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UNIFIED THEORY FOR PREDICTING MAXIMUM FLUID PARTICLE .

SIZE FOR DROPS AND BUBBLES

by .

G. Kocamustafaogullari, I. Y. Chen, and M. Ishii

ABSTRACT

A simple model is developed based on a two-dimensional linearized Kelvin-
Helmholtz stability theory to describe the breakup of drops and bubbles in
fluid media. Breakup 'a predicted to occur if the growth of disturbances at
the interface is faster than the rate at which disturbances propagate around
the interface to the side of particle. Agreement between the model and exper-
imental data indicates that the principle physical mechanisms involved are
properly accounted for by the model. The same theory is applicable to drops
in liquid, drops in gas, and bubbles in liquid. The present analysis gives
the first unified theory for fluid particle breakups which has not been avail-
able previously.
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NOMENCLATURE
1

Ar Archimedes number

c Complex wave.celertty

cf Imaginary part of wave celerity
,

c . Speed of propagationp

d Diameter i

d Volume-equivalent sphere diametere
;

(d) max Maximum value of d at breakupe e -

d Twice the mean radius of curvaturep

Eotv''s numberEo o

F Dimensionless group defined by Eq. (58)

h Fluid thickness4

g Gravitational acceleration
~

k Wave number, 21/A

k Wave number at particle breakupm

M Morton number
.

N Viscosity numbery

P Pressure
,

R Mean radius of curvaturep

S Maximum velocity gradient in the continuous fluid

t Time

t Growth timeg

t Propagation timep

u Velocity

u Rise or . fall velocityc

ce Tangential component of u at the interfaceu c

We Weber number
1.
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x Horizontal coordinate axis

y Vertical coordinate axis

Energy dissipation per unit mass per unit timec

|Ap| Absolute value of density difference, |pc - Pd!

n Local wave amplitude

nb Wave amplitude at breakup

n' Amplitude of initial disturbances

e Angular position

e Angular position of initial disturbanceso

e Wake anglew

A Wave length

p Mass density

o Surface tension

4 Veloci.ty potential

Subscripts

1 Lower fluid in Kelvin-Helmholtz instability

2 Upper fluid in Kelvin-Helmholtz instability

c Continuous fluid

c Critical valuer

d Dispersed fluid

max Maximum value

tr Turbulent
'Superscripts

i

' Disturbances

Dimensionless variables*
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EXECUTIVE SUMMARY
.

Disturbances which cause fluid particle splitting are classified as rapid
*

accelerations, high shear stresses and turbulent fluctuations in the continu-
ous fluids. However, it has been observed that even when none of such exter-

nal disturbances is present, there is a limit to the size to which drops and
bubbles can reach. The maximum size attained by single bubbles or drops ris-
ing or falling freely through a stagnant media in the absence of such disturb-
ances has been traditionally attributed to the instability of Rayleigh-Taylor!

instability, which does not take into account the effects of relative motion.
Based on the Kelvin-Helmholtz instability theory which allows a relative

motion at the interface, a simple model is developed to describe the breakup
of drops and bubbles falling or rising through a fluid. Breakup is predicted
to occur if the growth of disturbances on the leading front is rapid enough
relative to the propagation rate of disturbances around the interface. Based I
on this theoretical model and available experimental data, a simple correla- )
tion is developed to predict the maximum stable particle size in a fluid.

Predicted values of the maximum particle size are compared with experi-
mental data for cases of bubbles in liquid, drops in liquid, and drops in-

gas. Agreement between the model and experimental results is favorable.
.

.

.
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1. INTRODUCTION .

Breakup and limiting size of fluid particles in dispersed two-phase flow
,

systems including the liquid-liquid particulate systems are important factors
in determining the fluid particle size distribution and hence the effective-
ness of the interfacial mass, momentum, and energy transports. A knowledge ofa

the disintegration of drops and bubbles is essential to the eventual under-
.

standing of the interfacial transfer mechanisms and two-phase flow pattern
transitions in many important engineering systems of interest to various
branches of technology and science. Engineering applications include gas-
liquid droplet systems, such as atomizers, dryers, absorbers, wet steam sep-
arators and cryogenic heat exchangers, liquid-liquid droplet systems, such as
liquid-liquid extractors, separators used with distillation columns, and
packed towers when the packing is not wetted by the disperse phase, and fi-
nally liquid-gas (or vapor) bubbly systems, such as boiling water and pres-
surized water nuclear reactors, boilers, evaporators, flash distillation and
aeration units. Although drops and bubbles seldom occur in isolation in such
systems, it is essential to understand the behavior of a single fluid particle

*before a full knowledge of interacting drops and bubbles can be achieved.
As discussed in the next section in greater detail, disturbances which

cause fluid particle splitting are classified as rapid accelerations, high -

shear stresses and turbulent fluctuations in the surrounding continuous
fluids. However, it has been observed that even when none of such obvious
disturbances is present, there is a limit to the size to which drops and bub-
bles can reach. The maximum size cttained by a single bubble or a drop rising
or falling freely through stagnant media in the absence of such disturbances

-

has been attributed to the instability of standing waves developed at the
particulate-continuous fluids interface, i.e., Rayleigh-Taylor instability.

It is to be noted here that Rayleigh-Taylor instability applies to a case
with no relative motion between two superposed fluid layers. However, in re-
ality, even for the breakup in stagnant media there exists a relative motion
between particulate and continuous fluids, and disturbances which grow by time .

are generated due to a relative motion. Kelvin-Helmholti instability theory
allows a relative motion between two superposed fluid layers. Disturbances

,

generated by this instability propagate at the interface with a certain speed.

_ __ _ _ _______________-_____ _



- _ _ _ _ - _ _ - - -

3

Extending this Kelvin-Helmholtz instability theory, it is the objective
.

of this study to develop a simple model to predict the maximum fluid particle
size rising or falling in fluid media. The correlation thus developed is gen-

* eral in the sense it can be used for liquid-gas, liquid-liquid, and gas-liquid
system.

II. FLUID PARTICLE BREAKUP ECHANISMS

To determine the limiting size of fluid particles a number of processes
which may cause breakup of fluid particles have been identified. The most
important mechansims are classified as follows:

A. Breakup in Gas Flow Fields,
B. Breakup in Viscous Flow Fields,

C. Breakup in Turbulent Flow Fields,
D. Breakup in Stagnant Fluids.

A. Breakup in Gas Flow Fields
This mechanism of breakup applies to drops suddenly exposed to a high ve-

locity gas stream (including shock waves). The investigation of the bursting-

of drops in an air stream has a long history, dating back to before 1904.
Large free-falling drops in still air, or somewhat smaller drop in a steady.

stream of air, were first considered by Lenard [1] and by Hochshwender [2].
Since then this breakup process has been studied both experimentally and theo-
retically [3-9]. According to this breakup mechanism, gas flowing over the
surface of a liquid droplet causes the dynamic pressure normal to the surface
of the droplet to be nonuniform, resulting in a deformation of the liquid
drop. If the pressure forces cause a distortion severe enough to overcome the
surface tension and viscous forces within the liquid, the liquid drop will
eventually split. Hence it was concluded that breakup is controlled by the
dynamic pressure, surface tension and viscous forces. For liquids with slight
viscosity effects, the deformation and breakup of drops are predominantly de-
termined by a single dimensionless group, the Weber number. Results of var-

,

ious experimental investigations can be expressed by a simple Weber number
criterion, indicating that drops will break when

.

