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ABSTRACT

CSQ is a well-tested and versatile wave propagation computer
program, a modified version of which has been used to perform a
number of USNRC-supported analyses of detonations of hydrogen-
air mixtures in nuclear reactor containment buildings. The
modifications, from a user's viewpoint, are fairly minor, and
this version of CSQ is being prepared for release to interested
organizations. This report documents the use of CSQ in this form,
as well as certain codes which aid in performing the detonation

calculations.
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I. Introduction

sandia National Laboratories is engaged in an extensive
program, sponsored by the USNRC, involving many safety-related
aspects of the behavior of hydrogen mixtures in reactor contain-
ment buildings ([1]. A part of the program is the estimation of
detonation-caused loads on containment structures., CSQ ([2], a
well-established computer program which solves continuum
mechanics problems for two-dimensional motion, has been used in
a number of such analyses [3,4,5]. An altered version of the
program was used in order to make use of constitutive relations
for hydrogen-air-steam mixtures which were developed as part of
the overall program [6)], and it has been suggested that this
version of the program be released for use outside Sandia. This
report is a brief description of the changes and the way the
resulting code may be used.

CSQ solves finite difference analogs for the partial
differential wegquations representing the balance of mass,
momentum, and energy, together with constitutive relations for
the materiuls 1involved. The code 1incorporates an accurate
treatment of mechanical and thermal equilibrium of mixtures of
as many as ten different materials. One user option, originally
used for (solid) high explosives, is the detonation of regions
of materials. However, this option requires the use of a single
equation of state for both the undetonated and the detonated
materials. Furthermore, a time and location for the start of
detonation are required input, and these limitations were deemed
inappropriate for the intended use. For this reason, an alter-
nate method of simulating detonations was incorporated in the
code. The method forces a detonation to occur (by converting
unburned to burned material) whenever some quantity (e. g.,
pressure) exceeds a threshold value. This very simple model may,.
however, be easily altered as adequate information becomes
available, allowing more accurate treatment of detonation initi-
ation, as well as quenching or transition from deflagration to
detonation.

Section 1i of this report presents a brief description of
CSQ and the detonation-mcdel modifications, together with
descriptions of ancillary codes which aid in performing CSQ
detonation analyses. Section III describes the effects of
various changes in the detonation model, as well as some results
from a typical calculation of detonation in a containment. The
Appendix contains a description of how the required equation-of-
state information is generated and used to calculate theoretical
detonation conditions.



II. Brief Description of CSQ and Related Codes

CSQ eolves discrete analogs of the differential equations
representing conservation of mass, momentum, and energy in
two-dimensional motion, in either cylindrical or rectangular
Cartesian coordinates. Constitutive relations ("equations of
state") and initial and boundary conditions are combined with
the three conservation laws to complete the system of equations.
A rectangular grid is used to discretize the spatial region of
interest; various geometric options are used to define which
regions of the grid are occupied by a given material. The avail-
able boundary conditions include impermeable boundaries, bound-
aries which absorb incident stress waves without producing a
reflection and for which the user may choose whether or not to
allow material to enter or leave the mesh, and applied pressure
and velocity boundaries [7]). Sets of connected lines internal to
the mesh may also be defined as impermeable.

The nrmerical method embodies a "pseudo-viscosity" to smooth
discontinuities, so that the differential equations have solu-
tions which match shock wave solutions near a steady wave
separating regions of constant properties [8). After advancing
the solution by a timestep using a Lagrangian formulation of the
equations, the code performs a rezone to the original spatial
mesh, so the resulting treatment is essentially Eulerian. The
current version of the program can treat as many as ten differ-
ent materials in a problem, with any mixtures assumed to be in
mechanical and thermal equilibrium. CSQ incorporates accurate
thermodynamics, has been used on a wide class of problems, and
has produced results which compare well with experimental data.

The standard treatment of detonations in CSQ consists of
releasing the appropriate amount of internal energy in a thin
region (several computational cells) which moves through the
mesh with the detonation velocity. The undetonated material and
the detonation products must be described by the same constitu-
tive relation, and the location and time of initiation must be
specified. In the Sandia hydrogen program, equations of state
were developed for hydrogen-air-steam mixtures and the combus-
tion products of those mixtures, and we wished to make use of
that information. Furthermore, we anticipated a need, as accu-
rate information became available, to analyze phenomena such as
ignition caused by details of a flow field, deflagration-to-
detonation transitions, and quenching o¢f a detonation front. A
modified version of CSQ already existed (9], in a form that
could be easily adapted to such analyses.

