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NOTICE '

This report was prepared as an account of work sponsored by an agency of the United States
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'employees, makes any warranty, expressed or implied, or assumes any legal liability of re-
sponsibility for any third party's use, or the results of such use, of any information, apparatus,
product or process disclosed in this report, or represents that its use by such third party would
not infringe privately owned rights,

i

NOTICE

Availability of Reference Materials Cited in NRC Publications -

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room,1717 H Street, N.W.
Washington, DC 20555

2. The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission,
Washington, DC 20555

3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows reprents the majority of document,s cited in NRC publications,
it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Docu-
ment Room include NRC correspondence and internal N RC memoranda; NRC Of fice of Inspection
and Enforcement bulletins, circulars, information notices, inspection and investigation notices;
Licensee Event Reports: vendor reports and correspondence; Commission papers; and applicant and

~ licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales
Program: formal NRC staff and contractor reports, NRC sponsored conference proceedings, and
NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of
Federal Regulations, and Nuclear Regulatory Commission issuances.

Documents available from the National Technical Information Service include NUREG series
reports and technical reports prepared by other federal agencies and reports prepared by the Atomic
Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, k
such as books, journal and periodical articles, and transactions. Federal Register notices, federal and
state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations,and non-NRC conference
proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request
to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Com-
mission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process
are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available
there for reference use by the public. Codes and standards are usually copyrighted and may be
purchased from the originating organization or, if they are American National Standards, from the
American National Standards Institute,1430 Broadway, New York, NY 10018.

GPO Pnnted copy pnce: ).5.50



. -

NUREG/CR-4145 :
RA i

|
,

Earthquake Recurrence Intervals
,

at Nuclear Power Plants
:

l

!
,

Analysis and Ranking

Manuscript Completed: September 1984
Date Published: March 1985

Prepared by
J. A. Hileman, L. Knopoff, N. R. Mann, R. K. McGuire

Earth Technology Corporation
3777 Long Geech Boulevard
Long Beach, CA 90807

Prepared for
Division of Radiation Programs and Earth Sciences
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555
NRC FIN B7226
Under Contract No. NRC-04-81-167

!
i

|

. _ . _ , . . . - _ - . _ _ . _ - . . _ , . - - , , - . _ . _ . , _ - - - . . . - . . - _ - - - - - , - , _ . . , , , , . . - _ . . - - , . . . . , , , . - , , - , . .



ABSTRACT
4

Five methods tot estimating earthquake recurrence were ranked. The
methods represent those used, or proposed, in nuclear power plant
studies through 1982 and include Iog Linear Poisson, Extreme Value,
Semi-Markov, Bayesian, and Uniform Hazard Method. Ranking focused on
recurrence estimates .for earthquake sources, excluding attenuation and
site response. Scores were assigned to each method for 12 criteria such
as accuracy, use of geologic data, and subjective judgment. Criteria
scores were weighted by their importance and summed. Different scoring
and weighting schemes were used to identify any sensitivities. To aid
in scoring statistical criteria, methods were tested on synthetic earth-
quake catalogs with known statistics, and natural catalogs were tested;

against theoretical magnitude distributions.

The Uniform Hazard Method scored high because, in principal, expert
judgment draws upon all seismologic knowledge. The Bayesian Method
scored low because data requirements are severe for practical cases.
The other methods were intermediate. These observatioris seem insen-'
sitive to scorer, scoring approach, or weighting scheme. The semi-
Markov Method scores were sensitive to the weighting scheme. The
ranking is traceable, so other scoring and weighting can be used.4
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SUMMARY ,

This report ' describes Task 3, Analysis and Ranking, for the project
. Earthquake Recurrence Intervals at Nuclear Power Plants. The project
objective is to provide - the most appropriate method for estimating !

earthquake recurrence intervals at nuclear power plant - sites. The
earlier tasks, (1) literature survey of recurrence methods and
(2) developing the ranking methodology, are reviewed here to provide
a context for the ranking results. The ranking steps are shown in
detail to provide traceability through the methodology and to enable
alternative choices for ranking criteria, criteria scoring, or criteria
weighting.'

'

Project goals identify concern for rare earthquakes with return periods
10 , or 10543 years. Annual probabilities may be aon the order of 10 ,

preferable concept for such events. Por return periods longer than
about 10 years, the annual probability for a Poisson process is very
nearly the reciprocal of the return period in years. The probability

that a particular ' site will experience strong ground motion depends on
probability distributions for earthquake occurrence at seismic sources,
for strong motion generation from a given magnitude shock, for path
attenuation, and for site-specific response. If the upper tails of each
distribution are combined, events with very low annual probability, say
10-5, can be defined. This study focuses on earthquake recurrence
methodologies at the seismic sources, so methodology testing was limited
to earthquake magnitudes that equal or approach typical maximum earth-
quake estimates regardless of return periods.

Task 1 studies led to the selection of five methodologies to be ranked.
Throughout the ranking studies, these methodologies are identified using
the following terms:

'

* Log Linear Poisson Model. Earthquake occurrence in tine
follows a Poisson distribution; magnitudes follow the usual
Gutenberg-Richter log-linear distribution. Parameters for the
magnitude distribution can be estimated using the cumulative
distribution, the differential distribution, or maximum like-
lihood techniques.

* Extreme Value Statistics. Only the largest earthquake in each
,

year (or other time period) is required. The formulation is
based on the Poisson and log linear distr!bittions.

* Semi-Markov Model. He approach by Patwardhan et al (1980) is
used. The probability for an earthquake with a particular
magnitude depends on the magnitudes of the thost recent earth-
quakes and the times since they occurred. .

*
\
,
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* Bayesian Method. The approach by Mortgat and Shah (1978) is
used. A prior distribution for earthquake occurrence (based
on . site-analogous data or expert opinion) is multiplied by a
sample distribution (based on site-related data) to produce a
posterior distribution.

-

* Uniform Hazard Method. From ' the methodology described by
Bernreuter (1980), the steps for earthquake recurrence at
seismic sources are used. Seismicity parameters, such as
those for the Poisson Log Linear Model, are solicited from a
panel of experts.

The ranking methodology uses twelve criteria that consider technical
performance, theoretical bases, data requirements, convenience, and
acceptability. Each methodology is scored on a 1-to-7 scale for each
criterion. The criteria have been assigned weighting factors according
to their relative importance. Accuracy is given a greater weight than
convenience, for example. The criteria scores are weighted and summed
to obtain the final scores which- are relative only; the absolute
values have no particular significance. Several ranking criteria
relate to statistical capabilities. To support the ranking, some
methodologies were tested against synthetic earthquake catalogs having
known statistical properties. Real seismicity catalogs were also
tested for goodness-of-fit to statistical distributions assumed by' the
methodologies.

The results to date are the following:

e The Uniform Hazard Method consistently shows higher scores
than the other methods.

* The Bayesian Method consistently shows lower scores than the
other methods.

* The Poisson Log-Linear methods and the Semi-Markov Method are
grouped mid-way in the ranking.

* The above three observations appear to be insensitive to the
choice of scorer, scoring approach, or weighting scheme.

* Within the Poisson Log-Linear methods, the Cumulative Least
Squares and Differential Least Squares generally seem to come
out a'little better than Maximum Likelihood and Extreme Value,

though perhaps not significantly so.

* -The Semi-Markov Method shows variable results, and appears
sensitive to the weighting scheme applied.

xi
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~ Scores for the Uniform Hazard Method (earthquake recurrence steps) are
strongly related to the criteria chosen in the ranking methodology. Thet

' ~ for generality, completeness accommodation, use of geologiccriteria
data, use of geologic theory, agreement with best knowledge, robustness,
and use of subjective judgment all- can be expected to rate high scores

.
for any method that can use a great deal of subjective, expert opinion.

1 The potentie' for expert panels probably exceeds the performance of a
;. specific panel,-but scoring here has not been adjusted for any imagined
. performance factor.
1

In the Bayesian Method, the need for sample data at the large magnitudes
for rare' events is a critical requirement. Lack of such data invali-,.

j dates the method. The equations of Mortgat and Shah (1978) do provide
j ' an output if the sample . data are zero, but the output is just the

unaltered prior distribution and not really a Bayesian result.

'

; The Poisson Iog-Linear methods cluster in mid-range. . n e strongest cri-
, teria scores were for convenience, generality, and public acceptance.
| The weakest criteria scores- were for use of geologic data / theory.
|- Cumulative and differential least squares tend to have slightly better

. scores than Maximum Likelihood and Extreme Value. Maximum Likelihood4

seemed to give the best accuracy and uncertainty results in the synthe-
tic catalog studies by Knopoff. The Extreme Value method also seems
to invoke extreme scores, very high for convenience, completeness,

j sensitivity and robustness; and very low for use of geologic data / theory
' and use of subjective judgment.

The Semi-Markov Method also placed mid-range in the ranking, but shows<

more variable scores than the other methods. Different weighting
schemes for the criteria affected the ranking position. Many criteria

j for which the Semi-Markov Method scored well are related to correspon-
dence between the methodology's model and the presumed actual earthquake
processes. The Semi-Markov Method is the only method ranked that has a-

model that may reflect some causal aspects of the earthquake process.
;

[ .For one . study testing recurrence methods on- synthetic earthquake cata-
I logs, three types of catalogs were generated. One catalog used the log-
! linear relation for magnitudes and Poisson statistics for occurrence
'' times. A second catalog was derived from the first by adding af ter-

shocks. the third catalog was based on a Semi-Markov process in which
strain is added to a model at a constant rate, and released by random

! earthquakes. Both Eastern and Western US earthquake statistics were j'
modeled. %ese catalogs with known statistics were used to test recur-

)
rence methods based on differential least squares, cumulative least -

|
; squares, maximum likelihood, and extreme values. He results from the
; maximum likelihood method were generally preferred over those from other |
[ methods. The extreme value results were the least reliable for these
; catalogs.

I

1

4
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Natural earthquake processes are more complex than the simple statisti-
cal models, and seem to include some memory and spatial / temporal
causality. In a second model study, the recurrence methods were tested
against synthetic catalogs whose generating process is at least one
level more complex than the processes implied by the recurrence estima-
tion methods. Synthetic catalog generation used a model with five
separate, but interdependent, seismic sources. Strain is added to the
system, and a source's cumulative energy release depends on both the
current state and states of neighboring sources. None of the recurrence
methods gave consistently good estimates for the long-term catalog pro-
perties. The methods did give good statistical fits to the short-term,
or local, statistics. This difference between short-term and long-term
statistics may be representative of some areas having only low to
moderate seismicity.

Three natural earthquake catalogs having reasonably good seismicity data
were analyzed to determine if there was a best statistical distribution
type describing earthquake recurrence. Extreme value techniques were
used to avoid aftershock problems. % e Gumbel Type III distribution was
the most appropriate model. Clearly, a maximum earthquake should be
used in fitting seismicity data. Distribution parameters can be esti-
mated and then used to predict magnitudes for various return periods.
The results were consistent with the catalogs for moderate magnitudes.
For long return periods, the estimated magnitudes tended to be too
large.

.

xiii
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1. INTRODUCTION

The project " Earthquake Recurrence Intervals at Nuclear Power Plants"

has comprised three tasks to date., Work on these tasks was conducted
from May, 1981 through June, 1983. Task 1 included a literature review
surveying the various recurrence methods, either in use or propcsed, and
included developing a methodology for ranking. In Task 2, the methods
to be ranked were chosen. Both the ranking methodology and the earth-
quake recurrence methods to be ranked were developed with concurrence of
the Nuclear Regulatory Commission staff. The overall project objective
is to provide the most appropriate methodology for estimating earthquake
recurrence intervals at nuclear power plant sites. The methodology
finally adopted could include a system of methods, each applied under
various site conditions.

The Task 1 and Task 2 results were described in task reports to the
Nuclear Regulatory Commission (Earth Technology, 1981; 1982). This
report describes the Task 3 results on ranking the selected methods.
Some portions of the prior task reports are incorporated herein so this
document can better stand alone. The ranking studies were carried

out by The Earth Technology Corporation and employed Leon Kpppoff
(University of California at Los Angeles), Robin McGuire (Dames and
Moore Consultants, and formerly with The Earth Technology Corporation),
and Nancy Mann (University of California at Los Angeles) as consultants.
Sections 5.1 and 5.3 are essentially verbatum reports from Leon Knopoff
and Nancy Mann, respectively. Section 5.2 was prepared at The Earth
Technology Corporation and describes the studies directed by Robin
McGuire. He also participated in the criteria scoring.

The studies described in this report were conducted to provide a rela-
tive ranking for five selected earthquake recurrence methodologies. The
methodologies are:

1) Log Linear Poisson Model,

2) Extreme Value Statistics,

3) Semi-Markov Model,
4) Bayesian Method, and

,

| 5) Uniform Hazard Method

The above terms are used to identify the various earthquake recurrence
methodologies, but certain conventions and limitations should be kept
in mind. The Ing Linear Poisson Model includes three closely related
techniques: cumulative recurrence curve statistics, differential

j recurrence curve statistics, and maximum likelihood statistics. The
'

Semi-Markov Model is the technique described by Patwardhan et al (1980),

| although other similar semi-Markov approaches have been described. The
Bayesian Method is the technique described by Mortgat and Shah (1978),,

!

f
1-1

.
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although Bayes rule can be used in many ways. The Uniform Hazard Method
in its entirety develops a site-specific uniform hazard spectrum. How-
ever, the ranking studies here consider only the earthquake recurrence
steps in the methodology, and " Expert Opinion Method" might be a more
accurate term. -

As this report was in preparation, a sixth methodology, the Full
Historic Method (Veneziano et al, 1984), was nominated for ranking along
with the five methodologies listed above. Though not reported herein,
the Full Historic Method should be considered for future extensions of
this work.

Traceability and full disclosure of the ranking steps is an important
aspect of the ranking method. The bulk of this report is intended to
show just how the steps were executed and the results obtained.
Alternative choices for certain criteria, criteria scoring, or criteria
weighting can be propagated through the steps with minimal effort.

Each earthquake recurrence methodology to be ranked is described in
Section 3 so the methods, as we have considered them, will be clearly
defined. Some methods have been used widely and are defined by conven-
tional practice more than in some particular document. Other methods
did not have a concise description appropriate for this report.

Section 4 describes the ranking per se. The ranking approach was
developed in the Task 1 (Earth Technology Corporation, 1981). Twelve
criteria were chosen such as convenience, accuracy, use of expert
judgment, etc. For each criterion, each earthquake recurrence method-
ology was compared to the others and assigned scores on a scale of
1-to-7. In some cases, separate scores were assigned for a method's
application to Eastern U.S. seismicity data and to Western U.S.
seismicity data. The scoring is given in Section 4.2 so complete
traceability of the ranking choices is present. Scoring for several
stetistics-dependent criteria is partially based on extensive studies
using synthetic earthquake catalogs having known statistical proper-
ties.

The synthetic catalog studies to support ranking are reported in Section
5 and include the following:

1) Leon Knopof f, University of California at Los Angeles. Syn-
thetic catalogs based on Poisson-log linear statistics and
catalogs based on stochastic release of strain accumulation
were used to test the Poisson-Log Linear Methods and Extreme
Value Statistics.

|

1-2
|

|
|

|
|
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2) Robin McGuire, Earth Technology, and Dames and Moore.
Synthetic catalogs' whose generating ptocess is meant to be-

more complex than any of the methodology's statistical models
were used to test the Poisson-Log Linear Methods, Extreme
Value Statistics, and the Bayesian Model.

3) Nancy Mann, University of California at Los Angeles. Observed
seismicity catalogs were tested against several statistical
distribution models to determine best fits.

The ranking is meant to be unbiased by using the following sequences
select the criteria and their weighting, select the recurrence meth-
odologies to be ranked, score all . methodologies for each criterion
at the same time, and finally compute the weighted sums. Two indepen-
dent scorers, two . ways of using the 1-to-7 scale, and two criteria
weighting schemes were used to check for any strong scoring bias or
numerical sensitivities in the scheme. The scorers were in agreement,
more or less.

Probably other scorers could be found to disagree on some point or
other. Traceability in the procedure permits the effects of any such
disagreement to be determined. No particular sensitivities were noted
except as discussed in Section 4 for the Semi-Markov Model and
weighting, and the Uniform Hazard Method and criteria selection.

1-3
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2. RARE EVENT CONSIDERATIONS

This section discusses the role of rare earthquakes, those having return
periods up to 500,000 years, in the ranking studies. Justification is
given for limiting the recurrence methodology testing to earthquake
magnitudes that either equal or approach typical maximum earthquake
estimates irrespective of the return periods. Some of the ranking cri-
teria are not closely related to the return periods.

The project goals identify particular concern for rare earthquakes with
3 4return periods on the order of 10 , 10 , or 105 years. Geologists

assign about the last 1.1 x 104 years to Holocene time, and the last 2 x
106 years to Quaternary time. Both Holocene and Quaternary faults are
usually given careful scrutiny during geotechnical investigations for
nuclear power plant sites. hRC guidelines (10 CFR Part 100, Appendix A)
indicate consideration must be given to faults that have moved more than
once in the last 5x 105 years. For earthquakes that might recur with
intervals of 104 or 105 years, the geologic data are usually inadequate
to show that such earthquakes do in fact have characteristic return
periods.

Conceptually, annual probabilities provide the best way to describe rare
earthquakes. For return periods longer than about 10 years, the annual
probability for a Poisson process is very nearly the reciprocal of the
return period in years. The probability of at least one earthquake
occurrence is p(1,2,3,...) = 1 - p(O) . For a Poisson process with rate
A per year,

(A)O,d ot , ,-A,p(O) =

then

1-e-A = A for A << 1.

Using annual probabilities avoids the implication of event recurrence
and permits consideratior of rare events that may, or may not, occur
within the current tectonic environment for a site region.

An important distinction must be made between probabilities estimated
from observed earthquake histories, probabilities estimated by fitting
some statistical model, and "real" probabilities (though unknown) that
would best describe the actual physics of an earthquake source. Good
statistical fits have been obtained for the earthquake magnitude distri-
butions where the data are abundant at low and moderate magnitudes
(Earth Technology, 1981) . However, the goodness-of-fit at large magni-
tudes (long return periods or low annual probabilities) beyond the
observed data is not demonstrated. There must be a departure between
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data and ' the fitted statistical model if a maximum earthquake is not

considered. Even using a maximum earthquake, the fit is uncertain
because the maximum earthquake itself has some uncertainty. Continued
development of statistical analyses - to determine the best possible
distribution 'and estimate its fitting parameters is needed for rare
earthquake statistics.

The earthquake recurrence methodologies selected for ranking, except the
Semi-Markov Model, use some analytic statistical distribution

function (s) to fit the observed data. The usual log-linear magnitude

distribution underlies the Extreme Value Statistics and the Uniform
Hazard Method as well as the Poisson-Log Linear Methods. For the
Extreme Value Statistics, Bayesian Model, and poisson-Log Linear
Methods, synthetic catalogs were used to test the methodologies. In !

these tests, the assumption is made that the relative performance of the
methods at moderate to large magnitudes will be indicative of their
relative performance for rare events with very low annual probabilities.
If a method produces a statistical fit that does poorly at moderate to
large magnitudes,' the performance is not expected to improve for magni-
tudes with extremely low annual probabilities. By chance, the apparent

performance could improve at very low annual probabilities if the true
magnitude distribution differed significantly from the statistical fit.
However, many data sets from the synthetic seismicity catalogs were ana-
lyzed to ascertain the average performance of the methods tested (see
Sections 5.1 and 5.2).

If a maximum earthquake is included in the analysis, considering very
low annual probabilities may not significantly affect the maximum ground
motion to be expected from a seismic source. For example, a hypotheti-
cal site in California af fected by the San Andreas f ault might be char-
acterized as being exposed to a magnitude 8-1/4 or greater earthquake
with an annual probability of 4 x 10-3 (250-year return period), and a
maximum earthquake with magnitude 8.5. Considering annual probabilities
of 10-4 or 10-5 will not greatly increase the magnitude and strong
ground motion. For many eastern sites, the appropriate maximum magni-
tudes are subject to more speculation. The probabilities implied by the
experts as they chose maximum earthquakes for eastern sites in the Uni-
form Hazard Method were on the order of 10-3 according to D. Bernreuter
(ACRS Subcommittee Meeting, Santa Monica, Oct. 1982). He stated that

the experts made little distinction between maximum earthquakes with
10-3 probability and any others with smaller probability. L. Reiter,

in the same meeting, concluded that the experts were implying annual
probabilities on the order of 2 x 10-4 to 10-4 In any case, going to

annual probabilities lower than those associated with the maximus j

earthquake was not intended by the experts to imply larger magnitudes.
1

The current tectonic environment for a site region, its neotectonics, is
disclosed by Quaternary tectonic and geomorphic features, historical

|
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seismicity, seismological data from instrumental observations, and
' various . geophysical measurements. These data can contribute to esti-
! mating some maximum ' earthquake as a characteristic parameter for the

current tectonic regime. The maximum earthquake may have an uncertainty,

or a distribution of values. Often in seismic design studies, a conser-
_ vative value (higher than the best estimate) is required. Certain4

earthquakes still could be postulated having magnitudes greater than the
,

chosen maximum earthquake and very low annual probabilities. The clear
implication is that such earthquakes would be caused by tectonic forces*

j that ' differ from those characterizing the current regime. All the
earthquake recurrence methodologies to be ranked in this study are based

; on geological data, seismicity data, and maximum earthquakes that
'

describe the current tectonic environment in a site region. Therefore,
testing the methods for magnitudes at or approaching the maximum earth-,

i quakes is considered appropriate for ranking pur ses, even if the asso-
ciated annual probabilities are greater than 10 pto 10-5,

!. This ranking study focuses on methodologies - for estimating earthquake
recurrence at the seismic sources. Specifically excluded are the-
effects of attenuation as seismic energy is propagated from its source,

to a nuclear power plant site, and local effects from the site geology
and soil column. ' Attenuation and site effects are also probabilistic,;

. but they can be incorporated equally with each recurrence methodology<

tested. (Note: The full Uniform Hazard Method does include attenuation
and site ef fects, but only the earthquake source portion was compared
to the - other methods.) Earthquake recurrence as experienced at some
particular site from earthquakes in the surrounding region is the
recurrence needed for seismic design and risk decisions. This site-
recurrence distribution combines the following:

1) The probabilistic description for magnitude occurrence at the
various sources (" recurrence" as used throughout the rest of
this report),

,

; 2) A probabilistic description of strong ground motion generation
as a function of magnitude and possibly other source

| parameters, .

l
'

3) Path attenuation effects which may have uncertainty, and

4) Site effects which may have uncertainty.

I' Because the site-recurrence distribution is the product of several pro-
bability distributions, it can take on very low annual probabilities,
10-4 or 10-5, for maximum ground motion experienced at the site. Such
low values follow when the tails of each distribution are used. The,

| ranking in this study is to identify the best methodology for earthquake

| recurrence at the seismic sources, the first step in the site-recurrence
; problem. For this step, the annual probabilities for maximal events do
i

|
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not necessarily extend to the low values of.10-4 or 10-5 Further stu-
dies are needed to address the best methodologies for estimating the
distributions for strong . motion generation, attenuation, and site
effects.

.

e

5
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3. METHODOLOGY DESCRIPTIONS

Descriptions in this section define the methodologies as we have con-
'

sidered them for ranking. This is done because there can be variations
in the methodologies, and questions could arise concerning our
" standardization." Where differences are deemed to cause possible,

'
variations in the scores assigned to criteria, the variations and their

'
effect 'on scoring are discussed in the scoring text. These variations

; are also considered again in the section on sensitivity studies of the
< - ranking process. The descriptions are given in more detail in the Task
i 1 report, Literature Review (Earth Technology,1981) .

3.1 Selection of Methods to be Ranked,

j
In the literature on estimating recurrence intervals, very few formal
methodologies are defined. Rather, geological and statistical methods
have been applied on a more or less ad hoc basis. One notable exception
is the Uniform Hazard Method developed in the Site Specific Response
Spectra program.

' ' The analysis and ranking in this project focus on the underlying methods
that are most likely to find application in a recurrence interval metho-
dology. Because maximum earthquakes can be expected generally to have
return periods much longer _than the time period represented by most

i data sets, there is an emphasis on evaluating statistical methods. As
pointed out in the iterature review, there are often variations in

; methods are they are used or presented by different investigators.
Representative methods are ranked, and consideration is given to the

i. significance of any variations. Literature review showed the recurrence
methods could be grouped broadly as Poisson Models, Memory Models,
Bayesian Statistics, and Geologic Methods.

The Poisson Models category includes Log-Linear models, Quadratic
models, and Extreme Value Theory. The Log-Linear models have been
widely used in recurrence estimates, and have a high priority for
ranking. Even if other methods or models are found superior, the rela-,

tive ranking of Log-Linear models is isportant for comparison. The
Quadratic models seem to be of much less importance, and they have not
been used to any great extent. If the Log-Linear approach were judged
best of the methods ranked, then the Quadratic models could be further
considered as - a possibility for improved estimates. Extreme Value
theory has a moderately high priority for ranking because the seismicity,

'

data for many site areas is so amenable to this type of analysis.

The Memory Models category includes Markov models, Semi-Markov models,;

} Weibull models, and Clustering models. The Markov process (having a
one-step memory) can be thought. of as a special case of the Semi-Markov

,
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finite-length memory) .' The Semi-Markov process isprocess (having a
given a high priority _ for ranking, because it can reflect some aspects
. of physical models proposed for earthquake occurrence. The Semi-Markov
_ process is also important because it permits consideratle variation in
both temporal and spatial relationships as expressed in the transition

. matrices. The Wiebull models are given.a low priority because they are
probably best considered as a variant of the Poisson models. Clustering

- models seem to have appealing physical bases and perhaps they should be
ranked, however the Semi-Markov models were judged more important.

In the Bayesian Statistics category, the Uniform Hazard Method was indi-
cated by the NRC for ranking. The Uniforn Hazard Method is a Bayesian
method in the sense that experts are in effect acting as Bayesian pro-
cessors by combining data 'with their expert opinion. A fully Bayesian
approach as described by Mortgat and Shaw (1978) also has high priority
for ranking because this method allows formally weighted input of both
expert opinion and observational data.

In reviewing the Geological Methods, a clear picture emerges that there
are a large number of geological techniques, each having unique require-
ments and applicability. In practice, geological methods are almost
always used to supplement or corroborate other estimates of earthquake
recurrence intervals at nuclear power plant sites. Definitive
recurrence estimates using geological methods have been done for indivi-
dual seismic source structures only. We are not aware of any power
plant site for which a geological method, or methods, was used exclusi-
vely. It seems best to consider the Geological Methods as a necessary
part of any methodology that is to be employed, and not to attempt inda-
pendent ranking. .

In light of the above considerations, the following methods were
. selected for ranking and analysis.

1. Log-Linear Poisson Model with consideration of the presence or
absence of an upper limit to the magnitude.

2. Extreme Value Statistics for both the Type I distribution
(unbounded magnitudes) and Type III distribution (magnitudes
bounded by an upper limit) .

