assumption
: of steady state point defect concentrations, Some
details of the models, such as the calculation of the
extended acfect sink strengths (Brailstord and

; Bullough, 1981 and Stoller and Odetie, 1982), are
treated similarly in both cases,
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Maodel Used to Investigate Point Defect
Transient Effects

The equations describing the spatially averaged point
defeet concentrations can he written as:

dC
o -G - kee, - pes’

|
l
|
for the intesstitial conces. ration, C, and ‘
]

dc
=¥ =4, - KL, - pcs! @

for the vacaney concentration, C.. The constants in
Equations (1) and (2) are: G, the interstiial
generation rate, G, the vacancy gencration rate; R,
the recombination rate coelficient, D, the interstitial i
diffusivity; and D, the vacancy diffusivity. The S
are the 1otal sink strengths of all the extended
defects in the material. These can include ¢
Jocations, grain houndaries and other interfaces, and
the interstitial and vacancy clusters discossed below,
In the general case, the nterstitial ar ' vagancy
generation rates should include the displacement
rate, Gy, and the point defects produced by thermal
emission from extended delects, In addition, the dpa
rate should he reduced by the cascade efficiency, n,
10 account for in-cascade recombination; and a term
that accounts for in-cascade clustering fraction, 1
and {, (Diaz de fa Rubia and Guinan, 199 English
et al, 199X English et al, 1992; Diaz de la Rubia
and Guinan, 1992). Thus the net point delect
EENCTALION rales are given as!

Gl.v - TIG“U i -,t.-'l) ot D;,vz lel' s‘ft’ (‘)
J

where the S are the point defect sink strengths for
extended defects of type j and the €/ are the point
defect concentrations i equilibrium with these
defects, The interstitial formation energy is

sufficiently high that the C' can be neglected in






and the clustering fractions are dependent on the
energy of the primary knock-on atom (PKA) that
creates the cascade. In principle, some spectrally
averaged value of these parameters could be
computed for a given material and neutron encrgy
spectrum. The values used in these simulations do
not represent such un average, but they are
consistent with the MD results,

While both interstitial and vacancy clustering are
treated in the model, more detail has heen included
in the interstitial component to date. Interstitial
clusters with sizes up 10 a tetrainterstitial can form
directly in the cascade, or essentially classical
interstitial cluster nucleation can occur due o
random collisions between diffusing defects. The
in-cascade cluster fraction, [, 18 the sum of three
components: the fraction forming di- (6t (1,0,
and tetra-interstitials (f,). Larger interstitial
clusters are observed in MD simulations (English

et al, 1990; English et al, 1992, Diaz de 1o Rubia
and Guinan, 1992) but the model does not currently
simulate their formavon.

The evolution of the interstitial cluster population is
given by a family of equations describing the
reactions between immaobile clusters and mobile
point defeots.

f&! “ M0, 3 b | a BN - (BIplEN
™

for di-interstitials,
—"5 <Gy, ’:" o (BENC, - (900 E)C,
(%)

for tri-interstitials,
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dc, N e
St G s G, - BIC, - (BB EC,
& 4
for tetra-interstitials, and
(10)

-d . Ca * m! Cpt lpl-‘D{)C;

for interstitial-clisters from size five up 10 the
maximum. The rats consian '« for imterstitial and

vacancy impingement on an interstitial cluster of size

j can he written as:

J
;L S p (1
w " Ty Mgty

and the rate constant for interstitial emission from o
chuster of size | s

D -E' (12
B! - = exp .._..L)
'oal kT

where E® is the binding energy of an interstitial o a
cluster of size j and a, is the lattice parameter
Other calculations indicate that interstitial emission
from clusters larger than the tetra-interstitial would
be negligible at the temperatures of interest here
(Ingle et al., 1981). Therefore, such emission is
neglected in this work,

The ) in Equation (11) are combinatorial numbet.,
determined by the number of adjacent atomic sites
from which an interstitial or vacancy can jump onto
an interstitial cluster of size j. The combinatorial
numbers can be computed for single defects and
small clusters (Beeler, Jr. and Johnson, 1967;
Johnson, 1979, Leffers and Singh, 1981), but it is
difficult 10 determine these values for large clusters.
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Hardening Due to Point Defect Clusters

A dislocation barrier model has been ased 10
calculate the matrix hardening due 1o the interstitial
and vacancy clusters. As discussed by Bement
{(Bement, Jr., 1970), such models are typically
derived from the theory developed by Orowan (o
describe hardening due 1w precipitates and involve a
valculanon of the shear stress required 1o move a
disiocation through an obstacle in its ghde plane.
An incremental change in the yield stress can be
related 1o this shear stress. In its simplest form, the
change in the shear stress, A+, can be written as:

