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ABSTRACT

A simple model is developed based on a two-dimensional linearized Kelvin-
Helmholtz stability theory to describe the breakup of drops and bubbles in
fluid media. Breakup ', predicted to occur if the growth of disturbances at
the interface is faster than the rate at which disturbances propagate around
the interface to the side of particle. Agreemen* between the model and exper-
imental data indicates that the principle physical mechanisms involved are
properly accounted for by the model. The same theory is applicable to drops
in liquid, drops in gas, and bubbles in liquid. The present analysis gives
the first unified theory for fluid particle breakups which has not been avail-
able previously.
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NOMENCLATURE

Archimedes number

Complex wave celerity

Imaginary part of wave celerity

Speed of propagation

Diameter

Volume-equivalent sphere diameter
Maximum value of de at breakup

Twice the mean radius of curvature
Eotvos number

Dimensionless group defined by Eq. (58)
Fluid thickness

Gravitational acceleration

Wave number, 2n/A

Wave number at particle breakup

Morton number

Viscosity number

Pressure

Mean radius of curvature

Maximum velocity gradient in the continuous fluid
Time

Growth time

Propagation time

Velocity

Rise or fall velocity

Tangential component of u. at the interface

Weber number
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Subscrigts
1

Horizontal coordinate axis

Vertical coordinate axis

Energy dissipation per unit mass per unit time
Absolute value of density difference, |o. - o4l
Local wave amplitude

Wave amplitude at breakup

Amplitude of initial disturbances

Angular position

Angular position of initial disturbances

Wake angle

Wave length

Mass density

Surface tension

Velocity potential

Lower fluid in Kelvin-Helmholtz instability

2 Upper fluid in Kelvin-Helmholtz instability
c Continuous fluid

- Critical value

d Dispersed fluid

max Maximum value

tr Turbulent

Superscripts )
: Disturbances

Dimensionless variables



EXECUTIVE SUMMARY

Disturbances which cause fluid particle splitting are classified as rapid
accelerations, high shear stresses and turbulent fluctuations in the continu-
ous fluids. However, it has been observed that even when none of such exter-
nal disturbances is present, there is a limit to the size to which drops and
bubbles can reach. The maximum size attained by single bubbles or drops ris-
11ing freely through a stagnant media in the absence of such disturb-
ances has been traditionally attributed to the instability of Rayleigh-Taylor

instability, which does not take into account the effects of relative motion.

ing or fa

Based on the Kelvin-Helmholtz instability theory which allows a relative
motion at the interface, a simple model is developed to describe the breakup
of drops and bubbles falling or rising through a fluid. Breakup is predicted
to occur if the growth of disturbances on the leading front is rapid enough
relative to the propagation rate of disturbances around the interface. Based
on this theoretical model and available experimental data, a simple correla-
tion is developed to predict the maximum stable particle size in a fluid.

Predicted values of the maximum particlie size are compared with experi-

mental data for cases of bubbles in liquid, drops in iiquid, and drops in

jas. Agreement between the model and experimental results is favorable.




INTRODUCTION

Breakup and limiting size of fluid particles in dispersed two-phase flow
systems including the liquid-liquid particulate systems are important factors
in determining the fluid particle size distribution and hence the effective-
ness of the interfacial mass, momentum, and energy transports. A knowledge of
the disintegration of drops and buobles is essential to the eventual under-
standing of the interfacial transfer mechanisms and two-phase flow pattern
transitions in many important engineering systems of interest to various
branches of technology and science. Engineering applications include gas-
liquid droplet systems, such as atomizers, dryers, absorbers, wet steam sep-
arators and cryogenic heat exchangers, liquid-liquid droplet systems, such as
liquid-1iquid extractors, separators used with distillation columns, and
packed towers when the packing is not wetted by the disperse phase, and fi-
nally liquid-gas (or vapor) bubbly systems, such as boiling water and pres-
surized water nuclear reactors, boilers, evaporators, flash distillation and
aeration units. Although drops and bubbles seldom occur in isolation in such
systems, it is essential to understand the behavior of a single fluid particle
before a full knowiedge of interacting drops and bubbles can be achieved.

As discussed in the next section in greater detail, disturbances which
cause fluid particle splitting are classified as rapid accelerations, high
shear stresses and turbulent fluctuations in the surrounding continuous
fluids. However, it has been observed that even when none of such obvious

disturbances is presaent, there is a limit to the size to which drops and bub-

bles can reach. The maximum size ttained by a single bubble or a drop rising

or falling freely through stagnant media in the absence of such disturbances
has been attributed to the instability of standing waves developed at the
particulate-continuous fluids interface, i.e., Rayleigh-Taylor instability.

It is to be noted here that Rayleigh-Taylor instability applies to a case
with no relative motion between two superposed fluid layers. However, in re-
ality, even for the breakup in stagnant media there exists a relative motion
between particulate and continuous fluids, and disturbances which grow by time
are generated due to a relative motion. Kelvin-Helmholtz instability theory
allows a relative motion between two superposed fluid layers. Disturbances
generated by this instability propagate at the interface with a certain speed.




Extending this Kelvin-Helmholtz instability theory, it is the objective
of this study to develop a simple model to predict the maximum fluid particle
size rising or falling in fluid media. The correlation thus developed is gen-
eral in the sense it can be used for liquid-gas, liquid-l1iquid, and gas-liquid
system.

LUID PARTICLE BREAKUP MECHANISMS

To determine the limiting size of fluid particles a number cf processes
which may cause breakup of fluid particles have been identified. The most
important mechansims are classified as follows:

A. Breakup in Gas Flow Fields,

Breakup in Viscous Flow Fields,
Breakup in Turbulent Flow Fields,
Breakup in Stagnant Fluids.