3. Semi-Markov Model, which can include a Markov Model as a
limiting case.

4. Bayesian Method as described by Mortgat and Shaw (1978) .

5. Uniform Hazard Method.

3-2
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3.2 Log-Linear Model

3.2.1 Theoretical Basis

The Log-Linear Model presumes an exponential distribution of earthquake
magnitudes according to an empirical relationship proposed by Gutenberg
and Richter and having the form

Log Nc = a - bM
,

where N is the number of earthquakes having magnitude M or greatere
in some time interval, a_ and b, are constants that characterize a par-
ticular relation. A differential form of the equation

Log NI = a' - bM

describes the number of earthquakes NI in a magnitude range AM that con-
tains the magnitude M. The slope b is the same for both forms.

Because a time interval is specified, the equations are of ten called
recurrence relations for magnitudes. The actual times of occurrence for
the earthquakes are assumed in this methodology to follow a Poisson pro-
cess. In a Poisson process, the probability of n earthquakes in an
interval of time dt is given by

= (A)n e-AdtP (n,dt) na

and A is the average rate of occurrence per unit time dt. The probabi-
lity that the interoccurrence time lies in the range from t to t+dt
follows the. exponential distribution (Lomnitz,1966) .

.

p(t) =Ae dt

Both of these distributions provide only emperical fits to observed
seismicity catalogs. The earthquake generation process is not yet well -

enough understood to derive magnitude and occurrence distributions from
'

first principals of earthquake processes.

Theoretical arguments and observational experience suggest that the
magnitude distribution must have an upper bound. The methodology is
applied both with and without an upper bound. Both cases are considered
here.

3-3
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3.2.2 Data Required

Because the magnitude and interoccurrence time distributions cannot now
be derived from' physical principals of the earthquake generation pro-
cess, the distribution constants must be estimated from seismicity data.
The data must represent the geographical area under consideration, so
earthquake times, locations and magnitudes are required.

In the Log-Linear Model methodology, the constants a and b could be ,

found, at least conceptually, using data from only a limited magnitude
range and a limited time period. However, the magnitude data would have
to be exceptionally precise, and the time period would have to be truly
representative of long term observations. In practice, the methodology
is used with confidence only when:

1) The seismicity catalogs are considered to report all earth-
quakes above some threshold magnitude Mo that have occurred
during the reporting period.

2) The range of magnitudes from Mo to the maximum magnitude
observed is at least several magnitude units so that the slope
,b, of the recurrence curves is reasonably well constrained.

3) ne magnitude data do in f act fit the log-linear distribution
reasonably.

4) S e observed rates of seismicity seem consistent with the local
geology and tectonics. The earthquake occurrences during the
period of observation should be representative of the long term
process; i.e., the earthquake process is stationary in a sta-
tistical sense.

In some applications, not all requirements may be fully met. The metho-
dology can still be applied with caution, but care must be exercised to
avoid undue confidence in the resulting recurrence estimates.

3.2.3 Methodology Steps

Three generalized steps are necessary: 1) data collection and evalua-
tion, 2) parameter estimation, and 3) recurrence period estimation.

3.2.3.1 Data Collection and Evaluation

This task is included here as the first task because the user must be
aware of the quality and characteristics of the data. Seismicity
catalogs have been derived from many different seismographic networks

3-4
I

. - _ . - - - - - - - - - - - . . - .- -



.. . - - .- - - _ - . . - . -. . - - - . . - -

.

4

|

operating. in various tectonic environments with various degrees of
geographic coverage, and for various purposes. The data often are not
-uniform over extended time . periods. Critical evaluation is needed to
estimate the threshold magnitude Mo, above which a catalog reports all
earthquakes that have occurred during the observation period. Different
Mo values may apply _ to different time periods such as Mo = 3.0 for the
past 10 years and Mo = 5.0 for the past 80 years.

The earthquake process is presumed to be Poisson, and the earthquake"

i. occurrences in time as independent of each other. Therefore,
'

af tershocks should be identified and removed from the data. The term
aftershock implies a causal relation between the aftershock and its
mainshock without identifying the relation. A clear definition of

| aftershocks, serving to identify them in the record, has not been made.
-Identifying and removing aftershocks is somewhat arbitrary at best
(Knopoff et al, 1983). Often, an arbitrary temporal and spatial window

i relative to the mainshock is assumed; all shocks within the window are
discarded as aftershocks. A better system is needed.

Consideration should be given also to the magnitude scale because some,

catalogs may not be homogeneous in their magnitude scale use. Small1

shocks may be Mg, or M , while larger shocks may be Mg, or Ms.b

For nuclear power plant sites, special studies may be done to extend the
data base as far back in time as possible and to evaluate the data
quality.

1 3.2.3.2 Parameter Evaluation

The parameters to be estimated are the constants a_ and b in the recur-
rence relation, and sometimes the maximum magnitude. Usually, maximum

'

magnitude is estimated separately using geologic and tectonic data.

i. .The parameters a and b may be estimated by graphically fitting a
j straight line, log N = a-bM, to data points for log N versus M. In a

graphical fit, subjective allowance can be made for the threshold magni-
tude Mo and for individual data points that may appear ananalously high

,

or low. Sometimes the data may be poor and suggest that analytical
fitting techniques may not be warranted except to give a formal estimate;

of the parameter uncertainties.,

i In dire circumstances, a reasonable value for the slope b may be assumed
and a recurrence curve passed through some particular data point that
evokes the best confidence. For example, in a region with poorly

'

recorded seismic history, the small earthquakes may ' be judged to be
under-reported and large earthquakes too infrequent to be properly
represented statistically. But the record for moderate shocks, say

,
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magnitude 4 to 5, may be complete because of reported felt effects.'

Clearly, this approach leads to large uncertainty in the eventual esti-
mates of return periods for rare events.

'*

The ' straight 'line may be determined analytically._ with ~ well- known-
regression formulas derived from a least squares criterion (Benjamin and '

i - - Cornell, 1970). . For this' recurrence period methodology, care must be
taken that log N is-regressed on M, rather than the opposite, so that a
recurrence rate for the desired earthquake magnitudes can be correctly

1 obtained (Bolt,1978) . Only data for Mo and larger magnitudes are used.
- This method also provides-formal estimates of the standard deviations of
the parameter estimates.- The analytical fit is not quite the same con-

, . ceptually as the graphical fit, because the graphical fit ' is attempting
a ~ to fit data points rather than regress one variable on the other.

f

| The : straight line parameters a, and b, for -- the cumulative form may be
obtained analytically also using maximum likelihood expressions
(Welchert, 1980) as follows:

:

; b = 1/IIn 10(I-M ))o

!- where Mo is the threshold magn'itude and I is the average magnitude,

n
I'= 1/n E M .t

i=1;

4

. a,is found from b and the total number of events above the threshold Mo.
'

,

t

3.2.3.3 Return Periods
t

1.

| The final step is to extrapolate the straight line Log N = a-bM beyond

[ the largest observed magnitude to the desired rare event magnitudes.
1 - Return periods are taken as simply the-inverse of the annual recurrence

rate and uncertainty in the return period is estimated from uncertain- '

i ties in a and b.
3

- -

a

4 -

'3.2.4 Uncertainties t

- Uncertainties in t.he estimated return periods arise from several
sources. The methodology depends solely on statistical data describingr

'

earthquake recurrence. An implied assumption is that the data'are sta-
tionary and truly portray the long term behavior. Uncertainty arises
here for nearly all geographic regions except ones for which earthquakes,

, reasonably near the . maximus ' earthquake have been observed repeatedly. '

1 . The amount of this uncertainty is not determined analytically and can
t
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only be estimated subjectively, perhaps by comparison with long term
geologic data. All the methodologies are subject to this, uncertainty.

,

An estimate cf uncertainty can be obtained in graphically fitting a :,

straight line to the log N-versus-M data points by trying to bound the |

;- acceptable range of fits. |

The analytic ~ methods, least squares and maximum likelihood, give formal
estimates of uncertainty. It must be remembered that these formal esti-
mates are only a measure of how well the data points fit the assumed-

' - - log-linear relationhip. If the earthquake process differs from the
assumed distributions, the estimated uncertainties may not apply.

If the data truly fit a log-linear recurrence relation, the least
squares and maximum likelihood results would be identical. A criticism
of the maximum likelihood estimate is that undue weight is given _to the
small-magnitude earthquakes as they strongly control the value of M, the

*

average magnitude. The least-squares method is similarly criticized for
i giving equal weight to all data points. 'Ihe large-magnitude data points

are not' well determined because they may come from only one or two;

i earthquakes, whereas smaller magnitude data points may be much better
i determined.

i.
3.2.5 Regional or Tectonic Limitations

The ' Log-Linear Method has no regional limitations other than that the
region, or fault structure, to which the recurrence statistics apply4

'

must provide reasonably good statistics. If the region chosen is too
small, the statistics may be sparse or non-stationary for the time4

interval used. In general, the region of concern around a nuclear power
plant site is. divided into zones of similar geology and tectonics. A

i- separate recurrence curve is constructed for each zone. Separate maxi-
; mum earthquakes are used, and their return periods estimated.
:
4

'

3.2.6 Similarities / Affinities to Other Methodologies

The Extreme Value Statistics Method is also based on the exponential;

distribution of magnitudes and the Poisson process for interoccurrencei

,

times. However, the statistics are handled differently.
|

The Semi-Markov Method can assume an exponential distribution for earth-
quake magnitudes.

!

i. The Uniform Hazard Method can use earthquake recurrence curves, iden-
1 tical to those of the Log-Linear Model, as a way of describing the
j seismicity.

I
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The Bayesian Method uses a Poisson distribution for earthquake occur-
rence.

,

3.2.7_ Prior Applications

Earthquake recurrence curves are used in many safety analysis reports to
describe ' seismicity. However, a formal methodology for return periods
of rare events has not been applied. There are numerous applications in
the seismological and geological literature that estimate return periods
for large earthquakes using recurrence curves.

!

3.3 Extreme Value Statistics

3.3.1 Theoretical Basis

Extreme value methods generally assume earthquake magnitudes are distri-
buted according to the Gutenberg-Richter exponential relationship, and
times of occurrence follow a Poisson process. Then, for earthquake
recurrence applications, the statistic used is the largest earthquake
annually, or some other convenient time period. Other distributions
could be used. This method has the same basic assumptions as the; _

Log-Linear Model, but the statistics are handled differently.

Epstein and Lonnitz (1966) combined the magnitude and interoccurrence
time distribucions to show the largest annual earthquake M is distri-
buted with a cumulative distribution G(M) where

G(m) = P(M<m) = exp(-ae-Sm) ,

where m_ is the the distribution variable, a and 6 are related to a and b
of the Icg-linear distribution by ina = a in 10 and 8 = b in 10. Taking
natural logarithms of the equation gives

' -in(-in G(M)) = in a - SM

in which the in-in term, left hand side, has a linear relation to
magnitude M. The parameters a and 8 can be found after fitting a
straight line to probability-versus-maximum magnitude points plotted
according to the above. equation.

The derivation can be extended to give the mean return period T between
earthquakes with magnitude M or greater as

! T = exp(SM)/a.

3-8
:

!



.- . . ._ -. .-. - - - _ . _ ..

,

Return periods can also be found directly from the annual probabilities
'G(M) extrapolated to the desired magnitudes along the fitted straight
line. The parameters a and 8 can be converted to a and b in the log-
linear equation .and that equation applied as in the Log-Linear Model
methodology. Finally, Knopoff and 7agan (1977) use the form

IT = 10 "~"O

where Mo is the magnitude for which -in(-in G(M)) =0 (the magnitude
with annual probability 1/e, or the average annual magnitude) after
finding b_ from B.

-3.3.2 Data Required

The main attraction of this method is its very modest data requirements.
Only the largest earthquake in each successive time period is required.
Maximum annual earthquakes are generally used, but the theory is equally
amenable to shorter or_ longer time periods.

An~ important requirement is that the seismicity data actually fit the'

.

assumed exponential distribution for magnitudes and the Poisson distri-
'

bution for interoccurrence times. If the distribution assumptions are
' met and enough time periods are sampled, the method results will con-*

verge with those from the Log-Linear Method. Because only maximum
annual earthquakes are used, the total time span with reliable sta-
tistics may be considerably longer than that for many other recurrence
methodologies. The longer time span may provide a more stationary
representation of seismicity.

3.3.3 Methodology Steps
~

Three generalized steps are necessary: 1) data collection and evalua-
tion, 2) parameter estimation, and 3) recurrence period estimation ee

3.3.3.1 Data Collection and Evaluation
,

Collecting and evaluating the seismicity data is included as the first
step because the methodology user must be aware of the quality and
characteristics of the data. The considerations for extreme value,

i- statistics are similar . to those for the Ing-Linear Model, but less

,
demanding because only_ maximum earthquake magnitudes are used. However,

[
some knowledge of the distribution characteristics for smaller shocks is

|
needed to judge if the methodology assumptions are reasonable.
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Aftershocks are not generally considered. However, an aftershock of a
,

large earthquake may also be the largest earthquake in a succeeding time I

' interval. Then, the aftershock should be removed and the largest
independent earthquake used. Identification of aftershocks is no
different here than for the Log-Linear Method, except only the large
aftershocks generally need to be considered.

3.3.3.2 Parameter Estimation

The parameters to be estimated are a, 8 and perhaps M. If b_ iso
required, it is derived from S. These parameters are obtained from the
straight line

-In(~In G(M)) = In a - SM

fitted to a probability plot of the maximum annual magnitudes. First
the maximum annual magnitudes for N years are ranked monotonically
according to magnitude with the largest magnitude first, R= 1, and the
smallest last, R = N. Then a cumulative probability is assigned to each
~ rank R according to a plotting rule such as

G(M)
~

=

N

Other plotting rules can be used (Knopof f ' and Kagan, 1977). The points
M and -In(-In G(M)) are fit with a straight line, either analytically or

graphically, which fixes the. parameters in a, 8 and M . If in a and 8o
are to.be converted to a_ and b in the log-linear equation, log N = a-bH,
then the straight line should regress M onto -In(-InG(M)). If the
annual probabilities G(M) are to be used, the straight line should
regress -In(-InG(M)) onto M.

Formal- uncertainties in the straight line fitting regression can be
converted to uncertainties in the . parameters a, S, Mo, a and b as
needed.. However, the plotted data points should also be examined to
judge their linearity, and thereby the distribution assumptions.

Maximum magnitude is.usually assumed to be unbounded, or at.least larger
than any of the observed annual extrema. The-analysis can be modified
to fit a line incorporating the effects of an assumed maximum magnitude
(see Section 5.1). If the time span covered by the data includes
several occurrences of near maximum earthquakes, a maximum earthquake

may also be estimated.
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3.3.3.3 Return Periods

Return periods for large earthquakes can.be estimated by several methods
using the straight line parameters. As noted in Section 2.2.3.1, the

-

. fitted line - gives . the annual probabilities G(M) very simply from the
j -In(-In G(M)) value for the desired magnitude. A direct estimate is also
i :obtained from the equation

T = exp (SM)/a,

Alternatively, the estimated parameters in a and 8 may be converted to
a and b, and the equation

)

Log N = a - bM

used as in the Log-Linear Method. The form

T = 10 ~

is equivalent, and can be applied directly. The formal uncertainties in
'

in a and S can be transformed to uncertainties in the estimated return
periods.

3.3.4 Uncertainties

This methodology is subject to the same sources of uncertainty as the
Log-Linear Models the data stationarity and the validity of the assumed
statistical distributions. Analytical methods for curve fitting provide
formal estimates of the variance in the estimated parameters in a and S.-

However, these uncertainty estimates describe only the linearity of ther

data points and do not necessarily reflect the validity of the methodo-
logy assumptions.

3.3.5 Regional or Tectonic Limitations

'

Limitations for this methodology are the same as those described for the
Log-Linear Method.

-,

3.3.6 Similarities / Affinities to Other Methodologies

This methodology is closely related to the Log-Linear Method in that*

both methods ' are based on an exponential distribution for earthquake
- magnitude and a Poisson distribution for earthquake interoccurrence

times.
:
2
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3.3.7 Prior Applications

-No formal use of the Extreme Value Statistics methodology has been 1

incorporated into safety analysis reports for nuclear power plant sites.
However, . there are several applications in the seismological literature '

(Earth Technology,1981) . |

3.4 Semi-Markov Model

3.4.1 h eoretical Basis

Markov and Semi-Markov models are a broad class of statistical models
with the general - property of having some finite memory of their past
h istory. The true Markov process has . a one-step (one unit of time)
memory; ' the Semi-Markov process can have a multi-step, but finite,
memory. For a Semi-Markov earthquake process, the probabilities that
earthquakes with various magnitudes will occur in the next time step
depend- on the earthquakes occurring during the current time step, or
perhaps back to the most recent large earthquake. This general process

can be modeled with various choices for process variables and

distributions.

The process form modeled by Patwardhan et al (1980), is adopted here as
the Semi-Markov methodology to be ranked. In the current literature,

their model seems to be the best application of the Markov process to
the occurrence of damaging earthquakes. W ey estimate earthquake proba-
bility rather than return periods, and there ' is an important distinc-
tion. Return periods - are a property of an earthquake generation
process. M ey can be expressed as a constant annual probability, and do
not. depend on the current state of the process. However, return periods
can be combined with information on the time since the last earthquake
to estimate earthquake probabilities. Patwardhan et al (1980), estimate
earthquake probabilities directly using the most recent great earthquake
time and magnitude among the process variables.

Basic elements of the model are the state description, the probabilities
for changing from one. state to another, and the probabilities.that the
state will hold unchanged for various times. The model ' has been
developed for great earthquakes, M) 7.8, around the Circum-Pacific Belt.
Earthquake magnitudes are descritized into N intervals and the system
state' is defined by the most recent great earthquake magnitude i,
i=1 to N. When another great earthquake occurs, the state changes to
j according to the new magnitude. The probability that the system will

P j, the transition probability.change from state i to state j is i

There is a matrix of P j for all combinations of the indices i and j.i
The time that the system will hold in state i before changing to state j
is an integer random number of time steps with a distribution h j.i

3-12
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Because the system can change to any of the possible states (each
'

earthquake magnitude is possible), the waiting time between state

- changes (earthquakes) is a distribution wi obtained from the h j, j = 1i
to N.

!

.Past seismicity is- used to estimate the various distributions. These
distributions are modified for the initial step in the process because;

some _ waiting time since the last great earthquake has already elapsed.
The model is allowed - to run to predict the number and magnitudes of
earthquakes for some desired period of years.

3.4.2 Data Required
'

The methodology requires probability distributions for the occurrence of
magnitude j earthquakes given that the previous earthquake was magnitude
i. Probability distributions are also needed for the interoccurrence;

times for earthquakes with magnitudes 1 and j. When i = j, this is just
the return period for earthquakes with magnitude i, and the methodology
could become a circular argument for estimating return periods. How-
ever, geological data and subjective judgment (prior distribution) are

,

; combined with .the seismicity data (likelihood function) using a Bayesian
procedure to obtain the needed distributions (posterior distribution) .9-

Therefore, this methodology is very closely akin to the Bayesian metho-
dologies.

The number of variables to be estimated increases with the square of the4

number of possible system states, n=N2 + N. Even for only 3 system
states as in the Patwardhan et al (1980) example, there are 12 variables=

required for the analysis. The required variables can quickly overwhelm
.the available data base in detailed applications.

.

The basic data required are seismicity data for the system states that
4 . are assigned to the model. The data quality and completeness for these

states'should be known with the same care as for the Log-Linear Model.
However, the Bayesian use of subjective judgment and geological data can
ease somewhat the seismicity data requirements. A wide range of data
can be used through the Bayesian approach, but the method presents no
specific requirements on this data.

3.4.3 Methodology Steps,

-The methodology comprises 6 steps: 1) data collection and evaluation,
.

2) defining states and time intervals for the Markov process, 3) defin-
ing initial conditions,- 4) estimating model parameters, 5) calculating
model predictions, and 6) converting results to return periods.

3-13
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3.4.3.1 Data Collection and Evaluation

|

This . task is indicated because the analyst should be familiar with the
data quality and its limitations. General considerations are discussed
in Section 2.1.3.1 for the Log-Linear Model. For the Semi-Markov model,
only . the data relating to the discrete system states are required.4

There may be less total data available, and they assume relatively
greater importance because many parameters are to be estimated.

. . . Assessment of data quality becomes extremely important.

: ~ Subjective judgment and geological data can be incorporated into some
parameter estimates using a Bayesian approach. Care must be taken here
i f. the model is to be kept close_ to the physical system under
consideration. The method requires reasonably good data if the results
are to reflect anything other than the influence of subjective judgment.

3.4.3.2 Defining System States and Time Intervals

The. states of the system are a set of discrete magnitude intervals. The
magnitude range and intervals will depend on the tectonic environment
under consideration. The time interval should be short enough that
there is negligible probability of two earthquakes, state transitions,
occurring within a single time interval. Lesser shocks could occur but
they are ignored. H e interval should be as long as the above criterion
will permit so that computations are minimized.

3.4.3.3 Defining Initial Conditions.

The initial conditions are the magnitude and elapsed time since the last
earthquake in the magnitude range of the system states. R ese are self-
evident if there .has been such an earthquake historically. In other
cases, estimates must be: made using geologic data. If the problem is
divided into several geologic zones, each with its own Markov process,
initial conditions and process parameters are needed for each zone.

I 3.4.3.4 Estimating Model Parameters

. The required model parameters are the transition probabilities P j andi

the holding times h j. These are determined from the seismicity datai

base if the data are adequate. In the Patwardhan et al (1980) example,
and probably for most potential applications, the data do not provide
' good statistics for rare earthquakes. Therefore, a Bayesian approach

,
.is used to estimate the required parameters (see Section 3.4). The
observed seismicity is used for the likelihood functions and subjective

"

; judgment, augmented by geologic and tectonic data, are used to compose
the conjugate prior distributions,4

i 3-14
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".4.3.5 Calculating Model Predictions

iThe Semi-t'arkov model used here describes how an earthquake generating,

system can transition from state'i to another state j. The' time holding i

in a state is a random variable depending on the states i and j. A '

time period is selected, such as the 50-year design life of a project.
During_the 50-year period, there may be 0, 1, or several earthquakes in
the Semi-Markov process, and each . earthquake may be in any of the
allowed magnitude intervals. If there are 3 system states, allowed
magnitude ranges, and we .use the notation .- (a, . b, c) to describe the
number of earthquake occurrences in each magnitude range during the

i 50-year period,' typical histories could be (0,0,0 ) , (1,0,0) , . (0,1,0) ,
'

(2,1,0), etc., independent of-the exact magnitude sequence. The proba-'

bility that a particular history will occur is the joint probability for
a transitions to state 1, b transitions to state 2, and c transitions to
state 3. Patwardhan et- al (1980) give equations to compute the joint
probabilities :ecursively,

f

These results apply only to the specified time period rather than to
; gendral time periods with the same length. The initial conditions

.
imposed, time and magnitude for the most recent great earthquake, cause

4

.the probabilities to be specific to the time period used.

Combining the joint probabilities can give the probability that - an.

earthquake with magnitude M or greater will occur during the time period-,

^

considered, or the probability of other earthquake senarios.

,

3.4.3.6 Converting Results into Return Periods

; The method applied by .Patwardhan et al~ (1980) does not estimate return
periods for the earthquake process. The results are probabilities spe-
cific for the particular tis;e period considered. Therefore, it would be *

incorrect to convert the time-period probabilities into return periods.
'

If the initial conditions were ' circumvented by ignoring them, and the '

time period were taken as 1 year to obtain annual probabilities, the
method would just degenerate into a Bayesian approach: see Sections

; 3.3.2.

3.4.4 Uncertainties

The method described by Patwardhan et al (1980) does not give a formal
estimate- of uncertainties in the estimated probabilities. They.

conducted 'a parametric analysis showing that altering holding times by
a,1.5 factor changed the computed probabilities by 1.3 to 4.6 factors.
Tne factors for probability change were strongly dependent on the time

' period length and the earthquake magnitude considered. The absolute

4
;
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uncertainties depend greatly on the data quality as - in the Log-Linear
Model, and also on the quality of the subjective input.

3.4.5 Regional or Tectonic Limitations

*

The' method requires observational data on each allowed system state to

i form . the needed. likelihood functions. Therefore, the method can be
applied only for areas in which earthquakes with magnitudes up to the

,

i maximum magnitude of concern have been observed. The Patwardhan et al
- (1980) example uses great earthquakes -in the Circum-Pacific Belt.
Except for highly seismic regions with historic occurrences of near,

'
maximum earthquakes, most regions do not have adequate statistics for

! the Semi-Markov method. The method is still.quite useful though' to
. evaluate the consequences of various assumed seismicity models.

,

4

3.4.6 Similarities / Affinities to Other Methods;;

As noted in Section'2.3.2, the methodology described by Patwardhan et al
(1980) is strongly dependent on Bayesian statistics. Conceptually,

i Bayes Rule - is - not required for a Semi-Markov process, but limited data
can lead to a Bayes Rule application.

!

3.4.7 Prior Applications
e

There have been no formal applications to nuclear power plant sites.
The paper by Patwardhan et al (1980) is the most prominent application.

l .

| 3.5 Bayesian Model (Nortgat and Shah, 1978)

3.5.1 Theoretical Basis

| Bayesian models'or Bayesian statistics are founded on Bayes Rule, which |

l is broadly applicable to many statistical problems. - Perhaps the major
attraction of the Bayesian models is that they allow data from dif-
ferent, even disparate, sources to be rationally combined. Thus, long

..

~ term geologic data or historical records of earthquakes can be combined|

with modern instrumental observations.- " Expert opinion" can be combined
with observational data, and each weighted according to its perceived
importance.

-Bayes Rule can be expressed as

|
,
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P[A| B ] . P[B ]i i

P[Bi | A) =

.

'
where

n

[ P[A | B ] * P[Bi].P[A]' =
i

i=1
,

P[Bi | A] is the conditional probability for event Bi given that event A
has occurred. The variable n is the number of different states Bi can
assume. Benjamin and Cornell (1970) show that Bayes Rule can be equiva-
lently written for a variable A as

f" ( A) =N1 f' ( A) L(A),

where
f" ( A) is the posterior distribution of A

f' ( A) is the prior distribution of A

!

L(A) is the likelihood function of A+

:

Nj is a normalizing constant.

The prior distribution represents a starting point that may be " expert
opinion" or a particular class of data. The likelihood function repre-
sents obsevations (a sample function), or perhaps a second class of
data. For convenience, the distribution types for the prior and likeli-
hood functions are generally chosen from well known distributions that
are mathematically orthogonal, so the product distribution will also be,

a well known distribution. Distribution types that can fit a large

! variety of shapes are used so no strong limitations are imposed on

| modeling the data.
i

| Mortgat and Shah (1978) use one application of Bayes rule to develop a

| posterior distribution for earthquake occurrences independent of magni-

| - tude. They use a second application for .a posterior distribution on the
probability pi that ri earthquakes will occur in a given magnitude rangei

|- ..
M , such as 6.5 4 M <7.0, given that n earthquakes have occurred. Thesei

p - two distributions are combined to give posterior distributions for r

| earthquakes in the range Mi (their equations 2.21 and 2.23), or for zero
i. - earthquakes in the range Mi (their equations 2.22 and 2.24) .
|

. Earthquake Occurrence. Earthquake occurrences, independent of magnitude
are assumed to follow a Poisson process. A Poisson distribution for the

| occurrence rate A is taken as the likelihood function
i
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L( A | N,T) =I *
.