Gb (20)

At = —
pe

in which G is the shear modulus and b is the
magaitude of the Burgers vector. The average
barrier spacing, §, s computed from the number
density, N, and the diameter, d, of the obstacles,
€= (N&)™ The factor P in Equation (20) is a
function of the barricr strength.  For example,

P = 1 for a periodic array of strong barriers, such as
incoherzant prec tates (Bement, Jr, 1970). Either
the Tresca or Von Mises yielding criterion can be
used to convert the valculated shear stress (o a
change in the uniaxial yield stress, in either case,
Ao, -2At (Dieter, 1976).

A number of potential values for the barrier strength
term in Equation (20) are discussed in Bement, Jr,
1670, Depending on the barrier model chosen, the
calculated hardening due to a specific type of
obstacle can vary by more than a factor of 10, For
example, il interstitial loops are assumed o be
strong bartiers, B = 3 < 4 in the Orowan model.
Alternately, a weak barrier model that incorporates
Friedel's offecuve barrier spacing gives:

Gb

Av = Toqn% i
B

with B = R for body-centered-cubic materials
(Bement, Ir, 1970). A comparison of Equation (20)
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with B = 3 and Equation (21) is shown in Figure 1.
The results shown in Figure 1 reflect loop densities
of 1x 10%and | x 10¥ m”". The difference between
the two models is greater for skaaller loops and for
lower number densities. The figure includes a
similar comparison for voids. In the case of voids,

B = 1inthe an (strong harrier) model. 1f
Friedel's my voked for voids, the radius is
used in Equ o« ) instead of the diameter and

B =10 Th: stated hardening duc to voids is
MmOore sensitive 1o the choice of barnier model than is
the case Tor loops. A model proposed by Weeks,

ot al. (Weeks ot al., 1969) loads 1o values that lie
between these two cases. The threc void
strengthening models are compared in Figure 2. The
influence of the uncertatntics related to the various i
barrier models will be discused further below.

Results of Calculations

The major material and (rradiation parameters used
in these calculations are listed in Table 1. The range
of displacement rate values includes those
characteristic of accelerated test reactor irradiations
and power reactor surveillance and support structure
locations. Where posaible, the values of the material
parameters represent best estimates obtained from
the literature (Hettich et al, 1977 Murr, 1975; and
Schacler et al, 1977} For some parameters, where it
was difficult 10 determine a "best” value, a range of
values wis used to determine the sensitivity of the
calculations 1o these parameters. The micro-
structural parameters such as the dislocation density
and grain size were simifarly varied within the range
of values found in the literature (Odetie and Lucas,
1989, ané Van Duysen et al., 1992),

Calculation of Point Defect Transients and
Steady State Point Defect Concentrations

The time dependence of the point defect
concentrations is primarily determined by the
displacoment rate, the matrix recombination
coetficient, and the sink structure. Three
characteristic tmes can be derived from

Equations (1) and (2) if the equations are solved
simultancously for two himiting cases (Mansur, 197
Sharp and Foreman, 1968, and Stoller and Mansar,
199}), The cases are: (1) no point delects are
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Table 1. Typical irradiation and material palameters

Trradiation:

Displacems .4 rate (ilpas)

mperature (*C)

Cascade offiv oney
Interstitial clustering fraction

Imterstinal clustes hinding encrgies (V)
di. to, and tetra intersiivial

Vacaney clustering fraction

Vicanoy cluster radius (nm)
Preé-exponential, vacancy diffusivity fm'/s)
Intenstitial migration encrgy (eV)
Provexponential, vacancy diffusivity (mrs)
Vacancy migration energy ie\)

Vacaney formation encrgy (eV)

Lattice parameter (nm)

Recembination radivs (nm)

Surfuce free energy (1/m')

Interstitinh dilocation capture efficiency
Network. dislocation densiy (@ )

Elfective geain sax { pm)

o) o 280
10 I w10 107

0.1
00w o6

05,075 125
00 i 06
028 1o L0
S0« 00*
135

80 x 10°
125

155

6287

0574 to 115
LS
1%
10x 10" 10 1.0 % 10"

4585 TG

16k 16 1IXN)
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absorbed at sinks and (2) no matrix recombination
While both cases are mathematically weil defined,

/ behavior at these limits 1s unlikely 10 occur in

: ice. The sink su-cture will determine the

i degree 10 which point defect absorption is
dominated by either matrix recombination