We = constant (1)cr
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4
;

with the' critical Weber number defined by ,

emax("c - "do -c
We E (2)

,
,

where(uc -. ud) is the relative velocity between the continuous and the par-
ticulatephase,(d,),,x is the limiting volume-equivalent drop diameter, o isi

{ the surface tension, and p is the mass density of the continuous phase.c
From the data of Merrington and Richardson [3], Hinze [4] has estimated,

the constant appearing in Eq. (1) to be 13 for low-viscosity liquids. This
may be compared with the value of 10.6 from the data of Lane [6],10.3 for

| mercury drops in air, obtained by Haas [8], and 7.2 to 16.8 (with an average
of about 13.0) for water, methyl alcohol, and a low-viscosity silicone oil4

| obtained by Hanson et al. [5].

!, Hinze [7] considered the effect of viscosity and suggested that the crit-

i ical Weber number should be a function of a dispersed phase viscosity group.
! For this relation the following form is chosen

.

|

We = We '

cr u=0 ud

where Npd is the viscosity number based on dispersed phase. It is defined as
;

i
.

I y

} N E (4)
!

ud p
d max "

i

where ud and pd, respectively, are the (ynamic viscosity and mass density of
the dispersed phase. We is the value of the critical Weber number forcr y=0
vanishing viscosity effect of the drop, which is equal to the constant ap-

,

pearing in Eq. (1). The data of Hanson et al. [5] give only a qualitative
support to the effect, but do not agree in detail. A slightly different em-

,

pirical relation [10] given by the following expression has also been proposed

_

, ~ . , , , _. , , , .,--..._---.mm_..,,.y.,,gg-_%_,,g p- n_ 9_,.-,-. .y si y . w+.-.a y si -,.me--,.ye.,.,,_y.g, ya - - -.i.
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5'

We + 14 N (5)We =

:- cr cr y=0 ud

*

which is good to a maximum deviation of approximately 20% at the higher

j viscosity end.

B. Breakup in Viscous Flow Fieldsj
This mechanism of breakup applies to fluid particles surrounded by vis-

;

cous fluid where there exists strong velocity gradient in the vicinity of the
'

! particle. In this case the continuous fluid Reynolds number is so small that
! the dynamic forces are no longer important, and the breakup is controlled by

the viscous shear and surface tension forces. If the viscous shear force is
large enough, the interfacial tension forces are no longer able to maintain
the fluid particle intact, and it ruptures into two or more smaller particles.

The first funda.nental work on the splitting of drops and bubbles under
the action of surface tension and viscous forces were made by Taylor [11] in'

_

! 1934. His test apparatus was designed to generate carefully controlled flow
patterns. One of these consisted of Couette flow and the other was a plane
hyperbolic flow. A variety of liquids with different viscosities were used.-

! Taylor made numerous observations, many of which subsequently explained by

Tomotika [12]. The results can be summarized as follows:'

.

| a. Under the action of viscous shear, a drop alongates into the shape of

j a prolate ellipsoid of revolution.

{ b. The deformation is determined by the Weber number based on the

velocity gradient defined as.

I
i *

! p Sd
' C (6)We =

g

where p is the absolute viscosity of the continuous phase, and S is the max-c
imum velocity gradient in the continuous fluid flow field. 9

.

c. The breakup of the fluid particles occurs at a critical value of the
Weber number which depends on the continuous fluid flow field, and Taylor has
studied the deformation of a single drop as a function of S; he determined the*

,

value of S at which the breakup of the drop occurs.

|
'

.

m--m- mgw- -- eeempa&w a mew ++w*=rew==wyy w4ere,-.muw'- e---vrawe iT- ehuf'*r=- fr---*- W =r''B-MP* -'r *WW*T'-">m **FW ** -'+ " -*'*-T- *""*-T**=P- - - --'T$"*-*fr-**---'-w- *Pgc
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Although the basic principle of the breakup mechanism is correctly pre- .

dicted, Taylor's theory has been modified over the years [13-15]. For ex-
ample, Rumscheidt and Mason [13] proposed that breakup occurs if We, exceeds a'

,

critical value given by

1 + (u /"c] |
d

v"1+(19/16)(p/"c)d

T

which varies only between 1.0 and 0.82 as (ud/Uc) varies from zero to infin-
ity.

It should be noted here that the Taylor mechanism of fluid particle de-
fomation applies if both the undeformed and elongated drops are small com-
pared with local regions of viscous flow. When the Reynolds number of the
external flow field is large, as it is in most practical applications, the i

i

spatial dimensions of such local regions are very small compared with the drop
sizes. Under these circumstances, the detemining factor is the dynamic pres-
sure caused by the velocity changes over distances of the order of the fluid

.

particle diameter.

*

C. Breakup in Turbulent Flow Fields
According to the disintegration mechanism of fluid particles in an exter-

! nal turbulent flow field it is assumed that the dynamic pressure forces of the
turbulent motions are the factor determining the size of the largest fluid
particle. These dynamic pressure forces are caused by changes in velocity
over distances within the diameter of a particle. Kolmogorov [17], and Hinze

! [7] took this view, and further assumed that since the break up was to be con-
sidered local, the principles of local isotropic turbulence would be valid.
Under these circumstances, Hinze defined a Weber number based on the local

turbulent fluctuations as

.

p (au) d
(8)

Wetr '
,

o

|

~_ _ ._ . - _ _ _ _ _ _ . . - _ . -
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:

where;(Au) is the spatial average value of the square of velocity differences,

over a distance | equal to particle diameter. To relate this average kinetic4

! energy to this distance, Hinze used Kolmogorov's universal equilibrium theory
to show that .

i

(au) =2.0(cd,) (9)
o

,

where c is the energy dissipation per unit mass and time. Assuming that a
i constant critical Weber number criterion still applies, from Eqs. (8) and (9)

Hinze obtained

i

{ IPc) 2/5
(d,) c =C (10)

| He used experimental results due to Clay [17] to calculate the 'value of the
| constant C. Clay's apparatus consisted of two coaxial cylinders, one of

|* which, namely, the inner one rotated. The space between the cylinders was
i filled with two immiscible fluids, one of which fomed discrete drops. Clay
| found the maximum drop size as a function of energy input into the liquid. On-

the basis of these data Hinze found that C = 0.725, and, hence the critical

) Weber number can be given by

i p (Au) (d)**
(We ) (d,)2p c 1.18 (11)E = =

,

!
a

| It must be noted that data on breakup in an isotropic turbulent field are
i nonexistent, so direct verification of the criterion is not possible.