Ni

A gamma function form is chosen to describe the prior distribution for
!. the rate A, because the gamma distribution is orthogonal to the Poisson

distribution and can model a variety of shapes,

,e-1A(lA)k-1 1g, gy)
P(k)

where the parameters 1 and k control the distribution shape. The pro-
duct. f"( A) of these prior and likelihood functions is also a gamma func-
tion because of their orthogonality. Finally, the posterior distribu-
tion for n earthquake occurrences is obtained by combining the Poisson
occurrence model for n-given-A with the posterior distribution on A and,

i removing the conditional aspect by itegrating over all possible A.

P(n) = [ p(n | A) f"(A) dA
i

which results in the Mortgat and Shah (1978) equations 2.9 and 2.10.

Magnitude Distribution. Earthquake magnitudes are descretized into a
| number of magnitude bins Mi, where each bin may contain magnitudes
'

ranging _ over perhaps 1/2 magnitude unit. The development treats each
magnitude bin Mi separately. A Bernoulli process is assumed, i.e. inde-
pendent trials with only two possible outcomes. When an earthquake
occurs, its magnitude is either in bin Mi with probability pi, or not in
bin Mi with probability 1-pi. This generating process is a binomial
process and the likelihood function for observing the probability pi is
given by

U ( j.pg)%L(Pi| N ,ri)1 p1=

where N is the total number of earthquakes and ri is the number with
magnitude in bin M , A beta function is chosen as the form for thei

prior distribution because it is orthogonal to the binomial. distribution;

| - and is defined on the interval O to 1 as probabilities are. The beta
function chosen by Mortgat and Shah (1978) has the form

! 3-18
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pi("i~II (1-pi) 'b -at-1)*if ' (pi) =

B(ai, b )i

where

f(ai) f(b )i
B(ai, b )i = .

T(ai + b )i

The parameters at and bi control the distribution shape. The product
f"(pi) of these prior and likelihood functions is also a beta function
because of their orthogonality. Finally, the posterior distribution for
ri, the number of earthquakes in magnitude bin Mi given that n earth-
quakes have occurred, is obtained by combining the binomial law for
occurrences ri with the posterior distribution on the probability pi.
The condition on pi is removed by integrating over all possible probabi-
-lities.

1

f p(ri| n, pi) f" (pi) dpip(ri| n) =

which results in the Mortgat and Shaw (1978) equation 2.20.

Magnitude Occurrence. The final step is to combine the results of the

two previous paragraphs to remove the condition on n earthquakes being
given.- The condition is removed by summing over all possible n

p(r1) = ~ [ p(ri | n) p(n)
n=o

i which results in the Mortgat and Shah (1978) equations 2.21 through 2.24
'

which include cases for ri 0 and when equation parameters take on=

integer values. Thus, using prior data - (or expert opinion) and sample
data, the probability for earthquakes with a particular magnitude range

| can be estimated. Earthquake return periods can then be taken as the
'

reciprocals of the annual probabilities when the probabilities are
small.

3.5.2 Data Required

One of the outstanding features of this method is the extremely broad
range of permissible data. Mortgat and Shaw (1978) formulated their

; equations for the prior distributions in terms such as either number of

: 3-19
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years for the prior data or "the equivalent time period over.which the
analyst bases his subjective input." Thus, many kinds of data are
amenable if they can be translated into an equivalent number of earth-
quakes for an equivalent time period.

In the final equations, seven input parameters are required for each
magnitude bin M , see Figure 5.2-B.i

* For the sample, or likelihood, functions representing the
observed data.

The total number of earthquakes observed above someN =

threshold Mo.

RMi= The number of earthquakes in the magnitude bin Mi.

S e sag le time, duration of the observed data.T =

* For the prior distribution on A, the earthquake occurrence
rate.

A' Re equivalent time used by the expert on which to=

base his estimate of A. A' enters the equations
through the relation A" = A' + T..

R e equivalent number of earthquake occurrences (allv' =

shocks above the threshold M ) during the period A'.ov' enters the equations through the relation
v" = v' + N..

* For the prior functions on pi, the probability of an earthquake
in magnitude bin Mi given an earthquake has occurred.

D' = The equivalent number of trials used by the experts
the total number of earthquakes above the threshold
magnitude No. D' enters the equations through the
relation D" = D' + N.

E' The equivalent number of successes (r i, the earth-=

quakes in magnitude bin M1) during , the n' trials.
C' enters the equations through the relation
(" = C' + Ry .g

If the same data are used to estimate the prior distributions for both-
the rate A and - the probabilities pi, then n' = C' and D" = (". Input
parameters must be provided for each magnitude bin Mi for which sta-
tistical estimates of return periods are desired. The method does not
extrapolate to high magnitudes for which there are no observed data.

3-20
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Relative weighting between the prior distribution on the rate A and
1 the sample distribution on A is effected by the ratio between the

" equivalent time period" A' .used by the expert and the sample time T.
1 Relative weighting for the prior distribution on the probability pi and ,

the sample distribution on pi is effected by the ratio between the I

" equivalent number of events" D' used by the expert and the observed4

events N. If only the prior data or the sample data are present, the
equations place full weighting on the available data.

.

|. 3.5.3 Methodology Steps

! The methodology includes four steps: 1) data collection and evaluation
of the sample data,' 2) either data collection and evaluation of the
prior distributions, or solicitation and evaluation of expert opinion,
3) parameter estimation, and 4) converting results into return periods.

]

3.5.3.1 Sample Data Collection and Evaluation
'

This task is indicated because the analyst should be familiar with the,

'
data quality and its limitations. General considerations are discussed
in Section 3.1.3.1 for the Log Linear Model. Data collection for the*

Bayesian approach incudes here only the sample data, which are presumed
i, .to be reliable catalogs that are complete for all earthquakes above the
i chosen threshold magnitude M . Different time periods may be used foro

different magnitude ranges, so the data will-include large earthquakes
for which statistical estimates are desired.

Alternatively, the Bayesian approach can be used to combine and weight
two classes of data. 1he sample data may simply be one data class.4

3.5.3.2 Prior Data Collection and Evaluation, or Expert Opinion

If an actual data set is to be used to represent the prior data, the
,

considerations are the same as those for the sample data. In addition,'

the choice must be made for the relative weights to be assigned to thei :

prior data and the sample data. One simple choice weights each data set-
by the time period corresponding to the data set. The Mortgat and Shah
(1978) equations accommodate this weighting automatically. If some

,

other weighting is desired, perhaps according to the analyst's con-
fidence in the data sets, one or the other data set should be scaled.

(numbers of events and time periods) . The time periods used for the
prior and sample data sets should be in the ratio of the desired

! weighting.

:

i ;
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If _ expert opinion is to be used to construct the prior data set, the
'

expert's estimatas of rates or probabilities must be translated into the
equation parameters " equivalent earthquakes" for " equivalent time"

,

. periods. Careful solicitation of expert opinion is itself an extensive
topic beyond the scope of this discussion.>

i. =3.5.3.3 Parameter Estimation

The _ parameters estimated by the Mortgat and Shah (1978) equations are
p(ri) or p(ri=o) where ci is the number of. earthquakes in a magnitude+

. bin'

M. Ofte.s the calculation will be for the probability of zeroi

earthquakes, p(ri=o). The probability of at least one earthquake with
magnitude ~ M . is 1-p(ri=o). _This calculation must be done for eacht

-desired magnitude bin Mi. The time ' period chosen for .the probability
calculations is taken as 1 year, and anruil probabilities are obtained.
Probabilities could also be obtained f( r a facility's expected design*

lifetime.

If the seismic hazard at a particular site -is modeled as arising from
i more than one source area, the , annual probabilities are obtained for

j_ each contributing source area and summed.

3.5.3.4 - Return Periods

The return periods are taken as just the reciprocals of the annual pro-4

babilities.;

| 3.5.4 Uncertainties

The method as described by Mortgat and Shah (1978) indicates formal
variances for the posterior distribution f" ( A) , the earthquake
occurrence rate, and the posterior distribution f"(pg,), magnitude pro-
bability. The undertainty estimates are not carrid forward into the

p(ri) in Step 3.
_ p(ri j n) in Step 2 orfinal - posterior distributions p(n) in Step 1,

Because the method is so broadly applicable in the way the prior and
sample distributions may be derived and combined, there is no genera-
lined formulation for uncertainty estimates. In some cases, relative
uncertainties in the prior data (or expert opinion) and/or the sample
data will determine how the analyst chooses to weight the prior and
sample distributions. In other cases, the weighting may be simply in
proportion to the time periods represented by the two distributions.
The method doesn't include a means to relate these uncertainties to that
of the final estimates.

5
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Other sources of uncertainty include the data (1Jality as in the Log
Linear Model (section 3.1.4), and the quality of the subjective judgment
used as input. The method assumes that earthquake occurrence follows a
Poisson process so shocks are time independent. No assumptions are made
about . the magnitude distribution; each magnitude bin Mi is treated
separately.

.

3.5.5 Regional or Tectonic Limitations

The method requires data for prior and sample distributions for each
seismic source to be considered. This requirement may be met in regions
with high seismicity where earthquakes as large as design earthquakes
have occurred to provide reasonable statistics. For regions with
moderate or low seismicity in which the design earthquakes have not
occurred, the method does not really extrapolate to the rare events. If
there is no sample data for a given large-magnitude bin, the method
simply gives an estimate based on the prior distribution. Such estima-
tes are not Bayesian because no sample distribution is used. Data
requirements place a strong limitation on the method when probability
estimates for rare earthquakes are desired.

3.5.6 Similarities / Affinities to Other Methods

The Semi-Markov Model described by Patwardhan et al (1980) uses a
Bayesian proceduce to estimate conditional probability distributions on
earthquake magnitude (see Section 3.3.2). The Uniform Hazard Method
(Bernreuter, 1980) includes a mathematical model for earthquake occur-
rence that follows the Mortgat and Shah (1978) formulation exactly.
However, the Uniform Hazard Method solicitation of expert opinion
requested the experts to incorporate sample data in their judgments,
so the uniform hazard spectrum is considered a subjective probability
estimate.

The Bayesian model assumes a Poisson distribution for earthquake occur-
rence as do the other methods.

3.5.7 Prior Applications

The Bayesian model has not been applied formally to nuclear power plant
sites. Mortgat and Shah (1978) illustrate their methodology with an
application to Nicaragua.

3-23
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3.6 Uniform Hazard Method

3.6.1 %eoretical Basis

The Uniform Hazard Method (UHM) described by Smith et al (1981) and
Bernreuter (1980) is founded philosophically on the Bayesian approach of
Mortgat and Shah (1978) . ,The Mortgat and Shah mathematical development
is reproduced in early draf t reports on the methodology. However, in
its final form, the Uniform Hazard Method is described as a probabi-
listic model which systematically incorporates subjective judgment into
the evaluation of seismic hazard (Bernreuter, 1980). Bayesian analysis j
is not used formally, but experts are asked to act as " Bayesian pro- )
cessors" in formulating their subjective judgment. The experts' answers
are considered in Bayesian terminology as posterior estimates. |

The method does not estimate earthquake return periods. The method's

objective is to develop a uniform hazard spectrum, a spectrum of peak
ground motion (acceleration, velocity, or displacement) versus fre-
quency, whose ordinates each have the same probability of being exceeded
in a given number of years. Such a spectrum is not limited to the pre-
dicted effects of any one design earthquake. High frequencies in the
uniform hazard spectrum may be controlled by the potential occurrence of
moderate-sized nearby earthquakes, and low-frequencies by larger more
distant shocks. Each frequency has the same probability. To achieve
this objective, the Uniforir, Hazard Method has four steps:

* Identify and specify discrete seismic source zones, either as
area sources or line sources. Each zone has roughly uniform
seismic activity.

* Develop an earthquake occurrence model for each seismic source
zone comprising a probability distribution for magnitudes and
another for occurrence times.

Develop a ground trotion model that describes ground motion at*

the seismic source, attenuation and modification as energy pro-
pagates to the site, and modification by site effects.

* Combine the data from the first three steps to estimate the
uniform hazard spectrum and uncertainties associated with its
ordinates.

The Uniform Hazard Method extends beyond the other methodologies ranked
in this study by including a ground motion description, attenuation, and
site effects. The full methodology estimates ground motion recurrence
experienced at a particular site, rather than explicitly describing
occurrences at the sources. For purposes of this ranking analysis we
will consider only the first two methodology steps which deal with
earthquake occurrence'per se.
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In the first step, experts are asked to delineate seismic sources using
seismicity data and their subjective judgment. Thus a broad range of
geologic, tectonic, and seismological theory can be used, or ignored.

The seismic sources are descritized into manageable source elements and
the experts' uncertainties are quantified.

In the second step, earthquake occurrence is presumed to follow a
Poisson time sequence, as in the Log Linear Models and the rate A is
supplied by the experts. No particular magnitude distribution is
implied by the methodology, but in practice the experts supplied their
magnitude information using the usual log-linear relation log Nc = a-b *M
In addition, a maximum magnitude, or range of magnitudes, was specified
so the log-linear relation is bounded for large shocks.

The theoretical basis of Steps 3 and 4 are not included here because the
ranking study does not extent to them.

3.6.2 Data Required

The Uniform Hazard Method is quite flexible in the amount and type of
data required. In princple, the method could be applied using just
expert opinion and no overt incorporation of geologic, tectonic, or
seismological data. The experts are required only to specify parameters
such as seismic source geometry, recurrence curve constants, and maximum
earthquake magnitude. Because various experts may not be equally
familiar with all potential source regions, a standard, comprehensive
package of seismicity and tectonic data can be supplied to each expert
(Bernreuter, 1980). In this way, the experts are asked to act somewhat
as Bayesian processors using the data set as sample data and their opi-
nions as prior data. Supplying the best possible data set should lead
to less variation between expert opinions and less uncertainty in the
final uniform hazard spectrum. For regions such as the East Coast where
there is only a brief seismic history, little strong ground motion data,
and uncertainty in earthquake mechanisms, the method leans heavily on
expert opinien.

:
1

3.6.3 Methodology Steps

As described above, the Uniform Hazard Method conprises four steps.
However for purposes of this ranking study, and in an attempt to
" equalize" our perspective of each methodology, the ground motion model
and the spectrum calculations are not included here. The success or
failure of the Uniform Hazard Method is certainly strongly dependent on
the last two steps. However, each of the other methodologies being
ranked could be used to provide input for the ground motion and spectrum

,

calculations. For this study, the Uniform Hazard Method is considered|
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to have the following tasks: 1) collection of geologic, tectonic and
seismicity data, 2) solicitation of expert opinion to delineate seismic

; sources and earthquake occurrence models, and 3) compilation of expert
'

opinion and formatting for input to later methodology stages. Viewed in
this manner, the portion of the_ methodology to be ranked is essentially
using experts to act as Bayesian processors operating on sample data and
subjective opinion to produce an earthquake recurrence model.

.

3.6.3.1 Data Collection

*

The first task is somewhat different here than all the other methodolo-
_ ;

gies. The seismicity data should be compiled as described in Section
2.1.2.1 under the Log Linear Model. However, much of the data evalua-
tion is the responsibility of the experts in the second task. Informa-'

| tion about data quality and completeness is developed to be provided to
the experts; the final evaluation and selection, or rejection, of
various data are left to expert opinion. In addition, the experts.are
also provided with geologic and tectonic information that may supplement
their knowledge.

'

,
,

1 3.6.3.2 Solicitation of Expert Opinion
4

The second task begins with determining what parameters and descriptions
will be required. Questions are formulated to quantify answers and
uncertainties, avoid prejudicing answers, and evaluate the internal con-
sistency ' of answer sets. There may be need to iterate the question-
reply cycle to address issues precisely. This same solicitation can be
conducted by interview if the interviewers are trained in the procedure.
Accurate solicitation and quantification of expert opinion, whether by
questionnaire or interview, can have many subtleties because few persons
recognize many cues that influence opinion (Spetzler and Stael von Hol-
stein, 1975). In the TERA application (Bernreuter, 1980), experts were

. asked to delineate seismic source zones (perhaps with alternate inter-
! . pretations and associated confidences), characterize the seismicity of

each source in terms of the recurrence relation parameters a and b with
uncertainties, and to estimate a maximum magnitude or range of. maximum
magnitudes.

.

3.6.3.3 Compilation

The third task is to convert each experts' responses into the parametric
forms needed as input to subsequent methodology steps.

:
.
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3.6.4 Uncertainties

-Considerable attention'is given throughout the methodology to uncertain-
ties. - The experts are asked to indicate the uncertainties in each of
.their estimates. They also express their degree of self confidence for
each study area. Because the methodology objective is the ' uniform
hazard spectrum, uncertainties are developed for that spectrum and not

.

for the aggregate expert opinion on the earthquake occurrence model.
Each experts' - uncertainties are carried individually. through the com-
putational steps to a resultant uniform hazard spectrum estimate, one
( for 'each expert. Finally, a weighted average spectrum is calculated
along with its uncertainties.

- The ' method recognizes uncertainties in the source definitions,- earth-
quake . occurrence models, the ground motion model, and -local - site
effects. The seismic hazard estimate results from a sequence of proba-
bility calculations, and the formal uncertainty estimate is large. Even
with only the tasks ' defined for this ranking, the uncertainty can be
large.because of differing expert opinion, or artificially small if the
experts are in close agreement.

Because the method as applied to East Coast sites is too dependent on
assumed magnitude distributions, the TERA report (Bernreuter, - 1980, j
p'. 3) says "one should be cautioned against using seismic hazard values
for rare ' events (e . g . events with return periods in excess of 5,000
years)."

. Uncertainties are ~ treated ' as random errors to simplify analysis. A
clear distinction-is not'available between systematic errors and random
errors.- There may be interdependence among some uncertain quantities.

3.6.5 Regional or Tectonic Limitations

The method assumes only that earthquake occurrence can be modeled by
seismic source zones, each having relatively uniform seismicity. Any
lack of data can always be obviated if the expert is willing to give an
; opinion. As a practical matter, the experts must have a reasonable data
. base to have confidence in their estimates, and to inspire confidence in
the methodology results. Still, the method does provide a rational way
of using various expert opinions in cases where the data are inadequate. '

3.6.6 Similarities /Affinites to Other Methods

The method -is closely related to the Bayesian Method through its mathe-
matical approach. However, application of Bayes Rule becomes subjective
with the experts as they combine the prior data (their prior opinions)
with the sample data provided to arrive at a posterior opinion.
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The method, as it has been applied, has a basis similar to the Log
; Linear Model because expert opinion is used to specify parameters in a
i Poisson distribution for earthquake occurrence and a bounded log-linear:

magnitude distribution.

3.6.7 Prior Applications

This method was developed under NRC sponsorship and has been applied so
f ar exclusively to nuclear power plant sites. The sites include Zion,
Palisades, Big Rock Point, Dresden, La Crosse, Yankee Rowe, Oyster
Creek, Connecticut Yankee, Millstone and Gina.

i.
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4. RANKING

Ranking the five selected recurrence methods was conducted according to
the ranking methodology developed in Task 1. For this ranking, the Log
Linear Poisson Model was subdivided into Cumulative Least Squares,
Differential Least Squares, and Maximum Likelihood methods. Thus, seven
separate methods were carried through the ranking process.

The ranking procedure is intended to be objective and highly visible.
Obtaining the objectivity.is not a trivial task because the mere choice
of ranking criteria and relative weights assigned to them can reflect
personal biases. But, if each of the steps and judgments can be clearly
seen, then any subjectivity can more easily be identified by users or
independent reviewers. Ranking criteria arise from several broad
aspects of the earthquake recurrence interval estimation problem such as
definition of sources, assumptions about the earthquake process, data
limitations, and the perception of the method.

For this ranking study, we presume seismic sources have been delineated
as they may be required for input to a recurrence method.

There are obvious criteria addressing the accuracy of recurrence
estimates and their associated uncertainty. Several criteria relate to
the earthquake process itself. How well does a method use current
knowledge of the earthquake process? Earthquake occurrence is tabulated
in seismicity catalogs, and various interpretations of those catalogs
are made using proposed underlying statistical distributions. There are
some insights, although not enough, into the physical process of earth-
quakes.

Seismological data limitations lead to another group of criteria. How
well does a method deal with data that may be inconplete, inaccurate, or
even non-stationary? Can all of the required data be measured, or are
assumptions required?

Another group of criteria includes less technical and non-technical con-

siderations such as acceptance by the scientific community, public
credibility, cost, convenience of application, and generality. These
criteria clearly are less important than those that relate to accuracy
and uncertainty. However, they may serve as useful discriminators if
some methods are found closely comparable on purely technical criteria.

The ranking criteria chosen and their proposed relative importances are
as follows:

4-1
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criterion Importance Value n 100% Basis

!1. Convenience Low 1 2

2.- Generality Average 3 5 ,

3. Uncertainty of Estimate Very High 10 17
4. Accuracy Very High 10 17 ,

-5.- Completeness Sensitivity Average 3 5 {
6. Completeness Accommodation High 5 8
7. Use of Geological Data Average 3 5

8. - Use of Geological Theory High 5 8
,'9. Agreement with Best Knowledge Very High 10 17

10. Robustness Average 3 5

11. Subjective Judgment High 5 8'
12. Public Acceptance Low 1 2 i

*

These criteria are described further in Section 4.2, Criteria Scoring.
Not all of the criteria are completely independent. Trying to achieve
truly independent criteria would tend to produce very narrow criteria
that could be unwieldy to apply. Some interdependence is reasonable if
it is clearly recognized. Assigning criteria scores is intended to help
discriminate between recurrence - methods, so the perception of average
performance can be taken as a score of 4. Relative ranking of methods
is the objective rather than some arbitrary scoring threshold.

Each criterion is also assigned a weighting factor relative to the other
criteria. Care is taken so that the combined - importance of several
moderate or average criteria should not be allowed to overwhelm some
critical criterion. Development of one set of weights on a numerical
scale is given above, but these weights should be considered one of the
primary subjects for review and possible modification.

Several criteria are related to . statistical aspects of determining
earthquake recurrence intervals. Statistical analysis and testing was
conducted to aid in scoring the criteria that relate to'the statistical
properties of the methodologies. Items such as accuracy, specification
of ' uncertainty, and sensitivity to data quality, completeness, and
length were tested using synthetic catalogs having known statistical
properties. In addition, an interactive computer routine was used to
. test how well proposed distributions fit real data catalogs.

The following sections summarize the ranking results, present the tabu-
lated criteria scores, and discuss the individual criteria scoring in'

detail.
i

j 4.1 Summary of Ranking Results

The individual criteria _ scores and resulting ranking scores (weigh ted
sums) are given in tabular form in Tables 4-1, 4-2, and 4-3 for three

4-2
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Table 4-1

CRITERIA SCORING BY SCORER A, SPREAD SCORING

Criteria Weights Methodologiesl
A B C D E F G

W-1 W-2 CLS DLS ML EV SM B UHM

1. Convenience 1 1 6 6 6 7 4 4 1

2. Generality 3 3 5 5 5 4 1 3 7
3. Est. Uncertainty 10 10 4 4 4 4 1 1 3
4. Accuracy 10 10 4 4 4 4 4 1 4
5. Cog. Sens. 1 3 4 4 3 5 7 1 4

! 6. Comp. Accom. 1 5 5 5 4 3 7 1 4
7. Use Geol. Data 3 3 1 1 1 1 5 3 7
8. Use Geol. Theory 3 5 1 1 1 1 5 3 | 7

* 9. Best Knowledge 3 10 3(1) 4(2) 4(2) 3(1) 7 1 4

0 10. Robustness 3 3 6(3) 6(3) 7(3) 7(3) 1 4 4
11. Sub. Judgment 3 5 2 2 1 1 4 4 7
12. Pub. Accept. I 1 7 6 6 3 1 1 4

Unweighted Suas 48(43) 48(43) 46(40) 43(37) 47 27 56
W-1 Weighted Suas 156(141) 158(143) 156(138) 149(131) 138 81 191
W-2 Weighted Sums 211(182) 220(191) 210(178) 196(164) 247 108 271

l h e letters A,B,C, etc. key the methodologies to Figures 4-1, 4-2, etc. h e methodologies are:
CLS, Cumulative Least Squares
DLS, Differential Least Squares
ML, Maximum Likelihood

'

EV, Extreme Value
SM, Semi-Markov
B, Bayesian

;

UHM, Uniform Hazard Method

The notation X(Y) when used indicates scores for Eastern (Western) data.

i

.



Table 4-2

CRITERIA SCORING BY SCORER B, STANDARD SCORING

lCriteria Weights Methodologies
A B C D E F G

W-1 W-2 CLS DLS ML EV SM B UHM
_

1. Convenience 1 1 4(5) 4(5) 4(5) 6 2 3 1

2. Generality 3 3 4 3 3 5 3 2(3) 7
3. Est. Uncertainty 10 10 2(4) 2(4) 2(4) 2(4) 1 1 2

4. Accuracy 10 10 3(4) 2(4) 3(4) 3(4) 1 2(3) 3(4)
5. Comp. Sens. 1 3 3(4) 2(4) 2(4) 6 4 2 4

6. Comp. Accom. 1 5 3(5) 3(5) 3(5) 2 6 2 7

7. Use Geol. Data 3 3 2(4) 2(4) 2 2 2(5) 2(4) 4

8. Use Geol. Theory 3 5 3 3 2 2 6 4 7

9. Best Knowledge | 3 10 4(3) 4(3) 3 3 4 2 4
,

i 10. Robustness | 3 3. 4 4 4 5 2 | 1 4

11. Sub. Judgment 3 5 5(4) 5(4) 4(3) 2 6 6(5) 7

, 12. Pub. Accept. I 1 6 6 4 3 2 3 6
I

Unweighted Suas 43(50) 40(49) 36(43) 41(44) 39(42) 30(33) 56(57)
W-1 Weighted Sums 132(166) 118(163) 117(149) 124(154) 103(112) 91(107) 167(177)
W-2 Weighted Suas 194(229) 178(226) 166(208) 173(203) 187(196) 137(151) 259(269)

1 The letters A,B,C, etc. key the methodologies to Figures 4-1, 4-2, etc. The methodologies are:
CLS, Cumulative Least Squares
DLS, Differential Least Squares
ML, Maximum Likelihood
EV, Extreme Value
SM, Semi-Markov
B, Bayesian
UHM, Uniform Hazard Method

The notation X(Y) when used indicates scores for Eastern (Western) data.
.
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Table 4-3

CRITERIA SCORING BY SCORER B, SPREAD SCORING

lCriteria Weights Methodologies
A B C D F G'

W-1 |W-2 CLS DLS ML EV Se. B UHM

1. Convenience 1 1 4(5) 4(5) 4(5) 7 2 3 1

2. Generality 3 3 4 4 4 5 2 1 7
3. Est. Uncertainty 10 10 3(5) 3(5) 3(5) 3(5) 1 1 3
4. Accuracy 10 10 2(4) 2(4) 2(4) 2(4) 2 1 3
5. Comp. Sens. 1 3 4 3 3 7 4 1 4

6. Comp. Accom. 1 5 3(4) 3(4) 3(4) 2 6 1 7
7. Use Geol. Data 3 3 2(3) 2(3) 2(3) 1 3(4) 4 7
8. Use Geol. Theory 3 5 3 3 2 1 4 4 7
9. Best Knowledge 3 10 4(3) 4(3) 3(2) 2 7 1 5

7 10. Robustness 3 3 6 6 6 7 2 1 4
*

11. Sub. Judgment 3 5 4(3) 4(3) 4(3) 1 6 5 7
12. Pub. Accept. I 1 6(7) 5(6) 4(5) 3 1 2 5

Unweighted Suas 45(51) | 43(49) 40(46) 41(45) 40(41) 25 60
W-1 Weighted Sums 136(176) 134(174) 127(167) 120(160) 115(118) 75 188
W-2 Weighted Suas 198(233) 194(229) 178(213) 160(200) 216(219) 106 287

I The letters A,B,C, etc. key the methodologies to Figures 4-1, 4-2, etc. The methodologies are:
CLS, Cumulative Least Squares
DLS, Dif ferential Least Squares
ML , Maximum Likelihood
EV, Extreme Value
SM, Semi-Markov
B, Bayesiaa
UHM, Uniform Hazard Method

The notation X(Y) when used indicates scores for Eastern (Western) data.
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variations in the criteria scoring and two variations in weighting. The
variational are discussed . under Criteria Scoring, Section 4.2, but they
are mentioned briefly here. Scoring was.done first on the 1-to-7 scale
with pro-chosen performance - standards defining low, medium and high
scores. Another scoring . variation was obtained by giving the best
method a score of 7, the least -method a score of 1, and distributing
the remaining methods in the interval. The two criteria weighting.

variations are: the weighting developed along with the ranking methodo-
.