3reakq2‘in Gas Flow Fields

This mechanism of breakup applies to drops suddenly exposed to a high ve-
locity gas stream (including shock waves). The investigation of the bursting
of drops in an air stream has a long history, dating back to before 1904.
Large free-falling drops in still air, or somewhat smaller drop in a steady
stream of air, were first considered by Lenard [1] and by Hochshwender [2].

Since then this breakup process has been studied both experimentally and theo-

retically [3-9]. According to this breakup mechanism, gas flowing over the

surface of a liquid droplet causes the dynamic pressure normal to the surface
of the droplet to be nonuniform, resulting in a deformation of the liquid
drop. If the pressure forces cause a distortion severe enough to overcome the
surface tension and viscous forces within the liquid, the liquid drop will
eventually split. Hence it was concluded that breakup is controlled by the
dynamic pressure, surface tension and viscous forces. For liquids with slight
viscosity effects, the deformation and breakup of drops are predominantly de-
termined by a single dimensionless group, the Weber number. Results of var-
fous experimental investigations can be expressed by a simple Weber number
criterion, indicating that drops will break when

Hecr = constant




with the critical Weber number defined by

2
o (d ) (u - u,)
3 c'e‘max" ¢ d (2)
cr o
where (u. - uy) is the relative velocity between the continuous and the par-

ticulate phase, (dg)pay 1S the 1imiting volume-equivalent drop diameter, o is
the surface tension, and Pc s the mass density of the continuous phase.

From the data of Merrington and Richardson [3], Hinze [4] has estimated
the constant appearing in Eq. (1) to be 13 for low-viscosity liquids. This
may be compared with the value of 10.6 from the data of Lane [6], 10.3 for
mercury drops in air, obtained by Haas [8], and 7.2 to 16.8 (with an average
of about 13.0) for water, methyl alcohol, and a low-viscosity silicone oil
obtained by Hanson et al. [5].

Hinze [7] considered the effect of viscosity and suggested that the crit-
ical Weber number should be a function of a dispersed phase viscosity group.
For this relation the following form is chosen

We = We

cr cr|u=0 i+ f(Nud)] (3)

where Nud is the viscosity number based on dispersed phase. It is defined as
B —r— (4)

where vy and o4, respectively, are the dynamic viscosity and mass density of
the dispersed phase. Hecr'u-o is the value of the critical Weber number for
vanishing viscosity effect of the drop, which is equal to the constant ap-
pearing in Eq. (1). The data of Hanson et al. [5] give only a qualitative
support to the effect, but do not agree in detail. A slightly different em-
pirical relation [10] given by the following expression has also been proposed



= + 14N 5
Hecr Hecr 4=0 ud (5)

which is good to a maximum deviation of approximately 20% at the higher
viscosity end.

B. Breakup in Viscous Flow Fields

This mechanism of breakup applies to fluid particles surrounded by vis-
cous fluid where there exists strong velocity gradient in the vicinity of the
particle. In this case the continuous fluid Reynolds number is so small that
the dynamic forces are no longer important, and the breakup is controlied by
the viscous shear and surface tension forces. If the viscous shear force is
large enough, the interfacial tension forces are no longer able to maintain
the fluid particle intact, and it ruptures into two or more smaller particles.

The first fundanental work on the splitting of drops and bubbles under
the action of surface tension and viscous forces were made by Taylor [11] in
1934. His test apparatus was designed to generate carefully controlled flow
patterns. One of these consisted of Couette flow and the other was a plane
hyperbolic flow. A variety of liquids with different viscosities were used.
Taylor made numercus observations, many of which subsequently explained by
Tomotika [12]. The results can be summarized as follows:

a. Under the action of viscous shear, a drop alongates into the shape of
a prolate ellipsoid of revolution.

b. The deformation is determined by the Weber number based on the
velocity gradient defined as

u Sd
. (6)

Ne =
v o

where u. is the absolute viscosity of the continuous phase, and S is the max-
imum velocity gradient in the continuous fluid flow field.

c. The breakup of the fluid particles occurs at a critical value of the
Weber number which depends on the continuous fluid flow field, and Taylor has
studied the deformation of a single drop as a function of S; he determined the
value of S at which the breakup of the drop occurs.



Although the basic principle of the breakup mechanism is correctly pre-
dicted, Taylor's theory has been modified over the years [13-15]. For ex-
ample, Rumscheidt and Mason [13] proposed that breakup occurs if We, exceeds a
critical value given by

1+ lud/uc)

. 7
v 1+ (19/16)[ud/uc) ¥)

We

which varies only between 1.0 and 0.82 as (uy/u.) varies from zero to infin-
ity.

{t should be noted here that the Taylor mechanism of fluid particle de-
formation applies if both the undeformed ané elongated drops are small com-
pared with local regions of viscous flow. When the Reynolds number of the
external flow field is large, as it is in most practical applications, the
spatial dimensions of such local regions are very small compared with the drop
sizes. Under these circumstances, the determining factor is the dynamic pres-
sure caused by the velocity changes over distances of the order of the fluid
particle diameter.

C. Breakup in Turbulent Flow Fields

According to the disintegration mechanism of fluid particles in an exter-
nal turbulent flow field it is assumed that the dynamic pressure forces of the
turbulent motions are the factor determining the size of the largest fluid
particle. These dynamic pressure forces are caused by changes in velocity
over distances within the diameter of a particle. Kolmogorov [17], and Hinze
[7] took this view, and further assumed that since the break up was to be con-
sidered local, the principles of local isotropic turbulence would be valid.
Under these circumstances, Hinze defined a Weber number based on the local
turbulent fluctuations as

P |
", (Au) de
Hetr i ————— (8)



where ;:;;Ehis the spatial average value of the square of velocity differences
over a distance equal to particle diameter. To relate this average kinetic
energy to this distance, Hinze used Kolmogorov's universal equilibrium theory
to show that