: (RC,>>D.S,") or by absorption at sinks

; (D,S,"»>RC). The simple solutions discussed

| below assume equal point defect gencration rates,

i i.e., no thermal emission of point defects from sinks
. and no in-cascade clustering.  The use of the erm

l *steady state” in this discussion implies that the sink
| structure is not changing significantly while the point
defect concentrations are evolving. This approx-
imation is not always physically reasonabie, but it is
useful here for purposes of explanation,

The first time of interest s that required for the
point defect concentrations to reach a sulficiently
high value for matrix recombination 1o himit their
further increase, 1. I the point defect losses were
completely dominated by mutrix recombination, ie.
no point defects were absorbed at sinks, then vy,

! would dztermine the time to steady state,

a7 (RnGy) ™ =

If there is a finite 1oss of point defects 1o sinks (us 1s
usually the case), then the time required for the
vacancies to diffuse 10 sinks, 7, is the time that
determines the approach to steady stale,

= (D8] o)

The time for interstitials to diffuse 1o sinks, €, IS
tvpically mucl. shorter than =, because of the higher
inerstitial diffusivity,

o= (08" @

Similarly, the steady state point defect concen-
trations can be derived from the time-independent

T T L T T T BatT m R i e T G —
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versions of Equations (1) and (2) for these same two
limiting cases. For tumes less than the minimum of
that defined by Equation (22) or (24), the point
defect concentrations build up lincarly and

C = C = 3Gt For the compietely matrix
recomhination dominated case, this behavior persists
until the point defect concentrations reach steady
stale al 1y, where

%
Cfecf',[ F.zr] @)

C, = C, at steady state since their production rates

are equal and they are only lost by mutual |
snnhilation, For the sink-dominated case, the

interstitial and vacancy concentrations again build up

linearly und reach their steady state values at t, and

.. respectively, In this case the sicady state

concentrations are

G
c® . Nles (26)

Ly
¥ T
Do.v sl.v

For a casc in which point defects are lost by both
absorption at sinks and matrix recombination, the
point defeet concentrations inttially build up in a
manner similar 1o the recombination dominant case,
e, Cit) = Ct). If x, < vy this behavior persists
until the interstitials begin o be lost 1o sinks at 1,
At that point, the interstitial concentration reaches a
pseudo-steady state value which s determined by the
sink strength and remains at that value while the
VACUNCY congentration continuds 1o increase up o t.
As the vacancy concentration approaches steady
state, the interstitial concentration begins 1o decrease
due to matrix recombination and both point defect
populations reach their true steady state values. The
behavior s somewhat different if 1, > t. In this
case, the interstitial and vacancy populations reach
the same pseudo-steady state value which is deter-
mined by the matrix recombination raie. Thes¢
concentrations are maintained until ¢, at which time
the interstitial concentration beging to decrease as
they are fost at sinks. The vacancy concentration
increases as a result. At r, the vacancies begin o be
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Table 2. Values of the interstitial (C,) and vacancy (C,) concentrations, and the number (Ng)
and fraction (fy) of point defects lost 1o matrix recombination for limiting
cases ([, = 0 and no thermal vacancy emission)

Ny g

C &
Lincar transient NGyt NGyt R_4a" R_&°
3 '\(}dpa 3 ﬂ(;dm
Steady state. ( nGiy,, ’ B (_n(j‘.,,.,‘}'? A 1
recombination dominant R R
Steady state, ) L NGy, RnG i’“‘A RuG,,
sinks dominant DS/ DS, (DDS'S,) (D,D‘.S,ips'v )
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potential degree of strengthening that these defect
clusters could cause.

The temperature dependence of the calculated
strengthening due 10 interstitial and vacancy clusters
at a dose of 0.1 dpa is shown in Figure 16, Results
are included for both a low and a high displacement
rate. The higher point defect supersaturations that
are oblained at lower temperatures lead 10 much
higher cluster deasities and in turn greater
strengthening. More strengthening is predicied at
the higher displacement rate for the same reason.
The strengthening tends 1o saturate bolow 100°C
and has a fairly steep temperature dependence at
higher temperatures.  Vacancy clusters are
responsible for more strengthening than are
interstitial clusters at a given temperature and
damage rate, This is a reflection of the higher value
af B used for the interstitial c,usters,

Similar trends are seen in Figure 17, where the
predicted strengthening is shown as a function of
displacement rate for irradiation temperatures of 60
and 285°C. At the lower temperature there is little
dependence on the displacement rate sinee the
defect cluster density has saturated. Vacancy
clusters exhibit the greatest dependence on
displacement rate at 285°C, but there is little
influence of interstitial clusters at this temperature
where the nucleation of small interstitial clusters is
reduced.