,

logy, and - a slightly different weighting suggested by Robin McGuire. !

The tabulated data permit alternative weighting schemes to be imple-
mented easily, or the efftets of varying certain criteria scores to be
checked.

| The - summed scores for the methodologies are given in Figures 4-1 and
4-2. These figures do not show any functional relationships, but merely

I help display the results in a convenient manner. Each methodology is
; coded A, B, C, etc. as shown in the tables. The ranking scores were

| normalized so a perfect score would be .100. For each data subset
; (scorer / scoring-approach / East-or-West data) , three sets of weighting
i results are shown: the unweighted sums, sums weighted according to the
i proposed ranking scheme, and sums weighted according to McGuire's pro-

posed weights.
,

! Figures 4-1 and 4-2 quickly show some of the major results of the
k ranking.

1

[ o The Uniform Hazard Method (G) consistently shows higher scores
than the other methods.

*

;

o The Bayesian Method (F) consistently shows lower scores than
i the other methods.

| .

'o The Poisson Log-Linear methods (A,B,C,D) and the Semi-Markov
Method (E) . are grouped mid-way in the ranking.

o The above three observations appear to be insensitive to the

,

choice of scorer, scoring approach, or weighting scheme.

i .

| o Within the Poisson Log-Linear methods (A,B,C,D), the Cumulative

!: Least Squares (A) and Differential Least Squares (B) generally
1. seem to come out a little better than Maximum Likelihood (C)

and Extreme Value (D), though perhaps not significantly so.

f'
'

o The Semi-Markov Method (E) shows variable results, and appears
sensitive to the weighting scheme applied. ,

,

4-6

|
,

;
. - . _ _ _ _ _ . _ _ _ . . _ . - . _ _ . _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ . - _ _ _ . _ . _ _ , _ , - _ _ _ _ - . - . . _ _ _ . . _ _ _ -



SCORE

20 30 40 50 60 70 80
5 I | 3 3 3 4

I
,

r F C E BD A
O UN-WT p * 7

' 5 .Y :

gm /

me ( iAo WT2 F C D ;E A Gg

g .)IQM
z .

6 ..1||
IC)B{DWT1 F A G

B

UN WT k p

!ie
z / | '|E4 / /I '.'O *M iC* /
Mg ( WT2 F D{A {B Es . ,G

*

0 0 s- \.1s \.
\ . .t .. . -E

b
.\.

1
-

- l
.

WT1 F E *- dea kB [Gg

E
F CD B A G

' Vi
O / VE // i .*e j '/ / .

a- - / .

[D k, B f A ,.h E Gy( WT-2 F'

<O -

! I *,

au \ \ ..-| ..
s \.Y

E. Uk A GwT.i ,,F

s

FIGURE 4-1 SCORES FOR EASTERN APPLICATIONS, NORMALIZED TO 100
FOR A PERFECT SCORE. NOTATION FOLLOWS THE FOOTNOTE
TO TABLE 41

47

. _ . _ _ ._ .



SCORE

20 30 40 50 60 70 80
3 3 5 5 5 5 B

hh,D A G
f UN-WT

$ l' ll
i I

5: .I [
iE /

I
P

O$ f WT.2 F< E. C BA G

.imo .

|
'

.-

) I< -

F [ , *I ChD B A G
WT.1s

;

B
F D C A E G

UN-WT t

f |f .

e |
*

i

E4 //
!i!gm .

C{ A(B ,.'s E 'GWT2 F D <

O

5@ '\ \ \ .--
.

E .'s \ \ .
'

\[\ \BhTE
h -s

G'

q wr.i

"
/UN-WT

. ./ | |'a .

liJ
'

Ea
/ \| 1

Q5 ( D( c.ty\gA
G08 wr.2 ,F

x\.Su x.
g .- x,

.

. . - g \s
~i D\ c\e\ A owr. ,F,s

FIGURE 4-2 SCORES FOR WESTERN APPLICATIONS, NORMALIZED TO 100
FOR A PERFECT SCORE. NOTATION FOLLOWS THE FOOTNOTE
TO TABLE 4-1

48



. .- . - . - - - -_-

4.1.1 Uniform Hazard Method

The - high scores 'for the Uniform Hazard Method were not anticipated
beforehand, but they are strongly related to the criteria chosen in the
ranking methodology. The criteria for generality, completeness accom-
modation, use of geologic data, use of geologic theory, agreement with'

- best ~ knowledge, robustness, and ' use of subjective judgement all can,
' _

be expected to rate high scores for any method that can use a great deal
of subjective, expert opinion. In effect, the experts are able to draw
on all.other methodologies, if they wish,' to formulate their opinions.

f. Clearly, the-weighting scheme has permitted these criteria to overwhelm
the: effects of " convenience", in which UHM ranked least, and key cri-

'

teria of " accuracy" and " uncertainty", in which UHM was. ranked as
avercge or . below. Heavier weighting on convenience, accuracy, uncer-
.tainty estimate, and public acceptance would affect the method's score.
Further consideration of the weighting scheme, with input from several
sources, may be desirable before adopting the ranking results.

In choosing criteria scores, we have usually presumed the experts would
make the best possible use of geologic' data / theory, or the best accom-
.modation to incomplete data, etc. The potential for expert panels
probably exceeds the performance of a specific panel, but scoring here
'has not been adjusted for any imagined performance factor. In the TERA
application, the experts were limited to choosing seismicity zones and

| Poisson Log-Linear model seismicity parameters for those zones.

Finally, the ' full Uniform Hazard Method has not been rated in this
ranking, only those aspects relating to earthquake recurrence within the

,

seismic zones. This limitation was necessary because none of the other
methodologies to _ be ranked consider attenuation, site response, and
response spectra calculations.

# 4.1.2 Bayesian Method

One important attribute of the Bayesian Method as proposed by Mortgat
and Shah (1978) is the critical need for a sample distribution' that

j - includes data at the magnitudes that correspond to large, rare earth-
quakes. The Bayesian ' approach is quite simple: a prior statistical
. distribution (perhaps based:on expert opinion) is multiplied by a sample
statistical distribution (observed data) to produce the desired esti-'

mate, a posterior statistical distribution. The method is - formulated
for earthquake magnitudes in discrete bins. If no sample data are4

'
observed for a particular magnitude bin, the Bayesian output 'is zero.
The equations of Mortgat and Shah (1978) do provide an output if the
= sample. data are zero, but the output is just the unaltered prior distri-
bution and not really a Bayesian result. This need for observed data at
large magnitudes is a critical flaw in the method as described. The

<
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- method 'also scores low because uncertainty 'is not treated, and the
- equations are rather obscure.

' 4 .1. 3 ' Poisson Log-Linear Methods
,

The, Poisson Log-Linear methods tend to cluster in mid-range in the
ranking results. For the most part, these methods usually clustered in

- ~the mid-range-for.the. individual criteria scores.also, most scores were
near _ average. The strongest criteria scores were for convenience,- ,

generality, and public ~ acceptance. The weakest criteria scores were
for.use of geologic data / theory. The least squares methods, Cumulative
and Differential, tend to have slightly better scores than Maximum

,

Likelihood and Extreme Value. Among these methods, Maximum Likelihood'

seemed to.give the.best accuracy and uncertainty results in the synthe-
tic catalog studies by Knopoff.

i
'

The Extreme Value method also seems to invoke extreme scores, very high
for convenience, completeness sensitivity and robustness; and very . low
for use of geologic data / theory and use of subjective judgment.

I ' 4.1.4~ Semi-Markov Method

The Semi-Markov Method also placed mid-range in the scoring, but shows
more variable scores than the other methods. For western data (Figure
4-2), high seismicity areas, the standards-scoring approach with-

. unweighted sums placed the Semi-Markov (E) among the Poisson Log. Linear
methods -(A,B,C,D) ; - the spread-scoring placed E above A,B,C,D for one
independent scorer and E below A,B,C,D for the other independent-scorer.
For eastern data (Figure 4-1), low seismicity, the analogous results are.

,

E within ' A,E,C,Dr. E near top of A,B,C,D; and E near bottom of A,B,C,D.|'
'

The weighting scheme proposed in the ranking methodology consistently
enhances the relative position of E. The weighting scheme proposed by
McGuire consistently lowers the relative position of E. The main cause
of : these s effects is that the McGuire weighting scheme places lower
weights on the criteria for completeness sensitivity, completeness
accommodation, use;of geologic theory, agreement with best knowledge, '

and use of, subjective judgment. On most of these criteria, .the
. Semi-Markov Method is scored higher than the Poisson Log Linear Methods,
but ' the other criteria usually scored lower. This distribution of'

scores causes the Semi-Markov Method to be sensitive to the weighting
schemes used..

Many criteria for which the Semi-Markov Method scored well are related
|- to correspondence between the methodology's model and the presumed
!- actual earthquake, processes. The Semi-Markov Method is the only method

- ranked that has a model that may reflect some causal aspects of the

4-10
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earthquake process. All the other methods directly, or ultimately, use
a Poisson random process for earthquake occurrence. Thus with a spread-
scoring approach, the Semi-Markov scores very high. The standards-
scoring . approach can give good, but not necessarily excessive, scores
for model-related and expert-related criteria.

4.2 ' Criteria Scoring

Twelve criteria were selected for ranking the methodologies. In each
following section, all methodologies are considered simultaneously rela-
tive to a given criterion to achieve the best relative scoring for the
criterion. Each criterion is scored on a 1-to-7 scale. A seven-point
scale has precedence in psychological testing and probably represents a
practical limit to the distinctions that can be judged. Two approaches
to scoring were used, and these are referred to as " standards-scoring"
and " spread-scoring."

In the standards-scoring approach, standards were defined for low,
average, and high scores. The-methodologies were assigned scores rela-
tive to the standards and to each other. Scores for a particular cri-
terion could be spread out or clustered according .to the scorer's
perception of the methods. Most of the discussion below is for the
standards-scoring approach, and similar. considerations are not restated
for' the spread-scoring. Often, the Log Linear Method was arbitrarily
chosen as average because it has considerable prior usage. An. average
performance is scored as 4, and scores are completely relative for the
methodologies considered here.

In the spread-scoring approach, the method perceived as best was usually
assigned ~a score of 7. The method perceived as least was assigned a
score of 1. The remaining methods' were then distributed in the inter-
val.- Sometimes they were grouped toward one extreme or the other.

Separate scores for applications to eastern sites (low seismicity
regions) or to western sites (high seismicity regions) seemed
. appropriate for some criteria. When they differ, scores-are given for
eastern sites and western sites in the format X(Y) where X is the
eastern score and Y is the western score.

Most of the discussion below-is for the standards-scoring approach done
initially by one author, and later updated af ter ranking discussions.
Two independent scorings were done using the spread scoring approach.

-These results were compared with the standards scoring results to verify
there were ' no significant differences that should be resolved in the
sequence of relative scores, such as A >B, B =C, C> D, etc. No
attempt was made to adjust the independent scores, nor are there any

-differences that represent strong, significant disagreement.
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; 4.2.1 ' Convenience

Convenience is clearly a general term and tends to encompass many other
. criteria : as well as, perhaps, a subjective attitude toward a method.
Ideally, a method.would be quick, relatively easy to apply, and require

*

only . readily available data. An average method is taken as using ,

readily available data and having no excessive computation requirement. |
~

'

Significantly greater effort rates a lower score. A simple method with
minimal need for expert intervention rates a high score.

'

The Log Linear Method rates an average score, almost by tradition. If ,

'
adequate data are available, the method can be applied quickly and con-

,

j 'veniently. -Any difficulties-.are usually related to cases where data are
sparse for any statistical method. There seem to be no differences in
. convenience between the cumulative least squares and the differential i.

least ' squares. Maximum likelihood has slightly simpler computations.'

Convenience is down graded some for Eastern seismicity because much morer

i attention must be given to data completeness and representativeness.
The scores are: Cumulative Least Squares 4(5), Differential Least-
Squares 4(5), and Maximum Likelihood 4(5) .4

. The Extreme Value, method .is easier than the Log Linear method because
i .only maximum earthquakes in successive time periods are considered. In

.

.many cases, less expert input is needed, and the method could be applied ,

''

practically' by rote. However, if the method were developed further,
statisticians may wish to include sophisticated tests for distribution
type:and goodness of fit. Then, the method would lose some of its pre-
sent convenience.- The score-is 6.

,

The Semi-Markov method requires considerable data interpretation to
estimate probabilities for the transition matrix and distributions on -
the various i,j interoccurrence times. Subjective judgment _ and expert
input are-required for data on rare events. The number of variables to

* be evaluated increases as the square of the number of systems states

; considered. The method has been illustrated with circum-pacific plate
boundary earthquakes rather than eastern or western seismicity. The
score is 2.

,

| The Bayesian Method can be applied in a straightforward manner if the -
data are adequate. Subjective expert input is needed to define the data

,

sets and possibly to form the prior distributions. Reliance on expert'

input increases quickly as the data are less available. The score is 3.'

Because it - requires extensive interactions with a panel (or panels) of.

. experts, the Uniform Hazard Method requires considerable time and effort

| in most practical cases. The method analysts also have to be more inti-
mately involved with the many ' steps than in other procedures, excep

: .perhaps the Semi-Markov method. The score is 1.

4-12,
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For the spread-scoring, the clear choice as the least convenient method
is the Uniform Hazard Method, score of 1, because of the cumbersome
cycle to elicit. review and revise expert opinion. The best score, 7,.

is assigned to che Extreme Value Method because of its simplicity. The
various Poisson methods tend to rank high because they are nearly as
convenient as the Extreme Value Method.

4.2.2 Generality

A desirable chara.cteristic is that a method should be applicable to all
regions and site types. All methods considered here have broad general-
ity in their theoretical bases, so no tectonic restrictions are evident.
However, data availability in various regions does strongly influence
the application of some methods. An average score for this criterion is
given if the method has at least some applicability to both eastern and
western seismicity.

The Log Linear Method can be applied universally, at least in some form
and with expert input. A rote application would not be dependable
though for an area with sparse seismicity. The method is very much
empirical using whatever data is available. Although widely applicable,
the method is scored average because difficulties can arise as less data
are available. The maximum likelihood method could be downgraded a
little because it seems a little less flexible in the presence of data
problems. The cumulative least squares is more widely used and appli-
cable because it smoothes the recurrence datr. points: it also fits some
mathematical developments more easily because it uses cumulative distri-
bution. The scores are: Cumulative Least Squares 4, Differential Least
Squares 3, Maximum Likelihood 3.

The Extreme Value Method applications are essentially similar to the Log
Linear Model, or even a little more broad because only largest earth-
quakes are needed. The useful data in an eastern seismicity situation
may span a longer time period than that for complete magnitude distribu-
tions. The score is 5.

The Semi-Markov Method requires either statistical data for all earth-
quake magnitudes considered, or expert input for those magnitudes. The
score is less than average because of the need for many input parameters
that may be based on sparse data. In a sense, the inclusion of expert
opinion could overcome any local problems, but this approach tends to
circumvent the basic method. The method is intended to estimate proba-
bilities for facility lifetimes rather than annual probabilities or
return periods. The score is 3.

The Bayesian Method can combine both expert opinion and observed data.
Expert opinion can be used to overcome data deficiencies. However if

4-13
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i there are no sample data to represent'the site, then the method degrades
into just expert opinion and perhaps use of data from' analogous sites. |

The Mortgat ' and Shaw (1978) equations 2.21 through 2.24 provide just the
prior : distribution as output if the sample distribution is zero, but

~

this result is not really Bayesian. The sensitivity of the Bayesian
Method to ~ sample data (site related) at the actual magnitudes of rare,

earthquakes is a serious problem that affects many of the criteria'

scores. = The scores for generality are 2(3) .

Because the Uniform Hazard Method - depends heavily on expert opinion,
it is the most universally applicable method. The method is limited (if
at all) caly in being .able to find experts to i mder their judgments.'

- The score is 7.

For the spread-scoring approach, the Uniform Hazard Method easily ranks
as the most general method, score of 7, because the experts can call on
any techniques they wish to estimate the seismicity parameters. .The
Bayesian Method was chosen as least general, score of 1, in one indepen-
dent ranking because of the high potential for zero sample data at many

I sites and magnitudes of interest. The Semi-Markov Method was chosen as
least general, score of 1, in the other independent ranking because data
may of ten be too sparse to estimate the many input-parameters. Both.

rankings place the Bayes and Semi-Markov methods low.
:

] 4.2.3 Uncertainty of Estimate

The important attribute here is the ability to estimate an uncertainty
such that-_the true annual probability is included in the interval of the
return period estimate plus-and-minus the uncertainty. Magnitude of thep
uncertainty is a useful criterion only if the above requirement is met.
A problem can arise from actual non-stationarity in the earthquake

: generation process (comparing sample duration' to return periods for rare
ear thquakes) . All methods that aren't strongly constrained in some way
by ' the geologic rates may sometimes have unrealistically small uncer-
taint'les. Arguments can' be made that long-term rates are not

,

i necessarily most . relevant to a facility with limited design lifer
current statistics may be more representative than'long-term statistics

F if the two' differ. For this ranking, we have modeled earthquake cata-
L logs and used 'long-term statistics as a standard against which to rate

the 1short-term based estimates (see Section 5.1 and 5.2) . For a high

; score, a method's estimate plus-or-minus one c. should -include the long
term rate about 70% of the time, and the c's should be comparable to the

,

: actual long-term O'. For average score, the c's are larger than the
long term'a, perhaps a factor of 2.i

| Tests using synthetic- catalogs based on the most common statistical

| assumptions for the earthquake generation process (Poisson process with
|

I
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i - log-linear magnitude distribution) compared several Log Linear Methods
and the Extreme Value Method (see Section 5.1) . Maximum Likelihood was"

generally best with Cumulative Least Squares not far behind. Means and
signas 'of the estimates were compared to the long-term mean. Other
tests were conducted using an earthquake catalog from a generating pro-
cess meant to be one step more complex than any of the methodology
assumptions (see Section 5.2) . Visually, the catalog sequence appears

! clustered and irregular on the time scales appropriate to modeling
seismicity estimates; the long term statistics closely model the Poisson
process ;with a log-linear magnitude distribution. The methods tested
(the Log Linear variations, Extreme Value, and Bayesian) showed estima-
tes plus-and-minus one sigma that included the long term mean about 20%'

to 30% of the time. Using plus-and-minus two sigma raised the perfor-
mance much closer to 704. To the short term estimates, again par-
ticularly. the eastern seismicity, the catalogs appeared non-stationary.
None of these tests were able to model the reasonable and quite valuable
influence of an analyst judging the input data and perhaps modifying ori
rejecting some data, or using geologic information and theory.

,

The Log Linear Model generates uncertainty estimates that measure how
; well the data points fit a linear relation. A fortuitous data set can [

'
give an extremely good fit. The method clearly suffers when applied to4

eastern data sets, uncertainties can vary widely because of the sparse
data. However, using expert judgment can keep the input data set,

reasonable,_and the results are at least reasonable. Maximum likelihood
*

approximates a weighted least squares emphasizing data points for small
magnitude earthquakes. This weighting is particularly important if the,

! rates for the two lowest magnitudes are not co-linear (log-linear'

relationship) with rates observed for higher magnitudes, and can lead to
, - much variation in estimates when using eastern data. The synthetic

catalog ' studies results have been tempered somewhat for the least
squares methods because expert input would clearly be used in most
applications to carefully evaluate the input data. The scores are

! . Cumulative Least Squares 2(4), Differential Least Squares 2(4), and
{Maximum Likelihood 2(4).,

The Extreme Value Method provides uncertainties quite similar to the Log
} Linear Method when the data are generous because the underlying theory

is the same. However, for sparse data as eastern seismicity, the2

various short term estimates vary considerably. Expert judgment of the
~

input data cannot identify possibly spurious data points so easily here
as in the Log Linear Method. In practical cases, there may be extreme-

- value data available for a longer time period, and the statistics could
improve somewhat. The scores are 2(4).

In applying the Semi-Markov Method, considerable unquantified variation
.. can be introduced through using subjective opinion to develop the tran-
F sition matrices. In most cases, the data for rare events are probably
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1

few and uncertainties on the transition probabilities are large. The

way these uncertainties propagate through the Semi-Markov process that
is used to model earthquake generation is not practical to calculate.
The method's authors - (Patwardhan et al 1980) used a parametric analysis
and explored only a few combinations of uncertainties. Because the
uncertainties are not defined, the score is 1.

For the Bayesian Method, uncertainties in the final estimate are not
defined by Mortgat and Shah (1978). Each posterior distribution, rate

and magnitude, is analytic with defined uncertainties so a combined
uncertainty after removing the condition on n earthquakes may be
feasible. However, such uncertainty would be rather artificial because
of the choices for prior functions. The prior function on the rate A is
a gamma function for the mathematical convenience, and it is used
without regard for the expert's subjective uncertainty in the rate. If

data are used for the rate A, there is no incorporation of a GA.

Furthermore the posterior distribution is strongly influenced by the
relative weighting given to the prior distribution and the sample func-
tion. Similar arguments apply to the magnitude distributions.

Uncertainties are not defined. The score is 1.

The Uniform Hazard Method is bas'ed upon the Bayesian approach, but
experts are asked to perform as the Bayesian processor. They are asked
to give estimates of uncertainty in their results. Thereaf ter in the
method, detailed attention is given to uncertainties and how they
propagate through the procedure. As a result, the method gives a good
analytical result of the cumulative effects of vatious sources of uncer-
tainty. However, in practice, these uncertainties are strongly subjec-
tive rather than based on statistics. There is an unknown inter-
dependence among various uncertain quantities, and the very basis of the
method is such that the estimated uncertainties tend to measure the
expert's relative confidence rather than any physical quantity. The
values are sometimes' quite large, they serve best for comparison with .
other sites analyzed in the same manner. The Uniform Hazard Method does
not provide uncertainties at the earthquake recurrence rate stage,
because the expert's input is combined only at the end of the full pro-
cedure. The score is 2 because the uncertainty values are best used for
comparison with other sites analyzed similarly.

For the spread-scoring approach, both the Semi-Markov Method and the
Bayesian Method are ranked as least, score of 1, because they do not

provide uncertainty estimates for a specific site calculation. The

Uniform Hazard Method is also ranked low because its uncertainty estima-
tes are not intended to be used except for comparisons. None of the

methodologies was perceived as deserving a 7 score, the remaining
methods were given average, or essentially neutral, scores.
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4.2.4 Accuracy

The . standard proposed for accuracy testing with synthetic catalogs was
that an estimate for return period should be within some percentage 'of:

1 the true long-term return period: 10% for a high score, 304 for
average, and 50% for a low score. This standard was not so straightfor-
ward in practice. Testing using some methods on the Knopoff catalogs

* (see section 5.1)can be-argued to be somewhat circular because the cata-
log synthesis was based on the same ; statistical ' assumptions as the
methodologies. Thus we probably obtained predicably acceptable accura-

; cies for some tests on the Knopoff catalogs. Testing with the McGuire
catalogs (see Section 5.2) has the problem that the catalogs are quite

. variable in .their statistical properties for time periods comparable to'

actual data catalogs. This variability may, in fact, be an excellent
model of real catalogs,.especially for eastern seismicity. Some results

, for the McGuire catalog differ from the long-term average, but are very
J . good local estimates. Some methodologies such as Semi-Markov and

Uniform Hazard Methodology were not tested against the synthetic cata-
logs. Scoring this criteria does use the test results, but has to be
more subjective than originally envisioned.

; The Log Linear Model showed predictably good results on the Poisson
! catalogs when the method assumptions and the catalog distribution were

similar. Some synthetic catalogs, particularly eastern seismicity, were
erratic at the upper magnitudes. The automatic procedure for least

j squares produced some fits that an analyst would probably modify by
j rejecting some data points. Differential least squares was'most sen-

sitive to " questionable" data points. With the McGuire catalogs, some
recurrence curves and extreme value plots were very linear indicating a

!: good data fit. At the same time, these portions of the catalog were
clearly different statistically from the long term catalog properties.

|,
These results have pointed out the need to analyze real data catalogs
for their most appropriate distribution form and the goodness-of-fit.

b Scores assigned are: Cumulative Least Squares 3(4), Differential Least-
Squares 2(4), and Maximum Likelihood 3(4).

,

The Extreme Value Method was tested along with the Log Linear methods,
and the above discus'sion applies here as well. Extreme Value seemed to
be at least comparable to . Cumulative Least' Squares. The ' scores are
3(4).-

The Semi-Markov method is essentially a modeling procedure rather than a
way of analyzing seismicity data. The results are heavily dependent on

>

the initial conditions and the . process assumptions. When enough sta-,

tistics are known that the transition matrix elements and the interoc-
currence time distributions are well constrained, the method's results '

may be comparable to other methods. But in most cases, the statistics
of rare events will not be known adequately. The method seems most

i

1
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appropriate'for testing the implications of various seismicity hypothe-
ses. The accuracy' of - the results ' are generally unknown. The score is

1.