Sleicher [18] has shown that Eq. (11) is not valid for pipe flow. The breakup3 .

; occurs in the vicinity of a wall, where the conditions are the farthest from
j the approximate isotropic conditions at the center line. The breakup for a

,

| pipe system is probably a result of a balance among surface forces, velocity
| fluctuations, dynamic pressure fluctuations, and the steep velocity gradients,
i
C

(

. , - . _ - . , . . - - , - e ~w.,- ,,, e.-. ,, ---...,wr., ,% y -,,_, , , - - - . , , . - , ,.-...._,-,--y._we,.y ,1 .-
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1.e., a result of a combination of the various breakup mechanisms summarized ,

above.
The work of Kolmogorov and Hinze concerned with the splitting of dropst

'

.and bubbles by turbulent flow has been modified by Sevik and Park [19]. They
suggested that resonance can cause bubble and drop break in turbulent flow
fields when the characteristic turbulence frequency matches the lowest or nat-

ural frequency mode of an entrained fluid particle. Since damping is very
small, such drops or bubbles will defom very violently if the existing fre-
quency corresponds to one of their resonant frequencies. By setting a char-
acteristic frequency of the turbulence equal to such a resonant frequency,
they predict theoretically the critical Weber numbers corresponding both
Clay's droplet splitting experiments and their bubble splitting experiments.
It was found for droplets

(Wetr)cr = 1.04
(12)

and for bubbles

('tr)cr = 2.6 (13) -

It should be noted that Hinze calculated a value of 1.18 based on tests -

involving the dispersion of various imiscible liquids, and that the critical
Weber number for bubble breakup in turbulent flow fields is greater than that
for drop breakup by about a ratio of 2.5.

D. Breakup in Stagnant Fluids
In the foregoing breakup mechanisms, disturbances which cause particle

splitting are due to rapid acceleration, high shear stresses, and turbulent
fluctuations in the continuous surrounding fluids. It has been observed that
even when none of such external disturbances are present, there is a limit to
the size to which drops and bubbles can reach. The maximum size attained by a
single bubble and drop rising or falling freely through stagnant media in the ,

absence of such disturbances has been attributed to Rayleigh-Taylor instabil-

ity [20-30).
'

Rayleigh-Taylor instability can occur when a heavier fluid overlies on a
lighter one. Hence it is always the advancing interface of a freely moving

. . .
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,

;

bubble or drop (whether rising or falling under gravity) that is prone to the..

interfacial instability by this mechanism. The instability manifests itself
.as an indentation at the leading front surface (the upper surface for rising

! ,.,

bubbles or drops and the lower surface for falling drops) which grows deeper-
as time advances, and eventually leads to-a breakup of fluid particles.

!- This type of breakup mechanism was first considered by Komabayashi et al.

] [20] to determine the maximum size of falling drops'in air. It was found that-
the maximum diameter was 0.855 cm for falling water drops in air. This theo-
retical finding was in good agreement with the experimental observations of
Pruppacher and Pitter [21]. This theory has been extended over the years by
others [22-30]. For example, the following simple equation for the maximum
diameter of falling drops was suggested by Grace et al.'[29], '

'
i

gap \(dj =4 (14)e max j
'

i

i
'

where(d),,x is the volume equivalent diameter at the breakup.e
*

Equation (14) yields relatively good agreement with the experimental data
on falling drops in air and in low viscosity liquids [3,29,31-35]. However,

,

! it was observed that the predictions made by Eq. (14) were in grave error for-

{ rising bubbles or drops [29]. In some of the analyses the Rayleigh-Taylor in-
| stability theory has been introduced with a tangential motion of the disturb-
! ance along the interface [29,30]. It was postulated that the breakup is to
i

; occur if the growth of indentations on the leading edge is rapid enough rela-
2

tive to the rate at which the disturbance is carried around the interface to
the equator of a fluid particle. A semi-empirical relation was developed to

j predict the maximum particle diameter in which a constant was correlated using

I existing experimental data. It was found that the data f or bubbles requires a -

different constant, 3.8, than the data for liquid drops. For the latter case,

|
the optimum value of the constant was found to be 1.40.

f. It is important to note that in this type of analyses the breakup cri-
j teria were based on the growth of the standing waves, i.e., Rayleigh-Taylor

j, instability, where there is no relative velocity permitted between the par-
j ticulate and continuous phases. However, in reality, even during the breakup

) in stagnant media there exists a relative motion between two phases, and the

;

- . . . . _ . . . . , . . . - - . . . - - - . . ~ - - . - ,,. - _ --._--.- -.-- -. - - -, , ,--
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.

disturbances are generated at the interface due to a relative motion between ,

two phases. Therefore, the use of the Rayleigh-Taylor instability analysis
seems inconsistent in this case. It is natural to expect an effect of the

.

relative velocity on the wave propagation and breakup process. By taking this''

view, a new breakup mechanism is proposed here in terms of progressive waves,
'

|;

namely, Kelvin-Helmholtz instability, which allows a relative motion between
,

two superposed fluid layers.
In what follows we shall develop a Kelvin-Helmholtz instability analysis-

applicable to fluid particle deformations and utilize it to determine the
;

; maximum size of fluid particles rising or falling in a fluid.

III. KELVIN-HELMHOLTZ INSTABILITY
.

The stability of two superposed inviscid fluids flowing with different
,

| velocities will be considered here. It was Helmholtz (1868') who first consid-

! ered the stability of the vortex sheet at the interface of the two superposed
semi-inifinite fluids flowing with different velocities. His work was fol-
lowed by that of Kelvin (1871), and this type of instability is known as

f Kelvin-Helmholtz instability. Derivations presented here will closely follow *

Yih [36), where the stability of the two-suoerposed fluids with semi-infinite
,

{ depth was studied. Hence, only t% essential features of the development are -

| given here.
The stability of two superposed incompressible, inviscid fluids to be

|

| considered here is illustrated in Fig.1. The lower fluid is identified by
! subscript 1 and the upper fluid by 2. The fluids are flowing concurrently in

| a horizontal, constant area channel. The velocities of the two fluide are as-
~

i
sumed to be horizontal in direction, and are denoted by ut and u2, respective--

f ly. If the effects of viscosity of the fluids are neglected, and the per-
turbed flow is assumed to be irrotational, the velocity potentials, 4, of each

i

fluid satisfy the two dimensional Laplace equation. Thus,
,

2
a$ a +j .

9
+ = 0 , i = 1, 2 (15)

2 2
ax ay

.

--..,~~..e-, .-- . - _ , ~ _ , , , , . , . - . . . _ , , , . . _ _ _ __ _ _ _ _ _ ,_ ____ ___ ________ _ _ _



_ .

11

.

.