(au)? = 2.0 (ede)2/3 (9)

where € is the energy dissipation per unit mass and time. Assuming that a
constant critical Weber number criterion still applies, from Eqs. (8) and (9)
Hinze obtained

p_\3/5
(d ) (35) /% 4 ¢ (10)

e ‘max

He used experimental results due to Clay [17] to calculate the value of the
constant C. Clay's apparatus consisted of two coaxial cylinders, one of
which, namely, the inner one rotated. The space between the cylinders was
filled with two immiscible fluids, one of which formed discrete drops. Clay
found the maximum drop size as a function of energy input into the liquid. On
the basis of these data Hinze found that C = 0.725, and, hence the critical
Weber number can be given by

e 'max 213 (g 13

tricr o c e’max 1.18 (1)

It must be noted that data on breakup in an isotropic turbulent field are
nonexistent, so direct verification ¢f the criterion is not possihle.
Sleicher [18] has shown that Eq. (11) is not valid for pipe flow. The breakup
occurs in the vicinity of a wall, where the conditions are the farthest from
the approximate isotropic conditions at the center line. The breakup for a
pipe system is probably a result of a balance among surface forces, velocity
fluctuations, dynamic pressure fluctuations, and the steep velocity gradients,



i.e., a result of a combination of the various breakup mechanisms summarized
above.

The work of Kolmogorov and Hinze concerned with the splitting of drops
and bubbles by turbulent flow has been modified by Sevik and Park [19]. They
suggested that resonance can cause bubble and drop break in turbulent flow
fields when the characteristic turbulence frequency matches the lowest or nat-
ural frequency mode of an entrained fluid particle. Since damping is very
small, such drops or bubbles will deform very violently if the existing fre-
quency corresponds to one of their resonant frequencies. By setting a char-
acteristic frequency of the turbulence equal to such a resonant frequency,
they predict theoretically the critical Weber numbers corresponding both
Clay's droplet splitting experiments and their bubble splitting experiments.
It was found for droplets

We, | =
tricr

and for bubbles

detr,cr = 2.6 (13)

It should be noted that Hinze calculated a value of 1.18 based on tests
involving the dispersion of various immiscible liquids, and that the critical
Weber number for bubble breakup in turbulent flow fields is greater than that
for drop breakup by about a ratio of 2.5.

Breakup in Stagnant Fluids

In the foregoing breakup mechanisms, disturbances which cause particle
splitting are due to rapid acceleration, high shear stresses, and turbulent
fluctuations in the continuous surrounding fluids. It has been observed that
even when none of such external disturbances are present, there is a limit to
the size to which drops and bubbles can reach. The maximum size attained by a
single bubble and drop rising or falling freely through stagnant media in the
absence of such disturbances has been attributed to Rayleigh-Taylor instabil-
ity [20-30].

Rayleigh-Taylor instability can occur when a heavier fluid overlies on a

lighter one. Hence it is always the advancing interface of a freely moving




bubble or drop (whether rising or falling under gravity) that is prone to the
interfacial instability by this mechanism. The instability manifests itself
as an indentation at the leading front surface (the upper surface for rising
bubbles or drops and the lower surface for falling drops) which grows deeper
as time advances, and eventually leads to a breakup of fluid particles.

This type of breakup mechanism was first considered by Komabayashi et al.
[20] to determine the maximum size of falling drops in air. It was found that
the maximum diameter was 0.855 cm for falling water drops in air. This theo-
retical finding was in good agreement with the experimental observations of
Pruppacher and Pitter [21]. This theory has been extended over the years by
others [22-30]. For example, the following simple equation for the maximum
diameter of falling drops was suggested by Grace et al. [29],

, _af 9 \1/2
(a), = (ng> (18)

where (de)nax is the volume equivalent diameter at the breakup.

Equation (14) yields relatively good agreement with the experimental data
on falling drops in air and in low viscosity liquids [3,29,31-35]). However,
it was observed that the predictions made by Eq. (14) were in grave error for
rising bubbles or drops [29]. In some of the analyses the Rayleigh-Taylor in-
stability theory has been introduced with a tangential motion of the disturb-
ance along the interface [29,30]. It was postulated that the breakup is to
occur if the growth of indentations on the leading edge is rapid enough rela-
tive to the rate at which the disturbance is carried around the interface to
the equator of a fluid particle. A semi-empirical relation was developed to
predict the maximum particle diameter in which a constant was correlated using
existing experimental data. It was found that the data ‘or bubbles requires a
different constant, 3.8, than the data for liquid drops. For the latter case,
the optimum value of the constant was found to be 1.40.

It is important to note that in this type of analyses the breakup cri-
teria were based on the growth of the standing waves, i.e., Rayleigh-Taylor
instability, where there is no relative velocity permitted between the par-
ticulate and continuous phases. However, in reality, even curing the breakup
in stagnant media there exists a relative motion between two phases, and the
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disturbances are generated at the interface due to a relative motion between
two phases. Therefore, the use of the Rayleigh-Taylor instability analysis
seems inconsistent in this case. It is natural to expect an effect of the
relative velocity on the wave propagation and breakup process. By taking this
view, a new breakup mechanism is proposed here in terms of progressive waves,
namely, Kelvin-Helmholtz instability, which allows a relative motion between
two superposed fluid layers.

In what follows we shall develop & Kelvin-Helmholtz instability analysis
applicable to fluid particle deformations and utilize it to determine the
maximum size of fluid particles rising or falling in a fluid.

II1. KELVIN-HELMHOLTZ INSTABILITY

The stability of two superposed inviscid fluids flowing with different
velocities will be considered here. It was Helmholtz (1868) who first consid-
ered the stability of the vortex sheet at the interface of the two superposed
semi-inifinite fluids flowing with different velocities. His work was fol-
lowed by that of Kelvin (1871), and this type of instability is known as
Kelvin-Helmholtz instability. Derivations presented here will closely follow
Yih [36], where the stability of the two-suverposed fluids with semi-infinite
depth was studied. Hence, only the essential features of the development are
given here.