-The accuracy!of' the Bayesian Method results can be greatly affected by
the subjective input for . the prior _ distributions and the weighting
' applied to these distributions. Thus, the accuracy is poorly controlled
if expert opinion is given much weight. The very act of trying to com-

'bine disparate data such as geologic opinion and seismic . history . csn
cause the accuracy- to be ill-defined. Comments in Section ";.2.3 about

. method uncertainties are equally applicable to the method accuracy. -If

two. classes of data are used to define the prior distribution and .the
sample distribution,-accuracy is a function of the representativeness of
these distributions. However, even with pure data input the accuracy
could-be variable. The Bayesian Method is scored less than average for -
this criterion primarily, because the accuracy is not- well defined.
Furthermore, if there is no sample data for the desired magnitudes, the
Bayesian approach indicates zero output. The scores are 2(3).

In the Uniform Hazard Method, accuracy is not readily controlled. There
is nothing in the method .that distorts the inherent accuracy of the
expert opinions, but their inherent accuracies are totally unknown. In

general, we would like to believe that the expert opinions are at least
reasonable, and perhaps as accurate as any formal statistics could be
for the same site. The scores are 3(4).

-For the spread-scoring approach, the Semi-Markov Method was judged
least, score of 1, because the accuracy is not defined, and the proce-
dur'e :is just an attempt to model the ' seismicity process. The Bayesian
Method was also given a score of 1 here because a lack of sample data at-

the race-event magnitudes leads to a nul answer. As in the uncertainty.

estimate criterion, no method was' perceived as deserving a 7 score. The
Poisson-based methods were given average, or neutral, scores.

~4.2.5 Completeness Sensitivity

Data for a particular site region may be incomplete because some small
or moderate shocks that have occurred may be omitted from the seismicity
record. Incompleteness to some degree is practically unavoidable as the
coverage for seismicity is extended to earlier dates and/or smaller ,

magnitudes. An average score for this criterion is given if a method i

recognises the sensitivity, and the sensitivity is not excessive. Low

scores are given if the sensitivity is not well defined. High scores if
the method is ' insensitive. The ability to overcome any sensitivity is
considered in the subsequent criterion.

In the Log Linear Method, sensitivity effects are recognized in the dis-
tribution of the recurrence data points, particularly the differential
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recurrence data points. The least squares method are not considered |

excessively sensitive for Western data assuming the analyst recognizes |
,

' incosplete rates and either avoids or accommodates them. For the more ;
i sparse Eastern data, there is less opportunity to recognize or accom-
1 modate incomplete rates. The Maximum Likelihood method places less
! emphasis on recurrence curves, so incompleteness is less likely to be
' observed unless the curves are plotted. The scores are: Cumulative
; Least Squares 3(4), Differential Least Squares 2(4), and Maximum

Likelihood 2(4) .

The Extreme Value Method is among the least sensitive to data couplete-
ness because incomplete data affect mostly the small-magnitude shocks.
The main virtue of the method is overcoming data incompleteness.
However, if the time periods used are extended back too far, then some

' earthquakes could be missing even from the extreme value record. The,

score is 6.

4
L

The Semi-Markov Method uses statistics for only the larger-magnitude
earthquakes,. those likely to be near or at the design levels.
Completeness for smaller magnitude shocks is irrelevant. However,
completeness for the larger magnitude earthquakes is quite important.
The method recognizes the sensitivity and deals with it using expert
opinion to fill in missing data. The score is 4.

In the Bayesian Method, the equations presume that data are complete for-

the. magnitude ranges used. The requirements here are the same as those
for the Log Linear methods, except the Bayesian method doesn't itself
give indications of the data completeness. The Bayesian Method permits
expert opinion to be used to reduce or overcome completeness sensitivity
in the prior data. The sample data are presumed complete and must be
non-zero, and in some cases may be chosen-with that criterion in mind.
The rate A will be sensitive to data completeness because the majority

i of shocks are at the low magnitudes. H e score is 4.

The Uniform Hazard Method is judged to have average sensitivity to data
- completeness, but expert opinion is used to accommodate all deficien-
cies. The score for sensitivity is 4.

,

| For the spread-scoring approach, the Bayesian Method was ranked as least
~

because it has fatal sensitivity to the need for sample data at the :*

desired magnitudes. Although Mortgat and Shaw's '(1978) equations just
pass through the prior distributions in the presence of a zero sample
distribution, this is judged to be a degeneration of the Bayesian
approach. One independent scorer ranked the Semi-Markov Method as
having the best score for completeness sensitivity because expert
opinion can be used to great extent. The other scorer considered
Extreme Value as ' best because it obviates the need for much of the

i lesser magnitude data.
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4.2.6 Accommodation of Incomplete Data Sets

This criterion is not completely independent of that for Completeness
sensitivity. -However, the ability to reduce adverse effects of
incomplete data or to modify the estimated uncertainty appropriately is
the quantity measured by this criterion. None of the methods ranked
attempt to modify the . earthquake recurrence uncertainty using the data
completeness. The methods.that are quite insensitive to data complete- i

ness are given an average, or neutral, score so this criterion will !
neither help nor hurt their total scores. High score is given to
methods that have, or-easily could have, a formalism for accommodating i

incompleteness. Average scores are given to methods that consider
incompleteness only in the input data evaluation and selection.

In the Log Linear ' Method, the least squares approaches can overcome ,

incompleteness'in many data sets'using the technique described by Stepp j
i(1972). This technique tries to develop stable earthquake recurrence

rates for magnitudes that will define the recurrence curve. The analyst
can also evaluate the seismicity data and choose time periods for which
the ' data .are couplete for each magnitude range. For the Maximum
Likelihood approach, Weichert (1980) described a technique to use dif-
forent time periods for different magnitude ranges. These techniques,

Stepp (1972) and weichert (1980), . are not widely used 'in the Log Linear
. Methodology, but they could be incorporated. For sparse, Eastern data,
accommodating incompleteness becomes more difficult. The scores are:
Cumulative Least Squares . 3(5) , Differential Least Squares 3(5), pnd
Maximum Likelihood 3(5) .

-

The Extreme Value Method is given a low score here because very little
is done to accommodate any data incompleteness other than to adopt a
threshold magnitude above .which the data are presumed complete. The
duration of useful data depends on the threshold magnitude chosen. The
score is 2.

In the Semi-Markov Method, expert opinion can be used to overcome any
lack of data. However, there is nothing in the method, other than
expert input, by which to judge the data completeness. Se score is 6.

Expert opinion can also be injected into the Bayesian Method to overcome
e data completeness for the prior distributions. However, no treatment

for coupleteness (either testing or correction) is specified for the
sample distributions. Although the analyst may try to select the
sample distribution to avoid . incompleteness, a lack of sample data for
large-magnitude earthquakes causes the method to fail. S e score is 2.

The Uniform Hazard Method is given the maximum score because the experts
can be used to overcome any' data completeness. The score is 7.
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For the spread-scoring aproach, the Uniform Hazard Method is ranked
best, score of 7, because the experts can provide reasonable seismicityi

parameters in all cases using data or theory. The Baysian Method is
ranked least, score of 1, because there is no provision to overcome a
lack of data at the desired race-event magnitudes, and still retain the
Bayesian approach.

4.2.7 _ Incorporation of Geologic Data

This criterion considers how geologic and tectonic information for the
site region are incorporated into the recurrence rate estimates. The
data usually relate to specific faults and tectonic structures, or the

j - characteristics of observed large earthquakes. Data may .be used
.

directly such as in supplying the . average rate for large earthquakes
during Holocene time from fault studies. Data may be used in a confir-
matory sense in judging the reasonableness of methodology estimates.

; General geologic / tectonic theories or hypotheses are considered in the
subsequent criterion. High scores are given if the geologic data arei

used directly as input to the methodology estimates. Average scores are
given if the data are used to verify or modify input data. Low scores
are given if the geologic data is used only for cosparison with the

3

methodology estimates.

In the Log Linear Method, geologic data are sometimes used to supply or
at least substantiate the rates input for larger magnitude earthquakes.
These rates can be used for the Cumulative ' Least Squares and the
Differential Least Squares. Geologic data are not used as input for
the Maximum Likelihood estimates. Geologic data for recurrence rates
are essentially non-existent for most eastern regions, so Eastern scores
are downgraded. The scores are: Cumulative Least Squares 2(4), Dif-
ferential Least Squares 2(4), Maximum Likelihood 2(2).

The Extreme Value Method is nearly a pure statistical approach.
Geologic data are not used to modify the input data in any way, but only

.
for comparison with the recurrence estimates. The score is 2.

'
' The Semi-Markov Method generally requires geologic data to construct the

transition matrix probabilities for large earthquakes. Seismological,

data are likely to be inadequate, or even missing for the race' events.
Patwardhan et al (1980) demonstrated the method using regional data for
the circum-Pacific. When applied to a siting region, geologic data for
large earthquake probabilities would be essential. 'the Eastern score is
downgraded because there are so little applicable geologic data. The
scores are 2(5).

. In the Bayesian approach, little geologic data are used directly.
Experts should incorporate geologic data in specifying their input; but

!

3
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expert input is not required. Here too the Eastern score is down from
lack of useful data. The scores are: 2(4).

The Uniform Hazard Method relies on expert opinion input, and the
experts should temper their judgements with geologic data. Geologic
data are not used as direct input. The Eastern score is down from lack
of useful data. The Eastern experts probably use more geologic theory
and hypothesis than data. The score is 4.

For the spread-scoring approach, the Uniform Hazard Method is rated
best, score of 7, because of 'its flexibility in how data can be used and
encouragement for experts to use geologic data to the fullest extent.
The Extreme Value Method is rated least, score of 1, because geologic
data are essentially ignored. One independent scorer also placed the
Poisson-Log Linear methods equally low because they can be used with
very little geologic data input. The other independent scorer placed
these methods a little higher because geologic data is sometimes used to
derive or corroborate rates for moderate to large shocks.

4.2.8 Use of Geologic and Tectonic Theory / Hypothesis

Geologic and Tectonic theory, whether supported by recurrence data or
other geologic data, may be used to help estimate recurrence rates of ,

rare events. Theories and hypotheses tend to describe the regional
setting and compare local earthquake sources with similar sources in r

other regions by analogy. Methodology input data or constraints may be
deduced from some regional tectonic theories / hypotheses. High scores ,

*are given to methods that strongly depend on applying geologic theory.
Average-scores are given if a method can use geologic theory to_ provide
or modify some input data. Low scores are given if a method uses geolo-
gic theory only as a comparison check on the methodology estimates.

The Log Linear Methods with least squares can use geologic theory to
place reasonable constraints on rates for large earthquakes. Some :

!geologic theory may be translated into occurrence rates for large shocks
to use either as input data or for checking results. Geologic theory
does not provide input data for the Maximum Likelihood approach. The
scores are: Cumulative Least squares 3, Differential Least squares 3,
Maximum Likelihood 2. ,

)

The Extreme Value Method is very nearly a purely statistical approach.
The input values for maximum earthquakes during sequential time periods !

'

are not altered by geologic theory. Theory can be compared with the
method results. The score is 2.

The Semi-Markov Method is flexible in using geologic theory. However,

in most practical cases, both seismological data and geological data are
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inadequate to provide the required input data. The transition matrix
probabilities for rare events and the interoccurrence time distributions

.must sometimes be supplied from theoretical arguments. The score is 6.

j_ In the Bayesian approach, expert opinion may be used to develop the
| prior distributions. The experts in turn can be expected to incorporate

geologic theory into their judgments. The sample distributions will not
usually be modified by geologic theory. The score is 4.

. The Uniform Hazard Method uses geologic theory very heavily because
I input data 'is based on expert opinion. The actual degree to which
! geologic theory is incorporated into the method depends completely on

the individual preferences of each expert. The reports by Bernreuter
! (1980) indicate that the experts do use theoretical considerations

{ extensively. The score is 7.

,

For the spread-scoring approach, the Uniform Hazard Method is scored,

; best, score of 7, and the Extreme Value Method is scored least, score of
{' 1, for the same reasons given in scoring use of geologic data.
1

4.2.9 Correspondence With Best Knowledge of the Earthquake Processj

; Our best knowledge of the earthquake process represents two broad areas
j 1) the geologic, tectonic, and physical processes for generating earth-

quakes, and 2) the statistical distribution, or distributions, that
describe earthquake occurrence either theoretically or espirically. The
earthquake process is not well understood, and attempting to describe

;- the state of knowledge itself is far outside this discussion. For this
criterion, high scores are given if the method's theoretical basis

4 (relative to the earthquake process or the statistical distributions)
are likely to be viewed favorably. Average scores are given if' the
bases are likely to be only acceptable. Low scores are given if the-

bases are questionable or not present. Some of the statistical testing
i described in Section 5 was aimed at determining how well various sta- '

tistical distributions fit observed earthquake occurrences.;
.

The Log Linear Method presumes a Poisson process for earthquake L

occurrence and the usual log-linear distributions for earthquake magni-:'
tude, log N = a - bM. The magnitude distribution may be unbounded or
bounded at some maximum magnitude. The bounded, log-linear distribution
is taken as " average" for this criterion. This distribution is widely
accepted as evidenced by common practice. There are some theoretical
arguments for the mathematical form of the recurrence relation (Kanamori3

and Anderson, 1975), but the relation is for the most part empirical.
The Poisson assumption is a convenient, useful approximation, but it too,

; is clearly incorrect for many discrete sources from individual faults in

} the western U.S. The scores are downgraded a little for the western ;
i -
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seismicity -where deterministic seismicity models may sometimes be more
appropriate. Methods using unbounded forms for the magnitude distribu-
tion and extrapolating large magnitudes for rare earthquakes would be
scored lower. Maximum magnitudes need some geological or theoretical
constraint if not evidenced by the data. Unbounded methods are not

. scored separately. The Maximum Likelihood Method is downgraded slightly
,

because it has - been criticized for placing too much emphasis on the j
smaller magnitude earthquakes, very much like a weighted least squares
fit to the recurrence data. The criticism is moot if the rates do
follow the distribution exactly, but real data are always subject to q
variations. The scores are: Cumulative Least Squares 4(3), Differen-
tialLeast Squares 4(3), and Maximum Likelihood 3(3) .

The Extreme value Method has the same theoretical bases as the Log )
Linear Method. However, Extreme Value is downgraded slightly because it -)
has been criticized for not using much valuable data at the lower magni-

tudes. Here too, as is the case for Maximum Likelihood, the effect
criticised depends on how well the data follow the presumed statistical
distribution. The score is 3.

The Semi-Markov Model attempts to model the earthquake process by
including some process memory. Conceptually, the occurrence time for
earthquakes and their magnitudes should be related to past history. The
Semi-Markov process provides a statistical relation, which may or may
not be founded on knowledge of the earthquake process. If expert
opinion is used to develop some input parameters, knowledge of the
earthquake process will influence the parameter values selected. In

principle, this method could score much higher than the Log Linear
models because the method involves at least some memory process which is
clearly more physical than the Poisson process. An average score is
given here because in practice, as described by Patwardhan et al (1980),
the transition probabilities are mainly empirical. The score is 4.

The Bayesian Method uses the same earthquake occurrence distribution
(Poisson) as the Log Linear Model. The probability distributions on

magnitudes, Pyg, are mostly empirical, unless supplied by expert opi-
nion. The forms for prior distributions on rate A and probabilities

Pug are cWetey atWrary, Wng dosen for ma%a&al convenhnce.
The score is 2.

In.the Uniform Hazard Method, the experts are free to incorporate their
best knowledge of the earthquake process, but they are not required to
do so. No particular theories are specified or excluded. The score
is 4.

For the spread-scqring, the Semi-Markov Model was given the highest
score, 7, because the statistical model in the method is somewhat simi-
lar to current physical models of the earthquake generation process.
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j- All of the Poisson-related methods were scored lower because the actual
earthquake -process' is' not likely to be Poisson-random for. large-
magnitude earthquakes. - Various fault studies show a much more deter-
ministic process. The Bayesian Model was scored least,1,' because quite i,

arbitrary distributions, gamma and beta,.are used to fit the prior data,
or to describe the expert opinion.

4.2.10 Robustness

Each ' methodology has statistical assumptions such as distribution types
for magnitudes or interoccurrence times, ~ data variability, or indepen-

,
'

dence of various input parameters. -A method is considered robust if its

| results are useful even if the assumptions are not strictly true. The
; more the assumptions can be relaxed, the more robust the method. The-

average performance for this criterion is taken as the Log Linear Method
; (Least Squares) because estimates seem reasonable in so many instances,
: at least for moderate magnitudes, even though the independent earthquake
| assumption is not strictly true. Low scores are given if all statisti-

cal assumptions must be true for the method to work.

The Log Linear Method is taken as the norm as mentioned above. The ;4

z- magnitude distribution is also a critical statistical assumption, par-
! ticularly the maximum magnitude aspect. Both geological and geophysical
; arguments require some maximum magnitude, and the Cumulative magnitude

distribut!on cannot be linear near the maximum. The- Differential
distribution probably isn't linear there either. The scores are -

4 Cumulative Least Squares ' 4, Differential Least Squares'4, and Maximum
Likelihood 4.

; The Extreme Value Method has the same statistical bases as the Log
Linear Method. But the Extreme Value Method is considered much more:

i robust because only the largest earthquake ~ in each sequential time
period need be considered rather than the whole distribution. Within

: the method, plots of maximal earthquakes versus the assigned probabili-
| ties are theoretically linear. The plots can provide indications about
t the validity of the statistical assumptions, just as the recurrence
! curves can be used in.the Log Linear Method. The score is 5.

- In the Semi-Markov Method, a Semi-Markov process is used to model the
j gross properties of the earthquake occurrence. The input parameters are
j espirical or derived from expert input. The main statistical assump-

tions are that the current system state affects only the succeeding
system state, and that the transitions and interoccurrence times can
be modeled by probability distributions. The model parameters, once;

' chosen, define a very specific earthquake process. As the model parame-
ters depart from their best physical representation, the results may be

.

degraded rapidly. The score is 2.i
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' In the Bayesian Method, the sample distribution on the rate A is Poisson
as in the Log Linear Model. The magnitude sample distributions are
strictly empirical and independent of any statistical assumptions. The
prior distributions on both rate and magnitude are arbitrary and quite
-flexible. If the sample data are non-zero, the method is very robust
because few assumptions are made. However, the possible lack of sample
data is a critical condition for the method. The score is 2.

In the Uniform Hazard Method, there are no statistical assumptions about j
.

the earthquake process. The experts act as Bayesian processors and
absorb all robustness problems within their judgments. The score is 4.

,

For the spread-scoring approach, the Extreme Value Method was scored
highest, 7, because it has minimal dependence on data completeness. The
Poisson Log-Linear forms are widely applicable. The Poisson Log-Linear i

methods were scored high, but downgraded by one scorer for Western data
because some faults may be more predictable seismic sources. The
Semi-Markov Method was scored lowest, 1, because it has critical depen-
dence upon the presence of sample data at the desired earthquake magni-
tudes. :

!

i
4.2.11 Incorporation of Subjective Judgment [

i

Subjective judgment can enter a methodology in several forse. Expert
opinion itself may be used as input data. Geological and seismological 1

data must be judged for its quality and completeness. Some methods may I
Irequire expertise in their application. And finally, the recurrence

estimates must be judged for their reasonableness. For this criterion
an average score is given if the method rationally uses subjective )
judgment concerning the data, application, and results. Low scores are '

given if the method bypasses judgment, or could be applied by rote.
High scores are given for incorporation of expert opinion as input data
and formal review of results.

The' Log Linear Method is taken as average because judgment should be
used in selecting and using the seismicity data. Rate data for large

magnitudes are sometimes obtained from geologie data through expect
opinion. The method can lead to questionabic results if subjective
judgment is not used in its application. The Maximum Likelihood
approach is downgraded somewhat because it tends to bypass evaluating-

the distribution of the recurrence data. Higher scores are given for
Eastern application because the data are fewer and more judgment is
required. The. scores are: ' Cumulative Least Squares 5(4), Differential

Least Squares 5(4), and Maximum Likelihood 4(3) .

The Extreme Value Method can be applied with little subjective judgment.
Considerable potential seems available for expert analysis of the
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distribution selection and goodness-of-fit, but these are not properly
part of the method as currently applied. The score is 2.

The Semi-Markov Model tends to require considerable expert judgment in
' formulating the process input parameters, because the data are few . for
the desired large earthquakes. The score is 6.

The Bayesian Method normally uses expert opinion as input data for its
prior distributions on rate and magnitude. Observed data are used as
the sample distributions. The degree to which subjective judgment is
used, and the weight assigned to that - judgment can be varied widely.
The Eastern applications are' scored higher because less data are
available. The scores are 6(5).

The Uniform Hazard Method uses subjective judgment directly for all'its
input parameters. The experts may use hard data, but that usage does
not directly affect the methodology calculations. The score is 7.

For the spread-scoring, the Uniform Hazard Method clearly rates the
highest use of subjective judgement, score of 7. The Semi-Markov Method
and Bayesian Method are somewhat less, but still higher than Poisson-
based methods. The least use of subject judgment is in the Extreme
Value Method as it is currently defined, score of 1.. One independent
scorer placed Maximum Likelihood equally low, with the least squares
methods only slightly better because all of these methods can be applied
with very little input from expert opinon. The other independent scorer
considered Maximum Likelihood and the least squares methods closer to an
average score because expert opinion is usually incorporated into the
data evaluation.

4.2.12 Public Credibility

The public and scientists from other disciplines will be asked to accept
earthquake risk | estimates that depend on- estimated earthquake
recurrence. Correctness is the ultimate criterion, but the public's
perception of that correctness is also important. Esoteric methods are
more difficult to understand, and probably less likely to instill con-
fidence~in their results. Scores for this criterion are high, average
or low according to whether the methods are likely to be perceived with
favor, acceptance, or skepticism.

In the Log Linear Model, the cumulative and Differential Least Squares
methods are reasonably straightforward to non-specialists. The
recurrence curves are easy to understand. However, the Maximum
Likelihood approach is more obscure and subject to misunderstanding.
The scores are: Cumulative Least Squares 6, Differential Least Squares
6, and Maximum Likelihood 4.

!

i
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The Extreme Value Method relies on a mathematical ~ derivation that might

seem obscure to many persons. Logrithms of logrithms are not
necessarily intuitive quantities. Some might argue that the method is
questionable because it requires so little input data. However, the
method deals with a simple concept, the largest earthquake in each suc-
cessive year, and probably could be perceived as acceptable. The score

.is 3.

The Semi-Markov Model presents itself - as a way to construct something
like the earthquake occurrence process. . The required input parameters,
such as the transition matrix probabilities, are not easily available
- for rare events from observed data, nor are they - readily derived- from
theory. % e results seem likely to be perceived as interesting,-but not
necessarily a~ firm basis for risk decisions. The scores are 2.

The' Bayesian approach uses sophisticated statistics to develop a
formalism for application. The equation _to be applied is itself compli-
cated and the action of the various terms is not easily discerned.
Acceptance of the method is helped by direct use of expert opinion,-and
the concept of blending both opinion and data. The scores are 3.

The Uniform Hazard Method has sophisticated theoretical bases, but the
actual implementation of the method can be presented in a straightfor- -

ward way. This ranking, of course, is considering only the UHM steps >

that treat earthquake occurrence at the seismic sources. In addition, |
'the method can claim to make rational use of all the best expert

opinion. The score is 6.

For the spread-scoring approach, the method likely to be most acceptable
to the public is judged to be the Cumulative Least Squares, score of 7,
particularly for Western data. The method has the simplest concepts and
good emperical -support. Differential Least Squares and Maximum
Likelihood are nearly as good. The~ Semi-Markov Process is scored
lowest, 1, because it is a complex modeling process. The Bayesian
Method has complicated mathematics, and scores low.
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5. - ANALYSES TO SUPPORT STATISTICAL CRITERIA

The earthquake recurrence methodologies to be ranked have various sta-
tistical bases such as the way the data are manipulated, or the distri-
butions used to describe magnitudes and occurrence times. Accordingly,
several criteria were chosen to evaluate the methodologies for accuracy,
uncertainty of estimates, sensitivity to incomplete data, accommodation
of known inconplete data, and robustness. Studies conducted by con-
sultants to this program provide support for scoring the statistics-
related criteria. Three approaches were used: 1) testing methodologies
on synthetic catalogs based on the usual Poisson, log-linear models for
earthquake occurrence, 2) testing methodologies on synthetic catalogs
generated from physically based models more complex than the usual sta-
tistical models, and 3) fitting real seismicity catalogs to statistical
models. Sections 5.1 and 5.3 are essentially verbatim reports provided
by Leon Knopof f and Nancy Mann, respectively. Section 5.2 was prepared
at Earth Technology Corporation describing the studies Robin McGuire
directed.

5.1 Synthetic Catalog Testing, Leon Knopoff

This is a report on investigations into the statistical properties of
synthetic earthquake catalogs. We have two prototype expressions which
are the starting points for our_ calculation. These are the linear log
frequency-magnitude formula for a system with unbounded upper
magnitudes, -

logA = a - bM (1)

where A is the number of earthquakes per unit time with magnitudes
greater than M, and the linear log energy-magnitude formula

loge = a + SM (2)

In what follows, we shall refer to the cases

I. a = 4.77, b = 0.8 5

II. a = 3.77, b = 0.8 5

as the Western and Eastern models respectively. The Western model was
indicated by Richter (1958, page 360) to be appropriate for Southern
California. We have arbitrarily reduced the number of Western earth-
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quakes tenfold for the Eastern model in an effort to model the
occurrence of a sparse population of earthquakes. We take S = 1.5 in
(2), when - it becomes necessary to invoke this equation (Gutenberg and
Richter, 1956).

We shall also have recourse to a differential form of (1). By direct
differentiation, the number of earthquakes per unit time AN in a magni-
tude band of width AM is

logah = a' - bM
where

a' = logb + log M + log (In10) +a (3)

If we assume (3) applies over a finite range of magnitudes from Mo to
integration of (3) yields the version of (1) with bounded upperMaax,

magnitudes:

log 0 = a - bM + log (1 - 10-b(M -M)) (4)max

The fractional number of earthquakes with magnitudes greater than M, if
*

there are upper and lower cutoff magnitudes, is

10a-bM _ toa-bMmax
(5)

10a-bMo - 10a-bMaax

5.1.1 Synthetic Catalogs

We have generated three catalogs for analysis for each of the two values
of a. In the first of these, the catalog is a Poisson independent model

of (5) . The sequence of earthquake magnitudes Mi is generated from (S)
by the formula

f = Rat

and solving the resultant for Mg where Rat is the ith random numbert Rai
has uniform probability of occurrence over the interval O to 1. We have
generated three subcases of this catalog corresponding to

M ax = 6, 8, 12m

5-2



E-

Practically the condition Mmax 12 should be equivalent to setting=

= " We choose M = 4.0. (Useful ~ constants for our laterMmax . o
23.44 = 10 77-0.85(4.0) and A = 2.344 =4discussion are the numbers A =

10 77-0.85(4.0). This means that there are 23.44 or 2.344 earthquakes3

per year with M >4.0 in the two Poisson catalogs) . To adjust the time
of each event we use the probability (1 - e-At) that the next earthquake
witl occur within the time t after the last one. Thus the time tk Of
the kth event is

1 - e- A(t -t -1)k k = gk

where gk is a random number between 0 and I; magnitudes are assigned as
above.