The predicted strengthening shown in Figures 16
and 17 appears to be somewhat higher than what is
experimentally observed, particularly at the lowest
temperatures and highest damage rates. Reported
values of irradiation-induced changes in the vield
strength of RPV steels at 50 o 300°C are in the
range of 35 1o 350 MPa (S to 50 ksi) (Cheverton

et al, 1988; Lucas et al, 1987; Nanstad et ai., 1988,
and Odette and Lucas, 1989). In addition, a sub-
stantial component of the reported strengthening is
believed 10 be due to copper-rich precipitates (Lucas
et al, 1985; Odette, 1983; and Odette and Shecks,
1981) which are not accounted for here. The use of
one of the alternate barrier models discussed above
would lead to lower calculated strengthening values.
Reference o Figures | and 2 shows that the use of
the softest barrier models (i.e., those based on
Friedel's effective barrier spacing) would lead 1o

19

negligible strengthening for the conditions shown in
Figures 16 and 17

However, the dose of (.1 dpa used in Figures 16 and
17 15 higher than most RPV irradiation data and this
could be responsible for some of the apparent
discrepancy. The dose dependence of the predicted
strengthening is shown in Figure 1%, along with
typical test reactor data and data from the HFIR
surveillance program. The AS33B data shown in
Figure 18(a) are for the HSST plate-02 (Stallman,
1988) and the A302 data is the A302 correlation
monitor (Stallman, 1988). Both materials were
irradiated in the University of Virginia reactor in an
experiment conducted by researchers from the
University of California at Santa Barbara (Odette
and Lucas, 1989). The HFIR data includes archive
malterials which were irradiated in the ORR
{Cheverton et al, 1988). Reasonable agreement is
observed between the calculations and the
experimental data for the doses and displacement
tates at which there are data. Some reduction in the
barrier strength may be appropriate, particularly for
the microvoids, but there does not appear (o be a
rationale for invoking one of the very soft barrier
models.

Some interesting differences are observed between
the behavior of the two cluster types at 285°C in
Figure 18/a). The interstitial cluster contribution
increases at & rate that is proportional to the square
root of the dose until it saturates. The dose at which
the yield strength change saturates is independent of
the displacement rate, but the saturation level is
proportional 1o the square rout of the displacement
rate. The strengthening due 10 vacancy clusters is
also initally proportional 1o the square root of the
dose, but the dose at which saturation occurs is a
function of the displacement rate. At 60°C,

Figure 18¢b) indicates that saturation has not yet
occurred at a dose of 0.1 dpa. This is related to the
low defect mobility that leads to the long times
required for the point defect concentrations to reach
steady state as shown in Figure 6. There is littie
displacement rate dependence observed.
Strengthening due to vacancy clusters exhibits the
square-root dose dependence, but the dose
dependence of the interstitial clusters is initially
higher. The interstitial cluster strengthening has a
dose dependence of about 0.75 at the lowest doses in
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Figure 18(h) and then undergocs a Lransition 1o
squarc-root dependence. The interstitial cluster
strengthening curves appear 10 be diverging at above
0.01 dpa and the behavior is Hikely 10 be similar 10
that shown in Figure 18(a) for 285°C if the
calculations were carried out 1o much higher doses

In order 10 better show the relative importance of
the two types of defect clusters, the ratio of
imerstitial cluster strengthening 1o vacancy cluster
strengthening 1s shown as a function of irradiation
temperature and displacement rate in Figures 19
and 20, Vacancy dusters are clearly more important
at higher temperatures and jower displacement rafes
However, both types of clusters can produce a
significant amount of strengthening. As mentioned
ahove, there is probably some justification for
reducing the batrier strength werm for the vacancy
clusters, For example, if a value of f = 2 was used
for the vacancy Clusters, the strengthening inerement
from the interstitial clusters would be comparable 10
or greater than that of the vacaney clusters for
essentially all the conditions examined here. Thus, it
SEEMS appropriate 1o investigate the behavior ol
both cluster types in greater detail Since the two
defects will almost certainly behave diffcrently under
thermal annealing, this investigation may he
necessary 10 understand the postirradiation
annealing behavior and re-irradiation embrittlement
of ferrinic steels (Mader ¢t al, 1992).