The stability of two superposed incompressible, inviscid fiuids to be
considered here is illustrated in Fig. 1. The lower fluid is identified by
subscript 1 and the upper fluid oy 2. The fluids are flowing concurrently in
a horizontal, constant area channel. The velocities of the two fluid: are as-
sumed to be horizontal in direction, and are denoted by u; and up, respective-
ly. If the effects of viscosity of the fluids are neglected, and the per-
turbed flow is assumed to be irrotational, the velocity potentials, ¢, of each
fluid satisfy the two dimensional Laplace equation. Thus,

2 2
9 01 . 3 iz
3x2 ay

=0,1=1,2 (15)
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Fig. 1. otability of Two Superposed Fluids Flowing with Two Different
Velocities
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in which x is measured in the mean flow direction, and y measures the vertical
distance from the undisturbed interface. Denoting the perturbed quantities
about the steady state solution by a prime symbol, the velocity potentials can
be written as

=u, x+¢ ,1=1,2 (16)

R i

If n is the displacement of the interface in the vertical y direction,
the kinematic interfacial condition to be satisfied at y = 0 is

ad
an an i
— v B cmm—— = 7
3t + u, T i=1,2 (17)

in which quadratic terms in n and ¢;'s are neglected. Other boundary

conditions for oi and oé are

aoi

at y = -h, % =0 (18)
aoé

aty = h, " 0 (19)

which guarantee the vanishing normal velocity components at solid surfaces.
The dynamic boundary condition at the interface is given by

P, =P, = -0 o (20)

where terms of higher order than the first in n are neglected. Since the flow
is assumed to be irrotational, the Bernoulli equation can be used to evaluate
the pressures. The linearized form of it can be expressed for each fluid as
follows:
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— e —— - -——-gy (21)

Evaluating Eq. (21) at the interface, y = n, for each fluid, and using
the resulting equations in Eq. (19), one has

3. 3. 3. 3, 2
1 1 2 2 e 3N
"1(5?*"17*9")"’2(?’“2?*9") ' )

This completes the formulation of the problem. If the perturbation is
assumed to be periodic in x, the appropriate forms ¢', ¢' and n are

1" R
oi o cosh(k(y + hl)] explik(x - ct)) (23)
¢é = a, cosh[k(y - hz)] explik(x - ct)] (24)
and
n=n' explik(x - ct)] (25)

where k is the wave number which is related to the wave length, A, by k =
2n/A, and n' is the perturbation amplitude of the interface. Furthermore, a;
and a, are integration constants to be determined by the boundary conditions,
and ¢ is the complex wave celerity defined as

C=Cp+ 1y (26)

where c. denotes the velocity of propagation of the wave in the x-direction
whereas kc; is the growth factor which determines the degree of amplification
or damping. The disturbances are damped if kc; < O and the mean flow is
stable, the disturbances are amplified if kci > 0 and the mean flow is un-
stable. Finally, the mean flow is said to be neutrally stable, in which the
disturbances are neither damped nor amplified, if kcy = 0.
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It is evident that oi and oé satisfy the Laplace eguation, Eq. (15), and
that the boundary conditions expressed by Eqs. (18) and (19) at y = -hy and y
= hy are satisfied. In view of Eqs. (18)-(20) and (17), the inteccation con-
stants a, and ap are determined. Hence,

i (u1 -¢)n'
= 27
4 sinh(khi}f (27
and
i (u2 -¢)n
Sl STAR (KR, ] (28)
In view of Eqs. (27) and (28), the velocity potentials become
i (ui - c)
01 » W cosh|k(y + hl)] n (29)
and
i (ué -¢)
02 . WCOSH“(] - hz)] n (30)

It is to be noted that the potentials given by Eqs. (29) and (30) have
been obtained through the kinematics of the respective flow fields. The dy-
namic interfacial condition, Eq. (22), has not been introduced yet. Hence one
cannot say anything about the stability of the flow configuration.

Introducing Eqs. (29), (30) and (25) in Eq. (22), and solving the re-
sulting equation for c, one obtains
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2
coth(khz] u, ok +g (pl - P

o coth(khl) u * e, 2)
c = +
3 coth(knlj * 0, cotn(khz) - Tpl coth(khl) * 0, cotn(unzﬂu
. 0, coth(kh ) coth(kh,) (u, - u )2 "
s S 1 - Sk W (31)
2
[ol coth(khl) * 0, coth(khz)]

For the case of two superposed semi-infinite fluids, i.e., hy + -= and h,
+ », £q. (31) reduces to that given in Yih [36] and Lamb [37]. In the absence
of currents, Eq. (31) reduces to the Rayleigh-Taylor stability criterion when
o Sl

In view of Eqs. (26) and (31), c. and c; can be determined. Hence,

- ° coth(thl) u * o, coth(khz) u, -
r 0 coth(kh1] * 0, coth(kth
and
2 2 1/2
% o 9 coth(khl) coth(khz) (ul - “2) ) ok + g (pl - pz)
: [9l coth(khl) * o, coth(khz)]z k["l coth(khJ@ %2 ":"""(M'l’ﬂ
(33)

Stability of the flow configuration can be analyzed by the behavior of
Cq

IV. PARTICLE BREAKUP CRITERION

A. Modeling
Even for the case of freely rising bubbles and drops, and falling drops

in a stagnant media there exists a relative motion between fluid particles and
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its surrounding fluid. Hence, any interfacial stability analysis used for a
breakup mechanism should take into account the effect of the relative mo-
tion. Taking this view a breakup mechanism based on Kelvin-Helmholtz insta-
bility of interfacial progressive waves rather than the instability of stand-
ing waves will be developed here.

For the analysis, a series of approximations will be introduced as fol-
lows:

a. The compressibility of dispersed and continuous fluids is neglected.

b. The effects of viscosity in both dispersed and continuous fluids are
neglected. Hence, the breakup criterion will not be expected to hold for ex-
tremely high viscous fluids.