In the second set of catalogs, we equip catalogs of the first type with
aftershocks. To do this we first assign a location to each event in a
catalog of the first type. These events are distributed randomly over a
line whose length is taken to be 400 km, which is roughly the distance
along the San Andreas Fault from the Los Angeles-Kern County border to
the Mexican border. We assign af tershocks to each main shock of magni-
tude Mi (catalog Type I) according to the prescription given by Kagan
and Knopoff (1978). We divide the magnitude interval Mi - 4.0 into 0.1

10 (M -4.0) + 1. Weunits. Let there be ri such intervals: et i=

calculate

nk = -R {0.01979(1.188) k-11n h } (6)k

where R is a round-off operator, hk is a random number between 0 and 1,
and 1 < k < rt. The quantity ni is the number of aftershocks of magni-

10(M -M ) +1. Having identified the magnitude of alltude M : k = i kk
aftershocks, we indicate when and where they are located with respect to
the main shock.

The time after each identified main shock is calculated according to the
Kagan and Knopoff formula

tm = .0935x3 i-7.0x10 3m (7)M 4

where Mi is the magnitude of the parent earthquake, m is the iden-
tification number of an af tershock and jm is a random number between
0 and 1. Aftershocks are chosen to occur either bilaterally or
unilaterally distributed about a main shock; these two distributions

S-3
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can occur with equal probability; if the distribution is unilateral, the
sequence has equal' probability of lying to the north or south of the
mainshocks if the distribution is bilateral, successive aftershocks are
alternately north and south of the main shock. The distance of the m_th
aftershock from the main shock is also given by Kagan and Knopoff to be

, 37.5 (3.0)Mi-7.0
(1 - 0.6464461,)2

where 1, is a new random number between 0 and 1. If an aftershock is
located outside the 400 km band, it is not removed from the catalog.

The third catalog is a .sodification of the semi-Markov model of
Patwardhan et al (1980), which is in reality a revised version of the
Poisson stochastic model of Knopoff (1971). We model the stochastic
distribution of Beniof f ' strain accumulation and release, instead of
energies .as originally suggested by Knopoff. The reason for this is
computational. We imagine that there is a uniform rate of increase of
some function (strain or energy) in the interval between earthquakes.
If we use energy as the function, the range of the energies spanning
earthquakes from 4.0 < ' M < 8.0 (for example) is 100 while the ratio of
energies for a 0.1 incresEnt in magnitude is 10 15 = 1.4 if S = 1.5.0

. This means that we have to explore a range of 106 in maximum energy
steps of 0.4 units. The amount of computer time re

On the other hand if we use strain = energy /2, quired is prohibi-1 with an effectivetive.
6 = .75, the range is only 103 in maximum steps of 0.19 units, which is
about 5000 steps.

The stochastic model of Knopof f (1971) requires the specification of two
probability densities. One is A(S) such that A(S)dt is the Poissonian
probability that an earthquake will occur at 'a given time, where at is
the time step of the calculation; the probability is allowed to vary
with the state of deformation of the earth. In our calculations we have
arbitrarily chosen

A(S) = CS 0 < S < Smax (9)

=" S = Smax

We choose the value of A at the midpoint of the range (1/2)Smax to be
the mean rate of occurrence of earthquakes, which is 23.44 year-1 for

the Western catalog. Thus C = years-1
23.44

The other probabilit'y function concerns the likelihood that if an earth-
quake occurs while the system is in the state X, the final state of
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strain will be 8 < X, i.e., that the strain release will be (X - S). We

,

use the cumulative probability function
i

!

g-n-X-R
. T(S,X) =

! d-n-X-n
1

where d is the minimum shock size (d = 103 for Mo = 4.0); the power law
S~n is chosen to that we simulate the power law (2) as much as possible.

'

1

0.85 3 , ,93,
The exponent n = (8 1) =--

f
4

; 0.75 '

The function T(S,X) is properly normalized so that T = 0 if S = X and
1 if S = d. We assume an input of strain at a rate a that isT =

constant. We fix a by computing the total average strain release per,
,

' unit time by integrating (2) from Mo to Mmax. We use values of 73535, t

'

119932, and 167678, strain / day for M, x = 6, 8, 12 respectively. The
''

program uses time increments of I day. The strain is raised by a units
,

; f rom the preceding value. Via a random number selector and (9), we
.

decide whether an earthquake will occur. If no earthquake occurs, we ,

'

increment the time (and the strain) once again. If an earthquake !
i occurs, we determine the final state of strain from (10) by another ran- |
I dos number selection.
4 -

.

To .summarise, we generate three types of catalogs: Poissonian,
} Poissonian . plus aftershocks, and the Strain /Probabilistic stochastic {

model. Three values of Maax were used: 6.0, 8.0, and 12.0. Two values i
'

of the coefficient a were used: 4.77 and 3.77. ' mis creates 18 cata- !>

i logs in all. Each of the catalogs was simulated 15 times for a total
-

'

I span of 50 years per subcatalog. We also the chained the 15 realiza-
tions to form 18 single catalogs, each 750 years in duration.

5.1.2 Processing
! '

Four models of the processing of the above catalogs were considered:'

| ' differential least-squares, maximum likelihood, cumulative least
,

squares, and extreme value statistics. An example of the plotted dis- !i

tributions from one of the synthetic catalogs is given in Figure 5-1.

5.1.2.1 Differential Least-Squares
i;

We construct a histogram of the logarithm of the number of events ici *

each 0.1 magnitude interval and fit according to (3) by least squarea.
,

i We tabulate the average of the quantities a, b, and their ras deviations

!
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over the 15 realizations and compare with that for the 750 year chained
catalog. We also compute the recurrence time T7 for an earthquake of ;

magnitude 7.0 or greater from (1) using the values of (a,b) as deter-
mined from the fit (even though we may have privileged information that
the catalog has Maax < 7.0). We report the average value of the
recurrence time T7 and its standard ' deviation. These latter standard

; deviations are computed in two ways from (1), using the standard
deviations of a and b already determined (these are reported as a per-
centage of the estimate of T7 and as a standard deviation in years), and
from the standard deviation of the 15 values of T7.

,

5.1.2.2 Maximum Likelihood

4 We use the maximum likelihood method to fit the histogram of part A.
The maximum likelihood estimate for a Poisson distribution involves the

i maximization of the function
;

I IN -b IN M - E(b6M)10a-bMk(a+1og10(baM)) k k kk
k k

i

| with respect to (a,b) . In the above formula N is the number of earth-
quakes with magnitude Mk in the kth magnitude band of width M = 0.1. We

; report quantities a, b, T7 and error estimates as above.

'' 5.1.2.3 Cumulative Least Squares

We construct the logarithm of the cumulative distribution from the
.,

'

distribution of part A. We fit this distribution by the usual least
squares according to (1) . We report quantities a, b, T7 and error esti-
mates as above.

5.1.2.4 Extreme-Value Statistics.

For each 50 year catalog (or 750 years in the chained cases) we identify
,

the largest annual earthquakes and rank order them by magnitude. We fit
the function :;

; -In(-inR )n .._g
i into

! by least squares where
i,

Rn" '

|~ 50
:
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and n is the _ nth rank order integer, with n = 50 corresponding to the
largest values of Maax and n - I corresponding to the least value of
Maax. We tabulate a, b, T7 and as before.

In many cases of the Eastern synthetic catalog, no earthquake occurred
during a given year. There were two choices: 1) take an interval
longer than 1 year in order to identify at least one earthquake per
interval, or 2) assume that there were unobservable earthquakes with
M < Mco = 4.0 in the years with no event reported, rank order the annual |
events observed,' normalized to 50 years as above, and then fit by least '

squares to the part of the curve that could be observed. We have chosen
the second option since the first choice requires an a posteriori deci-
sion regarding saspling interval, and it can be shown that for a Poisson
distribution, there will always be some a priori chosen interval for

J
which no earthquake with M > Meo will be observed for a sufficiently |

long catalog, thus requiring an a posteriori readjustment of interval.

i

5.1.3 Aftershocks

In one view, natural af tershocks represent a population of earthquakes
that is superimposed on " main shocks". Furthermore they represent an
image of the past rather than the future, by virtue of their reference
to earlier seismic activity. Thus if estimates of future seismic risk
are to be derived from earthquake catalogs, it is more appropriate to
consider the statistical analysis of seismic catalogs with aftershocks
removed. It is the view of Knopoff that this position is not a valid
one, and that af tershocks are an organic part of the complete process of
seismicity and gives information about the future as well as the past.
But, in the interest of evalusting a popular proposal, we construct a
suitable test.

We separate aftershocks from a main shock catalog by a simple windowing
procedure described by Knopoff and Gardner (1972). We apply the same
window to the Eastern catalogs. The window we have used here is repro-
duced in Table 5-1. The procedure is as follows: For a given shock in
the catalog with magnitude M, a search is made to identify subsequent
shocks which occurred within the time and distance intervals T(M), L(M)
of the given shock. Shocks occurring within this window are labelled
aftershocks. This filter is applied to all of the shocks in the catalog
in turn.

.

'The aftershock filter window was applied to all three types of catalogs,
including the first and the third which are free of calculated
aftershocks, since they are Poissonian in character. (A spatial assign-
ment to all shocks in all catalogs is made, based on a length 400 kilom-
eters, as indicated above) . The number of events identified as af ter-
shocks in the 18 750-year chained catalogs is given in Table 5-2.
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Table 5-1

PARAMETERS DEFINING AFTERSHOCK WINDOWS

Distance Time
Magnitude (Km) (years)

3.5 26 0.0603

4.0 30 0.1151

4.5 35 0.2274

5.0 40 0.4247

5.5 47 0.7945

6.0 54 1.3973

6.5 61 2.1644

7.0 70 2.5068

7.5 81 2.6301

8.0 94 2.6986
,

8.5 109 2.7671

9.0 124 2.8356

l.
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Table 5-2

MAIN EVENT AND AFTERSHOCK IDENTIFICATION

Main
Main After- Events Aftershocks Main Events
Events shocks Identi- Identi- Identi- Aftershocks

Region Catalog M Created Created fled, I fled, I fled, II Identified,IImax

Western Poisson 6 17642' O 6780 10862 15353 2289
Independent 8 17526 0 5531 11995 14546 1980

,
12 17558 0- 5375 12271 14561 3085

!

| Poisson + 6 17494 398 6874 11018 15514 2378
! Aftershocks 8 17693 3473 5391 15775 15454 5712

12 17442 3922 5430 15934 15181 6183

Y Strain 6 17558 0 6824 10734 15501 2057
o Probabilistic 8 17633 0 5215 12418 14657 2976

12 9410 0 4887 4523 8472 938

Eastern Poisson 6 1770 0 1593 177 1748 22
Independent 8 1748 0 1544 204 1716 32

;

12 1853 0 1646 207 1820 33

Poisson + 6 1772 39 1615 196 1782 29
Aftershocks 8 1800 526 1568 758 1900 426

12 1824 374 1608 590 1909 289

Strain 6 1774 0 1659 115 1764 10
Probabilistic 8 1639 0 1459 180 1509 30 i

12 828 0 783 45 822 6

Case I: Main shocks distributed randomly on a line
Case II: Main shocks distributed randomly on a rectangle

___ - _ _ _ _
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! The average number of main events for 750-year catalogs of the first two
| types should be about 17,500 for the Western catalogs and about 1,750
! for the Eastern catalogs, since an average of 23.44 (or 2.344)
! earthquakes per year is the expectation; the computer-generated catalogs

have yielded close to the expected values. What is more remarkable is
the large number of events identified as aftershocks in the Western
Catalogs and the correspondingly smaller number of aftershocks iden-
tified in the Eastern catalogs. We interpret this to mean that our
effort to project the equivalent of the Southern California catalog onto
a line produces such a high density of events on the line that a very
large number of main shocks are misidentified as aftershocks, mainly
because they fall close to others in space and time. In the case of the
Eastern catalog, the density is still low and main shocks are far enough
from neighbors to avoid being labelled as aftershocks. We have tried a
second window that identifies af tershocks that has a spatial span of 1/2
of that of the first window which operates on the same catalog as
before. The window effectively reduces the number of af tershocks that
are identified, but surprisingly the number of af tershocks in the Eastern
catalog is more distinctly reduced than in the number in the Western
catalog.

For the above reasons we have generated a second version of the spatial
distribution of main shocks. In this second version, main shocks are no
longer distributed along a line but are instead randomly distributed
within a rectangle of dimensions 360 km x 480 km. Af tershocks were
distributed as before on a north-south line through the epicenter. The

~

aftershock location routine was then applied to the new catalogs as a
search within an area surrounding the epicenter, including aftershocks,
rather than on a line, as in the first case. Both the distribution on a
line and on a rectangle are unsatisfactory approximations to a real and
therefore non-uniformly distributed set of earthquake faults in a
region, but the number of shocks misidentified is considerably smaller
in the second case than in the first.

In one respect these investigations testify to the incompatibility of
the aftershock generating and aftershock identification programs. But
that is inevitable since the aftershock generating program of Nature is
also inconsistent with the best endeavors of seismologists to construct
identification programs. Despite this comment, we remark that, by
purely random processes, some independent events are likely to be iden-
tified as aftershocks simply because they have been located near one
another. In Table 5-2 we can obtain rough measures of the relative
importance of these two competing ingredients in the analysis. For
example in the case of the Western catalog with Mmax = 8, a catalog with
no aftershocks generated originally, 2980/17526 or 17% of the " main
events" were identified as af tershocks, if the events were distributed
in a rectangle. If we added 3473 aftershocks to the main shock catalog,
the aftershock identification program identified 5712 aftershocks, which

5-11
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is roughly 2700 events more than the 2980 mainshocks originally iden-
tified as aftershocks. Hence, in this case at least, the af tershock

| ' distribution routine does a pretty good job of identifying aftershocks;
in addition, it identifies a sizeable number of main shocks as
aftershocks, due to the random process of determining locations.

1- . .

We have created an additional set of catalogs that is designed to test
some features of the statistical analysis packages. In this new set,
the first two catalogs of main shocks (Poissonian without and with'

aftershocks) for the West are all generated with the same set of random

' numbers. The earthquake magnitude in the catalogs for different values
of Nax are simply one-dimensional maps of'one another (a magnitude 5.9
shock in the case %ax - = .6 might be mapped into a shock of magnitude
near 7.8 or 7.9 for the mase %ax = 8), but the time and space rela-
tionships are preserved. His has significance mainly in regard to the

manner of selection of the aftershock window. We do not find signifi-
cant differences between the two sets of catalogs, but the results are
summarized for comparison in the Appendix.

From Table 5-2 we also note that few aftershocks are created by the
i

f generation routine with %ax = 6. H is is because most aftershocks are
more than two magnitudes less than the parent shock in our formula

(consistent with ' Bath's observation) . With Mo = 4.0, few aftershocks

occur in the window 4.0 < M-< Mi (% ax = 6.0) where Mi is the magnitude
of the parent. We also observe from Table 5-2 that the number of
aftershocks created for the case %ax = 12 does not differ significantly>

from the number for the case M ax = 8. (These numbers are 3922 and 3473a
; respectively for the Western catalogs) . We can explain this seeming

inconsistency with the above " law" (that the number of af tershocks above
the magnitude cutoff threshold of 4.0 should increase as the magnitudes
of the largest shocks increase), by the remark that even with Nax = 12,
the likelihood of generating a magnitude 10 earthquake, for example, is
extremely small in a 750 year interval. Indeed the numbers and magni-

tudes of events in the case Nax = 12 are only slightly different from
those with Nax = 8.

,

4

5.1.4 2 ree-Parameter Fits

The method of generation of the catalog yields numbers of earthquakes in
each 0.1 magnitude interval band that are independent of Mmax. We have*

assumed that the main shocks are generated according to the log ,

frequency-magnitude relation (1) at magnitudes less than Nax, and are |
S us any procedure for data analysisuninfluenced by the value of Maax.

that descrioes differential least-squares or the maximum likelihood I

procedures cannot yield information regarding %ax, except we can note
: that there are no earthquakes greater than a certain magnitude in the

catalog.

5-12
"

--- _ _ _ .. _ _ . _ _



On the other hand, cumulative distributions are strongly biased, as are
the methods of the theory of extremes, which depend on rank ordering
procedures. Both these procedures generate monotonic distributions, and |

in these cases there is zero. probability that an ordinate will be less
than that of its nearest neighbor in the direction- of decreasing
monotonicity. Purists among statisticians would prefer to eschew con-,

'
sideration of biased distributions. Nevertheless, the magnetism of

- trying to get "something for nothing" by studying the curvature of cumu-
lative distributions to determine % ax is p0Pular enough that we should
make an effort to assess these procedures. It is obvious that we
display our intuitive indication .of disdain for these procedures, by
these preforatory remarks: the curvature of the two distributions is
generated by the method of data processing and is not an intrinsic pro-,

perty to be unearthed by data analysis. Our preference is to determine
Maax by looking at the catalogs and identifying the largest earthquakes.

*

In the statistical analysis thus far of the two procedures that concern
us here, we have assumed that %ax = ". (whether or not we have made
the assumption in the unbiased cases is irrelevant, since this assump-
tion does not enter into the data analysis) . Hence we have, up to this
point, a two parameter fit involving the parameters a, b, having fixed
the third parameter %ax at infinity. In an attempt to determine Nax

.

we must consider the three parameter case. In general, the larger the
*

number of parameters, the better the fit and in these cases, as is to be
expected, the quality of the fit is improved. But we pay a penalty for
this improvement, as we discuss below in our assessment of the results
of the data analysis.

' The expressions we have used in the cases of fitting with three parame-
ters are:

t

log = a . bH + log (1 - 10-b(%ax-M) }

and M = % ax - { exp{- }
*8X

a In10(bMaax-a)

in the cumulative and extreme-value cases respectively. In the first
case we minimize

I{ log th(M ) - log Nobs (M ) fi I

i

[ with respect to (a, b, % ax) with Nth given by the above formula, and in
the second case we minimize

I{Mth(Xi)- Mobs (xi) }
:
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with Mth given by the above formula. The quantity x is of course the
double logarithm of the rank ordering parameter.

5.1.5 Appendices
!

This section describes the computer plots and listings that comprise the
appendices to the original report prepared by Leon Knopoff. The com-
puter outputs are not reproduced as part of this report.

In the appendices we present the summaries of all the results we have
obtained. In Appendix I, we provide the differential, cumulative, and
extreme-value distributions for all eighteen 750-year catalogs. In the
cases 'of the differential distributions, some raggedness is evident at
the large-magnitude end of the distributions, as is to be expected when
dealing with small numbers. The cumulative curves provide appropriately .
smoothed versions of these distributions.

In Appendix II we provide complete sets of computer output for five
"

cases of ' analysis 'as follows:

Appendix iia. The main shocks have been distributed over the 360 km x
3 480 km rectangle. Twelve different analysis blocks are displayed.

1. Western Poisson independent no aftershocks removed

2. Western Poisson plus aftershocks no aftershocks removed

3. Western Strain probabilistic no aftershocks removed
4. Eastern Poisson independent no aftershocks removed
5. Eastern Poisson plus aftershocks no aftershocks removed

6. Eastern Strain probabilistic no aftershocks removed

7. Western Poisson independent aftershocks removed

8. Western Poisson plus aftershocks aftershocks removed
9. Western Strain probabilistic aftershocks removed'

10. Eastern Poisson independent aftershocks removed-

11. Eastern Poisson plus aftershocks aftershocks removed,

12. Eastern Strain probabilistic aftershocks removed

Analysis'by four different methods for each of the catalogs is performed
for three different values of Maax. Each method of analysis uses only
a two parameter fit, i.e. in the analysis we assume Maax is infinite,

,

even though it is not infinite in the catalog.

Near the top of each block we list the average values of a and b and
their-standard deviations for the 15 50-year catalogs. This is followed
by the average return time for a magnitude 7 earthquake (in years) for'

the 15 catalogs as determined from the a and b_ values above it, the
percentage standard deviation and the absolute standard deviation (in
years) . of the return time for a magnitude 7 earthquake as determined

!
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from the standard deviations of the a and b_ values and finally the stan-
dard deviation of this return time as determined from the 15 values of
the return time.

Finally, at the bottom of each block, we list the a, and b_ values of the
chained catalog and the return time for a magnitude 7 earthquake as
determined from these a and b values. The " correct" values from
equation (1) are listed at the top of each block of output.

Appendix iib. We complete the analysis of Appendix iia for the two
cases of fit to the catalogs by three parameter systems. The parameters
are a, b, and M These are applicable as discussed above to themax.
cases of the cumulative distributions and the theory of extremes. In
many cases of the three-parameter analysis, both the cumulative and the
extreme value curves have the " wrong" curvature, i.e. they were concave
upward. In these cases the least squares searches " blew up", i.e.
division by zero occurred. We have listed as an additional entry in
these tables the number of cases for which successful solutions (out of
15 possible) that were obtained, i.e. for which no blow up occurred.
In some cases of analysis, the distributions for the chained 750 year
catalogs also had reversed curvature. These cases are identified by
blank entries.

' Appendix IIc. This is a repetition of Appendix iia, except that the
main shocks are distributed along a straight line as described above.
For the first six blocks of each analysis, the results are identical
with those of Appendix iia, since no af tershocks removal procedures were
used in these cases.

Appendix IId. Same as Appendix IIc, except the same random number ini-
_

tializes all catalog sequences, while in all the other appendices, dif-
ferent random numbers are used throughout. This case is included to
separate the intrinsic effects of differences among the catalogs and the
data processing techniques from those of the Monte Carlo procedures we
have used. (The Monte Carlo effects are very small) .

Appendix IIe. Same as Appendix IIc, except the aftershock iden-
tification routines use windows that are 1/2 of those in case IIc.
Appendices c, d, and e are included for completeness. However of the
two alternatives for locating aftershocks, we prefer that which distri-
butes them on a rectangle to that which distributes them on a line. In
the discussion we refer to Appendices iia and b.

5.1.6 Discussion

Before offering more speculative interpretations of the results of
| Appendices iia and b, we make the following more concrete observations.
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For the more abundantly endowed Western catalogs, the least squares fits
to the cumulative distributions and the extreme-value distributions, not
unexpectedly, improve monotonically (approach the theoretical value of
a=4.77, b=0.8 5) as %ax increases for all three catalog types. For the
Eastern catalogs, there are discrepancies in the results of these two
methods for %ax=6, but trends for the cases % ax=8 and 12 are not iden-
tifiable. The methods of least squares fit to the cumulative distribu-
tions and the extreme-value distributions are strongly biased for small'

values of Nax because of the curvature of these distributions: a
linear fit to these curved distributions give high values of both a and

b. As the curvature decreases with increasing %ax, the results of the
fit become more appropriate.

As we expected, the quality of the fit in these two cases improves as we
go to three parameter fits. The number of instances of " blowup" due to
reversed curvature increases as N ax increases. Generally, the estimate
of %ax from the three parameters fits are best for catalogs with
%ax=6; it is in these cases that the curvature of the distribution is
most pronounced and hence most easily identified in curve-fitting. For

the catalogs with larger values of %ax, the distributions are of ten
almost linear (see Appendix I) (or have reversed curvature) _and it

! becomes extremely difficult to identify %ax from the curve-fitting.
~Because of the large number of " blowups", we refrain from further
discussion of the cases of three parameter fit represented by Appendix
II-b, except to note that estimates of Nax from the output are better
done in all cases by -directly noting the largest magnitude in the cata-
log, rather than by curve fitting.

The mere coincidence of an average of 15 values of a, b, or T7 with the
'

" theoretical" values is not of itself an identification of merit since,

in reality, a processing of a single 50-year catalog could give values
,

of these three quantities widely divergent from expectation if the l
'

standard deviations are large. Conversely, a small standard deviation
in a, b, T7 does not recommend a method for use if the mean of the
analysis is f ar from the theoretical values. To evaluate the relative

" performance" in each of the analyses, we construct the following ad hoc
criterion:

We list as " acceptable" those procedures whose mean estimates of both a,
and b lie within two standard deviations of the theoretical values. We
then identify, from among these acceptable analyses, the method which~

has the least of the standard deviations. Table 5-3 gives this listing.
The end result of this analysis is that

1) If we do not remove aftershocks from the catalog, maximum like-
lihood analysis is the preferred method in all cases, with
only one clear-cut exception (catalog W, P+A, % ax=8). This
exception seems to be due to the statistical quirk (of randon

|

|
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; numbers) of having given very small values of standard
deviations for a -and b, i.e. all catalogs generated were simi-

'
lar to one another. The standard deviation for this case is,.

less than for either Mmax=6 or 12 for the same catalogs and is
therefore slightly suspect.

2) If we remove af tershocks, the conclusion is the same, namely,
maximum likelihood methods are preferred over all others for theu

Eastern catalogs. However for the Western- catalogs there is
, some ambiguity in choice between maximum likelihood and cumula- i
*

tive least square methods.

This last conclusion implies that there is perhaps some inter-
mediate . procedure that might be generated that falls between
the two sets of weights: maximum likelihood methods give large

I weight to the data which are most abundant, namely to the
smallest earthquakes, while cumulative distributions give -

greater weight to the larger earthquakes (but not as much as in
the case of the theory of extremes) .

3) The theory of extremes gives consistently the least reliable
results of statistical analysis for these catalogs of finite
. length.