CSQ treats mixed regions by maintaining volume fractions for
each material in the cells of the spatial mesh. The modification
consists of controlling the volume fractions in a way not
entirely determined by the motion and the rezoning process. The
conversion of one material to another (or others) may thus be
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However, a strong ignition source or flow disturbances could
cause the reaction to proceed rapidly enough that compression
and consequent additional heating occurs behind the front. This
last situation may escalate until a steady shock wave is formed
with a constant-thickness reaction zone immediately behind it,
which is the Etasis for the Chapman-Jouguet analysis of a detona-
tion.

One other feature of the calculaticnal method differs from
the ordinary formulation, although it is not an explicit modifi-
cation to CSQ. Because the standard approach does not treat
chemical reactions, there is no requirement that material
energies and entropies be related on an absolute scale. Here,
however, such a requirement is imposed in constructing the EoS
tables for corresponding unreacted and reacted mixtures, in
order to account for the energy available from the reaction. In
the absence of motion and energy transport, the total energy in
a cel' must remain constant; at the same temperature and pres-
sure, the EoS treatment assigns a lower internal energy to the
combustion products, so0o the result must be an increase in
temperaturv, and hence pressure where the conversion process is
taking place. Thus, no explicit energy source is required with
this method.

‘‘his section describes two reaction - ignition models which
have been used in CSQ defonation calculations, and presents
results from various sample problems. The first model is very
simple, and forces complete conversion to be calculated at a
constant rate. If reasonably good approximations of C-J detona-
tions are to be obtained, the interaction of the mocdel with
CSQ's numerical methods must be considered, and this is also
discussed. A slightly more "realistic" model is also described,
which does not force complete combustiorn of the unburned
mate "ial; a model of this form is, conceptually, capable of
producing all the phenomena outlined in the previous paragraph.
The final example is an illustration of the use of CsSQ in
modelling detonations in reactor containment buildings.

A. The "Cunstant Rate - Constant Threshold" Model

As stated previcusly, the simple model we have used to treat
detonations consists of forcing the conversion of one material
into another in every cell for which a specified parameter
exceeds a threshold wvalue. Convenient variables for the
“tricgering” quantity are the pressure or temperature; reason-
able results are obtained when the threshold value represents a
jump of ~1-2% of the corresponding jump to the C-J state. The
detonation may then be initiated by specifying the ignition
region to satisfy the criterion at the beginning of the problem.
As burning proceeds from this region, the original small dis-
continuity grows, eventually reaching a state approximating the
theoretical steady detonation conditions.

6



The constant rate at which the conversion takes place, as
well as the threshold value, 1s inserted in the subroutine
TFORM. The mass fraction of unburned material is decreased by
the product of a "burn parametcr" (called VDMP in the code) and
the ratio of the timestep to the cell size The current coding
then places an upper limit of 0.15 on mass fraction change. This
treatment of combustion 1s obviously quite unphysical, and the
way 1n which tlhe model parameters interact with CSQ's numerical
techniques and a problem's mesh size has an effect on the
results obtained.

hree simple example problems 1illustrate the 1interaction
mentioned in the previous paragraph. The problems all consist of
a one-dimensional detonation wave propagating into a dry
hydrogen-alir mixture, and initiated at the edge of the mesh from
a single row of heated cells. The spatial grid is uniform, 10 mm
squares, 3 cells wide and 200 cells in the propagation direc
tion. Each calculation was carried out for approximately 1 ms.
'he difference between the calculations lies in the value of the
ratio of the burn parameter (or conversion rate constant) to the
sound speed at the detonated state.

CSQ uses a modified Courant timestep control algorithm,
based upon local velocities and velocity gradients, mesh size
sound speed, and the artificial viscosity co-efficients. The
timestep chosen for advancement is the minimum of all those
‘alculated on the mesh. Experience has shown that, in order t
calculate a steady wave which is a reasonable appreximation of a
detonation and its associated release wave, several criteria
should be satisfied. One wants ~4 cells in the wavefront, the
timestep to be controlled within one cell of the peak, and the
mass {raction 1ncrement there to be about its maximum allowed
value. Of course, the calculated peak velocity should also be

about equal to tre C-J velocity,

]
Y
J

time 1increment, the ratio (r) of the burn parameter to the sound
speed at the C-J state depends on the Mach number (m) at the
state, and is given by

When these criteria are combined with the expression for the

’\1m {bl + I“i"(_}HH(]}m + [ 1 + (-hl + .4"wmbq)“'

J

wh~re B, and Bg are the linear an quadratic viscosity

coecrficlents, respectively, and Af, is the maximum allowed

mass fraction 1increment. The conversion rate ratio is normally

about 0.35, and 1is shown 1in Figure .1 as a function

initial hydrogen mole fraction for By o B
[& 1

.15 ;

(the default values), and two initial temperatures.
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accurate description of the curvature of the dome. The wetwell
region boundaries are made irregular in an attempt to approxi-
mate flow restrictions and equipment. Detonation (using the
constant rate - constant threshold model) proceeds from a heated
cell at the center of the boundary representing the drywell head.