¢. The circulation within the fluid particle is neglected.

d. The effects of fluid particle advancing front curvature are neglected
except insofar as it determines the value of tangential velocity component.

It can be argued that these effects are of minor consequence for drops and
bubbles which are sufficiently large for breakup to be a factor.

e. As discussed in greater detail in Section 1I, the breakup of fluid
particles in a stagnant fluid proceeds from the advancing interfacial surface,
f.e., from the upper surface for rising bubbles and drops and from the lower
surface for falling drops, which is in agreement with most observations.
Hence, it is assumed here that it will always be the advancing interface of a
freely moving particle that is prone to instability.

Under these conditions the plane flow Kelvin-Helmholtz instability devel-
oped in the preceeding section can be applied. Identifying the continuous and
dispersed fluids by subscripts ¢ and d, respectively, the results obtained for
the speed of propagation, c,, and the growth factor, kc;, can be expressed as
follows:

) o coth(khc) u o, coth[khd] vy
r O coth(lhc)’o °yq coth(khd]

(34)

2 2
b Py coth(khc) coth(khd) k (uc’ - ud‘)

ke, * 2
[oc coth(thc) ‘o, coth(lhd)]
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o & - glaoln 1/2

P coth(khc7’+ °4 coth(ih&)

(35)

where (U g - uge) fs interpreted as the tangential velocity difference at the
interface.

Now consider a cap bubble rising in stagnant liquid as illustrated in
Fig. 2. Here a cap bubble is chosen for the purpose of reference. The pres-
ent theory will be equally applicable to rising or falling drops with spheri-
cal or ellipsoidal shapes. In Fig. 2, 8, represents the wake angle of a cap
bubble and Rp denotes the particle radius.

Using the potential flow theory for flow around a spherical particle, it

can be shown that the tangential velocity components at an angular position of
6 can be given by

3
Yoo 5 U, sing (36)

Udg e 0 (37)
where it has been assumed that the circulation within the fluid particle is

negligible.

It s noted here that the surrounding fluid dimension is much larger than
the particle size. Thus

hc » ™ (33)
Furthermore, for large arguments coth(kh.) can be approximated by
coth(kh,) = 1.0 (39)

In view of Eqs. (36) through (39), Eqs. (34) and (35) can be approximated
by
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Fig. 2. Flow Around a Rising Cap Bubble
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3 o_u_sine
e 83—t b (40)
r 2 b, * Py coth(kh‘)
2 3 2 1/2
. Pc 96 Coth(lh‘) k (,’ “c ﬂll.) : o .3 . 9' AEL. i)
' (5, * 0, coth(kn ‘)]i b * 0q cOth(kh )

It is evident from Eqs. (40) and (41) that the speed of propagation as
well as the growth factor depend upon the loca) angular position, original
disturbance location, and the dispersed phase fluid thickness at the origina-
tion of disturbances. Referring to Fig. 2, it can be shown that hyq 1s given
by the following equation.

d

h, -21 [cose - cou.] (42)

Here dp is given in terms of the mean radius of curvature as d’ . Zl’.

Equation (41) represents the growth factor of Kelvin-Helmholtz instabil-
fty as applied to a rising cap bubble. Thus when (kcg) » O, the flow config-
uration is unstable. It should be emphasized here that the above stabilfity
criteria represents only the first step in developing a correlation for the
brutup of a fluid particle interface. This information simply indicates when
these interfacial waves occur and what their growth rates are. However, the
appearance of the wave on the interface does not necessarily imply that it
leads to drastic changes at the interface such as the breakup of particles.
To answer this question of whether the waves can lead to a breakup or not, it
IS necessary to know the time required for these waves to grow to a certain
amplitude so that splitting eventually can occur.

B. Breakup Criterion

A mathematical mode! is proposed here to predict the point at which
breakup will be attained under given conditions. If t' denotes the time at
which the instability at the interface lead to a breakup t' can be calculated
from the wave form given by £q. (25). Thus,




1 '
t’ . E-'- ln(nb/n ) (43)

where ny is the amplitude at which breakup occurs. In a linearized stability
analysis as it fs the case here, there is no way to predict the value of
(ny/n') purely on theoretical basis. This implies that some experimental
information on the initial disturbance amplitude is necessary to determine
this quantity.

Disturbances originate near the top of the roof of a bubble and propagate
down to the periphery with the local speed of propagation, c,.. In practice a
bubble does not split unless the disturbance has grown sufficiently before the
tip of the growing spike reaches the side of the bubble. If the wave travels
to the end of a cap bubble or to the equator of a spherical particle without
causing a breakup, it will be swept away at the edge into the continuous
fluid. An estimate of the 1ikelihood of splitting may be obtained by compar-
ing the time required for a disturbance to grow with the time available for
the growth. If t, represents the time available for growth, that is the time
required for a disturbance to travel from its origination to the side of the
bubble, t, can be calculated by

(]
udp

tp' l !Tr“ (44)

where 6, is the angular position where disturbances initiate. In view of Eq.
(40) 1t can be shown that t_ can be calculated by

P
b * Pg coth(kh‘) un(ou/z)
tp . { pc uc ﬂp Mlm (45)

The 1ikelihood of a breakup may now be assessed by comparing the values
of t' and tp. Thus a bubble tends to breakup by a disturbance for which

ty » tg (46)
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Combining Eqs. (43) and (45) with Eq. (46), a breakup criterion may be

expressed as
0. * P4 coth(khd) tcn(oulz) .
(.C’){ °c “c }" M‘m:m 2 in ('\b/'l ) (47)

Assuming that the terminal velocity, u., initial disturbance position,
9y, and amplitude ratio, (ny/n'), are expressible in terms of the particle
diameter, basically there are two variables in Eq. (47), namely, the wave num-
ber and the particle diameter. It is usual practice in linearized stability
analysis to consider the wave number which causes the most unstable wave
growth. That is the value of k calculated by

d(kci)