1
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Table 5-3

COMPARISON OF METHOD PERFORMANCES

After-
shocks Least

Region Catalog Removed Maar Acceptablel o Remarks

W PI No 6 DM M
8 DMCE M

12 MCE M

F+A No 6 DM M
8 CE C

12 MCE M

SP No 6 DM M
8 DMCE M

12 MCE M

{MbarelybetterPI Yes 6 DM M

8 CE C thanD}
12 CE C

P+A Yes 6 DM M
8 CE C

12 MCE M

SP Yes 6 DM M
8 CE C

12 CE C

{MbarelybetterE PI No 6 MC M
thanC}8 MCE M

12 MCE MC About equal

P+A No 6 DMC M

8 MCE M

12 MCE M

{DbarelybetterthanSP No 6 DMC D
Mf8 MCE M

12 MCE M
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Table 5-3 (Continued)

After-
shocks Least

Region Catalog Removed Maax Acceptablel 0 Remarks

PI Yes 6 MC MC About equal
8 MCE M

12 MCE MC About equal

P+A Yes 6 DMC M

8 MCE M
12 MCE M

{DbarelybetterSP Yes 6 DMC D
8 MCE M thanM}

12 MCE M

W PI No 6 DM C Mx
8 DMCE, Cx,Ex M

12 MCE, E Mx

P+A No 6 DM, C Mx
8 CE, C ,E Cx x x

12 MCE, C ,E Mx x

SP No 6 DM, C Mx
8 DMCE, C ,E Mx x

12 MCE, C ,E Mx x

{MbarelybetterPI Yes 6 DM, C Mx
8 CE, C ,E C thanDorC}x x x x

12 CE, C

P+A Yes 6 DM, C Mx
8 CE, C

12 MCE, Cx,Ex M

SP Yes 6 DM, C Mx
8 CE, Cx,Ex C

12 CE, C

E PI No 6 MC, C ,E M {Mbarelybetterx x
8 MCE, E M thanCfx

12 MCE, E MC About equalx
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Table 5-3 (Continued)

After-
shocks Least

Region Catalog Removed Mmax Acceptablel 0 Remarks

P+A No 6 DMC, C ,E Mx x
8 MCE, Ex M

12 MCE, Cx,Ex M

{Dbarelybetter i
SP No 6 DMC, C ,E Dx x

than M}8 MCE, C ,E Mx x
12 MCE, E Mx

PI Yes 6 MC, Cx,Ex MC About equal

8 MCE, Ex M

12 MCE, Ex MC About equal

P+A tes 6 DMC, Cx,Ex M
8 MCE, E Mx

M12 MCE, Cx,Ex

{DbarelybetterSP Yes 6 DMC, Cx,Ex D
than M}8 MCE, C ,E Mx x

12 MCE M

l D = Diff. L.S.
M = Max. Like.
C = Cum. L.S.
E = Extreme

-
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5.2 Synthetic Catalog Testing, Robin McGuire

'

The Poisson distribution for earthquake occurrence times and the log-
linear distribution for magnitudes have been shown empirically (Earth
Technology, 1981) to provide reasonably good fits to observed seismicity
data. However, the natural processes generating earthquakes clearly
include some spatial / temporal causality and memory. Earthquake
recurrence methodologies that are based on the Poisson and log-linear4

distributions might be expected to perform reasonably well when tested
against synthetic catalogs generated using Poisson and log-linear
distributions. The recurrence methodologies should also be tested
against synthetic catalogs whose generating proces is at least one level
more complex than the processes implied by the methodologies. A more
complex process may be a better model for natural processes.

This section describes ranking support studies designed by Robin,

McGuire. The efforts include catalog generation, an analysis program
for several Poisson-Log Linear methods (POISS), an analysis program for
Extreme Value Statistics (EXTRM), an analysis program for the Bayesian
Method (BAYES) , and evaluation of the results for both eastern and
western seismicity rates.'

When the Poisson-Log Linear, Extreme Value, and Bayesian Statistics
methodologies were tested against the McGuire catalogs, none gave con-

; sistently good estimates for the long-term catalog properties. The
estimated values for large-magnitude earthquake return periods and the
recurrence curve slope varied considerably. . The catalog value plus-or-
minus one sigma contained the estimates only in about 30 percent of the,

cases. When the local statistics in the catalog were examined, the
statistical fits were of ten found to be quite good. In effect, the
short-term statistics, equivalent to 200 years of eastern seismicity
data, were of ten different from the catalog's long-term statistics.
This situation may be quite representative of real earthquake processes4

in many areas having low to moderate seismicity. Several examples have
: been reported for which observed seismicity has shown significant tem-

poral changes (Earth Technology,1981) .

5.2.1 Synthetic Catalogs

I
The earthquake generation process is modeled using five separate source
zones, or these may be five adjacent segments along a major fault as
shown in Figure 5-2b. K(t) is a process parameter for each source
. zone and is related to cumulative energy release as a function of time.,

j

gy 10"iK(t) =

.

5-21
t

.. . - _ _ - . _ - _ _ _ . _ - .- -. - .. _ - _ - _ - _ - - _ - .



/
/

e/-Ka(t) q
UPPER BOUND ,/Ku(t) '

/

% 2'
H /

,

x

LOWER BOUND-

/ K (t)L

/
M

/
TIME

(a)

A B C D E

FAULTS / FAULT SEGMENTS

(b)

FIGURE 5 2 SCHEMATIC EARTHQUAKE GENERATION PROCESS
a. CONCIEPTUAL RELATION BETWEEN PARAMETER K AND TIME.
b. ADJACENT FAULT SEGMENTS.

.



. _ _ _ _

V

where Mi is the magnitude for the ith earthquake and j is the most
recent earthquake before time t. The earthquake process for a source
can be shown schematically by the stairstep line in Figure 5-2a.
Vertical bars are proportional to earthquake size and horizontal bars
are quiescent times between earthquakes. The average rate of energy
release, and the average rate of energy input to the source, is indi-
cated by the slope of the line Ka(t).

As time passes after the previous earthquake, the horizontal lines move
toward the lower bound K1(t) and the probability for an earthquake
increases. This lower bound can be analogous to a limit set by the rup-
ture strength of a fault. If an earthquake occurs, its magnitude is
shown by the vertical bar. The maximum magnitude for each shock is
limited by an upper bound Ku(t) and can be analogous to a limit set by
the fault area available for rupture. The maximum earthquake for the
source is the difference between the lower and upper bounds.

The interoccurrence times are generated from the exponential distribu-
tion function

f(t) = A'Re-Rt

where A is a constant, R is the average occurrence rate, and t is the
interoccurrence time. The corresponding cumulative distribution func-
tion is

F(t) = A - Ae-Rt
'from which A=

1 - e-Rtmax

because F(t) +1 as t + ". Also A + 1 as taax + ". The conplementary
cumulative distribution function is G(t) = 1 - F(t) . Taking logarithms
of G(t), solving for t, and letting A.+ 1 gives

t = I" UIDI
.

R

Because 0 < G(t) < 1, an exponential distribution of t-values for
interoccurrence times can be found using a random number generator to
supply a uniform distribution from 0 to 1. The interoccurrence times,

are dependent on the occurrence rate R.

|
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! The magnitude distribution is generated similarly starting with the
; exponential distribution for magnitude M.

| f(m) = A' Se-6 (M-Mo)

t

where A' is a constant, 6 is the recurrence slope (S = b in .10 and
log N = a - be), Mo is the lower magnitude cutoff. Proceeding as above,

1

'
A' =

1 - e-0(M-Mo)

G(M) = 1 - F(M)

( M = In A' - In(G(M) - 1 + A)and
S

Because O < G(M) < 1, the magnitude distribution can be generated using,

i another random number generator to give a uniform distribution between
0'and 1. The magnitudes will depend on Maaxa Mo, and the slope S.

Dependence between the five seismic sources and temporal memory are
introduced into the model by adjusting the rate R and the slope S. A

K (t), etc. A
!~ parameter K(t) is kept for each seismic source; Kg(t), B

[ AK is defined for each source and expresses whether its cumulative
energy release is ahead or behind that of the neighboring sources. Forl

example,

|
' KB+KD

AKc"Ec- *

2

I

AK implies an energy difference equal to some magnitude M by
, c
|
!

M = log | Ake|.
!
i
' The rate R is modified by a factor F, Rnew = Rold'F, where

'

F = I - sign (AK ) * *c;

| |Meax-moi
t

e
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Similarly, slope 6 is modified by F, Snew " Oold*F. Thus, if seismic
source C is behind the average of its neighbors, the source is
encouraged to catch up. Increasing the rate R raises the probability
for an earthquake, and increasing the slope 8 raises the probability for
a larger shock. If a source is behind its neighbors, the converse
occurs. Using the neighbors insects spatial dependence; using the K

,

parameter inserts temporal dependence. The end sources have only one
neighbor considered. The factor F is arbitrarily bounded so changes can
not happen too f ast and lead to instability in the process.

Catalog generation follows the sequence: 1) predict occurrence times
for each seismic source, 2) choose the source with the earliest time,
3) calculate a magnitude for the chosen source, 4) update the source's
K(t), R, and 8, and 5) return to step 1.

Synthetic catalogs for the five seismic sources were generated for a
10,000-year time duration. The process parameters were chosen so the
catalogs produce recurrence curves with slope about b = 0.85 (S = 1.96)'
and rate about 0.75 earthquakes with M >4 per year. Statistics for
these master catalogs are given in Table 5-4, and recurrence curves

'

are shown in Figure 5-4. A typical segment of the time sequence,
Figure 5-3, shows clustering and lower activity levels after large
shocks, mucn like histograms of natural catalogs. The synthetic
catalogs were time scaled to represent the Eastern datar 0.5 catalog
years equals 1 data year for a rate of about 0.37 earthquakes M >4.0 per
year. For the Western data, 30 catalog years equals 1 data year for a
rate of about 22 earthquakes M >4.0 per year. Earthquake rates and
return periods for these two data sets are given in Tables 5-5 and 5-6
respectively.

,

|

l

|
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TABLE 5-4

MASTER CATALOG STATISTICS, 10,000 YEARS

Interval Data

Magnitude 4-4.5 4.5-5 5-5.5 5.5-6 6-6.5 6.5-7 7-7.5 7.5-8 8-8.5 >8.5

Source No. 1 4718 1411 517 194 56 39 17 8 0 1

Source No. 2 5248 1729 628 284 91 63 11 5 2 0

Source No. 3 5191 1635 559 248 96 48 18 6 2 0

Source No. 4 5114 1616 619 231 114 40 13 3 3 0

Source No. 5 5058 1532 518 217 62 35 20 4 3 0

Sum 25329 7923 2841 1174 419 225 79 26 10 1

Cumulative Data

Magnitude 4.0 4.5 5.0- 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Source No. 1 6961 2243 832 315 121 65 26 9 1 1

Source No. 2 8061 2813 1084 456 172 81 18 7 2 0

Source No. 3 7803 2612 977 418 170 74 26 8 2 0

Source No. 4 7753 2639 1023 404 173 59 19 6 3 0

Source No. 5 7449 2391 859 341 124 62 27 7 3 0

Sum 38027 12698 4775 1934 760 341 116 37 11 1

_ _ _ _ _ _ _ _ _ _ _ . __
_

_ -
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Table 5-5

CATAIDG RATES, " EASTERN"

0.38 BQ M)4/ Year

MAG NO. EARTHQUAKES AVE RETURN PERIODS AVE

>4.0 3.48 E-1 - 4.03 E-1 3.80 E-1 2.48 2.87 Yrs. 2.6 Yrs.-

35.0 4.15 E-2 - 5.42 E-2 4.78 E-2 18.5 - 24.1 20.9

76.0 6.05 E-3 - 8.65 E-3 7.60 E-3 116 - 165 132

27.0 9.00 E-4 - 1.35 E-3 1.16 E-3 741 1,111 862-

38.0 5.00 E-5 - 1.50 E-4 1.10 E-4 6,667 - 20,000 9,091

Table 5-6

CATALOG RATES, " WESTERN"

20 BQ M)4/ Year
-

MAG NO. EARTHQUAKES AVE RETURN PERIODS AVE

>6.5 59 - 81 68.2 4.6 - 6.3 Yrs 5.4 Yrs

37.0 18 - 27 23.2 13.7 - 20.6 16.0

37.5 6 9 7.4 41.2 - 61.7 50.1-

>8.0 1 - 3 2.2 123.5 - 370.4 168.4

5-29
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5.2.2 Program POISS

The program POISS was written to analyze synthetic catalog data
according to the Cumulative Least Squares, Differential Least Squares,
and Maximum Likelihood methods. The analyses are done both with and
without considering an upper bound Maax for the magnitude distributions.'

A generalized program flowchart is shown in Figure 5-5.

In the least squares fitting for both cumulative and interval sta-
tistics, the parameters a and b in the usual earthquake magnitude
distribution, log N = a-bM, were found by standard linear regression.
The maximum likelihood estimate for 8 was made using a technique that
permits input data from unequal observation periods for different magni-
tudes (Weichart, 1980).

The scheme for introducing a probabilistic upper bound Mmax uses the
following equation for annual probability G.

1
1 - e-6 (M-Mo) I ~ 1 - e-0("-")-G = p (M | M ) =Rx
1 . e-O (M -Mo) - 1 - e-6 (M -M) ,xx -

where

p(M | M ) is the probability for magnitude M given that the maximumx
magnitude is Mx,

R is the rate for magnitudes M > M ,o
Mo is the threshold magnitude,
M is the average magnitude, and
B is the slope parameter.

The first and second bracketed terms are complementary cumulative
distribution functions normalized soyrobability goes to zero at Maax.
R_ times the first bracketed term is R the rate for the average magnitude
M. R times the second bracketed term gives the rate, or annual probabi- ,

lity, for magnitude M.

To introduce a probabilistic M , let Mx " M . where i = 1,N and each Miix
has probability 1/N, a uniform distribution for the maximum magnitude.
Then Gi = p(M | M ) andi

G=E Gi * p (M )i .

i

l
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If N = 5 and the M ' are 6.0, 6.5, 7.0, 7.5, 8.0, each with probabilityi

0.2, the return period RT computed for M > 6 earthquakes using the prob-
abilistic upper bound is

RT .0 " G
"6 +

(G) +G2+G3+G4+G) (0.2)*>

5

Similarly for M > 7.5,.

RT .5 " G
"

7 -

(G4+G) (0.2)' *
S

The probabilistic upper bound has the effect of increasing the return
period length for larger magnitudes. Other distributions for Mx could
be easily implemented.

i

Uncertainties for the return period estimates are estimated using the
linear regression analysis given by Benjamin and Cornell (1980, Section*

4.3.2). The parameters a and b are found by linear regression on the
,

form log N = a-bM. If (log N)k is a predicted value for log N using M ek
! a and b, the varience 02 og (tog y)k is

(M -W) )2 k0
# (logN)k 'T '2S,>

'
,

where
3

1

02 1 I (log Ni - (a + bM ) ) 2 ,i
n-2 i

:
i

N is the number of data points,4

I is the mean value for the M 's, andi

S2 1 I (g _g)2,. g
; M N i

;
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The varience in (log N)k depends on M which can be changed arbitrarily
by selecting the coordinate origin for M. A least squares linear fit
to data points always passes through the point (log N, E). Heuristi-
cally, the uncertainty in log N can be considered to have two com-
ponents: 1) the uncertainty in b causes the slope of the fitted line
to increase or decrease, and the uncertainty becomes larger at points
farther away from the pivot at the point (log N, E) , and 2) the
uncertainty in a_ causes the fitted line to shif t up and down. For the
form log N = a-bM,
pass through (log N,~a is being estimated at M=0, The fitted line must

M), so uncertainty in b causes some uncertainty in
a. The uncertainty in a then is coupled to uncertainty in b. However,
if M' = M-R and log N 2 a-bM' is used for regression, the estimate for
a_ is made at M'=0, or M-M, and there is no longer any coupling between
the uncertainties in a and b. Program POISS uses the form log N = a-bM'
a=bM' so the uncertainty estimates are not biased.

Separate uncertainties were not estimated for the cases using probabi-
listic upper bounds. Instead, the uncertaintics for the cumulative and
differential least squares fits were just passed through to the new
return period estimates.

The uncertainty estimates are taken as one standard deviation, the
square root of the varience. The term log N then becomes log N + 0
When antilogarithms are taken to get the rate, or annual probability,
the uncertainty becomes a multiply / divide factor.

5.2.3 Program EXTRM

The program EXTRM analyzes synthetic catalog data using extreme value
statistics. As shown in Section 3.2, analysis of extreme values leads
to an equation:

-In(-In G(M)) = Ina - SM

in which the in-in term, the lef t hand side, has a linear relation to
magnitude M. M is the largest magnitude annually (or some other con-
venient time period). G(M) is a cumulative probability assigned to each
magnitude M. These probabilities are assigned by monotonically ranking
the largest earthquakes from each of N successive years. The largest
earthquake is first, or rank R=1; the smallest earthquake is last or
R=N. Cumulative probabilities are assigned using a plotting rule

G (M) =R-U2 ,

N
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The program compiles a set of data points x = -In(-In G(M)) and y = M,
which can be fitted with a straight line by least squares linear
regression to find the parameters Ina and S.

For Case A, the G(M) term is regressed on M. The resulting estimates
for Ina and B are converted to a and b in the usual log-linear equation,
log N = a + bM, and return periods are estimated for various M. For
case B, M is regressed on the G(M) term, and annual probabilities G(M)
are used directly to estimate return periods. A generalized program
flowchart for EXTRM is shown in Figure 5-6.

Uncertainties in Ina and 8 are given by the linear regression.
Corresponding uncertainties in a and b result from simple conversion.
Uncertainties in the predicted return periods are not simple conver-
alons, but follow a general formulation such as that by Meyer (1975,
Chapter 10). If z = f(x,y) and the o and oy are uncorrelated,x

t

"z2,( )2 o,2 , ( )2 o2,y

For the linear regression in EXTRM, the c's for in a and 6 are not
strictly uncorrelated, because the coordinate origin is not at the mean
values for the variables. However, the lack of correlation is judged to
be approximately true. Uncertainties were also estimated using 8 + og
and 6 - og in all conputations following the linear regression. The two
methods for estimating the uncertainties give comparable results for the
data analyzed.

A typical plot with the data points and the linear regression lines for
a Western data set is shown in Figure 5-7. Usually, there is very
little difference in the straight lines fitted by regressing M on the
G(M) term, or the G(M) term on M. A similar plot for Eastern data is
shown in Figure 5-8. For Eastern data, many years did not have a
maximum earthquake equal or above the 4.0 magnitude threshold. Data
points for such years were suppressed, and analysis was carried out on
the remaining subset of points under the assumption the sosiler magni-
tude years would fit the same trend.

|

.
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5.2.4 ' Program BAYES

: Program BAYES computes Bayesian posterior probability for earthquake
occurrence using the formulation proposed by Mortgat and Shah (1978).
The Mortgat and Shah equation - 2.22 gives the probability p(rgi=O) that

'..
no earthquakes in magnitude bin Mi occur. If a one-year time period is
used, annual probability for. earthquakes with magnitudes in bin Mi
follows from 1-p (rgi=o) . Figure 5-9 shows equation 2.22 and defines

,

'

'the variables. An equivalent form given in equation 2.24 with fac-
torials rather than gamma functions could be used in BAYES because the,

|variables are all integers in'this application. Evaluating either gamma

; functions or factorials for large arguments can be a problem. The-
gamma function form was chosen and _ the gamma functions evaluated using
a double- precision polynomial approximation, equation 6.1.41 from
Abramowitz and Stegun (1968) .

,
As the synthetic' catalogs were generated, five separate earthquake
histories were maintained, one for each seismic source. In this'

Bayesian application, one seismicity catalog represents a region around
a power plant site and produces the sample distribution. The remaining
four seismicity catalogs represent regions that could be selected by
experts'as analogous tectonic regimes and the basis for prior distribu-
tions. Catalogs A, B, D, and F were used for the prior ' distributions.

Catalog C was used for the sample distribution.

The basic concept in Bayesian statistics is that the prior distribution
is multiplied by the' sample distribution to produce a posterior distri-

bution (see Section 3.1). A weakness in the method, when applied to the
statistics of rare earthquakes, is the critial need for non-zero values
in the sample distribution. Philosophically, a zero value for the
number of earthquakes in some magnitude bin Mi should lead to a zero
estimate for the posterior probability. Equation 2.22 combines the
prior and sample data by addition (see definitions for P", C, A" and v"

in Figure 5-9) . Only the term (" is affected by a zero-value RM and'

the equation yields an estimate for the posterior probability.i In

accord with the basic Bayesian concept, program BAYES arbitrarily sets
- the posterior probability equal to zero whenever Ry is zero.g

No uncertainties on the predicted posterior probabilities are defined in

the method.

;

I,
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I IIU"I II" + U"-4") . F(n + v") tnA"F"p(r mi =o) =
n=o ."I- IIU"-4") P(n + U") P(v") (.t + A") n + v a

.
*

.

9" = n' + N A" = A' + T

4" = 4'+ Rmi v" = v '+ N

SAMPLE DATA (LIKELlHOOD FN) PRIOR DATA
^ ^/ T r T ,

N = NUMBER OF EOS A' = TIME BASE (EQUIVALENT TIME)
RATE

v'= NUMBER OF OCCURENCES p(n)
Rmi = NUMBER OF EQS IN MAGNITUDE (EQUIVALENT NO.)

BIN ML ,

'
n' = NUMBER OF OCCURRENCES

T = TIME BASE DATA '

MAG
(' = NUMBER OF EQS IN MAGNITUDE I p(rt/n)

bin MI (EQUIVALENT NO.)
s

FIGURE 5-9 MORTGAT AND SHAH EQUATION 2.22
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5.3 Goodness-Of-Fit Tests, Nancy Mann

The model most of ten applied for analysis of earthquake magnitudes is
the exponential distribution resulting from an assumption of Poisson;

!L distributed events. Such an assumption, in conjunction with the parame- |
ters estimated for the exponential model, leads to the result that there !

must be a finite upper bound for the magnitude of earthquakes. (See j

Newmark'and Rosenblueth, 1971).

Knopoff and Kagan (1977) demonstrate this same result empirically by
contradiction, with California data, showing that an assumption of an !

exponential model leads to California earthquakes of magnitudes 8.0 or
greater in a 40 year period with probability 0.992 and earthquakes of
9.0 or greater with probability about 0.5, if there is no upper bound.

One can also use methods described in Mann, Schafer, Singpurwalla (1974,
Section 5.2.4(b)) with California data to demonstrate analytically a
result similar to that demonstrated empirically by Knopof f and Kagan.
For example, if, ' as they assume, the exponential scale parameter 0 is
0.85 for quakes having magnitude A = 4.0 or. greater, then the expected
magnitude of the largest of N = 800 earthquakes (assuming an average
number of 20 per year with magnitude 4.0 or greater) is

!

N

[ X (y) =A+6I (1/ (N-i+1) )
i=1

800

{ = 4.0 + 0.85 E (1/ (800-1+1) )
'

i=1

~ 4.0 + 0.85 (in(800) + 0.577215C) ~ 10.17

where in(x) indcates the natural logarithm, and 0.5772156 approximates
Euler's constant. For 10,000 years (i.e. 200,000 quakes) , the expected
largest magnitude for this exponential model is 14.86.

Also, one can use an F approximation in conjunction with these assump-
tions to obtain an approximate 99 percent lower confidence bound of 7.85
for X(800), the largest magnitude in 800 successive quakes. This is
similar to the value of 8.00 obtained by Knopoff and Kagan. The deriva-

;

[
tion of the F approximation that gives this prediction is given in
Section 5.3.2 under Parameter Estimation and Prediction.'
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Thus, if the exonential model is appropriate, it appears that there is
an upper bound, or threshold. Alternative models are: 1) a different
distribution for earthquake magnitudes, one with a right tail that is
shorter than the exponential tail, a distribution with at least one
mode, or 2) a model suggested by Knopoff and Kagan (1977) that is expo-
nential with the scale parameter decreasing with magnitude, "so that the
energy integral remains finite."

This suggests that it is difficult to approach the problem of analyzing
earthquake magnitudes directly for the following reasons.

a) The problem of lack of sensitivity of instrumentation for lower
magnitudes is not important if a classical exponential model
applies, because of the lack-of-memory property for exponential
data. Thus, one can simply include in the analysis earthquakes of
magnitude larger than 4.0, say, transform the data by subtracting
4.0 from each magnitude,- and treat the resulting data like ordinary
one-parameter exponentially distributed observations ranging from
zero to infinity. If, however, the data are truncated somewhere in
the upper ranges and the point of truncation is not known or if the
scale parameter is changing as a function of magnitude, the analy-
sia becomes much more complicated. It is not at all clear what
might be happening in the upper tail of the distribution, even
though the lower part of the distribution has been fitted by some
investigators with the standard exponential model,

b) If the exponential model ic completely inapplicable and another
distribution, or mixture of distributions, applies, then the lower
tail also becomes a problem. This results because the exponential
distribution alone exhibits the lack-of-memory property. The
instrumentation problem dictates that the population is truncated
on the left at different magnitudes, depending upon the time and
place of collection of the data. If one chooses to measure earth-
quakes of magnitude greater than 4.0, the fact that one does not
know the number of earthquakes ignored by doing so is the source of
this problem for nonexponential models. Clearly, not ignoring
known earthquakes of smaller magnitude does not solve the problem
since there still remain many, perhaps hundreds of quakes for a
single catalog, that are not detected.

c) In addition to the upper- and lower-tail problems, there is the
problem of aftershocks. Does one include them or not, and if not,
how does not define an aftershock?

,

Extreme-value analysis can circumvent all three of these problems. If
the time interval of interest is long enough, then the smallest of the
largest earthquakes occurring in that time interval will be no less than
about 4.0. Furthermore, the problem of af tershocks is circumvented if

| 5-41
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the interval is long enough. The longer the length of the interval of
interest, the more the largest earthquakes for the various intervals
-will tend to be independent. On the other hand, the smaller the inter-

val, the more data one has to analyze. Thus, there exists a need in

choosing an interval length to optimize so as to get sufficient data
without including magnitudes that are too small or introducing depen-
dency. Once a suitable interval length has been chosen, the data them-
selves can tell us whether or not there is an upper bound. In order to

make any sort of predictions for the future, we assume a steady-state
condition. Without such an assumption we cannot be justified in making
any inferences concerning future seismic events.

! One point to consider is whether or not extreme-value theory is appli-
cable since the aftershocks, particularly, indicate a lack of indepen-

dence of events. A theorem proved by Barlow and Singpurwalla (1974)
applies here. If the events within each interval are either indepen-

dent, or only " associated," (i.e. positively correlated), then for a
very large number of events, extreme-value theory is applicable. Since
the number of events within each interval is extremely large, the

,

majority -being unmeasurable, use of extreme-value theory appears to bet

justified. Graphical and Fourier analysis lend corroboration, as will
.

be shown in the sequel.'

It should be pointed cat that in using the extreme-value analysis we are
concerned with predicting largest earthquakes in a specified period of
time, not simply with estimating parameters. Thus, an exponential mean:

0 can be estimated more efficiently by using all individual measurements
of magnitude, rather than in using yearly extremes alone; that is, the
variance in estimating the mean is smaller when all the data are used.'

In estimating the largest magnitude X(y) for this exponential model in
a large number N of time intervals, however, the variance of the esti-
mate is 02n2/6 whether one uses all the data or only the extreme magni-
tudes applying to the various intervals. The smaller sample size for
the extreme-magnitude data is offset by the fact that the largest obser-
vation in a future sample from this population is not so far out on the

i distribution tail as is the same observation with respect to the distri-

bution corresponding to the population of - all observable earthquake,

magnitudes. .

|
.

5.3.1 Analysis Method

Analysis of a California earthquake catalog representing the last forty-
_

eight years demonstrates a consistency of patterns for one-month, three-
| month, six-month and yearly extreme values. The samples based on three-

and six-month extremes are devoid of the small values appearing in the
samples of one-month extremes, are informative in terms of amount of
data and are well behaved (stable) .
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-The preliminary analysis was done graphically using both an interactive
computer program called Grafstat (see Tarter,1978) and a noninteractive
cosputer program for plotting largest magnitudes on extreme-value proba-
bility paper by means of a Versatec plotter.

The Grafstat program uses a Fourier analysis and gives a graphical
representation of an underlying distribution. For magnitudes of both

largest monthly and largest semi-annual earthquakes, Grafstat shows for
each a bi-modal frequency function representing a mixture of two distri-
butions, one ranging from magnitudes of about 4.0 to perhaps 6.5 and
another applying to larger magnitudes. See Figure 5-10.