.

t

////////////////////////////// ////////////
n

Fluid 2 2

h'

2
y T]/

J L cr
'r il n>, ,

- n 7, ,

xJV V V N u N'

Uh
1 Fluid 1 1

-

,r

T'// / / / / / / / / / / / / / / // / / / / // // / /// / / / / // / / ///

;

;
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in which x is measured in the mean flow direction, and y measures the vertical ,

distance from the undisturbed interface. Denoting the perturbed quantities
about the steady state solution by a prime symbol, the velocity potentials can

,

be written as

4 =u x + $' , i = 1, 2 (16)'

9

If n is the displacement of the interface in the vertical y direction,
the kinematic interfacial condition to be satisfied at y = 0 is

I (17)h+ujh=3 , 1 = 1, 2

in which quadratic terms in n and fj's are neglected. Other boundary
; conditions for $' and $' are

84'
at y = -h =0 (18) -

1 ay

.

34j
at y = h =0 (19)

2 ay

which guarantee the vanishing normal velocity components at solid surfaces.
The dynamic boundary condition at the interface is given by

" (20)| P -P
g 2"~ 2

ax

I
.

! where terms of higher order than the first in n are neglected. Since the flow
I is assumed to be irrotational, the Bernoulli equation can be used to evaluate

.

the pressures. The linearized form of it can be expressed for each fluid as
follows: .

|

|
.- - - - _ _ ,_. -__ _ . _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ . _ _
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,

P 34' at'p
at - "i ax - gy (21)- - = -

,

1

*

Evaluating Eq. (21) at the interface, y = n, for each fluid, and using
the resulting equations in Eq. (19), one has

( 34' 34{ )
(a4j+" a4j + 9'j*

) 2
3

1 \at + "I ax + 9'j - PP
2 at 2 ax 2

3

This completes the formulation of the problem. If the perturbation is

assumed to be periodic in x, the appropriate forms $', $' and n are

$' = a cosh (k(y + h h exp W x - c W (23)
'

y g,

4' = a c sh[k(y - h )] exp[ik(x - ct)] (24)2 2

and-

b

n = n' exp[ik(x - ct)] (25).

i

where k is the wave number which is related to the wave length, A, by k =

2n/A, and n' is the perturbation amplitude of the interface. Furthermore, ai!

; and a2 are integration constants to be determined by the boundary conditions,
and c is the complex wave celerity defined as;

! c=cp + 1 ct (26)
,

where c denotes the velocity of propagation of the wave in the x-directioni

r

whereas kct is the growth factor which determines the degree of amplification
f, or damping. The disturbances are damped if kcy < 0 and the mean flow is
j stable, the disturbances are amplified if kct > 0 and the mean flow is un-
! stable. Finally, the mean flow is said to be neutrally stable, in which the

|* disturbances are neither damped nor amplified, if kcj = 0.

|
r

I
!

_ _ . _ _ . . _ . _. _ . . . _ . - _ . , _ _ _
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It is evident that $' and +' satisfy the Laplace equation, Eq. (15), and ,

that the boundary conditions expressed by Eqs. (18) and (19) at y = -hi and y

=h2 are satisfied. In view of Eqs. (18)-(20) and (17), the integration con-
,

stants at and a2 are determined. Hence,

i(u -c)n'g

*1 " sinh (kh )g

and

1(u ~#)"'2
8 ~~

,
2 sinh (kh )2

I'n view of Eqs. (27) and (28), the velocity potentials become

1(uj-c)
+{ sinh (kh j 1

'

#* #+ "

g

.

and

i(uj-c)
9' = - cosh (k(y - h )] n (30)

sinh (kh) 2
2

It is to be noted that the potentials given by Eqs. (29) and (30) have
been obtained through the kinematics of the respective flow fields. The dy-
namic interfacial condition, Eq. (22), has not been introduced yet. Hence one

; cannot say anything about the stability of the flow configuration.
Introducing Eqs. (29), (30) and (25) in Eq. (22), and solving the re-

.

sulting equation for c, one obtains

.

|

---
_ , - _ _ _
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k +g(p -p]c th(kh ] "2p coth(kh ) u +p
2 2g g g 2

#" coth(kh ) * "2 c th(kh )jko coth(kh ) + p e th(kh #
l 2g g 2 2 1.

.

cth(kh)coth(kh)("I ~"2)'p p
2g 2

(31)-
-

(p coth(kh ) + p c th(kh )]
g g 2 2 '

For the case of two superposed semi-infinite fluids, i.e., hg + -= and h2
,

+ , Eq. (31) reduces to that given in Yih [36] and Laub [37]. In the absence

of currents, Eq. (31) reduces to the Rayleigh-Taylor stability criterion when

pi < p2 '
In view of Eqs. (26) and (31), e and ej can be determined. Hence,r

c th(kh ) "2p coth(kh)u +p
22

#r" o coth(kh ) + p c th(kh ]
g 2 2

.

and

cth(kh)coth(kh)("1 ~"2) k +g(p -p)'p1 "2 g 2 g 2

c th(kh )](p coth(kh ) + p coth(kh )} 1 1 2 2'

g g 2 2
,

4

(33)

i Stability of the flow configuration can be analyzed by the behavior of

cj.
~

IV. PARTICLE BREAKUP CRITERION

.

A. Modeling
'

Even for the case of freely rising bubbles and drops, and falling drops
in a stagnant media there exists a relative motion between fluid particles and

___ - ,
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its surrounding fluid. Hence, any interfacial stability analysis used for a
,

breakup mechanism should take into account the effect of the relative mo-
tion. Taking this view a breakup mechanism based on Kelvin-Helmholtz insta-

*

bility of interfacial progressive waves rather than the instability of stand-
ing waves will be developed here.

For the analysis, a series of approximations will be introduced as fol-
lows:

a. The compressibility of dispersed and continuous fluids is neglected.
b. The effects of viscosity in both dispersed and continuous fluids are

neglected. Hence, the breakup criterion will not be expected to hold for ex-
tremely high viscous fluids.

c. The circulation within the fluid particle is neglected.
d. The effects of fluid particle advancing front curvature are neglected

except insofar as it determines the value of tangential velocity component.
It can be argued that these effects are of minor consequence for drops and
bubbles which are sufficiently large for breakup to be a factor.

e. As discussed in greater detail in Section II, the breakup of fluid
particles in a stagnant fluid proceeds from the advancing interfacial surface,
i.e., from the upper surface for rising bubbles and drops and from the lower -

surface for falling drops, which is in agreement with most observations.
!Hence, it is assumed here that it will always be the advancing interface of a .

freely moving particle that is prone to instability.
Under these conditions the plane flow Kelvin-Helmholtz instability devel-

oped in the preceeding section can be applied. Identifying the continuous and
dispersed fluids by subscripts c and d, respectively, the results obtained for
the speed of propagation, c , and the growth factor, keg, can be expressed asc
follows:

p coth(kh)u +p c th(khd d "d
#r" p coth(kh j + p c th(kh )

d d

.

| 'o p c th(kh ) coth(kh ) k (u ~ "ded d o .

kc
(p coth(kh)+p c th(kh )]

d d

_
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1/2ok -g|ao|k*

(35)
, '

D coth(kh j + p coth(kh j
e d d

.

where(uce - ude) is interpreted as the tangential velocity difference at the
interface.