However, when £q. (48) is solved for a given diameter it has been observed
that the most unstable wave number is so small that the corresponding wave
length, A = 2x/k, becomes longer than a half of the circumference. This im-
plies a gross motion of the bubble or drop and not a perturbation of the lead-
ing interface. Such a disturbance is considered not to cause a particle dis-
integration. Therefore, instead of the most unstable wave, we propose here to
consider the wave which makes the left hand side of Eq. (47) maximum. Then at
this condition the maximum stable particle size can be determined. Hence, the
maximum diameter is given by the following equation

b * 0y coth(h.hd) tan(oulz) .
(l.c') 5 (dp)lll n E;5T3;777 = in (nb/n ) (49)

c

where k., 1s determined by

) e * Py coth(lhd) tan(OU/Z)
i’{("‘cl . tn m =0 (50)

€ ¢C




22

where kc; and h, are given by Eqs. (41) and (42), respectively, with 6 = 8y
Variables such as 8, 6., u. and tn (n,/n') are evaluated helow and sev-
eral important conclusions are obtained.

1. Wake Angle
Large fluid particles which are prone to splitting have been studied

in some detail previously, and several transition criteria for fluid particle
shape regimes have been proposed [30]. When these studies are compared with
available experimental breakup data it i5 seen that drops falling in gases and
drops in a liquid system never reach the spherical-cap particle regime. How-
ever, very large bubbles in the order of 10 cm and most bubbles at the breakup
point attain the spherical-cap shape. Therefore, in our analysis for the max-
imum diameter, each of the experimental data is checked with the shape regime
criteria suggested by C1ift et al. If the particle falls into spherical-cap
shape regime, the wake angle of 6 = 50° is used fn Eq. (47). On the other
hand, 1f the particle falls into spherical or <11ipsoidal shape particle
regime then 6 = 90° s used in Eq. (47).

2. Particle Diameter and Volume Equivalent Diameter
In most drop or bubble experiments, data are tabulated in terms of
the volume equivalent diameter, d.. rather than based on the mean curvature
diameter, dp. Therefore, it is desirable to express the criterion in terms of
d Referring to Fig. 2, it can be shown that

¢ = : 34, (51)
P (1 - cose ) (2 + cose )
w w

Hence, dp appearing in the criterion set above can be replaced by d, through

dp = Cq 4y (52)

where

o [ 4 1/3
¢ (1 - coso.)2 (2 + coso“)
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for spherical-cap shaped particles.

3. Angular Position of Disturbance Generation

From Eq. (45) it is evident that disturbances which originated at the
axis of symmetry, i.e., at 6, = 0, would never reach the end of the cap bubble
or the equator of spherical particles. They are purely standing waves in na-
ture. Observations of splitting bubble experiments performed by Clift et al.
[27] indicated that disturbances usually develop in a regular patter~ to
either side of the leading nose. There are two fundamental patterns which may
be possible.

Case A. The bubble nose is a node when the initial disturbance
originates, then

eo ] n. = kd (53)

Case B. A node is located A/4 from the bubble nose so that the nose
is an antinode in the initial disturbance form, then

(54)

In Case A, the disturbance originated closer to the bubble nose than
fn B, thus yielding longer available times and, therefore, Case A was prefer-
red by Cl1ift et al. However, Case B yields an axisymmetric propagation which
is considered to be more realistic, thus Case B is chosen here. Hence,

(55)

will be used throughout analysis.

4. Terminal Velocity
There is a substantial body of data in the literature on the terminal
velocity of a single bubble or drop. From these data many correlations for




calculating the velocity, u., are developed [31,38-42]. Similar studies have
also heen carried out for multiparticle systems [43]. The terminal velocity
correlations were reviewed in detail by Grace et al. [42]). 1In our analysis we
used the correlations recommended by them. These are given below:

1. For drops falling through gas

1/4

2
o/
C

aolo\
i A 2.0 <9J-:d:3\

For large bubbles rising through liquid
glap|d 1/2
. e
u vl P —
C b\
c

For drops rising or falling through liquid

2 1 .
)‘F + 2 Ar) . F| for M> 0.01

vhere M and Ar are Morton number and Archimedes number, respectively.
are defined as

and parameter F is given by




+ lu./
. 37 n‘.z‘w“*—p. 9 7.1:“
1 + | ud' U

~

On the other hand,

7r.>{v - 0.859) MO-1%9 £or M < 0.001 and E_ < 40

e
where Y 1s a property group defined by

= 0.94 yO.757 for 2 < H < 59.3
= 3.42 4O0.441 for H > 59.3

ie given by

taken as 0.9 x 10'3 Ns/m2 and Eo is Eatvas number defined by

Breakup Correlation

[t is evident from Eqs. (49) and (50) that in order to arrive at a pre-

dictive criterion, one needs to know the relative magnitude of the initial
disturbance, (ny/n'). In order

J

to explicitely determine this quantity it is
necessary to resort to experime~’ A reasonable approach is to correlate

this term in terms of basic vari-+.es affecting ny and n'. It is to be noted
that ny, the amplitude of progressing waves at the breakup, should be in the
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order of a particle diameter. On the other hand, the initial disturbance
amplitude, n', must be a strong function of the rise or fall velocity. Fur-
thermore, considering that the density ratio varies few orders of magnitude

between liquid-gas and gas-liquid systems, a reasonble correlation may be
sought in the form of

(66)

In view of Eas. (52), (54) and (66), Eq. (49) can be cast into a non-
dimensional form as follows:

. * *»
\

5 & ‘ A )
. (v coth‘kmnd,\ . tan&bw/Z,

k ¢, ) (d ) n - —
mA !