The behavior of these distributions is such that one might conceive
of yet another distribution, or series of distributions, associated'

i with increasing magnitudes, with a last extremely small distribution
degenerate at an upper threshold.

Versatic plots of x(i), the ith smallest of the n largest periodic
magnitudes versus -In(-In { }) yield straight lines if the magni-
tudes have type-I distributions of largest extremes. Figure 5-11

shows, in agreement with the Grafstat analysis, what appears to be two
straight lines indicating a mixture of at least two distributions for

7

|-
largest earthquakes in six-month intervals.

|
A type-Ieextreme-value distribution is consistent with a classical expo-
nential nodel and, more generally, any single distribution that does not

.

have an upper threshold. The mixture model exhibited by the type-I
extrenewalue analysis suggets, as one possibility, an asymptotic result
somewhat similar to the model suggested by Knopoff and Kagan (1977) -- a

. distribution scale parameter decreasing (but not continously decreasing)i

with magnitude, and perhaps the existence of an upper threshold.
4

Other investigators who have used the extreme-value type-I distributionI

to analyze largest periodic earthquakes are Epstein and Lonnitz (1966),
i Rikitake (1974), Schenkova' and Schenk (1975) and Schenkova' and Karnik,

(1970). In each case the interval has been one year, and the model has
i been assumed with or without corrections.

The other of three possible extreme-value distributions suggested for
analysis of largest earthquakes is the type-III distribution of largest
extremes. This distribution applies when there is an upper threshold
and has been used for analysis of earthquake magnitude data by Makjanic

! (1972) and Yegulalp and Kuo (1974). In both cases the interval length

! used was a year and the number of years considered ranged from 37 to 88.
| The methods used for estimation of the parameters were the method of

i

i
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moments and least squares. Yegulalp and Kuo analyzed 46 regional cata-
logs and found that only 3 of these could be represented as well by a
type-I extreme-value distribution as by a type-III. This provides more
evidence for an upper threshold.,

If largest earthquake magnitude X has a type-III distribution of largest
extremes with upper threshold no then Z =mo - X has a two parameter
Weibull distribution with shape parameter 8 and scale parameter 6 A
straight-line probability plot for this model can be produced by
plotting in(mo-X(1))versusin(-In{1 ~ / }} , as for a two-parameter
Weibull, or by plotting -In(mo - X(i)) versus -In(-In{ 2 }) ,

,

.

The latter gives the original values from smallest to largest, while in
the former the original values are plotted along the abscissa from
largest to smallest. The latter plot is the mirror image of the former.

In Figure 5-12, the value 14.0 has been used for n , and -in(mo - x(t))o
is plottedversus-in(-in{ / }, with x(i) the ith smallest of then
six-month magnitudes. (Actually the variable plotted on the abscissa is
28 - 12 In(14 - X(i} }. The factor 12 expands the plot so that details
of the shape can be observed, and the added term makes the plotted
values positive.)

The value 14.0 (actually about 12.0 to 14.0) was determined after
several iterations. For values less than about 12, the plotted curve is-
concave downward, and for values larger than about 14, it is concave
upward. Figure 5-12 shows a plot that describes a straight line.

Using -In(14.0 - x) for the variable of interest in the Grafstat analy-
sis, we find also a single distribution, rather than the mixture seen in
analyzing the untransformed x.;

The California Catalog is the one of highest quality available for this
investigation. A series of measurements of magnitudes of South American
earthquakes was also analyzed, but had the disadvantage that different
measures of magnitude were used at different times. Still, the magni-
tude distribution made up of the various types of measures appeared to !I exhibit behavior similar to that of California data (see Figures 5-13 '

and 5-14) . The untransformed data plot like a mixture of 3 distribu-
tions, and assuming an upper threshold equal to a value (8.8), estimated
by analytical procedures, yields a reasonable straight-line plot with a

.

few stray observations at both the lower and upper ends.
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5.3.2 Parameter Estimation and Prediction
,

The three-parameter extreme-value distribution that appears to charac-
; terise the sasples of extreme magnitudes that have been observed is more

- difficult with which to deal, in terms of prediction than the obviously j
i inappropriate exonential model often applied to earthquake magnitude j

data sets. It is, however, not so difficult as a mixture model, which
has 5 or more parameters. I.

One sees in the 3-parameter model involving an upper threshold a very
tight distribution around a characteristic magnitude. H e tight distri-
bution indicates a very large value for the shape parameter, 8, which

'

creates difficulty in the estimation of the upper threshold and hence in'

F . the estimation of 8 as well. This difficulty arises from the fact that r

an estimate of the threshold is effectively made up of two components:
- one which is the largest observeable magnitude with variance g2 (632)/
and another whose variance is divided by n /6 For values of S greater2'

than 10 or 50, the variance of estimates of mo decreases very slowly
with increases in sample size.'

For the 48-year California catalog, a graphical analysis indicates an'

upper threshold of about 12.0 to 14.0 for earthquake magnitude and an
estimate of 6 for six-month data (based on the slope of the line plotted<

with no = 14) equal to approximately 14.1. A percentile estimate of the
characteristic magnitude 6 is 5.2.

1

The " median-unbiased" estimate of Mann and Fertig (1975) for m is 13.6a
, based on the same data set. The procedure from which this value results f
| "

; is based on a ratio of linear combinations of successive differences of
logarithms of observed magnitudes ordered from smallest to largest. i

'subtracted from it. TheI Each magnitude has an estimated value of ma
! ratio is set equal to a tabulated value of the fif tieth percentile of
| the distribution of the random variate, and the value of the estimate of

a is iteratively modified until the value of the ratio satisfies the| m
: equation. For more details, see the section on goodness-of-fit. [
!

; Use of the M-F median-unbiased estimate of no to obtain estimates of 1/6 :

; and in6 that are linear in the logarithms of the observed magnitudes
yields 14.2 for 6 (for six-month extremes) and 5.3 for 6+

m, 8 and 6 (see Cohen andThe corresponding moment estimates of o
'Whitten, 1982) are 12.3, 12.5 and 5.2, respectively.

For the California Catalog, there appears to be some discrepancy between
and 8 and those obtained from the median

_

the moment estimates of no
(13.6) and the plot obtained from! unbiased estimation procedure for no

i no = - 14.0. Estimates of largest earthquake magnitudes based on these
dif ferent estimation procedures do not, however, vary significantly when,

the number of time. intervals is large.
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Let us assume that the observable largest magnitude X for six-month
intervals has a type-III distribution of largest extremes. Then Y = -X
has a 3-parameter Weibull distribution (see Mann and Singpurwalla, 1982)
with lower threshold equal to A = -mo <0, shape parameter S>0 and scale
parameter 6-(-m )>0. 'Ihen, for N intervals,o

-6 - (-m )o
=mo+ f (1 + 1/S) , andE(Y(1))

N 1|0

E(X ) = -E(Y(j)).N

If we use the moment estimates with N=96 to predict the magnitude of the
largest earthquake in N/2 years, we obtain

*l
E (Y(1)) = -12.3 + f(1 + 1/12.5)

96(1/12.5)

For N/2 = 48 years, E(X ) = -E(Y(1) ) = 7. 6 for N/2 = 1000 and 10,000N
years, respectively, then the expected largest magnitudes are 8.6 and
9.3, respectively.

Using the median unbiased estimate of s and the associated linear esti-o
mates for 1/6 and in 6. we get for the expected magnitude of the largest
earthquake in 48, 1,000 and 10,000 years, 7.5, 8.9 and 9.6, respectively.

5.3.3 Confidence Bounds

Obtaining a confidence bound for X(N) for N larger than an available
sample is usually possible for a location-scale-parameter family.
Consider the lower confidence bound on a largest 40-year earthquake
under the assumption of the exponential model discussed in the
Introduction. We assume a lower imposed threshold of 4.0 and an average
of 20 quakes larger than 4.0 per yenr.

We derive an F approximation similar to those used extensively in Mann,
Schafer, and Singpurwalla (1974). It consists of the ratio of two
unbiased estimates of the exponential scale parameter 0 In the numera-
tor is an expression involving the unknown X(y), namely

N

(X(y) - 1)/ E (1/N *I) *
i=1
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This variate has expectation m = 0 and variance

" "

( (1/n-i+1) )2
2 2

n=0 E - (1/n-i+1) E

1-1 i=1

since the lower threshold is known. For large N, u3 0 H /6(In N +
0.5772156)2, where in(*) indicates natural logarithm and 0.5772156
approximates Euler's constant. In the denominator we use the best

t available estimate of 0, namely O = 0.85 with variance 02 n where n is/

the sample size upon which $ is based. The two estimates of 0 have zero
covariance; and, each, being an unbiased estimate of a scale parameter,

2(when multiplied by 2) approximately a chi-sciuare distribution withhas
m /v degrees of freedom. In circumstances such as these, an F2

approximation works well when the numbers of degeries of freedom, vi, and
v2 are large. In this case they are

v1 = 2 (in N + 0.5772156) / (H /6)

and V2 = 2n.

Thus
F = (X(N) - A) / [0 (in N + 0.5772156)]

for N = 800 quakes (20 per year for 40 years) and n = 40 has degrees of
freedos 64 and 80. If we assume, as did Knopoff and Kagan, that 0 is
given, as if n were infinitely large, then the degrees of freedom are 64
and ". This gives F 2 1.5 for a 99 percent lower confidence bound on
X (800) , and hence a value of 7.85, close to the value of 8.0 obtained by
Knopoff and Kagan in their simulation.

It would be nice to be able to derive similar sorts of confidence bounds
for X(y), pertaining to the three-parameter extreme-value model, but the
shape parameter complicates this.

One heuristic approach that we can use to obtain an approximate con-
fidence bound is to find an expression for a non-parametric confidence
bound pertaining to the largest earthquake magnitude in N/2 years in
terms of the unknown parameters and then substitute estimated values of
the parameters as if they were known. Consider Yi = -X , the smallestN
Neibull order statistic. The distribution of Yj is given by

1-exp (-N ( "O * ) ] = Gy (s)j
m -6o

1 - (1-F(y)]N ,=

|
i
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}
where F(y) is the distribution of Y=-X.

(-in(1-a)1/Nj l/B ,y (z))jthprobability
Hence, 1-G .1-a with

1 o + (m -6)probability 1-a, and Y ) -m o
1-a. Substituting so = 12.3, 8 = 12.5, and 6 = 5.2, the moment esti-
mates for the California Catalog, and N = - 2(48) 96, we obtain a=

95 percent lower confidence bound for Yj, of -8.4, hence an upper;
confidence bound for X(96) (48 years) of 8.4 at . confidence level .95.>

Using the parameter estimates associated with the Mann-Fertig median
,

; unbiased estimation procedure gives 8.8 as a 95 percent upper confidence

] bound for X(96) .
.

Use of this same technique for obtaining an approximate 95 percent upper
; confidence bound for the largest 1000 year earthquake gives 9.3 and 9.7

by substituting the moment estimates and median unbiased procedures,
respectively. These bounds do not.take into account the uncertainty in
the parameter estimates.

5.3.4 Goodness-of-Fit L
l

Fourier analyses, such as Figure 5-10, indicate that the untransformed
data constitute a mixture of at least 2 distributions. To obtain a
goodness of fit test using more mundane statistical techniques, we con- r

sider results of Mann (1983) .
.

In that article it is shown that classical outlier tets that use ratios
of dispersion estimates as test statistics are essentially testing the

i differences of slopes of two lines that would be plotted on probability

;- paper, one line using all observations and one using all but the
suspected outliers. Such a test is most efficient when the set of n-k

';
suspected outliers (applying to the smaller sized distribution in the
assumed mixture) plot as a line with slope greater (or possibly smaller)

, than the slope of the line formed in the plot by the other k observa-

{ tions.
,

f In Mann (1983), critical values are published for testing for outliers
j in various situations, but none applying to the situation at hand.

I i

i To find applicable tables for an appropriate test statistic, we use a
i result shownin Mann and Fertis (1975) indicating that in tests of ,

i goodness-of-fit it is the choice of spacings used rather than the way I

the spacings are combined that determine the power of the test.

! .

and Mann and Fertig (1975)
,

Thus, as in Mann, Scheuer and Fertig (1973)

; we use linear combinations of (X(i+1) -X(t)), i=1,..., n-1 to estimate
i

! the slope of the line formed by the k = 7 largest observations and the
slope of the line formed by all the observations.

:
,
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We let Li = (X(1+1) -X(1))/E(Z(i+1) -Z(i)), i = 1,..., n-1

with Ek = . (X(k) -M)/C, k = 1,..., n.

Here n is the mode of a type-I extreme value distribution of largest
7values and C is a scale paremeter, with H&/ 6 the distribution standard

deviation. The negatives of the values of E(E ) are found in Whitek
(1967). These values were reordered from smallest to largest to take
into consideration the change in sign (since White's tabulated values
apply to type-I extreme-value distributions of smallest values) .

The test statistic, approximately Beta with parameters k-1 and n-k, is

.

n-1 n-1
E Lt E Li

i=n-6 i=1

and effectively tests whether the ratio of the slopes of the line formed+

by all the observations and the line formed by the suspected outliers is
i significantly different from unity.

For the parameters of interest, 6 and 89, the fiftieth percentile of a.-

Beta distribution is 0.0652 and the tenth is 0.0 41. - The calculated
value from the California data set is 0.041. Thus we would reject an
hypothesis of a single extreme-value type-I distribution (with no upper
bound) at the 0.10 significance level.

I Testing the goodness of fit of the three parameter extreme-value
threshold model other than by the Fourier analysis approach of Grafstat
presents problems because of the third parameter assumed under the null

; hypothesis.

j To devise some sort of test, let us consider the median-unbiased estima-

tor of mo discussed earlier. To obtain a median-unbiased estimate for1

.
no (one that would be too large with probability 0.5 and too small with

'

probability 0.5) by the procedure of Mann and Fertig, one would f,ind a
good first guess ma for g, subtract each observation xi from n ando,

form in(m* - xt), i=1,...,n. The transformed observations are then
#

ordered from smallest to largest to form

'

w* (i) = In(af - x(n-i+1))
!

estimates for w(i) = In(mo -x (n-i+1) ) * 1"le****"*,
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The variates W(i) =-Z(1)/g + In6, i=1, . . . ,n have expectation E(Z (1} )/8
+ In6, with.E(Z(i}) _ the expectation of ith reduced, parameter-free
extreme-value order statistic. The initial statistic used for esti-
mating no iteratively is

n-1 n-1
S* = I L*,L* I

i i

i=k+1 i=1

where

L * = (W(1+g) gi)) (E(Z(1+1)) - E(Z(i))) .i -W

Somerville (1977) shows that optimal results are obtained when k in
(2.1) is equal to (n-1) /5. Since S* is monotonic in m*, as shown by
Mann and Fertig, an iterative procedure like a bisection technique can
be used to find an approximately median-unbiased estimate for suo
corresponding to a value of S* equal to the fif tieth percentile of a
Beta distribution with parameters 4 (n-1) /5 and (n-1) /5 1(when n-1 is
divisible by 5) .

The fact that the analytical estimate of n found by this approach ando
the associated linear estimates of 6 and 6 so closely match the graphi-
cal estimates of these parameters and demonstrate relatively small
discrepancies with the moment estimates which involve the first 3
moments of the data indicates that completely different manipulations
of the data under the given model give very close to the same results.
This is encouraging and is reinforced by the results of the Grafstat
analysis.

Using 14 for af yields 0.803 for S*, very close to the 50th percentile

0.8023 of S*.

In general, the 3-parameter extreme value model appears to predict well,
and the predicted quakes ranging over past years are at least as large
in magnitude as actual observed magnitudes. In other words, this model
is more conservative than the exponential model, but possibly not con-
servative enough. Thus we are erring in the right direction. Further
corroboration of the model is given by the fact that linear plots are
exhibited for various subsets of the data, i.e. largest 3-month,
6-month, 12-month earthquakes and by the results of Yegulalp and Ruo
(1974).

5-55

;

i

-- _ - . - , . _ _ _. _ _,_ _ .._ __._. - _ , _ _ _ _ _ .-- ,.._, ,. _ . _ ,_.,__._ _. ._.. _ _ _. _. ,-_. _ - - ..._



I
g

j.
|
t

f

6. REFERENCES

Abramowitz, M. and I. A. Stegun (1972). Handbook of Mathematical
Functions: Dover, New York, 1046 p.

Barlow, R. E. and N. D. Singpurwalla (1974). In Proceedings of the
Symposium on Statistical Aspects of Air Quality Data, Research
Triangle Institute, N.C., Ed. L. D. Kornreich, U.S. E.P.A. Pub. No.
EPA 650/4-74-038.

Benjamin, J. R. and C. A. Cornell (1970). Probability Statistics, and
Decision for Civil Engineers: McGraw-Hill Book Co., New York,
683 p.

Bernreuter, D. L. (1980). Seismic hazard analysis, a methodology for
the eastern United States: U.S. Nuclear Regulatory Commission
NUREG/CR-1582, Vol. 2.

Bolt, B. A. (1978). Incomplete formulations of the regression of earth-
quake magnitude with surface fault rupture length: Geology, v. 6,
p. 233-235.

Cohen, A. C. and B. Whitten (1982). Modified maximum likelihood and
modified moment estimators for the three parameter weibull distri-
bution. Communications in Statist., %eory and Methods v. 11,
p. 2631-2656.

Epstein, B. and C. Lonnitz (1966) . A model for the occurrence of large
earthquakes: Nature, v. 211, 954-956.

c arth Technology (1981). Earthquake recurrence intervals at nuclear
power plants; Task 1A, Literature review; Task 15, Proposed ranking
of methodologies: prepared for U.S. Nuclear Regulatory Commission
under Contract NRC-04-81-167, December, 1981.

Earth Technology (1982). Earthquake recurrence intervals at nuclear
power plants Task 2, Selection of methods to be ranked: prepared
for U.S. Nuclear Regulatory Commission under Contract
NRC-04-81-167, March, 1982.

Gutenberg, B and C. F. Richter (1956). Magnitude and energy of earth-
quakes: Ann. Geofisica, v. 9, p. 1-15.

Kagan, Yan, and L. Knopoff (1978). Statistical study of the occurrence
of shallow earthquakes: Geophys. J. R. Astr. Soc., v. 55, p.
67-86.

'

6-1.



_ _ _ _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ - _ _ - _ _ _ _
. _

|

.Knopoff, L. (1971). A stochastic model for the occurrence of main
sequence earthquakes: Revs. Geophys. and Space Physics, v. 9,

p. 1975-188.

Knopoff, L., and J. K. Gardner (1972). Higher seismic activity during
local night on the raw worldwide earthquake catalog Geophys. J.
R. Astr. Soc.,-v. 28, p. 311-313.

Knopoff, L. , and Y. Y. Kagan (1977) . Analysis of the theory of extremes
as applied to earthquake problems: Jour. Geophys. Res., v. 82, p. ;

5647-5657.

Knopof f, L. , Y. Y. Kagan and R. Knopof f (1983) . b-values for foreshocks
and aftershocks in real and simulated earthquake secuencess in
press.

Lieblein, J.. (1953). On the exact evaluation of the . variances and
covariances of order statistics in samples from the extreme value
distribution: Ann. Math. Statist., v. 24, p. 282-287.

Lonnits, C. (1966). Statistical prediction of earthquakes: Reviews of
Geophysics, v. 4, p. 377-393.

Makjanic, B. (1972). A contribution to the statistical analysis of
Eagreb earthquakes in the period 1869-1968. Pure Appl. Geophys.
v. 95, p. 80-88.

Mann, N. R. (1983). Optimal outlier tests for a Weibull model - to
identify process changes or to predict failure times: in Optini-
sation in statistics Eds. 8. zanakis and J. Rustagi, The-

Institute of Management Science, Providence.

Mann, N. R. and K. W. Fertig (1975). A goodness-of-fit test for the
two parameter vs. three-parameter Weibull; confidence bounds for
threshold. Technometrics, v. 17, p. 237-245.

Mann, M. R., R. R. Schafer and N. D. Singpurwalla (1974). Methods
for statistical Analysis of Reliability and Life Data. New York,
John Wiley.

Mann, M. R., E. M. Scheuer, and K. W. Fertig (1973) . A new goodness of
fit test for the two-parameter Weibull or extreme-value distribu-
tion with unknown parameters. Commun. in statist., v. 2, p.
383-400.

Mann, N. R. and N. D. Singpurwalla (1982). Extreme-value distribu-
tions: in Encyclopedia of Statistical Sciences, ed. N. L. Johnson
and 8. Mots, John Wiley.

6-2 '



_

i

!

Mortgat, C. P. and H. C. Shah (1978). A Bayesian approach to seismic
hazard mapping; development of stable design parameters: John A.
Blume Earthquake Engineering Center, Dept. of Civil Engr., Report
No. 28, Stanford University, 233 p.

.

Newmark, N. M., and E. Rosenmuth (1971). Fundamentals of Earthquake,

Engineering: Prentice Hall, New Jersey.

Parwardhan, A. S., R. B. Kulkarni and D. Tocher (1980). A semi-Markov
model for characterizing occurrence of great earthquakes: Bull.
Seism. Soc. Am., v. 70, p. 323-347.

Richter, C. F. (1958). Elementary Seismology: W. H. Freeman and
Company, San Francisco.

Rikitake, T. (1976). Earthquake Prediction: Elsevier, Amsterdam.

Schenkova, 2. and V. Karnik (1970). The probability of occurrence of
largest earthquakes in the European area, II: Pure Appl. Geophys.,
v. 80, p. 152-161.

Schenkova, Z. and V. Schenkova (1975). Return periods of earthquakes
and trends of seismic activity. Pure Appl. Geophys., v. 113, p.
683-693.

Smith, P. D., R. G. Dong, D. L. Bernreuter, M. P. Bohn, T. Y. Chuang,
G. E. Cummings, J. J. Johnson, R. W. Mensing and J. E. Wells
(1981). Seismic Safety Margins Research Program - Phase 1 Final
Report Overview U.S. Nuclear Regulatory Commission NUREG/CR-2015
Vol. 1.

Somerville, P. N. (1977). Some aspects of the use of the Mann-Fertig
statistic to obtain confidence interval estimates for the threshold
parameter of the Weibull: in Theory and Applications of Relia-
bility, Vol. 1. Eds. C. P. Tsokos and I. N. Shimi. Academic
Press, New York.

Spetzler, C. S. and C. S. Stael von Holstein (1975). Probability
encoding in decision analysis: Management Science, v. 22,
p. 340-357.

Stepp, J. C. (1972). Analysis of completeness of the earthquake sample
in the Puget Sound area and its effect on statistical estimates of
earthquake hazards in Proceedings of the International Conference
on Microtonation, Seattle, Washington, p. 897-909.

6-3

- _ _ _ _ _ _ _ _ _ _ _ _



Tarter, M. E. (1978). Implementation of harmonic data analysis pro-
ceduress in Proceedings of Computer Science and Statistics: j
Eleventh Annual Symposium on the Interface. Eds. R. Gallant and |

T. Gerig. North Carolina State University, Raleigh.
.

Veneziano, D. , C. A. Cornell, and T. O'Hara (1984) . Historic method of
seismic hasard analysis: Electric Power Research Institute Report
NP-3438, prepared by Yankee Atomic Electric Company. I

Weichert, D. H. (1980). Estimation of the earthquake recurrence
paramters for unequal observation periods for different
magnitudes: Bull. Seism. Soc. Am. , v. 70, p. 1337-1346.

,

White, J. S. (1967). The moments of log-Weibull order statistics:
General Motors Research Publication GMR-717, General Motors
Corporation, Warren, MI.

Yegulalp, T. M. and J. T. Kuo (1974). Statistical prediction and
occurrence of maximum magnitude earthquakes: Bull. Seism. Soc.
Am., v. 64, p. 393-414.

.

6-4

i

.f



/
"

U S. NUCLE A'1 REGULATORY COMMIS$10N
''

"

BIBLIOGRAPHIC DATA SHEET
178TLE AND SU8f f TLE (Aaa Vo4me Na, af appreer,es,J 2. (Leave aimap /
Earthquake Recurre ce Intervals at Nuclear /

Pow;r Plants: An ysis and Ranking a RECIPIENT s CEssicw NO.

7. AUTHORlS) 5. DATE reg 6MT COMPLETED |
J.A. Hileman, L. Knop ff, N.R. Mann, R. K. McGuire uoa ra/ | vs Aa |

Dec yber 1984 '

'

9. PERF ORMING QRGANi2ATION NA AND MAILING ADORESS (tactude I,a Code / DAf[ REPORT ISSUEO
Earth Technology Corpora on "f'"

March l''^"
/ iggs3777 Long Beach Boulevard

*['** *" * '
' Long Beach, California 90 7

p. . .e,,
12. SPONSORING ORGANIZ ATION NAME AND M A ING ADDRE SS Itaciude I,a Codel

,

Division of Radiation Programs & arth Sciences
Office of Nuclear Regulatory Rese ch ii. nN NO.
U.S. Nuclear Regulatory Commission 87226Washington, DC 20555

13. TYPE OF REPORT eg al COVE RIO (lachsere daars)

Final Technical November 1981--December 12, 1984
/

IS. SUMLEMENTARY NOTES It (Lewe amat

'

16. A8STR ACT 000 words or lessA

Five methods for estimating earthquake recurre e were ranked. The methods
represent those used, or proposed, in nuclear p er plant studies through 1982 and
include Log Linear Poisson, Extreme Value. Semi rkov, Bayesian, and Uniform
Hazard Method. Ranking focused on recurrence est tes for earthquake sources,
excluding attenuation and site response jScores we e assigned to each method for
12 criteria such as accuracy, use of geologic data, d subjective judgment.
Criteria scores were weighted by their importance and f umed. Different scoring
and weighting schemes were used to identify any sensitwities. To aid in scoring
statistical criteria, methods were tested on synthetic rthquake catalogs with

known statistics, and natural catalog /s' were tested again theoretical magnitude
distributions.
The uniform Hazard Method scored high because, in principa g expert judgement draws
upon all seismologic knowledge. TheBayesianMethodscoredl(owbecausedatarequirements are severe for practical cases. The other metho s were intermediate.
Th;se observations seem insensitive to scorer, scoring approacht, or weighting
scheme. Thesemi-MarkovMethods,c'oresweresensitivetotheweghtingscheme.

17 KE Y WOHDS AN0 00CUME NT AN ALYSi$ sie DESCRIPTOR$

Earthquake recurrence
Probabilities
Nucicar Power Plants
b-Value
Bayesian method

17t> IDE Nilfit NS Ort N INDE D 1E RVS

IS AVAIL ABILif V ST ATEMINT 19 mi 9 (f a.s reserrt 21 NO Os ta

Unlimited - re .+ t o es,.,,,,i -

.CC .0 W 33% os u



UNITED STATES e urr,e cuss can

NUCLEAR RECULATCRY COMMISSION *'#"'sIE'"^'u
WASHINGTON, D.C. 20555 PtIuff ps..In"

"
OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE,4300

!

1

I

i

1

120555018877 1 1 Af41R A
US P4RC
ADM-OtV 0F TIDC
POLICY L PUB MGT BR-POR NUREG
U5511NGTON

OC 20555