Now consider a cap bubble rising in stagnant liquid as illustrated in
Fig. 2. Here a cap bubble is chosen for the purpose of reference. The pres-
ent theory will be equally applicable to rising or falling drops with spheri-
cal or ellipsoidal shapes. In Fig. 2, 0, represents the wake angle of a cap
bubble and R denotes the particle radius.p

Using the potential flow theory for flow around a spherical particle, it
can be shown that the tangential velocity components at an angular position of
a can be given by

=fu, sineu (36)g

.

udo = 0 (37)
.

where it has been assumed that the circulation within the fluid particle is
negligible.

It is noted here that the surrounding fluid dimension is much larger than
the particle size. Thus

hc*" (38)

Furthermore, for large arguments coth(kh ) can be approximated byc

coth(kh)=1.0 (39)e

In view of Eqs. (36) through (39), Eqs. (34) and (35) can be approximated
by

.

1
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|

|. ,3 'e "c Si"'
r 2p +p coth(kh f

,

c d d i,

*
!
:

l
A A coth(kh ) k (u sine)2 3

,1/2

f c d d c ,k - g| Ap|k
t - kc, = ,

coth(kh )
,

[p +p coth(kh)} c d d,g d d,

i

I
It is evident from Eqs. (40) and (41) that the speed of propagation as

well as the growth factor depend upon the local angular position, original :

disturbance location, and the dispersed phase fluid thickness at the origina- i

tion of disturbances. Referring to Fig. 2, it can be shown that hd is given
by the following equation.

1

d I

af(cose-cose,) (42)h

*

i i
i !
j Here d is given in terms of the mean radius of curvature as d = 2R .p p p

Equation (41) represents the growth factor of Kelvin-Helmholtz instabil- ;

ity as applied to a rising cap bubble. Thus when (keg ) > 0, the flow config- }
uration is unstable. It should be emphasized here that the above stability
criteria represents only the first step in developing a correlation for the

i,

breakup of a fluid particle interface. This infomation simply indicates when i
,

these interfacial waves occur and what their growth rates are. However, the
appearance of the wave on the interface does not necessarily imply that it
leads to drastic changes at the interface such as the breakup of particles.
To answer this question of whether the waves can lead to a breakup or not, it
is necessary to know the time required for these waves to grow to a certain i

amplitude so that splitting eventually can occur.
|.

;

8. Breakup Criterion _ l
A mathematical model is proposed here to predict the point at whic5.

j breakup will be attained under given conditions. If t denotes the time atg

I which the instability at the interface lead to a breakup t can be calculatedg j

from the wave fom given by Eq. (25). Thus, I

!
,

_ . _ _ , , _ , . _ _ . _ _ _ _ _ . , _ _ _ _ = _ ~ . . _ , , _ _ _ . , , _ . . _ , _ _ , _ - . _ , , _ , , . _ _ , _ _ _ , _ _ _ . _ _ , , . . _ __.,_._,-,--m_..,_,__., _ - . , ._
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1 20
|

! An(n/"') (43)t =
*

b

;

where nb is the amplitude at which breakup occurs. In a linearized stability
,

analysis as it is the case here, there is no way to predict the value of i

! (nb n') purely on theoretical basis. This implies that some experimental/

j. information on the initial disturbance amplitude is necessary to determine -

j this quantity.
j Disturbances originate near the top of the roof of a bubble and propagate

; down to the periphery with the local speed of propagation, c . In practice a
|r

| bubble does not split unless the disturbance has grown sufficiently before the :

: tip of the growing spike reaches the side of the bubble. If the wave travels
L

to the end of a cap bubble or to the equator of a spherical particle without |
j causing a breakup, it will be swept awty at the edge into the continuous !

j fluid. An estimate of the likelihood of splitting may be obtained by compar-
,

) ing the time required for a disturbance to grow with the time available for

the growth. If tp represents the time available for growth, that is the time
required for a disturbance to travel from its origination to the side of the,

bubble, tp can be calculated by; i
; o

1
'

) 'a *

d' ,

j f de (44)t =
p 2c

{ o

| ,

j where 6, is the angular position where disturbances initiate. In view of Eq.
,

j (40) it can be shown that t can be calculated byp

):
; p * 'd coth(kh)' 'I*"('u/2)' |c d 'd An < (45) ;t, = < ,c ,c p fy
{ o, , ,

i
i

: The likelihood of a breakup may now be assessed by comparing the values -

! of t and t . Thus a bubble tends to breakup by a disturbance for whichg p
)
! '

j tp>tg (46)

b
!

i

k
~ _ . . _ , , _ , . _ _ _ _ _ , .-.-, _ _ ._ . _ . _ - _ . _ _ . ... _ . _ _ _ _ _ _ _ _ _ .. _
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Combining Eqs. (43) and (45) with Eq. (46), a breakup criterion may be.

expressed as

.

'o +p cth(kh)' ' tan (e /2)'* d
j p u p tan (0/2J "("b"(kc ) ' 'd An '

C C o, , ,

Assuming that the terminal velocity, u , initial disturbance position,c

e , and amplitude ratio, (nb n'), are expressible in terms of the particle/o
diameter, basically there are two variables in Eq. (47), namely, the wave num-
ber and the particle diameter. It is usual practice in linearized stability
analysis to consider the wave number which causes the most unstable wave

growth. That is the value of k calculated by

d(kc)g
'

dk

*

However, when Eq. (48) is solved for a given diameter it has been observed
that the most unstable wave number is so small that the corresponding wave
length, A = 2 /k, becomes longer than a half of the circumference. This im-*

plies a gross motion of the bubble or drop and not a perturbation of the lead-
ing interface. Such a disturbance is considered not to cause a particle dis-
integration. Therefore, instead of the most unstable wave, we propose here to
consider the wave which makes the left hand side of Eq. (47) maximum. Then at
this condition the maximum stable particle size can be determined. Hence, the
maximum diameter is given by the following equation

'o +p coth(k h } 8"('w 2)~d d
(m#i p u p tan (e /2J "*"("b"(d) An

C C o. . . .

where k is determined bym

.

"p +# coth(kh "" w3 c d d
g' (kc) in =0 (50j tan (e /2 J

.

,
,C C o -.