* .

e' e’max

P *
u tan(w/k cd )
C \ mee
max /

where starred quantities denote the dimensionless variables. They are defined
as follows:

-
(4 ) 7
e ‘max

1/2
{ f{ ) b Tl
.glAOIKGe,max/oC/
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* c'
o S 172
(alselta ). /o)
* Dc
p 3 —
s

Now the dimensionless growth factor is obtained from Eq. (41) as

* *
. ke (d)

[ * * % * *
p coth(k hd) g-u sin(——z—'———> . k ’
mee "‘max

* * & 2
(o + coth(k.hd)]

\
% * 1/2
P
- t. t(k '1%* } (69)
(de)_ax P+ coth(k.hd)
/

In these equations, the dimensionless wave number, k', is determined by Eq.
(50), which in dimensionless form becomes

*

* *
. « « | P *+ coth(k hd) tan(e“/Z)
1k c,) — &n — =0 (70)
ak o tan(2x/k ce(de)nax)

Using substantial amounts of data tabulated in Table I the nondimensional
form of function f is correlated. For this purpose the linear regression
analysis is used, and the best fit is expressed by the following function,
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*1.340
e ‘max

* 90.6975
P

*
1 +p

\

Together with Eq. (71), Eq. (65) determines the maximum particle diameter
at breakup The correlation found here is general in the sense it can be ap-
plicable for liquid-gas, liquid-liquid, and gas-liquid systems for relatively
Tow viscous fluids because the viscosity effects have been neglected to arrive
at the correlation.

COMPARISON BETWEEN THEORY AND EXPERIMENTS

Predicted values of (dg)max are compared against experimental values in
Table I and Fig. 3. It is evident from the table that the experimental data
cover a broad range of liquid-liquid, liquid-gas and gas-liquid systems. The
results include the data by Hu and Kintner [31], Krishna et al. [33] and Grace
et al. [29] for liquid-liquid systems, by Merrington and Richardson [3],
Finlay [32] and Ryan [35] for liquid drops falling through gas, and finally by
Grace et al. [3] and Sundell [34] for rising bubbles through stagnant lig-

uid. In addition to the experimental and predicted values of (de)max> the

deviation between predicted and experimental values of ide‘ and the mean

/max
deviation for each group are also listed in Table I.

The average deviation between predicted and experimental value of {de)max
varies from about 3.65% for Ryan data to 31.90% for Hu and Kintner data with
an overall mean deviation of 18.06%. Four of the systems studied by Hu and
Kintner are in common with systems investigated by Krishna et al., while two
of the Finlay systems are essentially identical with Merrington and Richardson
systems. However, the mean deviation changes dras”ically between Hu and
Kintner and Krishna et al. data and between Merrington and Richardson and
Finlay data. Although there are some differences in reported values of fluid
properties, a significant part of the discrepancy between predictions and
theory arises from experimental scatter or bias. It is to be noted that the
Hu and Kintner data having the largest mean deviation show diameters to be
consistently lower than the theoretical ones.




Data_Author(s) __Dispersed/Continous Fiuid Systems

Krishna et al. (Liquid/Liquid Systems)
ru & Kintner  (Liquid/Liquid Systems)
Grace et al. (Liqu’ ./Liquid Systems)

Merrington & (Liquid/Gas Systems)
Richardson

Ryan (Liquid/Gas Systems)
Finlay (Liquid/Gas Systems)
Grace et al (Gas/Liquid Systems)
Sundell (Gas/Liquid System)
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Fig. 3.

Comparison Between Experimental Maximum Diameters with Predictions
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Relatively large differences between the predicted diameters and the
Grace et al. data for liquid-liquid systems may be due to viscosity effects of
the continuous fluid. Grace et al. experiments cover a dynamic viscosity
range of 12.4 to 3080 Ns/m. In our analysis as mentioned above viscous ef-
fects have been neglected. Therefore, the present correlation may not be very
good for highly viscous fluids.

Taking the experimental scatter and the very viscous fluids used for some
experiments into consideration, and recalling the approxim.te nature of the
theory developed here, the agreement between the theoretical predictions and
the experimental results is satisfactory. The overall mean deviation between
the predicted and experimental values of (d,)n., is * 18.06%. Agreements with
experimental results indicates that the principle physical mechanisms involved
are properly accounted for.

VI. SUMMARY AND CONCLUSIONS

Two-dimensional Kelvin-Helmholtz instability is applied to the stability
of two superposed fluids flowing with different velocities. The stability
criterion implies that stability of disturbances is a function of the wave
number, amplitude, relative velocity and the original amplitude of disturb-
ances at the interface. Based on this stability theory, a simple model is de-
veloped to describe the breakup of drops and bubbles falling or rising freely
in a fluid media. Breakup is predicted to occur if the growth of disturbances
on the leading front is rapid enough compared to the rate at which the dis-
turbance is propagated along the interface. Using the available experimental
data for liquid-gas, liquid-liquid and gas-liquid systems a simple semi-
empirical correlation is developed to predict the maximum stable particle size
in a stagnant fluid.