The boundaries of the mndel are treated as rigid (imperme-
able). CSQ is capable of mocdelling the response of the materials
which make up the containment structure, but the timestep limi-
tations would be so severe as to make such a calculation prohib-
itively expensive. For this reason, pressure histories are
maintained at points along the boundary, and may be used to
estimate the effects of the loads on the structure.

The entire model is filled with a mixture of hydrogen and
dry, sea-level air, with an initial hydrogen mole fraction of
0.22 and an initial temperature ot 315 K; the resulting pressure
and density for the mixture are 0.142 MPa and 1.250 kg/m3,
respectively. An isochoric (constant-volume) burn of this mix-
ture reaches a temperature of 2364 K and a pressure of 0.885
MPa. C-J detonation values are 1.842 MPa, 2589 K, and 2.204
kg/m3, while an isentrope from the C-J state to the initial
density ends at 2295 K and 0.923 MPa.

As may be seen in Figures III.13 and III.14, the square
zones in the CSQ mesh keep the detonation wave from being
perfectly spherical, but it becomes more nearly so as the
calculation proceeds. (The plotted density of dots in the
figures corresponds to the mass density in the calculation.) All
of the mixture in the upper compartment is detonated hy about 16
ms, while the wetwell still contains mostly undetonated material
(Figure 111.15). At a later time, the pressure waves from
reflections at the wall interact at the compartment centerline,
producing a region of very high pressure, as seen in Figure
ITI.16. Figure II11.17 shows the situation still later, when
expansion from the axial high-pressure region results in a
second strong reflection at the centers of the dome and drywell
head.

The phenomena described in the previous paragraph lead to a
common feature of central-point detonations in large compart-
ments: the maximum pressure on the boundary is not the direct
result of the arrival of the detonation wave, but of subsequent
interactions between reflected waves. Figures III.18 and III.19
display pressure histories at the dome center and drywell
center, respectively, and clearly show the importance of wave
interactions long after complete detonation has occurred. The
effects of these interactions are also evident where the dome
and vertical wall join (Figure I11.20), but at that location,
the peak pressure does occur when the detonation wave arrives.
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(The theoretical value of reflected pressure for the detonation
wave is greater than 4 Mia; the lower calculated value is caused
by the finite zone size.) As expected, the pressure histories in
the wetwell, exemplified by Figure 1I11.21, show much more rapid
early variations, because of the more complicated geometry of
the boundary. Pressures are still fairly high when the calcula-
tion is terminated at 200 ms, since no flow is allowed out of

the problem.

Because of the complicated spatial and temporal variations
in loads produced in calculat.ons like the one described above,
the CSQ results frequently provide only an indication of whether
analyses using other methods should be performed. For example,
dynamic structural calculations could be carried out using the
pressure histories, or approximations of them, as boundary con-
ditions, if the CSQ results seem severe enough to warrant such

an investigation.
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'he example results presented in this report show that a

led version of CSQ c¢can make use of equation-of state
mation to calculate detonations without the requirement
the unburned material and the combustion products be

described by the same constitutive relations. The examples

Dr
i

»sented all

1

deal with calculations involving tabular EoS

lescriptions of dry hydrogen-air mixtures, but this is not a
necessary restriction. Three examples also demonstrate that,

jiven

adequate models for ignition <criteria and reaction

Kinetics, analyses of reasonable sophistication could be carried

i
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Finally, calculations with CSQ can yie.d reasonably

urate estimates of dynamic loads exerted on reactor con
iinment boundaries in the event of internal detonations.
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APPENDIX

The standard CSQ code package includes the tollowing pro-

grams,

1. CSQGEN -
2. CsSQ -

3. CSQLINE -
4. CSQPLT -
5. CSQSURF -
6. CSQHIST -
7. CSQTAP -
8. CHDCSQ -
9. PRECSQ -

[2].

listed with their purpose:

Initialize new problem or rezone an existing
calculation

Main analysis program

Produce l-Dimensional plots

Produce 2-Dimensional (plane) plots
Produce 3-Dimensional plots

Produce plots and edits of point histories
Produce edits of CSQ output tape

Couple output from the 1-D Lagrangian code CHARTD
to CSQGEN

Preprocess size data to calculate storage array
sizes consistent with problem

Programs 3 through 6 employ the RSCORS [13] plot routines,
which is available from Sandia National Laboratories. The first
five codes in the list use the preprocessor's output to acquire
common block statements via CDC UPDATE. Complete information on
the codes and their use will be found in the primary reference
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states to the initial density. The EoS routines will extrapolate
to values outside the range of the tables. However, because of
the reference point used for the entropy, peculiar results may
be obtained for that quantity if the extrapolation distance is
very large. The CKEOS2 reference should be consulted for a
complete set of input instructions.
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