!

|

--_ .. . _ -=_ - _ -
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'

where keg and hd are given by Eqs. (41) and (42), respectively, with e = e .g

and in (nb n') are evaluated below and sev-Variables such as e,, e , u /n c
eral important conclusions are obtained. *

1. Wake Angle

Large fluid particles which are prone to splitting have been studied
in some detail previously, and several transition criteria for fluid particle
shape regimes have been proposed [30]. When these studies are compared with
available experimental breakup data it is seen that drops falling in gases and

'

drops in a liquid system never reach the spherical-cap particle regime. How-
ever, very large bubbles in the order of 10 cm and most bubbles at the breakup
point attain the spherical-cap shape. Therefore, in our analysis for the max-
imum diameter, each of the experimental data is checked with the shape regime
criteria suggested by Clift et al. If the particle falls into spherical-cap
shape regime, the wake angle of e, = 50' is used in Eq. (47). On the other
hand, if the particle falls into spherical or ellipsoidal shape particle
regime then 0,= 90' is used in Eq. (47).

.

2. Particle Diameter and Volume Equivalent Diameter

In most drop or bubble experiments, data are tabulated in terms of .

the volume equivalent diameter, d , rather than based on the mean curvaturee
diameter, d . Therefore, it is desirable to express the criterion in terms ofp

d,. Referring to Fig. 2 it can be shown that

-
.

4 I/3d d (51)=
p *

-(1 - cose ) (2 + cose )w w-

Hence, d appearing in the criterion set above can be replaced by d throughp e

d = c, de (52)p
,

( where
*

.
.

4 1/3,

*
.(1-cose,) (2 + cose,) ,

. . ._. . ._. . . _ . _ . _ _ _ -
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i

for spherical-cap shaped particles..

3. Angular Position of Disturbance Generation,

From Eq. (45) it is evident that disturbances which originated at the
axis of symmetry, i.e., at Go = 0, would never reach the end of the cap bubble
or the equator of spherical particles. They are purely standir.g waves in na-
ture. Observations of splitting bubble experiments performed by Clift et al.
[27] indicated that disturbances usually develop in a regular pattern to
either side of the leading nose. There are two fundamental patterns which may
be possible.

Case A. The bubble nose is a node when the initial disturbance
originates, then

* *
o 2d kd

P P

Case B. A node is located A/4 from the bubble nose so that the nose
is an antinode in the initial disturbance form, then

.

=h=
*

0 (54)9
P P

; In Case A, the disturbance originated closer to the bubble nose than

in B, thus yielding longer available times and, therefore, Case A was prefer-
red by Clif t et al . However, Case B yields an axisymmetric propagation which
is considered to be more realistic, thus Case B is chosen here. Hence,

s =
o k d

will be used throughout analysis..

4. Terminal Velocity,

l There is a substantial body of data in the literature on the terminal
velocity of a single bubble or drop. From these data many correlations for

_ _ __ _. _ . _ _ _ . . . _ _ _ . _ _ _ . _ _ _
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. calculating the velocity, u , m developed [31,38-42]. Similar studies havec .

also been carried out for multiparticle systems [43]. The terminal velocity
correlations were reviewed in detail by Grace et al. [42]. In our analysis we

,

used the correlations recommended by them. These are given below:
1. For drops falling through gas

J

9
u = 2.0 (55)

I 2c (a /c

~

2. For large bubbles rising through liquid

'[g|Ap|d)1/2*
'u - J.7i (56)

\ "c )*

3. For drops rising or falling through liquid

.

#
u = 0.5 ((F +2Ar) -F] for M > 0.01 (57)

\*c e ) -

i
where M and Ar are Morton number and Archimedes number, respectively. They
are defined as

g9 |ap|-

M
2 3

#
c

g|Ap|p d
Ar = (59)

2
U
C *

and parameter F is given by
,

!

>
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3(2+(pI"cdF= (60)
1 + (p /"c].

d

*
On the other hand,

C -0.149

(pd,j(Y-0.859)M
for M < 0.001 and E < 40 (61)u =

c oc

where Y is a property group defined by

Y = 0.94 H .757 for 2 < H < 59.3 (62)
0

l

or

| Y = 3.42 H .441 for H > 59.3 (63)
0

Here H is given by
.

~*H= Eo M (p/p,) (64).

with u taken as 0.9 x 10-3 Ns/m and Eo is Eotvos number defined by2 ~

m

g Ap d,
Eo = (65),

|

|

C. Breakup Correlation

It is evident from Eqs. (49) and (50) that in order to arrive at a pre-
dictive criterion, one needs to know the relative magnitude of the initial

'

disturbance,(nbn'). In order to explicitely determine this quantity it is/

necessary to resort to experimecO A reasonable approach is to correlate
~

this term in terms of basic varie.les affecting nb and n'. It is to be noted
that nb, the amplitude of progressing waves at the breakup, should be in the

_ _ _ _ _ _ _ _
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order of a particle diameter. On the other hand, the initial disturbance .

amplitude, n', must be a strong function of the rise or fall velocity. Fur-
thermore, considering that the density ratio varies few orders of magnitude ,

between liquid-gas and gas-liquid systems, a reasonble correlation may be
sought in the form of

in (n /n') = f (d , u , p /p ) (66)

In view of Eqs. (52), (54) and (66), Eq. (49) can be cast into a non-
dimensional fonn as follows:

* ** -

(p +coth(k,h)\ tan (0,/2)
-

,, d * , , ,

(k (emax'"c'#
' ' "

mi * * * *e max r 3/e _tanj w/k,c,d, L
\ p u

\ max)

(67)

'where starred quantities denote the dimensionless variables. They are defined
as follows:

.

3 _ (d) max* e

[,jg )1/I
e' max

1/2* g a
k Ekj

(g|Ap|m

(68)

* d_

(o/g|Ap|)
,

U ~* C

#
(glap|(d,) /p)

_ - _ _ - _ - _ - _ - -.
. .
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#* 1

'

(g|ap|(d) /p )

.

#* c
p E-

#
d

Now the dimensionless growth factor is obtained from Eq. (41) as

. .'

sin [,2x ) 2 *2* ** 3 *p coth(kh
2 "c k

d ,
||

hm"e N max /.* *
.,,

m i
(p* + coth(k,h )]2

* *

d

'
3

- ** -

p k, *2 1/2,q
(69)- *, , ,,

(d) p + coth(k,h.

d_ _

s

.

In these equations, the dimensionless wave number, k,, is determined by Eq.
(50), which in dimensionless form becomes

-* **- - -'

',, p +coth(kh) tan (0,/2)d
(kc,) in =0 (70)

'
<

, , , ,

. tan (2w/k c,(d ) ).,3k p ug. .

Using substantial amounts of data tabulated in Table I the nondimensional

fonn of function f is correlated. For this purpose the linear regression,

analysis is used, and the best fit is expressed by the following function,

.

E
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(d )f- 0 6975

*
-

'f((d) ,u,p ] = 0.0545 -

.

#
u -

,

1+p
. _

Together with Eq. (71), Eq. (65) determines the maximum particle diameter

at breakup. The correlation found here is general in the sense it can be ap-
plicable for liquid-gas, liquid-liquid, and gas-liquid systems for relatively
low viscous fluids because the viscosity effects have been neglected to arrive
at the correlation.