Predicted values of the maximum particle size are compared with experi-
mental data. An average aeviation between the predicted and experimental
values is 18%. Considering the various simplifications made in the analysis
the agreement appears satisfactory. The theoretical model developed in this
study is clearly approximate in nature. However, the agreement with experi-
mental results over very wide ranges of parameters indicates that the princi-
ple physical mechanisms involved are properly accounted for by the present
model. Therefore, the breakup of bubbles and drops can be explained by the
present unified theory.
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Table 1. Comparison Between Experimental Maximum Diameters with Predictions

Properties (dg)max * 10% (m)
3 3 n
°d , , SR, 1 100 e x10'  ox10’ Deviation Devigtion
System Dispersed Fluid/Continuous Fluid (kg/m®)  (kg/m”) (Nsluz) (ls/-Z) (N/m) Experimental Predicted 3 %
Merrington & Richardson [3]
water/air 1000 1.25 1. 206 0.018 73.0 10. 20 10.05 - 147
carbon tetrachloride/air 1600 1.25 0. 960 0.018 25.0 4.80 4,60 - 4,17
methy) salicylate/air 1330 1.25 3.990 0.018 35.0 6.20 5.80 - 6.45
glyceine + 2% water/air 1210 1.25 121.0 0.018 63.7 8.80 8.41 - 4.43 B.07
methy] salicylate (thick)/air 1330 1.25 0.532 0.018 30.0 6.40 5. 40 +15.62
tetrabromoethane /air 1340 1.25  938.0 0.018 25.0 6.40 4.90 -23.43
dirty water/air 981 1.25 1.2 0.018 48.0 8.40 8.48 + 0.95
g Ryan [35]
@ water/air 998 1.18 1.044 0.018 72.0 9.10 9.40 +32
w water + surfactant/air 998 1.18 1. 004 0.018 50.0 7.50 7.90 + 5313
c? water + surfactant/air 998 1.18 1. 004 0.018 40.0 6. 90 7.20 +4.35
< water + surfactant/air 998 1.18 1. 004 0.018 33.0 6.10 6.5C + 6.56 3.65
'é water + surfactant/air 998 1.18 1.004 0.018 25.0 5.20 5. 20 0.00
- water + surfactant/air 998 1.18 1. 004 0.018 20.0 4.70 4.93 + 4.89
b water + surfactant/air 998 1.18 1.004 0.018 17.0 4.40 4.45 + 114
Finley [32]
tetrabromoethane/air 2968 1.18 11.52 0.018 50.0 3.5 3.4 - 257
isobutanol/air 998 1.18 1.044 0.018 73.5 8.00 9.38 +17.25%
water/air 1200 1.18 124.2 0.018 63.0 10. 00 7.10 -29.00 22.21
glycerol solution/air 803 1.18 4.14 0.018 23.0 4.50 6.30 +40.00

1



Properties

Mean
Jeviation Deviation

7 v

Dispersed Fluid/Continuous Fluid )/m ' m) Experimenta) f 1 t

| Krishna et al. [33]

n-amy! phthalate/water | 0. BZ
aniline/water 1 2.8 ). B2
bromoform/water { 2. 12 0.9156
n-buty! phthalate/water 9499
carbon disul fide/water 6 ] ) ). 9499
carbon tetrachloride/water 915¢
clorobenzene /water 828
1-chlorobenzene/water 766
m-cresol /water

epichlorohydrin/water

ethy! chlorcacetate/wate

ethy amate /water

ethy] phthalate/water

1,2-dibromoethylene /water

eugzncl /water

isoeugenol /water

| methy! phthalate/water

nitrobenzene/water

m-nitrotoluene/water

o-nitrotolune/water

dipheny! ether/water

1,2-dichloropropene /water

1,1,2,2-tetrabromoethane /water

1,1,2,2-tetrachloroethane/water

tetrachloroethylene/water

n-amy! phthalate/water

chlorobenzene /water

chlorobenzene/water

chlorobenzene /water

chliorobenzene/water

1 nitrobenzene/water




Table 1. (Cont'd)

Properties (g )max * 103 (m)
3 3 3 Mean
®d P vg X 10w x 10 ox 10 Deviation Devsation
System | Dispersed Fluid/Continuous Fluid  (kg/m’) (kg/m’) (Ns/m)  (Ns/m?) (N/m)  Experimental  Predicted 3 '
Hu & Kintner [31]
tetrabromoethane /water 2947.4  957.3 9. 2888 0.8968  35.90 5.11 7.81 +52.84
dibromoethane /water 2154.1  996.6 1. 5852 0.8968  31.90 6.74 9.59 +42.28
ethy) bromide/water 1447.8  997.7 0. 4908 0.8814  30.00 9.14 12.27 +34.25
nitrobenzene/water 1194.7  997.2 1.7379 0.8835 24.10 15. 37 13.28 -13.60 31.90
bramobenzene /water 1488.1  997.1 1.0719 0.8958  37.90 11. 32 12. 30 + 8.66
tetrachloroethylene/water 1614.3  997.0 0. 8903 0.8946 44.3 10. 40 14. 65 +40. 87
§ carbon tetrachloride/water 1577.0  995.7 0. 8702 0.7797 40.6 10. 40 12 .60 +30.77
-2' Grace et al. [29]
o carbon tetrachloride/sugar solution 1586 1382 1.05 3080 34.4 135. 00 127.10 - 5.92
E carbon tetrachloride/sugar solution 1586 1388 1.05 1200 34.4 156. 00 121.90 -21.86
= chloroform/sugar solution 1483 1382 0.56 3080 32.7 142. 00 191. 10 +34.51
i chloroform/sugar solution 1483 1387 0.51 1520 32.8 151.00 166. 30 +10.13
2 chloroform/sugar solution 1483 1366 0. 56 300 3.9 63. 43.21 -31.41
2 chloroform/sugar solution 1483 1310 0. 56 54 . 31.4 34.00 16. 20 -52.35 26.73
e 1,2-dichloroethane/ethylene glycol 1247 1112 1.04 14.8 6.94 14,20 14. 90 +4.93
glycerol solution/paraffin oil 1062 883 2.0 185 51.0 51.00 49,22 - 3.49
silicone oil/ethylene gl{tol 958 1112 46.5 12.4 24.0 16. 20 i8.24 +12.59
silicone ofl/paraffin oi 960 883 46.5 200 7.0 51.70 19.20 -62. 35
silicone oil/sugar solution 958 1366 46.5 310 2.1 46. 00 24.33 -47.11
silicone oil/sugar solution 920 1390 5.5 2890 53.5 99. 00 122.80 +24.04
silicone oil/sugar solution 920 1390 6.1 2700 53.5 95. 00 130.00 +36. 84
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