Summary and Planned Future Work

The motivation for this work is the need to develop
an understanding of the physical mechanisms that
lead 1o embrittlement in the ferritic steels used in
LWRs. Such understanding is important to ensure
the continued safe operation of these plants
throughout their current license periods, aud will
become critical to plant life extension by license
renewal. The calculations are intended o
complement and aid in the analysis of the irradiation
experiments that are conducted 10 investigate these
same mechanisms. The work has focused on the
displacement rate and irradiation temperature
because these are key variables in data correlation
and extrapolation. The displacement rute 18
important because many experiments are conducted
at accelerated displacerment rates in 1est reactors in
order to obtain high fluence data in a reasonabie
time. The importance of irradiation temperature has
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been highlighted recently by the HFIR surveillance
data and is a concern for LWR support structures
This latter data have also raised concerns about
displacemont rate effects at very low displacement
rates (Cheverton et al., 1989),

In order W investigate the range of irradiation
temperatures of interest 10 LWR components, the
time-dependent rate theory was used 10 develop a
comprehensive model describing the evolution of
point defocts and point defect clustening. The time
or dose required for the point defect concentrations
10 reach their steady state value Is strongly
dependent on the irradiation temperature and the
sink structure that evolves under irradiation. For
reasonabie values of the microstructural parametens,
for example, the time required for the point defects
and the cluster populations to reach steady state can
he very long at low temperatures. [01s on the order
of 30 years at 60°C. In addition, 1t was shown that
the effect of displacement rate is different in the
transient and steady state regimes. Thus, it appears
that it s not appropriate 1o invoke the commonly
used assumption of steady state defect concentrations
when modeling low-temperature embrittlement or
when analyzing the results of low-temperature
experiments (Stoller and Mansur, 1990). The
number or fraction of point defects that escape
matrix recombination was used as a figure of merit o
track the influence of the point defect transicnt.

The duration of the point defect transient may not
be significant at the highest RPV operaung
temperatures, but these caleulations clearly show that
the transient needs to be considered at lower
temperatures.  However, some caution may be
required in the use and interpretation of experiments
conducted in 1est reactorns, even at temperatures
approaching 288°C. Test reactors typically have duty
ovcles in which the reactor operates for only several
hours 1o a few days between shutdowns.  Because of
these frequoent start-ups, experiments may be
conducted mostly or entirely within the point defect
transient, even at temperatures where the in-service
component operates long enough for the point
defects to be at steady state for most of its lifetime.
Temperature and flux transients associated with
reactor start-up have heen shown 1o influence the the
microstructure that evolves in elevated temperature
irradiation (Kiritani et al, 1990). For components
such as the HFIR | essure vessel or LWR support
structures that opcrate at temperatures below 100°C,
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the point defect transient may exceed the operating
lifetimz. These components and experiments
aperating i this temperature range can not bhe
analyzed on the basis of the steady state theory.

The time-dependent model has been used o in-
vestigate the potential contribution of interstitial and
vacancy clusters 1o radiation-induced strengthening
in ferritic steels.  Although there is some uncertainty
in determining the strength of these clusters as
barriers o dislocation motion, the results indicate
that both cluster types could induce similar levels of
strongthening,  Using only the simplest barrier
maodel, the calculated strengthening is comparable o
that observed experimentally.  Since this work hus
not included any strengthening contribution from
rudiation-induced precipitates, it appears that the
cluster contribution obtained from the mode! 15
probably somewhat 100 large. However, it seems
reasonable 10 conclude that these clusters play an
important role in strengthening and that they may be
responsible for greater strengthening than the
copper-rich precipitates for some conditions ol dose,
displacement rate, and lemperature,  An under-
standing of their behavior under thermal annealing
may be particularly important for interpreting
postirradiation anncaling studies and for predicting
embrittlement under subsequent re-irradiation.

While many of the trends shown in Figures 16
through 20 can be understood in terms of the
Various reactions between the pomt defect and the
cluster populations, some of the details are not vet
fully understood. Further work is underway 1o
develop an explanation for all the observed de-
pendencies on displacement rate and dose, and 1o
investigate the sensitivity of the model to variations
in critical material parameters. Both the interstitial
and interstitial clustering models require some
further development to ensure that they are
numerically well behaved for all the temperature and
irradiation conditions of potential interest. The
choice of the barrier strength terms used in
Equatiows (20) and (21) need additional attention

because of their key role in converting defect cluster

densities 10 hardening. The range of uncertainty in
these terms must be reduced 1o permit a determin-
ation of the relative importance of defect clusters

and precipitates in irradiation hardening. Since the
computing times required for the currert model are
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alrcady rather long, some attention must be given 1o
improving the efficiency of the calculations as more
detail is incorporated. Finally, a version of the
computer code will he developed to simulate inter-
rupted irradiations and thermal annealing because of
some of the concerns (hat were discussed earlier,
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