V. COMPARISON BETWEEN THEORY AND EXPERIMENTS

Predicted values of (d ) max are compared against experimental values ine

Table I and Fig. 3. It is evident from the table that the experimental data
cover a broad range of liquid-liquid, liquid-gas and gas-liquid systems. The

, results include the data by Hu and Kintner [31], Krishna et al. [33] and Grace
et al. [293 for liquid-liquid systems, by Merrington and Richardson [3],
Finlay [32] and Ryan [35] for liquid drops falling through gas, and finally by

'

Grace et al. [3] and Sundell [34] for rising bubbles through stagnant lig-
utd. In addition to the experimental and predicted values of (d ) max, the

~

e

deviation between predicted and experimental values of (d ) max and the meane
deviation for each group are also listed in Table I.

The average deviation between predicted and experimental value of (d ) maxe
varies from about 3.65% for Ryan data to 31.90% for Hu and Kintner data with
an overall mean deviation of 18.06%. Four of the systems studied by Hu and
Kintner are in common with systems investigated by Krishna et al., while two
of the Finlay systems are essentially identical with Merrington and Richardson
systems. However, the mean deviation changes drastically between Hu and
Kintner and Krishna et al. data and between Merrington and Richardson and
Finlay data. Although there are some differences in reported values of fluid
properties, a significant part of the discrepancy between predictions and .

theory arises from experimental scatter or bias. It is to be noted that the
Hu and Kintner data having the largest mean deviation show diameters to be

,

consistently lower than the theoretical ones.
e

P
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Data Author (s) Dispersed /Continous Fluid Systems4 ,

O Krishna et al. (Liquid / Liquid Systems)
V Hu & Kintner (Liquid / Liquid Systems)

2 O Grace et al. (Liqu'l/ Liquid Systems).

OO' Merrington & (Liquid / Gas Systems)
Richardson

a Ryan (Liquid / Gas Systems) Q O10'I - 4 Finlay (Liquid / Gas Systems) , ,
8 - e Grace et al. (Gas / Liquid Systems)

6 -
(Gas / Liquid System) 8<) Sundell

4 -

O
O o

2 - O O
}
* O O O

_u O

10-2 _ O.

v4
8 - g
6 - 4.

4

2 -

10-3 , , , , ; , , , , ; , ,

10-3 2 4 6 8 10-2 2 4 6 8 10'1 2 4

(de)exp. (m)

Fig. 3. Comparison Between Experimental Maximum Diameters with Predictions.
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Relatively large differences between the predicted diameters and the
.

Grace et al. data for liquid-liquid systems may be due to viscosity effects of
the continuous fluid. Grace et al. experiments cover a dynamic viscosity

,

range of 12.4 to 3080 Ns/m. In our analysis as mentioned above viscous ef-
fects have been neglected. Therefore, the present correlation may not be very
good for highly viscous fluids.

Taking the experimental scatter and the very viscous fluids used for some
; experiments into consideration, and recalling the approximate nature of the

theory developed here, the agreement between the theoretical predictions and
the experimental results is satisfactory. The overall mean deviation between
the predicted and experimental values of (d ),ax is 18.06%. Agreements withe

; experimental results indicates that the principle physical mechanisms involved
; are properly accounted for.
4

VI. SUPMARY AND CONCLUSIONS

Two-dimensional Kelvin-Helmholtz instability is applied to the stability
of two superposed fluids flowing with different velocities. The stability
criterion implies that stability of disturbances is a function of the wave -

i number, amplitude, relative velocity and the original amplitude of disturb-
ances at the interface. Based on this stability theory, a simple model is de- -

veloped to describe the breakup of drops and bubbles falling or rising freely
J

in a fluid media. Breakup is predicted to occur if the growth of disturbances
on the leading front is rapid enough compared to the rate at which the dis-

| turbance is propagated along the interface. Using the available experimental
: data for liquid-gas, liquid-liquid and gas-liquid systems a simple semi-

empirical correlation is developed to predict the maximum stable particle size
! in a stagnant fluid.

Predicted values of the maximum particle size are compared with experi-
i mental data. An average deviation between the predicted and experimental

values is 18%. Considering the various simplifications made in the analysis
the agreement appears satisfactory. The theoretical model developed in this

,

i

I study is clearly approximate in nature. However, the agreement with experi-
mental results over very wide ranges of parameters indicates that the princi-

'

ple physical mechanisms involved are properly accounted for by the present
model. Therefore, the breakup of bubbles and drops can be explained by the
present unified theory.

. - _ - - - - - _ - . - - . .- . _ - . . - _ - - - -. . - - - - - - _
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Table 1. Comparison Between Experimental Maximum Diameters with Predictions

Properties (d,),,,x103 (m)
i

3 3 3
c c Deviation Dev$1onad P "d x 10 u x 10 a x 10

3 3 2 2System Dispersed Fluid / Continuous Fluid (kg/m) (kg/m ) (Ns/m) '(Ns/m) (N/s) Experimental Predicted % 5

Merrington A Richardson [3]
water / air 1000 1.25 1.206 0.018 73.0 10.20 10.05 - 1.47
carbon tetrachloride / air 1600 1.25 0.960 0.018 25.0 4.80 4.60 - 4.17 imethyl salicylate / air 1330 1.25 3.990 0.018 35.0 6.20 5.80 - 6.45 |
glycefne + 21 water / air 1210 1.25 121.0 0.018 63.7 8.80 8.41 - 4.43 8.07
methyl salicylate (thick)/afr 1330 1.25 0.532 0.018 30.0 6.40 5.40 +15.62
tetrabromoethane/ air 1340 1.25 938.0 0.018 25.0 6.40 4.90 -23.43
dirty water / air 981 1.25 1. 2 0.018 48.0 8.40 8.48 + 0.95 w i| m |

% Ryan [35]
3& water /afr 998 1.18 1.044 0.018 72.0 9.10 9.40 + 3.30 |water + surfactant /afr 998 1.18 1.004 0.018 50.0 7.50 7.90 + 5.33 i.

4 water + surfactant / air 998 1.18 1.004 0.018 40.0 6.90 7.20 + 4.35 1
4 water + surfactant / air 998 1.18 1.004 0.018 33.0 6.10 6. 5C + 6.56 3.65 .l
j water + surfactant / air 998 1.18 1.004 0.018 25.0 5.20 5.20 0.00 |

water + surfactant /afr 998 1.18 1.004 0.018 20.0 4.70 4.93 + 4.89 '

-
" water + surfactant /afr 998 1.18 1.004 0.018 17.0 4.40 4.45 + 1.14

Finley [32]
tetrabromoethane/ air 2968 1.18 11.52 0.018 50. 0 3.50 3.41 - 2.57
isobutanol/ air 998 1.18 1.044 0.018 73.5 8.00 9.38 +17.25 |

'water / air 1200 1.18 124.2 0.018 63.0 10.00 7.10 -29.00 22.21
glycerol solution /afr 803 1.18 4.14 0.018 23.0 4.50 6.30 +40.00

l
l,
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Table I. (Cont'd)

P roperties (d,) , x 103 (m)

3 3 3p x 10 o x 10 Deviation Dev$1onpd 'c Wd x 10 e

System Dispersed Fluid / Continuous Fluid (kg/m ) (kg/m ) (Ns/m) [ygf,2) (N/m) Experimental Predicted 1 %3 3 2

Krishna et al. [33]
n-amyl phthalate/ water 1016 998.1 18.490 0.828 20.20 42.40 43.48 + 2.54
aniline / water 1016 998.1 2.835 O.820 6.545 27.00 26.30 - 2.59
brosofom/ water 2850 998.9 2.127 0.9156 40.60 5.60 7.78 +38.92
n-butyl phthalate/ water 1044 998.1 15.38 0.9499 23.61 42.40 31.60 -25.47
carbon disulfide/ water 1260 999.1 0.6531 0.9499 45.67 16.70 16.50 - 1.20
carbon tetrachloride / water 1584 998.9 1.048 0.9156 4a.66 11.80 13.26 +12.37
clorobenzene/ water 1096 998.1 0.7861 0.828 36.02 31.60 22.50 -28.80
1-chlorobenzene / water 1200 995.3 2.289 0.766 41.90 19.70 17.01 -13.65
m-cresol/ water 1028 998.1 7.732 0.828 4.134 17.90 13.62 -23.91
epichlorohydrin / water 1169 997.5 0.9116 0.8085 10.98 12.40 12.40 0. 0

,

g ethyl chloroacetate / water 1134 996.1 0.9642 0.7848 15.46 13.70 13.70 0. 0

g ethyl til .amate/ water 1042 998.1 4.811 0.828 21.68 27.10 32.30 -19.19 w
g ethyl phthalate/ water 1128 999.5 10.86 0.9759 14.40 16.80 15.25 - 9.23 m

1,2-dibromoethylene/ water 2170 998.9 1.752 0.9156 36.58 8.30 11.30 +36.14
,
; eugtacl/ water 1058 998.1 5.43 0.828 12.34 17.30 19.40 +12.14 15.29
y isoeugenol/ water 1083 999.1 27.06 0.9499 9.38 16.80 16.17 - 3.75
-f methyl phthalate/ water 1180 996.1 9.383 0.7848 12.26 11.80 13.00 +10.17
= nitrobenzene/ water 1195 997.5 1.512 0.8085 24.81 17.90 19.41 + 8.44

) m-nitrotoluene/ water 1156 999.3 2.044 0.9594 28.38 21.20 15.96 -24.72
o-nitrotolune/ water 1153 996.1 1.666 0.7848 26.0J 21.20 19.81 - 6.56-

" diphenyl ether / water 1067 996.1 2.633 0.7848 40.80 32.50 37.43 +15.17
1,2-dichloropropene/ water 1146 995.8 0.7966 0.785 31.11 23.50 18.05 -23.19
1,1,2,2-tetrabromoethane/ water 2939 996.0 5.495 0.7805 33.35 5.50 7.72 +40.36
1,1,2,2-tetrachloroethane / water 1581 998.1 1.452 0.828 30.09 11.00 13.78 +25.27
tetrachloroethylene / water 1609 996.1 0.9497 0.7848 43.38 12.70 15.23 +19.92
n-asyl phthalate/ water 1016 998.1 16.38 0.828 7.071 32.50 32.50 0. 0
chlorobenzene / water 1088 998.0 0.7877 0.828 25.54 26.00 25.41 - 2.27
chlorobenzene / water 1072 998.0 0.7637 0.828 19.56 28.00 18.78 -32.92
chlorobenzene / water 1072 998.0 0.7716 0.828 14.07 21.00 16.31 -23.33
chlorobenzene / water 1073 998.0 0.7843 0.828 9.143 18.70 19.35 + 3.48
nitrobenzene/ water 1157 998.1 1.838 0.828 15.84 18.00 19.56 + 8.67

. , . . . .

L_-___.____._____.-__________.._ ___ _ _ . _ . _ . . _ . . .
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Table I. (Cont'd)

Properties (d,),,,x103 (m)

3 3 3
ad 'c Wd x 10 c Deviation DevNionp x 10 o x 10

3 3 2 2System Dispersed Fluid / Continuous Fluid (kg/m ) (kg/m ) (Ns/m) (Ns/m ) (N/m) Experimental Predicted 1 1

Hu & Kintner [31]
tetrabromoethane/ water 2947.4 997.3 9.2888 0. 8%8 35.90 5.11 7.81 +52.84
dibromoethane/ water 2154.1 996.6 1.5852 0.8968 31.90 6.74 9.59 +42.28
ethyl bromide / water 1447.8 997.7 0.4908 0.8814 30.00 9.14 12.27 +34.25
nitrobenzene/ water 1194.7 997.2 1.7379 0.8835 24.10 15.37 13.28 -13.60 31.90
bramobenzene/ water 1488.1 997.1 1.0719 0.8958 37,90 11.32 12.30 + 8.66
tetrachloroethylene / water 1614.3 997.0 0.8903 0.8946 44.3 10.40 14.65 +40.87| carbon tetrachloride / water 1577.0 995.7 0.8702 0.7797 40.6 10.40 - 13.60 +30.77 wy - N

& Grace et al. [29]
v Carbon tetrachloride / sugar solution 1586 1382 1.05 3080 34.4 135.00 127.10 - 5.92
g carbon tetrachloride / sugar solution 1586 1388 1.05 1200 34.4 156.00 121.90 -21.86

chlorofom/ sugar solution 1483 1382 0.56 3080 32.7 142.00 191.10 +34.51-

"f chloroform / sugar solution 1483 1387 0.51 1520 32.8 151.00 166.30 +10.13" chloroform / sugar solution 1483 1366 0.56 300 31.9 63.00 43.21 -31.418 chloroform / sugar solution 1483 1310 0.56 54 . 31.4 34.00 16.20 -52.35 26.73*
1,2-dichloroethane/ ethylene glycol 1247 1112 1.04 14.% 6.94 14.20 14.90 + 4. 9 3a

glycerol solution / paraffin oil 1062 883 2. 0 185 51.0 51.00 ,ai. 22 - 3.49
silicone oil / ethylene glycol 958 1112 46.5 12.4 24.0 16.20 18.24 +12.59
silicone oil / paraffin oil 960 883 46.5 200 7. 0 51.00 19.20 -62.35
silicone oil / sugar solution 958 1366 46.5 310 27.1 40.00 24.33 -47.11
silicone oil / sugar solution 920 1390 5. 5 7890 53.5 99.00 122.80 +24.04
silicone oil / sugar solution 920 1390 6.1 2700 53.5 95.00 130.00 +36.84

,

t
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